WO2005010349A1 - Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben - Google Patents

Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben Download PDF

Info

Publication number
WO2005010349A1
WO2005010349A1 PCT/DE2004/000931 DE2004000931W WO2005010349A1 WO 2005010349 A1 WO2005010349 A1 WO 2005010349A1 DE 2004000931 W DE2004000931 W DE 2004000931W WO 2005010349 A1 WO2005010349 A1 WO 2005010349A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection channel
fuel
fuel injection
section
injection
Prior art date
Application number
PCT/DE2004/000931
Other languages
English (en)
French (fr)
Inventor
Markus Ohnmacht
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP04730819A priority Critical patent/EP1644635A1/de
Publication of WO2005010349A1 publication Critical patent/WO2005010349A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known for example from the document EP 352 926 AI.
  • injection channels are formed at the bottom of a blind bore, which open into the combustion chamber of the corresponding internal combustion engine when the fuel injection valve is in the installed position.
  • the injection channels have a cylindrical section that forms the inlet-side end of the injection channel. This cylindrical section is followed by a second cylindrical section with a smaller diameter, so that there is a reduction in diameter from the inlet end to the outlet end of the injection channel. This allows the flow of fuel in the injection channel to be accelerated, which has a positive effect on atomization.
  • the known injection channel has the disadvantage that the step in the injection channel marks the actual start of the spray hole and flows through it
  • Fuel is accelerated abruptly at the constriction point. After this constriction, the fuel flow remains constant in its flow rate, so that the effective injection pressure available at the outlet end of the injection channel is not always sufficient.
  • the state of the art describes the production possibility for a stepped injection channel to use an electrode for the electroerosive removal of the wall of the injection channel, the electrode being inserted from the outlet end of the injection channel. With a correspondingly shaped electrode, the material of the valve body can be removed by circular movements. However, this is quite cumbersome and lengthy. In addition, the electrode has to be replaced frequently due to the removal thereof.
  • the fuel injection valve according to the invention with the characterizing features of patent claim 1 has the advantage over the fact that the injection channel enables an effective acceleration of the fuel in the injection channel with a simultaneously smaller effective injection hole length.
  • the injection channel has a cylindrical section, viewed in the direction of flow, to which a conical section adjoins, which extends to the outlet-side end of the injection channel. The fuel that flows into the injection channel is accelerated at the transition to the conical section. Then there is a further acceleration in the conical section, so that there is a large effective injection pressure.
  • the injection channel opens into a countersink on the outside of the valve body, which is part of the fuel injection valve.
  • the effective length of the injection channel can be shortened further, which, depending on the desired injection, the characteristics of the injection Can influence the beam favorably.
  • edges between the individual sections of the injection channel are rounded. This reduces the risk of cavitation, which reduces the flow resistance.
  • the manufacturing method according to the invention for an injection channel has the advantage that the extension at the inlet end can be created reliably, quickly and with high precision.
  • a laser beam is reflected by a mirror, which is placed at the inlet end of the injection channel, so that material is removed in this area.
  • Any extensions can be made with a movable mirror and a pulsed laser that is matched to the movement. This is significantly easier and faster than shaping by means of electro-eroding or other material-removing methods.
  • FIG. 1 shows a longitudinal section through a fuel injection valve according to the invention
  • FIG. 2 shows an enlargement of the section from FIG. 1 labeled II, for the sake of clarity the injection channel being rotated horizontally relative to FIG. 1,
  • FIG. 6 shows further exemplary embodiments of injection channels according to the invention
  • FIG. 7 schematically shows the structure for manufacturing injection channels.
  • a fuel injection valve according to the invention is shown in longitudinal section.
  • a blind bore 3 is formed in a valve body 1, which is delimited by an essentially conical valve seat 9 at its combustion-roughened end.
  • a plurality of injection channels 11 extend from the valve seat 9 and open into the combustion chamber of the internal combustion engine when the fuel injection valve is in the installed position.
  • a piston-shaped valve needle 11 is arranged to be longitudinally displaceable, which is guided with a guide section 15 in a guide region 23 of the blind bore 3 facing away from the valve seat, so that the remaining one
  • Gap between the guide area 23 and the wall of the blind hole 3 ensures an adequate seal.
