WO2005005371A1 - 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法 - Google Patents

光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法 Download PDF

Info

Publication number
WO2005005371A1
WO2005005371A1 PCT/JP2004/009829 JP2004009829W WO2005005371A1 WO 2005005371 A1 WO2005005371 A1 WO 2005005371A1 JP 2004009829 W JP2004009829 W JP 2004009829W WO 2005005371 A1 WO2005005371 A1 WO 2005005371A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optically active
binap
formula
hydroxy
Prior art date
Application number
PCT/JP2004/009829
Other languages
English (en)
French (fr)
Inventor
Yasumasa Hamada
Kazuishi Makino
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to US10/563,763 priority Critical patent/US7799941B2/en
Priority to JP2005511542A priority patent/JP3932413B2/ja
Priority to CA2531898A priority patent/CA2531898C/en
Priority to EP04747297.2A priority patent/EP1650185B1/en
Publication of WO2005005371A1 publication Critical patent/WO2005005371A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/30Preparation of optical isomers
    • C07C227/32Preparation of optical isomers by stereospecific synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a method for producing an optically active / 3-hydroxy-aminoaminocarboxylic acid derivative which is useful as an intermediate for medical and agricultural chemicals.
  • Optically active ⁇ -hydroxy-a-aminocarboxylic acid derivatives are important intermediates of compounds useful in various fine chemical materials, including physiologically active substances such as medical and agricultural chemicals.
  • asymmetric hydrogenation of a racemic ⁇ _aminoacyl acetic acid ester compound by a catalytic asymmetric hydrogenation reaction using a ruthenium-based optically active phosphine complex catalyst is carried out.
  • a method for synth-selectively producing an optically active hydroxy- ⁇ - aminocarboxylic acid derivative has been known (for example, see Non-Patent Documents 1 and 2 and Patent Document 1).
  • Patent Document 1 JP 06-80617 A
  • Non-Patent Document 1 J. Am. Chem. So, 1989, 111, p. 9134-9135
  • Non-Patent Document 2 SYNTHESIS, 1992, p. 1248-1254
  • Non-Patent Document 3 R. Noyori e. Asymmetric Catalysis in Organic Synthesis, (1994) Jhon Wiley &; Sons, Inc, New York
  • Non-patent Documents 1 and 2 and Patent Document 1 are excellent as methods for selectively producing a syn-form of an optically active / 3-hydroxy-amino carboxylic acid derivative.
  • the inventors of the present invention have conducted intensive studies on a method for producing an anti optical derivative of a directly optically active / 3-hydroxy-aminocarboxylic acid derivative. As a result, the ⁇ -aminoacyl acetate ester having an unsubstituted amino group was obtained.
  • an anti-optically active ⁇ -hydroxy-a-aminocarbonic acid derivative can be easily and selectively obtained. And completed the present invention.
  • the present invention provides:
  • R 1 is a C alkyl group [the C alkyl group is a C aromatic group [the aromatic group is
  • Halogen atom C alkyl group, C alkoxy group, C alkoxycarbonyl group, c
  • the carbonyloxy group is a c-aromatic group (the aromatic group is optionally substituted with a halogen atom
  • R 2 represents a C alkyl group [the C alkyl group is a C aromatic group [the aromatic group is a halogen atom;
  • R 4 and R 5 each independently represent a hydrogen atom or a C alkyl group.
  • the catalyst used in the catalytic asymmetric hydrogenation reaction is a complex of a transition metal of Group VIII of the Periodic Table having an optically active phosphine ligand. Manufacturing method.
  • the transition metal of Group VIII of the periodic table is ruthenium, iridium or rhodium, and the optically active phosphine ligand is an optically active bidentate phosphine ligand.
  • the transition metal of Group VIII of the periodic table is ruthenium, and the optically active bidentate phosphine ligand has the formula (4)
  • R 3 represents a hydrogen atom, a methyl group or a tertiary butyl group, and the absolute configuration means either S or R).
  • R 3 _BINAP represents an optically active bidentate phosphine ligand represented by the above formula (4)
  • Et represents an ethyl group.
  • X 1 and X 2 each represent Cl, CIO, BF, PF, OCOCH, OCOCF, ⁇ CO_t_Bu or ⁇ SO CF, and the complex includes N, N-dimethylformamide, benzene, A1C1, SnCl, Ti
  • -BINAP has the same meaning as described above, and the complex may be further coordinated with N, N-dimethylformamide, benzene, A1C1, SnCl, TiCl or ZnCl. 5.
