EP1527276B1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
EP1527276B1
EP1527276B1 EP03787585A EP03787585A EP1527276B1 EP 1527276 B1 EP1527276 B1 EP 1527276B1 EP 03787585 A EP03787585 A EP 03787585A EP 03787585 A EP03787585 A EP 03787585A EP 1527276 B1 EP1527276 B1 EP 1527276B1
Authority
EP
European Patent Office
Prior art keywords
valve
fuel injection
microdepressions
injection valve
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03787585A
Other languages
English (en)
French (fr)
Other versions
EP1527276A1 (de
Inventor
Werner Teschner
Claus Westphal
Wilhelm Christ
Ulrich Bothe
Alexander Redlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1527276A1 publication Critical patent/EP1527276A1/de
Application granted granted Critical
Publication of EP1527276B1 publication Critical patent/EP1527276B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines, as is known from the prior art, for example from the published patent application DE 196 18 650 A1.
  • a valve body In a valve body, a bore is formed, in which a piston-shaped valve needle is arranged to be longitudinally displaceable, which has a valve sealing surface at its end on the combustion chamber side. At the combustion chamber end, the bore is delimited by a valve seat with which the valve sealing surface of the valve needle interacts and thus controls by its longitudinal movement the opening of at least one injection opening, which is formed at the combustion chamber end of the valve body.
  • valve seat and the valve sealing surface are at least substantially conical. Due to the short opening times of the fuel injection valve, the valve needle must be moved with very large forces in order to achieve correspondingly short switching times. As a result, the valve needle reaches high speeds, with which it strikes the valve seat during the closing movement with the valve sealing surface. In particular, in so-called common-rail injection systems, as they are known for example from DE 198 27 267 A1, therefore, high demands on the valve seat and the valve needle, to a long service life of the fuel injection valve and a possible over to achieve a consistent injection characteristic throughout the entire service life.
  • the movement of the valve needle in the bore is done, for example, by acting on the valve needle in the direction of the valve seat, a closing force.
  • the closing force of the opposing opening force on the valve needle is obtained by pressurizing the valve needle with fuel, whereby a part of the valve sealing surface in this case undergoes a hydraulically effective force.
  • there is a seat wear in operation that is, the valve sealing surface and the valve seat with time align with each other and changes the hydraulically effective surface area of the valve sealing surface. As a result, the injection is no longer optimal and can lead to increased exhaust emissions.
  • the valve sealing surface of the valve needle and / or the valve seat have micro-recesses in the contact area, which lead to improved lubrication between the valve seat and valve needle in the highly loaded area.
  • the microwells are formed as individual, separate wells.
  • a diameter of the individual wells of for example 5 microns, which are arranged at a distance of also 5 microns in a rectangular grid, up to 10,000 lube deposits per mm 2 can be formed.
  • a larger diameter of the wells correspondingly less per unit area are available.
  • the arrangement of the wells can also be optimized in such a way that the distance between the wells in the circumferential direction of the valve sealing surface or the valve seat is different from the distance in the longitudinal direction.
  • the microwells are formed as grooves or groove segments, which are either separated from each other or partially overlap or intersect. It may be advantageous in this case if the grooves extend over the entire circumference of the valve sealing surface of the valve needle and / or the valve seat, which can be produced easily.
  • valve 1 shows an embodiment of the fuel injection valve according to the invention is shown in its essential section in longitudinal section.
  • a valve body 1 In a valve body 1, a bore 3 is formed, in which a piston-shaped valve needle 5 is arranged longitudinally displaceable.
  • the valve body 1 is in this case arranged in an internal combustion engine, not shown in the drawing, so that it projects with its combustion chamber end into the combustion chamber of the internal combustion engine or forms part of the wall of the combustion chamber.
  • the valve needle 5, away from the combustion chamber has a guide section 15, which is located in a guide region 23 the bore 3 is guided sealingly. Starting from the guide section 15, the valve needle 5 tapers to the combustion chamber to form a pressure shoulder 13, which surrounds the valve needle 5 over its entire circumference.
  • valve needle 5 passes into a substantially conical valve sealing surface 7, which cooperates with a valve seat 9, which is also substantially conical in shape and which limits the bore 3 at its combustion chamber end.
  • valve seat 9 which is also substantially conical in shape and which limits the bore 3 at its combustion chamber end.
  • at least one injection opening 11 is formed, which connects the valve seat 9 with the combustion chamber of the internal combustion engine.
  • a pressure chamber 19 is formed which is radially expanded at the level of the pressure shoulder 13, wherein a valve body 1 formed in the inlet channel 25 opens into this radial extension. Via the inlet channel 25, the pressure chamber 19 can be filled with fuel under high pressure, which then flows through the pressure chamber 19 and thus reaches the valve seat 9.
  • a constant or temporally variable closing force is exerted on the combustion chamber facing away from the end of the valve needle 5, so that the valve needle 5 is pressed with its valve sealing surface 7 in abutment against the valve seat 9.
  • This closing force counteracts the hydraulic force which acts on the pressure shoulder 13 and on parts of the valve sealing surface 7 due to the fuel pressure in the pressure chamber 19.
