WO2005005967A1 - 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ - Google Patents

蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ Download PDF

Info

Publication number
WO2005005967A1
WO2005005967A1 PCT/JP2004/009582 JP2004009582W WO2005005967A1 WO 2005005967 A1 WO2005005967 A1 WO 2005005967A1 JP 2004009582 W JP2004009582 W JP 2004009582W WO 2005005967 A1 WO2005005967 A1 WO 2005005967A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence
optical
demultiplexer
light
fluorescence analysis
Prior art date
Application number
PCT/JP2004/009582
Other languages
English (en)
French (fr)
Inventor
Takashi Fukuzawa
Jun Yamaguchi
Akihiko Hattori
Takao Miwa
Original Assignee
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Company, Limited filed Critical Nippon Sheet Glass Company, Limited
Priority to CA002531791A priority Critical patent/CA2531791A1/en
Priority to EP04747051A priority patent/EP1647821A1/en
Publication of WO2005005967A1 publication Critical patent/WO2005005967A1/ja
Priority to US11/329,456 priority patent/US7304734B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres

Definitions

  • Optical multiplexer / demultiplexer for fluorescence analysis optical module for fluorescence analysis, fluorescence analyzer, fluorescence / photothermal conversion spectrometer, and chip for fluorescence analysis
  • the present invention relates to an optical multiplexer / demultiplexer for fluorescence analysis, an optical module for fluorescence analysis, a fluorescence analyzer, a fluorescence-to-heat conversion spectrometer, and a chip for fluorescence analysis, and more particularly to a laser-induced fluorescence analysis and a photothermal conversion spectroscopy.
  • the present invention relates to an optical multiplexer / demultiplexer for fluorescence analysis, an optical module for fluorescence analysis, a fluorescence analyzer, a fluorescence-to-heat conversion spectrometer, and a chip for fluorescence analysis.
  • the microchemical system is for detecting and analyzing a very small amount of sample with high sensitivity using a capillary tube or a fluorescence analysis chip.
  • a fluorescence analysis chip is provided with a fine flow path through which a solution containing a small amount of sample (sample solution) flows.
  • This flow path may be a branch path, a junction path, or a meandering path. There are various shapes.
  • LIF laser-induced fluorescence
  • a sample flowing in a fine flow path formed on a small glass substrate etc. is focused and irradiated with excitation light from the bottom of the flow path via a lens.
  • an apparatus which detects the fluorescence emitted from the sample from the side of the flow channel for example, see Japanese Patent Application Laid-Open No. 2002-214194.
  • the problems of the microchemical system in the above-mentioned conventional technology that is, the configuration of the light source, the optical system of the measurement unit and the detection unit (photoelectric conversion unit) are complicated, large, lacking portability, and the operation of the place and equipment.
  • a sample flowing in a flow path such as a small glass substrate is focused and irradiated with excitation light from the top of the flow path through a lens.
  • a compact microchemical system for performing LIF analysis by guiding the fluorescence emitted from the sample to the detector by the lens on the upper surface of the flow channel.
  • the dichroic mirror is arranged in the microchemical system at an angle of 45 degrees from the optical axis of the excitation light in order to guide the excitation light to the lens and to guide the fluorescence through the lens. Therefore, the difference between the wavelength characteristics of P-polarized light and S-polarized light broadens the boundary between the reflection wavelength band and the transmission wavelength band, and the light output from the sample other than the fluorescence enters the detector and is analyzed by LIF.
  • LIF Low-in
  • An object of the present invention is to provide an optical multi / demultiplexer for fluorescence analysis that can easily measure LIF analysis with high sensitivity and simultaneously and easily measure photothermal conversion spectroscopy.
  • An object of the present invention is to provide an analyzer, an optical module for fluorescence analysis, a fluorescence analyzer, a fluorescence-photothermal conversion spectrometer, and a chip for fluorescence analysis. Disclosure of the invention
  • fluorescence analyzer for analyzing the main wavelength example 2 fluorescence (e 2> e generated from a sample excitation light is irradiated for
  • An optical multiplexer / demultiplexer for fluorescence analysis comprising: a first lens that receives the excitation light and the fluorescence; and a dielectric multilayer film that receives the excitation light and the fluorescence transmitted through the first lens.
  • An optical multiplexer / demultiplexer for fluorescence analysis comprising: a wavelength selection material unit; and a second lens that receives the fluorescence transmitted through the wavelength selection material unit.
  • An optical multiplexer / demultiplexer for fluorescence analysis to be used comprising: a first lens for receiving excitation light and fluorescence; and a wavelength selection material comprising a dielectric multilayer film for receiving excitation light and fluorescence transmitted through the first lens. Section and a second lens for receiving the fluorescence transmitted through the wavelength selection material section, so that the excitation light having a relatively large light intensity as compared with the fluorescence intensity emitted from the sample can be effectively prevented.
  • the dielectric multilayer film, mosquito Tsu-off wavelength example the main wavelength, and the main wavelength; arbitrariness is preferable that a mouth ring-pass filter located between L 2.
  • the dielectric multilayer film has a cut-off wavelength between the main wavelength and the main wavelength 2. Effectively increasing transmission loss of excitation light, which causes noise in fluorescence measurement, by passing through the selected material and reaching the fluorescence detector At the same time, the amount of excitation light reflected on the wavelength selection material portion and irradiated on the sample can be secured.
  • the transmittance of the light having the dominant wavelength to the wavelength selection material portion is ⁇ 30 dB or less.
  • the optical multiplexer / demultiplexer for fluorescence analysis since the transmittance of light of the main wavelength to the wavelength selection material portion is not more than 130 dB, the number of laminated layers of the dielectric multilayer film Even if the amount of light is small, it is possible to reliably prevent the excitation light from passing through the optical multiplexer / demultiplexer for fluorescence analysis, and to effectively reduce the measurement and detection noise levels of the second embodiment. Can be.
  • the transmittance of the light having the main wavelength 2 or the like generated from the sample to the wavelength selection material portion is 13 dB or more.
  • the transmittance of light of the main wavelength 2 generated from the sample to the wavelength selection material section is ⁇ 3 dB or more.
  • the detection signal intensity of the fluorescence transmitted through the duplexer can be ensured.
  • the first and second lenses are gradient index cylindrical rod lenses each having a refractive index gradient such that the refractive index decreases from the center toward the outside.
  • the first and second lenses each have a refractive index gradient provided with a refractive index gradient such that the refractive index decreases from the center toward the outside. Since it is a cylindrical rod lens, the two end surfaces of the entrance surface and the exit surface are planes perpendicular to the optical axis direction, making it easy to assemble the lens and other components. Therefore, it can be easily stored in the cylindrical holder, and the optical axis can be easily aligned.
  • the first lens, the wavelength selection material section, and the second lens are integrally formed. According to the optical multiplexer / demultiplexer for fluorescence analysis according to the present embodiment, since the first lens, the wavelength selection material section, and the second lens are integrally formed, the optical multiplexer / demultiplexer for fluorescence analysis is Can be bonded to each other for compactness.
  • an excitation light source for emitting excitation light having a main wavelength, and a main wavelength generated from a sample irradiated with the excitation light via a probe or an optical connector.
  • e and second fluorescent e 2> e the you demultiplexing fluorescence analysis optical demultiplexer, a detector for receiving the fluorescence transmitted through the fluorescence analysis optical demultiplexer, and the excitation light source
  • a first optical transmission line that connects the optical multiplexer / demultiplexer for fluorescence analysis
  • a second optical transmission line that connects the probe or the optical connector to the optical multiplexer / demultiplexer for fluorescence analysis
  • An optical module for fluorescence analysis comprising: a third optical transmission line for connecting an optical multiplexer / demultiplexer for fluorescence analysis.
  • the light source for the excitation light that emits the excitation light having the main wavelength i, and the main wavelength generated from the sample irradiated with the excitation light via the probe or the optical connector.
  • the third optical transmission line the excitation light can be guided to the sample by the second optical transmission line, and the fluorescence from the sample can be guided to the optical multiplexer / demultiplexer. Space can be reduced.
  • the optical multiplexer / demultiplexer for fluorescence analysis includes a first lens that receives the excitation light and the fluorescence, and a dielectric multilayer film that receives the excitation light and the fluorescence transmitted through the first lens.
  • the first light transmission section It is preferable that the optical axis of the transmission path is offset from the optical axis center of the first lens so that the incident angle of the excitation light to the wavelength selection material section is substantially 5 degrees or less. .
  • the optical multiplexer / demultiplexer for fluorescence analysis includes a first lens that receives excitation light and fluorescence, and an excitation light and fluorescence that have passed through the first lens.
  • a wavelength selection material portion formed of a dielectric multilayer film for receiving light, and an optical axis of the first optical transmission line is arranged so that an incident angle of the excitation light to the wavelength selection material portion is approximately 5 degrees or less. Since the lens is offset from the center of the optical axis of the lens No. 1, the incident angle of the excitation light is much higher than that of a conventional optical system in which the excitation light is incident on the wavelength selection material at an incident angle of 45 degrees. It is possible to reduce the leakage of the transmission light with respect to the excitation light in which the p-wave and the s-wave are mixed.
  • all of the first to third optical transmission lines are made of an optical fiber.
  • the first to third optical transmission lines are all made of optical fibers, so that the optical module for fluorescence analysis can be simplified and downsized. .
  • the optical fiber is a single mode fiber.
  • the probe has a fourth optical transmission line to which another optical connector is connected, and the other optical connector is preferably configured to be connected to the optical connector.
  • the probe has the fourth optical transmission path to which another optical connector is connected, and the other optical connector is connected to the optical connector.
  • the excitation light source preferably includes a light modulation mechanism.
  • the detection sensitivity can be increased.
  • the light modulation mechanism is a lock-in modulation circuit that performs a lock-in of 100 Hz or more and not more than 100 Hz.
  • the light modulation mechanism is a lock-in modulation circuit that performs lock-in between 100 Hz and 1 OKHz, it is possible to surely increase the detection sensitivity. Can be.
  • the lock-in modulation circuit modulates the light of the excitation light source with a rectangular wave.
  • the lock-in modulation circuit modulates the light of the excitation light source with a rectangular wave, so that the measurement accuracy can be further increased.
  • an optical isolator is provided between the light source for excitation light and the optical multiplexer / demultiplexer for fluorescence analysis.
  • the optical module for fluorescence analysis since the optical isolator is provided between the light source for excitation light and the optical multiplexer / demultiplexer for fluorescence analysis, the excitation light returns to the light source for excitation light and enters. Can be prevented.
  • an edge filter that does not transmit the light of the main wavelength is provided between the optical multiplexer / demultiplexer for fluorescence analysis and the detector.
  • the optical module for fluorescence analysis since an edge filter that does not transmit light of the main wavelength is provided between the optical multiplexer / demultiplexer for fluorescence analysis and the detector, the light is emitted from the light source for excitation light. The incident light can be reliably blocked from entering the detection means.
  • the fluorescence analyzer includes the optical module for fluorescence analysis, a sample table on which a plate member having a flow path for flowing the sample is placed, and the sample table. And a moving mechanism for relatively moving and positioning at least one of the fluorescence analysis optical modules.
  • the fluorescence analyzer a light source for detection light that emits detection light having a main wavelength of 3 , and a thermal lens generated in the sample by the excitation light are transmitted.
  • a photoelectric converter for detecting the photothermal conversion signal intensity of the detected light, a third lens, another wavelength selection material portion composed of a dielectric multilayer film, and a fourth lens are arranged in this order for photothermal conversion spectroscopy.
  • the fluorescence transmitted through the other wavelength selection material section is Fluorescent and utility varying ⁇ light analyzer received by said detector through a lens is provided.
  • the fluorescence analyzer a light source for detection light that emits detection light having a main wavelength of 3 , and a thermal lens generated in the sample by the excitation light are included.
  • a photoelectric converter that detects the photothermal conversion signal intensity of the transmitted detection light, another wavelength selection material section composed of a third lens and a dielectric multilayer film, and a fourth lens for photothermal conversion spectroscopy An optical multiplexer / demultiplexer, and a fifth optical transmission line for connecting the optical multiplexer / demultiplexer for photothermal conversion / spectroscopic analysis to the light source for detection light, and an optical multiplexer / demultiplexer for photothermal conversion / spectroscopic analysis as a third optical transmission line.
  • a fluorescence / photothermal conversion spectrometer that is placed in the middle of the light source, wherein the optical multiplexer / demultiplexer for photothermal conversion spectroscopy receives the detection light from the light source for detection light with the third lens, and uses another wavelength selection material.
  • the fluorescence transmitted through the part is received by the detector through the fourth lens, By irradiating the sample with the excitation light source used for fluorescence measurement, fluorescence analysis and photothermal conversion spectroscopy can be measured simultaneously. it can.
  • main wavelength example 3 example, arbitrary preferable and a satisfy child relationships that ⁇ e 2 ⁇ e 3.
  • the fluorescence-photothermal conversion spectrometer since the main wavelength 3 satisfies the relationship of 2 ⁇ 3 , the branching of the detection light by the optical multiplexer / demultiplexer is surely controlled. be able to.
  • the difference between the main wavelength 3 and the main wavelength 2 is 50 nm to 50 O nm, and the chromatic aberration in the thermal lens of the main wavelength 3 and the main wavelength 3 is 2 respectively. Preferably, it is in the range of 0 to 20 O nm.
  • the light source for detection light includes a light modulation mechanism. According to the fluorescence-to-heat conversion spectrometer according to the present embodiment, since the light source for detection light includes the light modulation mechanism, it is possible to prevent the detection light from returning to the light source for detection light.
  • the optical modulation mechanism is a lock-in modulation circuit that performs lock-in of 100 Hz or more and ⁇ .
  • the light modulation mechanism is a lock-in modulation circuit that performs a lock-in of at least 100 Hz and no more than 1 OKHz. Even if there is light and electric noise, the light amount can be stabilized.
  • a fluorescence analysis chip including a plate-shaped member having a flow path for flowing a sample, wherein the excitation light is transmitted through a lens to the sample in the flow path.
