WO2005011034A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2005011034A1
WO2005011034A1 PCT/JP2004/010992 JP2004010992W WO2005011034A1 WO 2005011034 A1 WO2005011034 A1 WO 2005011034A1 JP 2004010992 W JP2004010992 W JP 2004010992W WO 2005011034 A1 WO2005011034 A1 WO 2005011034A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
amount
power
heat
cell system
Prior art date
Application number
PCT/JP2004/010992
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Tanaka
Takashi Nishikawa
Masataka Ozeki
Akinari Nakamura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005512106A priority Critical patent/JP4662850B2/ja
Priority to EP04748151.0A priority patent/EP1662593B1/en
Priority to US10/542,171 priority patent/US7951497B2/en
Publication of WO2005011034A1 publication Critical patent/WO2005011034A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that generates power using a fuel cell.
  • Some conventional fuel cell systems change the operation according to the state of electric load and heat load in order to perform power generation operation economically. For example, when supplying the power required by a power load, the cost required for the fuel cell to generate the power and the cost required for the power system to supply the power are compared, and the fuel cell supplies the power. There is described a fuel cell system that determines whether or not to operate the fuel cell by determining whether or not the fuel cell is operating (for example, Japanese Patent Application Laid-Open No. 2002-190308).
  • FIG. 17 shows a conventional fuel cell system described in Japanese Patent Application Laid-Open No. 2002-190308.
  • a fuel generator 11 performs a reforming reaction on a raw material such as natural gas in an atmosphere containing steam to generate a fuel gas containing hydrogen, and supplies it to a fuel cell 13.
  • the fuel cell 13 generates electric power by an electrochemical reaction between the fuel gas supplied from the fuel generator 11 and an oxidant gas such as air supplied by the oxidant supply means 12.
  • the generated power is supplied to the power load 14 by the power supply means 15.
  • the power value detection means 16 detects the power used in the power load 14, and the control device 23 controls the cost and the power system when the fuel cell 13 generates and supplies the detected power. Compare the cost of supply and determine the cheaper power supply.
  • the power supply means 15 supplies power to the power load 14 from the fuel cell 13.
  • the temperature of each part including the fuel cell it is necessary to raise the temperature of each part including the fuel cell to a temperature at which power can be generated before power generation is started, and thus energy is required.
  • the energy required for starting is not taken into account, and in addition, when the number of stops is large, the difference between the actual cost and the calculated cost is large.
  • An object of the present invention is to provide a fuel cell system that operates a fuel cell rationally in consideration of the energy involved in starting.
  • a fuel cell system includes: a fuel cell; load value detection means for detecting a load value of a power or heat load generated by a supply target of the fuel cell system; A load value accumulating means for storing a history of the load values detected by the load value detecting means; a load value that can occur in the future is predicted based on the history of the load values; and the predicted load value is loaded.
  • a fuel cell system comprising: a load value predicting unit that stores as value data; and determining a scheduled start time of the fuel cell based on the load value data.
  • the fuel cell system can predict the power load of the power supply target and determine the scheduled start-up time, so that the fuel cell system can save fuel when advantageous in terms of energy saving, prevention of global warming, and economy.
  • a fuel cell system for operating a battery can be provided.
  • the activation of the fuel cell includes the activation of not only the fuel cell itself but also various equipment necessary for the activation of the fuel cell, for example, the activation of a fuel generator, an oxidant supply unit, and the like.
  • a second invention is the fuel cell system, wherein the load value is a power value that is a power load to be supplied to the fuel cell system, and the load value data is a power value data.
  • the third invention further comprises calculating means for calculating the amount of primary energy consumed for power supply, the amount of carbon dioxide generated thereby, or the cost consumed for the primary energy.
  • the calculation means considers either the amount of primary energy consumed for starting the fuel cell, the amount of carbon dioxide generated thereby, or the cost consumed therefor. Then, power is supplied by the fuel cell, or power is supplied when power and heat are supplied, or primary energy is consumed for power and heat supply, the amount of carbon dioxide generated thereby, or the cost is consumed.
  • This is a fuel cell system that calculates any of the following.
  • the calculation means is configured to determine, based on the temperature of the fuel cell, an amount of primary energy consumed for starting the fuel cell, and an amount of carbon dioxide generated thereby. Or a fuel cell system that calculates either the cost spent on it. As a result, the fuel cell system can predict the primary energy consumed from the start of the fuel cell to the start of power generation, so that it is possible to provide a fuel cell system that makes a more accurate determination of operation. it can.
  • the sixth invention and the eighteenth invention further comprise a fuel generation device for generating a fuel containing hydrogen from a raw material
  • the calculating means comprises: a primary energy amount consumed for starting the fuel cell; Considering either the amount of carbon dioxide generated or the cost spent on it, the power supply by the fuel cell, or the power supply or the power supply and heat supply when supplying power and heat. It is a fuel cell system that calculates either the primary energy consumed for supply, the amount of carbon dioxide generated by it, or the cost spent on it.
  • the calculation means is configured to calculate, based on a temperature of the fuel generation device, a primary energy amount consumed for starting the fuel cell, and a dioxidation generated thereby.
  • the fuel cell system according to an eighth or 20th aspect of the present invention further comprises an input unit, wherein the input unit can select a calculation item of the calculation unit from primary energy, carbon dioxide, or cost. It is.
  • the user can switch the operation of the fuel cell system according to his / her preference, which can raise the user's interest in energy saving, prevention of global warming, and economic efficiency.
  • the ninth and twenty-first inventions further comprise a display means, wherein power is supplied by the fuel cell, or power supply and heat are supplied by using the calculated value of the calculation means;
  • the present invention further comprises a heat storage means for collecting and storing the exhaust heat of the fuel cell, and a heat supply means for supplying the heat storage of the heat storage means to the outside.
  • the amount of heat recovered by the heat storage means based on the power value data of the above, the primary energy consumed for supplying the amount of heat when the amount of heat is supplied by an external heat supply means, and the carbon dioxide generated thereby
  • the power supply and heat supply by the fuel cell and the power supply and heat supply by the power system and external heat supply means by further calculating the amount or the cost spent on it.
  • the respective primary energy amounts at and Either the carbon dioxide amount or the cost is calculated, and the calculated values obtained by the calculating means are compared with each other, and the calculated values are smaller when the power supply and the heat supply are performed by the power system and an external heat supply unit. If it is larger, the fuel cell system may determine the start time of the time zone as the scheduled start time. As a result, even in a fuel cell system that supplies heat and power, a fuel cell system that operates the fuel cell when starting and stopping the fuel cell is advantageous in terms of energy saving, prevention of global warming, and economic efficiency. Can be provided.
  • An eleventh invention is a fuel cell system, wherein the scheduled start time is updated every predetermined update time. As a result, the appropriateness of the operation is periodically judged, so that it is possible to provide a fuel cell system that makes a more accurate operation judgment.
  • a fuel cell system according to a twelfth aspect, further comprising display means, wherein the display means displays the scheduled start time.
  • the user can know the start and stop of the fuel cell, which can raise the user's interest in energy saving, prevention of global warming, and economic efficiency.
  • a thirteenth invention is a fuel cell system, wherein the display means displays a past operation history. As a result, the user can grasp the start and stop of the fuel cell, which can raise the user's interest in energy saving, prevention of global warming, and economic efficiency.
  • a fifteenth invention is directed to a heat storage means for recovering and storing the exhaust heat of the fuel cell, a heat supply means for supplying the heat stored in the heat storage means to the outside, and a heat storage amount detecting the heat storage amount of the heat storage means.
  • the fifteenth invention further comprises calculating means for calculating any of primary energy amount consumed for heat supply and power supply, carbon dioxide amount generated thereby, or cost consumed therefor, wherein the calculating means comprises: On the basis of the calorific value data in a predetermined time zone, each of the power supply and heat supply by the fuel cell and the power supply and heat supply by the power system and external heat supply means Calculating the primary energy amount, the carbon dioxide amount or the cost, comparing the values calculated by the calculation means, and supplying power and heat by the power system and external heat supply means. When the calculated value is large, the start time of the time zone is determined as the scheduled start time.
  • a second invention is a heat storage means for recovering and storing the exhaust heat of the fuel cell, a heat supply means for supplying the heat storage of the heat storage means to the outside, and a heat storage amount detection for detecting a heat storage amount of the heat storage means.
  • a selecting means wherein the selecting means sets the load value to a heat value which is a heat load of a heat supply target of the fuel cell system or a power load of a power supply target of the fuel cell system.
  • a fuel cell system wherein the load value data is selected from a certain power value, and the load value data is selected from either power value data or calorific value data.
  • the load value accumulating means accumulates the load value while distinguishing between at-home time and absence time
  • the selection means determines the scheduled start time of the fuel cell at home.
  • Arbitrarily selected from a determination based on the power value data, a determination based on the power value data when the user is away, a determination based on the heat value data when the user is at home, and a determination based on the heat value data when the user is away Can be a fuel cell system.
  • the scheduled start time of the fuel cell is arbitrarily set.
  • the fuel cell system further includes an operation time setting unit that can perform the operation. Accordingly, the start of the fuel cell can be set in consideration of the user's action schedule, so that the fuel cell system can be operated more accurately.
  • FIG. 1 is a configuration diagram of a fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the first half of the control flow of the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 6 is a configuration diagram of a fuel cell system according to Embodiment 4 of the present invention.
  • FIG. 7 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 4 of the present invention.
  • FIG. 8 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 5 of the present invention.
  • FIG. 9 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 6 of the present invention.
  • FIG. 10 is a configuration diagram of a fuel cell system according to Embodiment 7 of the present invention.
  • FIG. 11 shows a control flow of the fuel cell system according to Embodiment 7 of the present invention.
  • 3 is a flowchart showing the first half of the flowchart.
  • FIG. 12 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 7 of the present invention.
  • FIG. 13 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 8 of the present invention.
  • FIG. 14 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 9 of the present invention.
  • FIG. 15 is a configuration diagram of the fuel cell system according to Embodiment 10 of the present invention.
  • FIG. 16 is a flowchart showing the first half of the flow of control of the fuel cell system according to Embodiment 10 of the present invention.
  • FIG. 17 is a configuration diagram of a conventional fuel cell system.
  • FIG. 1 is a configuration diagram showing a fuel cell system according to Embodiment 1 of the present invention.
  • the fuel cell system according to the present embodiment includes a fuel generation device 11 for generating a fuel gas containing hydrogen from a raw material such as natural gas, an oxidant supply unit 12 for supplying an oxidant, and a fuel generation device 11.
  • a fuel cell 13 that generates power and heat by an electrochemical reaction between the supplied fuel gas and an oxidant gas such as air supplied from the oxidant supply means 12, and an air conditioner that generates the electric power generated by the fuel cell 13
  • Power supply means 15 to supply power load 14 such as a refrigerator or a refrigerator, power value detection means 16 to detect power used in the power load 14, and a control device 2 3 to control the operation of the fuel cell system It consists of:
  • the power supply means 15 is composed of an inverter, a switch, and the like.
  • the control device 23 stores the detected power value of the power value detecting means 16.
  • Means a 1 7 predicts the stored power value history from the power load 1 power value used by 4 W t (t min after the power value W t), the power is constituted by the power value W t
  • It has power value prediction means 18 for storing value data, operation control means 19, and display means 42.
  • the activation of the fuel cell 13 includes not only the fuel cell 13 itself but also various facilities necessary for the activation of the fuel cell, for example, the fuel generation device 11, the oxidant supply means 12, and the like. .
  • control device 23 includes calculation means 20, 21, and 22 for performing calculations based on the power value data and providing the calculation results to the operation control means 19.
  • the first calculating means 20 calculates a primary energy amount consumed when the fuel cell 13 generates and supplies a power value in a predetermined time zone of the power value data.
  • the second calculating means 21 calculates a primary energy amount consumed when the power system supplies a power value in a predetermined time zone of the power value data.
  • the third calculation means 22 calculates a primary energy amount consumed when starting up the fuel cell system such as the fuel cell 13 and the fuel generation device 11.
  • the operation control unit 1 9, a timer one (not shown), at predetermined update times, the operation control unit 1 9, the scheduled start-up time T have power scheduled start time of time T 2 and scheduled stop time ⁇ ⁇ ⁇ Operate to update 3 .
  • the appropriateness of the operation is periodically determined, so that more accurate operation of the fuel cell system can be realized.
  • the display means 42 displays the scheduled start time ⁇ the scheduled power generation start time ⁇ 2 and the scheduled stop time ⁇ 3 set in the operation control means 19. Further, the display means 42 displays the power generation history ⁇ ⁇ 2 and the scheduled stop time ⁇ 3 in the history of the power values stored in the power value storage means 17. That is, the history of the electric power value by the power generation of the fuel electric system is displayed. Further, the display means 42 calculates the difference between the values to be compared in S14C until the steps S14A and S14B, which will be described later, and the operation control means 19 calculates the difference. Display the result. This can raise users' interest in energy resources, environmental impact or economics.
  • the inside of the control device 23 is composed of, for example, a microcomputer.
  • the means 17 to 22 of the control device 23 are realized by the CPU executing a predetermined program (hereinafter referred to as a time determination program) stored in the internal memory of the microcomputer. Then, in the execution of the time determination program, necessary data is stored, for example, in the internal memory of the microcomputer.
  • a predetermined program hereinafter referred to as a time determination program
  • 2 and 3 are flow charts showing the control flow of the fuel cell system, that is, the contents of the time determination program.
  • step S1 the power value detecting means 16 continuously detects the power value, and the power value storing means 17 accumulates and stores the detected power value.
  • the power value detection means 16 detects the power value at one-second intervals.
  • step S2 the power value prediction means 18 will be used by the power load 14 in the next 24 hours in the future based on the history of the power values stored in the power value storage means 17 1 to predict in minutes power value W t, and stores as Isseki power value de.
  • the operation control means 19 determines a predetermined value, here a power value higher than the minimum power generation amount W min of the fuel cell 13, Select a time zone that has a large distribution.
  • step S3 the operation control means 19 substitutes the current time T0 for the time T.
  • step S 7- 1 the operation control means 1 9, it is assumed that the power generation start scheduled time T 2, addition start required time T s to (eg if 6 0 min) at time T.
  • step S 7- 2 the operation control means 1 9 substitutes the power generation start scheduled time tau 2 to T.
  • step S 7 _ 3 the operation control means 19 sets the predetermined time X! (E.g., 30 minutes) Yi% or more (e.g., 80%, 24 or more) of the power value W t ( 30 from W T to W ⁇ + 30 ) until the minimum power generation of the fuel cell system It is determined whether the quantity is not less than W min . If Yes, go to step S8. If No, in step S7-4, the time immediately before the start (the time required for activation T s -1 minute) is set to T, and the process returns to step S4.
  • X! E.g., 30 minutes
  • Yi% or more e.g., 80%, 24 or more
  • step S 8 the operation control means 1 9, power values from T until after a predetermined time X 2 (For example 6 0 min) W t (W T ⁇ W ⁇ + 6 0 or up 6Omikuron) of Upsilon 2% It is determined whether the above (for example, 80%, 48 or more) is less than the minimum power generation amount W min of the fuel cell system. In Y es If step S 9, assume T and scheduled stop time T 3. If No, in step S10, the time one minute after T is set to T, and the process returns to step S8.
  • X 2 For example 6 0 min
  • W t W T ⁇ W ⁇ + 6 0 or up 6Omikuron
  • step S 1 1 A the first calculation means 2 0, when the fuel cell 1 3 supplies to power generation, stop the power generation start scheduled time T 2 of the power value data
  • the amount of raw material gas Q GFCEt required to generate the power value w t every minute until the scheduled stop time T 3 is reduced by the fuel cell system including the fuel cell 13, the fuel generator 11, etc.
  • Efficiency E WE is calculated by equation (1).
  • step S12A the third calculating means 22 calculates the primary energy consumed when starting the fuel cell system, and sets the fuel cell startup primary energy AFCS . Then, the operation control means 19 calculates the fuel cell power generation primary energy amount A FCE output from the first calculation means 20 and the fuel cell activation primary energy amount A pes output from the third calculation means 22. The total is defined as the first fuel cell primary energy amount A FC1 .
  • step S13A the second calculation means 21 calculates the power generation start time T2 to the power stoppage time T2 based on the primary energy amount AEB per unit power of the power system.
  • the primary energy amount A Et consumed when the power system supplies the power value W t per minute up to 3 is calculated by the formula ( 3A ), and the value obtained by integrating A Et from T 2 to T 3 Is the power system primary energy AE.
  • step S14A the operation control means 19 compares the first fuel cell primary energy amount A Fci with the power system primary energy amount AE. If the first fuel cell primary energy amount A FC I the power system primary energy amount AE below, the process proceeds to step S 1 5 A, determines the scheduled start-up time T power generation start pre Teijikoku T 2 and scheduled stop time T 3 , Step S17 A smell Then, the operation control means 19 starts the fuel cell system at the scheduled start time Ti.
  • step S 16 A the operation control means 19 determines the scheduled start time T 1, the scheduled power generation start time T The assumption of 2 and the scheduled stop time T 3 is canceled, that is, the start of the fuel cell at the scheduled start time T 1 is prohibited, and the operation control means 19 substitutes the scheduled stop time T 3 for the time T in step S 18 A. Then, the process returns to step S4 from II in FIG. 2 following II in FIG. 3, and repeats the subsequent steps.
  • the operation of the fuel cell system is compared by comparing the amount of primary energy consumed by the fuel cell system, including the amount of primary energy consumed when starting the fuel cell, with the amount of primary energy consumed by the power system. And a determination of suspension can be made. As a result, even in an operating state in which the fuel cell system repeatedly starts and stops, it is possible to operate the fuel cell system while suppressing unnecessary energy consumption.
  • FIG. 4 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 2 of the present invention.
  • Embodiment 2 the scheduled start-up time T i and the comparison in the development of the operation control means 1 9 carbon dioxide in the fuel cell system in the first embodiment (hereinafter referred to as C ⁇ 2), the power generation start pre Teijikoku It is configured to determine T 2 and scheduled stop time T 3. That is, the first calculating means 20 calculates the amount of CO 2 generated when the fuel cell 13 generates and supplies a power value in a predetermined time zone of the power value data.
