WO2005012900A1 - Biosensor with multiple electrical functionalities - Google Patents
Biosensor with multiple electrical functionalities Download PDFInfo
- Publication number
- WO2005012900A1 WO2005012900A1 PCT/US2004/019652 US2004019652W WO2005012900A1 WO 2005012900 A1 WO2005012900 A1 WO 2005012900A1 US 2004019652 W US2004019652 W US 2004019652W WO 2005012900 A1 WO2005012900 A1 WO 2005012900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- biosensor
- electrode
- receiving chamber
- sample
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
Definitions
- BIOSENSOR WITH MULTIPLE ELECTRICAL FUNCTIONALITIES REFERENCE TO RELATED APPLICATIONS This application is related to applications entitled TEST STRIP WITH SLOT VENT OPENING ("Slot Vent Opening") (attorney docket no. 7404- 567), METHOD OF MAKING A BIOSENSOR (attorney docket no. 7404- 480), METHOD AND REAGENT FOR PRODUCING NARROW, HOMOGENEOUS REAGENT STRIPES ("Reagent Stripes”) (attorney docket no. 7404-475), DEVICES AND METHODS RELATING TO ELECTROCHEMICAL BIOSENSORS (attorney docket no.
- the present invention relates generally to devices, systems, and methods for measuring analytes from biological samples, such as from a sample of bodily fluid. More particularly, the present invention relates to electrically operable biosensors.
- BACKGROUND Measuring the concentration of substances, particularly in the presence of other, confounding substances (“interferents”), is important in many fields, and especially in medical diagnosis and disease management.
- interferents confounding substances
- concentration of analytes such as glucose in a blood sample.
- optical methods typically fall into one of two categories: optical methods and electrochemical methods.
- Optical methods generally involve absorbance, reflectance or laser spectroscopy to observe the spectrum shift in the fluid caused by the concentration of the analytes, typically in conjunction with a reagent that produces a known color when combined with the analyte.
- Electrochemical methods generally rely upon the correlation between a charge-transfer or charge-movement property of the blood sample (e.g., current, interfacial potential, impedance, conductance, and the like) and the concentration of the analyte, typically in conjunction with a reagent that produces or modifies charge-carriers when combined with the analyte. See, for example, U.S. Patent Nos. 4,919,770 to Preidel, et al., and 6,054,039 to Shieh, which are incorporated by reference herein in their entireties.
- An important limitation of electrochemical methods of measuring the concentration of a chemical in blood is the effect of confounding variables on the impedance of a blood sample.
- the geometry of the blood sample must correspond closely to that upon which the impedance-to- concentration mapping function is based.
- the geometry of the blood sample is typically controlled by a sample- receiving chamber of the testing apparatus in which the fluid sample is received and held during its analysis.
- the blood sample is typically placed onto a disposable test strip or biosensor that plugs into the meter.
- the test strip may have a sample chamber to define the geometry of the sample.
- the effects of sample geometry may be limited by assuring an effectively infinite sample size.
- the electrodes used for measuring the analyte may be spaced closely enough so that a drop of blood on the test strip extends substantially beyond the electrodes in all directions.
- one or more dose sufficiency electrodes are used to assure that a sufficient amount of sample has been introduced into the sample receiving chamber to assure an accurate test result.
- Other examples of limitations to the accuracy of blood glucose measurements include variations in blood chemistry (other than the analyte of interest being measured). For example, variations in hematocrit (concentration of red blood cells) or in the concentration of other chemicals, constituents or formed elements in the blood, may affect the measurement. Variation in the temperature of blood samples is yet another example of a confounding variable in measuring blood chemistry.
- certain other chemicals can influence the transfer of charge carriers through a blood sample, including, for example, uric acid, bilirubin, and oxygen, thereby causing error in the measurement of glucose.
- Efforts to improve test strips have been mainly directed to making them smaller, faster, and require less sample volume. For example, it is desirable for electrochemical biosensors to be able to analyze as small a sample as possible, and it is therefore necessary to minimize the size of their parts, including the electrodes.
- screen-printing, laser scribing, and photolithography techniques have been used to form miniaturized electrodes. These methods are undesirably time-consuming, however, and screen-printing or laser scribing technologies pose limitations on the edge quality of the electrical patterns formed, such that gap widths between electrical elements normally must be 75 microns or more.
- some of these techniques make it unworkable on a commercial scale to remove more than a small fraction, e.g., more than 5-10% of the conductive material from a substrate to form an electrical pattern.
- the electrode structures in available electrochemical test strips made by these techniques typically have one or perhaps two pairs of electrodes, and the measurements obtained by these electrode structures are quite sensitive to the interferents discussed above.
- the signal produced by the analyte desired to be analyzed must be deconvoluted from the noise produced by the interfering substances.
- Many approaches have been employed to attenuate/mitigate interference or to otherwise compensate or correct a measured value. Often, multiple design solutions are employed to adequately compensate for the sensitivities associated with the chosen measurement method.
- One approach involves removing interfering materials such as blood cells from the fluid sample before it reaches the electrodes by using perm- selective and/or size-selective membranes, filters or coatings. Multiple layers of membranes are often laminated together to achieve the ultimate goal of delivering a fluid to the electrodes which contains only low levels of interferents.
- this approach suffers from incremental costs of goods, viz., coatings and membranes that must often be pre-treated prior to assembly. It also incurs additional manufacturing process steps that further increase manufacturing cost and complexity while decreasing the speed of manufacture.
- This approach addresses the attenuation problem by increasing the complexity and cost of the test strip, thereby reducing the burden of the meter which reads the strips.
- Another general approach involves the use of sophisticated excitation and signal processing methods coupled with co-optimized algorithms. While simpler, less complex test strip architectures and manufacturing processes may be realized, instrumentation costs, memory and processor requirements, associated complex coding, and calibrated manufacturing techniques are all increased by this approach. Systems employing this approach address the attenuation problem by placing a higher computational burden on the meter that reads the strips. Yet another more recent approach involves neither the strip nor instrumentation, per se, but rather exploits the measurement methodology. An example of this approach is the use of a coulometric method to attenuate the influence of hematocrit and temperature. This coulometric approach, however, requires a tight manufacturing tolerance on the volume of the sample receiving chamber in the test strips produced, since the entire sample is used during the analysis.
- test strips using this technology require two separate substrates printed with electrodes, which further increases manufacturing costs.
- the requirement that much of the sample volume be interrogated may also limit test speed.
- this approach requires relatively large electrodes to provide significant electrolysis of the sample in a relatively short time in order to estimate the "endpoint" of the coulometric detection. It is also well known to those skilled in the art that all of the above approaches are further supported by the initial design of reagent systems. In the detection of glucose, for example, this may involve the use of selective redox mediators and enzymes to overcome the detrimental influence of redox- active species or the presence of other sugars.
- the present invention provides a biosensor having multiple electrical functionalities located both within and outside of the measurement zone in which the fluid sample is interrogated. Incredibly small and complex electrical patterns with high quality edges provide electrical functionalities in the biosensor and also provide the electrical wiring for the various other electrical devices provided in the inventive biosensor.
- biosensors of the present invention may be provided with a user interface zone, a digital device zone and/or a power generation zone. The inventors of the present invention have taken an entirely different approach than the schemes discussed above for mitigating interference or otherwise correcting a value measured by a test strip.
- the present invention provides a biosensor for analyzing a fluid sample.
- the biosensor includes a biosensor body that defines a measurement zone having a sample receiving chamber in which is disposed a measurement electrode for detecting the presence or concentration of an analyte in the fluid sample.
- the measurement zone also includes a reagent that reacts with the fluid sample.
- the biosensor body further defines a user interface zone in which is disposed an electrically driven signal generator which emits a visible, audible or tactile signal upon occurrence of a triggering event.
- the signal generator comprises a light positioned on the test strip body which illuminates (or turns off) upon the occurrence of the triggering event.
- the signal generator comprises a light disposed proximate the sample receiving chamber and which illuminates the sample receiving chamber upon the occurrence of the triggering event.
- the signal generator is a numerical display. Any number of occurrences can constitute a "triggering event," including but not limited to insertion of the strip into a meter, a sufficient size dose being received in the sample receiving chamber, malfunction of test, nonfunctional test strip, etc.
- the signal generator comprises an electrode set on which the OLED is coated. More preferably, the electrode set comprises a micro-electrode array with at least two electrode fingers having a gap of less than about 5 microns between them.
- the biosensor also includes a power generation zone in which is disposed a power generator. More preferably, the biosensor additionally includes a digital information zone in which is disposed at least one digital device.
- Fig. 1 is a perspective view of a biosensor or test strip in accordance with one embodiment of the present invention
- Fig. 2 is an exploded perspective view of the biosensor of Fig. 1
- Fig. 3 is an exploded perspective view of a biosensor in accordance with a second embodiment of the present invention
- Fig. 4 is an exploded perspective view of a biosensor in accordance with a third embodiment of the present invention
- Fig. 1 is a perspective view of a biosensor or test strip in accordance with one embodiment of the present invention
- Fig. 2 is an exploded perspective view of the biosensor of Fig. 1
- Fig. 3 is an exploded perspective view of a biosensor in accordance with a second embodiment of the present invention
- Fig. 4 is an exploded perspective view of a biosensor in accordance with a third embodiment of the present invention
- Fig. 1 is a perspective view of a biosensor or test strip in accordance with one embodiment of the present invention
- Fig. 2 is an exploded perspective
- FIG. 5 is a plan view of a base substrate of a biosensor in accordance with a fourth embodiment of the present invention
- Fig. 6 is a plan view of a base substrate of a biosensor in accordance with a fifth embodiment of the present invention
- Fig. 7 is a plan view of a base substrate of a biosensor in accordance with a sixth embodiment of the present invention.
- Corresponding reference characters indicate corresponding parts throughout the several views.
- test strips embodied by the present invention provide for testing of an analyte in a bodily or other fluid using multiple electrode functionalities that are provided on board the test strips.
- multiple electrode sets can be formed which perform the same or different functions.
- the novel electrical features of the embodiments disclosed herein extend beyond the concept of "measurement functionalities," however. Indeed, it is helpful to view test strips embodying the present invention as having individual "zones," each zone including electrical devices having a specific functionality.
- test strips disclosed herein may provide user interface, digital, and power generation zones that have been hitherto unavailable in test strip architecture.
- strip 200 defines a test strip body that generally has several zones, including a measurement zone 202, a user interface zone 204, a power generation zone 206, a digital device zone 208 and an instrument connection zone 210.
- the zones are not limited to specific locations on a given test strip 200. Instead, the locations of the various zones will normally overlap to varying degrees as shown or may be discontinuous, occupying two or more different regions of the test strip body.
- Each zone generally has included therein electrical devices that perform a specific type or class of function. For example, the electrical devices included in the measurement zone typically have functionalities related to the measurement (or correction of measurement) of the fluid sample being interrogated.
- Examples of these electrical devices include macro and micro-electrode sets, dose detection electrodes, sample sufficiency electrodes, temperature correction or temperature measurement electrodes, thermistors and the like. While the measurement zone is illustrated at a dosing end 212 of the strip, it should be understood that the measurement zone may alternatively occupy other locations on the strip, e.g., a side of the strip, as is known in the art.
- the electrical devices in the user interface zone typically are electrically driven signal generators which emit a visible, audible or tactile signal upon occurrence of a "triggering event.”
- the signal generator may be a light that illuminates or turns off after a sufficiently sized sample has been received in the measurement zone, the latter event being the "triggering event.”
- the user interface zone is in some embodiments electrically wired to the measurement zone and/or other zones of the test strip.
- the power generation zone includes one or more power generators that provide power to one or more other electrical devices disposed on or in the test strip.
- the power generator comprises a battery, but it could also comprise a capacitor or even a solar cell, depending upon the power requirements of the electrical device the power generator is going to drive and the specific functionality of that device.
- Digital devices such as RFID tags, integrated circuits and the like are disposed within the digital zone and may be wired to the electrical pattern.
- the electrical pattern that is disposed in the digital zone is itself encoded with digital information and thus comprises yet another type of digital device.
