EP0116864A2 - Kraftstoffeinspritzdüse für Brennkraftmaschinen - Google Patents

Kraftstoffeinspritzdüse für Brennkraftmaschinen Download PDF

Info

Publication number
EP0116864A2
EP0116864A2 EP19840100582 EP84100582A EP0116864A2 EP 0116864 A2 EP0116864 A2 EP 0116864A2 EP 19840100582 EP19840100582 EP 19840100582 EP 84100582 A EP84100582 A EP 84100582A EP 0116864 A2 EP0116864 A2 EP 0116864A2
Authority
EP
European Patent Office
Prior art keywords
section
fuel injection
injection nozzle
spray hole
nozzle according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19840100582
Other languages
English (en)
French (fr)
Inventor
Karl Hofmann
Ewald Dr. Dipl.-Ing. Eblen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0116864A2 publication Critical patent/EP0116864A2/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/182Discharge orifices being situated in different transversal planes with respect to valve member direction of movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the invention relates to a fuel injector for internal combustion engines according to the preamble of the main claim.
  • the closing cone of the nozzle needle is struck by the closing force on the valve seat surface, namely in time with the injection.
  • the impact force can be several hundred kilograms and the number of cycles can be relatively high, for example in the case of fast-rotating diesel engines a few thousand times per minute.
  • This creates an extraordinarily high permanent stress on the tip of the nozzle body, with the result that a tip tears off again and again, the fatigue failure starting from the spray openings.
  • the torn tip then falls into the combustion chamber of the engine, which can cause considerable damage. So it is conceivable that this tip the cylinder ⁇ Damaged walls of the engine, or even leads to total engine failure due to destruction in the combustion chamber.
  • Spray hole cross section and spray hole length are thus determined by injection parameters such as the injection quantity, fuel atomization and the like. There are also limits to the production quality and material-specific sizes of an improvement in the steel quality in order to avoid tearing of the tips.
  • the fuel injection nozzle according to the invention with the characterizing features of the main claim has the advantage that despite maintaining the required spray hole length and the spray hole cross section, the nozzle body tip can be reinforced so that tearing is avoided.
  • the larger diameter section does not affect the spray cone or the fuel atomization.
  • the second section is designed as a countersink with a rounded transition to the end face, or it has a spherical segment-shaped cross section. Due to the soft transition to the floor surface in which the cylindrical section opens, there is a significant reduction in the notch effect and thus a reduction in the risk of fatigue failure.
  • FIG. 1 shows a longitudinal section through the end of a conventional fuel injection nozzle on the injection side
  • FIG. 2 shows a corresponding section through the first exemplary embodiment of the invention
  • FIG. 3 correspondingly through the second exemplary embodiment
  • FIG. 4 shows a section along the line IV-IV in FIG. 3.
  • a valve needle 1 is arranged in a nozzle body 2 and is pressed via a closing spring (not shown) with a closing cone 3 arranged at one end of the needle 1 onto a valve seat surface 5 provided in a dome 4 of the nozzle body 2.
  • the fuel supplied by a fuel injection pump, not shown is conveyed under pressure into the space 6 and, when the pressure is sufficient, lifts the valve needle 1 against the force of the closing spring from the seat 5, so that the fuel between the closing cone 3 and the valve seat surface 5 reaches spray openings 7 and over this into the combustion chamber.
  • the pressure in the room 6 is reduced again and the valve needle 1 is pushed back onto the seat 5.
  • the angle enclosed by the seat 5 can be somewhat smaller than the angle enclosed by the closing cone 3, so that the greatest sealing press force results at the closing cone edge 8 of the largest diameter. Because the valve needle l under high frequency and great force, and this Over an extended period of time, when the nozzle tip hits, there is an extraordinarily high load. After the valve needle "strikes", there is almost complete surface contact between the closing cone 3 and the seat cone 5.
