WO2005010351A1 - Kraftstoffeinspritzsystem für verbrennungskraftmaschinen - Google Patents

Kraftstoffeinspritzsystem für verbrennungskraftmaschinen Download PDF

Info

Publication number
WO2005010351A1
WO2005010351A1 PCT/DE2004/001520 DE2004001520W WO2005010351A1 WO 2005010351 A1 WO2005010351 A1 WO 2005010351A1 DE 2004001520 W DE2004001520 W DE 2004001520W WO 2005010351 A1 WO2005010351 A1 WO 2005010351A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
low
valve
fuel
accumulator
Prior art date
Application number
PCT/DE2004/001520
Other languages
English (en)
French (fr)
Inventor
Holger Rapp
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP04762380A priority Critical patent/EP1649161A1/de
Priority to US10/564,631 priority patent/US20060185647A1/en
Priority to JP2005518210A priority patent/JP2006511760A/ja
Publication of WO2005010351A1 publication Critical patent/WO2005010351A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0023Valves in the fuel supply and return system
    • F02M37/0029Pressure regulator in the low pressure fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/028Returnless common rail system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/0285Arrangement of common rails having more than one common rail

Definitions

  • Fuel injection systems with high-pressure accumulators are used in self-igniting internal combustion engines.
  • a return back pressure in the area of the hydraulic coupler is required.
  • the return counter pressure is achieved by connecting the injectors to a low pressure accumulator.
  • the low-pressure accumulator must first be filled.
  • Injectors controlled with a piezo actuator have much shorter switching times than injectors that are controlled with a solenoid valve or electrohydraulically.
  • the piezo-controlled injectors require a return counter pressure of around 10 bar in the area of their hydraulic coupler.
  • the return back pressure is achieved in that fuel injection systems equipped with piezo-controlled injectors are equipped with a low pressure accumulator.
  • the low pressure accumulator is closed by a pressure maintaining valve, which acts as a pressure relief valve in the direction from the injector to the tank. In this way, the return quantity of the injectors is backed up to a defined return pressure of approximately 10 bar during operation of the internal combustion engine.
  • the pressure-maintaining valve acts as a check valve with an opening pressure of approximately 0.3 bar.
  • the discharge side of the pressure control valve is hydraulically connected to the delivery side of the low-pressure pre-feed pump. In this way, the delivery pressure of the low-pressure prefeed pump, which is in the range of 3 to 5 bar, is immediately available to the low-pressure accumulator when the internal combustion engine starts. This ensures that the injectors are supplied even when the low-pressure accumulator is not completely filled with fuel.
  • the injectors of a fuel injection system for self-igniting internal combustion engines are operated either with the aid of piezo actuators, solenoid valves or electrohydraulically.
  • a return counter pressure of about 10 bar is required to ensure the function over the entire speed range of the internal combustion engine.
  • the return back pressure is achieved by connecting the injectors to a low-pressure accumulator on the return side.
  • the function of the piezo-controlled injectors is guaranteed by the fuel pressure in the low-pressure accumulator, which is closed off by a pressure-maintaining valve. In order to ensure the function of the injectors even when the internal combustion engine starts, it is necessary to fill the low-pressure reservoir before the internal combustion engine starts.
  • the low-pressure accumulator is filled before the start of the internal combustion engine via an overflow valve which is connected between the high-pressure pump of the fuel injection system and the low-pressure accumulator. In this way it is possible to fill the low-pressure accumulator even without an upstream low-pressure pre-feed pump.
  • a fuel injection system for self-igniting internal combustion engines provided with a high-pressure accumulator comprises a high-pressure part and a low-pressure part.
  • fuel is fed from a fuel tank to a high-pressure accumulator via a high-pressure pump and a high-pressure line.
  • Injectors are connected to the high-pressure accumulator via high-pressure supply lines. The injectors are supplied with fuel from the high-pressure accumulator via the high-pressure supply lines.
  • the hydraulic coupler used to control the valve needle is subjected to a return counter pressure.
  • the injectors in the low-pressure section are connected to a low-pressure accumulator via injector return lines.
  • a pressure-maintaining valve in the low-pressure accumulator is used for a pressure of ⁇ 50 bar, preferably ⁇ 20 bar and in particular ⁇ 10 kept in cash.
  • the fuel is returned to the fuel tank via a return line.
  • the low-pressure reservoir is connected to the high-pressure line of the high-pressure part via an overflow valve and an overflow line.
  • the overflow valve is designed in such a way that the overflow valve is opened when the high-pressure part is relieved of pressure, thus establishing a connection from the high-pressure part to the low-pressure accumulator.
  • the closing pressure of the overflow valve is dimensioned so that the overflow valve closes at a pressure in the range of 3 to 7 bar. The closing pressure of the overflow valve is thus below the opening pressure of the drain-holding valve.
  • the closing pressure of the overflow valve is generated in that a valve spring is provided in the overflow valve, the spring force of which corresponds to the pressure force which acts on the pressure surface of the valve piston.
  • the valve piston is guided in a valve guide with little play.
  • the fuel leakage flow through the low-clearance guide is collected in a low-pressure chamber delimited by the valve piston and returned to the fuel reservoir via a return.
  • FIG. 1 shows a fuel injection system according to the prior art with an electrical low-pressure prefeed pump
  • FIG. 2 shows a fuel injection system with overflow valve designed according to the invention
  • Figure 3 shows an overflow valve designed according to the invention. ⁇ ⁇ cffi hr ⁇ n ⁇ cvnri -3nt ⁇ -> n
  • Figure 1 shows a fuel injection system according to the prior art with an electric low-pressure prefeed pump.
  • a fuel injection system for supplying a self-igniting internal combustion engine
  • fuel is supplied from a fuel reservoir (not shown here) to a pre-feed pump 2 via a fuel feed line 1.
  • the fuel is pre-compressed and further fed via a low-pressure line 3 to a high-pressure pump 4, in which the fuel is compressed onto the high-pressure storage tank and fed to a high-pressure tank 5.
  • the pressure required to operate the internal combustion engine in the high-pressure accumulator 5 is in the range from 100 to 2000 bar.
  • the fuel is supplied to the injectors 7 from the high-pressure accumulator 5 via high-pressure feed lines 6.
  • the fuel injection system can also comprise any other number of injectors.
  • the pressure in the low-pressure accumulator 9 is maintained in such a way that safe operation of the injectors is ensured.
  • back pressure at the hydraulic coupler of the injector between 5 bar and 10 bar is required for safe operation over the entire speed range of the internal combustion engine.
  • a constant drain in the low-pressure accumulator 9 is achieved in that the low-pressure accumulator 9 is closed off by a pressure-maintaining valve 11.
  • the pressure control valve 11 opens and fuel flows via a low pressure return to 13 back into the pressure control line 3.