- the instrument connection zone includes electrical devices, typically contact pads, that electrically link to an instrument (not shown) which includes driving circuitry and metering circuitry.
- the driving circuitry provides a known current and/or potential through contacts 216 and monitors the current and/or voltage response over a period of time.
- the metering circuitry correlates the monitored current, impedance and voltage response to estimated analyte concentration or other aspect of the analyte.
- instrument connection zone is preferably disposed on a meter insertion end 214 of the strip, this need not necessarily be the case.
- the instrument zone could be located on a side of the strip or could be located on the end as shown, but could also include contact pads that are disposed at various locations on the top, bottom or sides of the test strip.
- strip 200 is generally of a laminar structure and includes three primary layers.
- the base substrate layer 220 is generally a flexible polymeric material such as polyester, especially high temperature polyester materials; polyethylene naphthalate (PEN); and polyimide, or mixtures of two or more of these.
- a particularly preferred base substrate material is a 10 mil thick MELLNEX® 329 layer available from duPont.
- Substrate 220 is initially coated with a conductive material such as a 50 nm layer of gold, and the complex electrical pattern 222 can be then formed therefrom by broad field laser ablation.
- the broad field laser ablation method is described in the METHOD OF MAKING A BIOSENSOR application incorporated above.
- the electrical pattern 222 includes contacts or contact pads 216, which, as described above, can be electrically linked to an instrument that reads strip 200. Traces 223 run lengthwise along strip 200 and are typically used to connect electrical devices to the contact pads 216 or to connect two or more electrical devices on or in strip 200 together.
- substrate 220 includes a measuring electrode set 228 coated by a reagent 229 and a sample sufficiency electrode set 230, the operation of which are described in detail in the Dose Sufficiency, Slot Vent Opening, and DEVICES AND METHODS RELATING TO ELECTROCHEMICAL BIOSENSORS applications, all of which were incorporated by reference above.
- These electrode sets are connected to their respective contact pads by traces 230 and 232 and in turn through traces 223 as shown.
- User interface devices comprising L-shaped micro-electrode arrays 224 are formed on base substrate 220 and are coated with organic light emitting diodes (“OLEDs") 226, which illuminate upon a voltage being provided across arrays 224. The voltage is applied or removed upon or after the occurrence of a triggering event, as described in more detail below.
- OLEDs organic light emitting diodes
- micro-electrode set 234 formed on substrate 220 is coated with a second OLED 236 that illuminates or turns off upon the occurrence of the same or a different triggering event, as is also described in more detail below.
- a power generator 238 is provided on strip 200 and can be used to power various other electrical devices present on the strip, as explained below. Many suitable power generators are commercially available and can be employed as power generator 238, but power generator 238 should preferably be formed as a small and especially thin material so as not to significantly increase the thickness of test strip 200.
- Test strip 200 includes digital device 246, which is shown in Fig. 2 wired to power generator 238 by traces 248.
- Digital device 246 may be an integrated circuit, an RFID tag or other digital device, as described in more detail below.
- a portion of the electrical pattern may comprise a digital device 250, as explained in more detail below.
- Laminated to base substrate 220 is a spacer layer 256, formed, e.g., from a 4 or 5 mil thick Melinex® 329, 339 or 453 material available from DuPont Teijin Films. In certain embodiments, particularly those including light emitters such as OLEDs 226 and 236, it is preferable that the spacer layer material be clear or translucent so that the OLEDs are visible when lit. The Melinex® 453 material works well for this purpose.
- Spacer layer 256 forms a void 258 that defines the height and perimeter of the sample receiving chamber 218 (Fig. 1).
- Spacer layer 256 also includes "cut-outs" 260 and 261 that are sized to receive digital device 246 and power generator 238, respectively. These devices will typically be thicker than the spacer layer, such that they may protrude slightly from the top of strip 200 as shown in Fig. 1.
- a covering layer 262 overlies and is laminated to spacer layer 256. Covering layer 262 is also preferably made from a transparent Melinex® film that is about 4-5 mils thick. Covering layer 262 overlies most of void 258 and forms the ceiling or top boundary for sample receiving camber 218.
- the cover terminates short of the full length of void 258 and thereby forms a vent opening 264 as shown. Vent 264 allows air to be displaced from chamber 218 as fluid sample enters it.
- OLED coatings 226 and 236 are visible when lit through the covering and spacer layers.
- cover layer 262 may extend further toward meter insertion end 214, such that it is coextensive with layer 256. The cover 262 would then be formed with a hole overlying the void 258 to form the vent.
- the cover could be formed in two pieces forming a gap therebetween, as described in the Slot Vent Opening application, incorporated by reference above.
- This longer spacer layer may also include cut-outs that align with cutouts 260 and 261 and reduce the extent to which devices 238 and 246 protrude from strip 200.
- electrical devices in the user interface or power generation zones may be sufficiently thin such that they can be covered by covering layer 262 for protection from electromagnetic interference.
- the electrical patterns for use with embodiments incorporating the present invention are typically formed by broad field laser ablation, which is described in detail in the METHOD OF MAKING A BIOSENSOR application that was incorporated by reference above.
- This method allows several electrical functionalities to be located within and outside of measurement zone 202 — with room to spare on an already very small test strip.
- arrow 240 in Fig. 2 represents the approximate width of strip 200, which is about 9 mm in the illustrated embodiment.
- the strip illustrated in Figs. 1 and 2 is preferably about 33 - 38 mm in length.
- Arrows 242 illustrate the distance from the edge of the strip to the innermost trace 223, and this width can be configured to be about 1 mm or even as small as about 0.2 mm.
- width 244 which is the width available for components such as power generator 238 and digital device 246, can be about 8 mm or more for a 9 mm wide strip having ten electrical traces running lengthwise along it.
- electrical patterns embodied by the present invention while complex, can nonetheless be advantageously configured into a relatively small space, such that ample room remains for other devices having relatively large footprints to be placed on the strip.
- the measurement zone incorporating the present invention can vary widely insofar as the type and quantity of functionalities provided therein.
- the measurement zone 202 includes a sample receiving chamber 218 whose periphery is approximately indicated in Fig. 2 by dashed line 266.
- Macro-electrode array 228 includes a working electrode and a counter electrode, each having one or more interdigitated fingers as shown.
- Electrode set 228 estimates the concentration of analyte based upon the reaction of the analyte with the reagent 229 coated on the electrode set. Once a sufficient sample has entered chamber 218, a suitable potential or series of potentials across the working and counter electrodes are applied, and the impedance or other characteristic is measured and correlated to the concentration of analyte. Measuring electrodes of this type and reagent suitable for reagent layer 229 are described in the Slot Vent Opening and DEVICES AND METHODS RELATING TO ELECTROCHEMICAL BIOSENSORS applications incorporated above, and need not be described in further detail herein. As mentioned, the voltage or potential is preferably not applied across electrode set 228 until the sample chamber has filled with the requisite volume of sample.
- sample sufficiency electrode set 230 is provided at a downstream location in chamber 218.
- its resistance or impedance (which can be intermittently monitored by applying a voltage to the contact pads 216 connected to electrode set 230) will drop, thereby indicating sample has reached the interior end of the chamber and sufficient sample has thus been received.
- a potential or series of potentials can thereafter be driven across electrode set 228 to perform the measurement.
- Sample sufficiency electrodes suitable for use with the present invention are disclosed in the Dose Sufficiency application that was incorporated by reference above. Additionally, once the sample sufficiency electrodes indicate that sufficient sample has been received, they can be used for other measurements, as also disclosed in the Dose Sufficiency application.
- Strip 300 includes base substrate 302, four sets of micro-electrodes 304, 306, 308 and 310, and a set of sample sufficiency electrodes 312 formed thereon. A reagent layer whose edges are indicated by dashed lines 314 and 316 is coated onto the micro-electrode sets. Strip 300 also includes a spacing layer 318 having a void section 320, which, in cooperation with covering layer 322 and base substrate 302, partially defines the boundaries of the sample receiving chamber.
- the position of the sample receiving chamber is generally indicated by dashed line 324 on substrate 302, although the void portion beneath the vent is not part of the sample receiving chamber.
- the micro-electrode sets and sample sufficiency electrodes are electrically connected to contact pads 326 through traces 328.
- the architecture just described is essentially the same as that described with reference to Figs. 1-2, the difference being the electrical devices contained in the sample receiving chamber.
- a large central portion 330 of the base substrate 302 is not occupied by the electrical pattern and would be available to add additional user interface, power, or digital devices, as described elsewhere herein.
- identical microelectrodes are provided to make identical measurements.
- Sample fluid enters the sample receiving chamber 324 and is drawn in by capillary action past each of the micro-electrode arrays until it wets sample sufficiency electrode set 312, whereupon potentials are applied across each of the microelectrode arrays 304, 306, 308 and 310.
- the circuitry in the instrument (not shown) that reads the strips drives a potential across each electrode set through contacts 326 and traces 328.
- electrodes sets 304, 306, 308 and 310 could be wired in parallel (not shown), in which case a single pair of contact pads would connect all four electrode sets to the meter. In this case, the parallel configuration of the four sets would provide an "on strip" average for the value being measured by the four electrode sets.
- Strip 400 includes base substrate 402 with four sets of electrodes 404, 406, 408 and 410, and a set of fault detect electrode traces 412 and 413 formed thereon.
- a reagent stripe 414 is coated onto electrode set 404 and micro-electrode set 406 in this embodiment.
- Strip 400 also includes a spacing layer 418 having a void section 420, which, in cooperation with covering layer 422 and base substrate 402, defines the boundaries of the sample receiving chamber.
- the position of the sample receiving chamber is indicated generally by dashed line 424 on substrate 402.
- the electrode sets and sample sufficiency electrodes are electrically connected to contact pads 426 through traces 428.
- the architecture just described is essentially the same as that described with reference to Fig. 2, the difference being the electrical devices contained in the measurement zone. Again, a large central portion 430 of the base substrate 402 is not occupied by the electrical pattern and would be available to add additional user interface, power, or digital devices, as described elsewhere herein.
- the first electrode pair 404 encountered by the sample includes working electrode 432, a single-finger electrode.
- First electrode pair 404 also includes counter electrode pair 434, a two-finger electrode, with one finger on either side of working electrode 432.
- Each finger in first electrode pair 434 is about 250 ⁇ m wide, and a gap of about 250 ⁇ m separates each counter electrode finger from the working electrode finger.
- the system driver connects to contacts 426 to use the first electrode pair 404 to obtain an estimated concentration of analyte in the sample.
- the second electrode pair 406 comprises two electrodes of five fingers each. These fingers are each about 50 ⁇ m wide with a separation of about 30 ⁇ m between them.
- Each electrode in the second pair connects to a conductive trace 428 to be electrically connected to a contact 426, which contacts are used to drive and measure for a first correction factor such as hematocrit based on the analyte interaction with the second pair of electrodes.
- the third electrode pair 408 is also a micro-electrode configuration, with each of the two electrodes in the third pair 408 having five fingers interdigitated with the five in the other electrode. Each finger is again about 50 ⁇ m wide, with a gap of about 30 ⁇ m between them.
- Each electrode in the third pair 408 is connected via a conductive trace 428 to a contact 426, which contacts are used to drive and measure for a second correction factor such as temperature based on the analyte interaction with the second pair of electrodes.
- the fourth set of electrodes comprises sample sufficiency electrodes 410 that signal when the sample has filled the chamber such that electrode sets 404, 406 and 408 can then be driven to perform their respective measurement functions.
- the fifth functionality in the measurement zone of strip 400 relates to fault detect traces 412 and 413 for electrode set 404.
- Trace 413 connects to counter electrode 434 and is used to correct variant voltage across the pair, whereas fault detect trace 412 on working electrode 432 compensates for measured current.
- traces 412 and 413 can be used to apply a potential between the primary traces and the fault detect traces to determine whether there are any defects in the primary traces. This fault detection feature is fully described in the Quality Assurance application that was incorporated by reference above. Even with five electrical devices or functionalities provided in the measurement zone, the sample receiving chamber 424 nonetheless has a very small volume, on the order of less than about 500 nl. Turning now to Fig.