  • the valve needle 5 tapers towards the valve seat 9 to form a pressure shoulder 13 and merges at its end into an essentially conical valve sealing surface 7, which cooperates with the valve seat 9.
  • a pressure chamber 19 is formed between the guide area 23 and the valve seat 9, which is expanded radially at the level of the pressure shoulder 13.
  • An inlet channel 25 running in the valve body 1 opens into the radial expansion of the pressure chamber 19, via which the pressure chamber 19 can be filled with fuel under high pressure.
  • the valve needle 5 is acted upon at its end facing away from the valve seat by a closing force which is generated by a suitable device which is not shown in the drawing.
  • valve needle 5 are in use for example springs or the generation of the closing force with hydraulic means.
  • the hydraulic force on the pressure shoulder 13 and the closing force serve to move the valve needle 5 and thus to control the injection.
  • the valve needle 5 moves away from or towards the valve seat 9 and thus opens and closes the injection channels 11.
  • FIG. 2 shows an enlargement of the detail designated II in FIG. 1, the longitudinal axis 31 of the injection channel 11 being rotated into the horizontal.
  • the injection channel 11 has an inlet opening 30 and an outlet opening 38, the injection channel 11 being designed to be rotationally symmetrical about the longitudinal axis 31.
  • a cylindrical section 32 is formed which extends to a transition edge 33.
  • the cylindrical section 32 is followed by a conical section 34, which extends to the outlet opening 38 and tapers in the direction of flow.
  • the transition edge 33 between the cylindrical section 32 and the conical section 34 can also be rounded in order to swirl the flow less.
  • the lengths of the cylindrical section 32 and the conical section 34 can have different relationships to one another. For example, the length of the conical section 34 is approximately twice as long as the length of the cylindrical section 32 or both lengths are at least approximately the same length.
  • FIG. 3 shows another embodiment of an injection channel 11 in the same view as FIG. 2.
  • the cylindrical section 32 is identical to that shown in FIG. 2, but the subsequent conical section 34 has an inlet opening 36 which has a smaller diameter than the cylindrical section 32.
  • an annular surface 40 is formed in the injection channel 11, wherein it it can also be provided, as shown in FIG. 4, that the annular surface 40 is slightly beveled in order to facilitate the inflow of fuel into the conical section 34.
  • FIG. 5 shows a further exemplary embodiment, the injection channel 11 largely corresponding to that shown in FIG. 3.
  • the outlet opening 38 of the injection channel 11 does not lie on the outside of the valve body 1 here, but in a conical countersink 42 which is formed in the valve body 1. This will make the effective
  • Spray hole length is reduced, which can have a favorable effect on atomization and mixture preparation in the combustion chamber.
  • FIG. 6 A further exemplary embodiment is shown in FIG. 6, in which a cylindrical countersink 44 is provided.
  • the effect is the same as for the conical countersink 42, but the conditions at the outlet opening 38 of the injection channel 11 are more similar to those of the exemplary embodiments according to FIGS. 2, 3 or 4, which simplifies the design.
  • a method can be used, as is shown schematically in FIG. 7.
  • the method is suitable for producing all the injection channels 11 according to FIGS. 2 to 6, but also an injection channel 11 as shown in FIG. 7.
  • the injection channel 11 has, in addition to a cylindrical section 32, a second cylindrical section 35 which has a smaller diameter than the cylindrical section 32, so that an annular surface 40 is also formed here.
  • a bore is first made in the valve body 1, which has, for example, the diameter of the second cylindrical section 35.
  • a laser 52 is generated by a laser 52, which is directed through the outlet opening 38 into the injection channel 11.
  • a mirror 50 which deflects the laser beam 54 in such a way that it is reflected back onto the valve body 1.
  • this can preferably be attached to an actuator which is moved by means of piezo actuators which allow fast and precise control.
  • actuators which are preferably used for passenger cars, fuel injection valves are used, the blind bore 3 of which is generally only a few millimeters in diameter
  • the method described above is therefore particularly suitable for producing the injection channels 11 in those fuel injection valves where there is little space in the blind bore for the placement of tools.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil mit einem Einspritzkanal (11), durch den Kraftstoff in den Brennraum einspritzbar ist. Der Einspritzkanal (11) weist eine Eintrittsöffnung (30) und eine Austrittsöffnung (38) auf und an seinem bezüglich der Strömungsrichtung des Kraftstoffs einlaufseitigen Ende ist ein zylindrischer Abschnitt (32) ausgebildet. An den zylindrischen Abschnitt (32) schliesst sich ein konischer Abschnitt (34) an, der sich in Strömungsrichtung verengt und bis zur Austrittsöffnung (38) des Einspritzkanals (11) reicht. Bei einem Verfahren zur Herstellung solcher Einspritzkanäle (11) wird ein Laserstrahl (54) von aussen durch den Einspritzkanal (11) auf einen Spiegel (50) gelenkt, so dass dadurch die Erweiterung des zylindrischen Abschnitts ausgebildet werden kann (Fig. 2 und 7).