  • Second calculating means 2 1 calculates the C 0 2 amount generated power value for a predetermined time period of the power value data when the power system to supply.
  • the third calculation means 22 calculates the amount of CO 2 generated when the fuel cell system such as the fuel cell 13 and the fuel generation device 11 is started.
  • the flow chart showing the first half of the control flow of the battery system has the same configuration as in FIGS. 1 and 2 of the first embodiment, and a description thereof will be omitted.
  • step S 1 1 B the first calculation means 2 0, when the fuel cell 1 3 supplies to the power generation, the scheduled stop time from power generation start scheduled time T 2 of the power value data
  • the amount of source gas Q GFCEt required to generate the power value W t every minute until T 3 is calculated by the equation (1) based on the power generation efficiency E WE of the fuel cell system.
  • Step S 1 2 B the third calculation means 2 2 calculates the C_ ⁇ 2 amount generated when starting up the fuel cell system, the fuel cell start C_ ⁇ 2 generation amount B FCS. Then, the operation control means 19 calculates the fuel cell power generation CO 2 generation amount B FOE output from the first calculation means 20 and the fuel cell activation CO 2 generation amount B FCS output from the third calculation means 22. And the total is set as the first fuel cell CO 2 emission amount B FC1 .
  • Step S 1 3 B the second is calculation means 2 1, based on the CO 2 generation amount B EB per unit electric power of the power system, the expected stop the power generation start pre Teijikoku T 2 of the power value data time T 3 the C_ ⁇ 2 amount B Et the power system power value W t per minute occur when supplying the until calculated by (3 B) formula, the value of the B Et by integrating from T 2 to T 3 Is the power system CO 2 emission BE.
  • Step S 1 4 B the operation control unit 1 9 compares the first fuel cell C 0 2 generation amount B FC1 and power system CO 2 generation amount BE. If the first fuel cell C_ ⁇ 2 generation amount B FC1 the power system C_ ⁇ 2 emissions BE below, Sutetsu Proceeds to flop S 1 5 B, determines the scheduled start-up time T power scheduled start time T 2 and scheduled stop time T 3, the fuel cell system in step S 1 7 beta, the operation control unit 1 9 to the scheduled start-up time T 1 Start On the other hand, if the first fuel cell C ⁇ 2 generation amount B FC 1 is larger than the power system C ⁇ 2 generation amount BE, the process proceeds to step S 16 B, and the operation control means 19 sets the scheduled start time T generation.
  • the amount of CO 2 generated in the fuel cell system including the amount of co 2 generated when the fuel cell is started, is compared with the amount of C ⁇ ⁇ 2 generated in the power system, and the operation and Judgment of suspension can be made.
  • the fuel cell system repeatedly starts and stops, it suppresses the generation of CO 2 , thereby contributing to the prevention of global warming. Can be operated.
  • FIG. 5 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 3 of the present invention.
  • the operation control means 1 9 of a fuel cell system in the first embodiment determines the scheduled start-up time T have power generation start scheduled time T. 2 and scheduled stop time T 3 to the compare in cost It is configured as follows. That is, the first calculating means 20 calculates the cost required when the fuel cell 13 generates and supplies the power value in a predetermined time zone of the power value data. The second calculating means 21 calculates a cost when the power system supplies a power value in a predetermined time zone of the power value data. The third calculating means 22 calculates the cost required to start up the fuel cell system such as the fuel cell 13 and the fuel generator 11. Therefore, the configuration of the fuel cell system and the flow chart showing the first half of the control flow of the fuel cell system according to the third embodiment are the same as those shown in FIGS. 1 and 2 of the first embodiment. Omitted.
  • step SI 1 C when the fuel cell 13 generates and supplies power, the first calculating means 20 calculates the scheduled start time T 2 of the power value data to the scheduled stop time T
  • the amount of source gas Q GFCEt required to generate the power value W t per minute up to 3 is calculated by the equation (1) based on the power generation efficiency E WE of the fuel cell system.
  • the cost C FCEt based on the commodity charge C GFCB of the source gas, the cost C FCEt according to the case where the period from the generator scheduled start time T 2, until scheduled stop time T 3 is fuel cell system to power generation
  • the fuel cell power generation cost c FCE is calculated by the formula (2C), and the value obtained by integrating C FCEt from T 2 to T 3 is used.
  • step S12C the third calculating means 22 calculates a cost required for starting the fuel cell system, and sets the calculated cost as a fuel cell starting cost CFCS . Then, the operation control unit 1 9, sums the outputted with the fuel cell power generation cost C FCE and fuel cell activation cost C F CS output from the third calculation means 2 2 from the first calculation means 2 0 The first fuel cell cost is C FC 1 .
  • Step S 1 3 C the second is calculation means 2 1, based on the commodity charge C EB of the power system, between the power generation start scheduled time T 2 of the power values de Isseki to stop pre Teijikoku T 3
  • the cost C Et required when the power system supplies the power value W t per minute is calculated by the formula ( 3C ), and the value obtained by integrating C Et from T 2 to T 3 is defined as the power system cost C ⁇ . I do.
  • Step S 1 4 C the operation control unit 1 9, compares the first fuel cell cost C FC 1 and power system cost CE. If the first fuel cell cost C Fci is equal to or less than the power system cost CE, proceed to step S15C, and Dynamic scheduled time T 1, the power generation scheduled start time T to determine the 2 and scheduled stop time T 3, at step S 1 7 C, the operation control unit 1 9 activates the fuel cell system to the scheduled start-up time T 1. On the other hand, if the first fuel cell cost C FC 1 is larger than the power system cost C E , the process proceeds to step S 16 C, where the operation control means 19 determines the scheduled start time T the scheduled power generation start time T 2 and the shutdown. assuming cancellation of scheduled time T 3, i.e.
  • step S 1 8 C the operation control means 1 9 substitutes the operation scheduled stop time T 3 to time T, From II in FIG. 2 following II in FIG. 3, return to step S4 and repeat the subsequent steps.
  • the operation and stop of the fuel cell system can be determined by comparing the cost of the fuel cell system in consideration of the cost when the fuel cell is started and the cost of the power system. This makes it possible to economically operate the fuel cell system even in an operating state in which the fuel cell system repeatedly starts and stops.
  • control device 23 includes input means (not shown) such as a switching switch, a keyboard, and a mouse; first to third calculation means of each of the first to third embodiments; and operation control means. 19 and display means 42, and the input means may be used to select any of the first to third embodiments.
  • input means such as a switching switch, a keyboard, and a mouse
  • first to third calculation means of each of the first to third embodiments and operation control means. 19 and display means 42, and the input means may be used to select any of the first to third embodiments.
  • the operation of the fuel cell system can be switched according to the user's preference.
  • FIG. 6 is a configuration diagram showing a fuel cell system according to Embodiment 4 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel cell system includes, in addition to the configuration of the fuel cell system shown in FIG. 1, a cooling water path 24 for circulating cooling water for maintaining the fuel cell 13 at a predetermined temperature, and a cooling water path 2. 4, a cooling water pump 25 for flowing cooling water, a heat storage means 27, and hot water for storing heat recovered from the fuel cell 13 by the cooling water.
  • a heat exchanger 26 that transfers heat to the water, a hot water path 28 that recovers heat from the fuel cell 13 using the hot water and accumulates it as heat water in the heat storage means 27, and a hot water path that passes through the hot water path 28 It further includes a hot water pump 29 for flowing, and heat supply means 31 for supplying heat load 30 such as hot water supply and heating from the heat storage means 27.
  • the control device 23 further includes a fourth calculating unit 36 that performs an operation based on the power value data and provides the operation result to the operation control unit 19.
  • the fourth calculation means 36 is configured to calculate the amount of heat corresponding to the amount of heat recovered in the fuel cell system in accordance with the power value of the power value data in a predetermined time zone, and to calculate the primary amount consumed when the heat supply system 35 supplies the heat amount. Calculate the amount of energy.
  • the heat supply system 35 is constituted by an external heat supply means such as a steam line or a gas water heater.
  • FIG. 7 is a flowchart showing the latter half of the control flow of the fuel cell system.
  • the operation of the fuel cell system according to the fourth embodiment is the same as the operation before step 11A, but is a flow chart showing the flow of control of the fuel cell system up to step S10, that is, FIG. 2 of the first embodiment. Therefore, the description is omitted.
  • step S 1 0 in FIG. 2 after the scheduled start-up time T have power scheduled start of the fuel cell time T 2 and the scheduled stop time T 3 is assumed, the I and subsequent steps in FIG. 7 subsequent to I in FIG. 2
  • the planned start time T i, the planned power generation start time T 2, and the planned stop time T 3 are determined in consideration of the amount of primary energy consumed.
  • Steps S111A to S113A are the same as those in the first embodiment, that is, steps S111A to S13A in FIG. 3, and a description thereof will be omitted.
  • step S 1 1 4 A the fourth calculating means 3-6, the fuel cell system power value W t per minute between the power generation start scheduled time T 2 of the power value data until scheduled stop time T 3 When power is generated and supplied, Recovered the quantity of heat recovered H FCt, based on the heat recovery efficiency E WH (4) is calculated Ri by the formula.
  • the fourth calculating means 36 calculates the heat supply system heat amount Q GHt required when the heat supply system 35 supplies the recovered heat amount HFCt based on the heat supply system heat efficiency EH. It is calculated by equation (5).
  • the heat supply system calorific value Q GHt is calculated as the city gas amount when supplied with city gas, and as the steam amount when supplied with steam. Then, based on the primary energy amount A GHB per unit heat of the heat supply system 35, the H FCt calculated by the primary energy amount A Ht heat supply system 35 is spent when supplying (6 A) formula
  • the value obtained by integrating A Ht from T 2 to T 3 is defined as the primary energy amount AH of the heat supply system.
  • step S 1 1 6 A the operation control means 1 9 compares the sum of the power system primary E energy amount AE and the heat supply system primary energy amount AH, the first and the fuel cell primary energy amount A FC 1 .
  • a FC 1 is AE + AH following a mule, the process proceeds to step S 1 1 7 A, to determine the time of time T 2 and scheduled stop time T 3 generation scheduled start had scheduled start-up time T, in step S 1 1 9 A
  • the operation control means 19 starts the fuel cell system at the scheduled start time T1.
  • Step S 1 2 0 A the operation control means 1 9 scheduled start-up time T i, the assumption of power generation start scheduled time T 2, and the scheduled stop time T 3 Cancel That is, the start of the fuel cell at the scheduled start time T1 is prohibited, and in step S120A, the operation control means 19 substitutes the scheduled stop time T3 for the time T, and continues from II in FIG. Return to step S4 from II in Fig. 2, and repeat the subsequent steps.
  • the primary energy amount of the heat supply system reduced by supplying the recovered heat can be reflected, and the fuel cell system is operated while suppressing wasteful energy consumption. It becomes possible.
  • FIG. 8 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 5 of the present invention.
  • the operation control means 19 of the fuel cell system in the fourth embodiment compares the amount of generated CO 2 with the scheduled start time T, the scheduled power generation start time T 2, and the scheduled stop time T 3. Is determined. That is, the first calculating means 20 calculates the amount of CO 2 generated when the fuel cell 13 generates and supplies the power value in the predetermined time zone of the power value data.
  • the second calculating means 21 calculates the amount of CO 2 generated when the power system supplies a power value in a predetermined time zone of the power value data.
  • Third calculation means 2 2 calculates the C_ ⁇ 2 amount generated when starting the fuel cell 1 3, a fuel cell system including a fuel generator 1 1.
  • the fourth calculating means 36 generates a heat amount corresponding to the heat amount recovered in the fuel cell system according to the power value of the power value data in a predetermined time zone, when the heat supply system 35 supplies the heat amount. ⁇ Calculate 2 quantities.
  • the configuration of the fuel cell system in the fifth embodiment and the flowchart showing the first half of the control flow of the fuel cell system are the same as those in FIG. 6 of the fourth embodiment and FIG. 2 of the first embodiment. Description is omitted. Hereinafter, the latter half of the control flow of the fuel cell system will be described.
  • step S 1 0 in FIG. 2 after the scheduled start-up time T have power scheduled start of the fuel cell time T 2 and the scheduled stop time T 3 is assumed, the I and subsequent steps in FIG. 8 subsequent to I in FIG. 2 proceed, the scheduled start-up in consideration of the generated C_ ⁇ 2 the amount of time T! , Power generation start scheduled time T 2, and the scheduled stop time T 3 is determined.
  • Steps S 1 1 1B to S 1 13 B are described in the second embodiment, ie, Steps S 1 IB to S 13 B in FIG. Step S114B is the same as that in the fourth embodiment, that is, step S114A in FIG. 7, and a description thereof will be omitted.
  • step S115B the fourth calculating means 36 calculates the heat supply system heat amount Qc required when the heat supply system 35 supplies the recovered heat amount HFCt based on the heat supply system thermal efficiency EH. It is calculated by equation (5). Based on C_ ⁇ 2 generation amount B GHB per unit amount of heat heat supply system 35, the amount of CO 2 8 Ht occur if the H FCt heat supply system 35 to supply (6 B) formula calculated by, a value obtained by integrating the B Ht from T 2 to T 3 and the heat supply system C_ ⁇ 2 emissions BH.
  • step S 1 1 6 B the operation control means 1 9, the sum of the power system C_ ⁇ 2 generation amount BE and heat supply system C 0 2 emissions BH, and a first fuel cell CO 2 generation amount B FC1 Compare. If B FC1 is equal to or less than BE + BH, proceed to step S 1 17 B, and the operation control means 19 determines the scheduled start time T, the scheduled power generation start time T 2 and the scheduled stop time T 3, and In S119B, the operation control means 19 starts the fuel cell system at the scheduled start time T1.
  • Step S 1 2 0 B the operation control means 1 9, cancels the assumption of scheduled start-up time T power scheduled start time T 2, and the scheduled stop time T 3, i.e. prohibits the startup of the fuel cell at the scheduled start-up time TI, at step S 1 2 0 B, substituting operation scheduled stop time T 3 the operation control means 1 9 at time T, II of Figure 2 subsequent to II in FIG. 8 Then, the process returns to step S4, and the subsequent steps are repeated.
  • the recovered heat is supplied together with the effect described in the second embodiment.
  • the amount of CO 2 generated in the heat supply system Will enable fuel cell systems to operate in ways that contribute to the prevention of global warming.
  • FIG. 9 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 6 of the present invention.
  • the operation control means 19 of the fuel cell system in the fourth embodiment determines the scheduled start time T i, the scheduled power generation start time T 2, and the scheduled stop time T 3 by comparing the costs. It is configured as follows. That is, the first calculating means 20 calculates the cost required when the fuel cell 13 generates and supplies the power value in the predetermined time zone of the power value data. The second calculating means 21 calculates a cost when the power system supplies a power value in a predetermined time zone of the power value data. The third calculating means 22 calculates the cost when starting up the fuel cell system such as the fuel cell 13 and the fuel generator 11. The fourth calculating means 36 calculates the cost required when the heat supply system 35 supplies heat corresponding to the heat recovered in the fuel cell system in accordance with the power value of the power value data in a predetermined time zone. Is calculated.
  • step S 1 0 in FIG. 2 after the scheduled start-up time T have power scheduled start of the fuel cell time T 2 and the scheduled stop time T 3 is assumed, the I and subsequent steps in FIG 9 subsequent to I in FIG. 2 advances, the scheduled start-up in view of the cost time T power scheduled start time T 2, and the scheduled stop time T 3 spent is determined.
  • Steps S111C to S113C are the same as those in the third embodiment, that is, steps S111C to S13C in FIG. 5, and a description thereof will be omitted.
  • Step S114C is performed according to the fourth embodiment, that is, step S1 of FIG. Same as 1 1 4 A, and description is omitted.
  • step S115C the fourth calculating means 36 calculates the heat supply system heat quantity Q GHt required when the heat supply system 35 supplies the recovered heat amount HFCt based on the heat supply system heat efficiency EH. It is calculated by equation (5). Then, based on the charge rate C GHB of the heat supply system, the cost C Ht required when the heat supply system 35 supplies H FCt is calculated by the equation ( 6C ), and C Ht is calculated from T 2. ⁇ The value integrated up to 3 is the heat supply system cost C C.
  • step S 1 1 6 C the operation control means 1 9 compares the sum of the power system cost CE and the heat supply system cost CH, a first fuel cell cost c FC 1. If C Fc i is CE + CH hereinafter proceed to step S 1 1 7 C, to determine the scheduled start-up time T have power scheduled start time T 2, and the scheduled stop time T 3, at step S 1 1 9 C, The operation control means 19 starts the fuel cell system at the scheduled start time T1.
  • Step S 1 2 0 C the operation control means 1 9, the assumption of start scheduled time T have power scheduled start time T 2, and the scheduled stop time T 3 Cancellation, that is, prohibition of starting the fuel cell at the scheduled start time T 1, and in step S 120 C, the operation control means 19 substitutes the scheduled stop time T 3 for the time T, and substitutes II in FIG. 9 for II.
  • the process returns to step S4 from II in Fig. 2 and repeats the subsequent steps.
  • the recovered heat is supplied together with the effect described in the third embodiment. Therefore, the cost of the heat supply system, which is reduced by implementing the method, can be reflected, and the fuel cell system can be operated economically.
  • FIG. 10 is a configuration diagram showing a fuel cell system according to Embodiment 7 of the present invention.
  • the same components as in Embodiment 4 are denoted by the same reference numerals. And its explanation is omitted.
  • the fuel cell system according to the present embodiment is provided with a calorific value detecting means 32 for detecting the amount of heat used in the heat load 30 instead of the electric power value detecting means 16 of the fuel cell system in FIG. Further, heat storage amount detection means 39 for detecting the amount of heat stored in the heat storage means 27 is further provided.
  • the control device 23 includes, instead of the power value storage means 17 and the power value prediction means 18, a heat value storage means 33 for storing the detected value of the heat value detection means 32, and a stored heat value predicting the amount of heat values from the history are used in heat load 3 0 H t (t heat value after partial H t), heat value predicting means 3 for storing the heat value de Isseki constituted by the heat value H t 4 and have. Further, there are provided first to fifth calculation means 20, 21, 22, 36, 40 which perform calculations based on the calorific value data and provide the calculation results to the operation control means 19. .
  • the first calculating means 20 calculates the primary energy consumed when the fuel cell 13 supplies the calorific value in a predetermined time zone of the calorific value data to the heat storage means 27.
  • the second calculating means 21 calculates the amount of electric power to be supplied to the electric load 14 when the fuel cell 13 supplies the calorific value of the calorific value data in a predetermined time zone, and the electric energy is calculated as the electric power. Calculate the amount of primary energy consumed when the grid supplies.
  • the third calculating means 22 calculates a primary energy amount consumed when starting up the fuel cell system such as the fuel cell 13 and the fuel generator 11.
  • the fourth calculation means 36 calculates a primary energy amount consumed when the heat supply system 35 supplies a heat amount value in a predetermined time zone of the heat amount value data.
  • the fifth calculation means 40 calculates the predicted value of the heat storage balance of the heat storage means 27 based on the heat storage amount of the heat storage means 27 obtained based on the detection value of the heat storage calculate.
  • FIGS. 11 and 12 are flowcharts showing the flow of control of the fuel cell system.
  • the calorific value detecting means 32 continuously detects the calorific value
  • the calorific value accumulation means 33 accumulates and stores the detected calorific value.
  • the calorific value detection means 32 detects the calorific value at one-second intervals.
  • step S204 the calorie value predicting means 34 is used by the heat load 30 by 24 hours from now on, based on the calorie value history stored in the calorie value accumulating means 33. predicting a heat value H t of 1 minute units will allo, stored as heat value data.
  • the operation control means 19 assumes a time at which the heat storage amount of the heat storage means 27 decreases as the scheduled start time T.
  • step S205 the operation control means 19 substitutes the current time TQ for the time T.