  • these two forces are used.
  • Exceeds the hydraulic force on the valve needle 5, the closing force the valve needle 5 lifts with its valve sealing surface 7 from the valve seat 9, and fuel flows from the pressure chamber 19 through the injection openings 11 into the combustion chamber of the internal combustion engine. If the closing force is increased or the hydraulic force is reduced, then the closing force on the valve needle 5 prevails, and the valve needle 5 comes with its Valve sealing surface 7 again in contact with the valve seat 7, whereby the injection openings 11 are closed.
  • FIG. 2 shows an enlargement of the section of FIG. 1 denoted by II, that is to say an enlargement of the valve seat area of the fuel injection valve.
  • the valve sealing surface 7 is subdivided into two conical surfaces, of which the first conical surface 107 directly adjoins the cylindrical section of the valve needle 5, while the second conical surface 207 adjoins the first conical surface 107 and forms the tip of the valve needle 5.
  • the first conical surface 107 has a larger opening angle than the second conical surface 207, so that a sealing edge 30 is formed at the transition of the two conical surfaces 107 and 207.
  • the valve seat 9 has an opening angle which lies between the opening angle of the first conical surface 107 and that of the second conical surface 207, so that the sealing edge 30 comes into contact with the valve seat 9 in the closed position of the valve needle 5.
  • the injection openings 11, of which several are generally distributed over the circumference of the valve body 1, are arranged downstream of the sealing edge 30, so that they can be closed by the valve needle 5.
  • valve needle 5 Since in high-speed internal combustion engines, such as those used in passenger cars, more than 2000 injections per minute can take place, an injection process takes only about 1 ms. Therefore, act on the valve needle 5 large forces and thus high accelerations that can open the valve needle 5 at high speed on the valve seat 9, wherein during operation of the fuel injection valve, the sealing edge 30 will hit something in the valve seat 9, so that there is an adjustment between valve sealing surface 7 and valve seat 9 comes. The valve sealing surface 7 and the valve seat 9 are therefore mechanically extremely heavily loaded. On the one hand, the seating area of the valve body 1 must not be too hard to prevent breakage in this area.
  • the sealing edge 30 must not impact too much in the valve seat 9 during operation, since then also the fuel surface in the pressure chamber 19 acted upon partial surface of the valve sealing surface 7 changes and thus the pressure at which the valve needle 5 against the closing force in Opening direction is moved. A change of this opening pressure also causes a change in the total opening dynamics, so that a precise injection is no longer guaranteed.
  • FIG. 3 a shows a first exemplary embodiment, in which an enlarged detail of the valve sealing surface 7 is shown, which is designated III in FIG.
  • the Valve sealing surface 7 is covered with wells 32 which are individually formed and spaced from each other.
  • the wells 32 are circular microwells, which in this example are arranged in a rectangular pattern.
  • the depth of the wells is 0.5 microns to 50 microns, with a depth of 3 microns to 20 microns is particularly advantageous.
  • the wells have a diameter between 5 microns and 100 microns, with a size of 10 microns to 50 microns has been found to be particularly advantageous.
  • the distance of the wells 32 from each other is in the range of 5 .mu.m to 500 .mu.m, but may in certain cases also outside this range.
  • FIG. 3b shows a further exemplary embodiment of microwells in the valve sealing surface 7, the section shown being identical to that of FIG. 3a.
  • groove segments 35 are formed, which are arranged concentrically around a center in this example.
  • the groove segments 35 result in a preferred direction, so that the Lubricating effect of these microwells can be optimized by a suitable orientation on the valve sealing surface 7.
  • the groove segments 35 also or exclusively on the valve seat 9 form, depending on what is more suitable for the lubricating effect or causes less costs.
  • FIG. 3 c shows a further exemplary embodiment of the microwells, which are designed here as grooves 38.
  • the section shown corresponds in size to the figure 3a and 3b.
  • the grooves 38 extend, for example, parallel to one another and in the tangential direction on the valve sealing surface 7. In FIG. 4, this is shown by way of example on the first conical surface 107. However, it can also be provided that the grooves intersect, as shown in FIG. 4 on the second conical surface 207. Due to the orientation of the grooves 38, their width and their depth, the lubricating properties can be adjusted and thus optimized.
  • microwells 32, 35, 38 can be done by various techniques. Thus, for grooves 38 fine turning, hard turning or beam machining is suitable. Wells 32 may be introduced, for example, by microembossing, spark erosion or by lithographic or electrochemical methods. The same methods are also suitable for the production of the groove segments 35. After the introduction of the microstructure in valve sealing surface 7 or valve seat 9, it is provided to post-treat the surface, for example by lapping, fine grinding or finishing. Which method is selected depends on the type of microwells, the material and the size of the surface to be treated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem Ventilkörper (1), in dem in einer Bohrung (3) eine kolben­förmige Ventilnadel (5) angeordnet ist. Die Bohrung (3) wird an ihrem brennraumseitigen Ende von einem Ventilsitz (9) begrenzt, welcher mit einer an der Ventilnadel (5) ausgebilde­ten Ventildichtfläche (7) zusammenwirkt, so dass durch die Längsbewegung der Ventilnadel (5) die Öffnung wenigstens ei­ner am brennraumseitigen Ende des Ventilkörpers (1) ausge­bildeten Einspritzöffnung (11) gesteuert wird. An der Ventildichtfläche (7) und/oder dem Ventilsitz (9) sind Mikro­vertiefungen ausgebildet.