  • the pressure control valve 11 closes again.
  • the high-pressure accumulator 5 In order to keep the pressure in the high-pressure accumulator 5 constant when fuel is continuously being delivered by the high-pressure pump 4, the high-pressure accumulator 5 is closed off by a pressure regulating valve 10. As soon as the pressure in the high-pressure accumulator 5 exceeds the opening pressure of the drain control valve 10, the pressure control valve 10 opens and fuel runs via a return line 12 back into the fuel reservoir.
  • systems with controllable fuel delivery through the high-pressure pump 4 are also known, in which the pressure control in the high-pressure accumulator 5 takes place by varying the pump delivery range and as a result of which a pressure control valve 10 can be dispensed with.
  • FIG. 2 shows a fuel injection system with an overflow valve designed according to the invention.
  • no prefeed pump 2 is connected between the fuel reservoir and the high-pressure pump 4.
  • the fuel is conveyed directly from the fuel reservoir via the fuel feed line 1 and a high-pressure line 32 into the high-pressure accumulator 5 by means of the high-pressure pump 4.
  • a mechanically driven pre-feed pump 2 is usually integrated into the high-pressure pump 4, as a result of which the area after the pre-feed pump 2 is no longer accessible from the outside.
  • the injectors 7 are fed with fuel from the high-pressure accumulator 5 via the high-pressure feed line 6.
  • the low-pressure accumulator 9 is closed with the drain-holding valve 11. As soon as the drain in the low-pressure reservoir 9 exceeds the opening pressure of the drain-holding valve 11, the drain-holding valve 11 opens and fuel flows back into the fuel reservoir via the return line 12.
  • an overflow line 33 branches off from the high-pressure line 32 behind the high-pressure pump 4.
  • the overflow line 33 is connected to the low-pressure accumulator 9 via an overflow valve 15 and a low-pressure connection 34.
  • the connection of the overflow valve 15 to the overflow line 33 can e.g. through a high-pressure connection 17 with a suitable union nut 19.
  • the connection of the overflow valve 15 to the low-pressure connection 34 takes place via a low-pressure connection 25.
  • Fuel which occurs as a result of the leakage flow is collected in a low-pressure chamber 28 and passed back into the fuel reservoir via a leakage line 35 which is connected to the return line 12.
  • the leakage line 35 is attached to a return port 26 on the overflow valve 15. Since the line on the low-pressure side of the fuel injection system is usually designed as plastic hoses with an integrated fabric, the return connection 26 and the low-pressure connection 25 are designed as connection nipples for hoses.
  • the overflow valve 15 is designed so that it is open as long as the pressure in the high pressure region is lower than the closing pressure of the overflow valve 15.
  • the closing pressure of the overflow valve 15 is selected such that it is somewhat lower than the drain in the low-pressure accumulator 9 delimited by the drain-holding valve 11 the open overflow valve 15 also fills the low-pressure accumulator 9.
  • the overflow valve 15 is closed by the drain built up in the overflow line 33 by means of the high-pressure pump 4.
  • the overflow valve 15 is closed, the drain in the high-pressure reservoir 5 is built up further until the necessary operating pressure is reached.
  • FIG. 3 shows a detailed view of the overflow valve.
  • the overflow valve 15 comprises a valve housing 18, a valve piston 21 and a valve spring 24.
  • a cover surface 22 and a seat surface 36 opposite the pressure surface 22 are formed on the valve piston 21.
  • the seat surface 36 forms a valve seat 23 with the valve housing 18.
  • the pressure surface 22 of the valve piston 21 points in the direction of a high-pressure connection 16.
  • the high-pressure connection 16 comprises the high-pressure connection 17, which preferably closes off the overflow line 33.
  • the high-pressure connection 17 is fastened to the valve housing 18 by means of the union nut 19.
  • a spring force F is applied to the valve piston 21 by the valve spring 24.
  • the spring force F is dimensioned such that the overflow valve 15 closes when a defined pressure in the high-pressure connection 16 is reached.
  • the force acting on the cover surface 22 of the valve piston 21 can be according to
  • the valve spring 24 used to open the valve is located on the valve piston 21 on a spring seat surface 29 and 30 on a spring chamber boundary wall on the valve housing 18 for accommodating the valve spring 24, a spring chamber '31 is accommodated in the valve housing 18th Furthermore, a bore in the valve housing 18 is preferably made centered on the spring chamber 31. The bore serves as a valve guide 27 and forms a low-pressure chamber 28 behind the valve piston 21. The diameter of the valve guide 27d is selected so that the valve piston 21 is guided with little play. To fill the low-pressure accumulator 9, fuel flows through the high-pressure connection 16 around the valve piston with the conical seat 36 into the spring chamber 31.
  • the fuel leaves the overflow valve 15 in the direction of the low-pressure accumulator 9 via the low-pressure connection 25 of the fuel flows along the valve guide 27 into the low-pressure chamber 28.
  • the fuel that flows along the valve guide 27 serves at the same time to lubricate the valve piston 21 in the valve housing 18. Since the low-pressure chamber 28 is in direct connection with the fuel storage container, there is approximately the same the same pressure as in the fuel tank. Because of the difference in pressure between the spring chamber 31 and the low-pressure chamber 28, new fuel always flows into the low-pressure chamber 28. The fuel from the low-pressure chamber 28 is fed back into the fuel reservoir via the return connection 26.
  • the return connection and the low-pressure connection 25 can also take any other suitable form known to the person skilled in the art for connecting the low-pressure connection 34 or the leakage line 35.
  • the overflow valve 15 can be connected to the overflow line 33 in addition to the screw connection shown with the high pressure connection 17 and the union nut 19 with any other detachable or non-detachable connection known to the person skilled in the art.
  • the connections must in any case be stable against the drain generated by the high pressure pump 4.
  • flange connections or welded connections are also possible.
  • each 2-way valve is suitable as an overflow valve 15, which closes the connection from the overflow line 13 into the low-pressure accumulator 9 at a predetermined closing pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung bezieht sich auf in Kraftstoffeinspritzsystem für Verbrennungskraftmaschinen, das einen Hochdruckteil und einen Niederdruckteil umfasst. Im Hochdruckteil wird Kraftstoff aus einem Kraftstoffbehälter über eine Hochdruckpumpe (4) und eine Hochdruckleitung (32) einem Hochdruckspeicher (5) zugeführ. Über Hochdruckzuleitungen (6) werden Injektoren (7) aus dem Hochdruckspeicher (4) versorgt. Im Niederdruckteil sind die Injektoren (7) über Injektorrücklaufleitungen (8) mit einem Niederdruckspeicher (9) verbunden, wobei im Niederdruckspeicher (9) durch ein Druckhalteventil (11) ein Druck von grösser gleich 50 bar gehalten wird. Bei einem Druck im Niederdruckspeicher (9) oberhalb des Öffnungsdrucks des Druckhalteventils (11) wird der Kraftstoff über eine Rücklaufleitung (12) in den Kraftstoffbehälter zurückgeleitet. Der Niederdruckspeicher (9) ist über ein Überströmventil (15) und ein Überströmleitung (33) mit der Hochdruckleitung (32) des Hochdruckteils verbunden.