  • step S206 the fifth calculating means calculates the heat storage amount GST0 at the current time T0 based on the detection value of the heat storage amount detecting means 39 . Then, the heat storage amount G STO is substituted for the heat storage amount G st at the time T.
  • step S 2 1 the operation control means 1 9, it is assumed that power generation start scheduled time T 2, addition start required time T s (for example, for 60 minutes) at time T. Then, based on the amount of heat value data stored in the heat value predicting means 3 4, time at which the heat storage amount of the heat storage unit 2 7 becomes sufficiently rich is assumed scheduled stop time T 3.
  • step S 2 1 calculating means 4 0
  • the fifth startup heat by integrating a heat value H t of heat value data between the scheduled start-up time T 1 until the power generation start scheduled time T 2, Calculate the value H T 1 and calculate ⁇ ⁇ and ⁇ ⁇ 1 from G st Is substituted for G st .
  • step S 2 1 calculation means 4 0 5 at time T, by adding the heat recovery amount H Rt from the fuel cell to the heat storage amount G st, the amount of heat H t of the heat quantity value data at time T Subtract the heat storage amount G st .
  • step S 2 1 3 the operation control means 1 9, at time T is ⁇ heat G st to determine whether the maximum heat storage amount G Smax or more heat storage means 2 7. Y es If in Step S 2 1 4, the operation control means 1 9 are assumed to stop scheduled time T 3 down the T. If No, in step S215, the time one minute after the current time is set to T, and the process returns to step S212.
  • step S 2 1 6 A the first calculation means 2 0, when the fuel cell 1 3 supplies to power generation, between the power generation start scheduled time T 2 of the heat value data until scheduled stop time T 3 the raw material gas amount Q GFCHt necessary for power generation of the heat value H t per minute, the fuel cell 1 3, based on the heat recovery efficiency E WH of a fuel cell system including such a fuel generator 1 1 (7) It is calculated by: Then, based on the primary energy amount A GFCB per unit feed gas, between the power generation scheduled start time T 2, until scheduled stop time T 3 the fuel cell system is spent when to power and heat supply power Primary energy
  • the A F CHT calculated by (8 A) expression a value obtained by integrating A FCHt from T 2 to T 3 and the fuel cell power generation primary energy amount A FCH.
  • step S217A the third calculating means 22 calculates the primary energy amount consumed when starting the fuel cell system, and sets it as the fuel cell starting primary energy amount A FCS . Then, the operation control means 19 The fuel cell power generation primary energy amount A FCH output from the second calculation cell 22 and the fuel cell activation primary energy amount A FCS output from the third calculation means 22 are added to calculate the second fuel cell primary energy amount. A FC2 .
  • step S 2 1 8 A the fourth calculating means, the heat supply system heat Q GHt required when the amount of heat value H t is heat supply system 35 supplies, based on the heat supply system Mitsurunetsu efficiency E H Then, it is calculated by equation (9). Then, per unit amount of heat of the heat supply system based on the primary energy amount A GHB, the H t calculated by the primary energy amount A Ht heat supply system 35 is spent when supplying (1 0 A) formula, The value obtained by integrating A Ht from T 2 to T 3 is defined as the primary energy amount A ⁇ of the heat supply system.
  • step S 2 1 9 A the second calculation means 2 0, the amount of heat value H t per minute from power scheduled start time T 2 of the heat value data until scheduled stop time T 3 the fuel cell system to generate power
  • the power value W FCt to be generated is calculated by the formula (11) based on the power generation efficiency E WE, and the primary energy A Et when the power system supplies W FCt is calculated as (1 2 A) is calculated from the equation, and A Et is integrated from T 2 to T 3 to obtain the power system primary energy AE.
  • step S220A the operation control means 19 compares the sum of the power system primary energy AE and the heat supply system primary energy AH with the second fuel cell primary energy AFC2 . If A FC2 is equal to or less than A E + AH, the process proceeds to step S 2 21 A, and the operation control means 19 determines the scheduled start time T 2 and the scheduled stop time T 3 , and the step S 2 2 In 3), the operation control means 19 starts the fuel cell system at the scheduled start time Ti. On the other hand, if A FC2 is larger than A E + AH, The operation control means 19 cancels the assumption of the scheduled start time T, the scheduled power generation start time T 2 and the scheduled stop time T 3 , that is, the start of the fuel cell at the scheduled start time T 1. prohibited, and the step Te S 2 2 4 smell substitutes operation scheduled stop time T 3 the operation control means 1 9 at time T, the process returns to step S 2 0 7 from VI of Figure 1 1 subsequent to VI of FIG 2 Repeat the following steps.
  • the configuration and operation of the fuel cell system of the present embodiment can also reflect the reduced amount of primary energy in the power system during the heat follow-up operation of the fuel cell system that provides cogeneration, thereby suppressing wasteful energy consumption. As a result, the fuel cell system can be operated.
  • the fuel cell system is configured to have both the configuration of the seventh embodiment and the configuration of the fourth embodiment, and the controller 23 selects the seventh embodiment or the fourth embodiment.
  • a selection switch (not shown) can be provided. With this configuration, the heat load following operation or the power load following operation can be selected according to the use state of the fuel cell system.
  • the power value prediction means 18 and the heat value prediction means 34 can construct the power value data and the heat value value data.
  • the control device 23 is provided with selection means, and the user selects between home and absence, so that the power value storage means 17 and the calorie value storage means 33 can be at home or absence.
  • the power value and the calorific value are stored separately. This makes it possible to more accurately predict the power value and the calorific value.
  • an operation time input means (not shown) may be provided in the control device 23 so that the user can arbitrarily set the scheduled start time T, the scheduled power generation start time T 2 and the scheduled stop time T 3. good. As a result, user behavior The fuel cell system can be operated more accurately in consideration of the schedule.
  • FIG. 13 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 8 of the present invention.
  • the operation control means 1 9 scheduled start-up time T have power generation start scheduled time T 2 and stop scheduled by the Oite compared to the amount of generated C_ ⁇ 2 of a fuel cell system in the form status seventh embodiment It is configured to determine a time T 3. That is, the first calculation hand stage 2 0, the amount of heat value of the predetermined time period of heat value data fuel cell 1 3 calculates the C_ ⁇ 2 amount generated when supplying to the heat storage unit 2 7.
  • the second calculation means 21 calculates the amount of power to be supplied to the power load 14 when the fuel cell 13 supplies the calorific value during a predetermined time period of the calorific value data, and then calculates the amount of power.
  • force system calculates the C_ ⁇ 2 amount generated when supplying.
  • Third calculation means 2 2 calculates the C_ ⁇ 2 amount generated when starting the fuel cell 1 3, a fuel cell system including a fuel generator 1 1.
  • Fourth calculation means 3 6, the heat value of the predetermined time period of heat value data, the heat supply system 35 to calculate the C 0 2 weight that occur when supplying.
  • the configuration of the fuel cell system and the flow chart showing the first half of the control flow of the fuel cell system in the eighth embodiment are the same as those in FIGS. 10 and 11 of the seventh embodiment. Is omitted.
  • step S 2 16 B when the fuel cell 13 generates and supplies power, the first calculating means 20 stops from the scheduled start time T 2 of the calorific value data.
  • the source gas quantity Q GFCHt required to generate the heat value H t per minute until the scheduled time T 3 is calculated by the equation (7) based on the heat recovery efficiency E WH of the fuel cell system. Then, based on the unit raw material gas per Rino C_ ⁇ 2 generation amount B GFCB, between the power generation start scheduled time T 2, to stop pre Teijikoku T 3 and the power generation fuel cell system power supply and heat supply Calculate the amount of CO 2 generated in the case of
  • step S2177B the third calculating means 22 calculates the amount of CO 2 generated when the fuel cell system is started, and sets the calculated amount of CO 2 generated as the fuel cell startup CO F BCS . Then, the operation control means 19 generates the fuel cell power generation C ⁇ 2 output amount B pen output from the first calculation means 20 and the fuel cell activation CO 2 generation output from the third calculation means 22. The amount B res is added to the second fuel cell CO 2 generation amount B FC2 .
  • step S 2 1 8 B the fourth calculating means, the heat supply system heat Q GHt required when the amount of heat value H t is heat supply system 35 supplies, based on the heat supply system Mitsurunetsu efficiency E H Then, it is calculated by equation (9). Based on C_ ⁇ 2 generation amount B GHB per unit heat of the heat supply system 35, the H t heat supply system integration 35 occur when supplying C_ ⁇ 2 weight 8 Ht a (1 0 B ) Formula, and the value obtained by integrating B Ht from T 2 to T 3 is defined as 8 H of CO 2 generated in the heat supply system.
  • step S 2 1 9 B the second calculating means, and the amount of heat value H t per minute from power generation scheduled start time T 2 of the heat value data until scheduled stop time T 3 the fuel cell system to generate power
  • the power value W pet to be generated is calculated from the power generation efficiency E WE by the formula (11), and the C ⁇ ⁇ 2 generation amount B Et when W FCt is supplied by the power system is ( It is calculated from the formula 1 2 B), and B Et is integrated from T 2 to T 3 to obtain the power system CO 2 emission BE.
  • step S 2 2 0 B the operation control means 1 9 compares the sum of the power system C_ ⁇ 2 generation amount BE and heat supply system C 0 2 emissions BH, and a fuel cell system CO 2 generation amount B FC2 . If B FC2 is less than B E + BH, Proceeding to step S 2 2 1 B, the operation control means 19 determines the scheduled start time T, the scheduled power generation start time T 2 and the scheduled stop time T 3 , and in step S 2 2 3 ⁇ , the operation control means 1 9 starts the fuel cell system at the scheduled start time ⁇ 1.
  • step S 2 2 2 beta the operation control means 1 9, cancels the scheduled start-up time power generation start scheduled time T 2 and scheduled stop time T 3 assumptions, That is, the start of the fuel cell at the scheduled start time ⁇ ⁇ is prohibited, and in step S 2 24 B, the operation control means 19 substitutes the scheduled stop time T 3 into the time T, and continues to VI in FIG. 13 Return to step S207 from the VI in Fig. 11, and repeat the subsequent steps.
  • the configuration and operation of the fuel cell system of the present embodiment at the time of heat-following operation of the fuel cell system for the cogeneration, also can reflect C_ ⁇ 2 generation amount of the power system to be reduced, thus global warming It is possible to operate the fuel cell system in a manner that contributes to the prevention of energy conversion.
  • FIG. 14 is a flowchart showing the latter half of the control flow of the fuel cell system according to Embodiment 9 of the present invention.
  • the operation control means 1 9 of a fuel cell system in the form status seventh embodiment determines the scheduled start-up time T i, the power generation start scheduled time T 2, and the scheduled stop time T 3 to the compare in cost It is configured as follows. That is, the first calculating means 20 calculates the cost required when the fuel cell 13 supplies the heat value in the predetermined time zone of the heat value data to the heat storage means 27.
  • the second calculating means 21 calculates the amount of power supplied by the fuel cell 13 to the power load 14 when the fuel cell 13 supplies the calorific value of the calorific value data in a predetermined time zone, Calculate the cost when the electric power is supplied by the power system.
  • the third calculating means 22 calculates the cost required for starting the fuel cell system such as the fuel cell 13 and the fuel generating device 11.
  • the fourth calculating means 36 calculates the cost value when the heat supply system 35 supplies the calorific value of the calorific value data in a predetermined time zone.
  • the configuration of the fuel cell system and the flow chart showing the first half of the control flow of the fuel cell system in the ninth embodiment are the same as those in FIGS. 10 and 11 of the seventh embodiment. Is omitted.
  • step S 2 16 C the first calculating means 20 stops at the scheduled start time T 2 of the calorific value data when the fuel cell 13 generates and supplies the power.
  • the source gas quantity Q GFCHt required to generate the heat value H t per minute until the scheduled time T 3 is calculated by the equation (7) based on the heat recovery efficiency E WH of the fuel cell system.
  • step S217C the third calculating means 22 calculates the cost required to start the fuel cell system, and sets the calculated cost as the fuel cell starting cost CFCS. Then, the operation control means 19 adds up the fuel cell power generation cost C FCH output from the first calculation means 20 and the fuel cell activation cost C FCS output from the third calculation means 22 . And the second fuel cell cost C FC2 .
  • step S 2 1 8 C the fourth calculating means, the heat supply system heat Q GHt required when the amount of heat value H t is heat supply system 35 supplies, based on the heat supply system Mitsurunetsu efficiency EH It is calculated by equation (9). Then, based on the metered rate C GHB of the heat supply system, the cost C Ht required to supply H t by the heat supply system 35 is calculated by equation (10 C), and C Ht is calculated from T 2 to T 3 The value integrated up to this point is defined as heat supply system cost C C.
  • step S 2 1 9 C the second calculating means, and the amount of heat value H t per minute from power generation scheduled start time T 2 of the heat value data until scheduled stop time T 3 the fuel cell system to generate power
  • the power value W pet to be generated is calculated by the formula (11) based on the power generation efficiency E WE, and the cost C Et when the power system supplies W FCt is calculated as (12 C ) was calculated from the equation, the power system cost C E by integrating the C Et from T 2 to T 3.
  • step S220C the operation control means 19 determines the power system cost.
  • step S223C the operation control means 19 starts the fuel cell system at the scheduled start time ⁇ 1.
  • C FC2 is larger than C ⁇ + C ⁇ ⁇
  • the process proceeds to step S2 2 2 C, and the operation control means 19 assumes the start time ⁇ the power generation start time ⁇ 2 and the stop time ⁇ 3 Cancel, ie scheduled start time ⁇ !
  • step S2224C the operation control means 19 substitutes the scheduled operation stop time ⁇ 3 into the time ⁇ , and the step from the VI in FIG. 11 following the VI in FIG. Return to S207 and repeat the subsequent steps.
  • the cost of the power system to be reduced can be reflected during the heat following operation of the fuel cell system that performs cogeneration, and the fuel cell system can be made more economical. It will be possible to drive.
  • FIG. 15 is a configuration diagram showing a fuel cell system according to Embodiment 10 of the present invention.
  • the same components as those in the fourth embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the fuel cell system according to the present embodiment is the fuel cell system shown in FIG.
  • a temperature detecting means for directly or indirectly detecting the temperature of a portion that limits the start of the fuel cell is provided at the time of starting the fuel cell.
  • a fuel generation device temperature detecting means 41 of the fuel generation device 11 is provided.
  • the same effect can be obtained by providing the fuel cell 13 with a fuel cell temperature detecting means.
  • FIG. 16 is a flowchart showing the first half of the control flow of the fuel cell system.
  • steps S301 to S308 are the same as those in the first embodiment, that is, steps S1 to S6 in FIG. 2, and a description thereof will be omitted.
  • the third calculating means 22 determines the startup mode based on the detected temperature KQ detected by the fuel generating apparatus temperature detecting means 41 at the current time TQ.
  • the short-time start mode is set.
  • the temperature at the scheduled start time T1 of the fuel generation device 11 and the fuel cell 13 is estimated from the heat release amount, which is a function of the outside air temperature and the time from the current time T0 to the scheduled start time T1. It is possible. Therefore, the determination of the start-up mode, the scheduled start-up time the temperature of the fuel generator equipment 1 1 in T 1 inferred using those functions so as to compare (startup temperature) K 1 and the predetermined temperature K F May be.
  • a start mode correspondence table in which the temperature difference between the detected temperature K 0 and the outside air temperature and the time from the current time T 0 to the scheduled start time T 1 are variables is created in advance and stored in the third calculating means 22.
  • the third calculation means may select the start mode from the start mode correspondence table.
  • the third calculating means 22 may calculate the required start-up time T s based on the temperature difference between the start-up temperature K 1 and the temperature required at the start of power generation (the temperature at the start of power generation) K 2. It may be.
  • step S 3 1 0- 1 the operation control means 1 9, preset according to each startup mode has been activated duration T s (e.g., long-term activation mode In addition 6 0 minutes when de, the short-term start-up mode for 30 minutes) to the time T, it is assumed that the power generation scheduled start time T 2.
  • duration T s e.g., long-term activation mode In addition 6 0 minutes when de, the short-term start-up mode for 30 minutes
  • step S310-2 the operation control means 19 substitutes the scheduled power generation start time T2 for T.
  • step S310-3 the operation control means 19 sets the predetermined time X! (E.g., 30 minutes) Yi% or more (e.g., 80%, 24 or more) of the power value W t (30 from W T to W ⁇ + 30) until after the minimum power generation of the fuel cell system It is determined whether the quantity is not less than W min . If yes, go to step S311. If N o, in step S 3 1 0 _ 4, from Ding - the (startup required time T s 1 minute) before the time is T, the flow returns to step S 3 0 6. Steps S311 to S313 are the same as those in the first embodiment, that is, steps S8 to S10 in FIG. 2, and a description thereof will be omitted.
  • X! E.g., 30 minutes
  • Yi% or more e.g., 80%, 24 or more
  • step S 1 1 2 A the third calculation means 2 2, depending on the startup required time T s or bootstrap mode, calculate or determine the primary energy amount expended when starting the fuel cell system And the fuel cell starting primary energy amount A FCS .
  • step S of the fifth i.e. Figure 8 embodiment
  • the scheduled start time ⁇ the long scheduled power generation start time T 2 and the scheduled stop time T 3 may be determined in consideration of the amount of generated C ⁇ 2 .
  • the third calculation means 2 depending on the starting plant essential time T s or start mode, the amount of CO 2 generated when starting the fuel cell system is calculated or Determined, fuel cell start-up CO 2 generation amount B FCS .
  • Te step smell after VII in FIG. 1 7, step S of the sixth, namely 9 embodiment 1 by 1 1 C to the same operation as S 1 2 0 C, have scheduled start-up time T in consideration of the cost power generation start pre Teijikoku T 2 and scheduled stop time T 3 may be determined.
  • the third calculation means 2 depending on the startup required time T s or start mode, calculates or determines the cost of the time of starting the fuel cell system, Fuel cell startup cost C FCS .
  • the required start-up time T s and the fuel cell start-up cost C FCS are predicted and calculated according to the temperature state of the fuel cell system.
  • the system can be operated more economically.
  • control device means not only a single control device but also a group of control devices in which a plurality of control devices execute control in cooperation. Therefore, The control device 23 does not need to be constituted by a single control device, and even if a plurality of control devices are arranged in a distributed manner and cooperate with each other to control the operation of the fuel cell system. Good.
  • power generation efficiency E WE heat recovery efficiency E WH
  • primary energy amount per unit raw material gas A G FCB primary energy amount per unit electric power A EB> C 0 2 generation amount per unit raw gas B GFCB , unit electric power C_ ⁇ 2 generation amount B per
  • the primary energy amount A GFCB per unit raw material gas may be A EB , a weight unit per oil conversion, or a calorie unit.
  • CO 2 emissions per unit feed gas B GFCB may be a weight unit or a calorie unit per petroleum equivalent.
  • the power value accumulating means 17 and the calorific value accumulating means 33 require the power value and the calorific value value to be stored. Need to accumulate. This accumulation usually requires a period of about one month from the second half of the month when the detection of the electric power value and the calorific value starts, so that the operation control means calculates the scheduled start time T i, the scheduled power generation start time T 2, and the scheduled stop time T 3 . The decision is made about half a month to one month after the installation of the fuel cell system. Alternatively, before installing the fuel cell system, And the calorific value may be detected in advance, and the history thereof may be stored in the electric power value accumulating means 17 and the calorific value accumulating means 33 in advance.
  • the present invention is useful as a fuel cell system and a fuel cell cogeneration system that can operate with consideration for energy resources, environmental load, or economy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明の燃料電池システムは、燃料電池(13)と、燃料電池システムの供給対象(14)が発生させる電力又は熱の負荷の負荷値を検出する負荷値検出手段(16)と、負荷値検出手段(16)によって検出される前記負荷値の履歴を記憶する負荷値蓄積手段(17)と、前記負荷値の履歴に基づいて、今後発生しうる負荷値を予測して、その予測負荷値を負荷値データとして記憶する負荷値予測手段(18)と、前記負荷値データに基づいて、燃料電池(13)の起動予定時刻を決定する、燃料電池システムである。

