WO2005012406A1 - Verfahren zur agglomeration von superabsorberfeinteilchen - Google Patents

Verfahren zur agglomeration von superabsorberfeinteilchen Download PDF

Info

Publication number
WO2005012406A1
WO2005012406A1 PCT/EP2004/008183 EP2004008183W WO2005012406A1 WO 2005012406 A1 WO2005012406 A1 WO 2005012406A1 EP 2004008183 W EP2004008183 W EP 2004008183W WO 2005012406 A1 WO2005012406 A1 WO 2005012406A1
Authority
WO
WIPO (PCT)
Prior art keywords
superabsorbent
weight
fine particles
particles
crosslinked polymer
Prior art date
Application number
PCT/EP2004/008183
Other languages
English (en)
French (fr)
Inventor
Markus Frank
Original Assignee
Stockhausen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stockhausen Gmbh filed Critical Stockhausen Gmbh
Priority to BRPI0412929-6A priority Critical patent/BRPI0412929A/pt
Priority to JP2006520789A priority patent/JP4694481B2/ja
Priority to DE502004003295T priority patent/DE502004003295D1/de
Priority to US10/565,577 priority patent/US7776984B2/en
Priority to EP04741213A priority patent/EP1648956B1/de
Publication of WO2005012406A1 publication Critical patent/WO2005012406A1/de
Priority to US12/789,644 priority patent/US8367774B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3223Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating by means of an adhesive agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • B01J20/3282Crosslinked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2984Microcapsule with fluid core [includes liposome]
    • Y10T428/2985Solid-walled microcapsule from synthetic polymer
    • Y10T428/2987Addition polymer from unsaturated monomers only