- a base substrate 502 for a test strip of the type described above is shown.
- Substrate 502 includes an electrical pattern 504 formed thereon having contact pads 506 and traces 508 leading to the electrode sets disposed in the measurement zone 510.
- Measurement zone 510 includes a sample receiving chamber 512 having three branches or prongs 514, 516 and 518.
- Branch 514 includes electrode sets 520 and 522
- branch 516 includes electrode sets 524 and 526
- branch 518 includes electrode sets 528 and 530.
- a reagent layer 532 covers electrode sets 520 and 522
- a reagent layer 534 covers electrode sets 524 and 526
- a reagent layer 536 covers electrode set 528 and 530.
- a spacing layer (not shown in Fig.
- reagent layers 532, 534 and 536 can be comprised of three different reagents for testing three different analytes, e.g., a lipid panel that tests total cholesterol, HDL cholesterol and triglycerides. Reagents with appropriate enzymes and mediators for these analytes are disclosed in the Reagent Stripes application that was incorporated by reference above.
- all three reagents can be identical, in which case three of the same tests can be performed in parallel, such that each branch of the sample receiving chamber effectively receives its own fresh supply of fluid sample.
- a series of electrode sets in a single-branched chamber poses the potential of contamination to the downstream electrode sets.
- a large portion 538 is available in the middle of substrate 502 and could be configured to support additional electrical devices.
- a power generator.238 is positioned centrally on strip 200.
- the power generator 238 may comprise a battery such as a commercially available custom made Power Paper brand energy cell, available from Power Paper, Ltd., Kibbutz, Israel. These cells are preferably printed on a very thin substrate such as paper or thin polymer. By means of basic screen-printing techniques, different layers of conductive inks are printed to form the various components of cell 238, which are then laminated together and in turn laminated to substrate 220.
- battery 238 has a diameter of about 5.3 mm and a thickness of less than about 0.5 mm.
- Battery 238 is mounted to substrate 220 by ordinary adhesives or other suitable means and connects to leads 248 as show, preferably by conductive epoxy. Battery 238 produces 2J - 3.1 Volts, a current of 4 - 5 mA and has an "on time" of between 5-90 seconds. These parameters are sufficient for powering one of the inventive OLED circuits described below, a traditional LED, or a small piezoelectric device which produces sound, or any number of similar devices. In view of the teachings herein, which minimize the footprint of even complex electrode patterns, two or more such batteries 238 could be positioned on strip 200 and wired together to increase power production. Other power generators 238 could be substituted for the battery just described.
- a super capacitor or ultra-cap modified to have a very slim profile could be used as power generator 238.
- strip 200 would be inserted into the instrument (not shown) for strip identification, strip integrity checks, temperature determination, and charging the capacitor or other power storage element. The self -powered strip is then removed from the instrument, placed at the dose site, and returned to the instrument for measurement computation and display.
- power generator 238 In view of the teachings herein, one of skill in the art would readily recognize other power generators that could be employed as power generator 238.
- a digital device 246 is positioned adjacent power generator 238 and is wired thereto by traces 248.
- Device 246 could be a radio frequency identification (“RFID”) tag.
- RFID 246 is preferably less than about 1mm thick, more preferably less than 0.5 mm thick, and has a width of less than about 7 mm.
- device 246 contains digital calibration data concerning the test strip and can communicate such data to an RFID reader (not shown) that is included in the instrument (not shown).
- RFlD's are typically "passive," i.e., they are powered by the radio signal emanating from the reader that reads them.
- device 246 is an RFID, it need not be wired to a power generator such as power generator 238.
- RFID technology is known in the art and the details thereof need not be described any further herein.
- digital device 246 could be provided as an on-board integrated circuit with computing power, powered by battery 238 and connected thereto by traces 248.
- Two commercially available examples include Texas Instruments MSP430C11 and Microchip PIC12F675 integrated low power micro-controllers for governing sample acquisition and rudimentary measurements to support dosing the strip without the strip being inserted in the meter.
- strip 200 also includes a digital device 250 which is comprised of a combination of contact pads 252 and conductive links 254 of electrical pattern 222.
- Contact pads 252 and conductive links 254 are shown in phantom because any one (or all) of them may or may not be present in the finished test strip, depending upon the information that is to be encoded onto the test strip.
- Each link or contact pad can be thought of as a binary switch having a value of 0 (if not present) or 1 (if present).
- any given configuration of absent/present links and contact pads may include digital information concerning lot code, expiration date, type of analyte the strip is intended to analyze and so forth.
- a detailed enabling description of digital device 250 is disclosed in an application entitled the Coding Information application that was incorporated by reference above.
- a photodiode sensor could be mounted on the test strip in the digital device zone or elsewhere to detect an environmental condition such as ambient light. The meter could then apply a voltage to the micro-electrode arrays such as micro-electrode arrays 224 so that they illuminate the measurement zone.
- digital device for purposes of this application is somewhat broader than its common usage in the art, in that it includes devices such as a photodiode or similar devices that may be provided in the digital zone.
- the test strip 200 shown in Figs. 1 and 2 includes a user interface zone 204 that includes OLEDs coated onto micro- electrode arrays.
- OLEDs 226 are coated onto micro-electrodes 224 and OLED 236 is coated onto micro-electrode array 234.
- Electrode arrays 224 are wired through traces 223 to contact pads 216.
- a "triggering event” occurs when strip 200 is inserted into a meter (not shown), upon which event the circuitry of the meter recognizes that a strip has been inserted and produces a voltage across electrode sets 224.
- the coatings 226 illuminate. If the strip 200 is being used in conditions of dim lighting, the OLED coating advantageously illuminates the sample receiving chamber 218 so that the user can visually confirm that the fluid sample is contacting the correct part of the strip 200 and that the sample fluid is being drawn into the strip.
- the spacer and covering layers forming test strip 200 are preferably transparent or translucent such that the light emitted from the OLEDs is visible through them.
- OLED 236 can be configured to illuminate (or turn off) upon sufficient sample being received in the sample receiving chamber.
- Sample sufficiency electrodes 230 are wired through traces 223 to contact pads 216 and in turn to the meter (not shown) that reads the strips. Once the meter detects from electrodes 230 that the chamber is filled with the requisite size sample, the meter can apply a voltage across electrode set 234 through the appropriate contact pads 216 and traces 223. OLED 236 will then illuminate, thereby providing the user a positive visual indication that the chamber has been properly filled.
- Fig. 6 shows a base substrate 600 of another test strip embodiment incorporated by the present invention. The test strip has a measurement zone 602, two user interface zones 604 and 604', a power generation zone 606, and a meter connection zone 610.
- the sample receiving chamber 612 includes three different electrical devices or functionalities: a measurement electrode set 614, a thermistor 616 and a sample sufficiency electrode set 618. Electrode set 614 is connected to traces 620, which terminate in contact pads 622 disposed at meter connection zone 610 of the strip.
- the sample sufficiency electrode set 618 is part of a circuit which includes a micro-electrode array 624 having an OLED 626 coated thereon and a battery 628.
- Electrodes 618, 624 and 628 are wired in series by traces 630, 632 and 634. Traces 630 and 634 terminate in the power generation zone 606 with contact pads 636 (shown in phantom) to which the battery 628 is connected.
- the second or bifurcated user interface zone 604' includes a traditional diode 638 wired by traces 620 to contact pads 622.
- the strip is dosed with a sample that is drawn into chamber 612 by capillary action.
- the sample sufficiency electrodes were adapted to be driven by circuitry from a meter to which the strip is inserted.
- sample sufficiency electrode set 618 acts as a switch in the circuit containing electrodes 618, electrode array 624 and battery 628.
- Battery 628 is a Power Paper type battery as described above that produces 2.1 - 3.1 Volts and a current of 4 - 5 mA for about 5-90 seconds.
- Electrical device 616 is a thermistor that is used to measure the temperature of the sample receiving chamber.
- One thermistor suitable for device 616 is surface mount thermistor available from Vishay Intertechnology, Inc., Lavern, PA, part no. NTHS-0402N01N100KJ.
- Thermistor 618 is driven by electrical circuitry from a meter (not shown) through contacts 622 and traces 620.
- the meter circuitry can apply a voltage to conventional LED 638 through contacts 622 and traces 620 to cause it to illuminate. This signals the user that the temperature of the sample is outside of a preferred range, in which event the user may then possibly repeat the test under better conditions.
- An LED that is suitable for mounting on substrate 600 is available from Stanley Electrical Sales of America, Inc., part no. PY1114CK. This LED is mounted to base substrate 600 preferably by a conductive epoxy.
- user interface zone 604' may include a signal producing device that produces sound, such as a piezoelectric available from U.S. Electronics, Inc., St. Louis MO., part number USE14240ST.
- Base substrate 700 of the test strip includes a measurement zone that includes a sample fluid receiving chamber 702 having disposed at least partially therein a measurement electrode set 704 and sample sufficiency electrode set 706, whose functionality and operation are described above.
- Suitable spacing and covering layers cover substrate 700 to form a test strip, as described above and in the Slot Vent Opening application incorporated by reference above.
- Substrate 700 includes a numerical display 712 comprised of individual segments 714 that have a shape not unlike that of the segments used for traditional LED or LCD displays.
- the layer or layers of the test strip (not shown) that cover display 712 are translucent or transparent such that display 712 is visible therethrough.
- Segments 714 include an OLED coating like that described above overlying a micro-electrode IDA, as also described above (but not shown in Fig. 7). Each segment 714 has two electrodes (not shown) having two traces 708 extending therefrom and leading to respective contact pads 710. Voltages can be applied across selective ones of the contact pads 710 to illuminate display 712 to produce any of the digits 0 to 9, a "5" being shown illuminated in Fig. 7. Optionally, additional digits and associated contact pads and traces can be provided with display 712 on substrate 700.
- test strip with this numerical display should balance (1) the desire to keep the strips small, (2) the need to make the display large enough to be read by even those users with impaired vision, and (3) the space required from substrate 700 to accommodate the traces, contact pads, and digits.
- a test strip having a base substrate 700 as shown in Fig. 7 with one digit has a length of about 33- 38mm, a width of less than about 15 mm, preferably about 9mm, and a thickness of less than about 1 mm.
- the other layers that are laminated to substrate 700 can be configured and assembled in accordance with the Slot Vent Opening application, incorporated by reference above.
- the micro-electrode arrays and OLEDs coating them do not increase the thickness of the strip.
- the test strip having substrate 700 is inserted into a meter (not shown), a fluid sample is provided to sample receiving chamber 702, and the meter calculates the numerical estimate of analyte concentration.
- the circuitry in the meter drives voltages across selective ones of the contact pads 710 to illuminate a number on display 712 that corresponds to the estimate of analyte concentration. If only one digit were provided in display 712 as shown in Fig. 7, and the analyte whose concentration is being estimated were glucose from a blood sample, the single digits could be assigned a range.
- a "0" might correspond to a 50-100 mg/dl concentration of glucose, a "1” to 100-150 mg/dl, a 2 to 150-200 mg/dl and so on. If two digits were provided in display 712, then the display could simply show the first two digits of the result. In such case a "10” displayed would mean 100-109 mg/dl, a "21” would mean 210-219 mg/dl, etc.
- the analyte concentration might be displayed by sequentially displaying digits. For example, "126" mg/dL might be displayed as a "1” followed by a "2", followed by a "6", and the sequence terminated with a unique symbol to indicate completion and avoid user confusion.
- a three-digit whole number can be conveyed to the user with a single digit display.
- a whole number for mg/dl concentration can be displayed all at once, as is typically done with traditional glucose meters.
- Fig. 7 embodies an electrochemical test strip, it should be understood that the innovative on-board display could be provided on test strips which employ other measurement techniques, e.g., photometric principles. Forming the test strips or biosensors as flattened articles offers several advantages, especially in terms of storing and dispensing, as described in the Dispenser application incorporated above, but it is expected that one skilled in the art would apply the teachings herein to other test devices.
- inventive display as well as other features described above may be employed in test devices other than biosensors, e.g., devices for food testing and other applications.
- the devices may have, e.g., a cylindrical or other than a traditional thin test strip type body.