Description

明 細 書
燃料電池システム
〔技術分野〕
本発明は、 燃料電池を用いて発電を行う燃料電池システムに関する。 〔技術背景〕
従来の燃料電池システムとしては、 経済的に発電運転を行うため、 電 力負荷や熱負荷の状況に応じて運転を変更するものがあった。 例えば、 電力負荷で必要とする電力を供給する場合に、 その電力を燃料電池が発 電するために要するコス トと電力系統が供給するために要するコス ト を比較して、 燃料電池が供給するか否かを判断して燃料電池の運転の是 非を判断する燃料電池システムが記載されている (例えば、 特開 2 0 0 2 - 1 9 0 3 0 8号公報) 。
図 1 7は、 特開 2 0 0 2— 1 9 0 3 0 8号公報に記載された従来の燃 料電池システムを示すものである。 図 1 7 において、 燃料生成装置 1 1 は、 天然ガスなどの原料を水蒸気を含む雰囲気下で改質反応を行い水素 を含む燃料ガスを生成し、 燃料電池 1 3 に供給する。 燃料電池 1 3は、 燃料生成装置 1 1から供給された燃料ガスと酸化剤供給手段 1 2 によ り供給された空気などの酸化剤ガスとの電気化学反応により電力を発 生させる。 発生した電力は、 電力供給手段 1 5により電力負荷 1 4に供 給される。 電力値検出手段 1 6は、 電力負荷 1 4で使用される電力を検 出し、 制御装置 2 3は、 検出された電力を燃料電池 1 3が発電し供給す る場合のコス 卜と電力系統が供給する場合のコス 卜とを比較し、 安い電 力供給源を判定する。 燃料電池 1 3が発電する場合の方が安ければ、 電 力供給手段 1 5は電力負荷 1 4に燃料電池 1 3から電力を供給する。 他方で、 燃料電池システムは、 発電を開始するまでに燃料電池などを 含む各部の温度を発電可能な温度まで上げる必要があり、 そのためのェ ネルギ一が必要となる。 しかしながら、 上記のような従来の燃料電池シ ステムでは、 起動に必要とされるエネルギーが考慮されておらず、 起動 及び停止の回数が多い場合には実際のコス 卜と算出されるコス トとの 乖離が大きくなるという問題があつた。
〔発明の開示〕
本発明は、 起動に係るエネルギーを考慮して合理的に燃料電池を運転 させる燃料電池システムを提供することを目的としている。
上記目的を達成するために、 第 1の本発明の燃料電池システムは、 燃料 電池と、 燃料電池システムの供給対象が発生させる電力又は熱の負荷の 負荷値を検出する負荷値検出手段と、 前記負荷値検出手段によって検出 される前記負荷値の履歴を記憶する負荷値蓄積手段と、 前記負荷値の履 歴に基づいて、 今後発生しうる負荷値を予測して、 その予測負荷値を負 荷値データとして記憶する負荷値予測手段と、 前記負荷値データに基づ いて、 前記燃料電池の起動予定時刻を決定する、 燃料電池システムであ る。 これによつて、 燃料電池システムは、 電力供給対象の電力負荷を予 測して起動予定時刻を決定することができるので、 省エネルギー、 地球 温暖化の防止及び経済性の面で有利な場合に燃料電池を運転する燃料電 池システムを提供することができる。 ここで、 燃料電池の起動には、 燃 料電池自体のみならず燃料電池の起動に必要な諸設備、 例えば、 燃料生 成装置、 酸化剤供給手段等の起動も含まれる。
第 2の発明は、 前記負荷値は、 前記燃料電池システムの電力供給対象 の電力負荷である電力値であり、 前記負荷値データが電力値デ一夕であ る、 燃料電池システムである。
第 3の発明は、 電力供給に費やされる一次エネルギー量、 それによつ て発生する二酸化炭素量、 あるいはそれに費やされるコス 卜のいずれか を算出する算出手段をさらに備え、 前記算出手段が、 所定の時間帯の前 記電力値データに基づいて、 前記燃料電池によって電力供給をする場合 と電力系統によって電力供給をする場合とにおける、 それぞれの前記一 次エネルギー量、 前記二酸化炭素量あるいは前記コス 卜のいずれかを算 出し、 前記算出手段による算出値を比較し、 前記電力系統によって電力 供給をする場合の方が算出値が大きい場合には、 前記時間帯の開始時刻 を前記起動予定時刻として決定する、 燃料電池システムである。
第 4の発明及び第 1 6の発明は、 前記算出手段は、 前記燃料電池の起 動に費やされる一次エネルギー量、それによつて発生する二酸化炭素量、 あるいはそれに費やされるコス トのいずれかを考慮して、 前記燃料電池 によって電力供給、 あるいは電力供給及び熱供給をする場合における電 力供給、 あるいは電力供給及び熱供給に費やされる一次エネルギー、 そ れによって発生する二酸化炭素量、 あるいはそれに費やされるコス卜の いずれかを算出する、 燃料電池システムである。 また、 第 5の発明及び 第 1 7の発明は、 前記算出手段は、 前記燃料電池の温度に基づいて、 前 記燃料電池の起動に費やされる一次エネルギー量、 それによつて発生す る二酸化炭素量、 あるいはそれに費やされるコストのいずれかを算出す る、 燃料電池システムである。 これによつて、 燃料電池システムは、 燃 料電池の起動から発電開始までに費やされる一次エネルギー等を予測す ることができるので、 より的確な運転の判断を行う燃料電池システムを 提供することができる。
第 6の発明及び第 1 8の発明は、 原料から水素を含む燃料を生成する燃 料生成装置をさらに備え、 前記算出手段は、 前記燃料電池の起動に費や される一次エネルギー量、 それによつて発生する二酸化炭素量、 あるい はそれに費やされるコス トのいずれかを考慮して、 前記燃料電池によつ て電力供給、 あるいは電力供給及び熱供給をする場合における電力供給 あるいは電力供給及び熱供給に費やされる一次エネルギー、 それによつ て発生する二酸化炭素量、 あるいはそれに費やされるコストのいずれか を算出する燃料電池システムである。 また、 第 7の発明及び第 1 9の発 明は、 前記算出手段は、 前記燃料生成装置の温度に基づいて、 前記燃料 電池の起動に費やされる一次エネルギー量、 それによつて発生する二酸 化炭素量、 あるいはそれに費やされるコストのいずれかを算出する、 燃 料電池システムである。 これによつて、 燃料電池システムは、 燃料生成 装置の暖機も含めて、 燃料電池の起動から発電開始までに費やされる一 次エネルギー等を予測することができるので、 より的確な運転の判断を 行う燃料電池システムを提供することができる。
第 8の発明及び第 2 0の発明は、 入力手段をさらに備え、 前記入力手 段によって、 前記算出手段の算出項目を一次エネルギー、 二酸化炭素あ るいはコストから選択することができる、 燃料電池システムである。 こ れによって、 使用者が選好して燃料電池システムの動作を切り換えるこ とができるので、 使用者の省エネルギー、 地球温暖化の防止及び経済性 の面への関心を呼び起こすことができる。
第 9の発明及び第 2 1の発明は、 表示手段をさらに備え、 前記算出手 段の算出値を用いて、 前記燃料電池によって電力供給、 あるいは電力供 給及び熱供給をする場合と、 電力系統によって電力供給、 あるいは電力 系統及び外部の熱供給手段によって電力供給及び熱供給をする場合とに おける一次エネルギー、 二酸化炭素量あるいはコストのいずれかの差分 を算出し、 前記表示手段が、 その差分を表示する、 燃料電池システムで ある。 これによつて、 使用者は、 省エネルギー、 地球温暖化の防止ある いは経済性を具体的な数字によって認知できるので、 使用者の省エネル ギー、 地球温暖化の防止及び経済性の面への関心を呼び起こすことがで さる。
第 1 0の発明は、 前記燃料電池の排熱を回収して蓄える蓄熱手段と、 前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段とをさらに備え、 前 記算出手段は、 前記時間帯の前記電力値データに基づいて、 前記蓄熱手 段によって回収される熱量と、 該熱量が外部の熱供給手段によって供給 される場合において該熱量の供給に費やされる一次エネルギー、 それに よって発生する二酸化炭素量、 あるいはそれに費やされるコストのいず れかとをさらに算出することによって、 前記燃料電池によって電力供給 及び熱供給をする場合と電力系統及び外部の熱供給手段によって電力供 給及び熱供給をする場合とにおける、それぞれの前記一次エネルギー量、 前記二酸化炭素量あるいは前記コス 卜のいずれかを算出し、 前記算出手 段による算出値を比較し、 前記電力系統及び外部の熱供給手段によって 電力供給及び熱供給をする場合の方が算出値が大きい場合には、 前記時 間帯の開始時刻を前記起動予定時刻として決定する、 燃料電池システム である。 これによつて、 熱電併給をする燃料電池システムにおいても、 燃料電池の起動から停止までが省エネルギー、 地球温暖化の防止及び経 済性の面で有利な場合に燃料電池を運転する燃料電池システムを提供す ることができる。
第 1 1 の発明は、 前記起動予定時刻は、 所定の更新時間毎に更新され る、 燃料電池システムである。 これによつて、 定期的に動作の適否が判 断されるので、 より的確な運転の判断を行う燃料電池システムを提供す ることができる。
第 1 2の発明は、 表示手段をさらに備え、 前記表示手段は、 前記起動 予定時刻を表示する、 燃料電池システムである。 これによつて、 使用者 は、 燃料電池の起動停止を把握できるので、 使用者の省エネルギー、 地 球温暖化の防止及び経済性の面への関心を呼び起こすことができる。 第 1 3の発明は、 前記表示手段は、 過去の運転履歴を表示する、 燃料 電池システムである。 これによつて、 使用者は、 燃料電池の起動及び停 止を把握できるので、 使用者の省エネルギー、 地球温暖化の防止及び経 済性の面への関心を呼び起こすことができる。
第 1 4の発明は、 前記燃料電池の排熱を回収して蓄える蓄熱手段と、 前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段と、 前記蓄熱手段の 蓄熱量を検出する蓄熱量検出手段とをさらに備え、 前記負荷値は、 前記 燃料電池システムの熱供給対象の熱負荷である熱量値である、 燃料電池 システムである。 これによつて、 熱電併給をする燃料電池システムが熱 負荷に追従して燃料電池を運転する場合においても、 燃料電池の起動か ら停止までが省エネルギー、 地球温暖化の防止及び経済性の面で有利な 場合に燃料電池を運転する燃料電池システムを提供することができる。 第 1 5の発明は、熱供給及び電力供給に費やされる一次エネルギー量、 それによつて発生する二酸化炭素量、 あるいはそれに費やされるコスト のいずれかを算出する算出手段をさらに備え、 前記算出手段が、 所定の 時間帯の前記熱量値データに基づいて、 前記燃料電池によって電力供給 及び熱供給をする場合と電力系統及び外部の熱供給手段によって電力供 給及び熱供給をする場合とにおける、それぞれの前記一次エネルギー量、 前記二酸化炭素量あるいは前記コス卜のいずれかを算出し、 前記算出手 段による算出値を比較し、 前記電力系統及び外部の熱供給手段によって 電力供給及び熱供給をする場合の方が算出値が大きい場合には、 前記時 間帯の開始時刻を前記起動予定時刻として決定する、 燃料電池システム である。
第 2 2の発明は、 前記燃料電池の排熱を回収して蓄える蓄熱手段と、 前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段と、 前記蓄熱手段の 蓄熱量を検出する蓄熱量検出手段と、 選択手段とをさらに備え、 前記選 択手段によって、 前記負荷値を、 前記燃料電池システムの熱供給対象の 熱負荷である熱量値、 あるいは前記燃料電池システムの電力供給対象の 電力負荷である電力値から選択し、 該選択によって前記負荷値データが 電力値データあるいは熱量値データのいずれかから選択される、 燃料電 池システムである。 これによつて、 燃料電池システムの使用状況に応じ て、熱負荷追従運転あるいは電力負荷追従運転を選択することができる。 第 2 3の発明は、 前記負荷値蓄積手段は、 在宅時及び留守時を区別し て前記負荷値を蓄積し、 前記選択手段によって、 前記燃料電池の起動予 定時刻の決定を、 在宅時における前記電力値データに基づく決定と、 留 守時における前記電力値データに基づく決定と、 在宅時における前記熱 量値データに基づく決定と、 留守時における前記熱量値データに基づく 決定とから任意に選択することができる、 燃料電池システムである。 こ れによって、 電力値及び熱量値の予測をより的確にすることができる。 第 2 4の発明は、 前記燃料電池の起動予定時刻を任意に設定すること ができる運転時刻設定手段をさらに備える、 燃料電池システムである。 これによつて、 使用者の行動予定も考慮して燃料電池の起動を設定する ことができるので、 より的確に燃料電池システムを運転させることがで きる。
本発明の上記目的、 他の目的、特徴、 及び利点は、添付図面参照の下、 以下の好適な実施態様の詳細な説明から明らかにされる。
〔図面の簡単な説明〕
図 1 は、 本発明の実施の形態 1 による燃料電池システムの構成図であ る。
図 2 は、 本発明の実施の形態 1 による燃料電池システムの制御の流れ の前半部を示すフローチャー卜である。
図 3は、 本発明の実施の形態 1 による燃料電池システムの制御の流れ の後半部を示すフローチャー トである。
図 4は、 本発明の実施の形態 2による燃料電池システムの制御の流れ の後半部を示すフローチャー トである。
図 5は、 本発明の実施の形態 3による燃料電池システムの制御の流れ の後半部を示すフローチャートである。
図 6は、 本発明の実施の形態 4による燃料電池システムの構成図であ る。
図 7は、 本発明の実施の形態 4による燃料電池システムの制御の流れ の後半部を示すフローチャートである。
図 8は、 本発明の実施の形態 5による燃料電池システムの制御の流れ の後半部を示すフローチャートである。
図 9は、 本発明の実施の形態 6による燃料電池システムの制御の流れ の後半部を示すフローチャー トである。
図 1 0は、 本発明の実施の形態 7による燃料電池システムの構成図で ある。
図 1 1 は、 本発明の実施の形態 7 による燃料電池システムの制御の流 れの前半部を示すフローチヤ一トである。
図 1 2は、 本発明の実施の形態 7による燃料電池システムの制御の流 れの後半部を示すフローチヤ一トである。
図 1 3は、 本発明の実施の形態 8による燃料電池システムの制御の流 れの後半部を示すフローチャートである。
図 1 4は、 本発明の実施の形態 9による燃料電池システムの制御の流 れの後半部を示すフローチヤ一卜である。
図 1 5は、 本発明の実施の形態 1 0による燃料電池システムの構成図 である。
図 1 6は、 本発明の実施の形態 1 0による燃料電池システムの制御の 流れの前半部を示すフローチャートである。
図 1 7は、 従来の燃料電池システムの構成図である。
〔発明を実施するための最良の形態〕
以下、 本発明の実施の形態を、 図面を参照しながら説明する。
(実施の形態 1 )
図 1は、 本発明の実施の形態 1 における燃料電池システムを示す構成 図である。 本実施の形態における燃料電池システムは、 天然ガスなどの 原料から水素を含む燃料ガスを生成する燃料生成装置 1 1 と、 酸化剤を 供給する酸化剤供給手段 1 2 と、 燃料生成装置 1 1から供給される燃料 ガスと酸化剤供給手段 1 2から供給される空気などの酸化剤ガスとの 電気化学反応により電力と熱を発生させる燃料電池 1 3 と、 燃料電池 1 3で発生した電力をエアコンや冷蔵庫などの電力負荷 1 4に供給する 電力供給手段 1 5 と、 電力負荷 1 4で使用する電力を検出する電力値検 出手段 1 6 と、 燃料電池システムの動作を制御する制御装置 2 3 とで構 成されている。
電力供給手段 1 5は、 インバーター、 開閉器などによって構成されて いる。
制御装置 2 3は、 電力値検出手段 1 6の検出値を蓄積する電力値蓄積 手段 1 7と、 記憶された電力値の履歴から電力負荷 1 4で使用される電 力値 W t ( t分後の電力値 W t) を予測し、 その電力値 W tによって構成 される電力値データを記憶する電力値予測手段 1 8と、 運転制御手段 1 9と、 表示手段 4 2とを有する。 ここで、 燃料電池 1 3の起動には、 燃 料電池 1 3自体のみならず燃料電池の起動に必要な諸設備、 例えば、 燃 料生成装置 1 1、 酸化剤供給手段 1 2等も含まれる。
運転制御手段 1 9は、 電力値予測手段 1 8により記憶された電力値デ 一夕に基づいて燃料電池の起動予定時刻 Tい発電開始予定時刻 T 2及び 停止予定時刻 T 3を決定するとともに、 これら時刻 Τ 1 T 2及び T 3に 基づいて、 燃料電池 1 3を起動、 発電開始及び停止させる。
さらに、 ここでは、 制御装置 2 3は、 電力値データに基づく演算を行 つて演算結果を運転制御手段 1 9に提供する算出手段 2 0、 2 1、 2 2 を備えている。 第 1の算出手段 2 0は、 電力値データの所定の時間帯の 電力値を燃料電池 1 3により発電して供給する場合に費やされる一次 エネルギー量を算出する。 第 2の算出手段 2 1は、 電力値データの所定 の時間帯の電力値を電力系統が供給する場合に費やされる一次エネル ギー量を算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料生成装 置 1 1など燃料電池システムを起動する際に費やされる一次エネルギ 一量を算出する。
また、 運転制御手段 1 9は、 タイマ一 (図示せず) を備え、 所定の更 新時間毎に、 運転制御手段 1 9が、 起動予定時刻 Τい 発電開始予定時 刻 Τ 2および停止予定時刻 Τ 3を更新するように動作させる。これによつ て、 定期的に動作の適否が判定されるので、 より的確な燃料電池システ ムの動作を実現することができる。
表示手段 4 2は、 運転制御手段 1 9に設定されている起動予定時刻 Τ い 発電開始予定時刻 Τ 2および停止予定時刻 Τ 3を表示する。 さらに、 表示手段 4 2は、 電力値蓄積手段 1 7に蓄積されている電力値の履歴の 中から、 過去の発電開始予定時刻 Τ 2および停止予定時刻 Τ 3の間、 すな わち燃料電システムの発電による電力値履歴を表示する。 さらに、 表示 手段 4 2は、 後述するステツプ S 1 4 A、 S 1 4 Bあるレ ま S 1 4 Cに おいて比較される値の間の差分を運転制御手段 1 9が演算し、 その演算 結果を表示する。 これによつて、 使用者のエネルギー資源、 環境負荷あ るいは経済性への関心を呼び起こすことができる。
制御装置 2 3内は、 例えばマイコンで構成されている。 そして、 制御 装置 2 3が有する各手段 1 7乃至 2 2は、 このマイコンの内部メモリに 格納された所定のプログラム (以下時刻決定プログラムという) を C P Uが実行することによって実現される。 そして、 この時刻決定プロダラ ムの実行において、 必要なデ一夕は、 例えば、 マイコンの内部メモリに 記憶される。
以上のように構成された本実施の形態について、 燃料電池の起動を開 始するまでの動作を説明する。 図 2および図 3は燃料電池システムの制 御の流れ、 すなわち時刻決定プログラムの内容を示すフローチヤ一卜で ある。
図 2に示すように、 ステップ S 1 において、 電力値検出手段 1 6は、 継続的に電力値を検出し、 電力値蓄積手段 1 7が、 その検出された電力 値を蓄積して記憶する。 ここでは、 電力値検出手段 1 6は、 1秒間隔毎 に電力値を検出する。
ステップ S 2において、 電力値予測手段 1 8は、 電力値蓄積手段 1 7 に蓄積された電力値の履歴に基づいて、 今後 2 4時間先までに電力負荷 1 4で使用されるであろう 1分単位の電力値 W tを予測して、 電力値デ 一夕として記憶する。
次に、 運転制御手段 1 9は、 電力値予測手段 1 8に記憶されている電 力値データに基づいて、 所定の値、 ここでは燃料電池 1 3の最低発電量 W minより高い電力値が多く分布する時間帯を選定する。
ここでは、 ステップ S 3において、 運転制御手段 1 9が、 時刻 Tに現 在時刻 T 0を代入する。 ステップ S 4において、 運転制御手段 1 9が、 Tから所定時間 X 1 (例 えば 3 0分間)後までの電力値 W t ( W T〜W τ+30までの 3 0個)の Y i % 以上 (例えば 8 0 %、 2 4個以上) が燃料電池システムの最低発電量 W min以上であるかどうかを判定する。 Y e sならばステップ S 5で、 T を起動予定時刻 T 1と仮定する。 N oならば、 ステップ S 6で、 丁から 1分後の時刻を Tとし (T = T + 1 min) 、 ステップ S 4に戻る。