Definitions

  • the present invention relates to a process for producing an agglomerated superabsorbent particle, superabsorbent particles obtainable by this process, superabsorbent particles comprising superabsorbent fine particles, a composite comprising superabsorbent particles and a substrate, a process for producing a composite, a composite obtainable by this process, chemical products comprising the inventive Superabsorbent particles or the composite according to the invention, the use of the superabsorbent particles according to the invention or the composite according to the invention in chemical products, the use of a non-crosslinked polymer and the use of a fluid comprising a non-crosslinked polymer.
  • Superabsorbent polymers have the ability to absorb large amounts of aqueous liquid. They are therefore used on a large scale in hygiene articles such as diapers or sanitary napkins.
  • the superabsorbent polymers are preferably produced by reverse phase suspension polymerization, by reverse phase emulsion polymerization, by aqueous solution polymerization or by solution polymerization in an organic solvent.
  • the superabsorbent polymers obtained in this way are dried and then optionally pulverized.
  • the superabsorbent particles obtainable by the above-mentioned polymerization processes are characterized, inter alia, by the fact that they do not have one include negligible proportion of fine particles, fine particles by definition being understood to mean particles with an average particle size of less than 55 ⁇ m.
  • the proportion of these fine parts can be up to 35% by weight.
  • the fine particles are not only difficult to handle in the manufacture of hygiene articles, they are also characterized by a particularly strong tendency to dust, which is particularly problematic with regard to the health of the workers employed in the manufacture of such articles. For this reason, the superabsorbent particles are processed by sieving before they are used in the manufacture of hygiene articles, the fine particles having a particle size of less than 150 ⁇ m being separated off.
  • the literature describes some processes with which the superabsorbent fine particles separated in this way can be agglomerated into larger particle structures and thus returned to the process for the production of hygiene articles.
  • EP-A-40 21 847, EP-A-0 721 354 and EP-A-0 513 780 describe the crosslinking polymerization of hydrophilic monomers in aqueous solution with the addition of superabsorbent fine particles. The result is a gel that is crushed, dried, ground and sieved.
  • EP-A-0 692 514 describes the agglomeration of superabsorbent fine particles by impregnating the particles with a polymerizable aqueous solution of an acrylic monomer and a crosslinking agent, followed by polymerization by heating.
  • WO-A-91/15177 describes a method in which absorbent precursor particles are crosslinked with an interparticle crosslinking agent.
  • This interparticle crosslinking agent is non-polymeric, polyfunctional compounds such as polyisocyanates, polyamines or polyalcohols.
  • EP-A-0 522 570 describes the agglomeration of superabsorbent fine particles, in which the particles are prepared mixed with a polymerizable monomer solution by suspension polymerization.
  • DE-A-37 41 158 describes the agglomeration of superabsorbent fine particles with a solution or dispersion containing an agglomeration aid, aqueous solutions of non-crosslinked polyacrylates also being used as agglomeration aids. An additional crosslinker for the polymers is not used.
  • the solutions are preferably applied in the fluidized bed.
  • the disadvantage of the method described in this prior art is that the stability of the agglomerates under mechanical stress is very low.
  • JP-06 313 042 and JP-06 313 044 describe a method in which absorbent female particles are brought into contact with a solution comprising a binder and a crosslinking agent.
  • the binder is water-soluble polymers solutions, such as Polyacrylatlö 'solutions.
  • the aqueous solutions used as binders in these processes contain a maximum of 10% by weight of the water-soluble polymer.
  • the disadvantage of the method described in this prior art is that after the agglomeration there are still significant amounts of fines which are not agglomerated.
  • the object on which the present invention was based was generally to overcome the disadvantages arising from the prior art.
  • Another object on which the present invention is based was to provide a method by which superabsorbent particles are agglomerated by ration of superabsorbent fine particles can be obtained, these superabsorbent particles being in no way inferior to the agglomerates known from the prior art and obtainable from superabsorbent fine particles in terms of their properties, in particular in terms of their absorption properties and in terms of their stability to mechanical stress.
  • a further object of the invention was to provide superabsorbent particles, which can be obtained by agglomeration of superabsorbent fine particles, which are well suited for incorporation into hygiene articles.
  • an object of the invention was to provide superabsorbent particles, which can be obtained by agglomeration of superabsorbent fine particles, which can be metered without problems, especially with reduced occurrence of caking and congestion, precisely when they are incorporated into hygiene articles.
  • the crosslinkable, uncrosslinked polymer comprises, in addition to the polymerized, ethylenically unsaturated, acid group-bearing monomers, further polymerized, ethylenically unsaturated monomers (M) which can react with polymerized acid group-bearing monomers in a condensation reaction, in an addition reaction or in a ring-opening reaction, and or
  • the fluid includes a crosslinker in addition to the crosslinkable, non-crosslinked polymer.
  • Superabsorbent fine particles are preferably based on
  • ( ⁇ 2) 0 to 70% by weight, preferably 1 to 60% by weight and particularly preferably 1 to 40% by weight of polymerized, ethylenically unsaturated monomers copolymerizable with ( ⁇ l),
  • the monoethylenically unsaturated monomers ( ⁇ l) containing acid groups can be partially or completely, preferably partially, neutralized.
  • the monoethylenically unsaturated monomers containing acid groups are preferably neutralized to at least 25 mol%, particularly preferably to at least 50 mol% and moreover preferably to 50-90 mol%.
  • the monomers ( ⁇ l) can also be neutralized before the polymerization.
  • Neutralization can also be carried out with alkali metal hydroxides, alkaline earth metal hydroxides, ammonia and carbonates and bicarbonates. In addition, any other base is conceivable that forms a water-soluble salt with the acid. Mixed neutralization with different bases is also conceivable. Neutralization with ammonia or with alkali metal hydroxides is preferred, particularly preferably with sodium hydroxide or with ammonia.
  • the free acid groups can predominate in the case of a polymer, so that this polymer has a pH in the acidic range.
  • This The water-absorbing polymer can be at least partially neutralized by a polymer with free basic groups, preferably amine groups, which is basic in comparison to the acidic polymer.
  • MIEA polymers Jlixed Bed Ion Exchange Absorbent Polymers
  • WO 99/34843 The disclosure of WO 99/34843 is hereby introduced as a reference and is therefore valid as part of the disclosure.
  • MBIEA polymers represent a composition for a basic polymers that are capable of anions • exchange, and on the other hand an acidic compared to the basic polymer polymer that is capable
  • the basic polymer has basic groups and is typically obtained by polymerizing monomers that carry basic groups or groups that can be converted to basic groups, and these monomers are primarily those that are have primary, secondary or tertiary amines or the corresponding phosphines or at least two of the above functional groups
  • Monomers include, in particular, ethylene amine, allylamine, diallylamine, 4-aminobutene, alkyloxycyclines, vinylformamide, 5-aminopentene, carbodiimide, formaldacine, melamine and the like, and also their secondary or tertiary amine derivatives.
  • Preferred monoethylenically unsaturated, acid group-containing monomers are acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, - cyanoacrylic acid, ß-methylacrylic acid (crotonic acid), -phenylacrylic acid, ß-acryloxypropionic acid, sorbic acid, -chlorosorbic acid, 2'-methylisocrotonic acid , p-chlorocinnamic acid, ß-stearic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid, maleic acid, fumaric acid, tricarboxyethylene and maleic anhydride, acrylic acid and methacrylic acid being particularly preferred and acrylic acid being preferred.
  • preferred monoethylenically unsaturated, acid group-containing monomers ( ⁇ l) are furthermore ethylenically unsaturated sulfonic acid monomers or ethylenically unsaturated phosphonic acid monomers.
  • Preferred ethylenically unsaturated sulfonic acid monomers are allylsulfonic acid or aliphatic or aromatic vinylsulfonic acids or acrylic or methacrylic sulfonic acids.
  • Preferred aliphatic or aromatic vinylsulfonic acids are vinylsulfonic acid, 4-vinylbenzylsulfonic acid, vinyltoluenesulfonic acid and stryrenesulfonic acid.
  • Preferred acrylic or methacrylic sulfonic acids are sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-hydroxy-3-methacryloxypropyl sulfonic acid and (meth) acrylamidoalkyl sulfonic acids such as 2-acrylamido-2-methylpropanesulfonic acid.
  • Preferred ethylenically unsaturated phosphonic acid monomers are vinylphosphonic acid, allylphosphonic acid, vinylbenzylphosphonic acid, (meth) acrylamidoalkylphosphonic acids, acrylamidoalkyldiphosphonic acids, phosponomethylated vinylamines and (meth) acrylicphosphonic acid derivatives.
  • the polymer consists of at least 50% by weight, preferably at least 70% by weight and moreover preferably at least 90% by weight, of monomers containing carboxylate groups. It is particularly preferred according to the invention that the polymer consists of at least 50% by weight, preferably at least 70% by weight, of acrylic acid, which is preferably neutralized to at least 20 mol%, particularly preferably to at least 50 mol%.
  • Dialkylaminoalkyl (meth) acrylates in protonated form are preferably as ethylenically unsaturated monomers ( ⁇ l) containing a protonated nitrogen, for example dimethylaminoethyl (meth) acrylate hydrochloride or dimethylaminoethyl (meth) acrylate hydrosulfate, and also dialkylaminoalkyl (meth) acrylamides in protonated form, for example dimethylaminoethyl (meth) acrylamide hydrochloride, dimethylaminopropyl (meth) acrylamide hydrochloride, dimethylaminopropyl (meth) acrylamide hydrosulfate or dimethylaminoethyl (meth) acrylamide hydrosulfate is preferred.
  • Dialkylammoniumalkyl (meth) acrylates in quaternized form for example trimethylammoniumethyl (meth) acrylate methosulfate or dimethylethylammoniumethyl (meth) acrylate ethosulfate and (meth) acrylamidoalkyl dialkylamines in quaternized form are dialkylammonium alkyl (meth) acrylates as ethylenically unsaturated monomers ( ⁇ l) containing a quaternized nitrogen , for example (meth) acrylamidopropyltrimethylammonium chloride, trimethylammoniumethyl (meth) acrylate chloride or (meth) acrylamidopropyltrimethylammonium sulfate is preferred.
  • Acrylamides and methacrylamides are preferred as monoethylenically unsaturated monomers ( ⁇ 2) copolymerizable with ( ⁇ l).
  • preferred (meth) acrylamides are alkyl-substituted (meth) acrylamides or aminoalkyl-substituted derivatives of (meth) acrylamide, such as N-methylol (meth) acrylamide, N, N-dimethylamino (meth) acrylamide, dimethyl (meth) acrylamide or diethyl (meth) acrylamide
  • Possible vinyl amides are, for example, N-vinyl amides, N-vinyl formamides, N-vinyl acetamides, N-vinyl-N-methylacetamides, N-vinyl-N-methyl formamides, vinyl pyrrolidone.
  • Acrylamide is particularly preferred among these monomers.
  • preferred monoethylenically unsaturated monomers ( ⁇ 2) which are copolymerizable with ( ⁇ 1) are water-dispersible monomers.
  • water-dispersible monomers are acrylic acid esters and methacrylic acid esters, such as ethyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate or butyl (meth) acrylate, as well as vinyl acetate, styrene and isobutylene are preferred.
  • the compounds of crosslinking class I crosslink the polymers by radical polymerization of the ethylenically unsaturated groups of the crosslinking molecule with the monoethylenically unsaturated monomers ( ⁇ l) or ( ⁇ 2), while in the case of compounds of crosslinking class II and the polyvalent metal cations of crosslinking class IV crosslinking of the polymers is achieved by the condensation reaction of the functional groups (crosslinking class II) or by electrostatic interaction of the polyvalent metal cation (crosslinking class IV) with the functional groups of the monomers ( ⁇ l) or ( ⁇ 2).
  • the polymer is crosslinked both by radical polymerization of the ethylenically unsaturated group and by a condensation reaction between the functional group of the crosslinking agent and the functional groups of the monomers ( ⁇ l) or ( ⁇ 2).
  • Preferred compounds of crosslinking class I are poly (meth) acrylic esters, which can be obtained, for example, by reacting a polyol, such as, for example, Lenglycol, propylene glycol, trimethylolpropane, 1,6-hexanediol, glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol, an amino alcohol, a polyalkylene polyamine, such as, for example, diethylene triamine or triethylene tetraamine, or an alkoxylated polyol with acrylic acid or methacrylic acid.
  • a polyol such as, for example, Lenglycol, propylene glycol, trimethylolpropane, 1,6-hexanediol, glycerol, pentaerythritol, polyethylene glycol or polypropylene glycol, an amino alcohol, a polyalkylene polyamine, such as, for example, diethylene triamine or triethylene te
  • Further compounds of crosslinking class I are polyvinyl compounds, poly (meth) allyl compounds, (meth) acrylic acid esters of a monovinyl compound or (meth) acrylic acid esters of a mono (meth) allyl compound, preferably the mono (meth) allyl compounds of a polyol or an amino alcohol , prefers.
  • Examples of compounds of crosslinking class I are alkylene di (meth) acrylates, for example ethylene glycol di (meth) acrylate, 1,3-propylene glycol di (meth) acrylate, 1,4-butylene glycol di (meth) acrylate, 1,3- Butylene glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, 1, 10-decanediol di (meth) acrylate, 1, 12-dodecanediol di (meth) acrylate, 1, 18-octadecanediol di (meth) acrylate, cyclopen tandiol di (meth) acrylate, neopentyl glycol di (meth) acrylate, methylene di (meth) acrylate or pentaerythritol di (meth) acrylate, alkenyldi (meth) acrylamides, for example N-methyl
  • These functional groups of the compounds of crosslinker class II are preferably alcohol, amine, aldehyde, glycidyl, isocyanate, carbonate or epichloride functions.
  • Examples of compounds of crosslinking class II include polyols, for example ethylene glycol, polyethylene glycols such as diethylene glycol, triethylene glycol and tetraethylene glycol, propylene glycol, polypropylene glycols such as dipropylene glycol, tripropylene glycol or tetrapropylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5- Pentanediol, 2,4-pentanediol, 1,6-hexanediol, 2,5-hexanediol, glycerin, polyglycerin, trimethylolpropane, polyoxypropylene, oxyethylene-oxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, pentaerythritol, polyvinyl alcohol and sorbitol, for example, amino alcohols, for example ethanol alcohols
  • crosslinking class II are polyoxazolines such as 1,2-ethylene bisoxazoline, crosslinking agents with silane groups such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -aminopropyltrimethoxysilane, oxazolidinones such as 2-oxazolidinone, bis- and poly-2-oxazolidinones and diglycolsilanes.
  • polyoxazolines such as 1,2-ethylene bisoxazoline
  • crosslinking agents with silane groups such as ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -aminopropyltrimethoxysilane
  • oxazolidinones such as 2-oxazolidinone
  • bis- and poly-2-oxazolidinones and diglycolsilanes diglycolsilanes.
  • Class III compounds include hydroxyl- or amino group-containing esters of (meth) acrylic acid, such as 2-hydroxyethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate as well as hydroxyl- or amino group-containing (meth) acrylamides or mono (meth) allyl compounds of Diols preferred.
  • the polyvalent metal cations of crosslinking class IV are preferably derived from mono- or polyvalent cations, the monovalent in particular from alkali metals such as potassium, sodium, lithium, lithium being preferred.
  • Preferred divalent cations are derived from zinc, beryllium, alkaline earth metals, such as magnesium, calcium, strontium, magnesium being preferred.
  • Other higher-value cations which can be used according to the invention are cations of aluminum, iron, chromium, manganese, titanium, zirconium and other transition metals and double salts of such cations or mixtures of the salts mentioned.
  • Aluminum salts and alums and their different hydrates such as, for. B.
  • the superabsorbent fine particles used in the process according to the invention are preferably crosslinked by crosslinkers of the following crosslinking classes or by crosslinking agents of the following combinations of crosslinking classes: I, II, III, IN, I II, I III, I IN, I II III, IE IN, I III IN, II III IN, II IN or III IN.
  • the above combinations of crosslinking classes each represent a preferred embodiment of crosslinking of a superabsorbent fine particle used in the process according to the invention.
  • the superabsorbent fine particles used in the process according to the invention are polymers which are crosslinked by any of the crosslinking agents of crosslinking classes I mentioned above.
  • water-soluble crosslinkers are preferred.
  • ⁇ , ⁇ '-methylene bisacrylamide, polyethylene glycol di (meth) acrylates, triallylmethylammonium chloride, tetraallylammonium chloride and allylnonaethylene glycol acrylate prepared with 9 moles of ethylene oxide per mole of acrylic acid are particularly preferred.
  • Water-soluble polymers such as partially or fully saponified polyvinyl alcohol, polyvinylpyrrolidone, starch or starch derivatives, polyglycols or polyacrylic acid can preferably be copolymerized as water-soluble polymers ( ⁇ 4) in the superabsorbent fine particles.
  • the molecular weight of these polymers is not critical as long as they are water soluble.
  • Preferred water-soluble polymers are starch or starch derivatives or polyvinyl alcohol.
  • the water-soluble polymers, preferably synthetic such as polyvinyl alcohol, can also serve as a graft base for the monomers to be polymerized.
  • the auxiliaries ( ⁇ 5) in the polymer fine particles preferably contain adjusting agents, organic or inorganic particles such as, for example, gerax binders, in particular zeolites or cyclodextrins, skin care substances, surface-active agents or antioxidants.
  • the superabsorbent fine particles used in the process according to the invention are preferably obtainable by first producing a water-absorbing polymer (P) in particulate form from the abovementioned monomers and crosslinkers.
  • This polymer (P), which serves as the starting material for the superabsorbent fine particles, is produced, for example, by bulk polymerization, which is preferably carried out in kneading reactors such as extruders or by ribbon polymerization, solution polymerization, spray polymerization, inverse emulsion polymerization or inverse suspension polymerization.
  • Solution polymerization is preferably carried out in water as the solvent.
  • the solution polymerization can be carried out continuously or batchwise. A wide range of possible variations with regard to reaction conditions such as temperatures, type and amount of the initiators and also of the reaction solution can be found in the prior art.
  • initiators which form free radicals under the polymerization conditions and are usually used in the production of superabsorbents can be used as initiators for initiating the polymerization. These include thermal catalysts, redox catalysts and photoinitiators, which are activated by high-energy radiation.
  • the polymerization initiators can be dissolved or dispersed in a solution of monomers according to the invention. The use of water-soluble catalysts is preferred.
  • thermal initiators All initiators known to the person skilled in the art which decompose into free radicals under the action of temperature are suitable as thermal initiators.
  • Thermal polymerization initiators with a half- value of less than 10 seconds, more preferably less than 5 seconds at less than 180 ° C, more preferably less than 140 ° C.
  • Peroxides, hydroperoxides, hydrogen peroxide, persulfates and azo compounds are particularly preferred thermal polymerization initiators. In some cases it is advantageous to use mixtures of different thermal polymerization initiators. Among these mixtures, those of hydrogen peroxide and sodium or potassium peroxodisulfate are preferred, which can be used in any conceivable quantitative ratio.
  • Suitable organic peroxides are preferably acetylacetone peroxide, methyl ethyl ketone peroxide, benzoyl peroxide, lauroyl peroxide, acetyl peroxide, capyrl peroxide, isopropyl peroxydicarbonate, 2-ethylhexyl peroxydicarbonate, t-butyl hydroperoxide, cumene hydroperoxide, t-amyl butyl perpivalate, t-butyl peryl perpivalate, t-tyl perpivalate, t-butyl perpivalate, t-amyl perpivalate, t-butyl perpivalate , t-butyl per-2-ethylhexenoate, t-butyl perisononanoate, t-butyl permaleate, t-butyl perbenzoate, t-butyl 3,5,5-tri-methyl hex
  • thermal polymerization initiators are: azo compounds such as azobisisobutyronitrole, azobis dimethylvaleronitrile, 2,2'-azobis (2-amidinopropane) dihydrochloride, azo-bis-amidinopropane dihydrochloride, 2,2'-azobis (N, N-dimethylene) isobutyramidine dihydrochloride, 2- (carbamoylazo) - 'isobutyronitrile and 4,4'-azobis (4-cyanovaleric acid).
  • the compounds mentioned are used in customary amounts, preferably in a range from 0.01 to 5, preferably from 0.1 to 2 mol%, in each case based on the amount of the monomers to be polymerized.
  • the redox catalysts contain at least one of the above-mentioned per compounds as the oxidic component and preferably ascorbic acid, glucose, sorbose, manose, ammonium or alkali metal hydrogen sulfite, sulfate, thiosulfate, hyposulfite or sulfide, metal salts such as iron-II as the reducing component -ions or silver ions or sodium hydroxymethyl sulfoxylate.
  • Ascorbic acid is preferred as the reducing component of the redox catalyst or sodium pyrosulfite is used.
  • 10 "5 to 1 mol% of the reducing component of the redox catalyst and 10 " 5 to 5 mol% of the oxidizing component of the redox catalyst are used.
  • the oxidizing component of the redox catalyst one or more, preferably water-soluble, azo compounds can be used.
  • photoinitiators are usually used as initiators. These can be, for example, so-called ⁇ -splitters, H-abstracting systems or also azides.
  • initiators are benzophenone derivatives such as Michlers ketone, phenanthrene derivatives, fluorene derivatives, anthraquinone derivatives, thioxanone derivatives, coumarin derivatives, benzoin ethers and their derivatives, azo compounds such as the radical formers mentioned above, substituted hexaaryl bisimidazoles or acylphosphine.
  • azides examples include: 2- (N, N-dimethylamino) ethyl 4-azidocinnamate, 2- (N, N-dimethylamino) ethyl 4-azidonaphthyl ketone, 2- (N, N-dimethylamino) ethyl-4 -azidobenzoate, 5-azido-1-naphthyl-2 '- (N, N-dimethylamino) ethylsulfone, N- (4-sulfonylazido ⁇ henyl) maleic imide, N-acetyl-4-sulfonylazidoaniline, 4-sulfonylazidoaniline, 4-azidoaniline, 4- azidophenacyl bromide, p-azidobenzoic acid, 2,6-bis (p-azidobenzylidene) cyclohexanone and 2,6-bis (p-azid
  • the photoinitiators are usually used in amounts of from 0.01 to 5% by weight, based on the monomers to be polymerized.
  • a redox system consisting of hydrogen peroxide, sodium peroxodisulfate and ascorbic acid is preferably used according to the invention.
  • the polymerization is initiated with the initiators in a temperature range from 30 to 90 ° C.
  • the polymerization reaction can be triggered by one initiator or by several cooperating initiators.
  • the polymerization can also be carried out by first adding one or more redox initiators.
  • the polymers (P) thus obtained into a particulate form after they have been separated from the reaction mixture, they can first be at a temperature in a range from 20 to 300 ° C., preferably in a range from 50 to 250 ° C. and particularly preferably in a range from 100 to 200 ° C up to a water content of less than 40% by weight, preferably less than 20% by weight and moreover preferably less than 10% by weight, in each case based on the total weight of the polymer (P), are dried. Drying is preferably carried out in ovens or dryers known to those skilled in the art, for example in belt dryers, tray dryers, rotary tube ovens, fluidized bed dryers, plate dryers, paddle dryers or infrared dryers.
  • the dried polymers (P) thus obtained are not yet in particulate form, they still have to be comminuted after drying.
  • the crushing is preferably carried out by dry grinding, preferably by dry grinding in a hammer mill, a pin mill, a ball mill or a roller mill.
  • the polymers can also be comminuted in the gel state by the process of wet grinding using any conventional device for wet grinding.
  • the particulate polymers (P) obtainable by the processes described above preferably have at least one, preferably each, of the following properties:
  • the maximum absorption of 0.9% by weight of aqueous NaCl solution according to ERT 440J-99 is in a range from 10 to 1000, preferably from 15 to 500 and particularly preferably from 2.0 to 300 ml / g
  • the proportion extractable according to ERT 470J-99 with 0.9% by weight of aqueous NaCl solution is less than 30, preferably less than 20 and particularly preferably less than 10% by weight, based on the polymer (P)
  • the swelling time for Achieving 80% of the maximum absorption of 0.9% by weight of aqueous NaCl solution according to ERT 440J-99 is in the range from 0.01 to 180, preferably from 0.01 to 150 and particularly preferably from 0.01 to 100 min.
  • the bulk density according to ERT 460.1-99 is in the range from 300 to 1000, preferably 310 to 800 and particularly preferably 320 to 700 g / 1
  • the pH value according to ERT 400J-99 is 1 g of the
  • Preferred polymers (P) which serve as starting material for the superabsorbent fine particles used in the process according to the invention are characterized by the following properties or combinations of properties: al, bl, cl, dl, el, fl, gl, albl, alcl, aldl, alel, alfl, algl, alblcl, albldl, alblel, alblfl, alblgl, alcldl, alclel, alclfl, alclgl, aldlel, aldlfl, aldlgl, alelfl, alelgl, alflgl, alblcldlelflgl.
  • the superabsorbent fine particles used in the processes according to the invention are preferably obtainable by sieving out the dried, and optionally comminuted, particles based on the polymer (P) which are obtainable by the processes described above. For this purpose, these particles are placed on a sieve with a mesh size of 150 ⁇ m. In this way, those particles which have a particle size of less than 150 ⁇ m can be separated from the other particles.
  • the polymer particles separated in this way and having a particle size of less than 150 ⁇ m are used as superabsorbent fine particles in the process according to the invention.
  • all superabsorbent fine particles with a particle size of less than 150 ⁇ m can be used in the process according to the invention which are produced as fine particles in the production of superabsorbent particles, regardless of how the superabsorbent fine particles have been separated from the other superabsorbent particles.
  • particles are used as superabsorbent fine particles which have an inner region and a surface region delimiting the inner region, and wherein the surface region has a different chemical composition than the inner region or differs in physical properties from the inner region.
  • Physical properties in which the interior area differs from the Surface area differs, for example, the charge density or the degree of crosslinking.
  • These superabsorbent fine particles which have an inner region and a surface region delimiting the inner region, are preferably obtainable by crosslinking near-surface reactive groups of the superabsorbent fine particles before or after their separation from the other particles of the particulate polymer (P). This postcrosslinking can take place thermally, photochemically or chemically.
  • Preferred crosslinkers are the compounds of crosslinker classes II and IV mentioned in connection with the crosslinkers ( ⁇ 3).
  • Among these compounds are useful as postcrosslinkers particularly preferably diethylene glycol, triethylene glycol, polyethylene glycol, glycerol, polyglycerol, propylene glycol, diethanolamine, triethanolamine, polyoxypropylene, oxyethylene oxypropylene block copolymers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid ester, trimethylolpropane, pentaerythritol, polyvinyl alcohol, sorbitol, 1, 3- dioxolan-2-one (ethylene carbonate), 4-methyl-l, 3-dioxolan-2-one (propylene carbonate), 4,5-dimethyl-l, 3-dioxolan-2-one, 4,4- Dimethyl-l, 3-dioxolan-2-one, 4-ethyl-l, 3-dioxolan-2-one, 4-hydroxymethyl-l, 3-dioxolan-2-one, l, 3-dioxan-2-one, 4-
  • Preferred embodiments of the superabsorbent fine particles are those which have been crosslinked by crosslinkers of the following crosslinking classes or by crosslinkers of the following combinations of crosslinking classes: II, IV and II IV.
  • the postcrosslinker is preferably used in an amount in a range from 0.01 to 30% by weight, particularly preferably in an amount in a range from 0.1 to 20% by weight and moreover in an amount in a range from 0.3 to 5 wt .-%, each based on the weight of the superabsorbent polymers used in the postcrosslinking.
  • the post-crosslinking is carried out in that a fluid Fi comprising a solvent, preferably water, water-miscible organic solvents such as methanol or ethanol or mixtures of at least two of these, and the postcrosslinker with the outer region of the polymer particles at one temperature in a range from 30 to 300 ° C., particularly preferably in a range from 100 to 200 ° C.
  • the contacting is preferably carried out by spraying the fluid F onto the polymer particles and then mixing the polymer particles brought into contact with the fluid F.
  • the postcrosslinker is in the fluid F, preferably in an amount in a range from 0.01 to 20% by weight, particularly preferably in an amount in a range from 0.1 to 10% by weight, based on the total weight of the fluid F included. It is further preferred that the fluid Fj in an amount in a range from 0.01 to 50% by weight, particularly preferably in an amount in a range from 0.1 to 30% by weight, in each case based on the weight the polymer particles, is brought into contact with the polymer particles.
  • the fluid used in the 'method of the invention in method step (A) preferably comprises a solvent as well as the cross-linkable, uncrosslinked polymer.
  • Water or polar, water-miscible solvents such as acetone, methanol, ethanol, 2-propanol or mixtures of at least two of these are preferably used as solvents.
  • the uncrosslinked polymer can be dissolved or dispersed in the solvent.
  • the fluid contains from 18 to 70% by weight and particularly preferably from 19 to 55% by weight, in each case based on the fluid, of the crosslinkable, non-crosslinked polymer.
  • the crosslinkable, non-crosslinked polymer is preferably based on (.beta.) 20 to 100% by weight, preferably 50 to 98.99% by weight and particularly preferably 90 to 98.95% by weight of polymerized, ethylenically unsaturated, acid group-containing monomers or their salts,