- biosensors incorporating the inventive features described herein, while generally comprising a flat and thin shape, may have portions thereof that are sized and shaped to accommodate various electrical devices, as described above.
- Polymer light-emitting devices are typically configured as a thin film (e.g., about 0.1 microns of a polymer such as polyparaphenylene vinylene) sandwiched between two different metallic electrodes.
- the anode is transparent and lies on a transparent substrate.
- the typical combination is indium tin oxide on glass.
- IDA micro-electrode interdigitated array
- the IDAs had 750 pairs of interdigitated fingers with each finger having a width of 2 ⁇ m, a length of 6mm, and a spacing between the next closest finger (i.e., gap width) of about 2 ⁇ m.
- the IDAs were custom fabricated on a silicon wafer by Premitec Inc., Raleigh, N.C. The IDAs were each coated with 20/ l of the solution just described. The coated L As were then placed in a desiccator and allowed to dry.
- the reagent coatings did not dry uniformly and had a ridge around the circumference of the coating.
- a BAS 100W electrochemical potentiostat Using a BAS 100W electrochemical potentiostat, a 3 volt potential was applied across the micro-electrode arrays, whereupon light was emitted from the coatings. Both electrodes were tested several times with light being emitted from the coating on application of about 3 volts.
- a Keithley 236 "Source Measure Unit" was than setup as a better voltage source for future measurements.
- Example ⁇ In order to obtain a better coating than that obtained in Example I, a solution of 1% PVP 25k (BASF) was prepared in deionized water.
- the ruthenium compound used in Example I was then mixed with the PVP solution in a 1:1 ratio and the resulting solution was applied to several additional IDAs.
- the first IDA had a spacing between the interdigitated fingers of approximately 2 ⁇ m as described above and the other had a finger spacing of approximately 21 ⁇ m and 50 finger pairs.
- This second IDA had a finger width of 21 ⁇ m, a finger length of 6 mm and was formed on a Upilex substrate also custom fabricated by Premitec.
- the coating composition containing the PVP produced a uniform coating on both types of IDA's. Using the Keithley SMU-236, a three (3) volt potential was applied across the IDA with the 21 ⁇ m finger spacing, but this voltage was not sufficient to cause the OLED to illuminate.
- Example HI Three (3) volts was also applied across the IDA with the 2 ⁇ m finger spacing, which caused the OLED to illuminate with good intensity. Increasing the voltage on the 2 ⁇ m IDA increased the intensity. Voltages of about 10-20V were required to produce reasonable intensities in the IDA with the 21 ⁇ m gap width between the fingers.
- Example HI The electrodes used in the preceding examples were left at room temperature and humidity and the experiments described above repeated at approximately 1 - 2 month intervals. The OLEDs still illuminated with the same voltages used in the previous examples.
- OLEDs Other OLEDs. It is anticipated that substituting other polymers in the OLED matrix used in the experiments above may improve the results, in terms of the voltage required to illuminate and the overall intensity achieved with a given voltage.
- One such compound is Poly(styrenesulfonate)/poly(2,3-dihydrothieno(3,4b) - 1,4-dioxin), available from Aldrich.
- Other Poly(sodium, 4-styrenesulfonate) compounds may also perform well or better than the polymer used in the above examples.
- One of skill in the art would recognize that many other known light emitting compounds may work suitable as OLEDs for use in the biosensors disclosed herein.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Sustainable Development (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2006517450A JP4489073B2 (ja) | 2003-06-20 | 2004-06-18 | 多段の電気的機能性をもったバイオセンサー |
| CA2529579A CA2529579C (en) | 2003-06-20 | 2004-06-18 | Biosensor with multiple electrical functionalities |
| EP04776796.7A EP1642125B1 (en) | 2003-06-20 | 2004-06-18 | Biosensor with multiple electrical functionalities |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US48024303P | 2003-06-20 | 2003-06-20 | |
| US60/480,243 | 2003-06-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2005012900A1 true WO2005012900A1 (en) | 2005-02-10 |
Family
ID=33539277
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/019652 Ceased WO2005012900A1 (en) | 2003-06-20 | 2004-06-18 | Biosensor with multiple electrical functionalities |
| PCT/US2004/019576 Ceased WO2004113910A1 (en) | 2003-06-20 | 2004-06-18 | Devices and methods relating to electrochemical biosensors |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2004/019576 Ceased WO2004113910A1 (en) | 2003-06-20 | 2004-06-18 | Devices and methods relating to electrochemical biosensors |
Country Status (12)
| Country | Link |
|---|---|
| US (3) | US7867369B2 (enExample) |
| EP (3) | EP1642125B1 (enExample) |
| JP (2) | JP4489073B2 (enExample) |
| KR (2) | KR100845163B1 (enExample) |
| CN (1) | CN1839313B (enExample) |
| AU (1) | AU2004250223B2 (enExample) |
| BR (1) | BRPI0411695A (enExample) |
| CA (2) | CA2529300C (enExample) |
| ES (1) | ES2657627T3 (enExample) |
| MX (1) | MXPA05013747A (enExample) |
| PL (1) | PL1642124T3 (enExample) |
| WO (2) | WO2005012900A1 (enExample) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006026748A1 (en) * | 2004-08-31 | 2006-03-09 | Lifescan Scotland Limited | Method of manufacturing an auto-calibrating sensor |
| JP2006275724A (ja) * | 2005-03-29 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | Icタグ搭載型バイオセンサーおよびその包装体 |
| JP2008542781A (ja) * | 2005-06-10 | 2008-11-27 | ハイポガード・リミテッド | 試験システム |
| KR101047363B1 (ko) | 2008-12-22 | 2011-07-07 | 한국전자통신연구원 | 자가 발전이 가능한 다중 기능 센서 및 이의 제조 방법 |
| JP2011158483A (ja) * | 2004-04-19 | 2011-08-18 | Panasonic Corp | 血液成分の測定方法、それに用いるバイオセンサおよび測定装置 |
| EP2556888A1 (en) * | 2005-09-16 | 2013-02-13 | Infopia Co., Ltd. | Biosensor Having Identification Information and Apparatus for Reading Identification Information of Biosensor |
| US8431408B2 (en) | 2010-10-15 | 2013-04-30 | Roche Diagnostics Operations, Inc. | Handheld diabetes managing device with light pipe for enhanced illumination |
| EP2372356A4 (en) * | 2008-11-28 | 2013-05-29 | Panasonic Corp | SENSOR CHIP, BIOSENSOR SYSTEM, METHOD FOR MEASURING THE TEMPERATURE OF BIOLOGICAL SAMPLES, METHOD FOR MEASURING THE TEMPERATURE OF BLOOD SAMPLES, AND METHOD FOR MEASURING THE ANALYTIC CONCENTRATION IN BLOOD SAMPLES |
| EP2392921A4 (en) * | 2009-01-30 | 2013-05-29 | Panasonic Corp | METHOD FOR MEASURING THE TEMPERATURE OF A BIOLOGICAL SAMPLE, METHOD FOR MEASURING THE CONCENTRATION OF A BIOLOGICAL SAMPLE, SENSOR CHIP AND BIOSENSOR SYSTEM |
| US9320466B2 (en) | 2009-07-02 | 2016-04-26 | Dexcom, Inc. | Analyte sensor |
Families Citing this family (177)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8460243B2 (en) * | 2003-06-10 | 2013-06-11 | Abbott Diabetes Care Inc. | Glucose measuring module and insulin pump combination |
| US7722536B2 (en) | 2003-07-15 | 2010-05-25 | Abbott Diabetes Care Inc. | Glucose measuring device integrated into a holster for a personal area network device |
| US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| EP2579031B1 (en) | 2003-12-04 | 2017-09-27 | Panasonic Healthcare Holdings Co., Ltd. | Biosensor for measuring blood component and hematocrit. |
| EP3285068B1 (en) * | 2003-12-04 | 2020-02-12 | PHC Holdings Corporation | Method of electrochemically measuring hematocrit (hct) |
| US9012232B2 (en) * | 2005-07-15 | 2015-04-21 | Nipro Diagnostics, Inc. | Diagnostic strip coding system and related methods of use |
| US7501301B2 (en) * | 2004-03-10 | 2009-03-10 | The Board Of Trustees Of The Leland Stanford Junior University | Low cost fabrication of microelectrode arrays for cell-based biosensors and drug discovery methods |
| WO2005119524A2 (en) | 2004-06-04 | 2005-12-15 | Therasense, Inc. | Diabetes care host-client architecture and data management system |
| US7582262B2 (en) * | 2004-06-18 | 2009-09-01 | Roche Diagnostics Operations, Inc. | Dispenser for flattened articles |
| US7556723B2 (en) * | 2004-06-18 | 2009-07-07 | Roche Diagnostics Operations, Inc. | Electrode design for biosensor |
| US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
| US7418285B2 (en) | 2004-12-29 | 2008-08-26 | Abbott Laboratories | Analyte test sensor and method of manufacturing the same |
| US7545272B2 (en) | 2005-02-08 | 2009-06-09 | Therasense, Inc. | RF tag on test strips, test strip vials and boxes |
| US8140140B2 (en) * | 2005-02-14 | 2012-03-20 | Optiscan Biomedical Corporation | Analyte detection system for multiple analytes |
| CA2611148C (en) * | 2005-06-14 | 2012-02-14 | F. Hoffmann-La Roche Ag | Methods and devices for controlling the impact of short circuit faults on co-planar electrochemical sensors |
| US8999125B2 (en) | 2005-07-15 | 2015-04-07 | Nipro Diagnostics, Inc. | Embedded strip lot autocalibration |
| US7955856B2 (en) * | 2005-07-15 | 2011-06-07 | Nipro Diagnostics, Inc. | Method of making a diagnostic test strip having a coding system |
| GB0514728D0 (en) | 2005-07-19 | 2005-08-24 | Hypoguard Ltd | Biosensor and method of manufacture |
| US20070017824A1 (en) * | 2005-07-19 | 2007-01-25 | Rippeth John J | Biosensor and method of manufacture |
| GB0518527D0 (en) * | 2005-09-10 | 2005-10-19 | Oxford Biosensors Ltd | Scaling factor for an output of an electrochemical cell |
| DK1949101T3 (da) * | 2005-11-14 | 2013-06-10 | Bayer Healthcare Llc | Analysesensorreagens med cellulosepolymerer |
| WO2007057473A1 (de) * | 2005-11-21 | 2007-05-24 | Kurt Hoffmann | Verfahren zur detektion von abbauprozessen |