Description

Kraftstoffeinspritzsystem für Nerbrennungskraftmaschinen
Technisches Gebiet
Bei selbstzündenden Verbrennungskraftmaschinen kommen Kraftstoffeinspritzsysteme mit Hochdruckspeicher zum Einsatz. Bei Verwendung von piezogesteuerten Injektoren ist ein Rücklauf-Gegendruck im Bereich des hydraulischen Kopplers erforderlich. Der Rücklauf- Gegendruck wird durch die Verbindungen der Injektoren mit einem Νiederdruckspeicher erreicht. Damit beim Starten der Verbrennungskraftmaschine ein sicherer Betrieb gewährleistet ist, muss zunächst der Νiederdruckspeicher befüllt werden. Stand der Technik
Mit einem Piezo-Aktor gesteuerte Injektoren weisen sehr viel kürzere Schaltzeiten auf als Injektoren, die mit einem Magnetventil oder elektrohydraulisch gesteuert werden. Damit die Funktion des Piezo-Aktors über den gesamten Drehzahlbereich gewährleistet ist, benö- tigen die piezogesteuerten Injektoren einen Rücklauf-Gegendruck von etwa 10 bar im Bereich ihres hydraulischen Kopplers. Der Rücklauf-Gegendruck wird dadurch erreicht, dass mit piezogesteuerten Injektoren ausgestattete Rraftstoffeinspritzsysteme mit einem Νiederdruckspeicher ausgestattet werden. Der Νiederdruckspeicher wird durch ein Druckhalteventil abgeschlossen, welches in Richtung vom Injektor zum Tank als Überdruckventil wirkt. Auf diese Weise wird im Betrieb der Verbrennungskraftmaschine die Rücklaufmenge der Injektoren auf einen definierten Rücklauf druck von ungefähr 10 bar angestaut.
In Richtung von Kraftstoffvorratsbehälter zum Νiederdruckspeicher wirkt das Druckhalteventil als Rückschlagventil mit einem Öffnungsdruck von etwa 0,3 bar. Bei Kraftstoffein- spritzsystemen' mit einer elektrischen Niederdrack-Vorförderpumpe wird die Ablaufseite des Druckhalteventiles hydraulisch mit der Förderseite der Niederdrack-Vorförderpumpe verbunden. Auf diese Weise steht der Förderdruck der Niederdrack-Vorförderpumpe, der im Bereich von 3 bis 5 bar liegt, im Startfall der Verbrennungskraftmaschine auch sofort dem Niederdruckspeicher zur Verfügung. Hierdurch ist die Versorgung der Injektoren auch dann gewährleistet, wenn der Niederdruckspeicher nicht vollständig mit Kraftstoff befüllt ist.. Dies betrifft insbesondere den Fall, wenn der Niederdruckspeicher im Servicefall demontiert wurde und insbesondere auch den ersten Start des Kraftstoffeinspritzsystems im Motorenwerk. Vielfach werden jedoch auch Kraftstoffeinspritzsystcmε ohne Niederdrack- Vorförderpumpe eingesetzt. Bei diesen Kraftstoff einspritzsystemen besteht jedoch keine Möglichkeit, den Niederdrackspeicher vor dem Start der Verbrennungskraftmaschine zu befüllen.
Darstellung der Erfindung
Die Injektoren eines Kraftstoffeinspritzsystems für selbstzündende Verbrennungskraftmaschinen werden entweder mit Hilfe von Piezoaktoren, Magnetventilen oder elektrohydrau- lisch betrieben. Bei Einsatz von Injektoren, die mit einem Piezoaktor ausgestattet sind, ist zur Gewährleistung der Funktion über den gesamten Drehzahlbereich der Verbrennungskraftmaschine ein Rücklauf-Gegendruck von etwa 10 bar erforderlich. Der Rücklauf- Gegendruck wird dadurch erreicht, dass die Injektoren rücklaufseitig mit einem Niederdrackspeicher verbunden werden. Durch den Kraftstoffdrack im durch ein Druckhalteventil abgeschlossenen Niederdruckspeicher wird die Funktion der piezogesteuerten Injektoren gewährleistet. Um die Funktion der Injektoren auch beim Start der Verbrennungskraftmaschine zu gewährleisten ist es erforderlich, den Niederdrackspeicher vor dem Start der Verbrennungskraftmaschine zu befüllen.
Bei dem erfindungsgemäß gestalteten Kraftstoffeirispritzsystem für selbstzündende Verbrennungskraftmaschinen wird der Niederdrackspeicher vor dem Start der Verbrennungskraftmaschine über ein Überströmventil befüllt, das zwischen die Hochdruckpumpe des Kraftstoffeinspritzsystems und den Niederdrackspeicher geschaltet ist. Auf diese Weise wird ermöglicht, den Niederdrackspeicher auch ohne eine vorgeschaltete Niederdrack- Vorförderpumpe zu befüllen.
Ein mit einem Hochdrackspeicher versehenes Kraftstoffeinspritzsystem für selbstzündende Verbrennungskraftmaschinen umfasst einen Hochdruckteil und einen Niederdruckteil. Im Hochdruckteil wird Kraftstoff aus einem Kraftstoffbehälter über eine Hoch- drackpumpe und eine Hochdrackleitung einem Hochdrackspeicher zugeführt. Mit dem Hochdrackspeicher sind Injektoren über Hochdruckzuleitungen verbunden. Die Versorgung der Injektoren aus dem Hochdrackspeicher mit Kraftstoff erfolgt über die Hochdruckzuleitungen.