  • (ß2) 0 to 70 wt .-%, preferably 1 to 60 wt .-% and particularly preferably 1 to 40 wt .-% polymerized, ethylenically unsaturated, with ( ⁇ l) copolymerizable monomers, and
  • ( ⁇ 3) 0 to 10% by weight, preferably 0.01 to 7% by weight and particularly preferably 0.05 to 5% by weight of the monomer which is used with polymerized monomers bearing acid groups, preferably with polymerized monomers containing acid groups in the surface area of the Superabsorber fine particles or with other polymerized acid group-containing monomers (M) in the crosslinkable, non-crosslinked polymer can react in a condensation reaction, in an addition reaction or in a ring opening reaction, preferably with an energy input, the sum of the components ( ⁇ 1) to ( ⁇ 3) 100 % By weight.
  • ester linkages are preferably formed by the reaction of an OH group of the crosslinkable, uncrosslinked polymer with an acid group of the superabsorbent fine particle or with an acid group of the crosslinkable, uncrosslinked polymer.
  • the acid group-containing monomers ( ⁇ 1) are preferably at least 10 mol%, particularly preferably at least 20 mol%, more preferably at least 40 mol% and further preferably neutralized in the range from 45 to 55 mol%.
  • the monomers can be neutralized before, during or only after the preparation of the crosslinkable, non-crosslinked polymer.
  • the neutralization is preferably carried out with those bases which have already been mentioned in connection with the neutralization of the monomers ( ⁇ l) bearing acid groups.
  • bases which contain ammonium, calcium or magnesium as cations are preferably used to neutralize the non-crosslinked polymers.
  • Preferred bases in this connection are ammonium carbonate, ammonia, calcium carbonate, calcium hydroxide, magnesium hydroxide and magnesium carbonate.
  • monomers ( ⁇ 1) and ( ⁇ 2) preference is given to using those monomers which are also used as preferred monomers ( ⁇ l) and ( ⁇ 2).
  • monomers (M) or ( ⁇ 3) are the reaction products of saturated aliphatic, cycloalphatic, aromatic alcohols, amines or thiols with ethylenically unsaturated carboxylic acids, reactive carboxylic acid derivatives or allyl halides.
  • Examples in this context are: (meth) allyl alcohol, (meth) allylamine, hydroxyl- or amino-containing esters of (meth) acrylic acid, such as hydroxyalkyl acrylates, especially hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate or 2-hydroxypropyl (meth) acrylate, aminomethyl (meth) acrylates, especially aminomethyl (meth) acrylate, 2-aminoethyl (meth) acrylate or 2-aminopropyl (meth) acrylate, mono (meth) allyl compounds of polyols, preferably of diols such as, for example polyethylene glycols or polypropylene glycols, and glycidylalkyl (meth) acrylates such as glycidyl (meth) acrylate.
  • hydroxyalkyl acrylates especially hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate or
  • crosslinkable, non-crosslinked polymers which are used in the processes according to the invention are those polymers which are from 1 to 80% by weight, particularly preferably from 1 to 60% by weight and moreover preferably from 1 to 20% by weight.
  • the fluid used in the method according to the invention comprises a further external crosslinker in addition to the solvent and the crosslinkable, non-crosslinked polymer.
  • a further external crosslinker in addition to the solvent and the crosslinkable, non-crosslinked polymer.
  • M monomers
  • ß3 monomers
  • Those of crosslinker classes II and IV which have already been mentioned in connection with crosslinkers ( ⁇ 3) are preferred as further external crosslinkers.
  • Particularly preferred further crosslinkers are those which have been mentioned as particularly preferred crosslinkers of classes II and IV in connection with the monomers ( ⁇ 3).
  • the fluid the additional external crosslinker in an amount in a range from 0.01 to 30 wt .-%, preferably in a range from 0.1 to 15 wt .-% and particularly preferably in a range of 0.2 to 7 wt .-%, based on the weight of the uncrosslinked polymer.
  • the crosslinkable, non-crosslinked polymer is a gel permeability chromatography certain weight average molecular weight of more than 8,000 g mol, preferably a weight average molecular weight in a range from 10,000 to 1,000,000 g / mol, particularly preferably in a range from 50,000 to 750,000 g / mol and moreover preferably in a range from 90,000 up to 700,000 g / mol.
  • the fluid used in the process according to the invention in process step (A) has a viscosity determined according to ASTM 1824/90 at 20 ° C. in a range from 50 to 50,000 mPa ⁇ s, particularly preferably in a range from 100 to 20,000 mPa-s and moreover preferably in a range from 200 to 10000 mPa-s.
  • the crosslinkable, non-crosslinked polymer used in the processes according to the invention is preferably produced by those processes which have already been mentioned in connection with the production of the polymers (P) which serve as starting material for the superabsorbent fine particles.
  • the fluids obtainable by these processes, containing the crosslinkable, non-crosslinked polymer are optionally diluted by adding solvent before they are used in the process according to the invention, the amount of crosslinkable, non-crosslinked polymer in the fluid being 80% by weight. , preferably of 60% by weight and particularly preferably of 40% by weight, based on the total weight of the fluid, should not exceed.
  • the fluid comprises, in addition to the solvent, the crosslinkable, non-crosslinked polymer and optionally the further crosslinker, further additives.
  • additives can also be copolymerized into the crosslinkable, uncrosslinked polymer.
  • Preferred additives are substances which reduce the brittleness of the superabsorbent particles produced by the process according to the invention, such as, for example, polyethylene glycol, polypropylene glycol, mixed polyalkoxylates, polyalkoxylates based on polyols such as glycerol, trimethylolpropane or butanediol, surfactants with an HLB of more than 10 such as alkylpolyglucosides or ethoxylated sugar esters, for example polysorbates under the trade name Tween from ICI. Some of these additives also act as other crosslinking agents, such as polyethylene glycol, polypropylene glycol, trimethylolpropane or butanediol.
  • additives are agents which reduce the hardness of the superabsorbent particles produced by the process according to the invention, such as, for example, cationic surfactants such as alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, dimethylstearylammonium chloride, alkylbenzyldimethylammonium chloride or the corresponding methylsulfates, quaternary tall oil fatty acid fatty acid methoxide.
  • cationic surfactants such as alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, dimethylstearylammonium chloride, alkylbenzyldimethylammonium chloride or the corresponding methylsulfates, quaternary tall oil fatty acid fatty acid methoxide.
  • additives are preferably used in amounts in a range from 0 to 5% by weight, particularly preferably in a range from 0.5 to 4% by weight, based on the weight of the uncrosslinked polymer.
  • release agents such as inorganic or organic release agents in powder form. These release agents are preferably used in amounts in a range from 0 to 2% by weight, particularly preferably in a n range from 0.1 to 1.5 wt .-%, based on the weight of the crosslinked polymer.
  • Preferred release agents are wood flour, pulp fibers, powdered bark, cellulose powder, mineral fillers such as perlite, synthetic fillers such as nylon powder, rayon powder, diatomaceous earth, bentonite, kaolin, zeolites, talc, clay, ash, coal dust, magnesium silicates, fertilizers or mixtures of the substances. Highly disperse pyrogenic silica as sold under the trade name Aerosil by Degussa is preferred.
  • the superabsorbent fine particles are brought into contact with the fluid containing the uncrosslinked polymer in the presence of a compound containing a poly sugar or a silicon-oxygen or a mixture of at least two effect substances based thereon.
  • the effect substance can be contained in the fluid or can be mixed with the fluid with the superabsorbent fine particles before the superabsorbent fine particles are brought into contact. It is also possible for the effect substance to be dissolved or dispersed in a further fluid F ′ and to be brought into contact with the superabsorbent fine particles in the form of this solution or dispersion together with the fluid.
  • the fluid F ′ preferably comprises a liquid, with water and organic solvents such as methanol or ethanol, or mixtures of at least two of them, being particularly preferred as the liquid, water being particularly preferred as the liquid.
  • starches and their derivatives, as well as celluloses and their derivatives, and cyclodextrins, which are known to the person skilled in the art, are suitable as poly sugars, with ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin or mixtures of these cyclodextrins preferably being used as cyclodextrins.
  • Zeolites are preferred as compounds containing silicon oxygen. All synthetic or natural zeolites known to the person skilled in the art can be used as zeolites.
  • Preferred natural zeolites are zeolites from the natrolite group Harmoton-Grappe, the mordenite grappe, the chabasite group, the faujasite group (sodalite group) or the analcite group.
  • Examples of natural zeolites are Analcim, Leucit, Pollucite, Wairakite, Bellbergite, Bikitaite, Boggsite, Brewsterite, Chabazit, Willhendersonite, Cowlesite, Verbiardite, Eding-tonit, Epistilbit, Erionit, Faujasit, Ferrierite, Amicite, Garronite, Gisminite, Gisminite , Gonnardite, goosecreekit, Harmotom, Phillipsit, Wellsite, Clinoptilolit, Heulandit, Laumontit, Levyne, Mazzite, Merlinoite, Montesommai- te, Mordenite, Mesolit, Natrolit, Scolecit, Offretite, Paranatrolite, Paulingite, Stellitite, Perlialite , Thomsonite, Chemichite or Yugawaralite.
  • Preferred synthetic zeolites are zeolite A,
  • the zeolites used in the process according to the invention preferably contain alkali metal cations such as Li + , Na + , K + , Rb + , Cs + or Fr + ⁇ ⁇ 0-1- 0-1- 0 1 and / or alkaline earth metal cations such as Mg, Ca, Sr or Ba.
  • alkali metal cations such as Li + , Na + , K + , Rb + , Cs + or Fr + ⁇ ⁇ 0-1- 0-1- 0 1 and / or alkaline earth metal cations such as Mg, Ca, Sr or Ba.
  • Zeolites of the so-called “medium” type in which the SiO 2 / AlO 2 ratio is less than 10 can be used as zeolites, and the SiO 2 / AlO 2 ratio of these zeolites is particularly preferably in a range from 2 to 10
  • These “medium” zeolites can also be used with the "high” type zeolites, which include, for example, the known “molecular sieve” zeolites of the ZSM type and beta zeolite.
  • These “high” zeolites are preferably characterized by an SiO 2 / AlO 2 ratio of at least 35, particularly preferably by an SiO 2 / AlO 2 ratio in a range from 200 to 500.
  • the zeolites are preferably used as particles with an average particle size in a range from 1 to 500 ⁇ m, particularly preferably in a range from 2 to 200 ⁇ m and, moreover, preferably in a range from 5 to 100 ⁇ m.
  • the effect substances are preferably used in the processes according to the invention in an amount in a range from 0J to 50% by weight, particularly preferably in a range from 1 to 40% by weight and moreover in an amount in a range from 5 to 30 % By weight, based in each case on the weight of the superabsorbent fine particles, is used.
  • deodorants In addition to the effect substances used in the process according to the invention, deodorants, gerax binders or gerax absorbers or at least two of them can be used. It is preferred that these are used up to a maximum of three times the amount of the effect substance.
  • Deodorants counteract body odors, mask or eliminate them. Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants are active ingredients, such as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers, and antiperspirants.
  • germ-inhibiting agents such as.
  • TTC 3,4,4'-trichlorocarbon
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen TM CAT, Cognis GmbH, Dusseldorf / Germany). The substances inhibit enzyme activity and thereby reduce the formation of noises.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen TM CAT, Cognis GmbH, Dusseldorf / Germany).
  • the substances inhibit enzyme activity and thereby reduce the formation of noises.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, monoethyl glutarate, Diethyl glutarate, adipic acid, monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or dietetic acid tartarate, and zinc glycinate.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid, monoethyl glutarate,
  • Substances that absorb and largely retain odor-forming compounds are suitable as sound absorbers. They reduce the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes have to remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixers", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance substances or perfume oils act as odor maskers which, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils include, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit bowls, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g. B.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes z. B.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones z.
  • the Jonone and methyl cedryl ketone the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • Essential oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. B. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdane oil and lavender oil.
  • perfume oils e.g. B. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdane oil and lavender oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable anti-hydrotically active ingredients are such.
  • B. aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds z.
  • the fluid is preferably used in an amount in a range from 0.1 to 500% by weight, particularly preferably in a range from 0.5 to 300% by weight and moreover in an amount in a range 1 to 200 wt .-%, based on the weight of the superabsorbent fine particles, brought into contact with the superabsorbent fine particles.
  • the contacting of the fluid with the superabsorbent fine particles is preferably carried out by mixing the fluid with the superabsorbent fine particles or by spraying the superabsorbent fine particles with the fluid.
  • the contacting can also take place in a fluidized bed.
  • All devices which allow a homogeneous distribution of the fluid on or with the superabsorbent fine particles are suitable for mixing or spraying.
  • Examples are Lödige mixers (manufactured by Gebrüder Lödige Maschinenbau GmbH), Gerickc Multi-Flux mixers (manufactured by Gericke GmbH), DRAIS mixers (manufactured by DRAIS GmbH Spezialmaschinenfabrik Mannheim), Hosokawa mixers ( Hosok wa Mob ⁇ on Co., Ltd.), Ruberg mixer (manufactured by Gebr.
  • fluidized bed processes known to the person skilled in the art and appearing suitable can be used for contacting in a fluidized bed.
  • a fluidized bed coater can be used.
  • the uncrosslinked polymer is crosslinked by heating the superabsorbent fine particles brought into contact with the fluid, in a preferred embodiment of the method according to the invention the heating takes place while the superabsorbent fine particles are brought into contact with the fluid.
  • the heating is preferably carried out in ovens or dryers known to those skilled in the art.
  • the superabsorbent fine particles brought into contact with the fluid are preferably heated for 1 to 120 minutes, particularly preferably for 2 to 90 minutes and furthermore preferably for 3 and 60 minutes.
  • the uncrosslinked polymer is crosslinked by heating, the crosslinking preferably by condensation reaction, addition reaction or ring opening reaction between the functional groups of the monomers (M) of the crosslinkable, uncrosslinked polymer and the functional groups, preferably the carboxylate groups, in the surface area the superabsorbent fine particles or the other functional groups, preferably the carboxylate groups, the crosslinkable, non-crosslinked polymer or by condensation reaction, addition reaction or ring opening reaction between the functional groups.
  • the carboxylate groups, the non-crosslinked polymer and the functional groups, preferably the carboxylate groups are carried out in the surface area of the superabsorbent fine particles and the further crosslinker.
  • the superabsorbent particles obtained by the process described above preferably a part of the superabsorbent particles obtainable by the process described above, particularly preferably those superabsorbent particles which have a particle size of more than 850 ⁇ m, are comminuted, the comminution preferably done by grinding.
  • step (C) which preferably immediately follows step (B), a postcrosslinker can be added during or after step (B).
  • this postcrosslinker In connection with the addition of this postcrosslinker, reference is made to the above statements regarding postcrosslinking or surface crosslinking.
  • the present invention further relates to the superabsorbent particles obtainable by the processes according to the invention described above.
  • the invention further relates to superabsorbent particles comprising more than 75% by weight, preferably more than 85% by weight, particularly preferably more than 90.5% by weight, moreover preferably more than 92% by weight and moreover, more preferably, more than 95% by weight of superabsorbent fine particles, where
  • the superabsorbent fine particles to at least 40% by weight, preferably to at least 70% by weight, particularly preferably to at least 90% by weight and moreover preferably to 100% by weight, in each case based on the total weight of the superabsorbent fine particles, have a particle size of less than 150 ⁇ m, determined according to ERT 420J-99, and the minimum partially adjoin a matrix of a crosslinked polymer, preferably at least 0.1% by weight, further preferably at least 1 and more preferably at least 4% by weight, based in each case on the superabsorbent particles, of crosslinked polymer forming the matrix,
  • crosslinked polymer at least 20% by weight, preferably at least 50% by weight, particularly preferably at least 80% by weight and further preferably at least 90% by weight, in each case based on the total weight of the crosslinked polymer , based on polymerized monomers bearing acid groups or their salts,
  • the crosslinked polymer has a different chemical composition than the superabsorbent fine particles or differs in physical property from the superabsorbent fine particles, and
  • the superabsorbent particles have a proportion of particles with a particle size of less than 150 ⁇ m, determined according to ERT 420J-99, of less than 50% by weight, preferably less than 30% by weight, particularly preferably less than 25% by weight, more preferably less than 20% by weight, more preferably even less than 15% by weight and most preferably less than 10% by weight, in each case based on the total weight of the superabsorbent particles.
  • the invention also relates to superabsorbent particles comprising superabsorbent fine particles which comprise at least 40% by weight, preferably at least 70% by weight, particularly preferably at least 90% by weight and moreover preferably 100% by weight, based in each case on the Total weight of the superabsorbent fine particles, a particle size of less than 150 microns, determined according to ERT 420J-99, and which at least partially adjoin a matrix of a crosslinked polymer, wherein (B1) the crosslinked polymer at least 20% by weight, preferably at least 50% by weight, particularly preferably at least 80% by weight and further preferably at least 90% by weight, in each case based on the total weight of the crosslinked polymer, based on ethylenic monomers bearing acid groups or their salts,
  • the crosslinked polymer has a different chemical composition than the superabsorbent fine particles or differs in physical property from the superabsorbent fine particles
  • the matrix comprises, in addition to the crosslinked polymer, an effect substance based on a poly sugar or a compound containing silicon oxygen.
  • the effect substances are preferably in an amount in a range from 0.1 to 50% by weight, particularly preferably in a range from 1 to 40% by weight and moreover preferably in an amount in a range from 5 to 30% by weight. -%, each based on the total weight of superabsorbent fine particles and cross-linked! Polymer.
  • the crosslinked polymers are preferably those polymers which can be obtained by crosslinking the crosslinkable, uncrosslinked polymers described in connection with the process according to the invention in the presence of superabsorbent fine particles.
  • the effect substances contained in the last-mentioned superabsorbent particles according to the invention preferably correspond to those effect substances which have already been described in connection with the methods according to the invention for producing superabsorbent particles, zeolites being particularly preferably contained as effect substances.
  • the matrix also has the Function to firmly connect or agglomerate the individual superabsorbent fine particles and any effect substances that may be present.
  • Preferred physical properties in which the crosslinked polymer and the superabsorbent fine particles differ are the charge density, the degree of crosslinking or different reflection or absorption of electromagnetic waves. Microscopic or nuclear magnetic resonance examinations can be used to determine these different properties.
  • the crosslinked polymer in an amount in a range of 1 to 50 wt .-%, particularly preferably in an amount in a range of 3 to 30 wt .-% and more preferably in an amount in a range from 5 to 20% by weight, based on the total weight of crosslinked polymer and superabsorbent fine particles, is contained.
  • the above-described superabsorbent particles according to the invention comprising the superabsorbent fine particles have an inner region and a surface region delimiting the inner region, and the surface region has a different chemical composition than the inner region or differs in physical property from the inner region.
  • Physical properties in which the interior area differs from the surface area are, for example, the charge density or the degree of crosslinking.
  • These superabsorbent particles according to the invention which have an inner region and a surface region delimiting the inner region, are preferably obtainable by re-cross-linking reactive groups of the superabsorbent particles close to the surface after method step (B).
  • the exact process of post-crosslinking and the post-crosslinking agents preferably used for this preferably correspond to those processes or those postcrosslinkers which have already been described in connection with the postcrosslinking of the polymer (P) or the superabsorbent fine particles.
  • the superabsorber particles described above have at least one, preferably each, of the following properties: a1) a particle size distribution in which at least 80% by weight, preferably at least 90% by weight and moreover preferably at least 95% by weight.
  • % of the particles have a particle size in a range from 20 ⁇ m to 5 mm, preferably in the range from 150 ⁇ m to 1 mm and particularly preferably in the range from 200 ⁇ m to 900 ⁇ m according to ERT 420.1-99; a2) a centrifuge retention capacity (CRC) of at least 5 g / g, preferably at least 10 g / g and particularly preferably in a range from 20 to 100 g / g according to ERT 441.1-99; a3) an Absorbency against Pressure (AAP) at 0.7 psi of at least 5 g / g, preferably at least 7 g / g and particularly preferably in a range from 15 to 100 g / g according to ERT 442-1.99; a4) a content of water-soluble polymer after 16 hours of extraction of less than 25% by weight, preferably less than 20% by weight and particularly preferably less than 18% by weight, based on the total weight of the superabsorbent particles,
  • each of the combinations of features resulting from the features al to a4 represents a preferred embodiment according to the invention, the following features or combinations of features representing particularly preferred embodiments: a4, ala2, ala2a3, ala2a3a4, ala3, ala4, ala3a4, ala2a4, a3a3, a2a a2a4 and a3a4, with a4 and all of the above combinations with a4 being particularly preferred. It is further preferred that the above-described superabsorbent particles according to the invention have the same properties as the superabsorbent particles obtainable by the methods according to the invention.
  • those values which have been specified in connection with the methods according to the invention and the superabsorbent particles according to the invention as lower limits of features according to the invention without upper limits are 20 times, preferably 10 times and particularly preferably 5 times the am have most preferred lower limit value.
  • the present invention further relates to a composite comprising the superabsorbent particles according to the invention and a substrate. It is preferred that the superabsorbent particles according to the invention and the substrate are firmly connected to one another. Films made of polymers, such as polyethylene, polypropylene or polyamide, metals, nonwovens, fluff, tissues, fabrics, natural or synthetic fibers, or others, are used as substrates. Foams preferred.
  • the invention further relates to methods for producing a composite, the superabsorbent particles according to the invention and a substrate and optionally an additive being brought into contact with one another.
  • Those substrates which have already been mentioned above in connection with the composite according to the invention are preferably used as substrates.
  • the invention also relates to a composite obtainable by the process described above.
  • the invention also relates to chemical products containing the superabsorbent particles according to the invention or a composite according to the invention.
  • Preferred chemical products are in particular foams, moldings, fibers, foils, Films, cables, sealing materials, liquid-absorbing hygiene articles, carriers for plant or fungal growth regulators or pesticides, additives for building materials, packaging materials or soil additives.
  • the invention further relates to the use of the superabsorbent particles according to the invention or the composite according to the invention in chemical products, preferably in the chemical products mentioned above, and to the use of the superabsorbent particles according to the invention as a carrier for plant or fungal growth regulating agents or crop protection agents.
  • a carrier for plant or fungal growth regulating agents or crop protection agents it is preferred that the plant or fungal growth regulating agents or crop protection agents can be released over a period controlled by the carrier.
  • the present invention relates to the use of a fluid comprising a crosslinkable, non-crosslinked polymer, which comprises at least 20% by weight, preferably at least 30% by weight and particularly preferably at least 50% by weight, in each case based on the total weight of the crosslinkable, non-crosslinked polymer, is based on ethylenic, acid group-bearing monomers or their salts, and which, in addition to the polymerized, ethylenically unsaturated, acid group-bearing monomers, comprises further polymerized, ethylenically unsaturated monomers (M) which are combined with polymerized acid group-bearing monomers in a condensation reaction, in one Addition reaction or can react in a ring opening reaction, and optionally a crosslinker, to adjust at least one of the following properties: B1) abrasion resistance of superabsorbent particles comprising superabsorbent fine particles, B2) average particle size of superabsorbent particles comprising superabsorbent fine particles or for
  • the invention relates to the use of the superabsorbent particles according to the invention in hygiene products, for flood control, for insulation against water, for regulating the water balance in soils or for treating food.
  • ERT stands for EDANA Recommended Test
  • EDANA European Disposable and Nonwoven Association
  • a grinding medium 24 cylindrical porcelain pieces, US Stoneware 1/2 "ODJ / 2"
  • 10 g of the superabsorbent polymer particles with a particle size of 150 to 850 ⁇ m were weighed into a ball mill pot.
  • the ball mill pot was closed and rotated on a roller mill at 95 rpm for 6 minutes.
  • the mechanically loaded superabsorber was removed from the pot and analyzed for particle size distribution using a 100-mesh sieve.
  • the proportion By determining the proportion of particles that were retained on the sieve when sieving the superabsorbent polymer particles with the 100 wzes ⁇ sieve in accordance with the regulations of ERT 420J-99 (and which accordingly had a particle size of more than 150 ⁇ m), Taking into account the amount of superabsorbent polymer particles used, the proportion can be determined which had a particle size of less than 150 ⁇ m.
  • acrylic acid 300 g was divided into two portions. A portion was placed in 429.1 g of distilled water. 0.36 g of triallyamine, 1.05 g of allyloxpolyethylene glycol acrylic acid ester and 12 g methoxypolethylene glycol (22EO) methacrylate were dissolved in the second portion of acrylic acid and also added to the water. The solution was cooled to 10 ° C. A total of 233.1 g of 50% sodium hydroxide solution were then added with cooling so slowly that the temperature did not rise above 30 ° C. The solution was then flushed with nitrogen at 20 ° C. and further cooled. When the starting temperature of 4 ° C.
  • Example 2 50 g of the agglomerate obtained in Example 1 are mixed in a syringe with a Krupps 3-Mix stirrer at the highest level, and a solution of 250 mg of ethylene carbonate in a mixer 1 g, distilled water and 2 g acetone were added and the agglomerate was stirred for a further 30 seconds.
  • the product was left to stand for 30 minutes and then dried in an air-drying oven at 190 ° C. for 30 minutes.
  • Table 4 The changes in the absorption properties are shown in Table 4 below:
  • EXAMPLE 5 750 g of superabsorbent fine particles from preparation example I were placed in a laboratory MIT mixer already described under example 2, and 62.5 g of the zeolite Abscents 3000 were added to 1,500 rpm. The mixture was sprayed with 200 g of a 20% strength, 50% by weight neutralized with sodium hydroxide, uncrosslinked polyacrylic acid solution (M w approx. 130,000 g / mol), which contained 3.4 polyethylene glycol-300 as crosslinker, and then sprayed at 180 ° for 30 minutes C dried in a forced air drying cabinet. The particles, which were larger than 150 ⁇ m, were ground in an impact ring mill. The results are summarized in Table 5. Table 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines agglomerierten Superabsorberpartikels, umfassend als Schritte (A) das in Kontakt bringen von Superabsorberfeinteilchen, die zu mindestens 40 Gew.-% eine Partikelgröße von weniger als 150 µm aufweisen, mit einem Fluid beinhaltend mehr als 10 Gew.-%, bezogen auf das Gesamtgewicht des Fluids, eines vernetzbaren, nicht vernetzten Polymers, welches zu mindestens 20 Gew.-%, bezogen auf das Gesamtgewicht des vernetzbaren, nicht vernetzten Polymers, auf polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren oder deren Salzen basiert, (B) das Vernetzen des nicht vernetzten Polymers durch Erhitzen der mit dem Fluid in Kontakt gebrachten Superabsorberfeinteilchen auf eine Temperatur in einem Bereich von 20 bis 300°C, so dass das vernetzbare, nicht vernetzte Polymer mindestens teilweise vernetzt wird, wobei a) das vernetzbare, nichtvernetzte Polymer neben den polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren weitere polymerisierte, ethylenisch ungesättigte Monomere (M) umfasst, die mit polymerisierten säuregruppentragenden Monomeren in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren können, und/oder b) das Fluid neben dem vernetzbaren, nicht vernetzten Polymer einen Vernetzer beinhaltet.