  • a fluorescence analysis chip arranged in a microchemical system comprising: an irradiation unit for irradiating the flow path; and a detection unit for detecting output light from a sample in the flow path, wherein a reflection mirror is provided in the flow path or in the vicinity thereof. And a detection unit that detects the output light including the fluorescence reflected by the reflection mirror and the fluorescence collected by the lens via the lens.
  • An analysis chip is provided.
  • a plate-like member having a reflection mirror in or near a flow path through which a sample for irradiating excitation light through a lens and detecting output light flows. Since the above-described output light including the fluorescence reflected by the reflection mirror and collected by the lens is detected via the lens, LIF analysis can be easily measured with high sensitivity.
  • the excitation light incident surface is a flat surface, and a surface other than the excitation light incident surface is a curved surface.
  • the reflection mirror is connected to the flow path in the flow path. It can be a condenser lens that collects the fluorescent light emitted from the sample, and can measure LIF analysis with higher sensitivity.
  • the reflection mirror collects the fluorescence at a position where the excitation light is collected via the lens.
  • the reflection mirror collects the fluorescence at the position where the excitation light is collected through the lens, so that the collected fluorescence is focused on the lens. As a result of reliable injection, more sensitive LIF analysis can be performed.
  • the reflection mirror is preferably a metal film.
  • the reflection mirror is a metal film
  • the reflectance can be increased in a wide wavelength range of the visible region, and LIF analysis with higher sensitivity is performed. be able to.
  • the plate-shaped member includes a first plate-shaped member having a groove constituting the flow path, and a second plate-shaped member bonded to a groove-side surface of the first plate-shaped member.
  • the first plate-shaped member has the reflection mirror on the back surface of the groove-side surface.
  • the plate-like member is bonded to the first plate-like member having the groove constituting the flow path and the groove-side surface of the first plate-like member.
  • the LIF analysis can be measured with higher sensitivity because it can be reliably detected via the.
  • the plate-like member includes a first plate-like member having a slit constituting the flow path, and two second plate-like members adhered to both surfaces of the first plate-like member. Wherein the surface of the slit and the second plate-like member are bonded to the back surface of the slit-side surface of the first plate-like member and the first plate-like member. It is preferable that the above-mentioned reflection mirror is provided between the first and second members.
  • the plate-like member is bonded to the first plate-like member having the slit constituting the flow path, and to both surfaces of the first plate-like member.
  • a second plate-shaped member which is bonded to the surface of the slit and the back of the slit-side surface of the first plate-shaped member among the second plate-shaped members. Since there is a reflection mirror between the sample and the first plate-shaped member, the fluorescent light emitted from the sample in the flow path can be reliably detected through the lens irradiated with the excitation light. LIF analysis can be measured with higher sensitivity.
  • the plate-shaped member includes a separation channel for causing the sample to be electrophoresed, and a separation channel that intersects with the separation channel, and the separation channel that is emitted from the sample in the separation channel. It is preferable that the reflection mirror is provided in a region where the fluorescent light is extracted to the outside.
  • FIG. 1 is a diagram showing a schematic configuration of a microchemical system as a fluorescence analyzer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the fluorescence analysis chip 20 in FIG.
  • FIG. 3 is a schematic diagram of a modified example of the fluorescence analysis chip 20 in FIG.
  • FIG. 4 is a schematic diagram showing a modified example of the fluorescence analysis chip 20 in FIG.
  • FIG. 5 is a schematic cross-sectional schematic view of the optical multiplexer / demultiplexer 56 for fluorescence analysis in FIG.
  • FIG. 6A and 6B are diagrams for explaining the light transmission characteristics of the filter 501.
  • FIG. 6A is a schematic diagram when light enters the filter 501
  • FIG. 6B is a diagram when the incident angle is 45 °.
  • (C) shows the relationship between the transmittance and the wavelength of the P wave and the S wave when the incident angle is 0 degree.
  • FIG. 7 is a graph showing excitation light and fluorescence spectra and transmission characteristics of the filter 501.
  • FIG. 8A and 8B are diagrams showing the transmission characteristics of the filter 501.
  • FIG. 8A shows the case of the long-pass filter
  • FIG. 8B shows the case of the band-pass filter
  • FIG. 9 is a diagram showing a schematic configuration of a microphone mouth chemical system as a fluorescence-to-heat conversion spectrometer according to the embodiment of the present invention.
  • FIG. 10 is a schematic view showing the structure of the fluorescence analysis chip 20 in FIG. 1, (a) is a perspective view of a plate-like member constituting the fluorescence analysis chip 20, and (b) is a perspective view. A cross-sectional view along the A-A plane of the fluorescence analysis chip 20 is shown.
  • FIG. 1 is a schematic diagram of a micrometer as a fluorescence analyzer according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of a learning system.
  • the microchemical system 100 has an optical module 100a for fluorescence analysis and a lens that focuses the excitation light onto the sample solution in the flow path 204 inside the fluorescence analysis chip 2 ⁇ .
  • the sample table 21 has a moving mechanism (not shown) that moves relative to the probe 50 and positions the sample.
  • the sample stage 21 is provided with a moving mechanism.
  • the present invention is not limited to this as long as the sample can be positioned.
  • a moving mechanism that moves relative to 1 may be provided.
  • -Optical module for fluorescence analysis 100a is the main wavelength!
  • the excitation light source 5 3 that shines out of the excitation light, analyze the excitation light probe 5 0 a dominant wavelength example 2 generated from by Ri sample and child irradiated via fluorescence (e 2> lambda 1)
  • Optical multiplexer / demultiplexer 56 for fluorescence analysis used in a fluorescence analyzer to be connected, a detector 54 for receiving the fluorescence, a light source 53 for excitation light and an optical multiplexer / demultiplexer 56 for fluorescence analysis
  • a fiber 106 first optical transmission line
  • an optical fiber 107 second optical transmission line
  • a detector 54 And an optical fiber 108 (third optical transmission line) for connecting the optical multiplexer / demultiplexer 56 for fluorescence analysis.
  • the excitation light is guided to the sample by the optical fin and * 107, and the fluorescence from the sample is combined with the light for fluorescence analysis.
  • the optical module for fluorescence analysis 100a can be reduced in space.
  • the optical fiber 107 is directly connected to the optical multiplexer / demultiplexer 56 for fluorescence analysis, but is detachably connected to the probe 50 via a connector. That is, the optical fiber 107 has a connector 59a at the tip, and this connector The connector 59 a is connected to the connector 59 b at the end of the optical fiber of the probe 50 by connecting the probe 50 and the optical multiplexer / demultiplexer 56 for fluorescence analysis. Is connected. This makes it possible to construct a simple optical system.
  • the optical finos' 106 may have an isolator 52 in which the loss of light incident from the output end 52a side is as large as 3 OdB or more. Thereby, it is possible to prevent the return excitation light from the optical multiplexer / demultiplexer for fluorescence analysis 56 from entering the excitation light source 53.
  • the optical fin, * 108 may have an edge filter 57 having a cut-off wavelength of a wavelength that satisfies ⁇ 2 . This makes it possible to guide the fluorescence emitted from the sample in the flow path 204 while reliably preventing the excitation light from entering the detector 54, thereby making the LIF analysis more sensitive. Can be measured.
  • the optical module for fluorescence analysis 100a transmits the optical fibers ⁇ 103,106,107,108 in order to transmit light between the above-described devices constituting the module. Since this module is used, this module can be simplified and downsized.
  • the probe 50 has a single-mode optical fiber 103 connected at one end to the connector 59 b, a ferrule 104 holding the other end of the optical fiber 103, and an optical fiber It comprises an irradiation lens 40 connected to the distal end of 103, a ferrule 104 and a tube 105 for fixing the irradiation lens 40.
  • the irradiation lens 40 is formed of a rod lens.
  • the excitation light source 53 is connected to the lock-in modulation circuit 109, and the lock-in modulation circuit 109 causes a lock-in of 100 Hz or more and 1 OKHz or less. Done. As a result, the detection sensitivity can be reliably increased. Further, the lock-in modulation circuit 109 modulates the light of the excitation light source 53 with a rectangular wave. As a result, the measurement accuracy can be further improved.
  • the lock-in modulation circuit 109 is used in the embodiment of the present invention, the present invention is not limited to this, as long as the light modulation mechanism can increase the detection sensitivity.
  • the optical multiplexer / demultiplexer 56 for fluorescence analysis and the probe 50 are detachably connected by connectors 59a and 59b, but this is not limitative.
  • the optical multiplexer / demultiplexer 56 for fluorescence analysis and the probe 50 may be directly connected via an optical fiber, or may be connected by fusion.
  • FIG. 2 is a schematic diagram of the fluorescence analysis chip 20 in FIG.
  • the fluorescence analysis chip 20 is composed of glass substrates 201 and 202 which are adhered in two layers.
  • the above-mentioned flow path 204 through which the sample flows at the time of mixing, stirring, synthesis, separation, extraction, detection, and the like is formed.
  • the flow path 204 is formed on a curved surface by etching, and is covered with a metal reflection film 205 made of a film of aluminum, chromium, nickel, palladium or the like. This makes it a condenser lens for condensing the fluorescence emitted from the sample in the flow path 204, and enables high-sensitivity LIF analysis. Further, if the shape of the flow path 204 and the coating of the metal reflective film 205 are performed so that the position where the fluorescent light is focused is the focal position of the excitation light, the fluorescent light focused on the probe 50 is obtained. Can be reliably incident, and more sensitive LIF analysis can be performed.
  • this coating is formed on the surface 202 a of the glass substrate 202, on which the flow path 204 is formed, by an aluminum film by a vacuum film forming method or a sputtering ring. After forming a film of palladium or the like, apply a photo resist and Exposure, development, etching, and photo resist stripping are performed by disposing a mask on the flow path 204. Thereby, even if the flow path 204 is fine, the metal reflection film 205 can be surely covered.
  • the material of the fluorescence analysis chip 20 is desirably glass from the viewpoints of durability and chemical resistance.Furthermore, considering the use of biological samples such as cells, for example, for DNA analysis, Glasses having high acid resistance and alkali resistance, specifically, borosilicate glass, soda lime glass, aluminoborosilicate glass, and quartz glass are preferred. However, organic substances such as plastic can be used by limiting the use.
  • an adhesive for bonding the glass substrates 201 and 202 to each other for example, an ultraviolet-curable, thermosetting, two-component curable acrylic or epoxy organic adhesive, and an inorganic adhesive are used. Agents. Further, the glass substrates 201 and 202 may be fused together by heat fusion.
  • a metal reflection film 205 may be deposited so that all the light transmitted through the glass substrate 202 is reflected (FIG. 3). As a result, highly sensitive LIF analysis can be performed.
  • the fluorescence analysis chip 20 is connected to a glass substrate 2 having a slit 204a having a shape of a flow path 204 ( ⁇ 3a is replaced by two glass substrates 203b and 203c).
  • the surface of the slit 204a is coated with a metal reflective film 205 by a vapor deposition method, and the surface of the glass substrate 203c is made of glass.
  • the metal reflective film 205 may be coated on the surface to be bonded to the substrate 203a (FIG. 4), and a high-sensitivity LIF analysis can be similarly performed by these modes.
  • the coating of the metal reflective film 205 is performed.
  • the fluorescence analysis chip 20 is used, the fluorescence to be detected is weak, but the fluorescence analysis chip 20a that does not cover the metal reflection film 205 is used. It is possible to do LIF analysis.
  • FIG. 5 is a schematic cross-sectional schematic view of the optical multiplexer / demultiplexer 56 for fluorescence analysis in FIG.
  • an optical multiplexer / demultiplexer 56 for fluorescence analysis has a load lens 500 (first lens) in order from the output ends 56a and 56b, and a filter deposited thereon.
  • Filter 501 wavelength selection material: filter-on lens type
  • rod lens 502 second lens fixed to filter 501 by adhesive
  • the filter 501 may be formed on a glass substrate, and the glass substrate may be disposed between the rod lens 500 and the rod lens 502.
  • Filter 5 0 1, a layer composed of a refractive index lower S i 0 layer consisting of 2, etc. (L) and the refractive index high T i 0 2, Z r 0 2, T a 2 0 5 , etc. (H) multilayer And a cut-off wavelength ( ⁇ , ⁇ ⁇ ) that is incident from one of the output terminals 56a and 56b of the optical multiplexer / demultiplexer 56 for fluorescence analysis. 2 ) The transmittance of light with a shorter wavelength is less than ⁇ 30 dB (0.1%), and the transmittance of light with a longer wavelength is more than ⁇ 3 dB (97 to 50%). %), A so-called long-pass filter. This makes it possible to reliably block light emitted from the excitation light source 53 from being incident on the detector 54.
  • the excitation light having the main wavelength incident from the output end 56 a is: ⁇ 1 O dB or less for the filter 501, and is reflected by the filter 501 to output the other output.
  • the light is guided to the end 56b.
  • the light guided to the output end 56 b through the probe 50 is the excitation light of the above-mentioned dominant wavelength reflected by the metal reflection film 205,
  • the dominant wavelength resulting from the fluorescence is 2 .
  • the excitation light is reflected by the filter 501 and guided to the output terminal 56a similarly to the excitation light from the excitation light source 53 described above, but the fluorescence is Since the transmittance to the filter 501 is 13 dB or more, the light is transmitted through the filter 501 and guided to the input terminal 56c. Thereby, the intensity of the detection signal of the fluorescence transmitted through the optical multiplexer / demultiplexer 56 for the fluorescence analysis can be secured.
  • the filter 501 may be a holograph.
  • the filter 501 used in the optical multiplexer / demultiplexer for fluorescence analysis 56 is a long-pass filter that cuts the short wavelength side and passes the long wavelength side, so that the light passes through the filter 501 and the detector 5 passes.
  • the transmission loss of the excitation light which causes noise in fluorescence measurement, can be effectively increased, and at the same time, the excitation reflected by the filter 501 and irradiated to the sample The amount of light can be secured.
  • the rod lenses 500 and 502 are gradient index cylindrical rod lenses provided with a refractive index gradient such that the refractive index decreases from the center toward the outside. Thereby, the two end surfaces of the entrance surface and the exit surface are planes perpendicular to the optical axis direction, and assembling such as coupling of lenses can be facilitated. Further, since the load lenses 500 and 502 are cylindrical, they can be easily stored in the cylindrical holder, and the optical axis can be easily aligned.
  • the filter 501 is arranged such that the larger the incident angle ⁇ of the guided light (FIG. 6 (a)), the closer the cutoff wavelength of the P wave and S wave constituting natural light 6 (b) and 6 (c)), there is a characteristic that the boundary between the natural light reflection wavelength band and the transmission wavelength band is widened. Since the angle of incidence of the light guided from the ends 56a and 56b is configured to be approximately 5 degrees or less, the leakage of transmission is small for the excitation light mixed with the P and S waves. Can be done. That is, it is possible to effectively prevent the excitation light having a relatively high light intensity as compared with the fluorescent light intensity emitted from the sample from transmitting through the filter 501, thereby reducing noise when detecting the fluorescent light. be able to.
  • Dominant wavelength example of the excitation light, and fluorescence detection characteristics can wavelength region is reliably and preparative excitation light when narrow between the dominant wavelength example 2 fluorescent reliably Can be raised.