ステップ S 7— 1では、 運転制御手段 1 9が、 起動所要時間 T s (例 えば 6 0分間) を時刻 Tに加え発電開始予定時刻 T 2と仮定する。
ステップ S 7— 2において、 運転制御手段 1 9が、 Tに発電開始予定 時刻 τ 2を代入する。
ステップ S 7 _ 3において、 運転制御手段 1 9が、 Tから所定時間 X ! (例えば 3 0分間) 後までの電力値 W t ( W T〜W τ+30までの 3 0個) の Y i %以上 (例えば 8 0 %、 2 4個以上) が燃料電池システムの最低 発電量 W min以上であるかどうかを判定する。 Y e sならばステップ S 8に進む。 N oならば、 ステップ S 7— 4で、 丁から (起動所要時間 T s— 1分) 前の時刻を Tとし、 ステップ S 4に戻る。
ステップ S 8では、 運転制御手段 1 9が、 Tから所定時間 X 2 (例え ば 6 0分間) 後までの電力値 W t ( W T〜W τ +6οまでの 6 0個) の Υ 2 % 以上 (例えば 8 0 %、 4 8個以上) が燃料電池システムの最低発電量 W min未満であるかどうかを判定する。 Y e sならばステップ S 9で、 T を停止予定時刻 T 3と仮定する。 N oならば、 ステップ S 1 0で、 Tか ら 1分後の時刻を Tとし、 ステップ S 8に戻る。
以上のようにして、 燃料電池の起動予定時刻 T 発電開始予定時刻 T 2および停止予定時刻 T 3が仮定された後、 図 2の I に続く図 3の I 以降のステップに進み、 消費される一次エネルギー量を考慮して起動予 定時刻 T i、発電開始予定時刻 T 2および停止予定時刻 T 3が決定される。 ステップ S 1 1 Aにおいて、 第 1の算出手段 2 0は、 燃料電池 1 3が 発電して供給する場合に、 電力値データの発電開始予定時刻 T 2から停 止予定時刻 T 3までの間の 1分ごとの電力値 w tの発電に必要な原料ガ ス量 Q GFCEtを、 燃料電池 1 3、 燃料生成装置 1 1などを含めた燃料電 池システムの発電効率 E WE に基づいて ( 1 ) 式により算出する。 そし て、 単位原料ガス当たりの一次エネルギー量 A GFCBに基づいて、 発電開 始予定時刻 T 2から停止予定時刻 T 3までの間を燃料電池システムが発 電して電力供給する場合に費やされる一次エネルギー量 A FCEt を ( 2 A ) 式により算出し、 A FCEtを T 2から T 3まで積算した値を燃料電池 発電一次エネルギー量 A FCEとする。
Q GFCEt = W t / E WE ( 1 )
A F CE t = Q GF CEt · A GFCB ( 2 A )
ステップ S 1 2 Aにおいて、 第 3の算出手段 2 2は、 燃料電池システ ムを起動する際に費やされる一次エネルギー量を算出し、 燃料電池起動 一次エネルギー量 A FCSとする。 そして、 運転制御手段 1 9が、 第 1の 算出手段 2 0から出力された燃料電池発電一次エネルギー量 A FCEと第 3の算出手段 2 2から出力された燃料電池起動一次エネルギー量 A pes とを合計して第 1の燃料電池一次エネルギー量 A FC1とする。
ステップ S 1 3 Aにおいて、 第 2の算出手段 2 1が、 電力系統の単位 電力当たりの一次エネルギー量 A EBに基づいて、電力値デ一夕の発電開 始予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの電力値 W t を電力系統が供給する場合に費やされる一次エネルギー量 A Et を ( 3 A ) 式により算出し、 A Etを T 2から T 3まで積算した値を電力系統一 次エネルギー量 A Eとする。
A Et = W t - A EB ( 3 A )
ステップ S 1 4 Aにおいて、 運転制御手段 1 9が、 第 1の燃料電池一 次エネルギー量 A Fc iと電力系統一次エネルギー量 A Eとを比較する。 第 1の燃料電池一次エネルギー量 A FC Iが電力系統一次エネルギー量 A E以下ならば、 ステップ S 1 5 Aに進み、 起動予定時刻 T 発電開始予 定時刻 T 2および停止予定時刻 T 3を決定し、 ステップ S 1 7 Aにおい て、 運転制御手段 1 9が起動予定時刻 T iに燃料電池システムを起動す る。 他方、 第 1の燃料電池一次エネルギー量 A FC1が電力系統一次エネ ルギー量 A Eより大きければ、 ステップ S 1 6 Aに進み、 運転制御手段 1 9は、 起動予定時刻 T 1 , 発電開始予定時刻 T 2および停止予定時刻 T 3の仮定を取り消し、すなわち起動予定時刻 T 1における燃料電池の起動 を禁止し、 ステップ S 1 8 Aにおいて運転制御手段 1 9が時刻 Tに運転 停止予定時刻 T 3を代入し、 図 3の I I に続く図 2の I Iからステップ S 4に戻り、 以降のステップをく り返す。
以上により、 燃料電池の起動時において費やされる一次エネルギー量 も含めた燃料電池システムによって消費される一次エネルギー量と、 電 力系統によって消費される一次エネルギー量とを比較して燃料電池シス テムの運転及び停止の判断を行うことができる。 これによつて、 燃料電 池システムが頻繁に起動 · 停止をく り返すような運転状態においても、 無駄なエネルギーの消費を抑制して燃料電池システムを運転させること が可能となる。
(実施の形態 2 )
図 4は、 本発明の実施の形態 2における燃料電池システムの制御の流 れの後半部を示すフローチャートである。 実施の形態 2は、 実施の形態 1における燃料電池システムの運転制御手段 1 9が二酸化炭素 (以下 C 〇2と略す) の発生量において比較をして起動予定時刻 T i、 発電開始予 定時刻 T 2および停止予定時刻 T 3を決定するように構成されている。 すなわち、 第 1の算出手段 2 0は、 電力値デ一夕の所定の時間帯の電力 値を燃料電池 1 3により発電して供給する場合に発生する C O 2量を算 出する。 第 2の算出手段 2 1は、 電力値データの所定の時間帯の電力値 を電力系統が供給する場合に発生する C 0 2量を算出する。 第 3の算出 手段 2 2は、 燃料電池 1 3、 燃料生成装置 1 1など燃料電池システムを 起動する際に発生する C O 2量を算出する。
したがって、 実施の形態 2における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチヤ一トは、 実施の形 態 1の図 1及び図 2と同じ構成であるので、 説明は省略する。
以下、 燃料電池システムの制御の流れの後半部を説明する。
図 4に示すように、 ステップ S 1 1 Bにおいて、 第 1の算出手段 2 0 は、 燃料電池 1 3が発電して供給する場合に、 電力値データの発電開始 予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの電力値 Wtの発 電に必要な原料ガス量 Q GFCEtを、 燃料電池システムの発電効率 E WEに 基づいて ( 1 ) 式により算出する。 そして、 単位原料ガス当たりの C O
2発生量 B GFCBに基づいて、 発電開始予定時刻 T 2から停止予定時刻 T 3 までの間を燃料電池システムが発電して電力供給する場合に発生する し〇 2里 B FCEtを ( 2 B) 式により算出し、 B FCEt T 2力、ら 丄、 3ま C 積算した値を燃料電池発電 C O 2発生量 B FCEとする。
D FCEt = GFCEt ' B GFCB \ Δ D )
ステップ S 1 2 Bにおいて、 第 3の算出手段 2 2は、 燃料電池システ ムを起動する際に発生する C〇 2量を算出し、燃料電池起動 C〇 2発生量 B FCSとする。 そして、 運転制御手段 1 9が、 第 1の算出手段 2 0から 出力された燃料電池発電 C O 2発生量 B FOE と第 3の算出手段 2 2から 出力された燃料電池起動 C O 2発生量 B FCS とを合計して第 1の燃料電 池 C O 2発生量 B FC1とする。
ステップ S 1 3 Bにおいて、 第 2の算出手段 2 1が、 電力系統の単位 電力当たりの C O 2発生量 B EBに基づいて、 電力値データの発電開始予 定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの電力値 Wtを電力 系統が供給する場合に発生する C〇2量 B Etを( 3 B)式により算出し、 B Etを T 2から T 3まで積算した値を電力系統 C O 2発生量 B Eとする。
B Et = W t - B EB ( 3 B )
ステップ S 1 4 Bにおいて、 運転制御手段 1 9が、 第 1の燃料電池 C 02発生量 B FC1と電力系統 C O 2発生量 B Eとを比較する。 第 1の燃料 電池 C〇2発生量 B FC1が電力系統 C〇2発生量 B E以下ならば、 ステツ プ S 1 5 Bに進み、 起動予定時刻 T 発電開始予定時刻 Τ 2および停止 予定時刻 Τ 3を決定し、 ステップ S 1 7 Βにおいて、 運転制御手段 1 9 が起動予定時刻 Τ 1に燃料電池システムを起動する。 他方、 第 1の燃料 電池 C〇2発生量 B FC 1が電力系統 C〇2発生素量 B Eより大きければ、 ステップ S 1 6 Bに進み、 運転制御手段 1 9は、 起動予定時刻 T 発 電開始予定時刻 T 2および停止予定時刻 T 3の仮定を取り消し、 すなわ ち起動予定時刻 T 1における燃料電池の起動を禁止し、 ステップ S 1 8 Bにおいて、 運転制御手段 1 9は時刻 Tに運転停止予定時刻 T 3を代入 し、 図 3の I I に続く図 2の I Iからステップ S 4に戻り、 以降のステ ップをく り返す。
以上により、 燃料電池の起動時において発生する c o 2量も含めた燃 料電池システムにおいて発生する C O 2量と、 電力系統において発生す る C〇2量とを比較して燃料電池システムの運転及び停止の判断を行う ことができる。 これによつて、 燃料電池システムが頻繁に起動 · 停止を く り返すような運転状態においても、 C 0 2の発生を抑制し、 ひいては 地球温暖化の防止に貢献するようにして、 燃料電池システムを運転させ ることが可能となる。
(実施の形態 3 )
図 5は、 本発明の実施の形態 3における燃料電池システムの制御の流 れの後半部を示すフローチャートである。 実施の形態 3は、 実施の形態 1 における燃料電池システムの運転制御手段 1 9がコス トにおいて比 較をして起動予定時刻 T い 発電開始予定時刻 T. 2および停止予定時刻 T 3を決定するように構成されている。 すなわち、 第 1の算出手段 2 0 は、 電力値デ一夕の所定の時間帯の電力値を燃料電池 1 3が発電して供 給する場合にかかるコストを算出する。 第 2の算出手段 2 1は、 電力値 データの所定の時間帯の電力値を電力系統が供給する場合にかかるコ ストを算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料生成装置 1 1など燃料電池システムを起動する際にかかるコストを算出する。 したがって、 実施の形態 3における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチヤ一トは、 実施の形 態 1の図 1及び図 2と同じ構成であるので、 説明は省略する。
以下、 燃料電池システムの制御の流れの後半部を説明する。
図 5に示すように、 ステップ S I 1 Cにおいて、 第 1の算出手段 2 0 は、 燃料電池 1 3が発電して供給する場合に、 電力値データの発電開始 予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの電力値 W tの発 電に必要な原料ガス量 Q GFCEtを、 燃料電池システムの発電効率 E WEに 基づいて ( 1 ) 式により算出する。 そして、 原料ガスの従量料金 C GFCB に基づいて、 発電開始予定時刻 T 2から停止予定時刻 T 3までの間を燃 料電池システムが発電して電力供給する場合にかかるコス ト C FCEt を
( 2 C ) 式により算出し、 C FCEtを T 2から T 3まで積算した値を燃料 電池発電コスト c FCEとする。
し FCEt = Q GFCEt · C GFCB V 2 C )
ステップ S 1 2 Cにおいて、 第 3の算出手段 2 2は、 燃料電池システ ムを起動する際にかかるコストを算出し、 燃料電池起動コスト C FCSと する。 そして、 運転制御手段 1 9が、 第 1の算出手段 2 0から出力され た燃料電池発電コスト C FCEと第 3の算出手段 2 2から出力された燃料 電池起動コスト C F CSとを合計して第 1の燃料電池コスト C FC 1とする。 ステップ S 1 3 Cにおいて、 第 2の算出手段 2 1が、 電力系統の従量 料金 C EBに基づいて、 電力値デ一夕の発電開始予定時刻 T 2から停止予 定時刻 T 3までの間の 1分ごとの電力値 W tを電力系統が供給する場合 にかかるコスト C Etを ( 3 C ) 式により算出し、 C Etを T 2から T 3ま で積算した値を電力系統コスト C Εとする。
C Et = W t - C EB ( 3 C )
ステップ S 1 4 Cにおいて、 運転制御手段 1 9が、 第 1の燃料電池コ スト C FC 1と電力系統コスト C Eとを比較する。 第 1の燃料電池コス ト C Fciが電力系統コスト C E以下ならば、 ステップ S 1 5 Cに進み、 起 動予定時刻 T 1、発電開始予定時刻 Τ 2および停止予定時刻 Τ 3を決定し、 ステップ S 1 7 Cにおいて、 運転制御手段 1 9が起動予定時刻 Τ 1に燃 料電池システムを起動する。 他方、 第 1の燃料電池コス ト C FC 1が電力 系統コスト C Eより大きければ、 ステップ S 1 6 Cに進み、 運転制御手 段 1 9は、 起動予定時刻 T 発電開始予定時刻 T 2および停止予定時刻 T 3の仮定 取り消し、 すなわち起動予定時刻 T 1における燃料電池の 起動を禁止し、 ステップ S 1 8 Cにおいて、 運転制御手段 1 9は、 時刻 Tに運転停止予定時刻 T 3を代入し、 図 3の I I に続く図 2の I I から ステップ S 4に戻り、 以降のステップをく り返す。
以上により、 燃料電池の起動時におけるコス トも考慮した燃料電池シ ステムのコス トと、 電力系統コス トとを比較して燃料電池システムの運 転及び停止の判断を行うことができる。 これによつて、 燃料電池システ ムが頻繁に起動 · 停止をく り返すような運転状態においても、 燃料電池 システムを経済的に運転させることが可能となる。
また、 制御装置 2 3は、 切換スィッチ、 キーボード、 マウス等の入力 手段 (図示せず) と、 実施の形態 1乃至実施の形態 3のそれぞれの第 1 乃至第 3の算出手段と、 運転制御手段 1 9 と、 表示手段 4 2 とを備え、 入力手段によって、 実施の形態 1乃至実施の形態 3を選択できるように するとよい。 これによつて、 使用者の選好によって燃料電池システムの 動作を切り換えることができる。
(実施の形態 4 )
図 6は、 本発明の実施の形態 4における燃料電池システムを示す構成 図である。 実施の形態 1 と同様の構成要素については、 同一符号を付与 し、 その説明を省略する。
本実施の形態における燃料電池システムは、 図 1 の燃料電池システム の構成に加えて、 燃料電池 1 3を所定の温度に維持する冷却水を循環す る冷却水経路 2 4と、 冷却水経路 2 4に冷却水を通流する冷却水ポンプ 2 5 と、 蓄熱手段 2 7 と、 冷却水が燃料電池 1 3より回収した熱を貯湯 水に伝熱する熱交換器 2 6 と、 貯湯水により燃料電池 1 3から熱を回収 し温水として蓄熱手段 2 7に蓄積する貯湯水経路 2 8 と、 貯湯水経路 2 8に貯湯水を通流させる貯湯水ポンプ 2 9 と、 蓄熱手段 2 7から給湯や 暖房などの熱負荷 3 0に供給する熱供給手段 3 1 とをさらに備えている。 制御装置 2 3は、 電力値データに基づく演算を行って演算結果を運転 制御手段 1 9に提供する第 4の算出手段 3 6をさらに備えている。
第 4の算出手段 3 6は、 電力値データの所定の時間帯の電力値に応じ て燃料電池システムにおいて回収される熱量に相当する熱量を、 熱供給 系統 3 5が供給する場合に費やされる一次エネルギー量を算出する。 こ こで、 熱供給系統 3 5は、 スチームラインやガス給湯器など外部の熱供 給手段によって構成されている。
以上のように構成された実施の形態 4について、 燃料電池の起動を開 始するまでの動作を説明する。 図 7は燃料電池システムの制御の流れの 後半部を示すフローチャートである。 実施の形態 4における燃料電池シ ステムの動作は、 ステップ 1 1 1 A以前の動作は、 ステップ S 1 0まで の燃料電池システムの制御の流れを示すフローチヤ一ト、 すなわち実施 の形態 1の図 2 と同じであるので、 説明は省略する。
以下、 燃料電池システムの制御の流れの後半部を説明する。
図 2のステップ S 1 0 までにおいて、 燃料電池の起動予定時刻 T い 発電開始予定時刻 T 2および停止予定時刻 T 3が仮定された後、 図 2の I に続く図 7の I 以降のステップに進み、 消費される一次エネルギー量 を考慮して起動予定時刻 T i、発電開始予定時刻 T 2および停止予定時刻 T 3が決定される。
ステップ S 1 1 1 Aから S 1 1 3 Aまでは、 実施の形態 1、 すなわち 図 3のステップ S 1 1 Aから S 1 3 Aと同じであり、 説明を省略する。 ステップ S 1 1 4 Aにおいて、 第 4の算出手段 3 6は、 電力値データ の発電開始予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの電 力値 W tを燃料電池システムが発電して供給する場合に、 発電に伴って 回収される回収熱量 H FCtを、 熱回収効率 E WHに基づいて ( 4 ) 式によ り算出する。
H Fct = W t / E WE * E WH 、 4 )
ステップ S 1 1 5 Aにおいて、 第 4の算出手段 3 6は、 回収熱量 H FCt を熱供給系統 3 5が供給する場合に必要な熱供給系統熱量 Q GHtを、 熱 供給系統熱効率 E Hに基づいて ( 5 ) 式により算出する。 ここで、 熱供 給系統熱量 Q GHtは都市ガスで供給される場合には都市ガス量、 スチー ムで供給される場合にはスチーム量として算出される。 そして、 熱供給 系統 3 5の単位熱量当たりの一次エネルギー量 A GHBに基づいて、 H FCt を熱供給系統 3 5が供給する場合に費やされる一次エネルギー量 A Ht を ( 6 A ) 式により算出し、 A Htを T 2から T 3まで積算した値を熱供 給系統一次エネルギー量 A Hとする。
Figure imgf000021_0001
A Ht = Q GHt - A GHB ( 6 A )
ステップ S 1 1 6 Aにおいて、 運転制御手段 1 9が、 電力系統一次ェ ネルギー量 A E及び熱供給系統一次エネルギー量 A Hの和と、 第 1 の燃 料電池一次エネルギー量 A FC 1とを比較する。 A FC 1が A E + A H以下な らば、 ステップ S 1 1 7 Aに進み、 起動予定時刻 T い 発電開始予定時 刻 T 2および停止予定時刻 T 3を決定し、ステップ S 1 1 9 Aにおいて、 運転制御手段 1 9が起動予定時刻 T 1に燃料電池システムを起動する。 他方、 A FC 1が A E + A Hより大きければ、 ステップ S 1 2 0 Aに進み、 運転制御手段 1 9は起動予定時刻 T i、発電開始予定時刻 T 2および停止 予定時刻 T 3の仮定を取り消し、 すなわち起動予定時刻 T 1における燃 料電池の起動を禁止し、 ステップ S 1 2 0 Aにおいて、 運転制御手段 1 9は時刻 Tに運転停止予定時刻 T 3を代入し、 図 7の I I に続く図 2の I I からステップ S 4に戻り、 以降のステップをく り返す。