  • the transition metal of Group VIII of the periodic table is iridium, and the optically active bidentate phosphine ligand is R 3 — BINAP (R 3 — BINAP represents the same meaning as described above) or the formula (5).
  • R 6 is a phenyl group or a naphthyl group (the phenyl group and the naphthyl group are
  • R 7 denotes a methyl group or a methoxy group
  • R 8 is a hydrogen atom, a methyl group, means a methoxy group or a chlorine atom
  • R 9 is a hydrogen atom, a methyl group, It means a methoxy group, a dimethylamino group or a getylamino group
  • the absolute configuration means either S or R. 3.
  • od means 1,5—cyclooctadiene. 11) The method for producing an optically active hydroxy-a-aminocarboxylic acid derivative according to 11).
  • n is normal, "i” is iso, “s” is secondary, “t” is tertiary, “c” is cyclo, “o” is ortho, and "m”'' Is meta, ⁇ p '' is para, ⁇ Me '' is methyl, ⁇ Et '' is ethyl, ⁇ Pr '' is propyl, ⁇ Bu '' is butyl, and ⁇ Pen '' is pliers.
  • ⁇ Hex '' is a hexyl group
  • ⁇ Hep '' is a heptyl group
  • ⁇ Ph '' is a phenyl group
  • ⁇ B n '' is a benzyl group
  • ⁇ Bz '' is a benzoyl group
  • Ts represents a paratoluenesulfonyl group
  • Boc represents a tertiary butoxycarbonyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the C alkyl group includes a linear or branched C alkyl group and a C cycloalkyl group.
  • Examples thereof include c-propyl group, 2-ethynol 1-methyl c-propyl group, 2-ethynol-2-methynol-1-c-propyl group and 2-ethyl-3-methyl-C-propyl group.
  • C alkyl groups include straight-chain and branched-chain C alkyl groups and C cycloalkyl groups.
  • C-octyl group 4-methylinole 3_n-heptyl group, 6-methinole _2_n-heptyl group, 2-propynole l_n-heptyl group, 2,4,4_trimethinole l_n-pentyl group, 1_nonyl group , 2-noninole group, 2,6_dimethinole-4_n_heptyl group, 3-ethynole-1,2,2-dimethyl_3_n-pentyl group, 3,5,5_trimethyl-11nxyl group, 1_decyl group, 2_decyl group, 4-decinole group, 3,7-dimethinole l_n-octyl group, 3,7-dimethyl-3_n-octyl group, n- ⁇ decinole group, n-dotenole group, n tritesinole group, n-tetratenole radical,
  • the C alkoxy group includes linear and branched ones and C cycloalkoxy group.
  • C alkoxycarbonyl groups include straight-chain and branched-chain ones and C cycloalkanols.
  • C alkylcarbonyloxy groups include straight-chain and branched ones, and C cycloalkyl groups.
  • Methylcarbonyloxy group ethylcarbonylcarbonyl group, n-propylcarbonyloxy group, i-propylcarbonyloxy group, c_propylcarbonyloxy group which may contain alkylcarboxy group Xy group, n_butylcarbonyloxy group, i-butylcarbonyloxy group, s_butylcarbonyloxy group, t_butylcarbonyloxy group, c_butylcarbonyloxy group, 1-methylenol c-propylcarbonyloxy group, 2-methyl-c-propylcarbonyloxy group, n-pentylcarbonyloxy group, 1-methyl-n-butyl Tylcarbonyloxy group, 2-methyl-n-butylcarbonyloxy group, 3-methyl-n-butylcarbonyloxy group, 1,1 dimethyl-n-propylcarbonyloxy group, 1,2 dimethyl-n-propylcarbonyloxy group, 1,2
  • Examples include a phenyl group, a naphthyl group, a j3_naphthyl group, an o-biphenylyl group, an m-biphenylyl group, and a p_biphenylyl group.
  • R 1 include a methynole group, an ethyl group, an n-propyl group, an i-propyl group, a c-propynole, an n-butyl group, an i-butyl group, an s_butyl group, and a t_butyl Group, c_butyl group, 1-methyl-c-propyl group, 2-methyl-c-propyl group, n-pentyl group, 1-methylenol-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n-butyl group, 1,1-dimethyl-n-propyl Group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, c-pentyl group, 1-methylenol-c-butyl group, 2-methyl-c-butyl group, 3-methyl-c_
  • c_heptyl group c-octyl group, 2-furinole group, 3-furinole group, 2_thenyl group,
  • ⁇ -propyl group i-propyl group, t Monobutyl, c-pentyl, c-hexyl, c-heptyl, phenyl, p-benzyloxyphenyl, m-methylphenyl, p-methylphenyl, ⁇ -naphthyl, ⁇ _bromophenyl Group and 2-f Le group.