  • the filter 501 use a long-pass filter.
  • a problem that occurs when another wavelength selection filter is used for the filter 501 will be described.
  • the wavelength-selecting filter is cut-off, as shown in Fig. 8, in contrast to a band-pass filter that transmits only light in a certain wavelength band or a long-pass filter.
  • the transmittance of long wavelength light is 3
  • a nonpass filter is used for the filter 501, as shown in Fig. 8 (b), all of the fluorescence from the sample that becomes a broad emission spectrum is obtained. Must be transmitted, and it is difficult to make it from the viewpoint of cost and technology, resulting in a problem that the measurement sensitivity is reduced.
  • the probe 50 is installed on the side that transmits the filter 501, and the detector 54 is installed on the side that reflects the probe 50.
  • the transmittance (805) of the short-pass filter with respect to the return pump light is more than 120 dB (about 1%), and the pump light returns to the detector 54. There is a problem that there is a risk of incident light.
  • FIG. 9 is a diagram showing a schematic configuration of a microchemical system as a fluorescence-to-heat conversion spectrometer according to the embodiment of the present invention.
  • a microchemical system 100 ′ is a modified example of the microchemical system 100, and functions not only as a fluorescence analyzer but also as a photothermal conversion spectrometer that measures the photothermal conversion signal intensity. Also works as.
  • the configuration of this modification is basically the same as that of the microchemical system 100, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the microchemical system 100 in addition to the configuration of the microchemical system 100, is used instead of the fluorescent analysis chip 20 for the fluorescence analysis in which the metal reflection film 205 is not coated. Use tip 20a.
  • the microchemical system 100 comprises a detection light source 58 for irradiating detection light of wavelength 3 and a light receiving section 54a for receiving output light from the microchemical system chip 20a.
  • an optical multiplexer / demultiplexer 55 for photothermal conversion spectroscopic analysis for photothermal conversion spectroscopic analysis.
  • the optical multiplexer / demultiplexer 55 for photothermal conversion spectroscopy like the optical multiplexer / demultiplexer 56 for fluorescence analysis, has input ends 55 a and 55 b of the third lens and output ends 5 of the fourth lens 5.
  • the dielectric multilayer film constituting the selected wavelength material section provided between these lenses reflects the wavelength 3 of the light source for the detection light incident from the third lens, and the main wavelength of the fluorescence generated from the sample ( For example 2 ⁇ tut 3)
  • a filter that transmits light is preferable because it produces a signal with low noise from weak fluorescence.
  • the optical multiplexer / demultiplexer 55 for photothermal conversion spectroscopy has input terminals 55 a and 55 b at the input terminals 56 c of the optical multiplexer / demultiplexer 56 for fluorescence analysis, and a light source for detection light 58, respectively.
  • the detector 54 is connected to the output terminal 55c on the opposite side by an optical fiber.
  • the main wavelength of the detection light 3 is generally set to be longer than that of the excitation light in order to prevent the sample from emitting fluorescence even when irradiated with the detection light p or forming a thermal lens.
  • the main wavelength 3 of the detection light is set to be longer than the main wavelength of the fluorescence; L 2 .
  • example 3 example the difference between the 2 5 0 nm ⁇ 5 0O nm der go-between, eh!
  • the chromatic aberration in the thermal lens of the fly 3 is in the range of 20 to 20 O nm.
  • the light receiving section 54a includes a wavelength filter 402 for selectively filtering only the detection light and a photoelectric converter 401 for detecting the amount of the detection light filtered by the wavelength filter 402, A converter 401, which is connected to the converter 410 and the modulator 109 and synchronizes the signal from the photoelectric converter 401 with the modulator 109, and a computer 40 which analyzes the signal. 4 Comb 404 is connected to the lock-in amplifier 403. The modulator 109 performs an injection of the detection light at a frequency of 100 Hz or more and 10 kHz or less. This makes it possible to stabilize the amount of light even when there is light and electric noise.
  • the probe 50 is used to detect not only the excitation light from the excitation light source 53 but also the detection light from the detection light source 58 in the sample solution in the flow path 204 inside the fluorescence analysis chip 20a. Light is also collected, but the fluorescence analysis chip 20a reflects metal. Since there is no film 205, the detection light irradiated before and after the formation of the thermal lens passes through the fluorescence analysis chip 20a. On the other hand, when fluorescence is generated from the sample, since the fluorescence is emitted from the sample isotropically, the probe .50 guides the fluorescence to the optical multiplexer / demultiplexer 56 for fluorescence analysis.
  • the light receiving section 54 a is disposed at a position opposite to the probe 50 a with respect to the fluorescence analysis chip 20 a, and is provided with a wavelength filter 4 from excitation light and detection light transmitted through the fluorescence analysis chip 20 a. 02 selectively filters only the detection light, the photoelectric converter 410 detects the amount of the filtered detection light, and transmits the detection signal to the lock-in amplifier 403.
  • the optical multiplexer / demultiplexer 55 for photothermal conversion spectroscopy is connected to the input terminals 55a and 55b with the input end 56c of the optical multiplexer / demultiplexer 56 for fluorescence analysis via an optical fiber with a light source for detection light.
  • the detector 54 is connected to the output terminal 55c on the opposite side by an optical fiber.
  • FIG. 10 is a schematic diagram showing the structure of the fluorescence analysis chip 20 in FIG. 1, (a) is a perspective view of a plate-like member constituting the fluorescence analysis chip 20, and (b) is A cross-sectional view along the A-A plane of the fluorescence analysis chip 20 is shown.
  • the fluorescence analysis chip 20 has a cutting flow of 0.3 ⁇ 0.2 mm wide that is branched into one surface (hereinafter referred to as “joining surface 904”). And a base plate 900 b in which a separation / analysis flow path 92 connected to the cut-out flow path 90 1 and a base plate 900 b were joined.
  • Cover plate 900a The cover-plate 900a has four penetration holes 905 for sample injection / discharge at positions corresponding to the cut-out channel 901 and the separation / analysis channel 902.
  • the separation / analysis channel 902 has an analysis section 906 covered with a metal reflection film 903 made of aluminum, and the main wavelength is 658 nm by the probe 50 described above.
  • the excitation light and the detection light having a main wavelength of nm8 O nm are collected in the analysis section 906.
  • the dominant wavelength example, the dominant wavelength example 2 of the fluorescence excitation light is generated from the sample irradiated in (e 2
  • An optical multiplexer / demultiplexer for fluorescence analysis used in a fluorescence analyzer for analyzing ⁇ ,), the first lens receiving excitation light and fluorescence, and the excitation light and fluorescence transmitted through the first lens.
  • a wavelength selection material section made of a dielectric multilayer film for receiving light and a second lens for receiving the fluorescence transmitted through the wavelength selection material section are provided, so that the light intensity is relatively compared to the fluorescence intensity emitted from the sample. Excitation light with high intensity can be effectively blocked, noise during fluorescence detection can be reduced, and LIF analysis can be easily measured with high sensitivity.
  • the wavelength selection material section Since the dielectric multilayer film is an aperture pass filter whose cutoff wavelength is between the main wavelength and the main wavelength 2 , the wavelength selection material section The transmission loss of the excitation light, which causes noise in fluorescence measurement, can be effectively increased by passing through the light and reaching the fluorescence detector, and at the same time, the sample is reflected by the wavelength selection material and It is possible to secure the amount of excitation light applied to the light source.
  • the optical multiplexer / demultiplexer for fluorescence analysis since the transmittance of light of the main wavelength to the wavelength selection material portion is not more than 130 dB, the number of laminated layers of the dielectric multilayer film Excitation light is transmitted through the optical multiplexer / demultiplexer for fluorescence analysis And excessive child can and reliably prevent child can and this reduce the Le base measurement and detection noisyzure of example 2 effectively.
  • the transmittance of light having the main wavelength 2 generated from the sample to the wavelength selection material section is 13 dB or more.
  • the detection signal intensity of the fluorescence transmitted through the duplexer can be ensured.
  • the first and second lenses each have a refractive index gradient provided with a refractive index gradient such that the refractive index decreases from the center toward the outside. Since it is a cylindrical rod lens, the two end surfaces of the entrance surface and the exit surface are planes perpendicular to the direction of the optical axis, making it easy to assemble the lens and other components. Therefore, it can be easily stored in the cylindrical holder, and the optical axis can be easily aligned.
  • the optical multiplexer / demultiplexer for fluorescence analysis since the first lens, the wavelength selection material section, and the second lens are integrally formed, the optical multiplexer / demultiplexer for fluorescence analysis is Can be bonded to each other to make it compact.
  • a light source for excitation light that emits excitation light having a main wavelength
  • a sample irradiated with excitation light via a probe or an optical connector.
  • With the third optical transmission line connecting the optical multiplexer / demultiplexer the excitation light can be guided to the sample by the second optical transmission line, and the fluorescence from the sample can be guided to the optical multiplexer / demultiplexer.
  • the entire optical module for fluorescence analysis can be reduced in space
  • the optical multiplexer / demultiplexer for fluorescence analysis includes a first lens that receives excitation light and fluorescence, and an excitation light and fluorescence that have passed through the first lens.
  • a wavelength selecting material portion formed of a dielectric multilayer film for receiving light, and an optical axis of the first transmission path is arranged so that an incident angle of the exciting light to the wavelength selecting material portion is approximately 5 degrees or less. Because the lens is offset from the center of the optical axis of the lens, the incident angle of the excitation light is extremely small compared to the conventional optical system that makes the excitation light incident on the wavelength selection material at an incident angle of 45 degrees. Thus, the leakage of transmission of the excitation light mixed with the P wave and the S wave can be reduced.
  • the optical module for fluorescence analysis since the first to third optical transmission lines are all composed of optical fibers, the optical module for fluorescence analysis can be simplified and reduced in size.
  • the probe has the fourth optical transmission path to which another optical connector is connected, and the other optical connector is connected to the optical connector. Since it is configured, a simple optical system can be constructed.
  • the detection sensitivity can be increased.
  • the light modulation mechanism is a lock-in modulation circuit that performs a lock-in of 100 Hz or more and 1 OKHz or less, so that the detection sensitivity is surely improved. Can be raised.
  • the lock-in modulation circuit modulates the light of the excitation light source with a rectangular wave, so that the measurement accuracy can be further increased.
  • the light for excitation light Since the optical isolator is provided between the source and the optical multiplexer / demultiplexer for fluorescence analysis, it is possible to prevent the excitation light from returning to the excitation light source and entering the excitation light.
  • an edge filter that does not transmit light of the main wavelength is provided between the optical multiplexer / demultiplexer for fluorescence analysis and the detector. It is possible to reliably block the light emitted from the detector from entering the detection means.
  • the fluorescence analyzer As described in detail above, according to the fluorescence-to-heat conversion spectrometer of the present invention, the fluorescence analyzer, a light source for detection light that emits detection light of the main wavelength 3 , and excitation light are generated in the sample.
  • Photothermal conversion spectroscopy in which a photoelectric converter that detects the photothermal conversion signal intensity of the detection light transmitted through the thermal lens, another wavelength selection material portion composed of a third lens and a dielectric multilayer film, and a fourth lens are arranged in this order.
  • An optical multiplexer / demultiplexer for analysis and a fifth optical transmission line for connecting the optical multiplexer / demultiplexer for photothermal conversion / spectroscopic analysis to the light source for detection light, and an optical multiplexer / demultiplexer for photothermal conversion / spectroscopic analysis A fluorescence / photothermal conversion spectroscopy device arranged in the middle of the optical transmission line of the optical transmission / decoding device, wherein the optical multiplexer / demultiplexer for photothermal conversion spectroscopy receives the detection light from the light source for detection light with a third lens, Fluorescence transmitted through the wavelength selection material section of Since received by vessel, the pumping light for the light source used in the fluorescence measurement by irradiating a sample, can be measured and fluorescence analysis and photothermal conversion spectroscopic analysis at the same time.
  • the light source for detection light includes the light modulation mechanism, it is possible to prevent the detection light from returning to the light source for detection light.
  • the light modulator is a lock-in modulation circuit that performs a lock-in of 100 kHz or more and 100 kHz or less, so that the light amount can be stabilized even when there is light and electric noise.
  • the excitation light is irradiated through the lens, and the reflection mirror is provided in or near the flow path through which the sample for detecting the output light flows.
  • the above-mentioned output light including the fluorescence reflected by this reflection mirror and collected by the lens is detected via the lens, making it easy to measure LIF analysis with high sensitivity it can.
  • the reflection mirror is connected to the flow path in the flow path. It can be a condenser lens that collects the fluorescent light emitted from the sample, and can measure LIF analysis with higher sensitivity.
  • the reflection mirror collects the fluorescence at the position where the excitation light is collected through the lens, so that the collected fluorescence is focused on the lens. As a result of reliable incidence, more sensitive LIF analysis can be performed.
  • the reflection mirror is a metal film
  • the reflectance can be increased in a wide wavelength range of the visible region, and LIF analysis with higher sensitivity can be performed. Can be.
  • the plate-like member is bonded to the first plate-like member having the groove constituting the flow path and the groove-side surface of the first plate-like member.
  • a lens which is composed of the second plate-shaped member and has a reflection mirror on the back surface of the groove-side surface of the first plate-shaped member, so that the excitation light irradiates the fluorescence emitted from the sample in the flow path.
  • the plate-like member A first plate-like member having a slit to be constituted, and two second plate-like members adhered to both surfaces of the first plate-like member; Since the second plate-shaped member has a reflection mirror between the first plate-shaped member and the one adhered to the back surface of the slit-side surface of the first plate-shaped member, the flow path Fluorescence emitted from the sample inside can be reliably detected through the lens irradiated with the excitation light, so that LIF analysis can be measured with higher sensitivity.
  • the plate-shaped member includes a separation channel for electrophoresis of the sample and a separation channel that intersects with the separation channel. Since the reflection mirror is provided in a region where the fluorescence emitted from the sample is extracted outside in the flow channel, the resolution of the separation vector by electrophoresis can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