Zum Betrieb der Injektoren ist es erforderlich, dass der zur Steuerung der Ventilnadel eingesetzte hydraulische Koppler mit einem Rücklauf-Gegendruck beaufschlagt ist. Dieser wird dadurch erreicht, dass die Injektoren im Niederdruckteil über Injektorrucklaufleitungen mit einem Niederdrackspeicher verbunden sind. Im Niederdruckspeicher wird durch ein Drackhalteventil ein Druck von < 50 bar, bevorzugt < 20 bar und insbesondere < 10 bar gehalten. Sobald der Druck im Niederdrackspeicher den Öffnungsdruck des Drackhal- teventiles übersteigt, wird der Kraftstoff über eine Rücklaufleitung in den Kraftstoffbehälter zurückgeleitet. Zum Aufbau des erforderlichen Dracks im Niederdrackspeicher ist der Niederdrackspeicher über ein Überströmventil und eine Überströmleitung mit der Hochdrackleitung des Hochdrackteiles verbunden.
Zur Befüllung des Niederdruckspeichers ist das Überströmventil so gestaltet, dass das Ü- berströmventil bei druckentlastetem Hochdrackteil geöffnet ist und so eine Verbindung vom Hochdrackteil in den Niederdrackspeicher hergestellt ist. Der Schließdruck des Überströmventils ist so bemessen, dass das Überströmventil bei einem Druck im Bereich von 3 bis 7 bar schließt. Somit liegt der Schließdruck des Überströmventiles unterhalb des Öffnungsdrucks des Drackhalteventils.
Der Schließdruck des Überströmventils wird dadurch erzeugt, dass im Überströmventil eine Ventilfeder vorgesehen ist, deren Federkraft der Druckkraft entspricht, die auf die Druckfläche des Ventilkolbens wirkt. Der Ventilkolben wird in einer spielarmen Ventilfüh- rang geführt. Die Kraftstoffleckageströmung durch die spielarme Führung werden in einen durch den Ventilkolben begrenzten Niederdrackraum gesammelt und über einen Rücklauf in den Kraftstoffvorratsbehälter zurückgeführt.
Zeichnung
Im folgenden wird die Erfindung anhand einer Zeichnung näher beschrieben. Es zeigt:
Es zeigt:
Figur 1 ein Kraftstoffeinspritzsystem gemäß dem Stand der Technik mit elektri- scher Niederdrack-Vorförderpumpe,
Figur 2 ein erfϊndungsgemäß ausgebildetes Kraftstoffeinspritzsystem mit Überströmventil,
Figur 3 ein erfindungsgemäß ausgebildetes Überströmventil. Δ πcffi hrπn σcvnri -3ntι->n
Figur 1 zeigt ein Kraftstoffeinspritzsystem gemäß dem Stand der Technik mit elektrischer Niederdrack-Vorförderpumpe.
Bei einem Kraftstoffeinspritzsystem zur Versorgung einer selbstzündenden Verbrennungskraftmaschine wird Kraftstoff aus einem hier nicht dargestellten Kraftstoffvorratsbehälter über eine Kraftstoffzuleitung 1 einer Vorförderpumpe 2 zugeführt. In der Vorförderpumpe 2 wird der Kraftstoff vorverdichtet und weiter über eine Niederdruckleitung 3 einer Hoch- drackpumpe 4 zugeführt, in der der Kraftstoff auf den Hochdrackspeicherdrack verdichtet und einem Hochdrackspeicher 5 zugeführt wird. Der zum Betrieb der Verbrennungskraftmaschine erforderliche Druck im Hochdrackspeicher 5 liegt im Bereich von 100 bis 2000 bar. Aus dem Hochdrackspeicher 5 wird der Kraftstoff über Hochdruckzuleitungen 6 Injektoren 7 zugeführt. Neben dem in Figur 1 dargestellten Kraftstoffeinspritzsystem mit sechs Injektoren, dem eine Verbrennungskraftmaschine mit sechs Zylindern zugeordnet ist, kann das Kraftstoffeinspritzsystem auch jede andere Anzahl an Injektoren umfassen.
Der für den Betrieb der Injektoren 7 erforderliche Kraftstoff, der nicht in den Brennraum der Verbrennungskraftmaschine eingespritzt wird, wird über Injektorrucklaufleitungen 8 einem Niederdrackspeicher 9 zugeführt. Der Druck im Niederdrackspeicher 9 wird so gehalten, dass ein sicherer Betrieb der Injektoren gewährleistet ist. Insbesondere bei Ein- satz von piezogesteuerten Injektoren ist zum sicheren Betrieb über den gesamten Drehzahlbereich der Verbrennungskraftmaschine ein Gegendruck am hydraulischen Koppler des Injektors zwischen 5 bar und 10 bar erforderlich.
Ein konstanter Drack im Niederdrackspeicher 9 wird dadurch erreicht, dass der Niederdrackspeicher 9 durch ein Druckhalteventil 11 abgeschlossen ist. Bei Überschreiten des Öffnungsdrackes des Drackhalteventiles 11 öffnet das Drackhalteventil 11 und Kraftstoff strömt über einen Niederdruckrücklauf auf 13 zurück in die Niederdrackleitung 3. Sobald aus dem Niederdrackspeicher 9 soviel Kraftstoff abgelaufen ist, dass der Öffnungsdruck des Drackhalteventiles 11 unterschritten wird, schließt das Drackhalteventil 11 wieder.
Um bei kontinuierlicher Förderung von Kraftstoff durch die Hochdrackpumpe 4 den Druck im Hochdrackspeicher 5 konstant zu halten, ist der Hochdruckspeicher 5 durch ein Drack- regelventil 10 abgeschlossen. Sobald der Druck im Hochdrackspeicher 5 den Offnungsdruck des Drackregel ventils 10 übersteigt, öffnet das Druckregel ventil 10 und Kraftstoff läuft über eine Rücklaufleitung 12 zurück in den Kraftstoffvorratsbehälter. Alternativ sind auch Systeme mit steuerbarer Kraftstoffförderang durch die Hochdrackpumpe 4 bekannt, bei denen die Drackregelung im Hochdrackspeicher 5 durch Variation der Pumpenförde- rang erfolgt und in Folge dessen auf ein Druckregel ventil 10 verzichtet werden kann.