| US7741142B2 (en) * | 2005-11-22 | 2010-06-22 | Hewlett-Packard Development Company, L.P. | Method of fabricating a biosensor |
| EP1793228A1 (de) * | 2005-12-05 | 2007-06-06 | F. Hoffmann-La Roche AG | Verfahren zum akustischen Ausgeben einer Information in einem Analysesystem |
| TWI335428B (en) * | 2005-12-23 | 2011-01-01 | Apex Biotechnology Corp | Electrochemical test strip |
| JP4735833B2 (ja) * | 2006-01-13 | 2011-07-27 | セイコーエプソン株式会社 | バイオチップ及びバイオセンサ |
| EP1813937A1 (de) * | 2006-01-25 | 2007-08-01 | Roche Diagnostics GmbH | Elektrochemisches Biosensor-Analysesystem |
| US11559810B2 (en) | 2006-03-13 | 2023-01-24 | Trividia Health, Inc. | Method and apparatus for coding diagnostic meters |
| US8388906B2 (en) * | 2006-03-13 | 2013-03-05 | Nipro Diagnostics, Inc. | Apparatus for dispensing test strips |
| US8388905B2 (en) * | 2006-03-13 | 2013-03-05 | Nipro Diagnostics, Inc. | Method and apparatus for coding diagnostic meters |
| US8940246B2 (en) | 2006-03-13 | 2015-01-27 | Nipro Diagnostics, Inc. | Method and apparatus for coding diagnostic meters |
| US7887682B2 (en) * | 2006-03-29 | 2011-02-15 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
| JP5027455B2 (ja) * | 2006-06-29 | 2012-09-19 | ユニ・チャーム株式会社 | 排泄物検知センサ |
| US20080020452A1 (en) * | 2006-07-18 | 2008-01-24 | Natasha Popovich | Diagnostic strip coding system with conductive layers |
| JP5239860B2 (ja) * | 2006-07-26 | 2013-07-17 | パナソニック株式会社 | バイオセンサ測定システム、および測定方法 |
| US20080083618A1 (en) * | 2006-09-05 | 2008-04-10 | Neel Gary T | System and Methods for Determining an Analyte Concentration Incorporating a Hematocrit Correction |
| TWI317015B (en) * | 2006-10-02 | 2009-11-11 | Eps Bio Technology Corp | Biosensing device |
| US9046480B2 (en) | 2006-10-05 | 2015-06-02 | Lifescan Scotland Limited | Method for determining hematocrit corrected analyte concentrations |
| ES2397663T3 (es) * | 2006-10-05 | 2013-03-08 | Lifescan Scotland Limited | Sistemas y procedimientos para determinar una concentración de un analito sustancialmente independiente del hematocrito |
| US20080101984A1 (en) * | 2006-10-31 | 2008-05-01 | Selwayan Saini | Method for determining an analyte in a bodily fluid sample |
| US20080101987A1 (en) * | 2006-10-31 | 2008-05-01 | Selwayan Saini | Analytical test strip with electroluminescent lamp |
| CA2608609A1 (en) * | 2006-10-31 | 2008-04-30 | Lefescan Scotland Limited | Analytical test strip with electroluminescent lamp |
| US7740801B2 (en) * | 2006-10-31 | 2010-06-22 | Lifescan Scotland Limited | System for determination of an analyte in a bodily fluid sample that includes an electroluminescent component |
| US20080101986A1 (en) * | 2006-10-31 | 2008-05-01 | Selwayan Saini | Analytical test strip with electroluminescent module |
| US20080100689A1 (en) * | 2006-10-31 | 2008-05-01 | Selwayan Saini | Method for manufacturing an analytical test strip with an electroluminescent component |
| US20090288964A1 (en) * | 2006-12-13 | 2009-11-26 | Sung-Kwon Jung | Biosensor with coded information and method for manufacturing the same |
| US8409424B2 (en) | 2006-12-19 | 2013-04-02 | Apex Biotechnology Corp. | Electrochemical test strip, electrochemical test system, and measurement method using the same |
| TW200829918A (en) * | 2007-01-03 | 2008-07-16 | Hmd Biomedical Inc | Identification notation-containing test strip and test instrument thereof |
| WO2008119039A2 (en) * | 2007-03-27 | 2008-10-02 | Paul Wessel | Test strip and monitoring device |
| US8460524B2 (en) * | 2007-04-18 | 2013-06-11 | Nipro Diagnostics, Inc. | System and methods of chemistry patterning for a multiple well biosensor |
| US8597190B2 (en) | 2007-05-18 | 2013-12-03 | Optiscan Biomedical Corporation | Monitoring systems and methods with fast initialization |
| GB0711780D0 (en) * | 2007-06-18 | 2007-07-25 | Oxford Biosensors Ltd | Electrochemical data rejection methodology |
| US8206564B2 (en) * | 2007-07-23 | 2012-06-26 | Bayer Healthcare Llc | Biosensor calibration system |
| RU2010108229A (ru) * | 2007-08-06 | 2011-09-20 | БАЙЕР ХЕЛТКЭА ЭлЭлСи (US) | Система и способ для автоматической калибровки |
| US9044178B2 (en) * | 2007-08-30 | 2015-06-02 | Pepex Biomedical, Llc | Electrochemical sensor and method for manufacturing |
| WO2009032760A2 (en) | 2007-08-30 | 2009-03-12 | Pepex Biomedical Llc | Electrochmical sensor and method for manufacturing |
| DE102007041395A1 (de) * | 2007-08-31 | 2009-03-05 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | UV-Dosimeter mit Eigenspeisung und Warnsignal (Anzeige) |
| US7943022B2 (en) * | 2007-09-04 | 2011-05-17 | Lifescan, Inc. | Analyte test strip with improved reagent deposition |
| TW200914826A (en) * | 2007-09-21 | 2009-04-01 | Apex Biotechnology Corp | Electrochemical quantitative analysis system and method for the same |
| PL2040072T3 (pl) * | 2007-09-22 | 2013-06-28 | Hoffmann La Roche | System analityczny do określania koncentracji analitu w płynie ustrojowym |
| ES2547574T3 (es) * | 2007-09-24 | 2015-10-07 | Bayer Healthcare Llc | Procedimiento de ensayo multielectrodo |
| KR101196686B1 (ko) | 2007-10-31 | 2012-11-07 | 에프. 호프만-라 로슈 아게 | 바이오센서에 대한 전기 패턴 및 그의 제조 방법 |
| US8241488B2 (en) | 2007-11-06 | 2012-08-14 | Bayer Healthcare Llc | Auto-calibrating test sensors |
| US7809512B2 (en) * | 2007-11-11 | 2010-10-05 | Bayer Healthcare Llc | Biosensor coding system |
| EP2232251B1 (en) * | 2007-12-10 | 2014-03-19 | Bayer HealthCare LLC | An auto-calibrating test sensor and method of making the same |
| JP4944083B2 (ja) * | 2007-12-12 | 2012-05-30 | パナソニック株式会社 | 生体試料測定用試験片および生体試料測定装置 |
| US20090205399A1 (en) * | 2008-02-15 | 2009-08-20 | Bayer Healthcare, Llc | Auto-calibrating test sensors |
| US20090223287A1 (en) * | 2008-03-04 | 2009-09-10 | Visgeneer, Inc. | Bio-Monitoring System and Methods of Use Thereof |
| JP2009250806A (ja) | 2008-04-07 | 2009-10-29 | Panasonic Corp | バイオセンサシステム、センサチップおよび血液試料中の分析物濃度の測定方法 |
| US8032321B2 (en) * | 2008-07-15 | 2011-10-04 | Bayer Healthcare Llc | Multi-layered biosensor encoding systems |
| US8465977B2 (en) * | 2008-07-22 | 2013-06-18 | Roche Diagnostics Operations, Inc. | Method and apparatus for lighted test strip |
| DE102008038457B4 (de) * | 2008-08-20 | 2013-10-24 | Advanced Display Technology Ag | Vorrichtung zur fluidischen Anzeige |
| US20110174618A1 (en) * | 2008-09-30 | 2011-07-21 | Menai Medical Technologies Limited | Sample measurement system |
| US8424763B2 (en) * | 2008-10-07 | 2013-04-23 | Bayer Healthcare Llc | Method of forming an auto-calibration circuit or label |
| KR101003077B1 (ko) * | 2008-10-16 | 2010-12-21 | 세종공업 주식회사 | 전기화학적 바이오센서의 구조 및 바이오센서를 이용한 측정방법 |
| TW201018903A (en) * | 2008-11-07 | 2010-05-16 | Yuan-Soon Ho | Inspection device and inspection method used for measuring substance concentration inside stomach |
| US9134221B2 (en) | 2009-03-10 | 2015-09-15 | The Regents Of The University Of California | Fluidic flow cytometry devices and particle sensing based on signal-encoding |
| KR101420773B1 (ko) * | 2009-07-15 | 2014-07-17 | 주성엔지니어링(주) | 전기광학소자 및 이의 제작 방법 |
| US20110048972A1 (en) * | 2009-08-31 | 2011-03-03 | Lifescan Scotland Limited | Multi-analyte test strip with shared counter/reference electrode and inline electrode configuration |
| CN101670998B (zh) * | 2009-09-16 | 2011-10-26 | 哈尔滨工业大学 | 点面电极系统及利用该系统进行微流体驱动的方法 |
| WO2011041531A1 (en) | 2009-09-30 | 2011-04-07 | Abbott Diabetes Care Inc. | Interconnect for on-body analyte monitoring device |
| KR100980316B1 (ko) * | 2009-12-09 | 2010-09-06 | 동진메디칼 주식회사 | 온도보상 기능을 구비한 스트립 및 이를 이용한 혈당측정방법 |
| TWI440853B (zh) * | 2009-12-14 | 2014-06-11 | Taidoc Technology Corp | 具有校正血容比功能之分析物測量電化學生物感測試紙、生物感測器裝置、系統以及測量方法 |
| EP2528510A4 (en) * | 2010-01-25 | 2013-06-19 | Einstein Coll Med | DEVICE FOR COLLECTING AND ANALYZING MIGRATING TUMOR CELLS |
| US8529742B2 (en) * | 2010-02-24 | 2013-09-10 | Matthew K. Musho | Electrochemical sensor with controlled variation of working electrode |
| GB201005359D0 (en) | 2010-03-30 | 2010-05-12 | Menai Medical Technologies Ltd | Sampling plate |
| GB201005357D0 (en) | 2010-03-30 | 2010-05-12 | Menai Medical Technologies Ltd | Sampling plate |
| US8940141B2 (en) * | 2010-05-19 | 2015-01-27 | Lifescan Scotland Limited | Analytical test strip with an electrode having electrochemically active and inert areas of a predetermined size and distribution |
| WO2011156522A1 (en) | 2010-06-09 | 2011-12-15 | Optiscan Biomedical Corporation | Measuring analytes in a fluid sample drawn from a patient |
| WO2012028697A1 (en) | 2010-09-01 | 2012-03-08 | Eth Zürich, Institute Of Molecular Biology And Biophysics | Affinity purification system based on donor strand complementation |
| JP2013542414A (ja) * | 2010-09-09 | 2013-11-21 | エス.イー.エイ. メディカル システムズ インコーポレイテッド | イミタンス分光法を使用する静注薬物管理のためのシステム及び方法 |
| US10024819B2 (en) | 2010-10-21 | 2018-07-17 | The Regents Of The University Of California | Microfluidics with wirelessly powered electronic circuits |
| EP2651298A1 (en) * | 2010-12-17 | 2013-10-23 | Sanofi-Aventis Deutschland GmbH | Bodily fluid analysis device |
| WO2012106972A1 (en) * | 2011-02-08 | 2012-08-16 | Beijing Metis Biomed Ltd | Blood glucose sensor |
| US10136845B2 (en) | 2011-02-28 | 2018-11-27 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
| GB2489504A (en) | 2011-03-31 | 2012-10-03 | Sapient Sensors | A device for identifying the presence of a specific target molecule or biomarker by sensing an electrical property |
| AU2012340870B2 (en) * | 2011-11-22 | 2015-07-30 | Siemens Healthcare Diagnostics Inc. | Interdigitated array and method of manufacture |
| KR101466222B1 (ko) * | 2012-06-01 | 2014-12-01 | 주식회사 아이센스 | 정확도가 향상된 전기화학적 바이오센서 |
| US8877023B2 (en) | 2012-06-21 | 2014-11-04 | Lifescan Scotland Limited | Electrochemical-based analytical test strip with intersecting sample-receiving chambers |