Description

Kraftstoffeinspritzventil und ein Verfahren zur Herstellung desselben
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es beispielsweise aus der Schrift EP 352 926 AI bekannt ist. Bei diesem Kraftstoffein- spritzventil sind am Grund einer Sackbohrung Einspritzkanäle ausgebildet, die in Einbaulage des Kraftstoffeinspritzventils in den Brennraum der entsprechenden Brennkraftmaschine münden. Die Einspritzkanäle weisen dabei einen zylindrischen Abschnitt auf, der das einlaufseitige Ende des Einspritzka- nals bildet. An diesen zylindrischen Abschnitt schließt sich ein im Durchmesser kleinerer, zweiter zylindrischer Abschnitt an, so dass sich eine Durchmesserverringerung vom einlaufseitigen Ende zum auslaufseitigen Ende des Einspritzkanals ergibt. Hierdurch lässt sich die Strömung des Kraft- stoffs im Einspritzkanal beschleunigen, was die Zerstäubung positiv beeinflusst.
Der bekannte Einspritzkanal weist hierbei jedoch den Nachteil auf, dass die Stufe im Einspritzkanal den eigentlichen Beginn des Spritzlochs markiert und hindurchfließender
Kraftstoff an der Verengungsstelle abrupt beschleunigt wird. Nach dieser Verengungsstelle bleibt der Kraftstoffstrom in seiner Fließgeschwindigkeit konstant, so dass der effektive Einspritzdruck, der am auslaufseitigen Ende des Einspritzka- nals zur Verfügung steht, nicht immer ausreichend ist. Im Stand der Technik ist als Herstellungsmöglichkeit für einen gestuften Einspritzkanal beschrieben, eine Elektrode für das elektroerosive Abtragen der Wand des Einspritzkanals zu verwenden, wobei die Elektrode vom auslaufseitigen Ende des Einspritzkanals eingeschoben wird. Durch kreisende Bewegungen kann bei einer entsprechend geformten Elektrode das Material des Ventilkörpers entsprechend abgetragen werden. Dies ist jedoch recht umständlich und langwierig. Außerdem muss die Elektrode aufgrund des Abtrags an derselben häufig erneuert werden.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kenn- zeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Einspritzkanal eine effektive Beschleunigung des Kraftstoffs im Einspritzkanal ermöglicht bei gleichzeitig kleiner effektiver Spritzlochlänge. Hierzu weist der Einspritzkanal in Strömungsrichtung gesehen einen zylindrischen Abschnitt auf, an den sich ein konischer Abschnitt anschließt, der sich bis zum auslaufseitigen Ende des Einspritzkanals erstreckt. Der Kraftstoff, der in den Einspritzkanal einfließt, wird am Übergang zum konischen Abschnitt beschleunigt. Anschließend erfolgt eine weitere Be- schleunigung im konischen Abschnitt, so dass sich ein großer effektiver Einspritzdruck ergibt.
Durch die abhängigen Ansprüche sind weitere vorteilhafte Ausgestaltungen gegeben.
In einer ersten vorteilhaften Ausgestaltung des Gegenstandes der Erfindung mündet der Einspritzkanal in eine Ansenkung an der Außenseite des Ventilkörpers, der Teil des Kraftstoffeinspritzventils ist. Dadurch kann die effektive Länge des Einspritzkanals weiter verkürzt werden, was je nach gewünschter Einspritzung die Charakteristik des Einspritz- Strahls günstig beeinflussen kann. Besonders vorteilhaft ist es dabei, die Ansenkung konisch auszubilden, da hier eine stabile Kante am Übergang des konischen Abschnitts zur Ansenkung geschaffen werden kann, an der die Strömung zuver- lässig abreißt.
In einer weiteren vorteilhaften Ausgestaltung sind die Kanten zwischen den einzelnen Abschnitten des Einspritzkanals gerundet ausgebildet. Hierdurch wird die Gefahr der Kavita- tion gemindert, was den Durchströmungswiderstand herabsetzt.