Description

    Stand der Technik
  • Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen aus, wie es aus dem Stand der Technik bekannt ist, beispielsweise aus der Offenlegungsschrift DE 196 18 650 A1. In einem Ventilkörper ist eine Bohrung ausgebildet, in der eine kolbenförmige Ventilnadel längsverschiebbar angeordnet ist, die an ihrem brennraumseitigen Ende eine Ventildichtfläche aufweist. Am brennraumseitigen Ende wird die Bohrung vom einem Ventilsitz begrenzt, mit dem die Ventildichtfläche der Ventilnadel zusammenwirkt und so durch ihre Längsbewegung die Öffnung wenigstens einer Einspritzöffnung steuert, die am brennraumseitigen Ende des Ventilkörpers ausgebildet ist.
  • Der Ventilsitz und die Ventildichtfläche sind zumindest im wesentlichen konisch ausgebildet. Durch die kurzen Öffnungszeiten des Kraftstoffeinspritzventils muss die Ventilnadel mit sehr großen Kräften bewegt werden, um entsprechend kleine Schaltzeiten zu erreichen. Dadurch erreicht die Ventilnadel hohe Geschwindigkeiten, mit der sie bei der Schließbewegung mit der Ventildichtfläche auf den Ventilsitz aufschlägt. Insbesondere bei sogenannten Common-Rail-Einspritzsystemen, wie sie beispielsweise aus der DE 198 27 267 A1 bekannt sind, ergeben sich deshalb hohe Anforderungen an den Ventilsitz und die Ventilnadel, um eine hohe Lebensdauer des Kraftstoffeinspritzventils und eine möglichst über die gesamte Lebensdauer gleichbleibende Einspritzcharakteristik zu erreichen.
  • Die Bewegung der Ventilnadel in der Bohrung geschieht beispielsweise dadurch, dass auf die Ventilnadel in Richtung des Ventilsitzes eine Schließkraft wirkt. Die der Schließkraft entgegengerichtete Öffnungskraft auf die Ventilnadel ergibt sich durch Beaufschlagung der Ventilnadel mit Kraftstoff unter Druck, wobei auch ein Teil der Ventildichtfläche hierbei eine hydraulisch wirksame Kraft erfährt. Bei den bisher bekannten Kraftstoffeinspritzventilen kommt es im Betrieb zu einem Sitzverschleiß, das heißt, dass sich die Ventildichtfläche und der Ventilsitz mit der Zeit aneinander angleichen und sich die hydraulisch wirksame Teilfläche der Ventildichtfläche verändert. Dadurch ist die Einspritzung nicht mehr optimal und es kann zu erhöhten Abgasemissionen kommen.
  • Im Hochdruckbereich von Common-Rail-Kraftstoffeinspritzventilen, wozu auch der Bereich des Ventilsitzes zählt, kommt es als Folge der Einspritzvorgänge in der Regel zu Druckschwingungen. Zwischen zwei Einspritzungen treten dadurch oszillierende Kräfte auf den Ventilsitz und die Ventildichtfläche auf, die der hohen konstanten Grundlast durch den ständig anliegenden Hochdruck überlagert ist. Dadurch tritt zwischen Ventildichtfläche und Ventilsitz Verschleiß auf, der die Lebensdauer des Kraftstoffeinspritzventils beeinträchtigt.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass das Kraftstoffeinspritzventil ein besseres Driftverhalten der Einspritzmenge und eine längere Lebensdauer aufweist. Die Ventildichtfläche der Ventilnadel und/oder des Ventilsitzes weisen Mikrovertiefungen im Kontaktbereich auf, die zu einer verbesserten Schmierung zwischen Ventilsitz und Ventilnadel im hochbelasteten Bereich führen. Durch eine gezielte Anpassung der Mikrovertiefungen, die in ihrer Gesamtheit eine Mikrostrukturierung bilden, an die tribologisch relevante Beanspruchung wird der Verschleiß am Ventilsitz reduziert und damit die Lebensdauer des Einspritzsystems erhöht.
  • In einer vorteilhaften Ausgestaltung des Gegenstandes der Erfindung sind die Mikrovertiefungen als einzelne, voneinander getrennte Näpfchen ausgebildet. Bei einem Durchmesser der einzelnen Näpfchen von beispielsweise 5 µm, die mit einem Abstand von ebenfalls 5 µm in einem Rechteckraster angeordnet sind, lassen sich bis zu 10.000 Schmierdepots pro mm2 ausbilden. Bei einem größeren Durchmesser der Näpfchen sind entsprechend weniger pro Flächeneinheit vorhanden. Die Anordnung der Näpfchen kann auch in der Weise optimiert werden, dass der Abstand der Näpfchen voneinander in Umfangsrichtung der Ventildichtfläche bzw. des Ventilsitzes vom Abstand in Längsrichtung verschieden ist.