Description

VERFAHREN ZUR AGGLOMERATION VON SUPERABSORBERFEINTEILCHEN
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines agglomerierten Superabsorberpartikels, durch dieses Verfahren erhältliche Superabsorberpartikel, Superabsorberpartikel umfassend Superabsorberfeinteilchen, einen Verbund beinhaltend Superabsorberpartikel und ein Substrat, ein .Verfahren zur Herstellung eines Verbundes, ein durch dieses Verfahren erhältlichen Verbund, chemische Produkte beinhaltend die erfindungsgemäßen Superabsorberpartikel oder den erfindungsgemäßen Verbund, die Verwendung der erfindungsgemäßen Superabsorberpartikel oder des erfindungsgemäßen Verbundes in chemischen Produkten, die Verwendung eines nicht vernetzten Polymers sowie die Verwendung eines Fluids beinhaltend ein nicht vernetztes Polymer.
Superabsorbierende Polymere besitzen die Fähigkeit, große Mengen an wässrigen Flüssigkeit aufzunehmen. Sie werden daher in großem Umfang in Hygieneartikeln wie etwa Windeln oder Damenbinden eingesetzt.
Die Herstellung der superabsorbierenden Polymer erfolgt vorzugsweise durch Umkehrphasensuspensionspolymerisation, durch Umkehrphasenemulsionspoly- merisation, durch wässrige Lösungspolymerisation oder durch Lösungspolymerisation in einen organischen Lösemittel. Die auf diese Weise erhaltenen superabsorbierenden Polymere werden getrocknet und anschließend gegebenenfalls pulverisiert.
Die durch die vorstehend genannten Polymerisations verfahren erhältlichen Superabsorberpartikel sind unter anderem dadurch gekennzeichnet, dass sie einen nicht zu vernachlässigenden Anteil an Feinteilchen umfassen, wobei als Feinteilchen definitionsgemäß Partikel mit einer mittleren Partikelgröße von weniger als 55 μm verstanden werden. Der Anteil dieser Feinteile kann, je nach Herstellungsverfahren der Superabsorber, bis zu 35 Gew.-% betragen. Die Feinteilchen sind bei der Herstellung von Hygieneartikel nicht nur schwer zu handhaben, sie sind auch durch eine besonders starke Neigung zum Stauben gekennzeichnet, was insbesondere im Hinblick auf die Gesundheit des bei der Herstellung derartiger Artikel eingesetzten Arbeitspersonals problematisch ist. Aus diesem Grund werden die Superabsorberpartikel vor ihrem Einsatz bei der Herstellung von Hygieneartikeln durch Sieben aufgearbeitet, wobei die Feinteilchen mit einer Partikelgröße von weniger als 150 μm abgetrennt werden.
In der Literatur werden einige Verfahren beschrieben, mit denen die auf diese Weise abgetrennten Superabsorberfeinteilchen zu größeren Partikelstrukturen agglomeriert und somit dem Verfahren zur Herstellung von Hygieneartikeln zurückgeführt werden können.
DE-A-40 21 847, EP-A-0 721 354 und EP-A-0 513 780 beschreiben die vernetzende Polymerisation von hydrophilen Monomeren in wässriger Lösung unter Zusatz von Superabsorberfeinteilchen. Es entsteht ein Gel, das zerkleinert, getrocknet, gemahlen und gesiebt werden uss.
EP-A-0 692 514 beschreibt das Agglomerieren von Superabsorberfeinteilchen durch Imprägnieren der Teilchen mit einer polymerisierbaren wassrigen Lösung eines Acrylmonomeren und eines Vernetzers mit anschließender Polymerisation durch Erhitzen.
WO-A-91/15177 beschreibt ein Verfahren, bei dem absorbierende Präcurser- Partikel mit einem interpartikulär vernetzenden Mittel vernetzt werden. Bei die- sem interpartikulär vernetzenden Mittel handelt es sich um nichtpolymere, poly- funktionelle Verbindungen wie Polyisocyanate, Polyamine oder Polyalkohole.
EP-A-0 522 570 beschreibt die Agglomeration von Superabsorberfeinteilchen, in dem die Teilchen mit einer polymerisierbaren Monomerlösung gemischt durch Suspensionspolymerisation hergestellt werden.
DE-A-37 41 158 beschreibt die Agglomeration von Superabsorberfeinteilchen mit einer Lösung oder Dispersion beinhaltend ein Agglomerierungshilfsmittel, wobei als Agglomerierungshilfsmittel auch wässrige Lösungen nichtvernetzter Polyacry- late eingesetzt werden. Ein zusätzlicher Vernetzer für die Polymerisate wird nicht eingesetzt. Die Lösungen werden bevorzugt in der Wirbelschicht aufgebracht. Der Nachteil des in diesem Stand der Technik beschriebenen Verfahren liegt darin, dass die Stabilität der Agglomerate unter mechanischem Stress sehr gering ist.
JP-06 313 042 und JP-06 313 044 beschreiben ein Verfahren, bei dem absorbierenden Femteilchen mit einer Lösung beinhaltend ein Bindemittel sowie einen Vernetzer in Kontakt gebracht werden. Bei dem Bindemittel handelt es sich um Lösungen wasserlöslicher Polymere, wie etwa Polyacrylatlö'sungen. Die in diesen Verfahren als Bindemittel eingesetzten wassrigen Lösungen enthalten maximal 10 Gew.-% des wasserlöslichen Polymers. Der Nachteil des in diesem Stand der Technik beschriebenen Verfahren liegt darin, dass nach der Agglomeration noch immer signifikante Mengen an Fines vorliegen, die nicht agglomeriert sind.
Die Aufgabe, die der vorliegenden Erfindung zugrunde lag, bestand allgemein darin, die sich aus dem Stand der Technik ergebenden Nachteile zu überwinden.
Eine weitere, der vorliegenden Erfindung zugrunde liegende Aufgabe bestand darin, ein Verfahren bereitzustellen, mit dem Superabsorberpartikel durch Agglome- ration von Superabsorberfeinteilchen erhalten werden können, wobei diese Superabsorberpartikel gegenüber den aus dem Stand der Technik bekannten, aus Superabsorberfeinteilchen erhältlichen Agglomeraten in ihren Eigenschaften, insbesondere in ihren Absorptionseigenschaften sowie hinsichtlich ihrer Stabilität gegenüber mechanischer Beanspruchung, nicht nachstehen.
Ferner bestand eine erfindungsgemäße Aufgabe darin, Superabsorberpartikel, die durch Agglomeration von Superabsorberfeinteilchen erhalten werden können, bereit zu stellen, die sich für die Einarbeitung in Hygieneartikel gut eignen.
Zudem bestand eine erfindungsgemäße Aufgabe darin, Superabsorberpartikel, die durch Agglomeration von Superabsorberfeinteilchen erhalten werden können, bereit zu stellen, die sich problemlos, insbesondere mit vermindertem Auftreten von Verbackungen und Stauungen, genau bei der Einarbeitung in Hygieneartikel dosieren lassen.
Gelöst wurden diese Aufgaben durch ein Verfahren zur Herstellung von Superabsorberpartikeln, umfassend als Schritte
(A) das in Kontakt bringen von Superabsorberfeinteilchen, die zu mindestens 40 Gew.-%, vorzugsweise zu mindestens 70 Gew.-%, besonders bevorzugt zu mindestens 80 Gew.-% und ferner bevorzugt zu mindestens 90 Gew.-% eine Partikelgröße von weniger als 150 μm, bestimmt gemäß ERT 420J-99, aufweisen, mit einem Fluid beinhaltend mehr als 10 Gew.-%, vorzugsweise mehr als 15 Gew.-%, besonders bevorzugt mehr als 17 Gew.-%, darüber hinaus bevorzugt mehr als 20 Gew.-% und ferner bevorzugt mehr als 25 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Fluids, eines vernetzbaren, nicht vernetzten Polymers, welches zu mindestens 20 Gew.-%, vorzugsweise zu mindestens 50 Gew.-%, besonders bevorzugt zu mindestens 80 Gew.-% und ferner bevorzugt zu mindestens 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des vernetzbaren, nicht vernetzten Polymers, auf polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren oder deren Salzen basiert,
(B) das Vernetzen des nicht vernetzten Polymers durch Erhitzen der mit dem Fluid in Kontakt gebrachten Superabsorberfeinteilchen auf eine Temperatur in einem Bereich von 20 bis 300°C, bevorzugt in einem Bereich von 50 bis 250°C und besonders bevorzugt in einem Bereich von 100 bis 200°C, so dass, bevorzugt wodurch, das vernetzbare, nicht vernetzte Polymer mindestens teilweise vernetzt wird,
wobei
(a) das vernetzbare, nichtvernetzte Polymer neben den polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren weitere polymeri- sierte, ethylenisch ungesättigte Monomere (M) umfasst, die mit polymerisierten säuregruppentragenden Monomeren in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffm gsreaktion reagieren können, und/oder
(b) das Fluid neben dem vernetzbaren, nicht vernetzten Polymer einen Vernetzer beinhaltet.
Die in den vorstehend beschriebenen, erfindungsgemäßen Verfahren eingesetzten
Superabsorberfeinteilchen basieren vorzugsweise auf
(αl) 0,1 bis 99,999 Gew.-%, bevorzugt 20 bis 98,99 Gew.-% und besonders bevorzugt 30 bis 98,95 Gew.-% polymerisierten, ethylenisch ungesättigten, säuregruppenhaltigen Monomeren oder deren Salze oder polymerisierten, ethylenisch ungesättigten, einen protonierten oder quarternierten Stickstoff beinhaltenden Monomeren, oder deren Mischungen, wobei mindestens ethylenisch ungesättigte, säuregruppenhaltige Monomere, vorzugsweise Acryl- säure, beinhaltende Mischungen besonders bevorzugt sind,
(α2) 0 bis 70 Gew.-%, bevorzugt 1 bis 60 Gew.-% und besonders bevorzugt 1 bis 40 Gew.-% polymerisierten, ethylenisch ungesättigten, mit (αl) copolymeri- sierbaren Monomeren,
(α3) 0,001 bis 10 Gew.-%, bevorzugt 0,01 bis 7 Gew.-% und besonders bevorzugt 0,05 bis 5 Gew.-% eines oder mehrerer Vernetzer,
(α4) 0 bis 30 Gew.-%, bevorzugt 1 bis 20 Gew.-% und besonders bevorzugt 5 bis 10 Gew.-% wasserlöslichen Polymeren, sowie
(α5) 0 bis 20 Gew.-%, bevorzugt 0,01 bis 7 Gew.-% und besonders bevorzugt 0,05 bis 5 Gew.-% eines oder mehrerer Hilfsstoffe, wobei die Summe der Gewichtsmengen (αl) bis (α5) 100 Gew.-% beträgt.
Die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere (αl) können teilweise oder vollständig, bevorzugt teilweise neutralisiert sein. Vorzugsweise sind die monoethylenisch ungesättigten, säuregruppenhaltigen Monomere zu mindestens 25 Mol-%, besonders bevorzugt zu mindestens 50 Mol-% und darüber hinaus bevorzugt zu 50-90 Mol-% neutralisiert. Die Neutralisation der Monomere (αl) kann vor auch nach der Polymerisation erfolgen. Ferner kann die Neutralisation mit Alkalimetallhydroxiden, Erdalkalimetallhydroxiden, Ammoniak sowie Carbonaten und Bicarbonaten erfolgen. Daneben ist jede weitere Base denkbar, die mit der Säure ein wasserlösliches Salz bildet. Auch eine Mischneutralisation mit verschiedenen Basen ist denkbar. Bevorzugt ist die Neutralisation mit Ammoniak oder mit Alkalimetallhydroxiden, besonders bevorzugt mit Natriumhydroxid oder mit Ammoniak.
Ferner können bei einem Polymer die freien Säuregruppen überwiegen, so dass dieses Polymer einen im sauren Bereich liegenden pH- Wert aufweist. Dieses sau- re wasseräbsorbierende Polymer kann durch ein Polymer mit freien basischen Gruppen, vorzugsweise Amingruppen, das im Vergleich zu dem sauren Polymer basisch ist, mindestens teilweise neutralisiert werden. Diese Polymere werden in der Literatur als ,Jvlixed-Bed Ion-Exchange Absorbent Polymers" (MBIEA- Polymere) bezeichnet und sind unter anderem in der WO 99/34843 offenbart. Die Offenbarung der WO 99/34843 wird hiermit als Referenz eingeführt und gilt somit als Teil der Offenbarung. In der Regel stellen MBIEA-Polymere eine Zusammensetzung dar, die zum einen basische Polymere, die in der Lage sind, Anionen auszutauschen, und andererseits ein im Vergleich zu dem basischen Polymer saures Polymer, das in der Lage ist, Kationen auszutauschen, beinhalten. Das basische Polymer weist basische Gruppen auf und wird typischerweise durch die Polymerisation von Monomeren erhalten, die basische Gruppen oder Gruppen tragen, die in basische Gruppen umgewandelt werden können. Bei diesen Monomeren handelt es sich vor allen Dingen um solche, die primäre, sekundäre oder tertiäre Amine oder die entsprechenden Phosphine oder mindestens zwei der vorstehenden funktioneilen Gruppen aufweisen. Zu dieser Gruppe von Monomeren gehören insbesondere Ethylenamin, Allylamin, Diallylamin, 4-Aminobuten, Alkylo- xycycline, Vinylformamid, 5-Aminopenten, Carbodiimid, Formaldacin, Melamin und dergleichen, sowie deren sekundäre oder tertiäre Aminderivate.
Bevorzugte monoethylenisch ungesättigte, säuregruppenhaltige Monomere (αl) sind Acrylsäure, Methacrylsäure, Ethacrylsäure, α-Chloracrylsäure, - Cyanoacrylsäure, ß-Methylacrylsäure (Crotonsäure), -Phenylacrylsäure, ß- Acryloxypropionsäure, Sorbinsäure, -Chlorsorbinsäure, 2'-Methylisocroton- säure, Zimtsäure, p-Chlorzimtsäure, ß-Stearylsäure, Itaconsäure, Citraconsäure, Mesaconsäure, Glutaconsäure, Aconitsäure, Maleinsäure, Fumarsäure, Tricarbo- xyethylen und Maleinsäureanhydrid, wobei Acrylsäure sowie Methacrylsäure besonders und Acrylsäure darüber hinaus bevorzugt sind. Neben diesen carboxylatgruppenhaltigen Monomeren sind als monoethylenisch ungesättigte, säuregruppenhaltige Monomere (αl) des Weiteren ethylenisch ungesättigte Sulfonsäuremonomere oder ethylenisch ungesättigte Phosphonsäuremo- no ere bevorzugt.
Als ethylenisch ungesättigte Sulfonsäuremonomere sind Allylsulfonsäure oder a- liphafische oder aromatische Vinylsulfonsäuren oder acrylische oder methacryli- sche Sulfonsäuren bevorzugt. Als aliphatische oder aromatische Vinylsulfonsäuren sind Vinylsulfonsäure, 4-Vinylbenzylsulfonsäure, Vinyltoluolsulfonsäure und Stryrolsulfonsäure bevorzugt. Als Acryl- bzw. Methacrylsulfonsäuren sind Sul- foethyl(meth)acrylat, Sulfopropyl(meth)acrylat, 2-Hydroxy-3-methacryloxypro- pylsulfonsäure sowie (Meth)Acrylamidoalkylsulfonsäuren wie 2-Acrylamido-2- methylpropansulfonsäure bevorzugt.
Als ethylenisch ungesättigte Phosphonsäuremonomere sind Vinylphosphonsäure, Allylphosphonsäure, Vinylbenzylphosponsäure, (Meth)acrylamidoalkylphosphon- säuren, Acrylamidoalkyldiphosphonsäuren, phosponomethylierte Vinylamine und (Meth)acrylphosphonsäurederivate bevorzugt.
Es ist erfindungsgemäß bevorzugt, dass das Polymer zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 70 Gew.-% und darüber hinaus bevorzugt zu mindestens 90 Gew.-% auf carboxylatgruppenhaltigen Monomeren besteht. Es ist erfindungsgemäß besonders bevorzugt, dass das Polymer zu mindestens 50 Gew.-%, vorzugsweise zu mindestens 70 Gew.-% aus Acrylsäure besteht, die vorzugsweise zu mindestens 20 Mol-%, besonders bevorzugt zu mindestens 50 Mol-% neutralisiert ist.
Als ethylenisch ungesättigte, einen protonierten Stickstoff enthaltende Monomere (αl) sind vorzugsweise Dialkylaminoalkyl(meth)acrylate in protonierter Form, beispielsweise Dimethylaminoethyl(meth)acrylat-Hydrochlorid oder Dimethyla- minoethyl(meth)acrylat-Hydrosulfat, sowie Dialkylaminoalkyl-(meth)acrylamide in protonierter Form, beispielsweise Dimethylaminoethyl(meth)acrylamid- Hydrochlorid, Diemethylaminopropyl(meth)acrylamid-Hydrochlorid, Diemethy- laminopropyl(meth)acrylamid-Hydrosulfat oder Dimethylaminoethyl(meth)acryl- amid-Hydrosulfat bevorzugt.
Als ethylenisch ungesättigte, einen quarternierten Stickstoff enthaltende Monomere (αl) sind Dialkylammoniumalkyl(meth)acrylate in quarternisierter Form, beispielsweise Trimethylammoniumethyl(meth)acrylat-Methosulfat oder Di- methylethylammoniumethyl(meth)acrylat-Ethosulfat sowie (Meth)acrylamido- alkyldialkylamine in quarternisierter Form, beispielsweise (Meth)acrylamidopro- pyltrimethylammoniumchlorid, Trimethylammoniumethyl(meth)acrylat-Chlorid oder (Meth)acrylamidopropyltrimethylammoniumsulfat bevorzugt.
Als monoethylenisch ungesättigte, mit (αl) copolymerisierbare Monomere (α2) sind Acrylamide und Methacrylamide bevorzugt.
Bevorzugte (Meth)acrylamide sind neben Acrylamid und Methacrylamid alkyl- substituierte (Meth)acrylamide oder aminoalkylsubstituierte Derivate des (Meth)acrylamids, wie N-Methylol(meth)acrylamid, N,N-Dimethylamino(meth)- acrylamid, Dimethyl(meth)acrylamid oder Diethyl(meth)acrylamid Mögliche Vi- nylamide sind beispielsweise N-Vinylamide, N-Vinylformamide, N- Vinylacetamide, N-Vinyl-N-Methylacetamide, N-Vinyl-N-methylformamide, Vi- nylpyrrolidon. Unter diesen Monomeren besonders bevorzugt ist Acrylamid.
Des Weiteren sind als monoethylenisch ungesättigte, mit (αl) copolymerisierba- ren Monomere (α2) in Wasser dispergierbare Monomere bevorzugt. Als in Wasser dispergierbare Monomere sind Acrylsäurester und Methacrylsäurester, wie Me- thyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat oder Bu- tyl(meth)acrylat, sowie Vinylacetat, Styrol und Isobutylen bevorzugt.
Erfindungsgemäß bevorzugte Vemetzer (α3) sind Verbindungen, die mindestens zwei ethylenisch ungesättigte Gruppen innerhalb eines Moleküls aufweisen (Vernetzerklasse I), Verbindungen, die mindestens zwei funktioneile Gmppen aufweisen, die mit funktioneilen Gruppen der Monomeren (αl) oder (α2) in einer Kondensationsreaktion (=Kondensationsvernetzer), in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren können (Vemetzerklasse II), Verbindungen, die mindestens eine ethylenisch ungesättigte Gruppe und mindestens eine funkti- onelle Gruppe, die mit funktioneilen Gruppen der Monomeren (αl) oder (α2) in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöff- nungsreaktion reagieren kann (Vemetzerklasse III), aufweisen, oder polyvalente Metallkationen (Vemetzerklasse IV). Dabei wird durch die Verbindungen der Vemetzerklasse I eine Vernetzung der Polymere durch die radikalische Polymerisation der ethylenisch ungesättigten Gmppen des Vemetzermoleküls mit den monoethylenisch ungesättigten Monomeren (αl) oder (α2) erreicht, während bei den Verbindungen der Vemetzerklasse II und den polyvalenten Metallkationen der Vemetzerklasse IV eine Vernetzung der Polymere durch Kondensationsreaktion der funktionellen Gmppen (Vemetzerklasse II) bzw. durch elektrostatische Wechselwirkung des polyvalenten Metallkations (Vemetzerklasse IV) mit den funktionellen Gmppen der Monomere (αl) oder (α2) erreicht wird. Bei den Verbindungen der Vemetzerklasse III erfolgt dementsprechend eine Vernetzung des Polymers sowohl durch radikalische Polymerisation der ethylenisch ungesättigten Gruppe als auch durch Kondensationsreaktion zwischen der funktionellen Gruppe des Vernetzers und den funktionellen Gmppen der Monomeren (αl) oder (α2).
Bevorzugte Verbindungen der Vemetzerklasse I sind Poly(meth)acrylsäureester, die beispielsweise durch die Umsetzung eines Polyols, wie beispielsweise Ethy- lenglykol, Propylenglykol, Trimethylolpropan, 1,6-Hexandiol, Glycerin, Pentae- rythrit, Polyethylenglykol oder Polypropylenglykol, eines Aminoalkohols, eines Polyalkylenpolyaminens, wie beispielsweise Diethylentriamin oder Triethylen- tetraamin, oder eines alkoxylierten Polyols mit Acrylsäure oder Methacrylsäure gewonnen werden. Als Verbindungen der Vemetzerklasse I sind des Weiteren Po- lyvinylverbindungen, Poly(meth)allyverbindungen, (Meth)acrylsäureester einer Monovinylverbindung oder (Meth)acrylsäureester einer Mono(meth)allyl- Verbindung, vorzugsweise der Mono(meth)allylverbindungen eines Polyols oder eines Aminoalkohols, bevorzugt. In diesem Zusammenhang wird auf DE 195 43 366 und DE 195 43 368 verwiesen. Die Offenbamngen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung.
Als Verbindungen der Vemetzerklasse I seien als Beispiel genannt Alke- nyldi(meth)acrylate, beispielsweise Ethylenglykoldi(meth)acrylat, 1,3-Pro- pylenglykoldi(meth)acrylat, 1 ,4-Butylenglykoldi(meth)acrylat, 1 ,3-Butylengly- koldi(meth)acrylat, 1 ,6-Hexandioldi(meth)acrylat, 1 , 10-Decandioldi(meth)acrylat, 1 , 12-Dodecandioldi(meth)acrylat, 1 , 18-Octadecandioldi(meth)acrylat, Cyclopen- tandioldi(meth)acrylat, Neopentylglykoldi(meth)acrylat, Methylendi(meth)acrylat oder Pentaerythritdi(meth)acrylat, Alkenyldi(meth)acrylamide, beispielsweise N- Methyldi(meth)acrylamid, N,N'-3-Methylbutylidenbis(meth)acrylamid, N,N'- (l,2-Di-hydroxyethylen)bis(meth)acrylamid, N,N'-Hexamethylenbis(meth)acryl- acrylamid oder N,N'-Methylenbis(meth) acrylamid, Polyalkoxydi(meth)acrylate, beispielsweise Diethylenglykoldi(meth)acrylat, Triethylenglykoldi(meth)acrylat, Tetraethylenglykoldi(meth)acrylat, Dipropylenglykoldi(meth)acrylat, Tripropy- lenglykoldi(meth)acrylat oder Tetτapropylenglykoldi(meth)acrylat, Bisphenol-A- di(meth)acrylat, ethoxyliertes Bisphenol-A-di(meth)acrylat, Benzylidin- di(meth)acrylat, 1 ,3 -Di(meth)acryloyloxy-propanol-2, Hydrochinondi(meth)acry- lat, Di(meth)acrylatester des vorzugsweise mit 1 bis 30 Mol Alkylenoxid pro Hydroxylgruppe oxyalkylierten, vorzugsweise ethoxylierten Trimethylolpropans, Thioethylenglykoldi(meth)acrylat, Thiopropylenglykoldi(meth)acrylat, Thiopoly- ethylenglykoldi(meth)acrylat, Thiopolypropylenglykoldi(meth)acrylat, Diviny- lether, beispielsweise 1,4-Butandioldivinylether, Divinylester, beispielsweise Di- vinyladipat, Alkandiene, beispielsweise Butadien oder 1,6-Hexadien, Divinyl- benzol, Di(meth)allylverbindungen, beispielsweise Di(meth)allylphthalat oder Di(meth)allylsuccinat, Homo- und Copolymere von Di(meth)allyldi- methylammoniumchlorid und Homo- und Copolymere von Diethyl(meth)allyl- aminomethyl(meth)acrylat-ammoniumchlorid, Vinyl-(meth)acryl-Verbindungen, beispielsweise Vinyl(meth)acrylat, ' (Meth)allyl-(meth)acryl- Verbindungen, beispielsweise (Meth)allyl(meth)acrylat, mit 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe ethoxyliertes (Meth)allyl(meth)acrylat, Di(meth)aHylester von Polycarbonsäuren, beispielsweise Di(meth)allylmaleat, Di(meth)allyfumarat, Di(meth)allylsuccinat oder Di(meth)allylterephthalat, Verbindungen mit 3 oder mehr ethylenisch ungesättigten, radikalisch polymerisierbaren Gruppen wie beispielsweise Glycerintri(meth)acrylat, (Meth)acrylatester des mit vorzugsweise 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe oxyethylierten Glycerins, Trimethylolpropantri(meth)acrylat, Tri(meth)acrylatester des vorzugsweise mit 1 bis 30 Mol Alkylenoxid pro Hydroxylgruppe oxyalkylierten, vorzugsweise etho- xylierten Trimethylolpropans, Trimethacrylamid, (Meth)allylidendi(meth)acrylat, 3-Allyloxy-l,2-propandioldi(meth)acrylat, Tri- (meth)allylcyanurat,
Tri(meth)allylisocyanurat, Pentaerythrittetra(meth)acrylat, Pentae- rythrittri(meth)acrylat, (Meth)acrylsäureester des mit vorzugsweise 1 bis 30 Mol Ethylenoxid pro Hydroxylgruppe oxyethylierten Pentaerythrits, Tris(2- hydroxyethyl)isocyanurattri(meth)acrylat, Trivinyltrimellitat, Tri(meth)allylamin, Di(meth)allylalkylamine, beispielsweise Di(meth)allylmethylamin, Tri- (meth)allylphosphat, Tetra(meth)allylethylendiamin, Poly(meth)allylester, Tet- ra(meth)allyloxiethan oder Tetra(meth)allylammoniumhalide.
Als Verbindung der Vemetzerklasse II sind Verbindungen bevorzugt, die mindestens zwei funktionelle Gmppen aufweisen, die in einer Kondensationsreaktion (=Kondensationsvernetzer), in einer Additionsreaktion oder in einer Ringöff- nungsreaktion mit den funktionellen Gmppen der Monomere (αl) oder (α2), bevorzugt mit Säuregmppen, der Monomeren (αl), reagieren können. Bei diesen funktionellen Gmppen der Verbindungen der Vemetzerklasse II handelt es sich vorzugsweise um Alkohol-, Amin-, Aldehyd-, Glycidyl-, Isocyanat-, Carbonat- oder Epichlorfunktionen.
Als Verbindung der Vemetzerklasse II seien als Beispiele genannt Polyole, beispielsweise Ethylenglykol, Polethylenglykole wie Diethylenglykol, Triethy- lenglykol und Tetraethylenglykol, Propylenglykol, Polypropylenglykole wie Dipropylenglykol, Tripropylenglykol oder Tetrapropylenglykol, 1,3-Butandiol, 1,4-Butandiol, 1,5-Pentandiol, 2,4-Pentandiol, 1,6-Hexandiol, 2,5-Hexandiol, Glycerin, Polyglycerin, Trimethylolpropan, Polyoxypropylen, Oxyethylen- Oxypropylen-Blockcopolymere, Sorbitanfettsäureester, Polyoxyethylensorbitan- fettsäureester, Pentaerythrit, Polyvinylalkohol und Sorbitol, Aminoalkohole, beispielsweise Ethanolamin, Diethanolamin, Triethanolamin oder Propanolamin, Po- lyaminverbindungen, beispielsweise Ethylendiamin, Diethylentriaamin, Triethy- lentetraamin, Tetraethylenpentaamin oder Pentaethylenhexaamin, Polyglycidy- lether- Verbindungen wie Ethylenglykoldiglycidylether, Polyethylenglykol- diglycidylether, Glycerindiglycidylether, Glycerinpolyglycidylether, Pentareritrit- polyglycidylether, Propylenglykoldiglycidylether Polypropylenglykoldiglycidy- lether, Neopentylglykoldiglycidylether, Hexandiolglycidylether, Trimethylolpro- panpolyglycidylether, Sorbitolpolyglycidylether, Phtahlsäurediglycidylester, Adi- pinsäurediglycidylether, l,4-Phenylen-bis(2-oxazolin), Glycidol, Polyisocyanate, vorzugsweise Diisocyanate wie 2,4-Toluoldiisocyanat und Hexamethylendiisocy- anat, Polyaziridin- Verbindungen wie 2,2-Bishydroxymethylbutanol-tris[3-(l- aziridiiιyl)propionat], 1,6-Hexamethylendiethylenhamstoff und Diphenylmethan- bis-4,4'-N,N'-diethylenharnstoff, Halogenepoxide beispielsweise Epi chlor- und Epibromhydrin und α-Methylepichlorhydrin, Alkylencarbonate wie 1,3-Dioxolan- 2-on (Ethylencarbonat), 4-Methyl-l,3-dioxolan-2-on (Propylencarbonat), 4,5-Di- methyl- 1 ,3 -dioxolan-2-on, 4,4-Dimethyl- 1 ,3 -dioxolan-2-on, 4-Ethyl- 1 ,3-dioxolan- 2-on, 4-Hydroxymethyl-lJ-dioxolan-2-on, l,3-Dioxan-2-on, 4-Methyl-l,3- dioxan-2-on, 4,6-Dimethyl-l,3-dioxan-2-on, l,3-Dioxolan-2-on, Poly-1,3- dioxolan-2-on, polyquartäre Amine wie Kondensationsprodukte von Dimethyla- minen und Epichlorhydrin. Als Verbindungen der Vemetzerklasse II sind des Weiteren Polyoxazoline wie 1,2-Ethylenbisoxazolin, Vemetzer mit Silangmppen wie γ-Glycidoxypropyltrimethoxysilan und γ-Aminopropyltrimethoxysilan, Oxa- zolidinone wie 2-Oxazolidinon, Bis- und Poly-2-oxazolidinone und Diglykolsili- kate bevorzugt.
Als Verbindungen der Klasse III sind hydroxyl- oder aminogruppenhaltige Ester der (Meth)acrylsäure, wie beispielsweise 2-Hydroxyethyl(meth)acrylat und 2- Hydroxypropyl(meth)acrylat sowie hydroxyl- oder aminogruppenhaltige (Meth)acrylamide oder Mono(meth)allylverbindungen von Diolen bevorzugt.
Die polyvalenten Metallkationen der Vemetzerklasse IV leiten sich vorzugsweise von ein- oder mehrwertigen Kationen ab, die einwertigen insbesondere von Alkalimetallen, wie Kalium, Natrium, Lithium, wobei Lithium bevorzugt wird. Bevorzugte zweiwertige Kationen leiten sich von Zink, Beryllium, Erdalkalimetallen, wie Magnesium, Calcium, Strontium ab, wobei Magnesium bevorzugt wird. Weiter erfindungsgemäß einsetzbare höherwertige Kationen sind Kationen von Aluminium, Eisen, Chrom, Mangan, Titan, Zirkonium und andere Ubergangsmetalle sowie Doppelsalze solcher Kationen oder Mischungen der genannten Salze. Bevorzugt werden Aluminiumsalze und Alaune und deren unterschiedliche Hydrate wie z. B. A1C13 6H2O, NaAl(SO4)2 x 12 H2O, KAl(SO4)2 x 12 H2O oder Al2(SO )3x 14-18 H2O eingesetzt.
Besonders bevorzugt werden Al2(SO4)3 und seine Hydrate als Vemetzer der Vernetzungsklasse IV verwendet. Die im erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen sind vorzugsweise durch Vemetzer der folgenden Vemetzerklassen bzw. durch Vernetzer der folgenden Kombinationen von Vemetzerklassen vernetzt: I, II, III, IN, I II, I III, I IN, I II III, I E IN, I III IN, II III IN, II IN oder III IN. Die vorstehenden Kombinationen von Vemetzerklassen stellen jeweils eine bevorzugte Ausführungsform von Vemetzem eines im erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen dar.
Weitere bevorzugte Ausführungsformen der im erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen sind Polymere, die durch einen beliebigen der vorstehend genannten Vemetzer der Vemetzerklassen I vernetzt sind. Unter diesen sind wasserlösliche Vemetzer bevorzugt. In diesem Zusammenhang sind Ν,Ν '-Methylenbisacrylamid, Polyethylenglykoldi(meth)acrylate, Triallylmethy- lammoniumchlorid, Tetraallylammoniumchlorid sowie mit 9 Mol Ethylenoxid pro Mol Acrylsäure hergestelltes Allylnonaethylenglykolacrylat besonders bevorzugt.