明 細 書 蛍光分析用光合分波器、 蛍光分析用光学モジュール、 蛍光分析装置、 蛍光 · 光熱変換分光分析装置、 及び蛍光分析用チップ 技術分野
本発明は、 蛍光分析用光合分波器、 蛍光分析用光学モジュール、 蛍光 分析装置、 蛍光 ·光熱変換分光分析装置、 及び蛍光分析用チップに関し、 特に、 レーザ誘起蛍光分析法及び光熱変換分光分析を実行する蛍光分析 用光合分波器、 蛍光分析用光学モジュール、 蛍光分析装置、 蛍光 · 光熱 変換分光分析装置、 及び蛍光分析用チップに関する。 背景技術
マイクロ化学システムは、 キヤ ビラ リチューブや蛍光分析用チヅプを 用いて微量のサンプルを高感度に検出 · 分析するためのものである。 例 えば、 蛍光分析用チップには、 微量の試料を含む溶液 (試料溶液) が流 れる微細な流路が設けられており、 この流路は、 分岐路や合流路、 さら には蛇行路のような種々の形状のものがある。
上記高感度な検出方法として、 従来よ り光熱変換分光分析やレーザ誘 起蛍光 ( L I F : Laser Induced Fluorescence ) 分析が知られている。 こ の L I F分析は、 レーザにより対象蛍光分子を電子励起させ、 それらが 基底準位に落ちる際に発生する蛍光を測定する方法であり、 エネルギー 準位間の共鳴遷移を利用するため、 その励起の確率は大きく、 極めて高 感度の検出を可能とするものである。
例えば、 従来技術として、 小さなガラス基板等に形成した微細な流路 内を流れる試料に、 その流路底面からレンズを介して励起光を集光照射 することにより、 その試料が発する蛍光を流路側面方向から'検出するも のが開示されている(例えば、特開 2 0 0 2 — 2 1 4 1 9 4号公報参照)。 さらに、上記従来技術におけるマイクロ化学システムの問題点、 即ち、 光源、 測定部や検出部 (光電変換部) の光学系等の構成が複雑であり、 大型で可搬性に欠け、 場所や装置の操作が限定され、 ひいては、 ユーザ の作業効率が悪いという問題を解決する従来技術として、 小さなガラス 基板等の流路内を流れる試料に、 その流路上面からレンズを介して励起 光を集光照射し、 その試料が発する蛍光を上記流路上面のレンズによつ て検出器に導光することにより L I F分析を行う際のマイクロ化学シス テム全体の大きさをコンパク トにしたものが開示されている (例えば、 特開 2 0 0 2 — 1 3 1 2 8 0号公報参照) 。
しかしながら、 上記従来技術では、 励起光をレンズに導光し、 且つレ ンズを介して蛍光を導光するため、 ダイクロイ ツクミラ一を励起光の光 軸から 4 5度に傾けてマイクロ化学システムに配置するため、 P偏光及 び S偏光の波長特性の違いから、反射波長帯と透過波長帯の境が広がり、 試料から出力される光のうち蛍光の以外の光が検出器に入り、 L I F分 析を精度よく行うことができないおそれがあった。
また、 流路内を流れる試料は蛍光を等方的に発するので、 上述のよう な構成で L I F分析を行う場合、 検出器側に発せられた蛍光しか検出で きなかった。 このため、 弱い蛍光を発する物質の分析同定には限界があ つた。
また、 上記 L I F分析と光熱変換分光分析の両方が可能なマイク口化 学システムがないため、 夫々別のシステムをそろえなければならないと いった問題があった。
本発明の目的は、 L I F分析を簡単に高感度で測定でき、 且つ光熱変 換分光分析を同時且つ簡単に測定することができる蛍光分析用光合分波 器、 蛍光分析用光学モジュール、 蛍光分析装置、 蛍光 · 光熱変換分光分 析装置、 及び蛍光分析用チップを提供するこ とにある。 発明の開示
上述の目的を達成するために、 本発明によれば、 主波長え , の励起光 が照射された試料から発生する主波長え 2 の蛍光(え 2 >え を分析する蛍 光分析装置に用いられる蛍光分析用光合分波器であって、 前記励起光及 び前記蛍光を受光する第 1 のレンズと、 前記第 1 のレンズを透過した励 起光及び蛍光を受光する誘電体多層膜から成る波長選択材料部と、 前記 波長選択材料部を透過した蛍光を受光する第 2のレンズとを備える蛍光 分析用光合分波器が提供される。
本発明の蛍光分析用光合分波器によれば、 主波長え , の励起光が照射 された試料から発生する主波長え 2 の蛍光(え 2>え ,) を分析する蛍光分 析装置に用いられる蛍光分析用光合分波器であって、 励起光及び蛍光を 受光する第 1 のレンズと、 この第 1 のレンズを透過した励起光及び蛍光 を受光する誘電体多層膜から成る波長選択材料部と、 この波長選択材料 部を透過した蛍光を受光する第 2のレンズとを備えるので、 試料から発 光する蛍光強度に比較して相対的に光強度が大きい励起光を効果的に阻 止でき、 蛍光の検出の際のノイズを低減することができ、 L I F分析を 簡単に高感度で測定できる。
また、 前記誘電体多層膜は、 カ ッ トオフ波長が前記主波長え, と前記 主波長; L 2の間にある口ングパスフィルタであることが好ま しい。
本実施の形態に係る蛍光分析用光合分波器によれば、誘電体多層膜は、 カヅ トオフ波長が主波長え , と主波長え 2の間にある口ングパスフィル夕 であるので、 波長選択材料部を透過し蛍光用の検出器に到達することに よ り蛍光測定のノィズ原因となる励起光の透過損失を効果的に大き くす るこ とができる と同時に、 波長選択材料部で反射され、 試料に照射され る励起光の光量を確保することができる。
また、 前記波長選択材料部に対する前記主波長; の光の透過率は— 3 0 d B以下であるこ とが好ま しい。
本実施の形態に係る蛍光分析用光合分波器によれば、 波長選択材料部 に対する主波長え , の光の透過率は一 3 0 d B以下であるので、 誘電体 多層膜の膜積層数が少な くても、 蛍光分析用光合分波器内を励起光が透 過するこ とを確実に防止するこ とができ、 え 2 の測定 · 検出ノイズレべ ルを効果的に低下させるこ とができる。
また、 前記波長選択材料部に対する前記試料から発生する前記主波長 え 2の光の透過率は一 3 d B以上であるこ とが好ま しい。
本実施の形態に係る蛍光分析用光合分波器によれば、 波長選択材料部 に対する試料から発生する主波長え 2 の光の透過率は— 3 d B以上であ るので、 蛍光分析用光合分波器内を透過する蛍光の検出信号強度を確保 するこ とができる。
また、 前記第 1及び第 2のレンズは、 夫々中心から外部に向かって屈 折率が低下するように屈折率勾配が設けられた屈折率分布型円柱状ロッ ドレンズであることが好ま しい。
本実施の形態に係る蛍光分析用光合分波器によれば、 第 1及び第 2の レンズは、 夫々中心から外部に向かって屈折率が低下するよう に屈折率 勾配が設けられた屈折率分布型円柱状ロッ ド レンズであるので、 入射面 と出射面の 2端面が光軸方向に直角方向の平面であ り、 レンズの結合等 の組立が容易とするこ とができ、 また円柱状であるため、 シリ ンダー状 保持具に容易に格納でき、 光軸合わせが容易とすることができる。
また、 前記第 1 のレンズ、 前記波長選択材料部、 及び前記第 2のレン ズが一体的に構成されていることが好ま しい。 本実施の形態に係る蛍光分析用光合分波器によれば、 第 1 のレンズ、 波長選択材料部、 及び第 2のレンズが一体的に構成されているので、 蛍 光分析用光合分波器を貼り合わせ構造とする ことができ、 コンパク ト化 できる。
上述の目的を達成するために、 本発明によれば、 主波長え の励起光 を出射する励起光用光源と、 プローブ又は光コネクタを介して前記励起 光が照射された試料から発生する主波長え 2 の蛍光(え 2 >え を合分波す る蛍光分析用光合分波器と、 前記蛍光分析用光合分波器を透過した蛍光 を受光する検出器と、 前記励起光用光源と前記蛍光分析用光合分波器を 接続する第 1 の光伝送路と、 前記プローブ又は前記光コネクタを前記蛍 光分析用光合分波器に接続する第 2の光伝送路と、 前記検出器及び前記 蛍光分析用光合分波器を接続する第 3 の光伝送路とを備える蛍光分析用 光学モジュールが提供される。
本実施の形態に係る蛍光分析用光学モジュールによれば、 主波長え i の励起光を出射する励起光用光源と、 プローブ又は光コネクタを介して 励起光が照射された試料から発生する主波長え 2 の蛍光(え 2 >え を合分 波する蛍光分析用光合分波器と、 蛍光分析用光合分波器を透過した蛍光 を受光する検出器と、 励起光用光源と蛍光分析用光合分波器を接続する 第 1 の光伝送路と、 プローブ又は光コネクタを蛍光分析用光合分波器に 接続する第 2の光伝送路と、 検出器及び蛍光分析用光合分波器を接続す る第 3の光伝送路とを備えるので、 第 2の光伝送路によ り励起光を試料 に導く と共に試料からの蛍光を光合分波器に導く ことができ、 蛍光分析 用光学モジュール全体を小スペース化することができる。
また、 前記蛍光分析用光合分波器は、 前記励起光及び前記蛍光を受光 する第 1 のレンズと、 前記第 1 のレンズを透過した励起光及び蛍光を受 光する誘電体多層膜から成る波長選択材料部とを備え、 前記第 1 の光伝 送路の光軸は、 前記波長選択材料部への前記励起光の入射角度が略 5度 以下となるよう に、 前記第 1 のレンズの光軸中心からオフセヅ ト してい るこ とが好ま しい。
本実施の形態に係る蛍光分析用光学モジュールによれば、 蛍光分析用 光合分波器は、 励起光及び蛍光を受光する第 1 のレンズと、 この第 1 の レンズを透過した励起光及び蛍光を受光する誘電体多層膜から成る波長 選択材料部とを備え、 第 1 の光伝送路の光軸は、 波長選択材料部への励 起光の入射角度が略 5度以下となるよう に、 第 1 のレンズの光軸中心か らオフセ ッ ト しているので、 励起光を波長選択材料部に 4 5度の入射角 度で入射させる従来の光学系に比べて、 励起光の入射角度を極めて小さ くするこ とができ、 p波 s波の混合した励起光に対して透過の漏れを小 さ くすることができる。
また、 前記第 1 〜第 3の光伝送路は、 全て光ファイバ一からなること が好ま しい。
本実施の形態に係る蛍光分析用光学モジュールによれば、 第 1〜第 3 の光伝送路は、 全て光ファイバ一からなるので、 蛍光分析用光学モジュ —ルを簡潔、 小型化することができる。
また、 前記光ファイバがシングルモー ドファイバであることが好ま し い。
また、 前記プローブは他の光コネクタが接続された第 4の光伝送路を 有し、 前記他の光コネクタ一は前記光コネクタに接続されるように構成 されていることが好ま しい。
本実施の形態に係る蛍光分析用光学モジュ一ルによれば、 プローブは 他の光コネクタが接続された第 4の光伝送路を有し、 他の光コネクタ一 は上記光コネクタに接続されるよう に構成されているので、 簡潔な光学 系を構築するこ とができる。 また、 前記励起光用光源は、 光変調機構を備えることが好ましい。 本実施の形態に係る蛍光分析用光学モジュールによれば、 励起光用光 源は、 光変調機構を備えるので、 検出感度を上げることができる。
また、 前記光変調機構は、 1 0 0 H z以上 Ι Ο Κ Η ζ以下のロ ヅクイ ンを行うロ ヅクイン変調回路であることが好ましい。
本実施の形態に係る蛍光分析用光学モジュールによれば、 光変調機構 は、 1 0 0 H z以上 1 O K H z以下のロックインを行うロ ヅクイン変調 回路であるので、 確実に検出感度を上げることができる。
また、 前記ロックイン変調回路は、 前記励起光用光源の光変調を矩形 波で行うことが好ましい。
本実施の形態に係る蛍光分析用光学モジユールによれば、 ロックイ ン 変調回路は、 励起光用光源の光変調を矩形波で行うので、 より測定精度 を上げることができる。
また、 前記励起光用光源と前記蛍光分析用光合分波器の間に光アイソ レーターを設けることが好ましい。
本実施の形態に係る蛍光分析用光学モジュールによれば、 励起光用光 源と蛍光分析用光合分波器の間に光アイソレー夕一を設けたので、 励起 光用光源に戻り励起光が入ることを防止することができる。
また、 前記蛍光分析用光合分波器と前記検出器の間に前記主波長え, の光を透過しないェヅジフィルタを設けることが好ましい。
本実施の形態に係る蛍光分析用光学モジュールによれば、 蛍光分析用 光合分波器と検出器の間に主波長え , の光を透過しないエツジフィルタ を設けたので、 励起光用光源から出射される光が検出手段に入射するの を確実に遮断することができる。
また上記蛍光分析装置は、 上記蛍光分析用光学モジュールと、 前記試 料を流すための流路を有する板状部材を載置する試料台と、 前記試料台 と前記蛍光分析用光学モジュールの少なく とも 1つを相対的に移動させ て位置決めする移動機構とを備えることが好ましい。