  • the weakest point of the crest is the area of the spray holes 7. As shown in FIG. 1, this area has a certain thickness X in the usual nozzles, which is determined by the length of the spray holes 7. This length in turn is determined by parameters of the injection law, such as injection pressure, opening pressure, injection quantity, jet shape, jet direction, hole diameter, etc. The hole length cannot be changed.
  • the tip 4 is of reinforced design. However, so that the length X of the spray hole 7 can be maintained, a counterbore 9 with a larger cross section is connected to the spray opening 7, which has a rounded transition to the end face to avoid notch effects. This avoids an old problem, namely the tearing off of the tips, using simple means, namely the application of countersinks to the spray openings.
  • the length of the spray opening 7 is now specifically controlled by the Depth of the countersink 9 can be determined. I.e. So that mass-produced nozzle body after drilling the spray holes 7 may receive automatically controlled countersinks 9, the depth of which is determined by the particular use of the nozzle. The outer edges of the countersink 9 in no way hinder the injection jet penetrating the section 7.
  • the countersink is designed as a counterbore 9 ', which has a spherical segment-shaped end.
  • the crest 4 ' is corresponding to the depth of this counterbore 9' thicker than the usual thickness X.
  • the countersink 9 is achieved by form milling or form grinding.
  • the position of the processing tool is here oriented to the position of the spray hole, the positions being intended to largely coincide.
  • the center point of the countersink is preferably the same as that of the However, an offset of the countersink is possible, in particular with a larger countersink radius, the radius R1 in one direction is preferably different here than the radius R2 in the other direction, the cut shape resulting with the outer wall of the dome has an oval cross section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird eine Kraftstoffeinspritzdüse für Brennkraftmaschinen vorgeschlagen, bei der zur Vermeidung von Kuppenbrüchen die Kuppe verstärkt wird und zur Vermeidung der sich dadurch ergebenden Verlängerung der Spritzlöcher diese in zwei Abschnitte geteilt werden, einem mit durch das Einspritzgesetz bestimmten festen Querschnitt und einem nach außen sich anschließenden Abschnitt größeren Querschnitts, der keinen Einfluß auf den Einspritzstrahl hat.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Kraftstoffeinspritzdüse für Brennkraftmaschinen nach der Gattung des Hauptanspruchs. Bei nach innen öffnenden Kraftstoffeinspritzdüsen wird die Düsennadel mit ihrem Schließkegel durch die Schließkraft auf die Ventilsitzfläche geschlagen und zwar im Takt der Einspritzung. Hierbei kann die Schlagkraft mehrere hundert Kilogramm betragen und die Taktzahl verhältnismäßig hoch sein, beispielsweise bei schnelldrehenden Dieselmotoren einige tausendmal pro Minute. Hierdurch entsteht eine außerordentlich hohe Dauerbeanspruchung der Kuppe des Düsenkörpers, mit der Folge, daß immer wieder einmal eine Kuppe abreißt, wobei der Dauerbruch von den Spritzöffnungen ausgeht. Die abgerissene Kuppe fällt dann in den Brennraum des Motors, wodurch ein erheblicher Schaden entstehen kann. So ist es denkbar, daß diese Kuppe die Zylinder- · wände des Motors beschädigt, oder gar durch Zerstörungen im Brennraum zum Totalausfall des Motors führt.
  • Der Querschnitt der Spritzöffnung oder öffnungen ist für die Aufbereitung d.h. die Zerstäubung des Kraftstoffes in den Brennraum hinein maßgebend. Je dicker die Kuppenwand ist, desto länger ist das Spritzloch, was ebenfalls auf die Strahlausbildung einen entscheidenden Einfluß hat. Spritzlochquerschnitt und Spritzlochlänge sind somit durch Einspritzkenngrößen wie die Einspritzmenge, Kraftstoffzerstäubung und dergleichen festgelegt. Auch einer Verbesserung der Stahlqualität, um ein Abreissen der Kuppen mvermeiden sind aus fertigungstechnischen sowie materialbestimmten Größen Grenzen gesetzt.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Kraftstoffeinspritzdüse mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß trotz Einhaltung der erforderlichen Spritzlochlänge und des Spritzlochquerschnitts die Düsenkörperkuppe derart verstärkt werden kann, daß ein Abreissen vermieden wird. Der Abschnitt größeren Durchmessers beeinträchtigt den Spritzkegel, sowie die Kraftstoffzerstäubung nicht.
  • Nach einer vorteilhaften Ausgestaltung der Erfindung ist der 2. Abschnitt als Ansenkung mit einem gerundeten Übergang zur Stirnfläche ausgebildet, bzw. er weist einen kugelsegmentförmigen Querschnitt auf. Aufgrund des weichen Übergangs zur Bodenfläche hin, in welcher der zylindrische Abschnitt mündet, ergibt sich eine wesentliche Herabsetzung der Kerbwirkung und damit eine Verringerung der Dauerbruchgefahr.