  • In einer weiteren vorteilhaften Ausgestaltung sind die Mikrovertiefungen als Nuten oder Nutsegmente ausgebildet, die entweder voneinander getrennt sind oder sich teilweise überlappen oder kreuzen. Es kann hierbei vorteilhaft sein, wenn die Nuten über den gesamten Umfang der Ventildichtfläche der Ventilnadel und/oder des Ventilsitzes verlaufen, was sich einfach herstellen lässt.
  • Aufgrund der geringen Tiefe der Mikrovertierfungen können diese mit verschiedenen Verfahren an der Dichtfläche des Ventilglieds ausgebildet werden. Beispielsweise sind hierfür Laserbearbeitung, Hartdrehen, Funkenerosion oder lithographische Verfahren geeignet. Mit diesen Verfahren lässt sich eine große Zahl von Schmierdepots kostengünstig und in kurzer Zeit herstellen.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
  • Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt die
  • Figur 1
    ein Kraftstoffeinspritzventil im wesentlichen Bereich im Längsschnitt,
    Figur 2
    eine Vergrößerung des mit II bezeichneten Ausschnitts der Figur 1,
    Figur 3a, Figur 3b Figur 3c
    und
    eine Vergrößerung von Figur 2 im mit III bezeichneten Ausschnitt verschiedener Ausführungsbeispiele und
    Figur 4
    dieselbe Ansicht wie Figur 2 mit Nuten als Mikrovertiefungen.
    Beschreibung des Ausführungsbeispiels
  • In Figur 1 ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils in seinem wesentlichen Ausschnitt im Längsschnitt dargestellt. In einem Ventilkörper 1 ist eine Bohrung 3 ausgebildet, in der eine kolbenförmige Ventilnadel 5 längsverschiebbar angeordnet ist. Der Ventilkörper 1 ist hierbei in einer in der Zeichnung nicht dargestellten Brennkraftmaschine angeordnet, so dass er mit seinem brennraumseitigen Ende in den Brennraum der Brennkraftmaschine ragt beziehungsweise einen Teil der Wandung des Brennraums bildet. Die Ventilnadel 5 weist brennraumabgewandt einen Führungsabschnitt 15 auf, der in einem Führungsbereich 23 der Bohrung 3 dichtend geführt ist. Ausgehend vom Führungsabschnitt 15 verjüngt sich die Ventilnadel 5 dem Brennraum zu unter Bildung einer Druckschulter 13, die die Ventilnadel 5 auf ihrem gesamten Umfang umgibt. An ihrem brennraumseitigen Ende geht die Ventilnadel 5 in eine im wesentlichen konische Ventildichtfläche 7 über, die mit einem Ventilsitz 9 zusammenwirkt, der ebenfalls im wesentlichen konisch geformt ist und der die Bohrung 3 an ihrem brennraumseitigen Ende begrenzt. Im Ventilsitz 9 ist wenigstens eine Einspritzöffnung 11 ausgebildet, die den Ventilsitz 9 mit dem Brennraum der Brennkraftmaschine verbindet. Zwischen der Ventilnadel 5 und der Wand der Bohrung 3 ist ein Druckraum 19 ausgebildet, der auf Höhe der Druckschulter 13 radial erweitert ist, wobei ein im Ventilkörper 1 ausgebildeter Zulaufkanal 25 in diese radiale Erweiterung mündet. Über den Zulaufkanal 25 kann der Druckraum 19 mit Kraftstoff unter hohem Druck befüllt werden, der dann den Druckraum 19 durchfließt und so bis zum Ventilsitz 9 gelangt.
  • Durch eine in der Zeichnung nicht dargestellte Vorrichtung wird eine konstante oder zeitlich veränderliche Schließkraft auf das brennraumabgewandte Ende der Ventilnadel 5 ausgeübt, so dass die Ventilnadel 5 mit ihrer Ventildichtfläche 7 in Anlage an den Ventilsitz 9 gedrückt wird. Dieser Schließkraft wirkt die hydraulische Kraft entgegen, die durch den Kraftstoffdruck im Druckraum 19 auf die Druckschulter 13 und auf Teile der Ventildichtfläche 7 wirkt. Zur Steuerung der Längsbewegung der Ventilnadel 5 in der Bohrung 3 werden diese beiden Kräfte eingesetzt. Übersteigt die hydraulische Kraft auf die Ventilnadel 5 die Schließkraft, so hebt die Ventilnadel 5 mit ihrer Ventildichtfläche 7 vom Ventilsitz 9 ab, und Kraftstoff fließt aus dem Druckraum 19 durch die Einspritzöffnungen 11 in den Brennraum der Brennkraftmaschine. Wird die Schließkraft erhöht beziehungsweise die hydraulische Kraft vermindert, so überwiegt die Schließkraft auf die Ventilnadel 5, und die Ventilnadel 5 gelangt mit ihrer Ventildichtfläche 7 wieder in Anlage an den Ventilsitz 7, wodurch die Einspritzöffnungen 11 verschlossen werden.