上述の目的を達成するために、本発明によれば、上記蛍光分析装置と、 主波長え 3 の検出光を出射する検出光用光源と、 前記励起光により前記 試料中に生じる熱レンズを透過した前記検出光の光熱変換信号強度を検 出する光電変換器と、 第 3 のレンズと誘電多層膜から成る他の波長選択 材料部と第 4のレンズとをこの順に配置した光熱変換分光分析用光合分 波器と、 前記光熱変換分光分析用光合分波器を前記検出光用光源と接続 する第 5の光伝送路とを備えると共に、 光熱変換分光分析用光合分波器 を前記第 3の光伝送路の中間に配置する蛍光 · 光熱変換分光分析装置で あって、 前記光熱変換分光分析用光合分波器は、 前記検出光用光源から の検出光を前記第 3のレンズで受光し、 前記他の波長選択材料部を透過 した蛍光を前記第 4のレンズを経て前記検出器で受光する蛍光 · 光熱変 換分光分析装置が提供される。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 上記蛍光 分析装置と、 主波長え 3の検出光を出射する検出光用光源と、 励起光に より試料中に生じる熱レンズを透過した検出光の光熱変換信号強度を検 出する光電変換器と、 第 3のレンズと誘電多層膜から成る他の波長選択 材料部と第 4のレンズとをこの順に配置した光熱変換分光分析用光合分 波器と、 光熱変換分光分析用光合分波器を検出光用光源と接続する第 5 の光伝送路とを備えると共に、 光熱変換分光分析用光合分波器を第 3の 光伝送路の中間に配置する蛍光 · 光熱変換分光分析装置であって、 光熱 変換分光分析用光合分波器は、 検出光用光源からの検出光を第 3のレン ズで受光し、 他の波長選択材料部を透過した蛍光を第 4のレンズを経て 検出器で受光するので、 蛍光測定に用いられる励起光用光源を試料に照 射することで、 蛍光分析と光熱変換分光分析とを同時に測定することが できる。
また、 前記主波長え 3 は、 え ,< え 2<え 3 という関係を満足するこ とが 好ま しい。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 主波長え 3 は、 え え 2< え 3 という関係を満足するので、 光合分波器による検出 光の分岐制御を確実に行う ことができる。
また、 前記主波長え 3 と前記主波長え 2の差が 5 0 n m〜 5 0 O n mで あって、 前記主波長え,及び前記主波長え 3の前記熱レンズ内での色収差 が夫々 2 0〜 2 0 O n mの範囲であることが好ま しい。
また、 前記検出光用光源は、 光変調機構を備えることが好ま しい。 本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 検出光用 光源は、 光変調機構を備えるので、 検出光用光源に戻り検出光が入るこ とを防止することができる。
また、 前記光変調機構は、 1 0 0 H z以上 Ι Ο Κ Η ζ以下のロックィ ンを行う ロ ヅクイ ン変調回路であるこ とが好ま しい。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 光変調機 構は、 1,0 0 H z以上 1 O K H z以下のロ ヅクイ ンを行う ロ ヅクイ ン変 調回路であるので、 光及び電気ノイズがあっても光量を安定させること ができる。
上述の目的を達成するために、 本発明によれば、 試料を流す流路を有 する板状部材を備える蛍光分析用チップであって、 励起光をレンズを介 して前記流路中の試料に照射する照射手段と、 前記流路中の試料からの 出力光を検出する検出手段とを備えるマイ クロ化学システムに配置され る蛍光分析用チップにおいて、 前記流路又はその近傍に反射ミ ラーを有 し、 前記検出手段は前記反射ミラーによ り反射され、 且つ前記レンズで 集光された蛍光を含む前記出力光を前記レンズを介して検出する蛍光分 析用チップが提供される。
本実施の形態に係る蛍光分析用チツプによれば、 励起光をレンズを介 して照射し、 出力光を検出するための試料を流す流路又はその近傍に反 射ミ ラーを有する板状部材を備え、 この反射ミラーによ り反射され、 且 つレンズで集光された蛍光を含む上述の出力光をレンズを介して検出す るので、 L I F分析を簡単に高感度で測定できる。
また、 前記流路は、 前記励起光入射面が平面であ り、 前記励起光入射 面以外の面が曲面であることが好ま しい。
本実施の形態に係る蛍光分析用チップによれば、 流路は励起光入射面 が平面であ り、 励起光入射面以外の面が曲面であるので、 これに反射ミ ラーを流路中の試料から発光された蛍光を集光するコンデンサレンズと することができ、 L I F分析をよ り高感度で測定できる。
また、 前記反射ミ ラ一は、 前記レンズを介して前記励起光が集光され る位置に前記蛍光を集光することが好ま しい。
本実施の形態に係る蛍光分析用チップによれば、 反射ミラ一は、 レン ズを介して励起光が集光される位置に蛍光を集光するので、 レンズにこ の集光された蛍光が確実に入射する結果、 さ らに高感度の L I F分析を 行う こ とができる。
また、 前記反射ミラーは金属膜であるこ とが好ま しい。
本実施の形態に係る蛍光分析用チップによれば、 反射ミラ一は金属膜 であるので、 可視域の広い波長範囲で反射率を高くすることができ、 さ らに高感度の L I F分析を行う こ とができる。
また、 前記板状部材は、 前記流路を構成する溝を有する第 1 の板状部 材と、 当該第 1 の板状部材の溝側表面に接着された第 2の板状部材とか ら成り、 前記第 1の板状部材の前記溝側表面の裏面に前記反射ミ ラーを 有することが好ま しい。 本実施の形態に係る蛍光分析用チップによれば、 板状部材は、 流路を 構成する溝を有する第 1 の板状部材と、 この第 1 の板状部材の溝側表面 に接着された第 2の板状部材とから成り、 第 1 の板状部材の溝側表面の 裏面に反射ミ ラ一を有するので、 流路中の試料から発光された蛍光を励 起光が照射されるレンズを介して確実に検出することができるので、 L I F分析をよ り高感度で測定できる。
また、 前記板状部材は、 前記流路を構成するス リ ッ ト を有する第 1 の 板状部材と、 当該第 1 の板状部材の両面に接着された 2枚の第 2の板状 部材とから成り、 前記ス リ ッ トの表面及び、 前記第 2の板状部材うち、 前記第 1 の板状部材のス リ ツ ト側表面の裏面に接着されたものと前記第 1 ,の板状部材との間に前記反射ミ ラーを有することが好ま しい。
本実施の形態に係る蛍光分析用チップによれば、 板状部材は、 流路を 構成するス リ ツ トを有する第 1 の板状部材と、 この第 1 の板状部材の両 面に接着された 2枚の第 2の板状部材とから成り、ス リ ッ トの表面及び、 第 2の板状部材うち、 第 1 の板状部材のス リ ッ ト側表面の裏面に接着さ れたものと第 1 の板状部材との間に反射ミラ一を有するので、 流路中の 試料から発光された蛍光を励起光が照射される レンズを介して確実に検 出することができるので、 L I F分析をよ り高感度で測定できる。
また、 前記板状部材は、 前記試料を電気泳動させるための切り分け用 流路と前記切り分け用流路と交差する分離用流路とを備え、 且つ前記分 離用流路において前記試料から発する前記蛍光を外部に取り出す領域に 前記反射ミラ一を備えることが好ま しい。 図面の簡単な説明
図 1 は、 本発明の実施の形態に係る蛍光分析装置と してのマイクロ化 学システムの概略構成を示す図である。 図 2は、 図 1における蛍光分析用チップ 2 0の概略模式図である。 図 3は、 図 1における蛍光分析用チップ 2 0の変形例の概略模式図で ある。
図 4は、 図 1 における蛍光分析用チップ 2 0の変形例の概略模式図で める。
図 5は、 図 1における蛍光分析用光合分波器 5 6の概略断面模式図で ある。
図 6は、 フィルタ 5 0 1の光の透過特性を説明する図であり、 ( a ) はフィルタ 5 0 1へ光が入射するときの模式図を示し、 ( b ) は入射角 度が 4 5度のときの P波及び S波の透過率と波長の関係を示し、 ( c ) は入射角度が 0度のときの P波及び S波の透過率と波長の関係を示す。 図 7は、 励起光及び蛍光のスペク トルとフィルタ 5 0 1の透過特性を 示すグラフある。
図 8は、 フィル夕 5 0 1の透過特性を示す図であり、 ( a ) はロング パスフィルタの場合を示し、 (b ) はパン ドパスフィル夕の場合を示し、 ( c ) はショートパスフィル夕の場合を示す。
図 9は、 本発明の実施の形態に係る蛍光 · 光熱変換分光分析装置とし てのマイク口化学システムの概略構成を示す図である。
図 1 0は、 図 1 における蛍光分析用チップ 2 0の構造を示す概略図で あり、 ( a ) は、 蛍光分析用チップ 2 0を構成する板状部材の斜視図を 示し、 ( b ) は、 蛍光分析用チップ 2 0の A— A面に沿った断面図を示 す。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を用いて詳説する。
図 1は、 本発明の実施の形態に係る蛍光分析装置としてのマイクロ化 学システムの概略構成を示す図である。
図 1 において、 マイ クロ化学システム 1 0 0は、 蛍光分析用光学モジ ユール 1 0 0 a と、 励起光を蛍光分析用チップ 2 ◦ 内部の流路 2 0 4内 の試料溶液に集光するレンズ付き光フアイバ(以下「プロ一ブ」という。) 5 0 と、 蛍光分析用チップ 2 0を載置する試料台 2 1 とを備える。
試料台 2 1 は、 プローブ 5 0 に対し相対的に移動して試料の位置決め する不図示の移動機構を備える。 尚、 本発明の実施の形態では試料台 2 1 が移動機構を備えるものと したが、 試料の位置決めを行う こ とができ ればこれに限定されるものでなく、 プローブ 5 0 も試料台 2 1 に対し相 対的に移動する移動機構を備えてもよい。 - 蛍光分析用光学モジュール 1 0 0 aは、 主波長え! の励起光を出射す る励起光用光源 5 3 と、 励起光をプローブ 5 0 を介して照射するこ とに よ り試料から発生した主波長え 2 の蛍光(え 2> λ 1)を分析する蛍光分析装 置に用いられる蛍光分析用光合分波器 5 6 と、 この蛍光を受光する検出 器 5 4 と、 励起光用光源 5 3及び蛍光分析用光合分波器 5 6 を接続する 光ファイバ 1 0 6 (第 1 の光伝送路) と、 プローブ 5 0及び蛍光分析用 光合分波器 5 6 を接続する光フアイパ 1 0 7 (第 2の光伝送路) と、 検 出器 5 4及び蛍光分析用光合分波器 5 6 を接続する光ファイバ 1 0 8 (第 3の光伝送路) とを備える。 蛍光分析用光学モジュール 1 0 0 aを このような構成とするこ とによ り、 光ファイノ、 * 1 0 7によ り励起光を試 料に導く と共に試料からの蛍光を蛍光分析用光合分波器 5 6 に導く こと ができ、 蛍光分析用光学モジュール 1 0 0 a全体を小スペース化するこ とができる。
光ファイバ 1 0 7は、 蛍光分析用光合分波器 5 6 とは直接接続されて いるが、プローブ 5 0 とはコネクタを介して着脱可能に接続されている。 即ち、 光ファイバ 1 0 7は先端にコネクタ 5 9 aを有しており、 このコ ネクタ 5 9 aがプローブ 5 0の光フアイノ^ ί ΐ 0 3がその先端に有するコ ネク夕 5 9 bと接続するこ とによ り、 プローブ 5 0 と蛍光分析用光合分 波器 5 6 とが接続される。 これによ り、 簡潔な光学系を構築するこ とが できる。
また、 光ファイノ、' 1 0 6は、 出力端 5 2 a側からの入射する光の損失 が 3 O d B以上と大きいアイ ソレータ 5 2を有しても よい。これによ り、 蛍光分析用光合分波器 5 6からの戻り励起光え , が励起光用光源 5 3に 入ることを防止するこ とができる。
また、 光ファイノ、 * 1 0 8は、 え < ぇ2 である波長え, をカ ツ トオフ波長とするェヅジフ ィルタ 5 7を有しても よい。 これによ り、 検 出器 5 4に励起光が入るこ とを確実に防止しつつ流路 2 0 4中の試料の 発する蛍光を導光することができるので、 L I F分析をよ り高感度に測 定できる。
このよう に、 蛍光分析用光学モジュール 1 0 0 aは、 このモジュール を構成する上述の機器間において光を伝送するために光フアイノ^ ϊ 1 0 3 1 0 6 , 1 0 7 , 1 0 8を用いるので、 このモジュ一ルを簡潔、 小型化 することができる。
プロ一ブ 5 0は、 一端をコネクタ 5 9 bと接続するシングルモー ドの 光ファイノ 1 0 3 と、 光ファイバ 1 0 3の他端の先端部を保持するフエ ルール 1 0 4と、 光ファイバ 1 0 3の上記先端部に接続された照射レン ズ 4 0 と、 フエルール 1 0 4と照射レンズ 4 0を固定するチューブ 1 0 5 とから成る。 また、 照射レンズ 4 0は、 ロッ ドレンズから成る。
励起光用光源 5 3は、 ロックィ ン変調回路 1 0 9 と接続されてお り、 このロ ックイ ン変調回路 1 0 9によ り 1 0 0 H z以上 1 O KH z以下の ロ ックイ ンが行われる。 これによ り確実に検出感度を上げるこ とができ る。 また、 ロ ックイ ン変調回路 1 0 9は矩形波で励起光用光源 5 3の光変 調を行う。 これによ り、 よ り測定精度を上げるこ とができる。
尚、 本発明の実施の形態ではロ ヅクイ ン変調回路 1 0 9が用いられて いたが、 検出感度をあげる こ とができる光変調機構であればこれに限定 されるものではない。
また、 図 1 においては蛍光分析用光合分波器 5 6 とプローブ 5 0はコ ネク夕 5 9 a, 5 9 bによ り着脱可能に接続されていたが、 これに限定 されるこ とはな く、 例えば、 蛍光分析用光合分波器 5 6 とプローブ 5 0 とが光ファイバを介して直接接続されていてもよいし、 融着によ り接続 されていてもよい。