Als wasserlösliche Polymere (α4) können in den Superabsorberfeinteilchen wasserlösliche Polymerisate, wie teil- oder vollverseifter Polyvinylalkohol, Polyvi- nylpyrrolidon, Stärke oder Stärkederivate, Polyglykole oder Polyacrylsäure enthalten, vorzugsweise einpolymerisiert sein. Das Molekulargewicht dieser Polymere ist unkritisch, solange sie wasserlöslich sind. Bevorzugte wasserlösliche Polymere sind Stärke oder Stärkederivate oder Polyvinylalkohol. Die wasserlöslichen Polymere, vorzugsweise synthetische wie Polyvinylalkohol, können auch als Pfropfgrundlage für die zu polymerisierenden Monomeren dienen.
Als Hilfsstoffe (α5) sind in den Polymerfeinteilchen vorzugsweise Stellmittel, organische oder anorganische Partikel wie beispielsweise Gerachsbinder, insbesondere Zeolithe oder Cyclodextrine, Hautpflegesubstanzen, oberflächenaktive Mittel oder Antioxidatien enthalten. Die im erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen sind vorzugsweise dadurch erhältlich, dass zunächst aus den vorgenannten Monomeren und Vemetzem ein wasserabsorbierendes Polymer (P) in partikulärer Form hergestellt wird. Die Herstellung dieses als Ausgangsmaterial für die Superabsorberfeinteilchen dienenden Polymers (P) erfolgt beispielsweise durch Massepolymerisation, die vorzugsweise in Knetreaktoren wie Extrudern oder durch Bandpolymerisation erfolgt, Lösungspolymerisation, Spraypolymerisation, inverse Emulsionspolymerisation oder inverse Suspensionspolymerisation. Bevorzugt wird die Lösungspolymerisation in Wasser als Lösemittel durchgeführt. Die Lösungspolymerisation kann kontinuierlich oder diskontinuierlich 'erfolgen. Aus dem Stand der Technik ist ein breites Spektrum von Variationsmöglichkeiten hinsichtlich Reaktionsverhältnisse wie Temperaturen, Art und Menge der Initiatoren als auch der Reaktionslösung zu entnehmen. Typische Verfahren sind in den folgenden Patentschriften beschrieben: US 4,286,082, DE 27 06 135, US 4,076,663, DE 35 03 458, DE 40 20 780, DE 42 44 548, DE 43 23 001, DE 43 33 056, DE 44 18 818. Die Offenbamngen werden hiermit als Referenz eingeführt und gelten somit als Teil der Offenbarung.
Als Initiatoren zur Initiierung der Polymerisation können alle unter den Polymerisationsbedingungen Radikale bildende Initiatoren verwendet werden, die üblicherweise bei der Herstellung von Superäbsorbern eingesetzt werden. Hierzu gehören thermische Katalysatoren, Redoxkatalysatoren und Photoinitiatoren, deren Aktivierung durch energiereiche Strahlung erfolgt. Die Polymerisationsinitiatoren können dabei in einer Lösung erfindungsgemäßer Monomere gelöst oder disper- giert enthalten sein. Bevorzugt ist der Einsatz wasserlöslicher Katalysatoren.
Als thermische Initiatoren kommen sämtliche dem Fachmann bekannte, unter Temperatureinwirkung in Radikale zerfallende Verbindungen in Betracht. Besonders bevorzugt sind dabei thermische Polymerisationsinitiatoren mit einer Halb- wertszeit von weniger als 10 Sekunden, darüber hinaus bevorzugt von weniger als 5 Sekunden bei weniger als 180 °C, darüber hinaus bevorzugt bei weniger als 140°C. Dabei sind Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate sowie Azoverbindungen besonders bevorzugte thermische Polymerisationsinitiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener thermischer Polyme- risationsinitiatoren zu verwenden. Unter diesen Mischungen sind die aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat bevorzugt, die in jedem denkbaren Mengenverhältnis eingesetzt werden können. Geeignete organische Peroxide sind vorzugsweise Acetylacetonperoxid, Methylethylketonperoxid, Ben- zoylperoxid, Lauroylperoxid, Acetylperoxid, Capyrlperoxid, Isopropylperoxydi- carbonat, 2-Ethylhexylperoxydicarbonat, t-Butylhydroperoxid, Cumolhydropero- xid, t-Amylperpivalat, t-Butylperpivalat, t-Butylpemeohexonat, t-Butylisobutyrat, t-Butylper-2-ethylhexenoat, t-Butylperisononanoat, t-Butylpermaleat, t- Butylperbenzoat, t-Butyl-3,5,5-tri-methylhexanoat und Amylperneodekanoat. Weiterhin sind als thermische Polymerisationsinitiatoren bevorzugt: Azoverbindungen, wie Azobisisobutyronitrol, Azobisdimethylvaleronitril, 2,2'- Azobis-(2-amidinopropan)dihydrochlorid, Azo-bis-amidinopropan-dihydrochlord, 2,2'-Azobis-(N,N-dimethylen)isobutyramidin-dihydrochlorid, 2- (Carbamoylazo)- ' isobutyronitril und 4,4'-Azobis-(4-cyanovaleriansäure). Die genannten Verbindungen werden in üblichen Mengen eingesetzt, vorzugsweise in einem Bereich von 0,01 bis 5, bevorzugt von 0,1 bis 2 Mol-%, jeweils bezogen auf die Menge der zu polymerisierenden Monomere.
Die Redoxkatalysatoren enthalten als oxidische Komponente mindestens eine der oben angegebenen Perverbindungen und als reduzierende Komponente vorzugsweise Ascorbinsäue, Glukose, Sorbose, Manose, Ammonium- oder Alkalimetallhydrogensulfit, -sulfat, -thiosulfat, -hyposulfit oder -sulfid, Metallsalze, wie Ei- sen-II-ionen oder Silberionen oder Natriumhydroxymethylsulfoxylat. Vorzugsweise wird als reduzierende Komponente des Redoxkatalysators Ascorbinsäure oder Natriumpyrosulfit verwendet. Bezogen auf die bei der Polymerisation eingesetzte Menge an Monomeren wird l lO"5 bis 1 Mol-% der reduzierenden Komponente des Redoxkatalysators und l lO"5 bis 5 Mol-% der oxidierenden Komponente des Redoxkatalysators eingesetzt. Anstelle der oxidierenden Komponente des Redoxkatalysators, oder in Ergänzung zu diesem, können ein oder mehrere, vorzugsweise wasserlösliche, Azoverbindungen verwendet werden.
Wenn man die Polymerisation durch Einwirkung energiereicher Strahlung auslöst, verwendet man üblicherweise als Initiator sogenannte Photoinitiatoren. Hierbei kann es sich beispielsweise um sogenannte α -Spalter, H-abstrahierende Systeme oder auch um Azide handeln. Beispiele für solche Initiatoren sind Benzophenon- Derivate wie Michlers-Keton, Phenanthren-Derivate, Fluoren-Derivate, Anthra- chinon-Derivate, Thioxanton-Derivate, Cumarin-Derivate, Benzoinether und deren Derivate, Azoverbindungen wie die oben genannten Radikalbildner, substituierte Hexaarylbisimidazole oder Acylphosphinoxide. Beispiele für Azide sind: 2- (N,N-Dimethylamino)-ethyl-4-azidocinnamat, 2-(N,N-Dimethylamino)-ethyl-4- azidonaphthylketon, 2-(N,N-Dimethylamino)-ethyl-4-azidobenzoat, 5-Azido-l- naρhthyl-2'-(N,N-dimethylamino)ethylsulfon, N-(4-Sulfonylazidoρhenyl)malein- imid, N-Acetyl-4-sulfonylazidoanilin, 4-Sulfonylazidoanilin, 4-Azidoanilin, 4- Azidophenacylbromid, p-Azidobenzoesäure, 2,6-Bis(p-azidobenzyliden)cyclo- hexanon und 2,6-Bis-(p-azidobenzyliden)-4-methylcyclohexanon. Die Photoinitiatoren werden, falls sie eingesetzt werden, üblicherweise in Mengen von 0,01 bis 5 Gew.-%, bezogen auf die zu polymerisierenden Monomeren angewendet. Bevorzugt wird erfindungsgemäß ein Redoxsystem bestehend aus Wassersoffpe- roxid, Natriumperoxodisulfat und Ascorbinsäure eingesetzt. In der Regel wird die Polymerisation mit den Initiatoren in einem Temperaturbereich von 30 bis 90°C initiiert. Die Polymerisationsreaktion kann durch einen Initiator oder durch mehrere, zusammenwirkende Initiatoren ausgelöst werden. Weiterhin kann die Polymerisation derart durchgeführt werden, dass man zunächst ein oder mehrere Redoxinitia- toren zusetzt. Im weiteren Polymerisationsverlauf werden dann zusätzlich thermische Initiatoren oder Photoinitiatoren appliziert, wobei im Falle von Photoninitiatoren die Polymerisationsreaktion dann durch die Einwirkung energiereicher Strahlung initiiert wird. Auch die umgekehrte Reihenfolge, also die anfängliche Initiierung der Reaktion mittels energiereicher Strahlung und Photoinitiatoren o- der thermischen Initiatoren und eine im weiteren Polymerisationsverlauf erfolgende Initiiemng der Polymerisation mittels eines oder mehrere Redoxinitiatoren ist denkbar.
Um die so erhaltenen Polymere (P) in eine partikuläre Form zu überführen, können diese nach ihrer Abtrennung aus der Reaktionsmischung zunächst bei einer Temperatur in einem Bereich von 20 bis 300°C, bevorzugt in einem Bereich von 50 bis 250°C und besonders bevorzugt in einem Bereich von 100 bis 200°C bis hin zu einem Wassergehalt von weniger als 40 Gew.-%, bevorzugt von weniger als 20 Gew.-% und darüber hinaus bevorzugt von weniger als 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Polymers (P), getrocknet werden. Die Trocknung erfolgt vorzugsweise in dem Fachmann bekannten Öfen oder Trocknern, beispielsweise in Bandtrocknern, Hordentxocknem, Drehrohröfen, Wirbelbetttrocknern, Tellertrocknem, Paddeltrocknem oder Infrarottrocknem. Sollten die so erhaltenen, getrockneten Polymere (P) noch nicht in partikulärer Form vorliegen, so müssen sie nach der Trocknung noch zerkleinert werden. Das Zerkleinem erfolgt dabei vorzugsweise durch Trockenmahlen, vorzugsweise durch Trockenmahlen in einer Hammermühle, einer Stiftmühle, einer Kugelmühle oder einer Walzenmühle. Neben dem vorstehend beschriebenen Verfahren zur Uberfühmng des Polymers (P) in eine partikuläre Form können die Polymere auch im gelförmigen Zustand durch das Verfahren des Nassmahlens mit einer beliebigen, konventionellen Vorrichtung zum Nassmahlen zerkleinert werden.
Die durch die vorstehend beschriebenen Verfahren erhältlichen, partikulären Polymere (P) weisen vorzugsweise mindestens eine, vorzugsweise jede, der nachfolgenden Eigenschaften auf:
(al) die maximale Aufhahme von 0.9 Gew-%er wässriger NaCl-Lösung gemäß ERT 440J-99 liegt in einem Bereich von 10 bis 1000, bevorzugt von 15 bis 500 und besonders bevorzugt von 2.0 von 300 ml/g, (bl) der mit 0.9 Gew-%er wässriger NaCl-Lösung extrahierbare Anteil gemäß ERT 470J-99 beträgt weniger als 30, bevorzugt weniger als 20 und besonders bevorzugt weniger als 10 Gew.%, bezogen auf das Polymer (P), (cl) die Schwellzeit zum Erreichen von 80 % der maximalen Absorption von 0,9 Gew.-%er wässriger NaCl-Lösung gemäß ERT 440J-99 liegt im Bereich von 0,01 bis 180, bevorzugt von 0,01 bis 150 und besonders bevorzugt von 0,01 bis 100 min., (dl) die Schüttdichte gemäss ERT 460.1-99 liegt im Bereich von 300 bis 1000, bevorzugt 310 bis 800 und besonders bevorzugt 320 bis 700 g/1, (el) der pH- Wert gemäss ERT 400J-99 von 1 g des Polymers (P) in 1 1 Wasser liegt im Bereich von 4 bis 10, bevorzugt von 5 bis 9 und besonders bevorzugt von 5,5 bis 7,5, (fl) die Centrifuge Retention Capacity (CRC) gemäß ERT 441 J -99 liegt im Bereich von 10 bis 100, bevorzugt 15 bis 80 und besonders bevorzugt 20 bis 60 g/g, (gl) die Absorption Against Pressure (AAP) bei einem Druck von 21 g/cm2 gemäß ERT 442.1-99 liegt im Bereich von 10 bis 60, bevorzugt 15 bis 50 und besonders bevorzugt 20 bis 40 g/g. Bevorzugte Polymere (P), die als Ausgangsmaterial für die in dem erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen dienen, sind durch folgende Eigenschaften bzw. Eigenschaftskombinationen gekennzeichnet: al, bl, cl, dl, el, fl, gl, albl, alcl, aldl, alel, alfl, algl, alblcl, albldl, alblel, alblfl, alblgl, alcldl, alclel, alclfl, alclgl, aldlel, aldlfl, aldlgl, alelfl, alelgl, alflgl, alblcldlelflgl.
Die in den erfindungsgemäßen Verfahren eingesetzten Superabsorberfeinteilchen sind vorzugsweise dadurch erhältlich, dass die durch die vorstehend beschriebenen Verfahren erhältlichen, getrockneten und gegebenenfalls zerkleinerten, auf dem Polymer (P) basierenden Partikel ausgesiebt werden. Dazu werden diese Partikel auf ein Sieb mit einer Maschenweite von 150 μm gegeben. Auf diese Art und Weise können diejenigen Partikel, die eine Partikelgröße von weniger als 150 μm aufweisen, von den übrigen Partikeln abgetrennt werden. Die auf dieses Art und Weise abgetrennten Polymerpartikel mit einer Partikelgröße von weniger als 150 μm werden in dem erfindungsgemäßen Verfahren als Superabsorberfeinteilchen eingesetzt. Grundsätzlich können jedoch alle Superabsorberfeinteilchen mit einer Partikelgröße von weniger als 150 μm im erfindungsgemäßen Verfahren eingesetzt werden, die bei der Herstellung von Superabsorberpartikel als Feinteilchen anfallen, unabhängig davon, wie die Superabsorberfeinteilchen von den übrigen Superabsorberpartikeln abgetrennt worden sind.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren werden als Superabsorberfeinteilchen Partikel eingesetzt, die einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisen und wobei der Oberflächenbereich eine andere chemische Zusammensetzung als der Innenbereich aufweist oder sich in einer physikalischen Eigenschaft vom Innenbereich unterscheidet. Physikalische Eigenschaften, in denen sich der Innenbereich vom O- berflächenbereich unterscheidet, sind beispielsweise die Ladungsdichte oder der Vernetzungsgrad.
Diese einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisenden Superabsorberfeinteilchen sind vorzugsweise dadurch erhältlich, dass oberflächennahe, reaktive Gmppen der Superabsorberfeinteilchen vor oder nach ihrer Abtrennung von den übrigen Partikeln des partikulären Polymers (P) nachvemetzt werden. Diese Nachvernetzung kann thermisch, photochemisch oder chemisch erfolgen.
Als Nachvemetzer bevorzugt sind die im Zusammenhang mit den Vernetzem (α3) genannten Verbindungen der Vemetzerklasse II und IV.
Unter diesen Verbindungen sind als Nachvemetzer besonders bevorzugt Diethy- lenglykol, Triethylenglykol, Polyethylenglykol, Glyzerin, Polyglyzerin, Propylenglykol, Diethanolamin, Triethanolamin, Polyoxypropylen, Oxyethylen- Oxypropylen-Blockcopolymere, Sorbitanfettsäureester, Polyoxyethylensorbitan- fettsäureester, Trimethylolpropan, Pentaerytrit, Polyvinylalkohol, Sorbitol, 1,3- Dioxolan-2-on (Ethylencarbonat), 4-Methyl-l,3-dioxolan-2-on (Propylencarbo- nat), 4,5-Dimethyl-l,3-dioxolan-2-on, 4,4-Dimethyl-l,3-dioxolan-2-on, 4-Ethyl- l,3-dioxolan-2-on, 4-Hydroxymethyl-l,3-dioxolan-2-on, l,3-Dioxan-2-on, 4- Methyl-l,3-dioxan-2-on, 4,6-Dimethyl-l,3-dioxan-2-on, l,3-Dioxolan-2-on, Poly- l,3-dioxolan-2-on. Besonders bevorzugt wird Ethylencarbonat als Nachvemetzer eingesetzt.
Bevorzugte Ausführangsfomien der Superabsorberfeinteilchen sind diejenigen, die durch Vemetzer der folgenden Vemetzerklassen bzw. durch Vemetzer der folgenden Kombinationen von Vemetzerklassen nachvemetzt sind: II, IV und II IV. Vorzugsweise wird der Nachvemetzer in einer Menge in einem Bereich von 0,01 bis 30 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 0,1 bis 20 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich von 0,3 bis 5 Gew.-%, jeweils bezogen auf das Gewicht der superabsorbierenden Polymere bei der Nachvernetzung eingesetzt.
Es ist ebenfalls bevorzugt, dass die Nachvemetzung dadurch erfolgt, dass ein Fluid Fi umfassend ein Lösemittel, vorzugsweise Wasser, mit Wasser mischbare organische Lösemittel wie etwa Methanol oder Ethanol oder Mischungen aus mindestens zwei davon, sowie den Nachvemetzer mit dem Aussenbereich der Polymerteilchen bei einer Temperatur in einem Bereich von 30 bis 300°C, besonders bevorzugt in einem Bereich von 100 bis 200°C in Kontakt gebracht werden. Das in Kontakt bringen erfolgt dabei vorzugsweise durch Aufsprühen des Fluids F, auf die Polymerteilchen und anschließendes Mischen der mit dem Fluid F, in Kontakt gebrachten Polymerteilchen. Dabei ist der Nachvemetzer in dem Fluid F, vorzugsweise in einer Menge in einem Bereich von 0,01 bis 20 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 0,1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht des Fluids F enthalten. Es ist weiterhin bevorzugt, dass das Fluid Fj in einer Menge in einem Bereich von 0,01 bis 50 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 0,1 bis 30 Gew.-%, jeweils bezogen auf das Gewicht der Polymerteilchen, mit den Polymerteilchen in Kontakt gebracht wird.
Das in den' erfindungsgemäßen Verfahren im Verfahrensschritt (A) eingesetzte Fluid umfasst vorzugsweise ein Lösemittel sowie das vemetzbare, nicht vernetzte Polymer. Als Lösemittel werden vorzugsweise Wasser oder polare, mit Wasser mischbare Lösemittel wie Aceton, Methanol, Ethanol, 2-Propanol oder Mischungen aus mindestens zwei davon eingesetzt. Dabei kann das nicht vernetzte Polymer in dem Lösemittel gelöst oder dispergiert sein. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beinhaltet das Fluid von 18 bis 70 Gew.-% und besonders bevorzugt von 19 bis 55 Gew.-%, jeweils bezogen auf das Fluid, des vernetzbaren, nicht vernetzten Polymers.
Das vemetzbare, nicht vernetzte Polymer basiert vorzugsweise auf (ßl) 20 bis 100 Gew.-%, bevorzugt 50 bis 98,99 Gew.-% und besonders bevorzugt 90 bis 98,95 Gew.-% polymerisierten, ethylenisch ungesättigten, säuregruppenhaltigen Monomeren oder deren Salzen,
(ß2) 0 bis 70 Gew.-%, bevorzugt 1 bis 60 Gew.-% und besonders bevorzugt 1 bis 40 Gew.-% polymerisierten, ethylenisch ungesättigten, mit (αl) copolymeri- sierbaren Monomeren, sowie
(ß3) 0 bis 10 Gew.-%, bevorzugt 0,01 bis 7 Gew.-% und besonders bevorzugt 0,05 bis 5 Gew.-% des Monomers, das mit polymerisierten säuregruppentragenden Monomeren, vorzugsweise mit polymerisierten säuregruppenhaltigen Monomeren im Oberflächenbereich der Superabsorberfeinteilchen o- der mit anderen polymerisierten säuregruppenhaltigen Monomeren (M) im vernetzbaren, nichtvernetzten Polymer in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffnungsreaktion, vorzugsweise bei einem Energieeintrag, reagieren kann, wobei die Summe der Komponenten (ßl) bis (ß3) 100 Gew.-% beträgt.
Als Kondensationsreaktionen kommen vorzugsweise die Bildung von Ester-, A- mid-, Imid- oder Urethanbindungen in Betracht, wobei die Bildung von Esterbindung bevorzugt ist. Diese Esterbindungen werden vorzugsweise durch die Reaktion einer OH-Gruppe des vemetzbaren, nicht vernetzten Polymers mit einer Säuregruppe des Superabsorberfeinteilchens oder mit einer Säuregruppe des vemetzbaren, nichtvernetzten Polymers gebildet. Die säuregruppenhaltigen Monomere (ßl) sind vorzugsweise zu mindestens 10 Mol-%, besonders bevorzugt zu mindestens 20 Mol-%, darüber hinaus bevorzugt zu mindestens 40 Mol-% und weiterhin bevorzugt im Bereich von 45 bis 55 Mol- % neutralisiert. Die Neutralisation der Monomere kann vor, während oder erst nach der Herstellung des vernetzbaren, nichtvernetzten Polymers erfolgen. Die Neutralisierang erfolgt dabei vorzugsweise mit denjenigen Basen, die bereits im Zusammenhang mit der Neutralisation der säuregruppentragenden Monomere (αl) genannt wurden. Neben den dort genannten Basen werden- zur Neutralisation der nicht vernetzten Polymere vorzugsweise auch Basen eingesetzt, die Ammonium, Calcium oder Magnesium als Kationen enthalten. In diesem Zusammenhang bevorzugte Basen sind Ammoniumcarbonat, Ammoniak, Calciumcarbonat, Calci- umhydroxid, Magnesiumhydroxid und Magnesiumcarbonat.
Als Monomere (ßl) und (ß2) werden vorzugsweise diejenigen Monomere eingesetzt, die auch als bevorzugte Monomere (αl) bzw. (α2) eingesetzt werden.
Grundsätzlich kommen als Monomere (M) bzw (ß3) alle dem Fachmann geeigneten Monomere, insbesondere die der Vemetzerklasse III, in betracht. Bevorzugte Monomere (ß3) sind die Umsetzungsprodukte von gesättigten aliphatischen, cyc- loalphatischen, aromatischen Alkohlen, Aminen oder Thiolen mit ethylenisch ungesättigten Carbonsäuren, reaktiven Carbonsäurederivaten oder Allylhalogeniden. Als Beispiele seien in diesem Zusammenhang genannt: (Meth)allylalkohol, (Meth)allylamin, hydroxyl- oder aminogruppenhaltige Ester der (Meth)acrylsäure, wie Hydroxyalkylacrylate, insbesondere Hydroxymethyl(meth)acrylat, 2- Hydroxyethyl(meth)acrylat oder 2-Hydroxypropyl(meth)acrylat, Aminomal- kyl(meth)acrylate, insbesondere Aminomethyl(meth)acrylat, 2-Aminoethyl- (meth)acrylat oder 2-Aminopropyl(meth)acrylat, Mono(meth)allylverbindungen von Polyolen, vorzugsweise von Diolen wie beispielsweise Polyethylenglykole oder Polypropylenglykole, sowie Glycidylalkyl(meth)acrylate wie Glyci- dyl(meth)acrylat.
Besonders bevorzugte vemetzbare, nicht vernetzte Polymere, die in den erfindungsgemäßen Verfahren eingesetzt werden, sind diejenigen Polymere, die auf 1 bis 80 Gew.-%, besonders bevorzugt auf 1 bis 60 Gew.-% und darüber hinaus bevorzugt auf 1 bis 20 Gew.-% (Meth)acrylamid und 20 bis 99 Gew.-%, besonders bevorzugt auf 40 bis 99 Gew.-% und darüber hinaus bevorzugt auf 80 bis 99 Gew.-%, jeweils bezogen auf das Gesamtgewicht des nicht vernetzten Polymers, auf (Meth)acrylsäure basieren, wobei die (Meth)acrylsäure vorzugsweise zu mindestens 10 Mol-%, besonders bevorzugt zu mindestens 20 Mol-% und darüber hinaus bevorzugt zu mindestens 50 Mol-% neutralisiert ist.
Es ist weiterhin bevorzugt, dass das in dem erfindungsgemäßen Verfahren eingesetzte Fluid neben dem Lösemittel und dem vernetzbaren, nicht vernetzten Polymer einen weiteren, externen Vemetzer umfasst. Dies gilt insbesondere dann, wenn die vernetzbaren, nicht vernetzten Polymere keine Monomere (M) bzw. (ß3) beinhalten. Als weiterer externe Vemetzer sind dabei diejenigen der Vemetzerklassen II und IV bevorzugt, die bereits im Zusammenhang mit den Vemetzem (α3) genannt wurden. Besonders bevorzugte weitere Vemetzer sind diejenigen, die als besonders bevorzugte Vemetzer der Klassen II und IV im Zusammenhang mit den Monomeren (α3) genannt wurden. Es ist in diesem Zusammenhang weiterhin bevorzugt, dass das Fluid den weiteren externen Vemetzer in einer Menge in einem Bereich von 0,01 bis 30 Gew.-%, bevorzugt in einem Bereich von 0,1 bis 15 Gew.-% und besonders bevorzugt in einem Bereich von 0,2 bis 7 Gew.-%, bezogen auf das Gewicht des nicht vernetzten Polymers, enthält.
Es ist in dem erfindungsgemäßen Verfahren weiterhin bevorzugt, dass das vernetzbare, nicht vernetzte Polymer ein durch Gelpermeabilitätschromatographie bestimmtes Gewichtsmittel des Molekulargewicht von mehr als 8.000 g mol, bevorzugt ein Gewichtsmittel des Molekulargewichtes in einem Bereich von 10.000 bis 1.000.000 g/mol, besonders bevorzugt in einen Bereich von 50.000 bis 750.000 g/mol und darüber hinaus bevorzugt in einem Bereich von 90.000 bis 700.000 g/mol, aufweist.
Es ist außerdem bevorzugt, dass das in den erfindungsgemäßen Verfahren im Verfahrensschritt (A) eingesetzte Fluid eine gemäß ASTM 1824/90 bei 20°C bestimmte Viskosität in einem Bereich von 50 bis 50000 mPa-s, besonders bevorzugt in einem Bereich von 100 bis 20000 mPa-s und darüber hinaus bevorzugt in einem Bereich von 200 bis 10000 mPa-s aufweist.
Die Herstellung des in den erfindungsgemäßen Verfahren eingesetzten vemetzbaren, nicht vernetzten Polymers erfolgt vorzugsweise durch diejenigen Verfahren, die bereits im Zusammenhang mit der Herstellung der als Ausgangsmaterial für die Superabsorberfeinteilchen dienenden Polymere (P) genannt wurden. Die durch diese Verfahren erhältlichen Fluide enthaltend das vemetzbare, nicht vernetzte Polymer werden, bevor sie im erfindungsgemäßen Verfahren eingesetzt werden, gegebenenfalls durch die Zugabe von Lösemittel verdünnt, wobei die Menge an vernetzbarem, nicht vernetzten Polymer im Fluid einen Wert von 80 Gew.-%, bevorzugt von 60 Gew.-% und besonders bevorzugt von 40 Gew.-%, bezogen auf das Gesamtgewicht des Fluids, nicht übersteigen sollte.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens umfasst das Fluid neben dem Lösemittel, dem vemetzbaren, nicht vernetzten Polymer und gegebenenfalls dem weiteren Vemetzer weitere Additive. Diese Additive können auch in das vemetzbare, nicht vernetzte Polymer einpolymerisiert sein. Bevorzugte Additive sind Substanzen, welche die Brüchigkeit der durch das erfindungsgemäße Verfahren hergestellten Superabsorberpartikel reduzieren, wie etwa Polyethylenglykol, Polypropylenglykol, gemischte Polyalkoxylate, auf Po- lyolen wie Glycerin, Trimethylolpropan oder Butandiol basierende Polyalkoxylate, Tenside mit einem HLB von mehr als 10 wie Alkylpolyglucoside oder ethoxy- lierte Zuckerester, beispielsweise Polysorbate unter dem Handeslnamen Tween von ICI. Diese Additive wirken teilweise zugleich auch als weitere Vemetzer, wie zum Beispiel Polyethylenglykol, Polypropylenglykol, Trimethylolpropan oder Butandiol.
Weiterhin als Additive bevorzugt sind Mittel, welche die Härte der durch das erfindungsgemäße Verfahren hergestellten Superabsorberpartikel reduzieren, wie etwa kationische Tenside wie Alkyltrimethylammoniumchlorid, Dialkyldimethy- lammoniumchlorid, Dimethylstearylammoniumchlorid, Alkylbenzyldimethylam- moniumchlorid oder die entsprechenden Methylsulfate, Quatemäre Tallölfettsäu- re-Imidazoliniummethosulfate. Diese Additive werden vorzugsweise in Mengen in einem Bereich von 0 bis 5 Gew. %, besonders bevorzugt in einem Bereich von 0,5 bis 4 Gew.-%, bezogen auf das Gewicht des nicht vernetzten Polymers, eingesetzt. Die Additive können dabei entweder vor oder nach der Polymerisation zugesetzt werden. Sie binden die Polycarboxylate durch Anionen-Kationen- Wechselwirkung und bewirken somit den Erweichungseffekt. Sie bewirken gleichzeitig eine Verbesserang der Absorptionsfähigkeit für wässrige Flüssigkeiten. Eine anderer Vorteil der Substanzen ist ihre biozide Wirkung, die einen ungewollten Abbau der Quellungsmittel verhindern. Diese Eigenschaft ist für manche Anwendungen besonders wichtig.
Als Additive sind des weiteren Trennmittel bevorzugt, wie etwa anorganische o- der organische pulverformige Trennmittel. Diese Trennmittel werden vorzugsweise in Mengen in einem Bereich von 0 bis 2 Gew.-%, besonders bevorzugt in ei- nem Bereich von 0,1 bis 1,5 Gew.-%, bezogen auf das Gewicht des vernetzten Polymers, eingesetzt. Bevorzugte Trennmittel sind Holzmehl, Pulp Fasern, pulverformige Rinde, Cellulosepulver, minaralische Füllstoffe wie Perlit, synthetische Füllstoffe wie Nylonpulver, Rayonpulver, Diatomerde, Bentonit, Kaolin, Zeolithe, Talk, Lehm, Asche, Kohlenstaub, Magnesiumsilikate, Dünger oder Mischungen der Substanzen. Hochdisperse pyrogene Kieselsäure wie sie unter dem Handelsnamen Aerosil von Degussa vertrieben wird ist bevorzugt.
In einer bevorzugten Ausfuhrungsform des erfindungsgemäßen Verfahrens erfolgt das in Kontakt bringen der Superabsorberfeinteilchen mit dem Fluid enthaltend das nicht vernetzte Polymer in Gegenwart eines auf einem Polyzucker oder einer Silizium-Sauerstoff beinhaltenden Verbindung oder einer Mischung von mindestens zwei davon basierenden Effektstoffes. Dabei kann der Effektstoff im Fluid enthalten sein oder aber vor dem in Kontakt bringen der Superabsorberfeinteilchen mit dem Fluid mit den Superabsorberfeinteilchen vermischt werden. Es ist auch möglich, dass der Effektstoff in einem weiteren Fluid F' gelöst oder disper- giert wird und in Form dieser Lösung oder Dispersion zusammen mit dem Fluid mit den Superabsorberfeinteilchen in Kontakt gebracht wird. Dabei umfasst das Fluid F' neben dem Effektstoff vorzugsweise eine Flüssigkeit, wobei als Flüssigkeit Wasser sowie organische Lösemittel wie etwa Methanol oder Ethanol, oder aber Mischungen aus mindestens zwei davon, besonders bevorzugt sind, wobei Wasser als Flüssigkeit besonders bevorzugt ist.
Als Polyzucker kommen erfindungsgemäß alle dem Fachmann geläufigen Stärken und deren Derivate sowie Cellulosen und deren Derivate sowie Cyclodextrine in Betracht, wobei als Cyclodextrine vorzugsweise α-Cyclodextrin, ß-Cyclodextrin, γ-Cyclodextrin oder Mischungen aus diesen Cyclodextrinen eingesetzt werden. Als Silizium-Sauerstoff beinhaltende Verbindungen sind Zeolithe bevorzugt. Als Zeolithe können alle dem Fachmann bekannten synthetischen oder natürliche Zeolithe eingesetzt werden. Bevorzugte natürliche Zeolithe sind Zeolithe aus der Natrolith-Gruppe Harmoton-Grappe, der Mordenit-Grappe, der Chabasit-Gruppe, der Faujasit-Gruppe (Sodalith-Gruppe) oder der Analcit-Gruppe. Beispiele für natürliche Zeolithe sind Analcim, Leucit, Pollucite, Wairakite, Bellbergite, Bikitaite, Boggsite, Brewsterite, Chabazit, Willhendersonite, Cowlesite, Dachiardite, Eding- tonit, Epistilbit, Erionit, Faujasit, Ferrierite, Amicite, Garronite, Gismondine, Gobbinsite, Gmelinit, Gonnardite, Goosecreekit, Harmotom, Phillipsit, Wellsite, Clinoptilolit, Heulandit, Laumontit, Levyne, Mazzite, Merlinoite, Montesommai- te, Mordenit, Mesolit, Natrolit, Scolecit, Offretite, Paranatrolite, Paulingite, Per- lialite, Barrerite, Stilbit, Stellerit, Thomsonit, Tschemichite oder Yugawaralite. Bevorzugte synthetische Zeolithe sind Zeolith A, Zeolith X, Zeolith Y, Zeolith P oder das Produkt ABSCENTS.