  • In Figur 2 ist eine Vergrößerung des mit II bezeichneten Ausschnitts von Figur 1 gezeigt, also eine Vergrößerung des Ventilsitzbereichs des Kraftstoffeinspritzventils. Die Ventildichtfläche 7 unterteilt sich in zwei Konusflächen, von denen sich die erste Konusfläche 107 direkt an den zylindrischen Abschnitt der Ventilnadel 5 anschließt, während die zweite Konusfläche 207 an die erste Konusfläche 107 grenzt und die Spitze der Ventilnadel 5 bildet. Die erste Konusfläche 107 weist einen größeren Öffnungswinkel auf als die zweite Konusfläche 207, so dass am Übergang der beiden Konusflächen 107 und 207 eine Dichtkante 30 ausgebildet ist. Der Ventilsitz 9 weist einen Öffnungswinkel auf, der zwischen dem Öffnungswinkel der ersten Konusfläche 107 und dem der zweiten Konusfläche 207 liegt, so dass die Dichtkante 30 in Schließstellung der Ventilnadel 5 am Ventilsitz 9 zur Anlage kommt. Die Einspritzöffnungen 11, von denen in der Regel mehrere über den Umfang des Ventilkörpers 1 verteilt angeordnet sind, sind stromabwärts der Dichtkante 30 angeordnet, so dass sie durch die Ventilnadel 5 verschlossen werden können.
  • Die Schaltzeiten der Ventilnadel 5 sind sehr kurz: Da bei schnellaufenden Brennkraftmaschinen, wie sie in Personenkraftwagen verwendet werden, mehr als 2000 Einspritzungen pro Minute stattfinden können, dauert ein Einspritzvorgang nur etwa 1 ms. Deshalb wirken auf die Ventilnadel 5 große Kräfte und damit hohe Beschleunigungen, die die Ventilnadel 5 mit großer Geschwindigkeit auf dem Ventilsitz 9 aufschlagen lassen, wobei sich im Betrieb des Kraftstoffeinspritzventils die Dichtkante 30 etwas in den Ventilsitz 9 einschlagen wird, so dass es zu einer Anpassung zwischen Ventildichtfläche 7 und Ventilsitz 9 kommt. Die Ventildichtfläche 7 und der Ventilsitz 9 sind deshalb mechanisch äußerst stark belastet. Auf der einen Seite darf der Sitzbereich des Ventilkörpers 1 nicht zu hart sein, um einen Bruch in diesem Bereich auszuschließen. Auf der anderen Seite darf sich die Dichtkante 30 im Betrieb nicht zu sehr in den Ventilsitz 9 einschlagen, da sich dann auch die vom Kraftstoff im Druckraum 19 beaufschlagte Teilfläche der Ventildichtfläche 7 ändert und damit der Druck, bei dem die Ventilnadel 5 entgegen der Schließkraft in Öffnungsrichtung bewegt wird. Eine Änderung dieses Öffnungsdrucks bewirkt auch eine Änderung der gesamten Öffnungsdynamik, so dass eine präzise Einspritzung nicht mehr gewährleistet ist.
  • Bei Einspritzventilen, bei denen ständig Kraftstoffhochdruck im Druckraum und damit auch am Ventilsitz anliegt, ergibt sich durch Druckschwingungen eine weitere Belastung. Durch das Schließen der Ventilnadel wird der Kraftstoff im Druckraum, der zum Ventilsitz hin fließt, abrupt abgebremst, so dass sich die kinetische Energie in Kompressionsarbeit umwandelt und infolge dessen Druckschwingungen auftreten, was zu einer periodischen Belastung im Bereich von Ventilsitz und Ventildichtfläche führt. Auf diese Weise beanspruchte Kraftstoffeinspritzventile werden hauptsächlich in Common-Rail-Einspritzsystemen verwendet. Außerdem kann bei Kraftstoffeinspritzventilen, bei denen die Schließkraft auf die Ventilnadel durch den hydraulischen Druck in einem Steuerraum erzeugt wird, Druckschwingungen in diesem Steuerraum auftreten, was ebenfalls zu periodischen Kräften auf die Ventilnadel in ihrer Schließstellung führen kann.