図 2は、 図 1 における蛍光分析用チップ 2 0の概略模式図である。 図 2 において、 蛍光分析用チップ 2 0は、 2層に重ねて接着されたガ ラス基板 2 0 1, 2 0 2から成る。 ガラス基板 2 0 2 には混合、 攪拌、 合成、 分離、 抽出、 検出等の際に試料を流す上記流路 2 0 4が形成され ている。
この流路 2 0 4は、エッチングによ り曲面に形成されたものであって、 アルミニウム、 クロム、 ニッケル、 パラジウム等の膜から成る金属反射 膜 2 0 5 によ り被覆されている。 これによ り、 流路 2 0 4中の試料から 発光された蛍光を集光するコンデンサレンズとな り、 高感度の L I F分 析を行う こ とができる。 また、 この蛍光が集光する位置が励起光の焦点 位置となるよう に、 流路 2 0 4の形状及び金属反射膜 2 0 5の被覆を行 う と、 プローブ 5 0 に集光された蛍光が確実に入射し、 さ らに高感度の L I F分析を行う ことができる。
この被覆は具体的には、 ガラス基板 2 0 2の表面のう ち、 流路 2 0 4 が形成された表面 2 0 2 aに真空成膜法又はスパヅ夕 リ ング等でアルミ 二ゥムゃパラジウム等を成膜した後、 フォ ト レジス トを塗布し、 フォ ト マスクを流路 2 0 4上に配置して露光、 現像、 エッチング、 フォ ト レジ ス ト剥離を行う ものである。 これによ り、 流路 2 0 4が微細なものであ つても確実に金属反射膜 2 0 5 を被覆するこ とができる。
また、 蛍光分析用チップ 2 0の材料は耐久性、 耐薬品性の面からガラ スが望ま しく、 さ らに、 細胞等の生体試料、 例えば D N A解析用と して の用途を考慮する と、 耐酸性、 耐アルカ リ性の高いガラス、 具体的には、 ホウ珪酸ガラス、 ソーダライ ムガラス、 アルミ ノホウ珪酸ガラス、 石英 ガラス等が好ま しい。 しかし、 用途を限定するこ とによってプラスチヅ ク等の有機物を用いることができる。
さらに、 ガラス基板 2 0 1 , 2 0 2 同士を接着させる接着剤には、 例 えば、 紫外線硬化型、 熱硬化型、 2液硬化型のアク リル系、 エポキシ系 の有機接着剤、 及び無機接着剤等がある。 また、 熱融着によってガラス 基板 2 0 1 , 2 0 2 同士を融着させてもよい。
また、 金属反射膜 2 0 5 を流路 2 0 4に被覆するのでな く、 ガラス基 板 2 0 2の表面 2 0 2 aの裏側の表面 2 0 2 bに、 流路 2 0 4 に照射さ れガラス基板 2 0 2 を透過した光が全て反射するよう に金属反射膜 2 0 5 を蒸着してもよい (図 3 ) 。 これによ り、 高感度の L I F分析を行う ことができる。
また、 蛍光分析用チヅ プ 2 0 を流路 2 0 4の形状のス リ ッ ト 2 0 4 a を有するガラス基板 2 (ί 3 aを 2枚のガラス基板 2 0 3 b , 2 0 3 cに よ り挟着したものと し、 ス リ ッ ト 2 0 4 a表面に金属反射膜 2 0 5 を蒸 着法等によ り被覆する と共に、 ガラス基板 2 0 3 cの表面のう ちガラス 基板 2 0 3 aと接着する表面とに金属反射膜 2 0 5 を被覆するようにし てもよい (図 4 ) 。 これらの形態によっても同様に高感度の L I F分析 を行う ことができる。
尚、 本発明の実施の形態では、 上述のよう に金属反射膜 2 0 5の被覆 がなされた蛍光分析用チップ 2 0が用いられているが、 検出される蛍光 は微弱になるものの金属反射膜 2 0 5を被覆していない蛍光分析用チッ プ 2 0 aを使用 しても、 L I F分析を行う こ とは可能である。
図 5は、 図 1における蛍光分析用光合分波器 5 6の概略断面模式図で ある。
図 5において、 蛍光分析用光合分波器 5 6は、 その出力端 5 6 a, 5 6 b側から順にロ ヅ ド レンズ 5 0 0 (第 1のレンズ) と、 その上に蒸着 されたフ ィ ル夕 5 0 1 (波長選択材料部 : フ ィルタオンレンズタイ プ) と、 フ ィ ル夕 5 0 1に接着剤によ り固定されたロ ッ ドレンズ 5 0 2 (第 2のレンズ) とを直列に配置したものから成り、 これらは一体的に構成 されている。 これによ り、 蛍光分析用光合分波器 5 6を貼り合わせ構造 とするこ とができ、 コ ンパク ト化できる。 また、 フィルタ 5 0 1をガラ ス基板上に形成し、 このガラス基板をロ ッ ドレンズ 5 0 0 とロ ッ ドレン ズ 5 0 2の間に配置させてもよい。
フィルタ 5 0 1は、 屈折率の低い S i 02等から成る層 ( L ) と屈折 率の高い T i 02, Z r 02, T a 205等から成る層 (H) が多層に積層 された誘電体多層膜であって、 蛍光分析用光合分波器 5 6の出力端 5 6 a, 5 6 bのいずれか一方から入射されるカ ッ トオフ波長え ( λ ,< λ < え 2) よ り短波長の光の透過率は— 3 0 d B以下 ( 0 . 1 %) であつ て、 えよ り長波長の光の透過率は— 3 d B以上 ( 9 7〜5 0 %) である いわゆるロングパスフィ ルタである。 これによ り、 励起光用光源 5 3か ら出射される光が検出器 5 4に入射するのを確実に遮断するこ とができ る。
従って、 出力端 5 6 aから入射される主波長が; である励起光は、 フィルタ 5 0 1 に対する透過率が一 3 O d B以下となるため、 フィルタ 5 0 1で反射して他方の出力端 5 6 bに導光される。 これによ り、 蛍光 分析用光合分波器 5 6 内を励起光が透過することを確実に防止すること ができ、 え 2 の測定 · 検出ノ イ ズレベルを効果的に低下させるこ とがで きる o
一方、 プロ一ブ 5 0 を介して出力端 5 6 bに導光される光は、 上記金 属反射膜 2 0 5 によ り反射された、 上記主波長がえ, の励起光と、 試料 から生じる主波長がえ 2 の蛍光である。 これらの光のうち、 励起光は上 述の励起光用光源 5 3からの励起光と同様にフィ ル夕 5 0 1で反射され て出力端 5 6 aに導光されるが、 蛍光は、 フィルタ 5 0 1 に対する透過 率が一 3 d B以上となるため、 フ ィルタ 5 0 1 を透過して入力端 5 6 c に導光される。 これによ り、 蛍光分析用光合分波器 5 6 内を透過する蛍 光の検出信号強度を確保するこ とができる。 このフィルタ 5 0 1 はフォ ログラフでもよい。
すなわち、 蛍光分析用光合分波器 5 6で用いるフィルタ 5 0 1 を短波 長側をカッ ト し長波長側をパスするロングパスフィルタ とすることによ り、 フィルタ 5 0 1 を透過し検出器 5 4に到達することによ り蛍光測定 のノイズ原因となる励起光の透過損失を効果的に大き く するこ とができ ると同時に、 フ ィルタ 5 0 1で反射され、 試料に照射される励起光の光 量を確保するこ とができる。
ロ ッ ドレンズ 5 0 0, 5 0 2は、 中心から外部に向かって屈折率が低 下するよう に屈折率勾配が設けられた屈折率分布型円柱状ロッ ドレンズ である。 これによ り、 入射面と出射面の 2端面が光軸方向に直角方向の 平面であ り、 レンズの結合等の組立が容易にできる。 また、 ロ ヅ ド レン ズ 5 0 0, 5 0 2は、 円柱状であるため、 シ リ ンダー状保持具に容易に 格納でき、 光軸合わせが容易とすることができる。
上記構成を蛍光分析用光合分波器 5 6が備えるこ とによ り、 励起光が 検出手段に入り、 検出のノ イズの原因となるのを効果的に防止じて、 蛍 光を検出手段に導光することができる。
また、 図 6に示すよう に、 フィルタ 5 0 1は、 導光される光の入射角 Θ (図 6 ( a ) ) が大きいほど、 自然光を構成する P波と S波のカッ ト オフ波長近傍の透過率に差がでるため (図 6 (b ) , 図 6 ( c ) ) 、 自 然光の反射波長帯と透過波長帯の境が広がる という特性があるが、 図 5 に示すよう に出力端 5 6 a, 5 6 bから導光される光の入射角は略 5度 以下となるよう に構成されているため、 P波 S波の混合した励起光に対 して透過の漏れを小さ くすることができる。 すなわち、 試料から発光す る蛍光強度に比較して相対的に光強度が大きい励起光がフィ ルタ 5 0 1 を透過するのを効果的に阻止でき、 蛍光の検出の際のノ イズを低減する こ とができる。
特に、 図 7に示すよう に、. 励起光の主波長え, と蛍光の主波長え 2の間 の波長域が狭い場合に励起光を確実にカツ トすることができ蛍光検出特 性を確実に上げることができる。
このよう に、 フ ィルタ 5 0 1はロングパスフィルタを用いるのが最も 望ま しい。 以下その理由と して、 他の波長選択フィルタをフィルタ 5 0 1に使用した場合に生じる問題を説明する。
波長選択フィルタは、 上述のロ ングパスフィル夕の他、 図 8に示すよ うに、 一定の波長帯の光のみを透過するパン ドバスフィ ルタや、 ロング パスフィルタ とは逆にカツ トオフ.波長えよ り長波長の光の透過率が— 3
0 d B 5 O d Bであって、 えよ り短波長の光の透過率は一 3 d B以 上 ( 9 7〜5 0 %) であるショー トバスフィルタが知られている。
ここで、 ノ ン ドパス フ ィルタ をフ ィ ルタ 5 0 1 に使用する と、 図 8 ( b ) に示すよう に、 ブロー ドな発光スペク トルとなる試料からの蛍光 7 0 2.のすベてを透過しな くてはならず、 コス ト面、 技術面からその作 成は困難である結果、 測定感度が落ちる という問題がある。 一方、 ショートパスフィルタを使用すると、 フィルタ 5 0 1 を透過す る側にプロ一ブ 5 0を設置し、 プローブ 5 0を反射する側に検出器 5 4 を設置するという構成となるが、 図 8 ( c ) に示すように、 戻り励起光 に対するショートパスフ ィ ル夕の透過率 ( 8 0 5 ) は一 2 0 d B (約 1 % ) 以上もあり、 検出器 5 4へ戻り励起光が入射するおそれがあると いう問題がある。
次に、 本発明の実施の形態に係る蛍光 · 光熱変換分光分析装置につい て説明する。
図 9は、 本発明の実施の形態に係る蛍光 · 光熱変換分光分析装置とし てのマイクロ化学システムの概略構成を示す図である。
図 9 において、 マイ クロ化学システム 1 0 0 ' は、 マイ クロ化学シス テム 1 0 0の変形例であり、 蛍光分析装置として機能するだけでなく、 光熱変換信号強度を測定する光熱変換分光分析装置としても機能する。 また、 本変形例の構成ほ基本的にマイクロ化学システム 1 0 0 と同様で あるため、 同一の構成には同一の符号を付して説明を省略する。
図 9において、 マイクロ化学システム 1 0 0, は、 マイクロ化学シス テム 1 0 0の有する構成の他、 蛍光分析用チップ 2 0の代わりに金属反 射膜 2 0 5が被覆されていない蛍光分析用チップ 2 0 aを使用する。 ま た、 マイクロ化学システム 1 0 0, は、 波長え 3 の検出光を照射する検 出光用光源 5 8 と、 マイクロ化学システム用チップ 2 0 aからの出力光 を受光する受光部 5 4 aと、 光熱変換分光分析用光合分波器 5 5 とを備 える。 また、 光熱変換分光分析用光合分波器 5 5は、 蛍光分析用光合分 波器 5 6 と同様に第 3のレンズの入力端 5 5 a , 5 5 bと第 4のレンズ の出力端 5 5 c とを有する。 これらのレンズの間に設けられた選択波長 材料部を構成する誘電体多層膜は、 第 3のレンズから入射した検出光用 光源の波長え 3 を反射し、 試料から発生した蛍光の主波長 (え 2 <ぇ3) を透過するフィルタ (ショー トパスフィルタ) が、 微弱な蛍光からノィ ズの少ない信号を得るので好ま しい。
さ らに、 光熱変換分光分析用光合分波器 5 5は、 入力端 5 5 a, 5 5 bに各々蛍光分析用光合分波器 5 6の入力端 5 6 c、 検出光用光源 5 8 に光ファイバによ り接続され、 その反対側の出力端 5 5 cに検出器 5 4 が光ファイバによ り接続される。
ここで、 検出光の主波長え 3 は、 試料が検出光 p照射によっても蛍光 を発した り、 熱レンズを形成した りすることを防ぐため、 一般に励起光 の主波長え , よ り長波長に設定されるが、 本発明の実施の形態において はさらに、 検出光の主波長え 3は、 蛍光の主波長; L2 よ り長波長となるよ うに設定する。 具体的には、 え 3 とえ 2の差が 5 0 nm〜 5 0O nmであ つて、 え! とえ 3の熱レンズ内での色収差が 2 0〜 2 0 O nmの範囲とす る。 これによ り、 蛍光分析用光合分波器 5 6による検出光の分岐制御を 確実に行う ことができる。