Als Kationen enthalten die in dem erfindungsgemäßen Verfahren eingesetzten Zeolithe vorzugsweise Alkalimetall-Kationen wie Li+, Na+, K+, Rb+, Cs+ oder Fr+ η ι 0-1- 0-1- 0 1 und/oder Erdalkalimetall-Kationen wie Mg , Ca , Sr oder Ba .
Als Zeolithe können Zeolithe des sogenannten „mittleren" Typs eingesetzt werden, bei denen das SiO2/AlO2- Verhältnis kleiner als 10 ist, besonders bevorzugt liegt das SiO2/AlO2- Verhältnis dieser Zeolithe in einem Bereich von 2 bis 10. Neben diesen „mittleren" Zeolithen können weiterhin Zeolithe des „hohen" Typs eingesetzt werden, zu denen beispielsweise die bekannten „Molekularsieb"- Zeolithe des Typs ZSM sowie beta-Zeolith gehören. Diese „hohen" Zeolithe sind vorzugsweise durch ein SiO2/AlO2- Verhältnis von mindestens 35, besonders bevorzugt von einem SiO2/AlO2- Verhältnis in einem Bereich von 200 bis 500 gekennzeichnet. Vorzugsweise werden die Zeolithe als Partikel mit einer mittleren Partikelgröße in einem Bereich von 1 bis 500 μm, besonders bevorzugt in einem Bereich von 2 bis 200 μm und darüber hinaus bevorzugt in einem Bereich von 5 bis 100 μm eingesetzt.
Die Effektstoffe werden in den erfindungsgemäßen Verfahren vorzugsweise in einer Menge in einem Bereich von 0J bis 50 Gew.-%, besonders bevorzugt in einem Bereich von 1 bis 40 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich von 5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht der Superabsorberfeinteilchen, eingesetzt.
Neben den in dem erfindungsgemäßen Verfahren eingesetzten Effektstoffen können Deodorantien, Gerachsbinder oder Gerachsabsorber oder mindestens zwei davon eingesetzt werden. Es ist bevorzugt, dass diese bis maximal in der dreifachen Menge des Effektstoffs eingesetzt werden.
Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiss, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend sind Deodorantien Wirkstoffe, wie keimhemmende Mittel, Enzyminhibitoren, Gerachsabsorber oder Gerachsüberdecker sowie An- titranspirantien.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe bevorzugt, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'- hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'- Methylen- bis(6-brom-4-chlorphenol), 3-Methyl-4-(l -methylethyl)phenol, 2-Benzyl-4- chlorphenol, 3 -(4- Chlorphenoxy)-l,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbonilid (TTC), antibakterielle Riechstoffe, Thy- mol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäu- re-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropyl- citrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen TM CAT, Cognis GmbH, Düsseldorf/Deutschland). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Gerachsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitoste- rinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glu- tarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adi- pinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäure- diethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronen- säure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat. Als Gerachsabsorber eignen sich Stoffe, die gerachsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdrack der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, dass dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederi- vate. Als Gerachsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Gerachsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürli- chen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fmchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbin- dungen vom Typ der Ester sind z. B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohe- xylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cycla- menaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone und Methyl cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätter- öl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labda- numöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, alpha -Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, beta-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Ever- nyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt. Antitranspirantien reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Als adstringierende Antitranspirant- Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten anti- hydrotisch wirksamen Wirkstoffe sind z. B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium- Zirkonium-Trichlorohydrat, Aluminium- Zirkonium-Tetrachlorohydrat, Aluminium-Zirkonium-Pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin.
Vorzugsweise wird in den erfindungsgemäßen Verfahren das Fluid in einer Menge in einem Bereich von 0,1 bis 500 Gew.-%, besonders bevorzugt in einem Bereich von 0,5 bis 300 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich 1 bis 200 Gew.-%, bezogen auf das Gewicht der Superabsorberfeinteilchen, mit den Superabsorberfeinteilchen in Kontakt gebracht.
Das in Kontakt bringen des Fluids mit den Superabsorberfeinteilchen erfolgt vorzugsweise durch Mischen des Fluids mit den Superabsorberfeinteilchen oder durch Besprühen der Superabsorberfeinteilchen mit dem Fluid. Das in Kontakt bringen kann ebenso in einer Wirbelschicht erfolgen.
Zum Mischen bzw. Besprühen sind alle Vorrichtungen geeignet, die eine homogene Verteilung des Fluids auf oder mit den Superabsorberfeinteilchen erlauben. Beispiele sind Lödige Mischer (hergestellt durch die Firma Gebrüder Lödige Maschinenbau GmbH), Gerickc Multi-Flux Mischer (hergestellt durch die Firma Ge- ricke GmbH), DRAIS-Mischer (hergestellt durch die Firma DRAIS GmbH Spezi- almaschinenfabrik Mannheim), Hosokawa Mischer (Hosok wa Mob~on Co., Ltd.), Ruberg Mischer (hergestellt durch die Firma Gebr. Ruberg GmbH & CO.KG Nieheim), Hüttlin Coater (hergestellt durch die Firma BWI Hüttlin GmbH Steinen), Fließbetttrockner oder Sprühgranulatoren von AMMAG (hergestellt durch die Firma AMMAG Gunskirchen, Österreich) oder Heinen (hergestellt durch die Firma A. Heinen AG Anlagenbau Varel), Patterson-Kelly-Mischer, NARA- Schaufelmischer, Schneckenmischer, Tellermischer, Wirbelschichttrockner, Schugi-Mischer oder PROCESSALL.
Für das in Kontakt bringen in einer Wirbelschicht können alle dem Fachmann bekannten und geeignet erscheinenden Wirbelschichtverfahren angewandt werden. Beispielsweise kann ein Wirbelschichtcoater eingesetzt werden.
Im zweiten Schritt (B) der erfindungsgemäßen Verfahren erfolgt das Vernetzen des nicht vernetzten Polymers durch Erhitzen der mit dem Fluid in Kontakt gebrachten Superabsorberfeinteilchen, wobei in einer bevorzugten Ausführangsform der erfindungsgemäßen Verfahren das Erhitzen während des in Kontakt bringens der Superabsorberfeinteilchen mit dem Fluid erfolgt.
Das Erhitzen erfolgt dabei vorzugsweise in dem Fachmann bekannten Öfen oder Trocknern. Vorzugsweise werden die mit dem Fluid in Kontakt gebrachten Superabsorberfeinteilchen für 1 bis 120 Minuten, besonders bevorzugt für 2 bis 90 Minuten und darüber hinaus bevorzugt für 3 und 60 Minuten erhitzt. Durch das Erhitzen wird das nicht vernetzte Polymer vernetzt, wobei die Vernetzung vorzugsweise durch Kondensationsreaktion, Additionsreaktion oder Ringöffnungsre- aktion zwischen den funktionellen Gruppen der Monomere (M) des vemetzbaren, nicht vernetzten Polymers und den funktionellen Gmppen, vorzugsweise den Car- boxylatgrappen, im Oberflächenbereich der Superabsorberfeinteilchen bzw. den anderen funktionellen Gruppen, vorzugsweise den Carboxylatgruppen, des vernetzbaren, nicht vernetzten Polymers oder durch Kondensationsreaktion, Additionsreaktion oder Ringöffnungsreaktion zwischen den funktionellen Gmppen, vor- zugsweise den Carboxylatgruppen, des nicht vernetzten Polymers und den funktionellen Gruppen, vorzugsweise den Carboxylatgruppen, im Oberflächenbereich der Superabsorberfeinteilchen und dem weiteren Vemetzer erfolgt.
In einer weiteren Ausführangsform der erfindungsgemäßen Verfahren werden die durch das vorstehend beschriebene Verfahren erhaltenen Superabsorberpartikel, vorzugsweise ein Teil der durch das vorstehend beschriebene Verfahren erhältlichen Superabsorberpartikel, besonders bevorzugt diejenigen Superabsorberpartikel, die eine Partikelgröße von mehr als 850 μm aufweisen, noch zerkleinert, wobei das Zerkleinem vorzugsweise durch Mahlen erfolgt.
In einem weiteren Schritt (C), der vorzugsweise unmittelbar auf den Schritt (B) folgt, kann während oder nach Schritt (B) ein Nachvemetzer zugegeben werden. Im Zusammenhang mit der Zugabe dieses Nachvemetzers wird auf die vorstehenden Ausführungen zur Nach- bzw. Oberflächenvernetzung verwiesen.
Die vorliegende Erfindung betrifft weiterhin die durch die vorstehend beschriebenen, erfindungsgemäßen Verfahren erhältlichen Superabsorberpartikel.
Femer betrifft die Erfindung Superabsorberpartikel beinhaltend zu mehr als 75 Gew.-%, bevorzugt zu mehr als 85 Gew.-%, besonders bevorzugt zu mehr als 90,5 Gew.-%, darüber hinaus bevorzugt zu mehr als 92 Gew.-% und darüber hin- .aus besonders bevorzugt zu mehr als 95 Gew.-% Superabsorberfeinteilchen, wobei
(AI) die Superabsorberfeinteilchen zu mindestens 40 Gew.-%, bevorzugt zu mindestens 70 Gew.-%, besonders bevorzugt zu mindestens 90 Gew.-% und darüber hinaus bevorzugt zu 100 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Superabsorberfeinteilchen, eine Partikelgröße von weniger als 150 μm, bestimmt gemäß ERT 420J-99, aufweisen und die mindestens teilweise an eine Matrix aus einem vernetzten Polymer angrenzen, wobei vorzugsweise mindestens 0,1 Gew.-%, weiterhin bevorzugt mindestens 1 und darüber hinaus bevorzugt mindestens 4 Gew.-%, jeweils bezogen auf die Superabsorberpartikel, vemetztes Polymer die Matrix bilden,
(A2) das vernetzte Polymer zu mindestens 20 Gew.-%, bevorzugt zu mindestens 50 Gew.-%, besonders bevorzugt zu mindestens 80 Gew.-% und femer bevorzugt mindestens 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des vernetzten Polymers, auf polymerisierten säuregruppentragenden Monomeren oder deren Salzen basiert,
(A3) das vernetzte Polymer eine andere chemische Zusammensetzung aufweist als die Superabsorberfeinteilchen oder sich in einer physikalischen Eigenschaft von den Superabsorberfeinteilchen unterscheidet, und
(A4) die Superabsorberpartikel nach einmaliger Durchführung des hierin beschriebenen Stabilitätstestes einen Anteil an Partikel mit einer Partikelgröße von weniger als 150 μm, bestimmt gemäß ERT 420J-99, von weniger 50 Gew.-%, bevorzugt weniger als 30 Gew.-%, besonders bevorzugt weniger als 25 Gew.-%, darüber hinaus bevorzugt weniger als 20 Gew.-%, darüber hinaus noch mehr bevorzugt weniger als 15 Gew.-% und am meisten bevorzugten von weniger als 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Superabsorberpartikel, aufweisen.
Die Erfindung betrifft auch Superabsorberpartikel umfassend Superabsorberfeinteilchen, die zu mindestens 40 Gew.-%, bevorzugt zu mindestens 70 Gew.-%, besonders bevorzugt zu mindestens 90 Gew.-% und darüber hinaus bevorzugt zu 100 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Superabsorberfeinteilchen, eine Partikelgröße von weniger als 150 μm, bestimmt gemäß ERT 420J-99, aufweisen und die mindestens teilweise an eine Matrix aus einem vernetzten Polymer angrenzen, wobei (Bl) das vernetzte Polymer zu mindestens 20 Gew.-%, bevorzugt zu mindestens 50 Gew.-% besonders bevorzugt zu mindestens 80 Gew.-% und femer bevorzugt mindestens 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des vernetzten Polymers, auf ethylenischen, säuregruppentragenden Monomeren oder deren Salzen basiert,
(B2) das vernetzte Polymer eine andere chemische Zusammensetzung aufweist als die Superabsorberfeinteilchen oder sich in einer physikalischen Eigenschaft von den Superabsorberfeinteilchen unterscheidet, und
(B3) die Matrix neben dem vernetzten Polymer einen Effektstoff, basierend auf einem Polyzucker oder einer Silizium-Sauerstoff beinhaltenden Verbindung, umfasst.
Die Effektstoffe sind vorzugsweise in einer Menge in einem Bereich von 0,1 bis 50 Gew.-%, besonders bevorzugt in einem Bereich von 1 bis 40 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich von 5 bis 30 Gew.-%, jeweils bezogen auf das Gesamtgewicht aus Superabsorberfeinteilchen und vernetzten! Polymer, enthalten.
Als Superabsorberfeinteilchen, die in den beiden vorstehend beschriebenen Superabsorberpartikeln enthalten sind, sind dabei diejenigen bevorzugt, die bereits im Zusammenhang mit den vorstehend beschriebenen Verfahren zur Herstellung von Superabsorberpartikeln beschrieben wurden. Die vernetzten Polymere sind vorzugsweise diejenigen Polymere, die durch Vernetzung der im Zusammenhang mit dem erfindungsgemäßen Verfahren beschriebenen vemetzbaren, nicht vernetzten Polymere in Gegenwart von Superabsorberfeinteilchen erhalten werden könne. Die Effektstoffe, die in den zuletzt genannten, erfindungsgemäßen Superabsorberpartikeln enthalten sind, entsprechen vorzugsweise denjenigen Effektstoffen, die bereits im Zusammenhang mit den erfindungsgemäßen Verfahren zur Herstellung von Superabsorberpartikeln beschrieben wurden, wobei als Effektstoffe besonders bevorzugt Zeolithe enthalten sind. Weiterhin hat die Matrix die Funktion, die einzelnen Superabsorberfeinteilchen sowie die ggf. vorhandenen Effektstoffe fest mit einander zu verbinden bzw. zu agglomerieren.
Bevorzugte physikalische Eigenschaften, in denen sich das vernetzte Polymer und die Superabsorberfeinteilchen unterscheiden, sind die Ladungsdichte, der Vernetzungsgrad oder unterschiedliche Reflektion oder Absorption elektromagnetischer Wellen. Zur Bestimmung dieser unterschiedlichen Eigenschaften können beispielsweise Mikroskop- oder Kernresonanzuntersuchungen eingesetzt werden.
Es ist weiterhin bevorzugt, dass das vernetzte Polymer in einer Menge in einem Bereich von 1 bis 50 Gew.-%, besonders bevorzugt in einer Menge in einem Bereich von 3 bis 30 Gew.-% und darüber hinaus bevorzugt in einer Menge in einem Bereich von 5 bis 20 Gew.-%, bezogen auf das Gesamtgewicht aus vemetztem Polymer und Superabsorberfeinteilchen, enthalten ist.
Es ist außerdem bevorzugt, dass die vorstehend beschriebenen erfindungsgemäßen Superabsorberpartikel umfassend die Superabsorberfeinteilchen einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisen und wobei der Oberflächenbereich eine andere chemische Zusammensetzung als der Innenbereich aufweist oder sich in einer physikalischen Eigenschaft vom Innenbereich unterscheidet. Physikalische Eigenschaften, in denen sich der Innenbereich vom Oberflächenbereich unterscheidet, sind beispielsweise die Ladungsdichte oder der Vernetzungsgrad.
Diese einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisenden erfindungsgemäßen Superabsorberpartikel sind vorzugsweise dadurch erhältlich, dass oberflächennahe, reaktive Gmppen der Superabsorberpartikel nach dem Verfahrensschritt (B) nachvemetzt werden. Das genaue Verfahren der Nachvemetzung und die dazu vorzugsweise verwendeten Nachvemetzer entsprechen dabei vorzugsweise demjenigen Verfahren bzw. denjenigen Nachver- netzem, die bereits im Zusammenhang mit der Nachvemetzung des Polymers (P) bzw. der Superabsorberfeinteilchen beschrieben wurden.
In einer bevorzugten Ausführangsform der vorstehend beschriebenen Superabsorberpartikel weisen diese mindestens eine, vorzugsweise jede, der folgenden Eigenschaften auf: al) eine Partikelgrößenverteilung, bei der mindestens 80 Gew.-%, vorzugsweise mindestens 90 Gew.-% und darüber hinaus bevorzugt mindestens 95 Gew.- % der Partikel eine Partikelgröße in einem Bereich von 20 μm bis 5 mm, vorzugsweise im Bereich von 150 μm bis 1 mm und besonders bevorzugt im Bereich von 200 μm bis 900μm nach ERT 420.1-99 besitzen; a2) eine Centrifuge Retention Capacity (CRC) von mindestens 5 g/g, vorzugsweise mindestens 10 g/g und besonders bevorzugt in einem Bereich von 20 bis 100 g/g nach ERT 441.1-99; a3) eine Absorbency Against Pressure (AAP) bei 0,7 psi von mindestens 5 g/g, vorzugsweise mindestens 7 g/g und besonders bevorzugt in einem Bereich von 15 bis 100 g/g nach ERT 442-1.99; a4) einen Gehalt an wasserlöslichem Polymer nach 16 Stunden Extraktion von weniger als 25 Gew.-%, vorzugsweise weniger als 20 Gew.-% und besonders bevorzugt weniger als 18 Gew.-%, bezogen auf das Gesamtgewicht der Superabsorberpartikel, nach ERT 470.1-99.
Jeder der aus den Merkmalen al bis a4 ergebenden Merkmalskombinationen stellen eine erfindungsgemäße bevorzugte Ausführangsform dar, wobei die nachstehenden Merkmale oder Merkmalskombinationen besonders bevorzugte Ausfüh- rangsformen darstellen: a4, ala2, ala2a3, ala2a3a4, ala3, ala4, ala3a4, ala2a4, a2a3, a2a3a4, a2a4 sowie a3a4, wobei a4 und alle der vorstehenden Kombinationen mit a4 besonders bevorzugt sind. Es ist weiterhin bevorzugt, dass die vorstehend beschriebenen erfindungsgemäßen Superabsorberpartikel die gleichen Eigenschaften aufweisen wie die durch die erfindungsgemäßen Verfahren erhältlichen Superabsorberpartikel. Es ist auch erfindungsgemäß bevorzugt, dass diejenigen Werte, die im Zusammenhang mit den erfindungsgemäßen Verfahren und den erfindungsgemäßen Superabsorberpartikeln als Untergrenzen von erfindungsgemäßen Merkmalen ohne Obergrenzen angegeben wurden, das 20-fache, vorzugsweise das 10-fache und besonders bevorzugt das 5-fache des am meisten bevorzugten Wertes der Untergrenze besitzen.
Die vorliegende Erfindung betrifft weiterhin einen Verbund, beinhaltend die erfindungsgemäßen Superabsorberpartikel und ein Substrat. Es ist dabei bevorzugt, dass die erfindungsgemäßen Superabsorberpartikel und das Substrat miteinander fest verbunden sind. Als Substrate sind Folien aus Polymeren, wie beispielsweise aus Polyethylen, Polypropylen oder Polyamid, Metalle, Vliese, Fluff, Tissues, Gewebe, natürliche oder synthetische Fasern, oder andere. Schäume bevorzugt.
Die Erfindung betrifft weiterhin Verfahren zur Herstellung eines Verbundes, wobei die erfindungsgemäßen Superabsorberpartikel und ein Substrat und gegebenenfalls ein Zusatzstoff miteinander in Kontakt gebracht werden. Als Substrate werden vorzugsweise diejenigen Substrate eingesetzt, die bereits vorstehend im Zusammenhang mit dem erfindungsgemäßen Verbund genannt wurden.
Die Erfindung betrifft auch einen Verbund erhältlich nach dem vorstehend beschriebenen Verfahren.
Die Erfindung betrifft auch chemische Produkte beinhaltend die erfindungsgemäßen Superabsorberpartikel oder einen erfindungsgemäßen Verbund. Bevorzugte chemische Produkte sind insbesondere Schäume, Formkörper, Fasern, Folien, Filme, Kabel, Dichtungsmaterialien, flüssigkeitsaufhehmenden Hygieneartikel, Träger für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffe, Zusätze für Baustoffe, Verpackungsmaterialien oder Bodenzusätze.
Die Erfindung betrifft weiterhin die Verwendung der erfindungsgemäßen Superabsorberpartikel oder des erfindungsgemäßen Verbundes in chemischen Produkten, vorzugsweise in den vorstehend genannten chemischen Produkten, sowie die Verwendung der erfindungsgemäßen Superabsorberpartikel als Träger für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffe. Bei der Verwendung als Träger für pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffe ist es bevorzugt, dass die pflanzen- oder pilzwachstumsregulierende Mittel oder Pflanzenschutzwirkstoffe über einen durch den Träger kontrollierten Zeitraum abgegeben werden können.
Weiterhin betrifft die vorliegende Erfindung die Verwendung eines Fluids beinhaltend ein vemetzbares, nicht vemetztes Polymer, welches zu mindestens 20 Gew.- %, bevorzugt zu mindestens 30 Gew.-% und besonders bevorzugt zu mindestens 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht des vemetzbaren, nicht vernetzten Polymers, auf ethylenischen, säuregruppentragenden Monomeren oder deren Salzen basiert, und welches neben den polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren weitere polymerisierte, ethylenisch ungesättigte Monomere (M) umfasst, die mit polymerisierten säuregruppentragenden Monomeren in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren können, und gegebenenfalls einen Vemetzer, zur Einstellung mindestens einer der folgenden Eigenschaften: Bl) Abrieb festigkeit von Superabsorberpartikeln, die Superabsorberfeinteilchen umfassen, B2) mittlere Partikelgröße von Superabsorberpartikeln, die Superabsorberfeinteilchen umfassen, oder zur Agglomeration von Superabsorberfeinteilchen und Effektstoffen.
Weiterhin betrifft die Erfindung die Verwendung der erfindungsgemäßen Superabsorberpartikel in Hygieneprodukten, zur Hochwasserbekämpfung, zur Isolierung gegen Wasser, zur Regulierung des Wasserhaushalts von Böden oder zur Behandlung von Lebensmitteln.
TESTMETHODEN
Sofern nicht nachfolgend anders angegeben, werden die hierin erfolgten Messungen nach ERT- Verfahren. „ERT" steht für EDANA Recommended Test und „EDANA" für European Disposable andNonwoven Association.
STABILITÄTSTEST
127 g eines Mahlmittels (24 zylindrische Porzellanstücke, U.S. Stoneware 1/2 " O.D.J/2 ") sowie 10 g der superabsorbierenden Polymerpartikel mit einer Korngröße von 150 bis 850 μm wurden in einen Kugelmühlentopf eingewogen. Der Kugelmühlentopf wurde verschlossen und für 6 Minuten auf einer Walzenmühle bei 95 Upm rotiert. Der mechanisch belastete Superabsorber wurde dem Topf entnommen und hinsichtlich der Kornverteilung mittels eines 100-mesh-Siebes analysiert. Durch die Bestimmung des Anteils der Partikel, die beim Sieben der superabsorbierenden Polymerpartikeln mit dem 100-wzesΑ-Sieb gemäß gemäß den Vorschriften der ERT 420J-99 auf dem Sieb zurückgehalten wurden (und die demnach eine Partikelgröße von mehr als 150 μm aufwiesen) konnte unter Berücksichtigung der Menge an eingesetzten superabsorbierenden Polymerpartikeln der Anteil bestimmt werden, der eine Partikelgröße von weniger als 150 μm aufwies.
BEISPIELE
I. HERSTELLUNG DER SUPERABSORBERFEINTEILCHEN
300 g Acrylsäure wurden in zwei Portionen geteilt. Eine Portion wurde in 429,1 g destilliertes Wasser gegeben. 0,36 g Triallyamin, 1,05 g Allyloxpo- lyethylenglykolacrylsäureester und 12 g Methoxypolethylenegly- kol(22EO)methacrylat wurden in der zweiten Portion Acrylsäure gelöst und ebenfalls dem Wasser hinzugefügt. Die Lösung wurde auf 10°C gekühlt. Anschließend wurden unter Kühlung insgesamt 233,1 g 50%ige Natronlauge so langsam zugesetzt, dass die Temperatur nicht über 30°C stieg. Anschließend wurde die Lösung bei 20 °C mit Stickstoff gespült und dabei weiter abgekühlt. Bei Erreichen der Starttemperatur von 4°C wurden 0,9 g Natriumcarbonat und die Initiatorlösungen (0,1 g 2,2'-Azobis-2- amidinopropandihydrochlorid in 10 g destilliertes Wasser, 0,15 g Natriumperoxodisulfat in 10 g destilliertes Wasser und 0,1 g 30%ige Wasserstoffpe- roxidlösung in 1 g destilliertes Wasser und 0,01 g Ascorbinsäure in 2 g Wasser) zugesetzt- Nachdem die Endtemperatur erreicht war, wurde das entstandene Gel zerkleinert und bei 150°C über 90 Minuten getrocknet. Das getrocknete Produkt wurde grob zerstoßen, gemahlen und entsprechend den Angaben in der Tabelle 1 abgesiebt.
AGGLOMERATION VON SUPERABSORBERFEINTEILCHEN IN ABWESENHEIT VON EFFEKTSTOFFEN
BEISPIEL 1
In einem Wirbelschichtcoater Unilab-5-TJ der Firma Hüttlin (BWI Hüttlin, Daimlerstraße 7, D-79585 Steinen) wurden 1.600 g Superabsorber- Feinteilchen der .in Tabelle 1 angegebenen Komverteilung aus Herstellungsbeispiel I mit 400 g einer 20%igen Lösung einer zu 50 Mol-% mit Natriumhydroxid neutralisierten nicht vernetzten Polyacrylsäure (Mw ca. 100.000 g/mol), die zusätzlich 2% Polyglycol 300 als Vemetzer enthielt, innerhalb von 20 Minuten besprüht. Die Zulufttemperatur betrag 50°C, die Produkttemperatur 30 bis 35°C. Es wurden 1.698 g Endprodukt erhalten. Der Wassergehalt war gegenüber dem Wassergehalt der eingesetzten Polymerfeinteilchen um 1 % erhöht. Das Produkt wurde 10 Minuten in einem Umluftschrank bei 190°C gehalten. Die Veränderungen der Korngrößenverteilung der erhaltenen Reaktionsprodukte ergibt sich aus der Tabelle 1.
Tabelle 1
Figure imgf000047_0001
BEISPIEL 2
In einem Labor-MIT-Mischer (MIT-Mischtechnik, Industrieanlagen GmbH, Typ LM 1,5/5, Baujahr 1995) wurden 500 g der Superabsorber- Feinteilchen der in Tabelle 2 angegebenen Komverteilung aus Herstellungsbeispiel I mit 175 g einer 20%igen Lösung einer zu 50 Mol-% mit Natriumhydroxid neutralisierten nicht vernetzten Polyacrylsäure (Mw ca. 100.000 g/mol), die zusätzlich 1,8 Gew.-% 1,4-Butandiol Vemetzer enthielt, innerhalb - von 20 Minuten besprüht. Und anschließend 30 Minuten bei 140°C getrocknet. Die Veränderungen der Korngrößenverteilung der erhaltenen Reaktionsprodukte ergibt sich aus der Tabelle 2.
Tabelle 2
Figure imgf000048_0001
BEISPIEL 3 In einem Labor-MIT-Mischer (MIT-Mischtechnik, Industrieanlagen GmbH, Typ LM 1,5/5, Baujahr 1995) wurden 150 g der Superabsorber- Feinteilchen der in Tabelle 3 angegebenen Komverteilung aus Herstellungsbeispiel I mit 50 g einer 20%igen Lösung einer zu 50 Mol-% mit Natriumhydroxid neutralisierten nicht vernetzten Polyacrylsäure (Mw ca. 130.000 g/mol), die zusätzlich 8,5 Gew.-% Polyethylenglycol 300, bezogen auf das Gewicht der nicht vernetzten Polyacrylsäure, als Vemetzer enthielt, innerhalb von 20 Minuten besprüht und anschließend für die in der Tabelle 3 angegebene Dauer und Temperatur im Umluftschrank getrocknet. Die Eigenschaften der erhaltenen Reaktionsprodukte ergeben sich aus der Tabelle 3.
Tabelle 3
Figure imgf000049_0001
III. NACHVERNETZUNG AGGLOMERIERTER SUPERABSORBERFEINTEILCHEN
In einem Rührbecher werden zu 50 g des im Beispiel 1 erhaltenen Agglo- merats mittels einer Spritze unter Rühren mit einem Krupps 3-Mix-Rührer bei höchster Stufe eine Lösung von 250 mg Ethylencarbonat in einer Mi- schung von 1 g, estilliertem Wasser und 2 g Aceton zugesetzt und das Ag- glomerat weitere 30 Sekunden gerührt. Das Produkt wurde 30 Minuten stehen gelassen und anschließend über 30 Minuten bei 190°C in einem U luft- trockenschrank getrocknet. Die Änderungen in den Absorptionseigenschaften ergeben sich aus der folgenden Tabelle 4:
Tabelle 4
Figure imgf000050_0001
IV. AGGLOMERATION VON SUPERABSORBERFEINTEILCHEN IN ANWESENHEIT VON EFFEKTSTOFFEN
BEISPIEL 5 In einem bereits unter Beispiel 2 beschriebenen Labor-MIT-Mischer wurden 750 g Superabsorberfeinteilchen aus Herstellungsbeispiel I vorgelegt und 1.500 U/m mit 62,5 g des Zeolith Abscents 3000 versetzt. Die Mischung wurde mit 200 g einer 20%igen zu 50 Mol-% mit Natriumhydroxid teilneutralisierten nichtvernetzten Polyacrylsäurelösung (Mw ca. 130000 g/mol), die 3,4 Polyethylenglycol-300 als Vemetzer enthielt, besprüht und anschließend 30 Minuten bei 180°C in einem Umlufttrockenschrank getrocknet. Die Teilchen, die größer als 150 μm waren, wurden in Schlagkranzmühle gemahlen. Die Ergebnisse sind in Tabelle 5 zusammengefasst. Tabelle 5
Figure imgf000051_0001