  • Um den Verschleiß an der Grenzfläche zwischen der Ventildichtfläche 7 und dem Ventilsitz 9 zu vermindern und damit die Lebensdauer zu erhöhen ist es vorgesehen, am Ventilsitz 9 oder an der Ventildichtfläche 7 Mikrovertiefungen auszubilden. Figur 3a zeigt ein erstes Ausführungsbeispiel, bei dem ein vergrößerter Ausschnitt der Ventildichtfläche 7 dargestellt ist, der in Figur 2 mit III bezeichnet ist. Die Ventildichtfläche 7 ist mit Näpfchen 32 bedeckt, die einzeln ausgebildet und voneinander beabstandet sind. Die Näpfchen 32 sind kreisrunde Mikrovertiefungen, die in diesem Beispiel in einem Rechteckmuster angeordnet sind. Die Tiefe der Näpfchen beträgt 0,5 µm bis 50 µm, wobei eine Tiefe von 3 µm bis 20 µm besonders vorteilhaft ist. Die Näpfchen haben einen Durchmesser zwischen 5 µm und 100 µm, wobei sich eine Größe von 10 µm bis 50 µm als besonders vorteilhaft erwiesen hat. Der Abstand der Näpfchen 32 voneinander ist im Bereich von 5 µm bis 500 µm, kann aber in bestimmten Fällen auch außerhalb dieses Bereichs liegen.
  • Durch die Näpfchen 32 wird ein Kraftstoff-Schmierfilm auf der Ventildichtfläche 7 gehalten, so dass auch bei geschlossener Ventilnadel 5, also wenn diese auf dem Ventilsitz 9 aufliegt, eine ausreichende Schmierung zwischen diesen Bauteilen gewährleistet ist. Es wird so der Verschleiß zwischen der Ventildichtfläche 7 und dem Ventilsitz 9 vermindert, wenn es durch die verschiedenen Betriebszustände des Kraftstoffeinspritzventils zu Druckschwingungen im Druckraum 19 kommt und damit zu Verformungen des Ventilkörpers 1 im Bereich des Ventilsitzes 9. Der gleiche, verschleißmindernde Effekt wird erreicht, wenn solche Näpfchen 32 neben der Ventildichtfläche 7 auch im Ventilsitz 9 ausgebildet sind. Es kann auch vorgesehen sein, nur im Ventilsitz 9 Näpfchen 32 und damit eine Mikrostruktur auszubilden, jedoch wird es im allgemeinen leichter sein, eine Mikrostruktur auf der Ventildichtfläche 7 der Ventilnadel 5 auszubilden, da diese leichter zugänglich ist.
  • Figur 3b zeigt ein weiteres Ausführungsbeispiel für Mikrovertiefungen in der Ventildichtfläche 7, wobei der dargestellte Ausschnitt gleich dem der Figur 3a ist. Anstelle von Näpfchen sind hier Nutsegmente 35 ausgebildet, die in diesem Beispiel konzentrisch um ein Zentrum angeordnet sind. Die Nutsegmente 35 ergeben eine Vorzugsrichtung, so dass die Schmierwirkung dieser Mikrovertiefungen durch eine geeignete Orientierung auf der Ventildichtfläche 7 optimiert werden kann. Auch hier kann es vorgesehen sein, die Nutsegmente 35 auch oder ausschließlich auf dem Ventilsitz 9 auszubilden, je nach dem, was für die Schmierwirkung geeigneter ist oder weniger Kosten verursacht.
  • Figur 3c zeigt ein weiteres Ausführungsbeispiel der Mikrovertiefungen, die hier als Nuten 38 ausgebildet sind. Der gezeigte Ausschnitt entspricht in seiner Größe der Figur 3a und 3b. Die Nuten 38 verlaufen beispielsweise parallel zu einander und in tangentialer Richtung auf der Ventildichtfläche 7. In Figur 4 ist dies beispielhaft an der ersten Konusfläche 107 dargestellt. Es kann aber auch vorgesehen sein, dass sich die Nuten überkreuzen, wie dies in Figur 4 an der zweiten Konusfläche 207 dargestellt ist. Durch die Orientierung der Nuten 38, ihre Breite und ihre Tiefe lassen sich auch hier die Schmiereigenschaften einstellen und so optimieren.
  • Die Herstellung der Mikrovertiefungen 32, 35, 38 kann mit verschiedenen Techniken erfolgen. So eignet sich für Nuten 38 Feindrehen, Hartdrehen oder eine Strahlbearbeitung. Näpfchen 32 können beispielsweise durch Mikroprägen, Funkenerosion oder mit lithographischen oder elektrochemischen Verfahren eingebracht werden. Die gleichen Verfahren eignen sich auch für die Herstellung der Nutsegmente 35. Nach dem Einbringen der Mikrostruktur in Ventildichtfläche 7 oder Ventilsitz 9 ist es vorgesehen, die Oberfläche nachzubehandeln, beispielsweise durch Läppen, Feinschleifen oder Finishen. Welches Verfahren im einzelnen ausgewählt wird, hängt von der Art der Mikrovertiefungen, vom Material und von der Größe der zu bearbeitenden Fläche ab.