| US9128038B2 (en) | 2012-06-21 | 2015-09-08 | Lifescan Scotland Limited | Analytical test strip with capillary sample-receiving chambers separated by a physical barrier island |
| US9817009B2 (en) * | 2012-10-10 | 2017-11-14 | Panasonic Healthcare Holdings Co., Ltd. | Biological information measurement device |
| CN105008895B (zh) | 2012-10-15 | 2019-02-15 | 纳诺赛莱克特生物医药股份有限公司 | 颗粒分选的系统、设备和方法 |
| CN104918551B (zh) | 2012-12-03 | 2019-07-26 | Pepex生物医药有限公司 | 传感器模块以及使用传感器模块的方法 |
| TWI493186B (zh) | 2013-02-08 | 2015-07-21 | Hmd Biomedical Inc | 檢測試片、檢測裝置及檢測方法 |
| TWI477772B (zh) | 2013-02-25 | 2015-03-21 | Apex Biotechnology Corp | 電極試片及感測試片及其系統 |
| CN104034780B (zh) * | 2013-03-06 | 2016-07-06 | 五鼎生物技术股份有限公司 | 电极试片及感测试片及具有校正血容比的感测系统 |
| US9157883B2 (en) * | 2013-03-07 | 2015-10-13 | Lifescan Scotland Limited | Methods and systems to determine fill direction and fill error in analyte measurements |
| EP2973082B1 (en) | 2013-03-14 | 2018-06-06 | Dexcom, Inc. | Systems and methods for processing and transmitting sensor data |
| US9788354B2 (en) | 2013-03-14 | 2017-10-10 | Dexcom, Inc. | Systems and methods for processing and transmitting sensor data |
| CA2900572C (en) | 2013-03-15 | 2018-02-13 | F. Hoffmann-La Roche Ag | Methods of detecting high antioxidant levels during electrochemical measurements and failsafing an analyte concentration therefrom as well as devices, apparatuses and systems incorporting the same |
| EP3385706A1 (en) | 2013-03-15 | 2018-10-10 | Roche Diabetes Care GmbH | Methods of scaling data used to construct biosensor algorithms as well as devices, apparatuses and systems incorporating the same |
| CN105283757B (zh) | 2013-03-15 | 2019-04-23 | 豪夫迈·罗氏有限公司 | 对分析物的电化学测量进行防故障的方法以及结合该方法的设备、装置和系统 |
| WO2014140164A1 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same |
| EP2781919A1 (en) | 2013-03-19 | 2014-09-24 | Roche Diagniostics GmbH | Method / device for generating a corrected value of an analyte concentration in a sample of a body fluid |
| WO2014180939A1 (en) | 2013-05-08 | 2014-11-13 | Roche Diagnostics Gmbh | Stabilization of enzymes by nicotinic acid |
| CA2910360C (en) * | 2013-06-10 | 2018-07-10 | F. Hoffmann-La Roche Ag | Method and system for detecting an analyte in a body fluid |
| US9529503B2 (en) * | 2013-06-27 | 2016-12-27 | Lifescan Scotland Limited | Analyte-measurement system recording user menu choices |
| CN104330444A (zh) * | 2013-07-22 | 2015-02-04 | 财团法人多次元智能It融合系统研究团 | 具有近距离无线通信基础的电气化学性生物传感器及利用其测定成分的方法 |
| EP3042180A4 (en) * | 2013-09-05 | 2017-04-05 | Empire Technology Development LLC | Cell culturing and tracking with oled arrays |
| US9383332B2 (en) * | 2013-09-24 | 2016-07-05 | Lifescan Scotland Limited | Analytical test strip with integrated battery |
| US9571904B2 (en) * | 2013-11-21 | 2017-02-14 | Ge Healthcare Bio-Sciences Ab | Systems and methods for status indication in a single-use biomedical and bioprocess system |
| WO2015078899A1 (en) | 2013-11-27 | 2015-06-04 | Roche Diagnostics Gmbh | Composition comprising up-converting phosphors for detecting an analyte |
| GB201321430D0 (en) * | 2013-12-04 | 2014-01-15 | Spd Swiss Prec Diagnostics Gmbh | Assay device |
| KR101552912B1 (ko) * | 2013-12-24 | 2015-09-15 | (주) 파루 | 순환 전압전류법을 이용한 측정 태그 및 그 제조 방법 |
| KR101552777B1 (ko) * | 2013-12-31 | 2015-09-14 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | 바이오센서 패키지 및 그 제조 방법 |
| KR101559215B1 (ko) * | 2013-12-31 | 2015-10-15 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | 바이오센서 패키지 및 그 제조 방법 |
| KR101585313B1 (ko) * | 2014-01-06 | 2016-01-13 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | 정전 용량을 이용한 바이오센서 및 시료 유입 감지 방법 |
| US9897566B2 (en) | 2014-01-13 | 2018-02-20 | Changsha Sinocare Inc. | Disposable test sensor |
| US10114008B2 (en) | 2014-01-21 | 2018-10-30 | Empire Technology Development Llc | Methods and devices for high throughput screening of conditions affecting stem cell differentiation |
| US9939401B2 (en) | 2014-02-20 | 2018-04-10 | Changsha Sinocare Inc. | Test sensor with multiple sampling routes |
| EP2927319A1 (en) | 2014-03-31 | 2015-10-07 | Roche Diagnostics GmbH | High load enzyme immobilization by crosslinking |
| CN106164054B (zh) | 2014-04-14 | 2019-05-07 | 豪夫迈·罗氏有限公司 | 吩嗪介导剂 |
| US9370401B2 (en) * | 2014-05-12 | 2016-06-21 | Philip W. Sayles | Millimeter-sized recognition signal badge and identification system for accurately discerning and sorting among similar kinds, shapes, and sizes of surgical instruments |
| US10036709B2 (en) * | 2014-05-20 | 2018-07-31 | Roche Diabetes Care, Inc. | BG meter illuminated test strip |
| CN107003264B (zh) | 2014-06-04 | 2020-02-21 | 普佩克斯生物医药有限公司 | 电化学传感器和使用先进印刷技术制造电化学传感器的方法 |
| US10429336B2 (en) * | 2014-06-05 | 2019-10-01 | Roche Diabeters Care, Inc. | Electrode arrangements for test element integrity |
| CN111848578B (zh) | 2014-08-22 | 2023-10-31 | 豪夫迈·罗氏有限公司 | 氧化还原指示剂 |
| KR102247666B1 (ko) * | 2014-08-22 | 2021-05-03 | 삼성전자주식회사 | 전기화학식 바이오센서 |
| CN106795549B (zh) | 2014-08-25 | 2021-06-22 | 豪夫迈·罗氏有限公司 | 对两个电极测试条进行干扰补偿 |
| AU2015314796B2 (en) * | 2014-09-12 | 2020-04-16 | Nipro Diagnostics, Inc. | Apparatus for diagnostic meter strip control and identification |
| EP3216076B1 (en) | 2014-11-03 | 2024-03-06 | F. Hoffmann-La Roche AG | Method of using electrochemical test elements having multiple electrode arrangements |
| KR101702745B1 (ko) * | 2014-11-13 | 2017-02-03 | 인제대학교 산학협력단 | 단일세포 분리장치 및 방법 |
| JP6410308B2 (ja) * | 2014-12-12 | 2018-10-24 | 国立大学法人東北大学 | センサチップ、検出システム、及び、検出方法 |
| CN107250792A (zh) * | 2014-12-31 | 2017-10-13 | 三伟达保健公司 | 具有干扰校正的葡萄糖测试条 |
| CN104730135A (zh) * | 2015-04-07 | 2015-06-24 | 天津理工大学 | 基于纳米复合材料修饰丝网印刷电极的非酶葡萄糖传感器 |
| FR3035220A1 (fr) | 2015-04-20 | 2016-10-21 | Commissariat Energie Atomique | " dispositif electronique de mesure d'au moins une caracteristique electrique d'un objet " |
| US9903832B2 (en) | 2015-04-28 | 2018-02-27 | Industrial Technology Research Institute | Methods for measuring analyte concentration |
| JP6607437B2 (ja) * | 2015-06-26 | 2019-11-20 | 国立研究開発法人産業技術総合研究所 | バイオセンサ |
| US11143645B2 (en) | 2015-12-17 | 2021-10-12 | Polymer Technology Systems, Inc. | Systems and methods for a versatile electrochemical test strip that may include one or more assays for different analytes in the same test strip |
| WO2017106560A1 (en) * | 2015-12-18 | 2017-06-22 | Trividia Health, Inc. | In-vitro sensor using a tetrapolar impedance measurement |
| WO2017145420A1 (ja) * | 2016-02-25 | 2017-08-31 | パナソニックヘルスケアホールディングス株式会社 | バイオセンサ |
| JP2019513061A (ja) | 2016-03-31 | 2019-05-23 | デックスコム・インコーポレーテッド | 表示デバイス及びセンサ電子機器ユニットの通信のためのシステム及び方法 |
| PL3523639T3 (pl) | 2016-10-05 | 2025-03-17 | F. Hoffmann-La Roche Ag | Odczynniki wykrywające i układy elektrod do elementów diagnostycznych testów wieloanalitowych oraz sposoby ich zastosowania |
| CA3041623A1 (en) | 2016-10-24 | 2018-05-03 | F. Hoffmann-La Roche Ag | Methods of correcting for uncompensated resistances in the conductive elements of biosensors, as well as devices and systems |
| GB2555855A (en) * | 2016-11-14 | 2018-05-16 | Sumitomo Chemical Co | Short-range radio frequency communication device |
| CN110140046A (zh) * | 2016-11-25 | 2019-08-16 | 普和希控股公司 | 测量生物体试样的成分的方法 |
| CA3220494A1 (en) * | 2017-06-30 | 2019-01-03 | Abbott Diabetes Care Inc. | Method and apparatus for analyte detection using an electrochemical biosensor |
| US11067526B2 (en) | 2017-08-17 | 2021-07-20 | Abbott Point Of Care Inc. | Devices, systems, and methods for performing optical and electrochemical assays |
| WO2019035077A1 (en) | 2017-08-17 | 2019-02-21 | Abbott Point Of Care Inc. | DEVICES, SYSTEMS AND METHODS FOR PERFORMING OPTICAL ASSAYS |
| US11060994B2 (en) * | 2017-08-17 | 2021-07-13 | Abbott Point Of Care Inc. | Techniques for performing optical and electrochemical assays with universal circuitry |
| WO2019099855A1 (en) * | 2017-11-17 | 2019-05-23 | Siemens Healthcare Diagnostics Inc. | Sensor assembly and method of using same |
| EP3713477B1 (en) | 2017-11-21 | 2022-07-06 | MX3 Diagnostics, Inc. | Saliva testing system and method |
| WO2019166394A1 (en) | 2018-02-28 | 2019-09-06 | F. Hoffmann-La Roche Ag | Biocompatibility coating for continuous analyte measurement |
| CN110412099B (zh) * | 2018-04-30 | 2022-05-13 | 财团法人工业技术研究院 | 生物传感器和生物检测方法 |
| JP2022508683A (ja) | 2018-10-11 | 2022-01-19 | エムエックススリー・ダイアグノスティクス・インコーポレイテッド | イオン選択センサ |
| CN111202506A (zh) * | 2018-11-21 | 2020-05-29 | 浙江清华柔性电子技术研究院 | 流体的检测器件及其制备方法、血管中血液的检测器件 |
| CN109752423B (zh) * | 2019-01-21 | 2022-03-11 | 上海交通大学 | 一种基于有机薄膜晶体管阵列的尿酸传感器及控制方法 |
| US11701036B2 (en) | 2019-07-10 | 2023-07-18 | MX3 Diagnostics, Inc. | Saliva test strip and method |
| US12123865B2 (en) * | 2020-01-15 | 2024-10-22 | MX3 Diagnostics, Inc. | Assessment of biomarker concentration in a fluid |
| CN111189883A (zh) * | 2020-01-17 | 2020-05-22 | 杭州瑞盟科技有限公司 | 一种血糖检测系统及方法 |
| WO2021154846A1 (en) | 2020-01-30 | 2021-08-05 | MX3 Diagnostics, Inc. | Biological fluid sample assessment |
| CN111239229B (zh) * | 2020-02-24 | 2023-04-11 | 江苏鱼跃医疗设备股份有限公司 | 一种双通道电化学生物传感器及测量血红素浓度的方法 |
| US12043861B2 (en) | 2020-03-04 | 2024-07-23 | Yu-Chung Norman Cheng | Malaria detection method and device |
| US20220057358A1 (en) * | 2020-08-20 | 2022-02-24 | Polymer Technology Systems, Inc. | Systems and Methods for a Test Strip Calibrator Simulating an Electrochemical Test Strip |
| JP7752879B2 (ja) * | 2020-09-28 | 2025-10-14 | ドンウン アナテック カンパニー リミテッド | 検体測定のためのバイオセンサ構造およびこれを利用した検体測定方法 |
| CN115326160B (zh) * | 2022-09-03 | 2025-05-09 | 嘉兴暄泽医疗科技有限公司 | 一种出血量的监测方法 |
| WO2025010373A1 (en) * | 2023-07-06 | 2025-01-09 | Persperion Diagnostics Inc. | Touch-based biomarker monitoring system |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0471986A2 (en) * | 1990-07-20 | 1992-02-26 | Matsushita Electric Industrial Co., Ltd. | Quantitative analysis method and its system using a disposable sensor |