Claims

PATENTANSPRÜCHE
1. Ein Verfahren zur Herstellung eines agglomerierten Superabsorberpartikels, umfassend als Schritte (A) das in Kontakt bringen von Superabsorberfeinteilchen, die zu mindestens 40 Gew.-% eine Partikelgröße von weniger als 150 μm aufweisen, mit einem Fluid beinhaltend mehr als 10 Gew.-%, bezogen auf das Gesamtgewicht des Fluids, eines vemetzbaren, nicht vernetzten Polymers, welches zu mindestens 20 Gew.-%, bezogen auf das Gesamtgewicht des vemetzbaren, nicht vernetzten Polymers, auf polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren oder deren Salzen basiert, (B) das Vernetzen des nicht vernetzten Polymers durch Erhitzen der mit dem Fluid in Kontakt gebrachten Superabsorberfeinteilchen auf eine Temperatur in einem Bereich von 20 bis 300°C, so dass das vemetzbare, nicht vernetzte Polymer mindestens teilweise vernetzt wird, wobei (a) das vemetzbare, nichtvemetzte Polymer neben den polymerisierten, ethylenisch ungesättigten, säuregruppentragenden Monomeren weitere polymerisierte, ethylenisch ungesättigte Monomere (M) umfasst, die mit polymerisierten säuregruppentragenden Monomeren in einer Kondensationsreaktion, in einer Additionsreaktion oder in einer Ringöffnungsreaktion reagieren können, und/oder (b) das Fluid neben dem vemetzbaren, nicht vernetzten Polymer einen Vemetzer beinhaltet.
2. Verfahren nach Ansprach 1, wobei das vemetzbare, nicht vernetzte Polymer ein Gewichtsmittel des Molekulargewicht von mehr als 8.000 g/mol aufweist.
3. Verfahren nach Ansprach 1 oder 2, wobei das Monomer (M) ein polymeri- siertes, ethylenisch ungesättigtes Umsetzungsprodukt von gesättigten a- liphatischen, cyclo alphatischen, aromatischen Alkohlen, Aminen oder Thio- len mit ethylenisch ungesättigten Carbonsäuren, Carbonsäurederivaten oder Allylhalogeniden ist
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Superabsorberfeinteilchen einen Inneribereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisen und wobei der Oberflächenbereich eine andere chemische Zusammensetzung als der Innenbereich aufweist o- der sich in einer physikalischen Eigenschaft vom Innenbereich unterscheidet.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das in Kontakt bringen der Superabsorberfeinteilchen mit dem Fluid in Gegenwart eines auf einem Polyzucker oder einer Silizium-Sauerstoff beinhaltenden Verbindung oder einer Mischung von mindestens zwei davon basierenden Effektstoffes erfolgt.
6. Verfahren nach Ansprach 5, wobei der Effektstoff ein Zeolith ist.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das in Kontakt bringen in einer Wirbelschicht erfolgt.
8. Verfahren nach einem- der vorhergehenden Ansprüche, wobei während oder nach Schritt (B) als Schritt (C) ein Nachvemetzer zugegeben wird.
9. Superabsorberpartikel, erhältlich durch ein Verfahren nach einem der vorhergehenden Ansprüche.
10. Superabsorberpartikel beinhaltend zu mehr als 75 Gew.-% Superabsorberfeinteilchen, wobei (AI) die Superabsorberfeinteilchen zu mindestens 40 Gew.-%, bezogen auf das Gesamtgewicht der Superabsorberfeinteilchen, eine Partikelgröße von weniger als 150 μm aufweisen und die mindestens teilweise an eine Matrix aus einem vernetzten Polymer angrenzen, (A2) wobei das vernetzte Polymer zu mindestens 20 Gew.-%, bezogen auf das Gesamtgewicht des vernetzten Polymers, auf polymerisierten säuregruppentragenden Monomeren oder deren Salzen basiert, (A3) das vernetzte Polymer eine andere chemische Zusammensetzung aufweist als die Superabsorberfeinteilchen oder sich in einer physikalischen Eigenschaft von den Superabsorberfeinteilchen unterscheidet, und (A4) wobei das Superabsorberpartikel nach einmaliger Durchführung des hierin beschriebenen Stabilitätstestes einen Anteil an Partikel mit einer Partikelgröße von weniger als 150 μm von weniger 50 Gew.-% aufweist.
11. Superabsorberpartikel umfassend Superabsorberfeinteilchen, die zu mindestens 50 Gew.-%, bezogen auf das Gesamtgewicht der Superabsorberfeinteilchen, eine mittlere Partikelgröße von weniger als 150 μm aufweisen und die an eine Matrix aus einem vernetzten Polymer angrenzen, wobei (Bl) das vernetzte Polymer zu mindestens 20 Gew.-%, bezogen auf das Gesamtgewicht des vernetzten Polymers, auf ethylenischen, säuregruppentragenden Monomeren oder deren Salzen basiert, (B2) das vernetzte Polymer eine andere chemische Zusammensetzung aufweist als die Superabsorberfeinteilchen oder sich in einer physikali- sehen Eigenschaft von den Superabsorberfeinteilchen unterscheidet, und wobei (B3) die Matrix neben dem vernetzten Polymer einen Effektstoff, basierend auf einem Polyzucker oder einem Polyalkyletherpolyol oder einer Silizium-Sauerstoff beinhaltenden Verbindung oder einer Mischung von mindestens zwei davon, beinhaltet.
12. Superabsorberpartikel nach einem der Ansprüche 9 bis 11, wobei die Superabsorberfeinteilchen einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisen und wobei der Oberflächenbereich eine andere chemische Zusammensetzung als der Innenbereich aufweist oder sich in einer physikalischen Eigenschaft vom Innenbereich unterscheidet.
13. Superabsorberpartikel nach einem der Ansprüche 9 bis 12, wobei die Superabsorberpartikel einen Innenbereich und einen den Innenbereich begrenzenden Oberflächenbereich aufweisen und wobei der Oberflächenbereich eine andere chemische Zusammensetzung als der Innenbereich aufweist oder sich in einer physikalischen Eigenschaft vom Innenbereich unterscheidet.
14. Superabsorberpartikel nach einem der Ansprüche 9 bis 13, wobei die Superabsorberpartikel mindestens eine der folgenden Eigenschaften aufweisen: al) eine Partikelgrößenverteilung, wonach mindestens 80 Gew.-% der Partikel eine Partikelgröße in einem Bereich von 20 μm bis 5 mm besitzen; a2) eine Centrifuge Retention Capacity (CRC) von mindestens 5 g/g; a3) eine Absorption Against Pressure (AAP) bei 0,7 psi von mindestens 5 g/g; a4) einen Gehalt an wasserlöslichem Polymer nach 16 Stunden Extraktion von weniger als 25 Gew.-%.
15. Ein Verbund, beinhaltend die Superabsorberpartikel nach einem der Ansprüche 9 bis 14 und ein Substrat.
16. Ein Verfahren zur Herstellung eines Verbundes, wobei die Superabsorberpartikel nach einem der Ansprüche 7 bis 12 und ein Substrat und gegebenenfalls ein Zusatzstoff miteinander in Kontakt gebracht werden.
17. Ein Verbund erhältlich nach dem Verfahren gemäß Anspruch 14.
18. Verwendung der Superabsorberpartikel nach einem der Ansprüche 7 bis 12 oder des Verbundes nach Ansprach 13 oder 15 in Hygieneprodukten, zur Hochwasserbekämpfung, zur Isolierung gegen Wasser, zur Regulierung des Wasserhaushalts von Böden oder zur Behandlung von Lebensmitteln.
PCT/EP2004/008183 2003-07-25 2004-07-22 Verfahren zur agglomeration von superabsorberfeinteilchen WO2005012406A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0412929-6A BRPI0412929A (pt) 2003-07-25 2004-07-22 processo para produzir uma partìcula de superabsorvente aglomerada, partìcula de superabsorventes, compósito e uso das partìculas de superabsorventes
JP2006520789A JP4694481B2 (ja) 2003-07-25 2004-07-22 超吸収体微粒子を凝集させるための方法
DE502004003295T DE502004003295D1 (de) 2003-07-25 2004-07-22 Verfahren zur agglomeration von superabsorberfeinteilchen
US10/565,577 US7776984B2 (en) 2003-07-25 2004-07-22 Process for agglomeration of superabsorbent polymer fine particles
EP04741213A EP1648956B1 (de) 2003-07-25 2004-07-22 Verfahren zur agglomeration von superabsorberfeinteilchen
US12/789,644 US8367774B2 (en) 2003-07-25 2010-05-28 Process for agglomeration of superabsorbent polymer fine particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334271A DE10334271B4 (de) 2003-07-25 2003-07-25 Verfahren zur Agglomeration von Superabsorberfeinteilchen, daraus erhältliche Superabsorberpartikel, deren Verwendung sowie diese beinhaltende Verbunde
DE10334271.0 2003-07-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/565,577 A-371-Of-International US7776984B2 (en) 2003-07-25 2004-07-22 Process for agglomeration of superabsorbent polymer fine particles
US12/789,644 Continuation US8367774B2 (en) 2003-07-25 2010-05-28 Process for agglomeration of superabsorbent polymer fine particles