Das erfindungsgemäße Herstellungsverfahren für einen Einspritzkanal weist den Vorteil auf, dass die Erweiterung am einlaufseitigen Ende zuverlässig, schnell und mit hoher Prä- zision geschaffen werden kann. Hierzu wird ein Laserstrahl von einem Spiegel, der am einlaufseitigen Ende des Einspritzkanals plaziert ist, reflektiert, so dass Material in diesem Bereich abgetragen wird. Durch einen beweglichen Spiegel und einen entsprechend auf die Bewegung abgestimm- ten, gepulsten Laser lassen sich beliebige Erweiterungen herstellen. Dies ist deutlich einfacher und schneller als die Formung mittels Elektroerodieren oder sonstiger materialabtragender Methoden.
Zeichnung
In der Zeichnung sind verschiedene Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt Figur 1 einen Längsschnitt durch ein erfindungsgemäßes Kraftstoffeinspritzventil,
Figur 2 eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1, wobei der Einspritzkanal der Übersichtlichkeit halber gegenüber Figur 1 in die Horizontale gedreht ist,
Figur 3, Figur 4,
Figur 5 und
Figur 6 stellen weitere Ausführungsbeispiele von erfindungsgemäßen Einspritzkanälen dar und Figur 7 zeigt schematisch den Aufbau zur Fertigung von Einspritzkanälen.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt. In einem Ventilkörper 1 ist eine Sackbohrung 3 ausgebildet, die an ihrem brennrau seiti- gen Ende von einem im wesentlichen konischen Ventilsitz 9 begrenzt wird. Vom Ventilsitz 9 gehen mehrere Einspritzkanä- le 11 ab, die in Einbaulage des Kraftstoffeinspritzventil in einer Brennkraftmaschine in den Brennraum derselben münden. In der Sackbohrung 3 ist eine kolbenförmige Ventilnadel 11 längsverschiebbar angeordnet, die mit einem Führungsabschnitt 15 in einem ventilsitzabgewandten Führungsbereich 23 der Sackbohrung 3 geführt wird, so dass der verbleibende
Spalt zwischen dem Führungsbereich 23 und der Wand der Sackbohrung 3 eine ausreichende Dichtung gewährleistet. Ausgehend vom Führungsabschnitt 15 verjüngt sich die Ventilnadel 5 dem Ventilsitz 9 zu unter Bildung einer Druckschulter 13 und geht an ihrem Ende in eine im wesentlichen konische Ventildichtfläche 7 über, die mit dem Ventilsitz 9 zusammenwirkt. Zwischen der Ventilnadel 5 und der Wand der Sackbohrung 3 ist zwischen dem Führungsbereich 23 und dem Ventilsitz 9 ein Druckraum 19 ausgebildet, der auf Höhe der Druck- schulter 13 radial erweitert ist. In die radiale Erweiterung des Druckraums 19 mündet ein im Ventilkörper 1 verlaufender Zulaufkanal 25, über den der Druckraum 19 mit Kraftstoff unter hohem Druck befüllbar ist. Die Ventilnadel 5 wird an ihrem ventilsitzabgewandten Ende von einer Schließkraft beauf- schlagt, die durch eine geeignete und in der Zeichnung nicht dargestellte Vorrichtung erzeugt wird. Gebräuchlich sind beispielsweise Federn oder die Erzeugung der Schließkraft mit hydraulischen Mitteln. Zur Bewegung der Ventilnadel 5 und damit zur Steuerung der Einspritzung dient zum einen die hydraulische Kraft auf die Druckschulter 13 und zum anderen die Schließkraft. Je nach dem, welche Kraft überwiegt, bewegt sich die Ventilnadel 5 vom Ventilsitz 9 weg oder auf diesen zu und öffnet und schließt so die Einspritzkanäle 11.
Figur 2 zeigt eine Vergrößerung des in Figur 1 mit II be- zeichneten Ausschnitts, wobei die Längsachse 31 des Einspritzkanals 11 in die Horizontale gedreht wurde. Der Einspritzkanal 11 weist eine Eintrittsöffnung 30 und eine Austrittsöffnung 38 auf, wobei der Einspritzkanal 11 rotationssymmetrisch um die Längsachse 31 ausgebildet ist. Ausgehend von der Eintrittsöffnung 30 ist ein zylindrischer Abschnitt 32 ausgebildet, der bis zu einer Übergangskante 33 reicht. An den zylindrischen Abschnitt 32 schließt sich ein konischer Abschnitt 34 an, der bis zur Austrittsöffnung 38 reicht und sich in Strömungsrichtung verjüngt. Die Über- gangskante 33 zwischen dem zylindrischen Abschnitt 32 und dem konischen Abschnitt 34 kann auch gerundet ausgebildet sein, um die Strömung weniger zu verwirbeln. Die Längen des zylindrischen Abschnitts 32 und des konischen Abschnitts 34 können unterschiedliche Verhältnisse zueinander haben. Bei- spielsweise ist die Länge des konischen Abschnitts 34 etwa doppelt so groß wie die Länge des zylindrischen Abschnitts 32 oder beide Längen sind zumindest näherungsweise gleich lang.