受光部 5 4 aは、 検出光のみを選択的に濾波する波長フィルタ 4 0 2 及び波長フィル夕 4 0 2によ り濾波された検出光の光量を検出する光電 変換器 4 0 1 と、 光電変換器 4 0 1 と変調器 1 0 9に接続され、 光電変 換器 4 0 1からの信号を変調器 1 0 9 と同期させるロ ヅクイ ンアンプ 4 0 3 と、 この信号を解析するコンピュータ 4 0 4 とから成る。 コンビュ —夕 4 0 4は、 ロ ヅクイ ンアンプ 4 0 3に接続されている。 この変調器 1 0 9は、検出光を 1 0 0 H z以上 1 0 K H z以下の口 ヅクイ ンを行う。 これによ り、 光及び電気ノイズがあっても光量を安定させるこ とができ る。
また、 プローブ 5 0は、 蛍光分析用チヅプ 2 0 a内部の流路 2 0 4内 の試料溶液に励起光用光源 5 3からの励起光だけでな く、 検出光用光源 5 8からの検出光も集光するが、 蛍光分析用チップ 2 0 aには金属反射 膜 2 0 5がないため、 熱レンズ形成前後で照射される検出光は蛍光分析 用チップ 2 0 a内を透過する。 一方、 試料から蛍光が発生する場合、 蛍 光は等方的に試料から発するものであるため、 プローブ.5 0は、 蛍光を 蛍光分析用光合分波器 5 6に導光する。
受光部 5 4 aは、 蛍光分析用チヅプ 2 0 aに対してプローブ 5 0 と反 対側の位置に配され、 蛍光分析用チップ 2 0 a内を透過する励起光及び 検出光から波長フィルタ 4 0 2により検出光のみを選択的に濾波し、 光 電変換器 4 0 1によりこの濾波された検出光の光量を検出し、 その検出 信号をロックインアンプ 4 0 3に送信する。
光熱変換分光分析用光合分波器 5 5は、 入力端 5 5 a, 5 5 bに蛍光 分析用光合分波器 5 6の入力端 5 6 c と検出光用光源付光ファイバによ り接続され、 その反対側の出力端 5 5 cに検出器 5 4が光ファイバによ り接続される。
次に、 図 1 のマイク口化学システム 1 0 0を用いた電気泳動による分 離スペク トルの測定装置について説明する。
図 1 0は、 図 1における蛍光分析用チップ 2 0の構造を示す概略図で あり、 ( a ) は、 蛍光分析用チップ 2 0を構成する板状部材の斜視図を 示し、 (b ) は、 蛍光分析用チヅプ 2 0の A— A面に沿つ.た断面図を示 す。
図 1 0において、 蛍光分析用チップ 2 0は、 一方の面 (以下、 「接合 面 9 0 4」 という。 ) に三又に分岐した 0 . 3 ± 0 . 2 m m幅の切り出 し用流路 9 0 1 と、 切り出し用流路 9 0 1に接続する分離分析用流路 9 0 2が形成されたベースプレート 9 0 0 bと、 ベースプレート 9 0 0 b の接合面 9 0 4に接合されたカバ一プレート 9 0 0 aとを備える。 カバ —プレート 9 0 0 aは、 切り出し用流路 9 0 1及び分離分析用流路 9 0 2の対応位置に試料注入 ·排出用の貫通六 9 0 5を 4つ有する。 分離分析用流路 9 0 2は、 アルミニウムから成る金属反射膜 9 0 3が 被覆されている分析部 9 0 6 を有し、 上述のプロ一ブ 5 0 によ り主波長 が 6 5 8 n mの励起光と、 主波長が Ί 8 O n mの検出光とがこの分析部 9 0 6内に集光される。
このようなチヅプ構成とするこ とによ り、 電気泳動による分離スぺク トルの分解能を向上させるこ とができる。 産業上の利用可能性
以上詳細に説明したとお り、本発明の蛍光分析用光合分波器によれば、 主波長え, の励起光が照射された試料から発生する主波長え 2 の蛍光(え 2
> λ , ) を分析する蛍光分析装置に用い られる蛍光分析用光合分波器で あって、 励起光及び蛍光を受光する第 1 のレンズと、 この第 1 のレンズ を透過した励起光及び蛍光を受光する誘電体多層膜から成る波長選択材 料部と、 この波長選択材料部を透過した蛍光を受光する第 2のレンズと を備えるので、 試料から発光する蛍光強度に比較して相対的に光強度が 大きい励起光を効果的に阻止でき、 蛍光の検出の際のノイズを低減する ことができ、 L I F分析を簡単に高感度で測定できる。
本実施の形態に係る蛍光分析用光合分波器によれば、誘電体多層膜は、 カッ トオフ波長が主波長 と主波長え 2の間にある口ングパスフィルタ であるので、 波長選択材料部を透過し蛍光用の検出器に到達することに よ り蛍光測定のノイズ原因となる励起光の透過損失を効果的に大き くす るこ とができる と同時に、 波長選択材料部で反射され、 試料に照射され る励起光の光量を確保することができる。
本実施の形態に係る蛍光分析用光合分波器によれば、 波長選択材料部 に対する主波長え , の光の透過率は一 3 0 d B以下であるので、 誘電体 多層膜の膜積層数が少な くても、 蛍光分析用光合分波器内を励起光が透 過するこ とを確実に防止するこ とができ、 え 2 の測定 · 検出ノイズレべ ルを効果的に低下させるこ とができる。
本実施の形態に係る蛍光分析用光合分波器によれば、 波長選択材料部 に対する試料から発生する主波長え 2 の光の透過率は一 3 d B以上であ るので、 蛍光分析用光合分波器内を透過する蛍光の検出信号強度を確保 することができる。
本実施の形態に係る蛍光分析用光合分波器によれば、 第 1及び第 2の レンズは、 夫々中心から外部に向かって屈折率が低下するよう に屈折率 勾配が設けられた屈折率分布型円柱状ロ ッ ド レンズであるので、 入射面 と出射面の 2端面が光軸方向に直角方向の平面であ り、 レンズの結合等 の組立が容易とするこ とができ、 また円柱状であるため、 シリ ンダー状 保持具に容易に格納でき、 光軸合わせが容易とすることができる。
本実施の形態に係る蛍光分析用光合分波器によれば、 第 1のレンズ、 波長選択材料部、 及び第 2 のレンズが一体的に構成されているので、 蛍 光分析用光合分波器を貼り合わせ構造とする こ とができ、 コンパク ト化 できる。
以上詳細に説明したとお り、 本発明蛍光分析用光学モジュールによれ ば、 主波長え , の励起光を出射する励起光用光源と、 プローブ又は光コ ネクタを介して励起光が照射された試料から発生する主波長え 2 の蛍光 (え 2 >え Jを合分波する蛍光分析用光合分波器と、 蛍光分析用光合分波 器を透過した蛍光を受光する検出器と、 励起光用光源と蛍光分析用光合 分波器を接続する第 1 の光伝送路と、 プローブ又は光コネクタを蛍光分 析用光合分波器に接続する第 2の光伝送路と、 検出器及び蛍光分析用光 合分波器を接続する第 3の光伝送路とを備えるので、 第 2の光伝送路に よ り励起光を試料に導く と共に試料からの蛍光を光合分波器に導く こと ができ、 蛍光分析用光学モジュール全体を小スペース化するこ とができ る。
本実施の形態に係る蛍光分析用光学モジュールによれば、 蛍光分析用 光合分波器は、 励起光及び蛍光を受光する第 1 のレンズと、 この第 1 の レンズを透過した励起光及び蛍光を受光する誘電体多層膜から成る波長 選択材料部とを備え、 第 1 の 伝送路の光軸は、 波長選択材料部への励 起光の入射角度が略 5度以下となるよう に、 第 1 のレンズの光軸中心か らオフセッ ト しているので、 励起光を波長選択材料部に 4 5度の入射角 度で入射させる従来の光学系に比べて、 励起光の入射角度を極めて小さ くするこ とができ、 P波 S波の混合した励起光に対して透過の漏れを小 さ くすることができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 第 1〜第 3 の光伝送路は、 全て光フアイパーからなるので、 蛍光分析用光学モジュ —ルを簡潔、 小型化することができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 プローブは 他の光コネクタが接続された第 4の光伝送路を有し、 他の光コネクタ一 は上記光コネクタに接続されるように構成されているので、 簡潔な光学 系を構築することができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 励起光用光 源は、 光変調機構を備えるので、 検出感度を上げるこ とができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 光変調機構 は、 1 0 0 H z以上 1 O K H z以下のロ ックイ ンを行う ロ ヅクイ ン変調 回路であるので、 確実に検出感度を上げることができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 ロ ックイ ン 変調回路は、 励起光用光源の光変調を矩形波で行うので、 よ り測定精度 を上げることができる。
本実施の形態に係る蛍光分析用光学モジュールによれば、 励起光用光 源と蛍光分析用光合分波器の間に光アイソレータ一を設けたので、 励起 光用光源に戻り励起光が入ることを防止することができる。
本実施の形態に係る蛍光分析用光学モジユールによれば、 蛍光分析用 光合分波器と検出器の間に主波長え , の光を透過しないエッジフ ィル夕 を設けたので、 励起光用光源から出射される光が検出手段に入射するの を確実に遮断することができる。
以上詳細に説明したとおり、 本発明の蛍光 · 光熱変換分光分析装置に よれば、 上記蛍光分析装置と、 主波長え 3 の検出光を出射する検出光用 光源と、 励起光により試料中に生じる熱レンズを透過した検出光の光熱 変換信号強度を検出する光電変換器と、 第 3のレンズと誘電多層膜から 成る他の波長選択材料部と第 4のレンズとをこの順に配置した光熱変換 分光分析用光合分波器と、 光熱変換分光分析用光合分波器を検出光用光 源と接続する第 5の光伝送路とを備えると共に、 光熱変換分光分析用光 合分波器を第 3の光伝送路の中間に配置する蛍光 , 光熱変換分光分析装 置であって、 光熱変換分光分析用光合分波器は、 検出光用光源からの検 出光を第 3のレンズで受光し、 他の波長選択材料部を透過した蛍光を第 4のレンズを絰て検出器で受光するので、 蛍光測定に用いられる励起光 用光源を試料に照射することで、 蛍光分析と光熱変換分光分析とを同時 に測定することができる。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 主波長え
3は、 え え 2くえ 3 という関係を満足するので、 光合分波器による検出 光の分岐制御を確実に行うことができる。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 検出光用 光源は、 光変調機構を備えるので、 検出光用光源に戻り検出光が入るこ とを防止することができる。
本実施の形態に係る蛍光 · 光熱変換分光分析装置によれば、 光変調機 構は、 1 0 0 H z以上 1 0 K H z以下のロ ヅ クイ ンを行う ロ ヅクイ ン変 調回路であるので、 光及び電気ノイズがあっても光量を安定させるこ と ができる。
以上詳細に説明したとおり、 本発明の蛍光分析用チップによれば、 励 起光をレンズを介して照射し、 出力光を検出するための試料を流す流路 又はその近傍に反射ミ ラ一を有する板状部材を備え、 この反射ミ ラーに よ り反射され、 且つレンズで集光された蛍光を含む上述の出力光をレン ズを介して検出するので、 L I F分析を簡単に高感度で測定できる。 本実施の形態に係る蛍光分析用チップによれば、 流路は励起光入射面 が平面であ り、 励起光入射面以外の面が曲面であるので、 これに反射ミ ラーを流路中の試料から発光された蛍光を集光するコンデンサレンズと することができ、 L I F分析をよ り高感度で測定できる。
本実施の形態に係る蛍光分析用チップによれば、 反射ミ ラーは、 レン ズを介して励起光が集光される位置に蛍光を集光するので、 レンズにこ の集光された蛍光が確実に入射する結果、 さ らに高感度の L I F分析を 行う ことができる。
本実施の形態に係る蛍光分析用チップによれば、 反射ミラーは金属膜 であるので、 可視域の広い波長範囲で反射率を高く することができ、 さ らに高感度の L I F分析を行う ことができる。
本実施の形態に係る蛍光分析用チップによれば、 板状部材は、 流路を 構成する溝を有する第 1 の板状部材と、 この第 1 の板状部材の溝側表面 に接着された第 2の板状部材とから成り、 第 1 の板状部材の溝側表面の 裏面に反射ミ ラ一を有するので、 流路中の試料から発光された蛍光を励 起光が照射されるレンズを介して確実に検出することができるので、 L I F分析をよ り高感度で測定できる。
本実施の形態に係る蛍光分析用チップによれば、 板状部材は、 流路を 構成するス リ ッ トを有する第 1 の板状部材と、 この第 1 の板状部材の両 面に接着された 2枚の第 2の板状部材とから成り、ス リ ッ トの表面及び、 第 2の板状部材うち、 第 1 の板状部材のス リ ッ ト側表面の裏面に接着さ れたものと第 1 の板状部材との間に反射ミラ一を有するので、 流路中の 試料から発光された蛍光を励起光が照射される レンズを介して確実に検 出するこ とができるので、 L I F分析をよ り高感度で測定できる。
本実施の形態に係る蛍光分析用チップによれば、 板状部材は、 試料を 電気泳動させるための切り分け用流路とこの切り分け用流路と交差する 分離用流路とを備え、 且つ分離用流路において試料から発する蛍光を外 部に取り 出す領域に反射ミ ラ一を備えるので、 電気泳動による分離スぺ ク トルの分解能を向上させることができる。