  • Zeichnung
  • Zwei Ausführungsbeispiele des Gegenstandes der Erfindung sowie zum Vergleich eine bekannte übliche Düse sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen Figur 1 einen Längsschnitt durch das einspritzseitige Ende einer üblichen Kraftstoffeinspritzdüse, Figur 2 einen entsprechenden Schnitt durch das erste Ausführungsbeispiel der Erfindung, Figur 3 entsprechend durch das zweite Ausführungsbeispiel und Figur 4 einen Schnitt gemäß der Linie IV-IV in Figur 3.
  • Beschreibung des Ausführungsbeispiels
  • Wie in den Figuren dargestellt, ist eine Ventilnadel l in einem Düsenkörper 2 angeordnet und über eine nicht dargestellte Schließfeder mit einem am einen Ende der Nadel 1 angeordneten Schließkegel 3 auf eine in einer Kuppe 4 des Düsenkörpers 2 vorgesehene Ventilsitzfläche 5 gepresst. Der von einer nicht dargestellten Kraftstoffeinspritzpumpe her zugeführte Kraftstoff wird unter Druck in den Raum 6 gefördert und hebt bei ausreichendem Druck die Ventilnadel 1 entgegen der Kraft der Schließfeder vom Sitz 5 ab, so daß der Kraftstoff zwischen Schließkegel 3 und Ventilsitzfläche 5 zu Spritzöffnungen 7 gelangt und über diese in den Brennraum. Nach Beendigung der Förderung baut sich der Druck im Raum 6 wieder ab und die Ventilnadel l wird wieder auf den Sitz 5 geschoben.
  • Hierbei kann der vom Sitz 5 eingeschlossene Winkel etwas kleiner als der vom Schließkegel 3 eingeschlossene Winkel sein, so daß sich an der Schließkegelkante 8 größten Durchmessers die höchste Dichtpreßkraftergibt. Da die Ventilnadel l unter hoher Frequenz und großer Kraft, und dies über längere Zeit, auf die Düsenkuppe schlägt, entsteht dort eine außerordentlich hohe Belastung. Nachdem sich die Ventilnadel "eingeschlagen hat", besteht zwischen Schließkegel 3 und Sitzkonus 5 nahezu vollständige Flächenberührung.
  • Beim Schlagen der Ventilnadel auf die Kuppe 4 ist beachtenswert, daß es sich aufgrund des Kegels 3 nicht nur um eine Axialkomponente der Kraft handelt, sondern auch um eine Komponente, die senkrecht von der Kegelmantelfläche ausgeht und eine entsprechende Sprengwirkung mit sich bringt.
  • Der schwächste Punkt der Kuppe ist der Bereich der Spritzlöcher 7. Dieser Bereich weist wie in Fig. 1 dargestellt bei den üblichen Düsen eine bestimmte Dicke X auf, die durch die Länge der Spritzlöcher 7 bestimmt wird. Diese Länge wiederum wird durch Kenngrößen des Einspritzgesetzes bestimmt, wie Einspritzdruck, öffnungsdruck, Einspritzmenge, Strahlform, Strahlrichtung, Lochdurchmesser usw. Die Lochlänge kann somit nicht geändert werden.
  • Bei den in den Figuren 2 bis 4 dargestellten Ausführungsbeispielen der Erfindung ist die Kuppe 4 verstärkt ausgebildet. Damit jedoch die Länge X des Spritzloches 7 beibehalten werden kann, ist an die Spritzöffnung 7 nach außen eine Ansenkbohrung 9 größeren Querschnitts angeschlossen, die zur Vermeidung von Kerbwirkungen einen abgerundeten Übergang zur Stirnfläche aufweist. Hierdurch wird mit einfachen Mitteln, nämlich das Anbringen von Ansenkungen an den Spritzöffnungen ein altes Problem, nämlich das Abreißen der Kuppen, vermieden.
  • Über dieses hinaus besteht jedoch auch der Vorteil, daß die Länge der Spritzöffnung 7 nunmehr gezielt durch die Tiefe der Ansenkung 9 bestimmt werden kann. D. h. also, daß in Großserie hergestellte Düsenkörper nach Bohren der Spritzlöcher 7 möglicherweise automatisch gesteuert Ansenkungen 9 erhalten, deren Tiefe durch den jeweils bestimmten Einsatz der Düse festgelegt wird. Die äußeren Kanten der Ansenkung 9 behindern in keinem Fall den den Abschnitt 7 durchdringenden Einspritzstrahl.
  • Bei dem in Fig. 2 dargestellten ersten Ausführungsbeispiel ist die Ansenkung als Senkbohrung 9' ausgebildet, die ein kugelsegmentförmiges Ende aufweist. Die Kuppe 4' ist entsprechend der Tiefe dieser Senkbohrung 9' dicker als die übliche Dicke X.
  • Beim zweiten in Fig. 3 und 4 dargestellten Ausführungsbeispiel wird die Ansenkung 9" durch Formfräsen oder Formschleifen erzielt. Die Position des Bearbeitungswerkzeugs wird hierbei nach der Position des Spritzloches gerichtet, wobei die Positionen weitgehend übereinstimmen sollen. Der Mittelpunkt der Ansenkung stimmt vorzugsweise mit dem der Spritzlöcher überein. Ein Versatz der Ansenkung, insbesondere bei größerem Ansenkradius, ist jedoch möglich. Der Radius R1 in der einen Richtung ist hier vorzugsweise anders als der Radius R2 in der anderen Richtung; die sich dabei mit Kuppenaußenwand ergebende Schnittform hat einen . ovalen Querschnitt.