Figur 3 zeigt in derselben Ansicht wie Figur 2 ein weiteres Ausführungsbeispiel eines Einspritzkanals 11. Der zylindrische Abschnitt 32 ist identisch zu dem in Figur 2 gezeigten, jedoch weist der anschließende konische Abschnitt 34 eine Eintrittsöffnung 36 auf, die einen kleineren Durchmesser aufweist als der zylindrische Abschnitt 32. Hierdurch wird im Einspritzkanal 11 eine Ringfläche 40 gebildet, wobei es auch vorgesehen sein kann, wie in Figur 4 gezeigt, dass die Ringfläche 40 etwas angeschrägt ist, um die Einströmung von Kraftstoff in den konischen Abschnitt 34 zu erleichtern.
Figur 5 zeigt ein weiteres Ausführungsbeispiel, wobei der Einspritzkanal 11 weitgehend dem in Figur 3 gezeigten entspricht. Die Austrittsöffnung 38 des Einspritzkanals 11 liegt hier jedoch nicht an der Außenseite des Ventilkörpers 1, sondern in einer konischen Ansenkung 42, die im Ventil- körper 1 ausgebildet ist. Hierdurch wird die effektive
Spritzlochlänge verkleinert, was sich günstig auf die Zerstäubung und die Gemischaufbereitung im Brennraum auswirkten kann.
In Figur 6 ist ein weiteres Ausführungsbeispiel gezeigt, bei dem eine zylindrische Ansenkung 44 vorgesehen ist. Die Wirkung ist dieselbe wie bei der konischen Ansenkung 42, jedoch sind die Bedingungen an der Austrittsöffnung 38 des Einspritzkanals 11 hier denen der Ausführungsbeispiele nach Fi- gur 2, 3 oder 4 ähnlicher, was die Auslegung erleichtert.
Um einen zylindrischen Abschnitt 32 zu fertigen, der den größten Durchmesser des gesamten Einspritzkanals 11 darstellt, kann ein Verfahren verwendet werden, wie es in Figur 7 schematisch dargestellt ist. Das Verfahren eignet sich, sämtliche Einspritzkanäle 11 nach den Figuren 2 bis 6 herzustellen, aber auch einen Einspritzkanal 11, wie er in Figur 7 dargestellt ist. Hier weist der Einspritzkanal 11 neben einem zylindrischen Abschnitt 32 einen zweiten zylindrischen Abschnitt 35 auf, der einen kleineren Durchmesser aufweist als der zylindrische Abschnitt 32, so dass auch hier eine Ringfläche 40 gebildet wird. Um einen solchen Einspritzkanal 11 zu fertigen wird zuerst eine Bohrung in den Ventilkörper 1 eingebracht, die beispielsweise den Durchmesser des zwei- ten zylindrischen Abschnitts 35 aufweist. Die Durchmessererweiterung im Bereich des konischen Abschnitts 32 wird durch folgendes Verfahren erreicht: Mittels eines Lasers 52 wird ein Laserstrahl 54 erzeugt, der durch die Austrittsöffnung 38 in den Einspritzkanal 11 gerichtet wird. Im Inneren der Sackbohrung 3 ist ein Spiegel 50 angebracht, der den Laser- strahl 54 so umlenkt, dass er auf den Ventilkörper 1 zurück reflektiert wird. Durch einen geeigneten Laser 52 mit ausreichender Leistung, der vorzugsweise gepulst betrieben wird, und eine entsprechende Bewegung des Spiegels 50 kann der Ventilkörper 1 gezielt abgetragen und die Durchmesserer- Weiterung hergestellt werden, die schließlich den zylindrischer Abschnitt 32 bildet.
Es ist bei der Durchführung des Verfahrens wichtig, den Spiegel genau zu justieren. Hierzu kann dieser vorzugsweise auf einem Steller angebracht werden, der mittels Piezoakto- ren bewegt wird, die eine schnelle und präzise Steuerung erlauben. Bei schnelllaufenden Brennkraftmaschinen, wie sie vorzugsweise für Personenkraftwagen verwendet werden, werden Kraftstoffeinspritzventile verwendet, deren Sackbohrung 3 in der Regel nur wenige Millimeter im Durchmesser aufweist