Figur 2 zeigt ein erfindungsgemäß ausgebildetes Kraftstoffeinspritzsystem mit Überström- ventil.
Im Unterschied zu Figur 1 ist bei dem erfindungsgemäß ausgebildeten Kraftstoffeinspritzsystem keine Vorförderpumpe 2 zwischen den Kraftstoffvorratsbehälter und die Hochdrackpumpe 4 geschaltet. Bei dem erfindungsgemäß ausgebildeten Kraftstoffeinspritzsys- tem wird der Kraftstoff direkt aus dem Kraftstoffvorratsbehälter über die Kraftstoffzuleitung 1 und eine Hochdrackleitung 32 mittels der Hochdrackpumpe 4 in den Hochdrackspeicher 5 gefördert. Üblicherweise ist bei solchen Systemen eine mechanisch angetriebene Vorförderpumpe 2 in die Hochdrackpumpe 4 integriert, wodurch der Bereich nach der Vorförderpumpe 2 nicht mehr von außen zugänglich ist. Über die Hochdruckzuleitung 6 werden die Injektoren 7 aus dem Hochdrackspeicher 5 mit Kraftstoff gespeist. Der zum hydraulischen Betrieb der Injektoren 7 benötigte Kraftstoff, der nicht in die Brennräume der Verbrennungskraftmaschine eingespritzt wird, wird über die Injektorrucklaufleitungen 8 dem Niederdrackspeicher 9 zugeführt. Der Niederdrackspeicher 9 ist mit dem Drackhalteventil 11 verschlossen. Sobald der Drack im Niederdrackspeicher 9 den Öffnungsdruck des Drackhalteventiles 11 übersteigt, öffnet das Drackhalteventil 11 und Kraftstoff strömt über die Rücklaufleitung 12 zurück in den Kraftstoffvorratsbehälter.
Zur Befüllung des Niederdrackspeichers vor dem Start der Verbrennungskraftmaschine zweigt aus der Hochdrackleitung 32 hinter der Hochdrackpumpe 4 eine Überströmleitung 33 ab. Die Überströmleitung 33 ist über ein Überströmventil 15 und eine Niederdrackver- bindung 34 mit dem Niederdrackspeicher 9 verbunden. Der Anschluss des Überströmventils 15 an die Überstromleitung 33 kann z.B. durch einen Hochdrackanschluss 17 mit einer passenden Überwurfmutter 19 erfolgen. Die Verbindung des Überströmventils 15 mit der Niederdrackverbindung 34 erfolgt über einen Niederdrackanschluß 25. Durch auftretende Leckageströmung anfallender Kraftstoff wird in einem Niederdrackraum 28 gesammelt und über eine Leckageleitung 35, die mit der Rucklaufleitung 12 verbunden ist, zurück in den Kraftstoffvorratsbehälter geleitet. Die Leckageleitung 35 ist mit einem Rücklauf anschluss 26 am Überströmventil 15 befestigt. Da die Leitung auf der Niederdruckseite des Kraftstoffeinspritzsystems gewöhnlich als Kunststoffschläuche mit integriertem Gewebe ausgebildet sind, sind der Rücklaufanschluss 26 und der Niederdrackanschluss 25 als Anschlussnippel für Schläuche ausgebildet.
Das Überströmventil 15 ist so konstruiert, dass es geöffnet ist, solange der Drack im Hochdruckbereich niedriger ist als der Schließdruck des Überströmventils 15. Der Schließdruck des Überströmventils 15 ist so gewählt, dass er etwas niedriger liegt als der durch das Drackhalteventil 11 begrenzte Drack im Niederdrackspeicher 9. Sobald die Hochdrackpumpe 4 beginnt Kraftstoff zu fördern, um den für den Betrieb der Verbrennungskraftmaschine notwendigen Druck im Hochdrackspeicher 5 aufzubauen, wird zunächst über das offene Überströmventil 15 auch der Niederdrackspeicher 9 befüllt. Sobald der Schließdruck des Überströmventils 15 erreicht ist, wird durch den mittels der Hochdrackpumpe 4 in der Überströmleitung 33 aufgebauten Drack das Überströmventil 15 geschlossen. Sobald das Überströmventil 15 geschlossen ist, wird der Drack im Hochdrackspeicher 5 weiter aufgebaut, bis der notwendige Betriebsdruck erreicht ist. Durch die Befüllung des Nieder- drackspeichers 9 über das Überströmventil 15 wird sichergestellt, dass bereits bei der ersten Ansteuerung eines der Injektoren 7 ein ausreichend hoher Rücklauf-Gegendruck an den Injektoren 7 vorherrscht, so dass ein hydraulischer Koppler, der einem Piezoaktor zur Hubübersetzung, d.h. Hubwegverlängerung zugeordnet ist, zuverlässig befüllt werden kann. Der weitere Druckaufbau im Niederdrackspeicher 9 bis zum Erreichen des Betriebsdruckes erfolgt dann durch das Absteuern des aus den Injektoren 7 rücklaufenden Kraftstoffes.
Figur 3 ist eine detaillierte Ansicht des Überströmventiles zu entnehmen.