Claims (6)

1. Kraftstoffeinspritzdüse für Brennkraftmaschinen mit einer entgegen einer Schließkraft in einem Düsenkörper axial verschiebbaren, radial geführten Ventilnadel, an welcher ein Schließkegel angeordnet ist, der mit einer in einer Abschlußkuppe des Düsenkörpers angeordneten konischen Ventilsitzfläche zusammenwirkt, von der mindestens ein, die Kuppenwand durchstoßendes Spritzloch ausgeht, dadurch gekennzeichnet, daß das Spritzloch (7) aus zwei Abschnitten (7, 9) unterschiedlichen Querschnitts besteht, einem von der Sitzfläche (5) ausgehenden ersten, zylindrischen, den Spritzquerschnitt und die Spritzlochlänge bestimmenden Abschnitt und einem sich nach außen an- schließenden zweiten Abschnitt (9) im Querschnitt grösserer Abmessung.
2. Kraftstoffeinspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß der zweite Abschnitt (9) als Ansenkung mit einem gerundeten Übergang zur Bodenfläche ausgebildet ist.
3. Kraftstoffeinspritzdüse nach Anspruch 2, dadurch gekennzeichnet, daß die Ansenkung (9) einen kugelsegmentförmigen Querschnitt aufweist.
4. Kraftstoffeinspritzdüse nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Ansenkung (9) mittels Formfräsen und/oder Formschleifen erzeugt wird.
5. Kraftstoffeinspritzdüse nach Anspruch 4, dadurch gekennzeichnet, daß die Position des Formwerkzeuges beim Bearbeiten weitgehend mit der Position des Spritzloches (7) übereinstimmt.
6. Kraftstoffeinspritzdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Wandstärke der Kuppe (4') um die Tiefe des zweiten Abschnitts (9) des Spritzlochs (7, 9) verstärkt ist.
EP19840100582 1983-02-22 1984-01-20 Kraftstoffeinspritzdüse für Brennkraftmaschinen Withdrawn EP0116864A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3306078 1983-02-22
DE19833306078 DE3306078A1 (de) 1983-02-22 1983-02-22 Kraftstoffeinspritzduese fuer brennkraftmaschinen

Publications (1)

Publication Number Publication Date
EP0116864A2 true EP0116864A2 (de) 1984-08-29

Family

ID=6191487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19840100582 Withdrawn EP0116864A2 (de) 1983-02-22 1984-01-20 Kraftstoffeinspritzdüse für Brennkraftmaschinen

Country Status (3)

Country Link
EP (1) EP0116864A2 (de)
JP (1) JPS59158378A (de)
DE (1) DE3306078A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275082A (en) * 1993-02-10 1994-08-17 Bosch Gmbh Robert I.c. engine fuel injector
WO1994019602A1 (en) * 1993-02-26 1994-09-01 Caterpillar Inc. Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
WO1999053196A1 (de) * 1998-04-09 1999-10-21 Man B & W Diesel A/S Brennstoffeinspritzvorrichtung
WO2001011229A1 (de) * 1999-08-11 2001-02-15 Robert Bosch Gmbh Brennstoffeinspritzventil und verfahren zur herstellung von austrittsöffnungen an ventilen
WO2003093669A1 (de) * 2002-05-02 2003-11-13 Robert Bosch Gmbh Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004109094A1 (de) * 2003-06-04 2004-12-16 Robert Bosch Gmbh Brennstoffeinspritzventil
FR2889258A3 (fr) * 2005-07-29 2007-02-02 Renault Sas Injecteur de carburant de vehicule automobile comportant un dome d'injection tronque