(beispielsweise etwa 4 mm) . Deshalb ist das oben beschriebene Verfahren besonders geeignet, die Einspritzkanäle 11 bei solchen Kraftstoffeinspritzventilen zu fertigen, wo in der Sackbohrung nur wenig Platz für die Plazierung von Werkzeu- gen vorhanden ist.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Einspritzkanal (11) , durch den Kraftstoff in den Brennraum einspritzbar ist, wobei der Einspritzkanal (11) eine Eintrittsöffnung (30) und eine Austrittsöffnung (38) aufweist und wobei an dem bezüglich der Strömungsrichtung des Kraftstoffs einlaufseitigen Ende des Einspritzkanals (11) ein zylindrischer Abschnitt (32) ausgebildet ist, dadurch gekennzeichnet, dass sich an den zylindrischen Abschnitt (32) ein konischer Abschnitt (34) anschließt, der sich in Strömungsrichtung verengt und der bis zur Austrittsöffnung (38) des Einspritzkanals (11) reicht.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, dass der Einspritzkanal (11) in der Wand eines Ventilkörpers (1) ausgebildet ist und in eine Ansenkung (42; 44) an der Außenseite des Ventilkörpers (1) mündet .
3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch ge- kennzeichnet, dass die Ansenkung (42) konisch ausgebildet ist.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Durchmesser (d) der Eintrittsöffnung (36) des konischen Abschnitts (34) dem Durchmesser (D) des ersten zylindrischen Abschnitts (32) entspricht.
5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Eintrittsöffnung (36) des koni- sehen -Abschnitts (34) einen kleineren Durchmesser (d) aufweist als der Durchmesser (D) des zylindrischen Abschnitts (32) .
6. Kraftstoffeinspritzventil nach Anspruch 1, dadurch ge- kennzeichnet, dass sich an den zylindrischen Abschnitt (32) eine Schulter anschließt, die eine Ringfläche (40) bildet.
7. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Einspritzkanal vom Grund einer Sackbohrung ausgeht, wobei die Sackbohrung in einem Ventilkörper ausgebildet ist, der Teil des Kraftstoffeinspritzventils ist.
8. Kraftstoffeinspritzventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Übergangskanten (33; 38) von einem Abschnitt (32; 34) des Einspritzkanals (11) zum benachbarten Abschnitt gerundet ausgebildet sind.
9. Verfahren zur Herstellung eines Einspritzkanals (11) in einem Kraftstoffeinspritzventil, wobei der Einspritzkanal (11) in Strömungsrichtung des Kraftstoffs an seinem ein- laufseitigen Ende einen zylindrischen Abschnitt (32) aufweist, an den sich ein im Durchmesser verringerter Abschnitt anschließt, gekennzeichnet durch folgende Verfahrensschritte: Herstellung einer Bohrung in einem Ventilkörper (1) des Kraftstoffeinspritzventils, Positionieren eines Spiegels (50) am einlaufseitigen Ende des Einspritzkanals (11) , Erweitern des Durchmessers am einlaufseitigen Ende des Einspritzkanals (11) , indem ein Laserstrahl (54) vom auslaufseitigen Ende des Einspritzkanals (11) durch den Einspritzkanal (11) auf den Spiegel (50) gerichtet wird und so vom Spiegel (50) reflektiert wird, dass die entsprechenden Teile des Ventilkörpers (1) abgetragen werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Spiegel (50) beweglich gelagert ist.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Laser (52) gepulst betrieben wird.
PCT/DE2004/000931 2003-07-02 2004-05-03 Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben WO2005010349A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04730819A EP1644635A1 (de) 2003-07-02 2004-05-03 Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10329731.6 2003-07-02
DE10329731A DE10329731A1 (de) 2003-07-02 2003-07-02 Kraftstoffeinspritzventil und ein Verfahren zur Herstellung desselben