Claims (15)

  1. Kraftstoffeinspritzventil für Brennkraftmaschinen, mit einem Ventilkörper (1), in dem in einer Bohrung (3) eine kolbenförmige Ventilnadel (5) angeordnet ist, und mit einem Ventilsitz (9), der am brennraumseitigen Ende der Bohrung (3) ausgebildet ist und der mit einer an der Ventilnadel (5) ausgebildeten Ventildichtfläche (7) zusammenwirkt, so dass durch die Längsbewegung der Ventilnadel (5) die Öffnung wenigstens einer am brennraumseitigen Ende des Ventilkörpers (1) ausgebildeten Einspritzöffnung (11) gesteuert wird,
    dadurch gekennzeichnet, dass die Ventildichtfläche (7) und/oder der Ventilsitz (9) Mikrovertiefungen (32; 35; 38) aufweisen, die eine Tiefe zwischen 0,5 µm und 50 µm, vorzugsweise zwischen 3 µm und 20 µm aufweisen.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) einzeln und voneinander getrennt ausgebildet sind.
  3. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) als Näpfchen (32) ausgebildet sind.
  4. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Näpfchen (32) in Umfangsrichtung der Ventilnadel (5) gesehen einen kleineren Abstand zwischeneinander aufweisen als in Längsrichtung der Ventilnadel (5).
  5. Kraftstoffeinspritzventil nach Anspruch 3, dadurch gekennzeichnet, dass die Näpfchen (32) in Umfangsrichtung der Ventildichtfläche (7) einen größeren Abstand zwischeneinander aufweisen als in Längsrichtung der Ventilnadel (5).
  6. Kraftstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) einen Abstand (a) voneinander zwischen 5 µm und 500 µm aufweisen.
  7. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) als Nuten (38) ausgebildet sind.
  8. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) als Nutsegmente (35) ausgebildet sind.
  9. Kraftstoffeinspritzventil nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass sich die Mikrovertiefungen (32; 35; 38) zumindest teilweise überkreuzen.
  10. Kraftstoffeinspritzventil nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) in konzentrischen Kreisen um den gesamten Umfang der Ventildichtfläche (7) und/oder des Ventilsitzes (9) verlaufen.
  11. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass sich die Mikrovertiefungen (32; 35; 38) zumindest teilweise überlappen.
  12. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) eine Breite (b) zwischen 5 µm und 100 µm, vorzugsweise zwischen 10 µm und 50 µm aufweisen.
  13. Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) durch Strahlbearbeitung, Laserbearbeitung, Hartdrehen, Mikroprägen, Funkenerosion oder durch lithographische oder elektrochemische Verfahren gefertigt sind.
  14. Kraftstoffeinspritzventil nach Anspruch 7, dadurch gekennzeichnet, dass die Nuten (38) durch Feindrehen gefertigt sind.
  15. Kraftstoffeinspritzventil nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Mikrovertiefungen (32; 35; 38) nach dem Feinbearbeiten der Ventildichtfläche (7) und des Ventilsitzes (9) eingebracht sind und die Flächen anschließend durch Läppen, Feinschleifen oder Finishen nachbearbeitet sind.
EP03787585A 2002-07-16 2003-04-29 Kraftstoffeinspritzventil für brennkraftmaschinen Expired - Lifetime EP1527276B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10232050A DE10232050A1 (de) 2002-07-16 2002-07-16 Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10232050 2002-07-16
PCT/DE2003/001370 WO2004016943A1 (de) 2002-07-16 2003-04-29 Kraftstoffeinspritzventil für brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP1527276A1 EP1527276A1 (de) 2005-05-04
EP1527276B1 true EP1527276B1 (de) 2006-12-20