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394760B (de) * 1985-02-26 1992-06-25 Steyr Daimler Puch Ag Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE3814553A1 (de) * 1988-04-29 1989-11-09 Kloeckner Humboldt Deutz Ag Kraftstoff-einspritzventil
JP2819702B2 (ja) * 1989-12-12 1998-11-05 株式会社デンソー 燃料噴射弁
DE4202752A1 (de) * 1992-01-31 1993-08-05 Bosch Gmbh Robert Kraftstoffeinspritzduese fuer brennkraftmaschinen
DE19609218B4 (de) * 1996-03-09 2007-08-23 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19838771A1 (de) * 1998-08-26 2000-03-02 Man B & W Diesel Ag Einspritzdüse für eine Verbrennungskraftmaschine
DE102011089512A1 (de) * 2011-12-22 2013-06-27 Continental Automotive Gmbh Verfahren zum Herstellen einer Düsenbaugruppe, Düsenbaugruppe für ein Einspritzventil und Einspritzventil
JP2019124226A (ja) * 2019-05-10 2019-07-25 日立オートモティブシステムズ株式会社 燃料噴射弁

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2275082A (en) * 1993-02-10 1994-08-17 Bosch Gmbh Robert I.c. engine fuel injector
GB2275082B (en) * 1993-02-10 1996-01-10 Bosch Gmbh Robert Fuel injection nozzle for internal combustion engines
WO1994019602A1 (en) * 1993-02-26 1994-09-01 Caterpillar Inc. Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
US5449121A (en) * 1993-02-26 1995-09-12 Caterpillar Inc. Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
WO1999053196A1 (de) * 1998-04-09 1999-10-21 Man B & W Diesel A/S Brennstoffeinspritzvorrichtung
WO2001011229A1 (de) * 1999-08-11 2001-02-15 Robert Bosch Gmbh Brennstoffeinspritzventil und verfahren zur herstellung von austrittsöffnungen an ventilen
US6826833B1 (en) 1999-08-11 2004-12-07 Robert Bosch Gmbh Fuel injection valve and a method for manufacturing exit outlets on the valve
EP1508689A1 (de) * 1999-08-11 2005-02-23 Robert Bosch Gmbh Brennstoffeinspritzventil
WO2003093669A1 (de) * 2002-05-02 2003-11-13 Robert Bosch Gmbh Kraftstoffeinspritzventil für brennkraftmaschinen
WO2004109094A1 (de) * 2003-06-04 2004-12-16 Robert Bosch Gmbh Brennstoffeinspritzventil
US7234654B2 (en) 2003-06-04 2007-06-26 Robert Bosch Gmbh Fuel injector
FR2889258A3 (fr) * 2005-07-29 2007-02-02 Renault Sas Injecteur de carburant de vehicule automobile comportant un dome d'injection tronque

Also Published As

Publication number Publication date
DE3306078A1 (de) 1984-08-23
JPS59158378A (ja) 1984-09-07

Similar Documents

Publication Publication Date Title
DE663301C (de) Einspritzduese fuer Brennkraftmaschinen mit Selbstzuendung
EP0310819B1 (de) Kraftstoffeinspritzventil
WO1987000889A1 (en) Fuel injection nozzle for internal combustion engines
EP0809017A1 (de) Zweistufige Kraftstoffeinspritzdüse für Brennkraftmaschinen
EP0116864A2 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
DE69006168T2 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen.
DE10210976A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE4214646A1 (de) Kraftstoffeinspritzduese fuer vor- und haupteinspritzung
DE10058153A1 (de) Einspritzdüse mit separat steuerbaren Düsennadeln
DE19834867B4 (de) Einspritzdüse für eine direkt einspritzende Brennkraftmaschine
DE19958126B4 (de) Kraftstoffeinspritzdüse
CH642430A5 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen.
WO2000019088A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
EP0637686B1 (de) Kraftstoffeinspritzdüse für eine Brennkraftmaschine
EP1518049B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE19936669A1 (de) Common-Rail-Injektor
WO2004104406A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
CH632053A5 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen.
EP1504189B1 (de) KRAFTSTOFFEINSPRITZVENTIL FüR BRENNKRAFTMASCHINEN
EP1076771A2 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1565650B1 (de) Einspritzvorrichtung zum einspritzen von kraftstoff
DE9301992U1 (de) Kraftstoffeinspritzdüse für Brennkraftmaschinen
WO1987005077A1 (en) Fuel injection nozzle for internal combustion engines
EP1256708A2 (de) Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19840120

AK Designated contracting states

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19840925

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EBLEN, EWALD, DR. DIPL.-ING.

Inventor name: HOFMANN, KARL