Publications (1)

Publication Number Publication Date
WO2005010349A1 true WO2005010349A1 (de) 2005-02-03

Family

ID=33559795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000931 WO2005010349A1 (de) 2003-07-02 2004-05-03 Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben

Country Status (3)

Country Link
EP (1) EP1644635A1 (de)
DE (1) DE10329731A1 (de)
WO (1) WO2005010349A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074385A2 (en) * 2005-12-28 2007-07-05 Toyota Jidosha Kabushiki Kaisha Fuel injection device having an orifice plate
WO2016091606A1 (de) * 2014-12-10 2016-06-16 Continental Automotive Gmbh Düsenkörper und fluid-einspritzventil

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
DE102006062008A1 (de) * 2006-12-29 2008-07-03 Robert Bosch Gmbh Vorrichtung für Hochdruckanwendungen
GB0712403D0 (en) * 2007-06-26 2007-08-01 Delphi Tech Inc A Spray Hole Profile
EP2365207A1 (de) * 2010-03-09 2011-09-14 EFI Hightech AG Einspritzdüse für eine verbrennungskraftmaschine
CH705454A1 (de) * 2011-08-31 2013-03-15 Efi Hightech Ag Einspritzdüse mit Flaschenhals-Spritzlöchern.
DE102012211160A1 (de) 2012-06-28 2014-01-02 Robert Bosch Gmbh Kraftstoffinjektor
DE102013020719A1 (de) 2013-12-07 2015-06-11 Daimler Ag Kraftstoffinjektor für einen Dieselmotor
DE102015210487A1 (de) * 2015-06-09 2016-12-15 Robert Bosch Gmbh Spritzlochbauteil einer Einspritzvorrichtung
DE102017203146A1 (de) 2017-02-27 2018-08-30 Robert Bosch Gmbh Düsenkörper für einen Kraftstoffinjektor und Kraftstoffinjektor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352926A1 (de) * 1988-07-26 1990-01-31 LUCAS INDUSTRIES public limited company Kraftstoffeinspritzventil für Brennkraftmaschinen
DE4222137A1 (de) * 1992-07-06 1994-01-13 Bosch Gmbh Robert Kraftstoff-Einspritzdüse für Diesel-Brennkraftmaschinen
GB2318538A (en) * 1996-10-26 1998-04-29 David Raymond Hicks Laser/electron beam drilling
US6070813A (en) * 1998-08-11 2000-06-06 Caterpillar Inc. Laser drilled nozzle in a tip of a fuel injector
EP1166887A2 (de) * 2000-06-20 2002-01-02 Ngk Insulators, Ltd. Flüssigkeitstropfenstrahlgerät
US6365871B1 (en) * 1997-09-03 2002-04-02 Oxford Lasers Limited Laser-drilling
EP1195515A2 (de) * 2000-10-04 2002-04-10 Robert Bosch Gmbh Brennstoffeinspritzventil
US20020043574A1 (en) * 1999-06-02 2002-04-18 Steffen Hunkert Fuel injection valve for internal combustion engines
DE10105674A1 (de) * 2001-02-08 2002-08-29 Siemens Ag Kraftstoffeinspritzdüse für eine Brennkraftmaschine
DE10214096A1 (de) * 2001-03-29 2002-10-31 Denso Corp Kraftstoffeinspritzvorrichtung
US20030015503A1 (en) * 2001-07-23 2003-01-23 Siemens Automotive Corporation Apparatus and method of forming orifices and chamfers for uniform orifice coefficient and surface properties by laser