Das Überströmventil 15 umfasst ein Ventilgehäuse 18, einen Ventilkolben 21 und eine Ventilfeder 24. Am Ventilkolben 21 ist eine Drackfläche 22 und eine der Druckfläche 22 gegenüberhegende Sitzfläche 36 ausgebildet. Die Sitzfläche 36 bildet mit dem Ventilgehäuse 18 einen Ventilsitz 23. In der in Figur 3 dargestellten Position des Ventilkolbens 21 ist das Überströmventil 15 geöffnet. Die Drackfläche 22 des Ventilkolbens 21 weist in Richtung einer Hochdruckverbindung 16. Die Hochdrackverbindung 16 umfasst den Hochdrackanschluss 17, der vorzugsweise die Überströmleitung 33 abschließt. Der Hochdrackanschluss 17 ist mittels der Überwurfmutter 19 am Ventilgehäuse 18 befestigt. Der Ventilkolben 21 wird durch die Ventilfeder 24 mit einer Federkraft F beaufschlagt. Die Federkraft F ist so bemessen, dass das Überströmventil 15 bei Erreichen eines definierten Druckes in der Hochdrackverbindung 16 schließt. Die auf die Drackfläche 22 des Ventil- kolbens 21 wirkende Kraft lässt sich gemäß
p • — • d2, p = Drack im Rücklauf 4 d = Durchmesserdrackfläche 22
berechnen.
Sobald die Kraft auf die Drackfläche 22 die Federkraft F der Ventilfeder 24 übersteigt, schließt das Überströmventil 15; dies ist der Fall wenn E-4 . - P > PschweU = — — T lrd- L d
Die zum Öffnen des Ventils eingesetzte Ventilfeder 24 liegt am Ventilkolben 21 auf einer Federauflagefläche 29 auf und am Ventilgehäuse 18 auf einer Federraumbegrenzungswand 30. Zur Aufnahme der Ventilfeder 24 ist im Ventilgehäuse 18 ein Federraum' 31 aufgenommen. Weiterhin ist vorzugsweise zentriert zum Federraum 31 eine Bohrung im Ventilgehäuse 18 angebracht. Die Bohrung dient als Ventilführang 27 und bildet hinter dem Ventilkolben 21 einen Niederdrackraum 28 aus. Der Durchmesser der Ventilführung 27d ist so gewählt, dass der Ventilkolben 21 spielarm geführt wird. Zur Befüllung des Niederdruck- Speichers 9 strömt Kraftstoff über die Hochdrackverbindung 16 um den Ventilkolben mit der hier konisch ausgebildeten Sitzfläche 36 in den Federraum 31. Von dort verlässt der Kraftstoff über den Niederdrackanschluß 25 das Überströmventil 15 in Richtung des Nie- derdrackspeichers 9. Ein Teil des Kraftstoffs strömt entlang der Ventilführung 27 in den Niederdrackraum 28. Der Kraftstoff, der entlang der Ventilführang 27 strömt, dient gleichzeitig zur Schmierung des Ventilkolbens 21 im Ventilgehäuse 18. Da der Niederdruckraum 28 in direkter Verbindung mit dem Kraftstoffvorratsbehälter steht, herrscht in diesem in etwa der gleiche Druck wie im Kraftstoffvorratsbehälter. Aufgrund des Drackunterschiedes zwischen dem Federraum 31 und dem Niederdrackraum 28 strömt immer neuer Kraftstoff in den Niederdrackraum 28 nach. Der Kraftstoff aus dem Niederdrackraum 28 wird über den Rücklaufanschluß 26 zurück in den Kraftstoffvorratsbehälter geleitet.
Neben den in Figur 3 dargestellten Anschlußnippeln für den Niederdrackanschluß 25 und den Rücklaufanschluß 26 können der Rücklaufanschluß und der Niederdrackanschluß 25 auch jede andere geeignete, dem Fachmann bekannte Form zum Anschluß der Niederdruckverbindung 34 bzw. der Leckageleitung 35 annehmen. Weiterhin kann das Überströmventil 15 neben der dargestellten Schraubverbindung mit dem Hochdruckanschluß 17 und der Überwurfmutter 19 auch mit jeder anderen dem Fachmann bekannten lösbaren oder unlösbaren Verbindung mit der Überströmleitung 33 verbunden werden. Dabei müs- sen die Verbindungen auf jeden Fall gegen den durch die Hochdruckpumpe 4 erzeugten Drack stabil sein. So sind neben der dargestellten Schraubverbindung z.B. auch Flanschverbindungen oder Schweißverbindungen möglich. Weiterhin kann der Niederdrackanschluß 25 oder der Rücklaufanschluß 26 ebenfalls als Flanschverbindung, Schraubverbindung oder bei Einsatz von metallischen Rohrleitungen durch Schweißen erfolgen. Ebenfalls ist bei den insbesondere nicht durch einen hohen Drack belasteten Anschlüssen eine Klebeverbindung denkbar. auch als Kugelsitz, Flachsitz oder Schieber, oder jeder weiteren dem Fachmann bekannten Form ausgebildet sein. So eignet sich als Überströmventil 15 jedes 2-Wegeventil, das bei einem vorgegebenen Schließdruck die Verbindung von der Überströmleitung 13 in den Niederdrackspeicher 9 verschließt.
Bεzugszεichεnliste Kraftstoffzuleitung Vorförderpumpe Niederdrackleitung Hochdrackpumpe Hochdrackspeicher Hochdruckzuleitung Injektor Inj ektorrücklaufleitung Niederdrackspeicher (rücklaufrail) Drackregelventil Drackhalteventil Rücklaufleitung
Niederdrackrücklauf
Überströmventil
Hochdrackverbindung
Hochdrackanschluß
Ventilgehäuse
Überwurfmutter
Druckraum
Ventilkolben
Drackfläche
Ventilsitz
Ventilfeder
Niederdrackanschluß
Rücklaufanschluß
Ventilführang (spielarm)
Niederdrackraum
Federauflageflächen
Federraumbegrenzungswand
Federraum
Hochdrackleitung
Überströmleitung
Niederdruckverbindung
Leckageleitung
Sitzflächeederkraft in Öffnungsrichtung f. 21