| US5869972A (en) * | 1996-02-26 | 1999-02-09 | Birch; Brian Jeffrey | Testing device using a thermochromic display and method of using same |
| WO2000033063A1 (en) * | 1998-11-28 | 2000-06-08 | Moorlodge Biotech Ventures Limited | Electrochemical sensor |
| DE10222428A1 (de) * | 2001-05-22 | 2002-12-05 | Maxim Integrated Products | Integrierte Lanzetten und Systeme zum Messen einer biologischen Größe |
| WO2003029804A1 (en) * | 2001-09-28 | 2003-04-10 | Arkray, Inc. | Measurement instrument and concentration measurement apparatus |
Family Cites Families (79)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3228542A1 (de) | 1982-07-30 | 1984-02-02 | Siemens AG, 1000 Berlin und 8000 München | Verfahren zur bestimmung der konzentration elektrochemisch umsetzbarer stoffe |
| US4713165A (en) * | 1986-07-02 | 1987-12-15 | Ilex Corporation | Sensor having ion-selective electrodes |
| DE68924026T3 (de) * | 1988-03-31 | 2008-01-10 | Matsushita Electric Industrial Co., Ltd., Kadoma | Biosensor und dessen herstellung. |
| US5312762A (en) * | 1989-03-13 | 1994-05-17 | Guiseppi Elie Anthony | Method of measuring an analyte by measuring electrical resistance of a polymer film reacting with the analyte |
| JPH02310457A (ja) * | 1989-05-26 | 1990-12-26 | Matsushita Electric Ind Co Ltd | バイオセンサ |
| JPH0526838A (ja) * | 1991-07-23 | 1993-02-02 | Aloka Co Ltd | 微小白金電極 |
| US5264103A (en) * | 1991-10-18 | 1993-11-23 | Matsushita Electric Industrial Co., Ltd. | Biosensor and a method for measuring a concentration of a substrate in a sample |
| JP2658769B2 (ja) * | 1991-10-21 | 1997-09-30 | 松下電器産業株式会社 | バイオセンサ |
| JP2541081B2 (ja) * | 1992-08-28 | 1996-10-09 | 日本電気株式会社 | バイオセンサ及びバイオセンサの製造・使用方法 |
| US5385846A (en) | 1993-06-03 | 1995-01-31 | Boehringer Mannheim Corporation | Biosensor and method for hematocrit determination |
| AU7563294A (en) * | 1993-08-24 | 1995-03-21 | Metrika Laboratories, Inc. | Novel disposable electronic assay device |
| KR0151203B1 (ko) | 1994-12-08 | 1998-12-01 | 이헌조 | 다중전극형 바이오센서 |
| US5677546A (en) * | 1995-05-19 | 1997-10-14 | Uniax Corporation | Polymer light-emitting electrochemical cells in surface cell configuration |
| US5698083A (en) * | 1995-08-18 | 1997-12-16 | Regents Of The University Of California | Chemiresistor urea sensor |
| US5766789A (en) * | 1995-09-29 | 1998-06-16 | Energetics Systems Corporation | Electrical energy devices |
| AUPN661995A0 (en) * | 1995-11-16 | 1995-12-07 | Memtec America Corporation | Electrochemical cell 2 |
| US5897522A (en) * | 1995-12-20 | 1999-04-27 | Power Paper Ltd. | Flexible thin layer open electrochemical cell and applications of same |
| US5830341A (en) * | 1996-01-23 | 1998-11-03 | Gilmartin; Markas A. T. | Electrodes and metallo isoindole ringed compounds |
| US6241862B1 (en) | 1996-02-14 | 2001-06-05 | Inverness Medical Technology, Inc. | Disposable test strips with integrated reagent/blood separation layer |
| JP3460183B2 (ja) * | 1996-12-24 | 2003-10-27 | 松下電器産業株式会社 | バイオセンサ |
| ATE227844T1 (de) * | 1997-02-06 | 2002-11-15 | Therasense Inc | Kleinvolumiger sensor zur in-vitro bestimmung |
| US6054039A (en) | 1997-08-18 | 2000-04-25 | Shieh; Paul | Determination of glycoprotein and glycosylated hemoglobin in blood |
| JPH1164271A (ja) * | 1997-08-18 | 1999-03-05 | Nagoyashi | 電流増幅型酵素センサー |
| DE19753847A1 (de) | 1997-12-04 | 1999-06-10 | Roche Diagnostics Gmbh | Analytisches Testelement mit Kapillarkanal |
| US6036924A (en) * | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
| US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
| US7390667B2 (en) * | 1997-12-22 | 2008-06-24 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using AC phase angle measurements |
| US6274326B1 (en) | 1998-02-17 | 2001-08-14 | Umm Electronics, Inc. | Method and apparatus for detecting proper strip insertion into an optical reflectance meter |
| US6262264B1 (en) * | 1998-06-01 | 2001-07-17 | Roche Diagnostics Corporation | Redox reversible imidazole osmium complex conjugates |
| JP2000019147A (ja) * | 1998-07-01 | 2000-01-21 | Nok Corp | 反応生成物測定装置 |
| DE19844500A1 (de) | 1998-09-29 | 2000-03-30 | Roche Diagnostics Gmbh | Verfahren zur photometrischen Auswertung von Testelementen |
| US6338790B1 (en) * | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
| JP2002536103A (ja) * | 1999-02-12 | 2002-10-29 | シグナス, インコーポレイテッド | 生物学的系に存在する分析物の頻繁な測定のためのデバイスおよび方法 |
| AU5646800A (en) * | 1999-03-02 | 2000-09-21 | Helix Biopharma Corporation | Card-based biosensor device |
| US6287451B1 (en) * | 1999-06-02 | 2001-09-11 | Handani Winarta | Disposable sensor and method of making |
| US6193873B1 (en) * | 1999-06-15 | 2001-02-27 | Lifescan, Inc. | Sample detection to initiate timing of an electrochemical assay |
| CA2305922C (en) * | 1999-08-02 | 2005-09-20 | Bayer Corporation | Improved electrochemical sensor design |
| US6767440B1 (en) | 2001-04-24 | 2004-07-27 | Roche Diagnostics Corporation | Biosensor |
| US7276146B2 (en) * | 2001-11-16 | 2007-10-02 | Roche Diagnostics Operations, Inc. | Electrodes, methods, apparatuses comprising micro-electrode arrays |
| US6662439B1 (en) | 1999-10-04 | 2003-12-16 | Roche Diagnostics Corporation | Laser defined features for patterned laminates and electrodes |
| US6319719B1 (en) * | 1999-10-28 | 2001-11-20 | Roche Diagnostics Corporation | Capillary hematocrit separation structure and method |
| US6923894B2 (en) * | 1999-11-11 | 2005-08-02 | Apex Biotechnology Corporation | Biosensor with multiple sampling ways |
| US6331438B1 (en) * | 1999-11-24 | 2001-12-18 | Iowa State University Research Foundation, Inc. | Optical sensors and multisensor arrays containing thin film electroluminescent devices |
| US6603548B2 (en) * | 1999-12-03 | 2003-08-05 | Sciperio, Inc. | Biosensor |
| US20020090649A1 (en) * | 1999-12-15 | 2002-07-11 | Tony Chan | High density column and row addressable electrode arrays |
| US6413395B1 (en) * | 1999-12-16 | 2002-07-02 | Roche Diagnostics Corporation | Biosensor apparatus |
| IL151477A0 (en) | 2000-03-09 | 2003-04-10 | Clinical Analysis Corp | Medical diagnostic system |
| US6612111B1 (en) * | 2000-03-27 | 2003-09-02 | Lifescan, Inc. | Method and device for sampling and analyzing interstitial fluid and whole blood samples |
| US20020036291A1 (en) | 2000-06-20 | 2002-03-28 | Parker Ian D. | Multilayer structures as stable hole-injecting electrodes for use in high efficiency organic electronic devices |
| US7008524B2 (en) * | 2000-10-03 | 2006-03-07 | Hrl Laboratories, Llc | Sensors with variable response behavior |
| US7226442B2 (en) * | 2000-10-10 | 2007-06-05 | Microchips, Inc. | Microchip reservoir devices using wireless transmission of power and data |
| US7575939B2 (en) * | 2000-10-30 | 2009-08-18 | Sru Biosystems, Inc. | Optical detection of label-free biomolecular interactions using microreplicated plastic sensor elements |
| US6540890B1 (en) * | 2000-11-01 | 2003-04-01 | Roche Diagnostics Corporation | Biosensor |
| JP4627912B2 (ja) * | 2000-11-09 | 2011-02-09 | パナソニック株式会社 | バイオセンサ |
| EP2096437B1 (en) * | 2000-11-30 | 2014-11-19 | Panasonic Healthcare Co., Ltd. | Biosensor for quantifying substrate |
| JP2003156469A (ja) * | 2001-11-22 | 2003-05-30 | Matsushita Electric Ind Co Ltd | バイオセンサ、バイオセンサ用測定装置及び基質の定量方法 |
| US6793802B2 (en) | 2001-01-04 | 2004-09-21 | Tyson Bioresearch, Inc. | Biosensors having improved sample application and measuring properties and uses thereof |
| US7351323B2 (en) | 2001-01-17 | 2008-04-01 | Arkray, Inc. | Quantitative analyzing method and quantitative analyzer using sensor |
| CN100401050C (zh) | 2001-04-16 | 2008-07-09 | 松下电器产业株式会社 | 生物传感器 |
| DE60214375T2 (de) * | 2001-05-18 | 2007-08-30 | Polymer Technology Systems, Inc., Indianapolis | Gerät zur untersuchung von körperflüssigkeiten mit lösbar befestigtem, tragbarem testgerät |
| US7473398B2 (en) | 2001-05-25 | 2009-01-06 | Roche Diagnostics Operations, Inc. | Biosensor |
| CN1205474C (zh) * | 2001-05-29 | 2005-06-08 | 松下电器产业株式会社 | 生物传感器 |
| US7044911B2 (en) * | 2001-06-29 | 2006-05-16 | Philometron, Inc. | Gateway platform for biological monitoring and delivery of therapeutic compounds |
| US6814844B2 (en) | 2001-08-29 | 2004-11-09 | Roche Diagnostics Corporation | Biosensor with code pattern |
| US6787013B2 (en) | 2001-09-10 | 2004-09-07 | Eumed Biotechnology Co., Ltd. | Biosensor |
| KR100475634B1 (ko) | 2001-12-24 | 2005-03-15 | 주식회사 아이센스 | 일정 소량의 시료를 빠르게 도입할 수 있는 시료도입부를구비한 바이오 센서 |
| US6881578B2 (en) * | 2002-04-02 | 2005-04-19 | Lifescan, Inc. | Analyte concentration determination meters and methods of using the same |
| US6743635B2 (en) * | 2002-04-25 | 2004-06-01 | Home Diagnostics, Inc. | System and methods for blood glucose sensing |
| US6801041B2 (en) * | 2002-05-14 | 2004-10-05 | Abbott Laboratories | Sensor having electrode for determining the rate of flow of a fluid |
| DE10397017A5 (de) | 2002-07-02 | 2015-05-28 | Panasonic Healthcare Holdings Co., Ltd. | Biosensor, Biosensorchip und Biosensoreinrichtung |
| US6939450B2 (en) | 2002-10-08 | 2005-09-06 | Abbott Laboratories | Device having a flow channel |
| US9625458B2 (en) * | 2002-10-16 | 2017-04-18 | Duke University | Biosensor |
| US7501053B2 (en) * | 2002-10-23 | 2009-03-10 | Abbott Laboratories | Biosensor having improved hematocrit and oxygen biases |
| US7244264B2 (en) * | 2002-12-03 | 2007-07-17 | Roche Diagnostics Operations, Inc. | Dual blade lancing test strip |
| US7374546B2 (en) * | 2003-01-29 | 2008-05-20 | Roche Diagnostics Operations, Inc. | Integrated lancing test strip |
| ES2675787T3 (es) * | 2003-06-20 | 2018-07-12 | F. Hoffmann-La Roche Ag | Método y reactivo para producir tiras reactivas estrechas y homogéneas |
| US7452457B2 (en) * | 2003-06-20 | 2008-11-18 | Roche Diagnostics Operations, Inc. | System and method for analyte measurement using dose sufficiency electrodes |