本実施の燃料電池システムの構成およびその動作により、 燃料電池シ ステムでの発電に伴って発生する熱を回収して使用する場合においては、 実施の形態 1で述べた効果とともに、 回収熱を供給することによって削 減される熱供給系統の一次エネルギー量も反映させることができ、 無駄 なエネルギーの消費を抑制して燃料電池システムを運転させることが可 能となる。
(実施の形態 5 )
図 8は、 本発明の実施の形態 5における燃料電池システムの制御の流 れの後半部を示すフローチャートである。 実施の形態 5は、 実施の形態 4における燃料電池システムの運転制御手段 1 9が C O 2の発生量にお いて比較をして起動予定時刻 T 、発電開始予定時刻 T 2および停止予定 時刻 T 3を決定するように構成されている。 すなわち、 第 1の算出手段 2 0は、 電力値データの所定の時間帯の電力値を燃料電池 1 3が発電し て供給する場合に発生する C O 2量を算出する。 第 2の算出手段 2 1は、 電力値データの所定の時間帯の電力値を電力系統が供給する場合に発生 する C O 2量を算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料 生成装置 1 1など燃料電池システムを起動する際に発生する C〇 2量を 算出する。 第 4の算出手段 3 6は、 電力値データの所定の時間帯の電力 値に応じて燃料電池システムにおいて回収される熱量に相当する熱量を、 熱供給系統 3 5が供給する場合に発生する C〇 2量を算出する。
したがって、 実施の形態 5における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチャートは、 実施の形 態 4の図 6及び実施の形態 1の図 2 と同じであるので、説明は省略する。 以下、 燃料電池システムの制御の流れの後半部を説明する。
図 2のステップ S 1 0までにおいて、 燃料電池の起動予定時刻 T い 発電開始予定時刻 T 2および停止予定時刻 T 3が仮定された後、 図 2の I に続く図 8の I以降のステップに進み、 発生する C〇 2量を考慮して 起動予定時刻 T !, 発電開始予定時刻 T 2および停止予定時刻 T 3が決定 される。
ステップ S 1 1 1 Bから S 1 1 3 Bまでは、 実施の形態 2、 すなわち 図 4のステップ S 1 I Bから S 1 3 Bと同じであり、 説明を省略する。 ステップ S 1 1 4 Bは、 実施の形態 4、 すなわち図 7のステップ S 1 1 1 4 Aと同じであり、 説明を省略する。
ステップ S 1 1 5 Bにおいて、 第 4の算出手段 3 6は、 回収熱量 H FCt を熱供給系統 3 5が供給する場合に必要な熱供給系統熱量 Q c を、 熱 供給系統熱効率 E Hに基づいて ( 5 ) 式により算出する。 そして、 熱供 給系統 3 5の単位熱量当たりの C〇 2発生量 B GHB に基づいて、 H FCt を熱供給系統 3 5が供給する場合に発生する C O 2量8 Htを ( 6 B ) 式 により算出し、 B Htを T 2から T 3まで積算した値を熱供給系統 C〇 2 発生量 B Hとする。
B Ht = Q GHt - B GHB ( 6 B )
ステップ S 1 1 6 Bにおいて、 運転制御手段 1 9が、 電力系統 C〇 2 発生量 B E及び熱供給系統 C 02発生量 B Hの和と、 第 1の燃料電池 C O 2発生量 B FC1とを比較する。 B FC1が B E+ B H以下ならば、 ステツ プ S 1 1 7 Bに進み、 運転制御手段 1 9が、 起動予定時刻 T い 発電開 始予定時刻 T 2および停止予定時刻 T 3を決定し、 ステップ S 1 1 9 B において、 運転制御手段 1 9が起動予定時刻 T 1に燃料電池システムを 起動する。 他方、 B FC1が B E+ B Hより大きければ、 ステップ S 1 2 0 Bに進み、 運転制御手段 1 9は、 起動予定時刻 T 発電開始予定時刻 T 2および停止予定時刻 T 3の仮定を取り消し、 すなわち起動予定時刻 T Iにおける燃料電池の起動を禁止し、 ステップ S 1 2 0 Bにおいて、 運転制御手段 1 9は時刻 Tに運転停止予定時刻 T 3を代入し、 図 8の I I に続く図 2の I Iからステップ S 4に戻り、 以降のステップをく り返 す。
本実施の燃料電池システムの構成およびその動作により、 燃料電池シ ステムでの発電に伴って発生する熱を回収して使用する場合においては、 実施の形態 2で述べた効果とともに、 回収熱を供給をすることによって 削減される熱供給系統の C O 2発生量も反映させることができ、 ひいて は地球温暖化の防止に貢献するようにして燃料電池システムを運転させ ることが可能となる。
(実施の形態 6 )
図 9は、 本発明の実施の形態 6における燃料電池システムの制御の流 れの後半部を示すフローチャートである。 実施の形態 6は、 実施の形態 4における燃料電池システムの運転制御手段 1 9が、 コストにおいて比 較をして起動予定時刻 T i、発電開始予定時刻 T 2および停止予定時刻 T 3を決定するように構成されている。すなわち、第 1の算出手段 2 0は、 電力値データの所定の時間帯の電力値を燃料電池 1 3が発電して供給す る場合にかかるコストを算出する。 第 2の算出手段 2 1は、 電力値デー 夕の所定の時間帯の電力値を電力系統が供給する場合にかかるコス トを 算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料生成装置 1 1な ど燃料電池システムを起動する際にかかるコス トを算出する。 第 4の算 出手段 3 6は、 電力値データの所定の時間帯の電力値に応じて燃料電池 システムにおいて回収される熱量に相当する熱量を、 熱供給系統 3 5が 供給する場合にかかるコストを算出する。
したがって、 実施の形態 6における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチャートは、 実施の形 態 4の図 6及び実施の形態 1の図 2 と同じであるので、説明は省略する。 以下、 燃料電池システムの制御の流れの後半部を説明する。
図 2のステップ S 1 0までにおいて、 燃料電池の起動予定時刻 T い 発電開始予定時刻 T 2および停止予定時刻 T 3が仮定された後、 図 2の I に続く図 9の I以降のステップに進み、 費やされるコストを考慮して 起動予定時刻 T 発電開始予定時刻 T 2および停止予定時刻 T 3が決定 される。
ステップ S 1 1 1 Cから S 1 1 3 Cまでは、 実施の形態 3、 すなわち 図 5のステップ S 1 1 Cから S 1 3 Cと同じであり、 説明を省略する。 ステップ S 1 1 4 Cは、 実施の形態 4、 すなわち図 7のステップ S 1 1 1 4 Aと同じであり、 説明を省略する。
ステップ S 1 1 5 Cにおいて、 第 4の算出手段 3 6は、 回収熱量 H FCt を熱供給系統 3 5が供給する場合に必要な熱供給系統熱量 Q GHtを、 熱 供給系統熱効率 E Hに基づいて ( 5 ) 式により算出する。 そして、 熱供 給系統の従量料金 C GHBに基づいて、 H FCtを熱供給系統 3 5が供給す る場合にかかるコス ト C Htを ( 6 C ) 式により算出し、 C Htを T 2から Τ 3まで積算した値を熱供給系統コス ト C Ηとする。
^ Ht — Q GHt · C GHB ( 6 C )
ステップ S 1 1 6 Cにおいて、 運転制御手段 1 9が、 電力系統コス ト C E及び熱供給系統コス ト C Hの和と、 第 1の燃料電池コス ト c FC 1と を比較する。 C Fc iが C E + C H以下ならば、 ステップ S 1 1 7 Cに進 み、 起動予定時刻 T い 発電開始予定時刻 T 2および停止予定時刻 T 3 を決定し、 ステップ S 1 1 9 Cにおいて、 運転制御手段 1 9は、 起動予 定時刻 T 1 に燃料電池システムを起動する。 他方、 C FC 1が C E + C H より大きければ、 ステップ S 1 2 0 Cに進み、 運転制御手段 1 9は、 起 動予定時刻 T い発電開始予定時刻 T 2および停止予定時刻 T 3の仮定を 取り消し、すなわち起動予定時刻 T 1における燃料電池の起動を禁止し、 ステップ S 1 2 0 Cにおいて、 運転制御手段 1 9は、 時刻 Tに運転停止 予定時刻 T 3を代入し、 図 9の I I に続く図 2の I I からステップ S 4 に戻り、 以降のステップをく り返す。
本実施の燃料電池システムの構成およびその動作により、 燃料電池シ ステムでの発電に伴って発生する熱を回収して使用する場合においては、 実施の形態 3で述べた効果とともに、 回収熱を供給をすることによって 削減される熱供給系統のコス トも反映させることができ、 燃料電池シス テムを経済的に運転させることが可能となる。
(実施の形態 7 )
図 1 0は、 本発明の実施の形態 7における燃料電池システムを示す構 成図である。 実施の形態 4と同様の構成要素については、 同一符号を付 与し、 その説明を省略する。
本実施の形態における燃料電池システムは、 図 6の燃料電池システム の電力値検出手段 1 6の代わりに、 熱負荷 3 0で使用する熱量を検出す る熱量値検出手段 3 2を備えている。 そして、 蓄熱手段 2 7に蓄えられ た熱量を検出する蓄熱量検出手段 3 9をさらに備えている。
制御装置 2 3は、 電力値蓄積手段 1 7及び電力値予測手段 1 8の代わ りに、 熱量値検出手段 3 2の検出値を蓄積する熱量値蓄積手段 3 3と、 記憶された熱量値の履歴から熱負荷 3 0で使用される熱量値 H t ( t分 後の熱量値 H t) を予測し、 その熱量値 H tによって構成される熱量値デ 一夕を記憶する熱量値予測手段 3 4とを備えている。 そして、 熱量値デ 一夕に基づく演算を行って演算結果を運転制御手段 1 9に提供する第 1 乃至第 5の算出手段 2 0, 2 1, 2 2, 3 6 , 4 0を備えている。
第 1の算出手段 2 0は、 熱量値データの所定の時間帯の熱量値を燃料 電池 1 3が蓄熱手段 2 7に供給する場合に費やされる一次エネルギー量 を算出する。 第 2の算出手段 2 1は、 熱量値データの所定の時間帯の熱 量値を燃料電池 1 3が供給する際に電力負荷 1 4へ電力供給する電力量 を算出し、 その電力量を電力系統が供給する場合に費やされる一次エネ ルギー量を算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料生成 装置 1 1など燃料電池システムを起動する際に費やされる一次エネルギ 一量を算出する。 第 4の算出手段 3 6は、 熱量値データの所定の時間帯 の熱量値を熱供給系統 3 5が供給する場合に費やされる一次エネルギー 量を算出する。 第 5の算出手段 4 0は、 蓄熱量検出手段 3 9の検出値に 基づいて取得される蓄熱手段 2 7の蓄熱量、 熱量値データ等に基づいて 蓄熱手段 2 7の蓄熱収支の予測値を算出する。
以上のように構成された本実施の形態について、 燃料電池の起動を開 始するまでの動作を説明する。 図 1 1および図 1 2は燃料電池システム の制御の流れを示すフローチャートである。 図 1 1において、 ステップ S 2 0 2において、 熱量値検出手段 3 2は、 継続的に熱量値を検出し、 熱量値蓄積手段 3 3が、 その検出された熱量値を蓄積して記憶する。 こ こでは、 熱量値検出手段 3 2は、 1秒間隔毎に熱量値を検出する。
ステップ S 2 0 4において、 熱量値予測手段 3 4は、 熱量値蓄積手段 3 3に蓄積された熱量値の履歴に基づいて、 今後 2 4時間先までに熱負 荷 3 0で使用されるであろう 1分単位の熱量値 H tを予測して、 熱量値 データとして記憶する。
次に、 運転制御手段 1 9は、 熱量値予測手段 3 4に記憶されている熱 量値データに基づいて、 蓄熱手段 2 7の蓄熱量が少なくなる時刻を起動 予定時刻 Tェに仮定する。
ここでは、 ステップ S 2 0 5において、 運転制御手段 1 9が、 時刻 T に現在時刻 T Qを代入する。
ステップ S 2 0 6において、 第 5の算出手段が、 蓄熱量検出手段 3 9 の検出値に基づいて現在時刻 T 0の蓄熱量 G ST0を算出する。 そして、 時刻 Tにおける蓄熱量 G stに蓄熱量 G STOを代入する。
ステップ S 2 0 7において、 運転制御手段 1 9は、 熱量値データの現 在時刻 T 0から時刻 Tまでの間の熱量値 H tの積算値 H τが、 蓄熱量 G st の Υ ι %以上 (例えば 8 0 %以上) であるかどうかを判定する。 Y e sならばステップ S 2 0 8に進み、 Tを起動予定時刻 T !と仮定する。 N oならば、ステップ S 2 0 9に進み、 Tから 1分後の時刻を Tとし(T = T + 1 min) 、 ステップ S 2 0 7に戻る。
ステップ S 2 1 0において、 運転制御手段 1 9は、 起動所要時間 T s (例えば 6 0分間) を時刻 Tに加え発電開始予定時刻 T 2と仮定する。 次に、熱量値予測手段 3 4に記憶されている熱量値データに基づいて、 蓄熱手段 2 7の蓄熱量が十分豊富になる時刻が停止予定時刻 T 3に仮定 される。
ここでは、 ステップ S 2 1 1 において、 第 5の算出手段 4 0は、 起動 予定時刻 T 1から発電開始予定時刻 T 2までの間の熱量値データの熱量 値 H tを積算して起動時熱量値 H T 1を算出し、 G stから Η τおよび Η Τ 1 を減算したものを G stに代入する。
ステップ S 2 1 2において、第 5の算出手段 4 0は、時刻 Tにおいて、 蓄熱量 G stに燃料電池からの熱回収量 H Rtを加算し、時刻 Tにおける熱 量値データの熱量 H tを減算して、 蓄熱量 G stを算出する。
ステップ S 2 1 3において、 運転制御手段 1 9は、 時刻 Tにおいて蓄 熱量 G stが蓄熱手段 2 7の最大蓄熱量 G Smax以上であるかどうかを判定 する。 Y e sならばステップ S 2 1 4で、 運転制御手段 1 9は、 Tを停 止予定時刻 T 3と仮定する。 N oならば、 ステップ S 2 1 5で、 丁から 1分後の時刻を Tとし、 ステップ S 2 1 2に戻る。
以上のようにして燃料電池の起動予定時刻 Tい発電開始予定時刻 T 2 および停止予定時刻 T 3が仮定された後、 図 1 1の Vに続く図 1 2の V 以降のステップに進み、 消費される一次エネルギー量を考慮して起動予 定時刻 T i、発電開始予定時刻 T 2および停止予定時刻 T 3が決定される。 ステップ S 2 1 6 Aにおいて、 第 1の算出手段 2 0は、 燃料電池 1 3 が発電して供給する場合に、 熱量値データの発電開始予定時刻 T 2から 停止予定時刻 T 3までの間の 1分ごとの熱量値 H tの発電に必要な原料 ガス量 Q GFCHtを、 燃料電池 1 3、 燃料生成装置 1 1などを含めた燃料 電池システムの熱回収効率 E WH に基づいて ( 7 ) 式により算出する。 そして、 単位原料ガス当たりの一次エネルギー量 A GFCBに基づいて、 発 電開始予定時刻 T 2から停止予定時刻 T 3までの間を燃料電池システム が発電して電力供給及び熱供給する場合に費やされる一次エネルギー量
A F CHtを ( 8 A ) 式により算出し、 A FCHtを T 2から T 3まで積算した 値を燃料電池発電一次エネルギー量 A FCHとする。
Q GFCHt = H t / WH ( 7 )
A FCHt ― Q GFCHt · A GFCB ( 8 A )
ステツプ S 2 1 7 Aにおいて、 第 3の算出手段 2 2は、 燃料電池シス テムを起動する際に費やされる一次エネルギー量を算出し、 燃料電池起 動一次エネルギー量 A FCSとする。 そして、 運転制御手段 1 9が、 第 1 の算出手段 2 0から出力された燃料電池発電一次エネルギー量 A FCHと 第 3 の算出手段 2 2から出力された燃料電池起動一次エネルギー量 A FCSとを合計して第 2の燃料電池一次エネルギー量 A FC2とする。
ステップ S 2 1 8 Aにおいて、 第 4の算出手段は、 熱量値 H tを熱供 給系統 3 5が供給する場合に必要な熱供給系統熱量 Q GHtを、 熱供給系 統熱効率 E Hに基づいて ( 9 ) 式により算出する。 そして、 熱供給系統 の単位熱量当たりの一次エネルギー量 A GHBに基づいて、 H tを熱供給 系統 3 5が供給する場合に費やされる一次エネルギー量 A Ht を ( 1 0 A) 式により算出し、 A Htを T 2から T 3まで積算した値を熱供給系統 一次エネルギー量 A Ηとする。
Q GHt = H t / E H ( 9 )
A Ht = Q GHt - A GHB ( 1 0 A)
ステップ S 2 1 9 Aにおいて、 第 2の算出手段 2 0が、 熱量値データ の発電開始予定時刻 T 2から停止予定時刻 T 3までの 1分ごとの熱量値 H tを燃料電池システムが発電して供給する場合に、 発電される電力値 W FCtを、 発電効率 E WEに基づいて ( 1 1 ) 式により算出し、 W FCtを 電力系統が供給する場合の一次エネルギー量 A Etを ( 1 2 A) 式から算 出し、 A Etを T 2から T 3まで積算して電力系統一次エネルギー量 A E とする。
Figure imgf000029_0001
A Et = W pet - A EB ( 1 2 A)
ステップ S 2 2 0 Aにおいて、 運転制御手段 1 9が、 電力系統一次ェ ネルギー量 A E及び熱供給系統一次エネルギー量 A Hの和と、 第 2の燃 料電池一次エネルギー量 A FC2とを比較する。 A FC2が A E+ A H以下な らば、 ステップ S 2 2 1 Aに進み、 運転制御手段 1 9が、 起動予定時刻 発電開始予定時刻 T 2および停止予定時刻 T 3を決定し、 ステップ S 2 2 3 Αにおいて、 運転制御手段 1 9が起動予定時刻 T iに燃料電池 システムを起動する。 他方、 A FC2が A E+ A Hより大きければ、 ステツ プ S 2 2 2に進み、 運転制御手段 1 9は、 起動予定時刻 Tい 発電開始 予定時刻 T 2および停止予定時刻 T 3の仮定を取り消し、すなわち起動予 定時刻 T 1における燃料電池の起動を禁止し、 ステップ S 2 2 4におい て、 運転制御手段 1 9が時刻 Tに運転停止予定時刻 T 3を代入し、 図 1 2の V I に続く図 1 1の V Iからステップ S 2 0 7に戻り、 以降のステ ップをく り返す。
本実施の燃料電池システムの構成およびその動作により、 熱電併給を する燃料電池システムの熱追従運転時において、 削減される電力系統一 次エネルギー量も反映することができ、 無駄なエネルギーの消費を抑制 して燃料電池システムを運転させることが可能となる。
また、 図示しないが、 燃料電池システムが、 実施の形態 7の構成と実 施の形態 4の構成とを両方兼ね備えるように構成され、 制御装置 2 3に 実施の形態 7あるいは実施の形態 4を選択する選択スィ ッチ (図示せ ず) を設けることもできる。 このように構成すると、 燃料電池システム の使用状況に応じて、 熱負荷追従運転あるいは電力負荷追従運転を選択 することができる。
さらに、 電力値蓄積手段 1 7及び熱量値蓄積手段 3 3に電力値及び熱 量値を蓄積するにあたっては、 在宅時あるいは留守時の区別をつけて蓄 積しておく と、 在宅時及び留守時の選択に応じて、 電力値予測手段 1 8 及び熱量値予測手段 3 4が電力値データ及び熱量値デ一夕を構築するこ とができる。 具体的には、 制御装置 2 3に選択手段を設け、 使用者が在 宅時及び留守時を選択することによって、 電力値蓄積手段 1 7及び熱量 値蓄積手段 3 3に在宅時及び留守時が区別されて電力値及び熱量値が蓄 積されるように構成する。 これによつて、 電力値及び熱量値の予測をよ り的確にすることができる。
さらに、 制御装置 2 3に運転時刻入力手段 (図示せず) を設け、 使用 者が起動予定時刻 Tい 発電開始予定時刻 T 2および停止予定時刻 T 3を 任意に設定できるように構成しても良い。 これによつて、 使用者の行動 予定も考慮して、 より的確に燃料電池システムを運転させることができ る。
(実施の形態 8 )