Claims

r Pafp.n -. tnn< --.τ.-ri. —ir- „hρ~
1. Kraftstoffeinspritzsystem für Verbrennungskraftmaschinen, einen Hochdrackteil und einen Niederdruckteil umfassend, wobei im Hochdruckteil Kraftstoff aus einem Kraft- stoffbehälter über eine Hochdrackpumpe (4) und eine Hochdrackleitung (32) einem Hochdrackspeicher (5) zugeführt wird und Injektoren (7) über Hochdruckzuleitungen (6) aus dem Hochdruckspeicher (4) versorgt werden und im Niederdruckteil die Injektoren (7) über Injektorrucklaufleitungen (8) mit einem Niederdrackspeicher (9) verbunden sind, wobei im Niederdrackspeicher (9) durch ein Drackhalteventil (11) ein Drack von < 50 bar gehalten wird und bei einem Druck im Niederdrackspeicher (9) oberhalb des Öffnungsdrackes des Drackhalteventiles (11) der Kraftstoff über eine Rücklaufleitung (12) in den Kraftstoffbehälter zurückgeleitet wird, dadurch gekennzeichnet, dass der Niederdrackspeicher (9) über ein Überströmventil (15) und eine Ü- berströmleitung (33) mit der Hochdrackleitung (32) des Hochdruckteils verbunden ist.
2. Kraftstoffeinspritzsystem nach Ansprach 1, dadurch gekennzeichnet, dass bei druckentlastetem Hochdrackteil das Überströmventil (15) geöffnet ist.
3. Kraftstoffeinspritzsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Über- strömventil (15) bei Erreichen eines Schließdruckes, der unterhalb des Öffnungsdruckes des Druckhalteventils (11) liegt, durch Einwirkung des mittels der Hochdrackpumpe (4) verdichteten Kraftstoffs verschlossen wird.
4. Kraftstoffeinspritzsystem nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Überströmventil (15) eine Ventilfeder (24) enthält, deren Federkraft F der durch den Schließdruck aufgebrachten Kraft am Überströmventil (13) entspricht.
5. Kraftstoffeinspritzsystem nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Überströmventil (15) einen Niederdrackraum (28) enthält, der über eine Leckageleitung (35) mit der Rücklaufleitung (12) verbunden ist.
6. Kraftstoffeinspritzsystem nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Injektoren (7) piezogesteuert sind.
7. Kraftstoffeinspritzsystem nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Drack im Niederdrackspeicher (9) < 10 bar ist.
PCT/DE2004/001520 2003-07-17 2004-07-13 Kraftstoffeinspritzsystem für verbrennungskraftmaschinen WO2005010351A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04762380A EP1649161A1 (de) 2003-07-17 2004-07-13 Kraftstoffeinspritzsystem f r verbrennungskraftmaschinen
US10/564,631 US20060185647A1 (en) 2003-07-17 2004-07-13 Fuel injection system for combustion engines
JP2005518210A JP2006511760A (ja) 2003-07-17 2004-07-13 内燃機関のための燃料噴射系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332484A DE10332484A1 (de) 2003-07-17 2003-07-17 Kraftstoffeinspritzsystem für Verbrennungskraftmaschinen
DE10332484.4 2003-07-17

Publications (1)

Publication Number Publication Date
WO2005010351A1 true WO2005010351A1 (de) 2005-02-03

Family

ID=34041909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001520 WO2005010351A1 (de) 2003-07-17 2004-07-13 Kraftstoffeinspritzsystem für verbrennungskraftmaschinen

Country Status (7)

Country Link
US (1) US20060185647A1 (de)
EP (1) EP1649161A1 (de)
JP (1) JP2006511760A (de)
KR (1) KR20060041236A (de)
CN (1) CN1823222A (de)
DE (1) DE10332484A1 (de)
WO (1) WO2005010351A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025803A1 (de) * 2005-08-30 2007-03-08 Robert Bosch Gmbh Kraftstoffeinspritzsystem mit verringerter schadstoffemission
DE102007000289B4 (de) * 2006-06-05 2009-04-16 Denso Corp., Kariya-shi Kraftstoffeinspritzvorrichtung und dabei verwendetes Differenzialdruckregulierventil
CN101446247A (zh) * 2007-11-26 2009-06-03 罗伯特·博世有限公司 用于内燃机燃料系统的燃料高压泵
WO2010020464A1 (de) * 2008-08-20 2010-02-25 Robert Bosch Gmbh Vorrichtung zur versorgung einer verbrennungskraftmaschine mit treibstoff
WO2016071046A1 (en) * 2014-11-04 2016-05-12 Delphi International Operations Luxembourg S.À R.L. Fuel delivery system
WO2023280929A1 (en) * 2021-07-06 2023-01-12 Delphi Technologies Ip Limited Fuel pump with integrated pressure relief valve