Family

ID=30010006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03787585A Expired - Lifetime EP1527276B1 (de) 2002-07-16 2003-04-29 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US20050205693A1 (de)
EP (1) EP1527276B1 (de)
JP (1) JP2005533222A (de)
CN (1) CN100366891C (de)
DE (2) DE10232050A1 (de)
WO (1) WO2004016943A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351881A1 (de) * 2003-10-30 2005-06-02 Robert Bosch Gmbh Injektor mit Strukturen zur Begrenzung verschleißbedingter Änderungen eines Öffnungsverlaufs
DE102005045001A1 (de) * 2005-09-21 2007-03-22 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP2008057458A (ja) 2006-08-31 2008-03-13 Mitsubishi Heavy Ind Ltd 燃料噴射弁
CN101589222B (zh) * 2007-01-29 2012-05-09 三菱电机株式会社 燃料喷射阀
DE102011007876A1 (de) * 2011-04-21 2012-10-25 Robert Bosch Gmbh Komponente, insbesondere eines Kraftstoffeinspritzsystems, mit einer Oberfläche
JP2014194198A (ja) * 2013-03-29 2014-10-09 Nippon Soken Inc 燃料噴射ノズル
WO2015116231A1 (en) * 2014-02-03 2015-08-06 Cummins Inc. Dimpled needle valve sac
DE102014101308B4 (de) * 2014-02-03 2022-01-27 Stoba Holding Gmbh & Co. Kg Kraftstoffeinspritzdosiereinrichtung, Kraftstoffeinspritzdüse, Werkzeug zum Herstellen einer Kraftstoffeinspritzdosiereinrichtung und Verfahren zum Herstellen einer Kraftstoffdosiereinrichtung
DE102015206467A1 (de) * 2015-02-17 2016-08-18 Robert Bosch Gmbh Einspritzventil für ein gasförmiges oder flüssiges Medium und Verfahren zur Herstellung eines solchen Einspritzventils
JP2017008861A (ja) * 2015-06-24 2017-01-12 株式会社デンソー 燃料噴射ノズル
CN105065166B (zh) * 2015-08-12 2018-02-23 江苏大学 柴油机喷油嘴的针阀、针阀偶件及针阀加工方法
GB2551169B (en) * 2016-06-08 2019-12-25 Delphi Tech Ip Ltd Fuel injector nozzle
DE102017202958A1 (de) 2017-02-23 2018-08-23 Robert Bosch Gmbh Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
DE102018113660A1 (de) * 2018-06-08 2019-12-12 Liebherr-Components Deggendorf Gmbh Düse zum Einspritzen von Kraftstoff

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417694A (en) * 1980-10-22 1983-11-29 The Bendix Corporation Injector valve with contoured valve seat and needle valve interface
JPS5986714A (ja) * 1982-11-08 1984-05-19 Taiho Kogyo Co Ltd 摺動部材
CH665880A5 (de) * 1985-04-17 1988-06-15 Sulzer Ag Brennstoffeinspritzventil einer dieselbrennkraftmaschine.
JP3003386B2 (ja) * 1992-04-06 2000-01-24 日本精工株式会社 転がり摺動部品
CN2173311Y (zh) * 1993-08-03 1994-08-03 刘茂本 液体喷射雾化喷嘴
JP3817590B2 (ja) * 1995-11-21 2006-09-06 株式会社ジェイテクト 機械部品
AU4585397A (en) * 1996-09-30 1998-04-24 Surface Technologies Ltd. Bearing having micropores, and design method thereof
JP3075201B2 (ja) * 1996-12-20 2000-08-14 株式会社デンソー 燃料噴射弁
GB9725805D0 (en) * 1997-12-06 1998-02-04 Lucas Ind Plc Fuel injector nozzle
EP1066466B1 (de) * 1998-03-26 2002-10-16 MTU Friedrichshafen GmbH Hochdruck-kolbenzylindereinheit
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE10122167A1 (de) * 2001-05-08 2002-11-14 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
WO2004016943A1 (de) 2004-02-26
EP1527276A1 (de) 2005-05-04
DE50306057D1 (de) 2007-02-01
JP2005533222A (ja) 2005-11-04
CN1668842A (zh) 2005-09-14
CN100366891C (zh) 2008-02-06
DE10232050A1 (de) 2004-02-05
US20050205693A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
EP1527276B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102007049607A1 (de) Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem für einen Verbrennungsmotor mit demselben
DE2710138A1 (de) Mehrloch-einspritzduese
WO2000017512A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1373715B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP0116864A2 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
WO2003098031A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
DE3412625A1 (de) Verfahren zum steuern des ausflussquerschnittes von einspritzduesen fuer direkt einspritzende brennkraftmaschinen und einspritzduese zur durchfuehrung des verfahrens
EP1117921A1 (de) Common-rail-injektor
DE10156020A1 (de) Brennstoffeinspritzventil
DE60213934T2 (de) Kaftstoffeinspritzventil, Düsenkörper und Verfahren zur Herstellung einer zylindrischen fluidführenden Leitung
EP1599670B1 (de) Sackloch- und sitzloch-einspritzdüse für eine brennkraftmaschine mit einem übergangskegel zwischen sackloch und düsennadelsitz
DE102005061781A1 (de) Injektor eines Kraftstoff-Einspritzsystems
DE102017218224A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
DE10050751A1 (de) Brennstoffeinspritzventil
EP1327066A2 (de) Brennstoffeinspritzventil
WO2017114634A1 (de) Brennstoffeinspritzventil
DE60101519T2 (de) Einspritzdüse
EP1307646A1 (de) Ventilanordnung, insbesondere für ein kraftstoffeinspritzsystem einer verbrennungsmaschine
WO2004057177A1 (de) Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
DE102010063246B4 (de) Antriebsvorrichtung für ein Einspritzventil und Einspritzventil
DE102016208080A1 (de) Kraftstoffeinspritzventil sowie Verfahren zur Herstellung eines Kraftstoffeinspritzventils
DE102021212790A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
WO2003040538A1 (de) Verfahren zum einspritzen von brennstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB PT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50306057

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120511

Year of fee payment: 10

Ref country code: GB

Payment date: 20120423

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130429

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170623

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306057

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101