図 1 3は、 本発明の実施の形態 8における燃料電池システムの制御の 流れの後半部を示すフローチャートである。 実施の形態 8は、 実施の形 態 7における燃料電池システムの運転制御手段 1 9が C〇 2の発生量に おいて比較をして起動予定時刻 Tい発電開始予定時刻 T 2および停止予 定時刻 T 3を決定するように構成されている。 すなわち、 第 1の算出手 段 2 0は、 熱量値データの所定の時間帯の熱量値を燃料電池 1 3が蓄熱 手段 2 7に供給する場合に発生する C〇2量を算出する。 第 2の算出手 段 2 1は、 熱量値データの所定の時間帯の熱量値を燃料電池 1 3が供給 する際に電力負荷 1 4へ電力供給する電力量を算出し、 その電力量を電 力系統が供給する場合に発生する C〇 2量を算出する。 第 3の算出手段 2 2は、 燃料電池 1 3、 燃料生成装置 1 1など燃料電池システムを起動 する際に発生する C〇 2量を算出する。 第 4の算出手段 3 6は、 熱量値 データの所定の時間帯の熱量値を、 熱供給系統 3 5が供給する場合に発 生する C 0 2量を算出する。
したがって、 実施の形態 8における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチャー卜は、 実施の形 態 7の図 1 0及び図 1 1 と同じであるので、 説明は省略する。
以下、 燃料電池システムの制御の流れの後半部を説明する。
図 1 3に示すように、 ステップ S 2 1 6 Bにおいて、 第 1の算出手段 2 0は、 燃料電池 1 3が発電して供給する場合に、 熱量値データの発電 開始予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの熱量値 H t の発電に必要な原料ガス量 Q GFCHtを、 燃料電池システムの熱回収効率 E WH に基づいて ( 7 ) 式により算出する。 そして、 単位原料ガス当た りの C〇2発生量 B GFCBに基づいて、 発電開始予定時刻 T 2から停止予 定時刻 T 3までの間を燃料電池システムが発電して電力供給及び熱供給 する場合に発生する C O 2発生量 B FCHtを ( 8 B) 式により算出し、 B
FCHtを T 2から T 3まで積算した値を燃料電池発電 C O 2発生量 B FCHと する。
B FCHt = Q GFCHt · B GFCB 、 8 Dノ
ステップ S 2 1 7 Bにおいて、 第 3の算出手段 2 2は、 燃料電池シス テムを起動する際に発生する C O 2量を算出し、 燃料電池起動 C O 2発生 量 B FCSとする。 そして、 運転制御手段 1 9が、 第 1の算出手段 2 0か ら出力された燃料電池発電 C〇 2発生量 B pen と第 3の算出手段 2 2か ら出力された燃料電池起動 C O 2発生量 B res とを合計して第 2の燃料 電池 C O 2発生量 B FC2とする。
ステップ S 2 1 8 Bにおいて、 第 4の算出手段は、 熱量値 H tを熱供 給系統 3 5が供給する場合に必要な熱供給系統熱量 Q GHtを、 熱供給系 統熱効率 E Hに基づいて ( 9 ) 式により算出する。 そして、 熱供給系統 3 5の単位熱量当たりの C〇 2発生量 B GHBに基づいて、 H tを熱供給系 統 3 5が供給する場合に発生する C〇2量8 Htを ( 1 0 B) 式により算 出し、 B Htを T 2から T 3まで積算した値を熱供給系統発生 C O 2量8 H とする。
B Ht = Q GHt - B GHB ( 1 0 B )
ステップ S 2 1 9 Bにおいて、 第 2の算出手段が、 熱量値データの発 電開始予定時刻 T 2から停止予定時刻 T 3 までの 1分ごとの熱量値 H t を燃料電池システムが発電して供給する場合に、発電される電力値 W pet を、 発電効率 E WEに基づいて ( 1 1 ) 式により算出し、 W FCtを電力系 統が供給する場合の C〇 2発生量 B Etを ( 1 2 B) 式から算出し、 B Et を T 2から T 3まで積算して電力系統 C O 2発生量 B Eとする。
Figure imgf000032_0001
ステップ S 2 2 0 Bにおいて、 運転制御手段 1 9が、 電力系統 C〇 2 発生量 B E及び熱供給系統 C 02発生量 B Hの和と、 燃料電池システム C O 2発生量 B FC2とを比較する。 B FC2が B E+ B H以下ならば、 ステ ップ S 2 2 1 Bに進み、 運転制御手段 1 9が、 起動予定時刻 Tい 発電 開始予定時刻 T 2および停止予定時刻 T 3を決定し、ステップ S 2 2 3 Β において、 運転制御手段 1 9が起動予定時刻 Τ 1に燃料電池システムを 起動する。 他方、 B FC2が Β Ε + Β Ηより大きければ、 ステップ S 2 2 2 Βに進み、 運転制御手段 1 9は、 起動予定時刻 発電開始予定時刻 Τ 2および停止予定時刻 Τ 3の仮定を取り消し、すなわち起動予定時刻 Τ 丄 における燃料電池の起動を禁止し、 ステップ S 2 2 4 Bにおいて、 運 転制御手段 1 9は時刻 Tに運転停止予定時刻 T 3を代入し、 図 1 3の V I に続く図 1 1の V Iからステップ S 2 0 7に戻り、 以降のステップを く り返す。
本実施の燃料電池システムの構成およびその動作により、 熱電併給を する燃料電池システムでの熱追従運転時において、 削減される電力系統 での C〇 2発生量も反映することができ、 ひいては地球温暖化の防止に 貢献するようにして燃料電池システムを運転させることが可能となる。
(実施の形態 9 )
図 1 4は、 本発明の実施の形態 9における燃料電池システムの制御の 流れの後半部を示すフローチャートである。 実施の形態 9は、 実施の形 態 7における燃料電池システムの運転制御手段 1 9がコストにおいて比 較をして起動予定時刻 T i、発電開始予定時刻 T 2および停止予定時刻 T 3を決定するように構成されている。すなわち、第 1の算出手段 2 0は、 熱量値データの所定の時間帯の熱量値を燃料電池 1 3が蓄熱手段 2 7に 供給する場合にかかるコストを算出する。 第 2の算出手段 2 1は、 熱量 値データの所定の時間帯の熱量値を燃料電池 1 3が供給する際に燃料電 池 1 3が電力負荷 1 4へ電力供給する電力量を算出し、 その電力量を電 力系統が供給する場合にかかるコス トを算出する。 第 3の算出手段 2 2 は、 燃料電池 1 3、 燃料生成装置 1 1など燃料電池システムを起動する 際にかかるコストを算出する。 第 4の算出手段 3 6は、 熱量値データの 所定の時間帯の熱量値を、 熱供給系統 3 5が供給する場合にかかるコス トを算出する。
したがって、 実施の形態 9における燃料電池システムの構成及び燃料 電池システムの制御の流れの前半部を示すフローチヤ一トは、 実施の形 態 7の図 1 0及び図 1 1 と同じであるので、 説明は省略する。
以下、 燃料電池システムの制御の流れの後半部を説明する。
図 1 4に示すように、 ステップ S 2 1 6 Cにおいて、 第 1の算出手段 2 0は、 燃料電池 1 3が発電して供給する場合に、 熱量値データの発電 開始予定時刻 T 2から停止予定時刻 T 3までの間の 1分ごとの熱量値 H t の発電に必要な原料ガス量 Q GFCHtを、 燃料電池システムの熱回収効率 E WH に基づいて ( 7 ) 式により算出する。 そして、 原料ガスの従量料 金 C GFCBに基づいて、 発電開始予定時刻 T 2から停止予定時刻 T 3まで の間を燃料電池システムが発電して電力供給及び熱供給する場合にかか るコス卜し FCHtを ( 8 B) 式により算出し、 C FCHtを Γ 2力、ら 丄、 3 こ" 積算した値を燃料電池発電コスト C FCHとする。
C FCHt = Q GFCHt · C GFCB 、 8 し ノ
ステップ S 2 1 7 Cにおいて、 第 3の算出手段 2 2は、 燃料電池シス テムを起動する際にかかるコストを算出し、 燃料電池起動コスト C FCS とする。 そして、 運転制御手段 1 9が、 第 1の算出手段 2 0から出力さ れた燃料電池発電コスト C FCHと第 3の算出手段 2 2から出力された燃 料電池起動コスト C FCSとを合計して第 2の燃料電池コス 卜 C FC2とす る。
ステップ S 2 1 8 Cにおいて、 第 4の算出手段は、 熱量値 H tを熱供 給系統 3 5が供給する場合に必要な熱供給系統熱量 Q GHtを、 熱供給系 統熱効率 E Hに基づいて ( 9 ) 式により算出する。 そして、 熱供給系統 の従量料金 C GHBに基づいて、 H tを熱供給系統 3 5が供給する場合に かかるコスト C Htを ( 1 0 C) 式により算出し、 C Htを T 2から T 3ま で積算した値を熱供給系統コスト C Ηとする。
し Ht = Q GHt · C GHB ( I O C) ステップ S 2 1 9 Cにおいて、 第 2の算出手段が、 熱量値データの発 電開始予定時刻 T 2から停止予定時刻 T 3 までの 1分ごとの熱量値 H t を燃料電池システムが発電して供給する場合に、発電される電力値 W pet を、 発電効率 E WEに基づいて ( 1 1 ) 式により算出し、 W FCtを電力系 統が供給する場合のコス ト C Etを ( 1 2 C) 式から算出し、 C Etを T 2 から Τ 3まで積算して電力系統コス ト C Εとする。
C Et =W pet ' C EB ( 1 2 C)
ステップ S 2 2 0 Cにおいて、 運転制御手段 1 9が、 電力系統コス ト
C E及び熱供給系統コス ト Hの和と、 燃料電池システムコス ト C FC2 とを比較する。 C FC2が C E+ C H以下ならば、 ステップ S 2 2 1 Cに進 み、 運転制御手段 1 9は、 起動予定時刻 Tい 発電開始予定時刻 T 2およ び停止予定時刻 T 3を決定し、 ステップ S 2 2 3 Cにおいて、 運転制御 手段 1 9が起動予定時刻 Τ 1に燃料電池システムを起動する。 他方、 C FC2が C Ε+ C Ηより大きければ、 ステップ S 2 2 2 Cに進み、 運転制御 手段 1 9は、 起動予定時刻 Τい 発電開始予定時刻 Τ 2および停止予定時 刻 Τ 3の仮定を取り消し、すなわち起動予定時刻 Τ !における燃料電池の 起動を禁止し、 ステップ S 2 2 4 Cにおいて、 運転制御手段 1 9は時刻 Τに運転停止予定時刻 Τ 3を代入し、 図 1 4の V I に続く図 1 1の V I からステップ S 2 0 7に戻り、 以降のステップをく り返す。
本実施の燃料電池システムの構成およびその動作により、 熱電併給を する燃料電池システムの熱追従運転時において、 削減される電力系統の コス トも反映することができ、 燃料電池システムをより経済的に運転さ せることが可能となる。
(実施の形態 1 0 )
図 1 5は、 本発明の実施の形態 1 0における燃料電池システムを示す 構成図である。 実施の形態 4と同様の構成要素については、 同一符号を 付与し、 その説明を省略する。
本実施の形態における燃料電池システムは、 図 6の燃料電池システム の構成に加えて、 燃料電池の起動時に、 燃料電池の起動を律速する部位 の温度を直接的もしくは間接的に検出する温度検出手段を備えている。 ここでは、 燃料生成装置 1 1の燃料生成装置温度検出手段 4 1を備えて いる。 あるいは、 燃料電池 1 3に燃料電池温度検出手段を備えるように しても同様の効果が得られる。
以上のように構成された実施の形態 1 0について、 燃料電池の起動を 開始するまでの動作を説明する。 図 1 6は燃料電池システムの制御の流 れの前半部を示すフローチャートである。 図 1 6において、 ステップ S 3 0 1乃至 S 3 0 8は、 実施の形態 1、 すなわち図 2のステップ S 1乃 至 S 6と同じであり、 説明を省略する。
ステップ S 3 0 9において、 第 3の算出手段 2 2が、 燃料生成装置温 度検出手段 4 1が現在時刻 T Qに検出した検出温度 K Qに基づいて起動 モードを判別する。 ここでは、 検出温度 K 0が所定温度 K F以上の場合 は短期起動モード、 K F以下の場合は長期起動モードとする。 なお、 燃 料生成装置 1 1や燃料電池 1 3の起動予定時刻 T 1における温度は、 外 気温度と現在時刻 T 0から起動予定時刻 T 1までの時間との関数である 放熱量から推測することが可能である。そこで、起動モードの判別には、 それらの関数を用いて推測される起動予定時刻 T 1における燃料生成装 置 1 1の温度 (起動時温度) K 1と所定温度 K Fとを比較させるように してもよい。 あるいは、 検出温度 K 0と外気温度との温度差と現在時刻 T 0から起動予定時刻 T 1までの時間とを変数とする起動モード対応表 を予め作成して第 3の算出手段 2 2に記憶させておいて、 第 3の算出手 段が起動モード対応表から起動モードを選択するようにしてもよい。 あ るいは、 第 3の算出手段 2 2が、 起動時温度 K 1と発電開始時に必要な 温度 (発電開始時温度) K 2 との温度差に基づいて、 起動所要時間 T s を算出するようにしてもよい。
ステップ S 3 1 0— 1において、 運転制御手段 1 9が、 各起動モード に応じてあらかじめ設定された起動所要時間 T s (例えば長期起動モー ド時 6 0分間、 短期起動モード時 3 0分間) を時刻 Tに加え、 発電開始 予定時刻 T 2と仮定する。
ステップ S 3 1 0— 2において、 運転制御手段 1 9が、 Tに発電開始 予定時刻 T 2を代入する。
ステップ S 3 1 0— 3において、 運転制御手段 1 9が、 Tから所定時 間 X ! (例えば 3 0分間) 後までの電力値 W t ( W T〜W τ+30までの 3 0 個) の Y i %以上 (例えば 8 0 %、 2 4個以上) が燃料電池システムの 最低発電量 W min以上であるかどうかを判定する。 Y e sならばステツ プ S 3 1 1 に進む。 N oならば、 ステップ S 3 1 0 _ 4で、 丁から (起 動所要時間 T s— 1分) 前の時刻を Tとし、 ステップ S 3 0 6に戻る。 ステップ S 3 1 1乃至 S 3 1 3は、 実施の形態 1、 すなわち図 2のス テツプ S 8乃至 S 1 0 と同じであり、 説明を省略する。
以上のようにして燃料電池の起動予定時刻 T i、 発電開始予定時刻 T 2 および停止予定時刻 T 3が仮定された後、 図 1 6の V I I に続く図 1 7 の V I I以降のステップに進み、 消費される一次エネルギー量を考慮し て起動予定時刻 T 発電開始予定時刻 T 2および停止予定時刻 T 3が決 定される。
具体的には、 実施の形態 4、 すなわち図 7のステップ S 1 1 1 A乃至
S 1 2 O Aと同じであり、 説明を省略する。
ただし、 ステップ S 1 1 2 Aにおいては、 第 3の算出手段 2 2は、 起 動所要時間 T sあるいは起動モードに応じて、 燃料電池システムを起動 する際に費やされる一次エネルギー量を算出あるいは決定し、 燃料電池 起動一次エネルギー量 A FCSとする。
本実施の燃料電池システムの構成およびその動作により、 実施の形態 4で述べた効果とともに、 燃料電池システムの温度状態に応じて、 起動 所要時間 T s及び燃料電池起動一次エネルギー量 A F CSが予測されて算 出されるので、 無駄なエネルギーの消費をより一層抑制して燃料電池シ ステムを運転させることが可能となる。 なお、 燃料電池の起動予定時刻 T 発電開始予定時刻 Τ 2および停 止予定時刻 Τ 3が仮定された後、 図 1 7の V I I以降のステップにおい て、 実施の形態 5、 すなわち図 8のステップ S 1 1 1 B乃至 S 1 2 0 Β と同じ動作によって、 発生する C〇2の量を考慮して起動予定時刻 Τ い 発電開始予定時刻 T 2および停止予定時刻 T 3が決定されてもよい。 た だし、 ステップ S 1 1 2 Bにおいては、 第 3の算出手段 2 2は、 起動所 要時間 T sあるいは起動モードに応じて、 燃料電池システムを起動する 際に発生する C O 2量を算出あるいは決定し、燃料電池起動 C O 2発生量 B FCSとする。
これによつて、 実施の形態 5で述べた効果とともに、 燃料電池システ ムの温度状態に応じて、起動所要時間 T s及び燃料電池起動 C〇 2発生量 B FCSが予測されて算出されるので、 C〇2発生量を抑制し、 ひいては地 球温暖化の防止に貢献するようにして燃料電池システムを運転させるこ とが可能となる。
また、 燃料電池の起動予定時刻 T 発電開始予定時刻 T 2および停 止予定時刻 T 3が仮定された後、 図 1 7の V I I以降のステツプにおい て、 実施の形態 6、 すなわち図 9のステップ S 1 1 1 C乃至 S 1 2 0 C と同じ動作によって、 コストを考慮して起動予定時刻 T い 発電開始予 定時刻 T 2および停止予定時刻 T 3が決定されてもよい。 ただし、 ステ ップ S 1 1 2 Cにおいては、 第 3の算出手段 2 2は、 起動所要時間 T s あるいは起動モードに応じて、 燃料電池システムを起動する際にかかる コストを算出あるいは決定し、 燃料電池起動コスト C FCSとする。
これによつて、 実施の形態 6で述べた効果とともに、 燃料電池システ ムの温度状態に応じて、起動所要時間 T s及び燃料電池起動コス卜 C FCS が予測されて算出されるので、 燃料電池システムをより経済的に運転さ せることが可能となる。
ここで、 制御装置とは、 単独の制御装置だけでなく、 複数の制御装置 が協働して制御を実行する制御装置群をも含んで意味する。 よって、 制 御装置 2 3は、 単独の制御装置から構成される必要はなく、 複数の制御 装置が分散配置されていて、 それらが協働して燃料電池システムの動作 を制御するように構成されていてもよい。
なお、 発電効率 E WE、 熱回収効率 E WH、 単位原料ガス当たりの一次 エネルギー量 A GFCB 単位電力当たりの一次エネルギー量 A EB > 単位原 料ガス当たりの C 0 2発生量 B GFCB、 単位電力当たりの C〇 2発生量 B
EB > 原料ガスの従量料金 C GFCB、 電力系統の従量料金 C EB 燃料電池起 動一次エネルギー量 A FCS、 燃料電池起動 C〇 2発生量 B FCS、 燃料電池 起動コス ト C F CS、 熱供給系統 3 5の単位熱量当たりの一次エネルギー 量 A GHB 熱供給系統 3 5の単位熱量当たりの C 0 2発生量 B GHB、 熱供 給系統の従量料金 C GHB , 熱供給系統熱効率 E Hおよび起動所要時間 T s は制御装置 2 3に予め設定されていてもよいし、 あるいは制御装置 2 3に入力手段 (図示せず) を備え、 入力して制御装置 2 3内のそれらが 使用されるそれぞれの手段に記憶、 更新できるようにしてもよい。
また、 単位原料ガス当たりの一次エネルギー量 A GFCBは、 A E B、 石 油換算当たりの重量単位でもよいし、 熱量単位でもよい。
単位原料ガス当たりの C O 2発生量 B GFCBは、 石油換算当たりの重量 単位でもよいし、 熱量単位でもよい。
単位電力当たりの C〇 2発生量 B EB は、 電力系統の発電設備の種類、 発電設備の及び送電設備の熱効率に応じて、 予め算出あるいは、 電力系 統会社から入手することができる。
なお、 電力値予測手段 1 8及び熱量値予測手段 3 4が電力値データ及 び熱量値データを構築するには、 電力値蓄積手段 1 7及び熱量値蓄積手 段 3 3に電力値及び熱量値を蓄積する必要がある。この蓄積には、通常、 電力値及び熱量値の検出開始後半月から一ヶ月程度の期間を要するので、 運転制御手段による起動予定時刻 T i、発電開始予定時刻 T 2および停止 予定時刻 T 3の決定は、 燃料電池システム設置後約半月から一ヶ月経過 後となる。 あるいは、 燃料電池システム設置前に、 供給対象の電力値及 び熱量値を検出しておき、 その履歴を電力値蓄積手段 1 7及び熱量値蓄 積手段 3 3に予め記憶させておいてもよい。
上記説明から、 当業者にとっては、 本発明の多くの改良や他の実施形 態が明らかである。 従って、 上記説明は、 例示としてのみ解釈されるべ きであり、 本発明を実行する最良の態様を当業者に教示する目的で提供 されたものである。 本発明の精神を逸脱することなく、 その構造及び Z 又は機能の詳細を実質的に変更できる。
〔産業上の利用の可能性〕
本発明に係るは、 エネルギー資源、 環境負荷あるいは経済性に配慮し た運転をすることができる燃料電池システム及び燃料電池コージエネ レーシヨンシステムとして有用である。