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037557A1 (de) * 2004-08-03 2006-03-16 Robert Bosch Gmbh Kraftstoffeinspritzsystem
DE102005025873A1 (de) * 2005-06-06 2006-12-07 Robert Bosch Gmbh Injektor zur Verwendung in Hochdruck-Einspritzsystemen
JP4793315B2 (ja) * 2006-07-20 2011-10-12 株式会社デンソー 燃料噴射装置
JP4968037B2 (ja) * 2007-12-13 2012-07-04 株式会社デンソー 背圧制御弁およびそれを用いた低圧燃料システム
JP2009293541A (ja) * 2008-06-06 2009-12-17 Bosch Corp 内燃機関の蓄圧式燃料供給装置
AT510464B1 (de) * 2010-09-27 2012-07-15 Bosch Gmbh Robert Ventil mit druckbegrenzungsfunktion
DE102013211147B4 (de) * 2013-06-14 2021-12-30 Robert Bosch Gmbh Niederdruckkreis einer Kraftstofffördereinrichtung eines Kraftstoffeinspritzsystems
DE102014204821A1 (de) 2014-03-14 2015-09-17 Robert Bosch Gmbh Einspritzsystem mit einer Pumpe
DE102014214778A1 (de) 2014-07-28 2016-01-28 Robert Bosch Gmbh Überströmventil für ein Kraftstoffeinspritzsystem
CN104863767B (zh) * 2014-12-18 2017-09-15 北汽福田汽车股份有限公司 一种可快速泄压的高压喷油系统以及快速泄压方法
CN109154267B (zh) 2016-06-27 2021-08-10 日立汽车系统株式会社 高压燃料供给泵
JP6586931B2 (ja) * 2016-08-26 2019-10-09 株式会社デンソー リリーフ弁装置、および、それを用いる高圧ポンプ
KR102192965B1 (ko) * 2016-09-07 2020-12-18 바르실라 핀랜드 오이 내연 피스톤 엔진에 가스 연료를 공급하기 위한 연료 시스템 및 내연 피스톤 엔진의 작동 방법
US10865728B2 (en) * 2019-01-18 2020-12-15 Pratt & Whitney Canada Corp. Method of using backflow from common-rail fuel injector
US10738749B1 (en) 2019-01-18 2020-08-11 Pratt & Whitney Canada Corp. Method of using heat from fuel of common-rail injectors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008795A1 (en) * 2001-07-10 2003-01-30 Bosch Automotive Systems Corporation Accumulating fuel injector
DE10253404A1 (de) * 2001-11-16 2003-07-03 Mitsubishi Fuso Truck & Bus Kraftstoffeinspritzvorrichtung eines Motors
EP1359306A2 (de) * 2002-04-23 2003-11-05 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2004040127A1 (de) * 2002-10-17 2004-05-13 Robert Bosch Gmbh Ventil zum steuern von flüssigkeit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311627B4 (de) * 1993-04-08 2005-08-25 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
IT1320684B1 (it) * 2000-10-03 2003-12-10 Fiat Ricerche Dispositivo di controllo della portata di una pompa ad alta pressionein un impianto di iniezione a collettore comune del combustibile di un
DE10061987B4 (de) * 2000-12-13 2005-06-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kühlen einer Kraftstoffeinspritzanlage
ITTO20001228A1 (it) * 2000-12-29 2002-06-29 Fiat Ricerche Impianto di iniezione del combustibile per un motore a combustione interna.
JP4322444B2 (ja) * 2001-06-14 2009-09-02 株式会社デンソー 蓄圧式燃料噴射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008795A1 (en) * 2001-07-10 2003-01-30 Bosch Automotive Systems Corporation Accumulating fuel injector
DE10253404A1 (de) * 2001-11-16 2003-07-03 Mitsubishi Fuso Truck & Bus Kraftstoffeinspritzvorrichtung eines Motors
EP1359306A2 (de) * 2002-04-23 2003-11-05 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2004040127A1 (de) * 2002-10-17 2004-05-13 Robert Bosch Gmbh Ventil zum steuern von flüssigkeit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025803A1 (de) * 2005-08-30 2007-03-08 Robert Bosch Gmbh Kraftstoffeinspritzsystem mit verringerter schadstoffemission
US7788908B2 (en) 2005-08-30 2010-09-07 Robert Bosch Gmbh Fuel injection system having reduced pollutant emissions
DE102007000289B4 (de) * 2006-06-05 2009-04-16 Denso Corp., Kariya-shi Kraftstoffeinspritzvorrichtung und dabei verwendetes Differenzialdruckregulierventil
CN101446247A (zh) * 2007-11-26 2009-06-03 罗伯特·博世有限公司 用于内燃机燃料系统的燃料高压泵
CN101446247B (zh) * 2007-11-26 2013-05-01 罗伯特·博世有限公司 用于内燃机燃料系统的燃料高压泵
WO2010020464A1 (de) * 2008-08-20 2010-02-25 Robert Bosch Gmbh Vorrichtung zur versorgung einer verbrennungskraftmaschine mit treibstoff
CN102124203A (zh) * 2008-08-20 2011-07-13 罗伯特·博世有限公司 用于供给内燃机动力燃料的装置
US8464692B2 (en) 2008-08-20 2013-06-18 Robert Bosch Gmbh Device for supplying an internal combustion engine with fuel
CN102124203B (zh) * 2008-08-20 2013-09-18 罗伯特·博世有限公司 用于供给内燃机动力燃料的装置
WO2016071046A1 (en) * 2014-11-04 2016-05-12 Delphi International Operations Luxembourg S.À R.L. Fuel delivery system
CN107002619A (zh) * 2014-11-04 2017-08-01 德尔福国际业务卢森堡公司 燃料输送系统
WO2023280929A1 (en) * 2021-07-06 2023-01-12 Delphi Technologies Ip Limited Fuel pump with integrated pressure relief valve

Also Published As

Publication number Publication date
DE10332484A1 (de) 2005-02-10
CN1823222A (zh) 2006-08-23
EP1649161A1 (de) 2006-04-26
JP2006511760A (ja) 2006-04-06
KR20060041236A (ko) 2006-05-11
US20060185647A1 (en) 2006-08-24

Similar Documents

Publication Publication Date Title
WO2005010351A1 (de) Kraftstoffeinspritzsystem für verbrennungskraftmaschinen
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP1125046B1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine mit einer Druckübersetzungseinheit
DE10157135B4 (de) Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems einer Brennkraftmaschine mit mehreren Zylindern
DE19742180C2 (de) Einspritzsystem für eine Brennkraftmaschine und Verfahren zum Regeln eines Einspritzsystems
WO2011088490A1 (de) Verfahren zum temperieren eines injektors einer einspritzung für das einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1520099A1 (de) Druckübersetzer kraftstoffinjektor mit schnellem druckabbau bei einspritzende
EP1273797B1 (de) Kraftstoffeinspritzeinrichtung
WO2003067075A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP1556605B1 (de) Kraftstoffeinspritzeinrichtung mit druckübersetzer und fördermengenreduziertem niederdruckkreis
DE102004037557A1 (de) Kraftstoffeinspritzsystem
DE102004060003A1 (de) Kraftstoffversorgungsanlage in Form eines Common-Rail-Systems für mehrere Zylinder einer Brennkraftmaschine
EP1097303A2 (de) Kraftstoffeinspritzanlage
EP2156050B1 (de) Druckverstärkungssystem für mindestens einen kraftstoffinjektor
DE102008013129A1 (de) Dieselmotorisch betriebene Brennkraftmaschine
WO2013037538A1 (de) Niederdruckkreislauf für ein kraftstoffeinspritzsystem sowie kraftstoffeinspritzsystem
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
EP1144855A2 (de) Kraftstoffinjektor mit integrierter durchflussbegrenzung
DE19640085C1 (de) Sperrventil zur Durchflußmengenbegrenzung
DE19949527A1 (de) Injektor für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen mit in den Ventilsteuerraum ragender Düsennadel
WO2001053691A1 (de) Einspritzsystem
DE19738502A1 (de) System zur Hochdruckerzeugung
DE19746490A1 (de) Kraftstoffeinspritzanlage für eine Brennkraftmaschine
DE102004007797A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems für eine Brennkraftmaschine mit Kraftstoffdirekteinspritzung, sowie Kraftstoffsystem für eine solche Brennkraftmaschine
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019802.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004762380

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005518210

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006185647

Country of ref document: US

Ref document number: 169/CHENP/2006

Country of ref document: IN

Ref document number: 10564631

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067000968

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004762380

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067000968

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10564631

Country of ref document: US