Publications (1)

Publication Number Publication Date
WO2005012406A1 true WO2005012406A1 (de) 2005-02-10

Family

ID=34088879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/008183 WO2005012406A1 (de) 2003-07-25 2004-07-22 Verfahren zur agglomeration von superabsorberfeinteilchen

Country Status (9)

Country Link
US (2) US7776984B2 (de)
EP (1) EP1648956B1 (de)
JP (1) JP4694481B2 (de)
CN (1) CN100447184C (de)
AT (1) ATE357473T1 (de)
BR (1) BRPI0412929A (de)
DE (2) DE10334271B4 (de)
TW (1) TWI367781B (de)
WO (1) WO2005012406A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1690887A1 (de) * 2005-02-15 2006-08-16 Nippon Shokubai Co., Ltd. Wasser absorbierendes Harz und Verfahren zu seiner Herstellung
JP2009515691A (ja) * 2005-11-18 2009-04-16 エフォニック ストックハウゼン ゲーエムベーハー 脱臭性の超吸収性組成物
WO2011023647A1 (en) 2009-08-28 2011-03-03 Basf Se Process for producing triclosan-coated superabsorbents
WO2011034147A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011078298A1 (ja) 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2013156281A1 (en) * 2012-04-17 2013-10-24 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
WO2014054731A1 (ja) 2012-10-03 2014-04-10 株式会社日本触媒 吸水剤及びその製造方法
US8791210B2 (en) 2009-02-17 2014-07-29 Nippon Shokubai Co., Ltd. Polyacrylic water-absorbent resin powder and method for producing the same
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
EP2944376A1 (de) * 2014-05-13 2015-11-18 The Procter and Gamble Company Agglomerierte superabsorbierende Polymerpartikel
KR20160127742A (ko) 2014-02-28 2016-11-04 가부시키가이샤 닛폰 쇼쿠바이 폴리(메트)아크릴산(염)계 입자상 흡수제 및 제조 방법
US20170298318A1 (en) * 2014-10-02 2017-10-19 Evonik Degussa Gmbh Method for producing a granular biomass which contains an oxidation-sensitive valuable substance
EP2615117B1 (de) 2010-09-06 2021-03-17 Sumitomo Seika Chemicals Co., Ltd. Wasserabsorbierendes harz und verfahren zu seiner herstellung
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169843B2 (en) * 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10334271B4 (de) * 2003-07-25 2006-02-23 Stockhausen Gmbh Verfahren zur Agglomeration von Superabsorberfeinteilchen, daraus erhältliche Superabsorberpartikel, deren Verwendung sowie diese beinhaltende Verbunde
EP1769004B1 (de) 2004-06-21 2017-08-09 Evonik Degussa GmbH Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung
EP1629854B1 (de) * 2004-07-20 2010-10-13 The Procter & Gamble Company Oberflächlich vernetzte superabsorbierende Partikeln und Verfahren zu ihrer Herstellung
US20090068440A1 (en) * 2005-06-20 2009-03-12 Gunther Bub Production of acrolein, acrylic acid and water-absorbent polymer structures made from glycerine
JP2010504534A (ja) * 2006-09-25 2010-02-12 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の連続的な製造方法
DE102007045724B4 (de) 2007-09-24 2012-01-26 Evonik Stockhausen Gmbh Superabsorbierende Zusammensetzung mit Tanninen zur Geruchskontrolle, Verfahren zu deren Herstellung und Verwendung
WO2009095370A2 (de) * 2008-01-29 2009-08-06 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
TWI455973B (zh) 2008-03-05 2014-10-11 Evonik Degussa Gmbh 用於氣味控制的具有水楊酸鋅的超吸收性組合物
EP2415822B1 (de) 2009-03-31 2019-03-20 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierende harzpartikel
US8765906B2 (en) 2010-04-27 2014-07-01 Nippon Shokubai, Co., Ltd. Method for producing polyacrylic acid (salt) type water absorbent resin powder
KR101992816B1 (ko) 2011-06-29 2019-06-25 가부시기가이샤 닛뽕쇼꾸바이 폴리아크릴산(염)계 흡수성 수지 분말 및 그 제조 방법
KR101559081B1 (ko) * 2012-11-15 2015-10-08 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이로부터 제조되는 고흡수성 수지
DE102013203781A1 (de) 2013-03-06 2014-09-11 Evonik Industries Ag Superabsorbierende Polymere mit verbesserten Eigenschaften, insbesondere Geruchskontrolle und Farbbeständigkeit, sowie Verfahren zu dessen Herstellung
DE102013203779A1 (de) 2013-03-06 2014-09-11 Evonik Industries Ag Superabsorbierende Polymere mit verbesserter Geruchskontrolleigenschaft sowie Verfahren zu dessen Herstellung
EP2915548B1 (de) 2014-03-05 2017-11-01 Evonik Degussa GmbH Superabsorbierende polymere mit verbesserter geruchskontrolleigenschaft sowie verfahren zu deren herstellung
KR101684649B1 (ko) 2014-06-13 2016-12-08 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이를 통해 제조된 고흡수성 수지
EP3200606B1 (de) 2014-10-02 2021-03-31 Evonik Operations GmbH Verfahren zur herstellung eines pufas enthaltenden futtermittels durch extrusion einer pufas enthaltenden biomasse des typs labyrinthulomycetes
CA2958439C (en) 2014-10-02 2022-09-20 Evonik Industries Ag Feedstuff of high abrasion resistance and good stability in water, containing pufas
CN107075540A (zh) 2014-10-02 2017-08-18 赢创德固赛有限公司 用于制备具有高细胞稳定性的含pufa生物质的方法
CA2958463C (en) 2014-10-02 2022-05-03 Evonik Industries Ag Method for raising animals
JP6993878B2 (ja) * 2015-03-16 2022-01-14 住友精化株式会社 吸水性樹脂および吸水剤
EP3280743B1 (de) * 2015-04-07 2022-03-09 Basf Se Verfahren zur agglomeration von superabsorberpartikeln
KR102112832B1 (ko) 2017-03-02 2020-05-19 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US10767029B2 (en) * 2017-04-19 2020-09-08 The Procter & Gamble Company Agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
EP3391961A1 (de) 2017-04-19 2018-10-24 The Procter & Gamble Company Agglomerierte supersaugfähige polymerteilchen mit spezifischem grössenverhältnis
EP3391963B1 (de) 2017-04-19 2021-04-14 The Procter & Gamble Company Verfahren zur herstellung von agglomerierten superabsorbierenden polymerpartikeln mit tonplättchen mit kantenmodifikation und/oder oberflächenmodifikation
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
KR102215025B1 (ko) 2017-06-30 2021-02-10 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이러한 방법으로 얻은 고흡수성 수지
WO2019004653A1 (ko) * 2017-06-30 2019-01-03 주식회사 엘지화학 고흡수성 수지의 제조 방법 및 이러한 방법으로 얻은 고흡수성 수지
US11578175B2 (en) 2017-12-08 2023-02-14 Lg Chem, Ltd. Preparation method of super absorbent polymer
KR102364365B1 (ko) 2017-12-08 2022-02-17 주식회사 엘지화학 신규한 가교제 화합물 및 이를 이용하여 제조되는 중합체
KR102634905B1 (ko) * 2019-10-08 2024-02-07 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN115558050B (zh) * 2022-09-27 2023-04-11 赤壁市高质量发展研究院有限公司 一种声学增强材料块、其反相乳液聚合制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741158A1 (de) * 1987-12-04 1989-06-15 Stockhausen Chem Fab Gmbh Polymerisate mit hoher aufnahmegeschwindigkeit fuer wasser und waessrige fluessigkeiten, verfahren zu ihrer herstellung und verwendung als absorptionsmittel
DE4333056A1 (de) * 1993-09-29 1995-03-30 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
EP0695763A1 (de) * 1994-07-06 1996-02-07 Amcol International Corporation Verfahren zur Erhöhung der Grösse und/oder der Absorption unter Last der superabsorbierenden Polymere durch oberflächliches Vernetzen und anschliessende Agglomeration von Partikeln unter Normalgrösse
WO2001089591A2 (en) * 2000-05-25 2001-11-29 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125468A (en) 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
DE2706135C2 (de) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Verdickungsmittel für ausgeschiedenen Darminhalt und Harn
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
JPS60163956A (ja) 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd 吸水性樹脂の製法
EP0591168B1 (de) 1990-04-02 1999-08-11 The Procter & Gamble Company Absorbierendes material mit untereinander vernetzten aggregaten
US5350799A (en) * 1990-05-31 1994-09-27 Hoechst Celanese Corporation Process for the conversion of fine superabsorbent polymer particles into larger particles
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847C2 (de) 1990-07-09 1994-09-08 Stockhausen Chem Fab Gmbh Verfahren zur Herstellung wasserquellbarer Produkte unter Verwendung von Feinstanteilen wasserquellbarer Polymerer
US5342899A (en) 1991-05-16 1994-08-30 The Dow Chemical Company Process for recycling aqueous fluid absorbents fines to a polymerizer
JP3119900B2 (ja) 1991-07-11 2000-12-25 三菱化学株式会社 高吸水性ポリマーの製造法
DE4244548C2 (de) * 1992-12-30 1997-10-02 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
JPH06313044A (ja) 1993-04-30 1994-11-08 Kao Corp 高吸水性樹脂の製造法
JPH06313042A (ja) 1993-04-30 1994-11-08 Kao Corp 高吸水性樹脂の製造方法
DE4418818C2 (de) 1993-07-09 1997-08-21 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wäßrige Flüssigkeiten und/oder Körperflüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Anwendung
IL110134A (en) 1993-07-09 1998-07-15 Stockhausen Chem Fab Gmbh Polymers capable of adsorbing aqueous liquids and body fluids, their preparation and use
GB9413605D0 (en) * 1994-07-06 1994-08-24 American Colloid Co Method of increasing the size and absorption under load of super-absorbent fine particles by impregnation with an aqueous acrylic monomer solution
EP0789047B1 (de) 1994-10-26 2005-12-21 Nippon Shokubai Co., Ltd. Wasserabsorbierende harzzusammensetzung und verfahren zu ihrer herstellung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19543366C2 (de) 1995-11-21 1998-09-10 Stockhausen Chem Fab Gmbh Mit ungesättigten Aminoalkoholen vernetzte, wasserquellbare Polymerisate, deren Herstellung und Verwendung
CA2318495A1 (en) 1998-01-07 1999-07-15 The Procter & Gamble Company Absorbent polymer compositions having high sorption capacities under an applied pressure
US20040213892A1 (en) 2003-04-25 2004-10-28 Gerd Jonas Highly swellable absorption medium with reduced caking tendency
DE10053858A1 (de) 2000-10-30 2002-05-08 Stockhausen Chem Fab Gmbh Absorbierendes Gebilde mit verbesserten Blockingeigenschaften
DE60236752D1 (de) * 2001-11-21 2010-07-29 Basf Se Vernetzte polyaminbeschichtung auf superabsorbierenden hydrogelen
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10334271B4 (de) * 2003-07-25 2006-02-23 Stockhausen Gmbh Verfahren zur Agglomeration von Superabsorberfeinteilchen, daraus erhältliche Superabsorberpartikel, deren Verwendung sowie diese beinhaltende Verbunde
EP1769004B1 (de) 2004-06-21 2017-08-09 Evonik Degussa GmbH Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3741158A1 (de) * 1987-12-04 1989-06-15 Stockhausen Chem Fab Gmbh Polymerisate mit hoher aufnahmegeschwindigkeit fuer wasser und waessrige fluessigkeiten, verfahren zu ihrer herstellung und verwendung als absorptionsmittel
DE4333056A1 (de) * 1993-09-29 1995-03-30 Stockhausen Chem Fab Gmbh Pulverförmige, wäßrige Flüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung als Absorptionsmittel
EP0695763A1 (de) * 1994-07-06 1996-02-07 Amcol International Corporation Verfahren zur Erhöhung der Grösse und/oder der Absorption unter Last der superabsorbierenden Polymere durch oberflächliches Vernetzen und anschliessende Agglomeration von Partikeln unter Normalgrösse
WO2001089591A2 (en) * 2000-05-25 2001-11-29 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1848758A1 (de) * 2005-02-15 2007-10-31 Nippon Shokubai Co., Ltd. Wasserabsorbierender wirkstoff, wasserabsorbierender artikel und herstellungsverfahren für den wasserabsorbierenden wirkstoff
EP1690887A1 (de) * 2005-02-15 2006-08-16 Nippon Shokubai Co., Ltd. Wasser absorbierendes Harz und Verfahren zu seiner Herstellung
EP1848758A4 (de) * 2005-02-15 2011-11-30 Nippon Catalytic Chem Ind Wasserabsorbierender wirkstoff, wasserabsorbierender artikel und herstellungsverfahren für den wasserabsorbierenden wirkstoff
KR101407781B1 (ko) * 2005-11-18 2014-06-20 에보니크 데구사 게엠베하 탈취용 초-흡수제 조성물
JP2009515691A (ja) * 2005-11-18 2009-04-16 エフォニック ストックハウゼン ゲーエムベーハー 脱臭性の超吸収性組成物
JP2013163818A (ja) * 2005-11-18 2013-08-22 Evonik Stockhausen Gmbh 脱臭性の超吸収性組成物
US9243079B2 (en) 2009-02-17 2016-01-26 Nippon Shokubai Co., Ltd. Polyacrylic acid-based water-absorbing resin powder and method for producing the same
US8791210B2 (en) 2009-02-17 2014-07-29 Nippon Shokubai Co., Ltd. Polyacrylic water-absorbent resin powder and method for producing the same
WO2011023647A1 (en) 2009-08-28 2011-03-03 Basf Se Process for producing triclosan-coated superabsorbents
US9102804B2 (en) 2009-09-16 2015-08-11 Nippon Shokubai Co., Ltd Production method for water-absorbing resin powder
WO2011034146A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011034147A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
US8513378B2 (en) 2009-09-16 2013-08-20 Nippon Shokubai Co., Ltd. Production method for water-absorbing resin powder
KR20120132475A (ko) 2009-12-24 2012-12-05 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산계 흡수성 수지분말 및 그 제조방법
WO2011078298A1 (ja) 2009-12-24 2011-06-30 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
US9334376B2 (en) 2009-12-24 2016-05-10 Nippon Shokubai Co., Ltd Water-absorbable polyacrylic acid resin powder, and process for production thereof
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
US10434495B2 (en) 2010-04-07 2019-10-08 Nippon Shokubai Co., Ltd. Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
US9447203B2 (en) 2010-04-07 2016-09-20 Nippom Shokubai Co., Ltd. Method for producing water absorbent polyacrylic acid (salt) resin powder, and water absorbent polyacrylic acid (salt) resin powder
EP3115382A1 (de) 2010-04-07 2017-01-11 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden polyacrylsäure(salz)-harzpulvers sowie wasserabsorbierendes polyacrylsäure(salz)-harzpulver
EP2615117B2 (de) 2010-09-06 2023-12-27 Sumitomo Seika Chemicals Co., Ltd. Wasserabsorbierendes harz und verfahren zu seiner herstellung
EP2615117B1 (de) 2010-09-06 2021-03-17 Sumitomo Seika Chemicals Co., Ltd. Wasserabsorbierendes harz und verfahren zu seiner herstellung
WO2013156281A1 (en) * 2012-04-17 2013-10-24 Basf Se Process for producing surface postcrosslinked water-absorbing polymer particles
WO2014054731A1 (ja) 2012-10-03 2014-04-10 株式会社日本触媒 吸水剤及びその製造方法
EP3369480A1 (de) 2012-10-03 2018-09-05 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel
KR20150067218A (ko) 2012-10-03 2015-06-17 가부시키가이샤 닛폰 쇼쿠바이 흡수제 및 그의 제조 방법
US10046304B2 (en) 2012-10-03 2018-08-14 Nippon Shokubai Co., Ltd. Water absorbing agent and method for producing the same
EP3351225B1 (de) * 2013-09-19 2021-12-29 The Procter & Gamble Company Absorbierende kerne mit materialfreien bereichen
US11154437B2 (en) 2013-09-19 2021-10-26 The Procter & Gamble Company Absorbent cores having material free areas
US11944526B2 (en) 2013-09-19 2024-04-02 The Procter & Gamble Company Absorbent cores having material free areas
US10646612B2 (en) 2013-12-20 2020-05-12 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt) water absorbent, and method for producing same
KR20160102217A (ko) 2013-12-20 2016-08-29 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수제 및 그의 제조 방법
EP4252728A2 (de) 2013-12-20 2023-10-04 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel auf der basis von polyacrylsäure und/oder einem salz davon
WO2015093594A1 (ja) 2013-12-20 2015-06-25 株式会社日本触媒 ポリアクリル酸(塩)系吸水剤及びその製造方法
US10207250B2 (en) 2014-02-28 2019-02-19 Nippon Shokubai Co., Ltd. Poly(meth)acrylic acid (salt)-based particulate absorbent
KR20160127742A (ko) 2014-02-28 2016-11-04 가부시키가이샤 닛폰 쇼쿠바이 폴리(메트)아크릴산(염)계 입자상 흡수제 및 제조 방법
WO2015175620A1 (en) * 2014-05-13 2015-11-19 The Procter & Gamble Company Agglomerated superabsorbent polymer particles
EP2944376A1 (de) * 2014-05-13 2015-11-18 The Procter and Gamble Company Agglomerierte superabsorbierende Polymerpartikel
US20170298318A1 (en) * 2014-10-02 2017-10-19 Evonik Degussa Gmbh Method for producing a granular biomass which contains an oxidation-sensitive valuable substance

Also Published As

Publication number Publication date
EP1648956B1 (de) 2007-03-21
TW200518833A (en) 2005-06-16
BRPI0412929A (pt) 2006-09-26
JP2006528708A (ja) 2006-12-21
US8367774B2 (en) 2013-02-05
TWI367781B (en) 2012-07-11
DE10334271B4 (de) 2006-02-23
DE502004003295D1 (de) 2007-05-03
CN1829765A (zh) 2006-09-06
JP4694481B2 (ja) 2011-06-08
DE10334271A1 (de) 2005-02-24
US20070015860A1 (en) 2007-01-18
EP1648956A1 (de) 2006-04-26
US20100234531A1 (en) 2010-09-16
CN100447184C (zh) 2008-12-31
ATE357473T1 (de) 2007-04-15
US7776984B2 (en) 2010-08-17

Similar Documents

Publication Publication Date Title
EP1648956B1 (de) Verfahren zur agglomeration von superabsorberfeinteilchen
EP2632959B1 (de) Verfahren zur herstellung von verbesserten absorbierenden polymeren mittels kryogenem mahlen
EP2699609B1 (de) Verfahren zur herstellung von wasserabsorbierenden polymeren mit hoher absorptionsgeschwindigkeit
EP2997057B1 (de) Superabsorbierende polymere mit schnellen absorptionseigenschaften sowie verfahren zu dessen herstellung
EP2739660B1 (de) Superabsorbierende polymere mit schnellen absorptionseigenschaften sowie verfahren zu dessen herstellung
EP2915548B1 (de) Superabsorbierende polymere mit verbesserter geruchskontrolleigenschaft sowie verfahren zu deren herstellung
EP2997051B1 (de) Superabsorbierende polymere mit schnellen absorptionseigenschaften sowie verfahren zu dessen herstellung
EP2114469B1 (de) Wasserabsorbierendes polymergebilde mit hoher ammoniak-bindekapazität
EP2536771A1 (de) Verfahren zur rückführung von polymerfeinteilchen
EP2977390A1 (de) Antihaft-prozessmittel und deren verwendung bei der herstellung von wasserabsorbierenden teilchen
EP3000486B1 (de) Superabsorberproduktion unter Einsatz bestimmter Fördermaschinen
WO2014135364A1 (de) Superabsorbierende polymere mit verbesserter geruchskontrolleigenschaft sowie verfahren zu dessen herstellung
WO2014135344A1 (de) Superabsorbierende polymere mit verbesserten eigenschaften, insbesondere geruchskontrolle und farbbeständigkeit, sowie verfahren zu dessen herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021592.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004741213

Country of ref document: EP

Ref document number: 2006520789

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004741213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007015860

Country of ref document: US

Ref document number: 10565577

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0412929

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10565577

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004741213

Country of ref document: EP