| US7569126B2 (en) | 2004-06-18 | 2009-08-04 | Roche Diagnostics Operations, Inc. | System and method for quality assurance of a biosensor test strip |
| WO2012112437A1 (en) | 2011-02-14 | 2012-08-23 | The Procter & Gamble Company | Filmcoated solid dosage forms comprising honey in the coating |
-
2004
- 2004-06-18 US US10/871,843 patent/US7867369B2/en not_active Expired - Fee Related
- 2004-06-18 CA CA2529300A patent/CA2529300C/en not_active Expired - Fee Related
- 2004-06-18 ES ES04776780.1T patent/ES2657627T3/es not_active Expired - Lifetime
- 2004-06-18 WO PCT/US2004/019652 patent/WO2005012900A1/en not_active Ceased
- 2004-06-18 CN CN2004800237191A patent/CN1839313B/zh not_active Expired - Lifetime
- 2004-06-18 CA CA2529579A patent/CA2529579C/en not_active Expired - Fee Related
- 2004-06-18 PL PL04776780T patent/PL1642124T3/pl unknown
- 2004-06-18 EP EP04776796.7A patent/EP1642125B1/en not_active Expired - Lifetime
- 2004-06-18 US US10/872,008 patent/US8506775B2/en active Active
- 2004-06-18 MX MXPA05013747A patent/MXPA05013747A/es active IP Right Grant
- 2004-06-18 JP JP2006517450A patent/JP4489073B2/ja not_active Expired - Fee Related
- 2004-06-18 BR BRPI0411695-0A patent/BRPI0411695A/pt not_active IP Right Cessation
- 2004-06-18 KR KR1020057024501A patent/KR100845163B1/ko not_active Expired - Lifetime
- 2004-06-18 KR KR1020077018681A patent/KR20070100362A/ko not_active Withdrawn
- 2004-06-18 WO PCT/US2004/019576 patent/WO2004113910A1/en not_active Ceased
- 2004-06-18 EP EP17204072.7A patent/EP3376223A1/en not_active Withdrawn
- 2004-06-18 JP JP2006517421A patent/JP4624999B2/ja not_active Expired - Lifetime
- 2004-06-18 EP EP04776780.1A patent/EP1642124B1/en not_active Expired - Lifetime
- 2004-06-18 AU AU2004250223A patent/AU2004250223B2/en not_active Ceased
-
2013
- 2013-07-08 US US13/936,268 patent/US20130292266A1/en not_active Abandoned
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0471986A2 (en) * | 1990-07-20 | 1992-02-26 | Matsushita Electric Industrial Co., Ltd. | Quantitative analysis method and its system using a disposable sensor |
| US5869972A (en) * | 1996-02-26 | 1999-02-09 | Birch; Brian Jeffrey | Testing device using a thermochromic display and method of using same |
| WO2000033063A1 (en) * | 1998-11-28 | 2000-06-08 | Moorlodge Biotech Ventures Limited | Electrochemical sensor |
| DE10222428A1 (de) * | 2001-05-22 | 2002-12-05 | Maxim Integrated Products | Integrierte Lanzetten und Systeme zum Messen einer biologischen Größe |
| WO2003029804A1 (en) * | 2001-09-28 | 2003-04-10 | Arkray, Inc. | Measurement instrument and concentration measurement apparatus |
| EP1431758A1 (en) * | 2001-09-28 | 2004-06-23 | Arkray, Inc. | Measurement instrument and concentration measurement apparatus |
Cited By (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011158483A (ja) * | 2004-04-19 | 2011-08-18 | Panasonic Corp | 血液成分の測定方法、それに用いるバイオセンサおよび測定装置 |
| WO2006026741A1 (en) * | 2004-08-31 | 2006-03-09 | Lifescan Scotland Limited | Wearable sensor device and system |
| WO2006026748A1 (en) * | 2004-08-31 | 2006-03-09 | Lifescan Scotland Limited | Method of manufacturing an auto-calibrating sensor |
| JP2006275724A (ja) * | 2005-03-29 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | Icタグ搭載型バイオセンサーおよびその包装体 |
| JP2012132938A (ja) * | 2005-06-10 | 2012-07-12 | Hypoguard Ltd | 試験システム |
| JP2008542781A (ja) * | 2005-06-10 | 2008-11-27 | ハイポガード・リミテッド | 試験システム |
| US9044756B2 (en) | 2005-09-16 | 2015-06-02 | Infopia Co., Ltd. | Apparatus for reading identification information of biosensor |
| US9180458B2 (en) | 2005-09-16 | 2015-11-10 | Infopia Co., Ltd. | Biosensor having identification information and apparatus for reading identification information of biosensor |
| EP2556889A1 (en) * | 2005-09-16 | 2013-02-13 | Infopia Co., Ltd. | Biosensor Having Identification Information and Apparatus for Reading Identification Information of Biosensor |
| EP2556888A1 (en) * | 2005-09-16 | 2013-02-13 | Infopia Co., Ltd. | Biosensor Having Identification Information and Apparatus for Reading Identification Information of Biosensor |
| EP3301439A1 (en) * | 2008-11-28 | 2018-04-04 | Panasonic Healthcare Holdings Co., Ltd. | Sensor chip for measuring glucose and temperature of a biological sample |
| US9658182B2 (en) | 2008-11-28 | 2017-05-23 | Panasonic Healthcare Holdings Co., Ltd. | Method for measuring concentration of analyte in blood sample, and biosensor system |
| US8721851B2 (en) | 2008-11-28 | 2014-05-13 | Panasonic Healthcare Co., Ltd. | Sensor chip, biosensor system, method for measuring temperature of biological sample, method for measuring temperature of blood sample, and method for measuring concentration of analyte in blood sample |
| US10690620B2 (en) | 2008-11-28 | 2020-06-23 | Phc Holdings Corporation | Method for measuring concentration of analyte in blood sample, and biosensor system |
| EP2372356A4 (en) * | 2008-11-28 | 2013-05-29 | Panasonic Corp | SENSOR CHIP, BIOSENSOR SYSTEM, METHOD FOR MEASURING THE TEMPERATURE OF BIOLOGICAL SAMPLES, METHOD FOR MEASURING THE TEMPERATURE OF BLOOD SAMPLES, AND METHOD FOR MEASURING THE ANALYTIC CONCENTRATION IN BLOOD SAMPLES |
| KR101047363B1 (ko) | 2008-12-22 | 2011-07-07 | 한국전자통신연구원 | 자가 발전이 가능한 다중 기능 센서 및 이의 제조 방법 |
| US9664639B2 (en) | 2009-01-30 | 2017-05-30 | Panasonic Healthcare Holdings Co., Ltd. | Method for measuring temperature of biological sample, measuring device, and biosensor system |
| US9395320B2 (en) | 2009-01-30 | 2016-07-19 | Panasonic Healthcare Holdings Co., Ltd. | Method for measuring temperature of biological sample, measuring device, and biosensor system |
| EP2392921A4 (en) * | 2009-01-30 | 2013-05-29 | Panasonic Corp | METHOD FOR MEASURING THE TEMPERATURE OF A BIOLOGICAL SAMPLE, METHOD FOR MEASURING THE CONCENTRATION OF A BIOLOGICAL SAMPLE, SENSOR CHIP AND BIOSENSOR SYSTEM |
| US9874537B2 (en) | 2009-01-30 | 2018-01-23 | Panasonic Healthcare Holdings Co., Ltd. | Method for measuring temperature of biological sample, measuring device, and biosensor system |
| US10520461B2 (en) | 2009-01-30 | 2019-12-31 | Phc Holdings Corporation | Method for measuring temperature of biological sample, measuring device, and biosensor system |
| US8859292B2 (en) | 2009-01-30 | 2014-10-14 | Panasonic Healthcare Co., Ltd. | Method for measuring temperature of biological sample, method for measuring concentration of biological sample, sensor chip and biosensor system |
| US9320466B2 (en) | 2009-07-02 | 2016-04-26 | Dexcom, Inc. | Analyte sensor |
| US9907497B2 (en) | 2009-07-02 | 2018-03-06 | Dexcom, Inc. | Analyte sensor |
| US10420494B2 (en) | 2009-07-02 | 2019-09-24 | Dexcom, Inc. | Analyte sensor |
| US11559229B2 (en) | 2009-07-02 | 2023-01-24 | Dexcom, Inc. | Analyte sensor |
| US12011266B2 (en) | 2009-07-02 | 2024-06-18 | Dexcom, Inc. | Analyte sensor |
| US8431408B2 (en) | 2010-10-15 | 2013-04-30 | Roche Diagnostics Operations, Inc. | Handheld diabetes managing device with light pipe for enhanced illumination |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2529300C (en) | 2011-10-18 |
| BRPI0411695A (pt) | 2006-09-19 |
| WO2004113910A1 (en) | 2004-12-29 |
| ES2657627T3 (es) | 2018-03-06 |
| US7867369B2 (en) | 2011-01-11 |
| JP4624999B2 (ja) | 2011-02-02 |
| CA2529300A1 (en) | 2004-12-29 |
| US20050023152A1 (en) | 2005-02-03 |
| JP4489073B2 (ja) | 2010-06-23 |
| EP1642125A1 (en) | 2006-04-05 |
| CN1839313A (zh) | 2006-09-27 |
| EP1642124B1 (en) | 2017-11-29 |
| EP3376223A1 (en) | 2018-09-19 |
| AU2004250223B2 (en) | 2007-12-13 |
| KR20070100362A (ko) | 2007-10-10 |
| KR20060022286A (ko) | 2006-03-09 |
| US20050023137A1 (en) | 2005-02-03 |
| AU2004250223A1 (en) | 2004-12-29 |
| EP1642124A1 (en) | 2006-04-05 |
| JP2007521484A (ja) | 2007-08-02 |
| MXPA05013747A (es) | 2006-03-08 |
| HK1096151A1 (en) | 2007-05-25 |
| CA2529579A1 (en) | 2005-02-10 |
| KR100845163B1 (ko) | 2008-07-09 |
| CN1839313B (zh) | 2011-12-14 |
| US20130292266A1 (en) | 2013-11-07 |
| PL1642124T3 (pl) | 2018-04-30 |
| CA2529579C (en) | 2011-01-25 |
| JP2007524818A (ja) | 2007-08-30 |
| US8506775B2 (en) | 2013-08-13 |
| EP1642125B1 (en) | 2017-09-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1642125B1 (en) | Biosensor with multiple electrical functionalities | |
| EP2054722B1 (en) | System and method for transferring calibration data | |
| EP2054721B1 (en) | System for transferring calibration data | |
| US7527716B2 (en) | Connector configuration for electrochemical cells and meters for use in combination therewith | |
| CN103760356B (zh) | 斜率式补偿 | |
| EP1974817B1 (en) | Electrochemical biosensor and biosensor measuring device | |
| ES2367102T5 (es) | Biosensor con un código de barras | |
| AU2007275548B2 (en) | Diagnostic strip coding system with conductive layers | |
| JP5486804B2 (ja) | 診断ストリップコーディングシステム及びその使用方法 | |
| US8241488B2 (en) | Auto-calibrating test sensors | |
| WO2004074827A1 (ja) | バイオセンサ用測定装置及びこれを用いた測定方法 | |
| US9261479B2 (en) | Electrochemical test sensor and method of making the same | |
| AU2008225362A1 (en) | Electrochemical biosensor measuring system | |
| US20090288964A1 (en) | Biosensor with coded information and method for manufacturing the same | |
| US10488361B2 (en) | Capacitive autocoding | |
| US20080169799A1 (en) | Method for biosensor analysis |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| REEP | Request for entry into the european phase |
Ref document number: 2004776796 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004776796 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2529579 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2006517450 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2004776796 Country of ref document: EP |
|
| DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) |