Claims

請 求 の 範 囲
1 . 燃料電池と、
燃料電池システムの供給対象が発生させる電力又は熱の負荷の負荷値 を検出する負荷値検出手段と、
前記負荷値検出手段によって検出される前記負荷値の履歴を記憶する 負荷値蓄積手段と、
前記負荷値の履歴に基づいて、 今後発生しうる負荷値を予測して、 そ の予測負荷値を負荷値データとして記憶する負荷値予測手段と、 前記負荷値データに基づいて、 前記燃料電池の起動予定時刻を決定す る、 燃料電池システム。
2 . 前記負荷値は、 前記燃料電池システムの電力供給対象の電力負荷で ある電力値であり、 前記負荷値データが電力値データである、 請求の範 囲第 1項に記載の燃料電池システム。
3 . 電力供給に費やされる一次エネルギー量、 それによつて発生する二 酸化炭素量、 あるいはそれに費やされるコス 卜のいずれかを算出する算 出手段をさらに備え、
前記算出手段が、 所定の時間帯の前記電力値デ一夕に基づいて、 前記 燃料電池によって電力供給をする場合と電力系統によって電力供給をす る場合とにおける、 それぞれの前記一次エネルギー量、 前記二酸化炭素 量あるいは前記コストのいずれかを算出し、
前記算出手段による算出値を比較し、 前記電力系統によって電力供給 をする場合の方が算出値が大きい場合には、 前記時間帯の開始時刻を前 記起動予定時刻として決定する、 請求の範囲第 2項に記載の燃料電池シ ステム。
4 . 前記算出手段は、 前記燃料電池の起動に費やされる一次エネルギー 量、 それによつて発生する二酸化炭素量、 あるいはそれに費やされるコ ス卜のいずれかを考慮して、 前記燃料電池によって電力供給をする場合 における電力供給に費やされる一次エネルギー、 それによつて発生する 二酸化炭素量、あるいはそれに費やされるコス卜のいずれかを算出する、 請求の範囲第 3項に記載の燃料電池システム。
5 . 前記算出手段は、 前記燃料電池の温度に基づいて、 前記燃料電池の 起動に費やされる一次エネルギー量、 それによつて発生する二酸化炭素 量、 あるいはそれに費やされるコストのいずれかを算出する、 請求の範 囲第 4項に記載の燃料電池システム。
6 . 原料から水素を含む燃料を生成する燃料生成装置をさらに備え、 前記算出手段は、前記燃料電池の起動に費やされる一次エネルギー量、 それによつて発生する二酸化炭素量、 あるいはそれに費やされるコスト のいずれかを考慮して、 前記燃料電池によって電力供給をする場合にお ける電力供給に費やされる一次エネルギー、 それによつて発生する二酸 化炭素量、 あるいはそれに費やされるコス卜のいずれかを算出する請求 の範囲第 3項に記載の燃料電池システム。
7 . 前記算出手段は、 前記燃料生成装置の温度に基づいて、 前記燃料電 池の起動に費やされる一次エネルギー量、 それによつて発生する二酸化 炭素量、 あるいはそれに費やされるコス トのいずれかを算出する、 請求 の範囲第 6項に記載の燃料電池システム。
8 . 入力手段をさらに備え、
前記入力手段によって、 前記算出手段の算出項目を一次エネルギー、 二酸化炭素あるいはコストから選択することができる、 請求の範囲第 3 項に記載の燃料電池システム。
9 . 表示手段をさらに備え、
前記算出手段の算出値を用いて、 前記燃料電池によって電力供給する 場合と電力系統によって電力供給する場合とにおける一次エネルギー、 二酸化炭素量あるいはコス卜のいずれかの差分を算出し、
前記表示手段が、 その差分を表示する、 請求の範囲第 3項に記載の燃 料電池システム。
1 0 . 前記燃料電池の排熱を回収して蓄える蓄熱手段と、 前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段とをさらに備え、 前記算出手段は、 前記時間帯の前記電力値データに基づいて、 前記蓄 熱手段によって回収される熱量と、 該熱量が外部の熱供給手段によって 供給される場合において該熱量の供給に費やされる一次エネルギー、 そ れによって発生する二酸化炭素量、 あるいはそれに費やされるコス卜の いずれかとをさらに算出することによって、 前記燃料電池によって電力 供給及び熱供給をする場合と電力系統及び外部の熱供給手段によって電 力供給及び熱供給をする場合とにおける、 それぞれの前記一次エネルギ 一量、 前記二酸化炭素量あるいは前記コス トのいずれかを算出し、 前記算出手段による算出値を比較し、 前記電力系統及び外部の熱供給 手段によって電力供給及び熱供給をする場合の方が算出値が大きい場合 には、 前記時間帯の開始時刻を前記起動予定時刻として決定する、 請求 の範囲第 3項に記載の燃料電池システム。
1 1 . 前記起動予定時刻は、 所定の更新時間毎に更新される、 請求の範 囲第 1項に記載の燃料電池システム。
1 2 . 表示手段をさらに備え、
前記表示手段は、 前記起動予定時刻を表示する、 請求の範囲第 1項に 記載の燃料電池システム。
1 3 . 前記表示手段は、 過去の運転履歴を表示する、 請求の範囲第 1項 に記載の燃料電池システム。
1 4 . 前記燃料電池の排熱を回収して蓄える蓄熱手段と、
前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段と、
前記蓄熱手段の蓄熱量を検出する蓄熱量検出手段とをさらに備え、 前記負荷値は、 前記燃料電池システムの熱供給対象の熱負荷である熱 量値であり、 前記負荷値デ一夕が熱量値データである、 請求の範囲第 1 項に記載の燃料電池システム。
1 5 . 熱供給及び電力供給に費やされる一次エネルギー量、 それによつ て発生する二酸化炭素量、 あるいはそれに費やされるコス卜のいずれか を算出する算出手段をさらに備え、
前記算出手段が、 所定の時間帯の前記熱量値データに基づいて、 前記 燃料電池によって電力供給及び熱供給をする場合と電力系統及び外部の 熱供給手段によって電力供給及び熱供給をする場合とにおける、 それぞ れの前記一次エネルギー量、 前記二酸化炭素量あるいは前記コストのい ずれかを算出し、
前記算出手段による算出値を比較し、 前記電力系統及び外部の熱供給 手段によって電力供給及び熱供給をする場合の方が算出値が大きい場合 には、 前記時間帯の開始時刻を前記起動予定時刻として決定する、 請求 の範囲第 1 4項に記載の燃料電池システム。
1 6 . 前記算出手段は、 前記燃料電池の起動に費やされる一次エネルギ 一量、 それによつて発生する二酸化炭素量、 あるいはそれに費やされる コストのいずれかを考慮して、 前記燃料電池によって電力供給及び熱供 給をする場合における電力供給及び熱供給に費やされる一次エネルギー、 それによつて発生する二酸化炭素量、 あるいはそれに費やされるコスト のいずれかを算出する請求の範囲第 1 5項に記載の燃料電池システム。
1 7 . 前記算出手段は、 前記燃料電池の温度に基づいて、 前記燃料電池 の起動に費やされる一次エネルギー量、 それによつて発生する二酸化炭 素量、 あるいはそれに費やされるコストのいずれかを算出する、 請求の 範囲第 1 6項に記載の燃料電池システム。
1 8 . 原料から水素を含む燃料を生成する燃料生成装置をさらに備え、 前記算出手段は、前記燃料電池の起動に費やされる一次エネルギー量、 それによつて発生する二酸化炭素量、 あるいはそれに費やされるコスト のいずれかを考慮して、 前記燃料電池によって電力供給及び熱供給をす る場合における電力供給及び熱供給に費やされる一次エネルギー、 それ によって発生する二酸化炭素量、 あるいはそれに費やされるコストのい ずれかを算出する請求の範囲第 1 5項に記載の燃料電池システム。
1 9 . 前記算出手段は、 前記燃料生成装置の温度に基づいて、 前記燃料 電池の起動に費やされる一次エネルギー量、 それによつて発生する二酸 化炭素量、 あるいはそれに費やされるコス トのいずれかを算出する、 請 求の範囲第 1 8項に記載の燃料電池システム。
2 0 . 入力手段をさらに備え、
前記入力手段によって、 前記算出手段の算出項目を一次エネルギー、 二酸化炭素あるいはコス 卜から選択することができる、 請求の範囲第 1 5項に記載の燃料電池システム。
2 1 . 表示手段をさらに備え、
前記算出手段の算出値を用いて、 前記燃料電池によって電力供給及び 熱供給をする場合と電力系統及び外部の熱供給手段によって電力供給及 び熱供給をする場合とにおける一次エネルギー、 二酸化炭素量あるいは コス トのいずれかの差分を算出し、
前記表示手段が、 その差分を表示する、 請求の範囲第 1 5項に記載の 燃料電池システム。
2 2 . 前記燃料電池の排熱を回収して蓄える蓄熱手段と、
前記蓄熱手段の蓄熱を外部に熱供給する熱供給手段と、
前記蓄熱手段の蓄熱量を検出する蓄熱量検出手段と、
選択手段とをさらに備え、
前記選択手段によって、 前記負荷値を、 前記燃料電池システムの熱供 給対象の熱負荷である熱量値、 あるいは前記燃料電池システムの電力供 給対象の電力負荷である電力値から選択し、 該選択によって前記負荷値 データが電力値デ一夕あるいは熱量値データのいずれかから選択される、 請求の範囲第 1項に記載の燃料電池システム。
2 3 . 前記負荷値蓄積手段は、 在宅時及び留守時を区別して前記負荷値 を蓄積し、
前記選択手段によって、 前記燃料電池の起動予定時刻の決定を、 在宅 時における前記電力値データに基づく決定と、 留守時における前記電力 値デ一夕に基づく決定と、 在宅時における前記熱量値データに基づく決 定と、 留守時における前記熱量値データに基づく決定とから任意に選択 することができる、 請求の範囲第 2 2項に記載の燃料電池システム。
2 4 . 前記燃料電池の起動予定時刻を任意に設定することができる運転 時刻設定手段をさらに備える、 請求の範囲第 1項に記載の燃料電池シス テム。
PCT/JP2004/010992 2003-07-25 2004-07-26 燃料電池システム WO2005011034A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005512106A JP4662850B2 (ja) 2003-07-25 2004-07-26 燃料電池システム
EP04748151.0A EP1662593B1 (en) 2003-07-25 2004-07-26 Fuel cell system
US10/542,171 US7951497B2 (en) 2003-07-25 2004-07-26 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-279838 2003-07-25
JP2003279838 2003-07-25

Publications (1)

Publication Number Publication Date
WO2005011034A1 true WO2005011034A1 (ja) 2005-02-03

Family

ID=34100836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010992 WO2005011034A1 (ja) 2003-07-25 2004-07-26 燃料電池システム

Country Status (5)

Country Link
US (1) US7951497B2 (ja)
EP (1) EP1662593B1 (ja)
JP (1) JP4662850B2 (ja)
CN (1) CN100438163C (ja)
WO (1) WO2005011034A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892784A1 (en) * 2005-06-16 2008-02-27 Matsushita Electric Industrial Co., Ltd. Load controlling device, load controlling method, load controlling circuit, load controlling program, and computer-readable recording medium where load controlling program is recorded
WO2008153222A1 (ja) * 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよびその起動完了度表示方法
JP2020145769A (ja) * 2019-03-04 2020-09-10 東京瓦斯株式会社 ヒートポンプシステム
WO2023277078A1 (ja) * 2021-06-30 2023-01-05 京セラ株式会社 燃料電池システム、燃料電池モジュール及び補機ユニット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089855A1 (es) 2010-12-27 2012-07-05 Fundacion Tecnalia Research & Innovation Método para la optimización económica de la operación de aparatos microcogeneradores
JP5531156B2 (ja) * 2011-03-30 2014-06-25 株式会社日立製作所 設備システム制御装置
JP5965123B2 (ja) 2011-09-28 2016-08-03 京セラ株式会社 エネルギー管理システム、エネルギー管理装置及び電力管理方法
JP5521122B2 (ja) * 2011-11-09 2014-06-11 パナソニック株式会社 熱電併給システムおよびその制御方法
CN110048142A (zh) * 2019-04-29 2019-07-23 北京氢澄能源科技开发有限公司 一种燃料电池热电联供系统
US20240185311A1 (en) * 2021-04-09 2024-06-06 Honda Motor Co., Ltd. Fuel cell power source management device and fuel cell power source management method
JP2023006000A (ja) * 2021-06-30 2023-01-18 トヨタ自動車株式会社 燃料供給制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467265A (en) 1993-02-10 1995-11-14 Hitachi, Ltd. Plant operation method and plant operation control system
JP2002352834A (ja) * 2001-05-23 2002-12-06 Matsushita Electric Ind Co Ltd 電力生成制御システム、およびプログラム
JP2003061245A (ja) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd コジェネレーション装置の運転計画方法
JP2004213970A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 発電システム
JP2004278510A (ja) * 2003-02-28 2004-10-07 Osaka Gas Co Ltd コージェネレーションシステム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4984344B2 (ja) 2000-12-20 2012-07-25 トヨタ自動車株式会社 燃料電池システムおよび供給電力切換方法
JP3671857B2 (ja) * 2001-04-12 2005-07-13 日産自動車株式会社 燃料電池システムの導電率管理装置
US6630259B2 (en) * 2001-05-23 2003-10-07 Avista Laboratories, Inc. Fuel cell power system performing AC inversion, method of distributing AC power, and method of operating a fuel cell power system
JP3431021B2 (ja) * 2001-05-24 2003-07-28 日産自動車株式会社 車両用燃料電池システム
US7049015B2 (en) * 2002-04-12 2006-05-23 Motorola, Inc. Method of operating a fuel cell power source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467265A (en) 1993-02-10 1995-11-14 Hitachi, Ltd. Plant operation method and plant operation control system
JP2002352834A (ja) * 2001-05-23 2002-12-06 Matsushita Electric Ind Co Ltd 電力生成制御システム、およびプログラム
JP2003061245A (ja) * 2001-08-09 2003-02-28 Osaka Gas Co Ltd コジェネレーション装置の運転計画方法
JP2004213970A (ja) * 2002-12-27 2004-07-29 Sanyo Electric Co Ltd 発電システム
JP2004278510A (ja) * 2003-02-28 2004-10-07 Osaka Gas Co Ltd コージェネレーションシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1662593A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892784A1 (en) * 2005-06-16 2008-02-27 Matsushita Electric Industrial Co., Ltd. Load controlling device, load controlling method, load controlling circuit, load controlling program, and computer-readable recording medium where load controlling program is recorded
EP1892784A4 (en) * 2005-06-16 2011-11-02 Panasonic Corp CHARGE CONTROL DEVICE, CHARGE CONTROL METHOD, CHARGE CONTROL CIRCUIT, CHARGE CONTROL PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM ON WHICH CHARGE CONTROL PROGRAM IS RECORDED
WO2008153222A1 (ja) * 2007-06-15 2008-12-18 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよびその起動完了度表示方法
JP2008311123A (ja) * 2007-06-15 2008-12-25 Toyota Motor Corp 燃料電池システムおよびその起動完了度表示方法
KR101135660B1 (ko) 2007-06-15 2012-04-13 도요타 지도샤(주) 연료전지시스템 및 그 기동 완료도 표시방법
US8980487B2 (en) 2007-06-15 2015-03-17 Toyota Jidosha Kabushiki Kaisha Fuel cell system and activating completion degree displaying method of the same
JP2020145769A (ja) * 2019-03-04 2020-09-10 東京瓦斯株式会社 ヒートポンプシステム
JP7181127B2 (ja) 2019-03-04 2022-11-30 東京瓦斯株式会社 ヒートポンプシステム
WO2023277078A1 (ja) * 2021-06-30 2023-01-05 京セラ株式会社 燃料電池システム、燃料電池モジュール及び補機ユニット

Also Published As

Publication number Publication date
US7951497B2 (en) 2011-05-31
JP4662850B2 (ja) 2011-03-30
EP1662593B1 (en) 2015-07-01
US20060051633A1 (en) 2006-03-09
EP1662593A1 (en) 2006-05-31
CN100438163C (zh) 2008-11-26
EP1662593A4 (en) 2012-01-04
CN1706060A (zh) 2005-12-07
JPWO2005011034A1 (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
EP1892784B1 (en) Load controlling device, load controlling method, load controlling circuit, load controlling program, and computer-readable recording medium where load controlling program is recorded
JP5373939B2 (ja) コジェネレーションシステム及び運転方法
JPWO2011105070A1 (ja) 需給制御装置、需給制御方法、およびプログラム
WO2005011034A1 (ja) 燃料電池システム
JP2009222383A (ja) コージェネレーション装置
JP5254500B1 (ja) 分散型発電システム及び分散型発電システムの制御方法
JP5191636B2 (ja) コージェネレーションシステム
JP2020118335A (ja) コージェネレーションシステム
JP2007104775A (ja) 複合電源におけるエネルギー需給方法、および、エネルギー需給装置
JP4378120B2 (ja) 家庭用コージェネレーションシステムの運転制御システム
JP2006244062A (ja) エネルギ負荷データ作成装置及びコージェネレーションシステム
JP2005291561A (ja) コージェネレーションシステムの運転方法及びコージェネレーションシステム
JP2005223963A (ja) コージェネレーションシステムの運転制御システム
JP5671694B2 (ja) 燃料電池システム
JP2005223964A (ja) コージェネレーションシステムの運転制御システム
JP2007247967A (ja) コージェネレーションシステム
JP2007247964A (ja) コジェネレーションシステム
JP2005009781A (ja) コージェネレーション・システムの出力制御装置及び出力制御方法
JP6010748B2 (ja) 燃料電池システム
JP4325306B2 (ja) 燃料電池システムの運転制御装置
JP2006250380A (ja) コージェネレーションシステムの暖房負荷予測装置
JP2007247981A (ja) コージェネレーションシステム
WO2012132198A1 (ja) 発電システム及び発電システムの運転方法
JP2005098679A (ja) コジェネレーションシステム
JP2006073265A (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2005512106

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048013504

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004748151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006051633

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542171

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10542171

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004748151

Country of ref document: EP