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0352926A1 (de) * 1988-07-26 1990-01-31 LUCAS INDUSTRIES public limited company Kraftstoffeinspritzventil für Brennkraftmaschinen
DE4222137A1 (de) * 1992-07-06 1994-01-13 Bosch Gmbh Robert Kraftstoff-Einspritzdüse für Diesel-Brennkraftmaschinen
GB2318538A (en) * 1996-10-26 1998-04-29 David Raymond Hicks Laser/electron beam drilling
US6365871B1 (en) * 1997-09-03 2002-04-02 Oxford Lasers Limited Laser-drilling
US6070813A (en) * 1998-08-11 2000-06-06 Caterpillar Inc. Laser drilled nozzle in a tip of a fuel injector
US20020043574A1 (en) * 1999-06-02 2002-04-18 Steffen Hunkert Fuel injection valve for internal combustion engines
EP1166887A2 (de) * 2000-06-20 2002-01-02 Ngk Insulators, Ltd. Flüssigkeitstropfenstrahlgerät
EP1195515A2 (de) * 2000-10-04 2002-04-10 Robert Bosch Gmbh Brennstoffeinspritzventil
DE10105674A1 (de) * 2001-02-08 2002-08-29 Siemens Ag Kraftstoffeinspritzdüse für eine Brennkraftmaschine
DE10214096A1 (de) * 2001-03-29 2002-10-31 Denso Corp Kraftstoffeinspritzvorrichtung
US20030015503A1 (en) * 2001-07-23 2003-01-23 Siemens Automotive Corporation Apparatus and method of forming orifices and chamfers for uniform orifice coefficient and surface properties by laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074385A2 (en) * 2005-12-28 2007-07-05 Toyota Jidosha Kabushiki Kaisha Fuel injection device having an orifice plate
WO2007074385A3 (en) * 2005-12-28 2007-10-04 Toyota Motor Co Ltd Fuel injection device having an orifice plate
WO2016091606A1 (de) * 2014-12-10 2016-06-16 Continental Automotive Gmbh Düsenkörper und fluid-einspritzventil

Also Published As

Publication number Publication date
DE10329731A1 (de) 2005-02-03
EP1644635A1 (de) 2006-04-12

Similar Documents

Publication Publication Date Title
DE60021372T2 (de) Verfahren zur herstellung eines brennstoffeinspritzventilsitzes
DE102007051408A1 (de) Verfahren zum Bohren von Löchern definierter Geometrien mittels Laserstrahlung
EP1546547B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2005010349A1 (de) Kraftstoffeinspritzventil und ein verfahren zur herstellung desselben
EP2129903A1 (de) Kraftstoffinjektor mit einer zusätzlichen ablaufdrossel oder mit einer verbesserten anordnung derselben im steuerventil
DE112016004270T5 (de) Elektrisches Funkenerosions-Verfahren zur Erzeugung von variablen Spritzloch-Geometrien
EP3074623B1 (de) Kraftstoffinjektor
DE10360080A1 (de) Verfahren und Vorrichtung zum Abtragen von metallischem Material eines Werkstücks
DE3442022A1 (de) Verfahren und vorrichtung zur steuerung der kraftstoffeinspritzung
DD142739A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE10232050A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2002048536A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102009041028A1 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil
DE102010063844A1 (de) Düsenkörper mit einem Einspritzloch mit mindestens zwei Eintrittsöffnungen
EP1195516B1 (de) Brennstoffeinspritzventil
DE60101519T2 (de) Einspritzdüse
DE102010013265B4 (de) Düsenbaugruppe für ein Einspritzventil und Einspritzventil
EP4077908B1 (de) Einspritzdüse zur einspritzung von kraftstoff unter hohem druck
DE102019220186A1 (de) Verfahren zur Herstellung von Einspritzöffnungen eines Injektors und Injektor
DE60300074T2 (de) Kraftstoffeinspritzventil mit einer Düsenplatte und geneigten Auslassöffnungen
DE102005029024A1 (de) Düsenbaugruppe
DE60019026T2 (de) Kraftstoffeinspritzventil
EP1802863B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1546546A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP3329115B1 (de) Verfahren zum herstellen eines düsenkörpers für ein fluideinspritzventil und fluideinspritzventil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004730819

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004730819

Country of ref document: EP