Claims

請 求 の 範 囲
1 . 主波長え, の励起光が照射された試料から発生する主波長え 2の蛍 光(え 2 >え J を分析する蛍光分析装置に用いられる蛍光分析用光合分 波器であって、
前記励起光及び前記蛍光を受光する第 1 のレンズと、 前記第 1 のレン ズを透過した励起光及び蛍光を受光する誘電体多層膜から成る波長選択 材料部と、 前記波長選択材料部を透過した蛍光を受光する第 2のレンズ とを備えることを特徴とする蛍光分析用光合分波器。
2 . 前記誘電体多層膜は、 カッ トオフ波長が前記主波長 λ i と前記主 波長え 2の間にあるロングパスフィルタであることを特徴とする請求項 1記載の蛍光分析用光合分波器。
3 . 前記波長選択材料部に対する前記主波長人, の光の透過率は一 3 O d B以下であることを特徴とする請求項 1記載の蛍光分析用光合分波 器。
4 . 前記波長選択材料部に対する前記試料から発生する前記主波長え 2の光の透過率は一 3 d B以上であることを特徴とする請求項 1記載の 蛍光分析用光合分波器。
5 . 前記第 1及び第 2のレンズは、 夫々中心から外部に向かって屈折 率が低下するように屈折率勾配が設けられた屈折率分布型円柱状ロッ ド レンズであることを特徴とする請求項 1記載の蛍光分析用光合分波器。
6 . 前記第 1のレンズ、 前記波長選択材料部、 及び前記第 2のレンズ がー体的に構成されていることを特徴とする請求項 1記載の蛍光分析用 光合分波器。
7 . 主波長え ,の励起光を出射する励起光用光源と、
プローブ又は光コネクタを介して前記励起光が照射された試料から発 生する主波長え 2の蛍光(λ 2>え を合分波する蛍光分析用光合分波器と、 前記蛍光分析用光合分波器を透過した蛍光を受光する検出器と、 前記励起光用光源と前記蛍光分析用光合分波器を接続する第 1 の光伝 送路と、
前記プローブ又は前記光コネクタを前記蛍光分析用光合分波器に接続 する第 2の光伝送路と、
前記検出器及び前記蛍光分析用光合分波器を接続する第 3の光伝送路 とを備えることを特徴とする蛍光分析用光学モジュール。
8 . 前記蛍光分析用光合分波器は、 前記励起光及び前記蛍光を受光す る第 1のレンズと、 前記第 1のレンズを透過した励起光及び蛍光を受光 する誘電体多層膜から成る波長選択材料部とを備え、
前記第 1の光伝送路の光軸は、 前記波長選択材料部への前記励起光の 入射角度が略 5度以下となるように、 前記第 1 のレンズの光軸中心から オフセッ ト していることを特徴とする請求項 7記載の蛍光分析用光学モ ジュール。
9 . 前記第 1〜第 3の光伝送路は、 全て光ファイバ一からなることを 特徴とする請求項 7記載の蛍光分析用光学モジュール。
1 0 . 前記光フアイパがシングルモー ドフアイパであるこ とを特徴と する請求項 9記載の蛍光分析用光学モジュール。
1 1 . 前記プローブは他の光コネクタが接続された第 4の光伝送路を 有し、 前記他の光コネクタ一は前記光コネクタに接続されるように構成 されていることを特徴とする請求項 7記載の蛍光分析用光学モジュール。
1 2 . 前記励起光用光源は、 光変調機構を備えることを特徴とする請 求項 7記載の蛍光分析用光学モジュール。
1 3 . 前記光変調機構は、 1 0 0 H z以上 1 0 K H z以下の口ヅクイ ンを行うロックイン変調回路であることを特徴とする請求項 1 2記載の 蛍光分析用光学モジュール。
1 4 . 前記ロックイ ン変調回路は、 前記励起光用光源の光変調を矩形 波で行うことを特徴とする請求項 1 3記載の蛍光分析用光学モジュール。
1 5 . 前記励起光用光源と前記蛍光分析用光合分波器の間に光アイソ レーターを設けることを特徴とする請求項 7記載の蛍光分析用光学モジ ユール。
1 6 . 前記蛍光分析用光合分波器と前記検出器の間に前記主波長え, の光を透過しないエツジフィルタを設けることを特徴とする請求項 1 5 記載の蛍光分析用光学モジュール。
1 7 . 請求項 7記載の蛍光分析用光学モジュールと、
前記試料を流すための流路を有する板状部材を載置する試料台と、 前記試料台と前記蛍光分析用光学モジュールの少なく とも 1つを相対 的に移動させて位置決めする移動機構とを備えることを特徴とする蛍光 分析装置。
1 8 . 請求項 1 7記載の蛍光分析装置と、
主波長え 3の検出光を出射する検出光用光源と、
前記励起光により前記試料中に生じる熱レンズを透過した前記検出光 の光熱変換信号強度を検出する光電変換器と、
第 3のレンズと誘電多層膜から成る他の波長選択材料部と第 4のレン ズとをこの順に配置した光熱変換分光分析用光合分波器と、
前記光熱変換分光分析用光合分波器を前記検出光用光源と接続する第 5の光伝送路とを備えると共に、
光熱変換分光分析用光合分波器を前記第 3の光伝送路の中間に配置す る蛍光 · 光熱変換分光分析装置であって、
前記光熱変換分光分析用光合分波器は、 前記検出光用光源からの検出 光を前記第 3のレンズで受光し、 前記他の波長選択材料部を透過した蛍光を前記第 4のレンズを経て前 記検出器で受光することを特徴とする蛍光 · 光熱変換分光分析装置。
1 9 . 前記主波長え 3は、 え え 2 <ぇ3 という関係を満足することを 特徴とする請求項 1 8記載の蛍光 · 光熱変換分光分析装置。
2 0 . 前記主波長ぇ3と前記主波長え 2の差が 5 0 η π!〜 5 0 0 n mで あって、 前記主波長え ,及び前記主波長え 3の前記熱レンズ内での色収差 が夫々 2 0〜2 0 O n mの範囲であることを特徴とする請求項 1 9記載 の蛍光 · 光熱変換分光分析装置。
2 1 . 前記検出光用光源は、 光変調機構を備えることを特徴とする請 求項 1 8記載の蛍光 · 光熱変換分光分析装置。
2 2 . 前記光変調機構は、 1 0 0 H z以上 1 0 K H z以下のロヅクイ ンを行うロックイン変調回路であることを特徴とする請求項 2 1記載の 蛍光 · 光熱変換分光分析装置。
2 3 . 試料を流す流路を有する板状部材を備 る蛍光分析用チッブで あって、 所定波長を有する励起光をレンズを介して前記流路中の試料に 照射する照射手段と、 前記流路中の試料からの出力光を検出する検出手 段とを備えるマイクロ化学システムに配置される蛍光分析用チップにお いて、
前記流路又はその近傍に反射ミラ一を有し、 前記検出手段は前記反射 ミラーにより反射され、 且つ前記レンズで集光された蛍光を含む前記出 力光を前記レンズを介して検出することを特徴とする蛍光分析用チップ。
2 4 . 前記流路は、 前記励起光入射面が平面であり、 前記励起光入射 面以外の面が曲面であることを特徴とする請求項 2 3記載の蛍光分析用 チヅブ。
2 5 . 前記反射ミラ一は、 前記レンズを介して前記励起光が集光され る位置に前記蛍光を集光することを特徴とする請求項 2 4記載の蛍光分 析用チップ。
2 6 . 前記反射ミラ一は金属膜であることを特徴とする請求項 2 3記 載の蛍光分析用チップ。
2 7 . 前記板状部材は、 前記流路を構成する溝を有する第 1の板状部 材と、 当該第 1の板状部材の溝側表面に接着された第 2の板状部材 か ら成り、 前記第 1の板状部材の前記溝側表面の裏面に前記反射ミラーを 有することを特徴とする請求項 2 3記載の蛍光分析用チップ。
2 8 . 前記板状部材は、 前記流路を構成するスリ ッ トを有する第 1の 板状部材と、 当該第 1の板状部材の両面に接着された 2枚の第 2の板状 部材とから成り、 前記スリ ッ トの表面及び、 前記第 2の板状部材ぅち、 前記第 1の板状部材のスリ ッ ト側表面の裏面に接着されたものと前記第
1の板状部材との間に前記反射ミラーを有することを特徴とする請求項
2 3記載の蛍光分析用チップ。
2 9 . 前記板状部材は、 前記試料を電気泳動させるための切り分け用 流路と前記切り分け用流路と交差する分離用流路とを備え、 且つ前記分 離用流路において前記試料から発する前記蛍光を外部に取り出す領域に 前記反射ミラーを備えることを特徴とする請求項 2 3記載の蛍光分析用 チップ。
PCT/JP2004/009582 2003-07-09 2004-06-30 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ WO2005005967A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002531791A CA2531791A1 (en) 2003-07-09 2004-06-30 Fluorometric analysis-use optical multiplexer/demultiplexer, fluorometric analysis-use optical module, fluorometric analyzer, fluorescence/photothermal conversion spectral analyzer, and fluorometric analysis-use chip
EP04747051A EP1647821A1 (en) 2003-07-09 2004-06-30 Fluorometric analysis-use optical multiplexer/demultiplexer, fluorometric analysis-use optical module, fluorometric analyzer, fluorescence/photothermal conversion spectral analyzer, and fluorometric analysis-use chip
US11/329,456 US7304734B2 (en) 2003-07-09 2006-01-09 Fluorescence analysis optical multiplexer/demultiplexer, fluorescence analysis optical module, fluorescence analyzer, fluorescence/photothermal conversion spectroscopic analyzer, and fluorescence analysis chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003194408A JP3934090B2 (ja) 2003-07-09 2003-07-09 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、及び蛍光・光熱変換分光分析装置
JP2003-194408 2003-07-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/329,456 Continuation US7304734B2 (en) 2003-07-09 2006-01-09 Fluorescence analysis optical multiplexer/demultiplexer, fluorescence analysis optical module, fluorescence analyzer, fluorescence/photothermal conversion spectroscopic analyzer, and fluorescence analysis chip

Publications (1)

Publication Number Publication Date
WO2005005967A1 true WO2005005967A1 (ja) 2005-01-20

Family

ID=34055662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009582 WO2005005967A1 (ja) 2003-07-09 2004-06-30 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、蛍光・光熱変換分光分析装置、及び蛍光分析用チップ

Country Status (7)

Country Link
US (1) US7304734B2 (ja)
EP (1) EP1647821A1 (ja)
JP (1) JP3934090B2 (ja)
CN (1) CN1820192A (ja)
CA (1) CA2531791A1 (ja)
RU (1) RU2006100431A (ja)
WO (1) WO2005005967A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824224B2 (ja) * 2002-09-27 2006-09-20 日本板硝子株式会社 マイクロ化学システム
US8063384B2 (en) 2006-11-28 2011-11-22 Nippon Sheet Glass Company, Limited Detection system and probe therefor
US8110816B2 (en) 2007-02-28 2012-02-07 Nippon Sheet Glass Company, Limited Fluorescence detection system
US20100060998A1 (en) * 2007-03-26 2010-03-11 Kanji Sekihara Microchip
JP5297887B2 (ja) 2009-05-19 2013-09-25 日本板硝子株式会社 蛍光分析用光分波検出器及び蛍光検出システム
JP2011038922A (ja) * 2009-08-12 2011-02-24 Sony Corp 光検出用チップおよび該光検出用チップを用いた光検出装置
DE102010001714A1 (de) * 2010-02-09 2011-08-11 Robert Bosch GmbH, 70469 Vorrichtung und Verfahren zur optischen Parallelanalyse einer Probenanordnung und entsprechendes Herstellungsverfahren
WO2011123092A1 (en) * 2010-03-29 2011-10-06 Analogic Corporation Optical detection system and/or method
EP2732263A1 (en) * 2011-07-13 2014-05-21 Universität Leipzig Twin-focus photothermal correlation spectroscopy method and device for the characterization of dynamical processes in liquids and biomaterials with the help of absorbing markers
JP6082273B2 (ja) 2013-02-25 2017-02-15 日本板硝子株式会社 蛍光検出装置
JP2016114532A (ja) * 2014-12-17 2016-06-23 株式会社日立製作所 光熱変換分光分析装置
EP3492909B1 (en) * 2017-12-01 2023-11-01 ams AG Chemical sensing device using fluorescent sensing material
CN111323399A (zh) * 2018-12-15 2020-06-23 中国科学院深圳先进技术研究院 多色荧光同步检测的液滴微流控芯片
DE102019201440A1 (de) 2019-02-05 2020-08-06 Implen GmbH Vorrichtung für eine lichtspektroskopische Analyse
WO2024028949A1 (ja) * 2022-08-01 2024-02-08 株式会社日立ハイテク 電気泳動装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157628A (ja) * 1991-12-09 1993-06-25 Advantest Corp 広帯域分光測定装置
JPH11118716A (ja) * 1997-10-09 1999-04-30 Nikon Corp 光学的検査方法及び光学的検査装置
WO2001014849A1 (en) * 1999-08-24 2001-03-01 Waters Investments Limited Laser induced fluorescence capillary interface
JP2002207009A (ja) * 2001-01-11 2002-07-26 Nikon Corp 走査型蛍光測定装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
JP2002277396A (ja) * 2001-03-19 2002-09-25 Minolta Co Ltd 発光検出装置
JP2002296234A (ja) * 2001-04-02 2002-10-09 Hitachi Electronics Eng Co Ltd Dnaチップ及びdna断片分取装置
JP2003149154A (ja) * 2001-11-15 2003-05-21 Hitachi High-Technologies Corp 分光蛍光光度計

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157628A (ja) * 1991-12-09 1993-06-25 Advantest Corp 広帯域分光測定装置
JPH11118716A (ja) * 1997-10-09 1999-04-30 Nikon Corp 光学的検査方法及び光学的検査装置
WO2001014849A1 (en) * 1999-08-24 2001-03-01 Waters Investments Limited Laser induced fluorescence capillary interface
JP2002207009A (ja) * 2001-01-11 2002-07-26 Nikon Corp 走査型蛍光測定装置
JP2002243641A (ja) * 2001-02-09 2002-08-28 Inst Of Physical & Chemical Res 生体機能測定装置
JP2002277396A (ja) * 2001-03-19 2002-09-25 Minolta Co Ltd 発光検出装置
JP2002296234A (ja) * 2001-04-02 2002-10-09 Hitachi Electronics Eng Co Ltd Dnaチップ及びdna断片分取装置
JP2003149154A (ja) * 2001-11-15 2003-05-21 Hitachi High-Technologies Corp 分光蛍光光度計

Also Published As

Publication number Publication date
CA2531791A1 (en) 2005-01-20
JP2005030830A (ja) 2005-02-03
US7304734B2 (en) 2007-12-04
CN1820192A (zh) 2006-08-16
RU2006100431A (ru) 2006-08-27
EP1647821A1 (en) 2006-04-19
US20060109465A1 (en) 2006-05-25
JP3934090B2 (ja) 2007-06-20

Similar Documents

Publication Publication Date Title
US7304734B2 (en) Fluorescence analysis optical multiplexer/demultiplexer, fluorescence analysis optical module, fluorescence analyzer, fluorescence/photothermal conversion spectroscopic analyzer, and fluorescence analysis chip
KR100696237B1 (ko) 통합형 다중-도파관 센서
US6097485A (en) Microchip optical transport technology for use in a personal flow cytometer
US7248361B2 (en) Fluorescence reader based on anti-resonant waveguide excitation
EP2331941B1 (en) Detection system and method
US20100032582A1 (en) Fluorescence detection system and method
WO1999006820A1 (en) Assay methods and apparatus
JP2006126187A (ja) 反共振導波路センサを用いた試料の分析
WO2003078979A1 (fr) Puce pourvue d&#39;un systeme microchimique et systeme microchimique
CN102042961B (zh) 一种光纤反射式微纳体系分光光度计及其应用
JP5241274B2 (ja) 被検出物質の検出方法
US7158227B2 (en) Laser-induced fluorescence analysis device and separation apparatus comprising same
JP2006300564A (ja) 分析デバイス及び分析装置
US7982878B1 (en) Optical emission collection and detection device and method
JP2004163257A (ja) 光導波路への光導入方法及びそれを用いた光導波路分光測定装置
US20070139652A1 (en) Fiber optical assembly for fluorescence spectrometry
JP2018518669A (ja) 光学導管の光送達を伴う光学分析システム
JP4173725B2 (ja) エバネッセント波を利用したセンサー
JPH0310902B2 (ja)
EP3705875A1 (en) An apparatus and method for detecting photoluminescent light emitted from a sample
JP2004020262A (ja) 光熱変換分光分析方法及びその装置
WO2012160923A1 (ja) 反応進行装置、交換製品及び交換製品の製造方法
JP4331126B2 (ja) 熱レンズ分光分析装置
US12000785B2 (en) Apparatus and method for detecting photoluminescent light emitted from a sample
Lackie et al. Instrumentation for cylindrical waveguide evanescent fluorosensors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019588.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2531791

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11329456

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747051

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006100431

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004747051

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11329456

Country of ref document: US