  • R 2 examples include methyl, ethyl, ⁇ -propyl, i-propyl, c_propyl, n-butyl, i-butyl, s-butyl, t-butyl, c-Butyl, 1-methyl-c-propyl, 2-methyl-c-propyl, n-pentyl, 1-methyl-n-butynole, 2-methyl-n-butyl, 3-methyl-n-butyl , 1,1-Dimethyl-n-propyl group, 1,2-Dimethinole n-propyl group, 2,2_dimethyl-n-propyl group, 1-ethyl-n-propyl group, c-pentyl group, 1-methyl-c_butyl Group, 2-methyl-c_butyl group, 3-methylinole c-butyl group, 1,2_dimethinole_c-propyl group, 2,3_dimethinole_c-but
  • Mouth pinole _c-propyl group l_i-propinole-c-propyl group, 2_i-propyl_c-propyl group, 1,2,2-trimethinole-c-propyl group, 1,2,3-trimethyl_c-propyl group, 2 , 2,3-Trimethinole _ c -propyl group, 1-ethinole _2-methinole _c-propyl group, 2-ethylinole 1-methyl _c-propyl group, 2-ethinole _2-methinole _c-propyl group, 2-
  • Preferred ⁇ -aminoacinoleacetic acid ester conjugates represented by the formula (1) include the following.
  • DR 1 is a C alkyl group or a C aromatic group (the aromatic group is a halogen atom, a C
  • R 2 is a C alkyl group or a C alkyl group substituted with a C aromatic group.
  • R 2 is a C alkyl group or a C alkyl group substituted with a C aromatic group
  • R 1 is n-propyl, i-propyl, t_butyl, c-pentyl, c-hexyl, c-heptyl, phenyl, p-benzyloxyphenyl, m-
  • a highly aminoacyl acetate compound represented by the formula (1) which is a methylphenyl group, a p-methylphenyl group, a / 3-naphthyl group, a p_bromophenyl group or a 2_furyl group.
  • 6) 1 ⁇ is ⁇ -propyl, i-propyl, t_butyl, c-pentyl, c-hexyl, c-heptyl, phenyl, p-benzyloxyphenyl, m- A methyl phenyl group, a p-methylphenyl group, a / 3-naphthyl group, a p_bromophenyl group or a 2_furyl group, and an R 2 group represented by the formula (1) which is a S-methyl group or a benzyl group; Aminoacyl acetic acid ester compound.
  • a catalyst used in the catalytic asymmetric hydrogenation reaction of the present invention a catalyst used in a usual catalytic asymmetric hydrogenation reaction can be used. (See Non-Patent Document 3.)
  • Preferred catalysts include complexes of transition metals of Group VIII of the Periodic Table having an optically active phosphine ligand.
  • transition metal of Group VIII of the periodic table iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum are preferable. Ruthenium, rhodium and iridium are preferable.
  • All optically active phosphine ligands used in the present invention are optically active.
  • Optically active bidentate phosphine ligands include BINAP, BIPHEMP, RR ⁇ PHOS, DE GUPH ⁇ S, DIOP, DIPAMP, DuPHOS, NORPH ⁇ S, PNNP, SKEWPHOS, BPPFA, SEGPH ⁇ S, CHIRAPHOS, H-BINAP, etc. Is mentioned.
  • BINAP also includes a derivative of BINAP, and specific examples are 2,2'-bis (diphenylphosphino) -1,1,1-binaphthyl, 2,2, bis (di-p-tolylphosphino)- 1,1, -binaphthyl, 2,2'_bis (di-p-tert-butylphenylphosphino) -1,1,1-binaphthyl, 2,2'-bis (di-m-tolylphosphino) -1 , 1'-binaphthyl, 2,2'-bis (di-3,5-dimethylphenylphosphine) -1,1,1'-binaphthyl, 2,2'-bis (di-p-methoxyphenylphosphine) _1,1, -binaphthyl, 2,2, _bis (dicyclopentylphosphino) _1,1, -pinaph
  • Nylphosphino -1, 1, -binaphthyl, 2,2, -bis (di-p-tolylphosphino) -1,1, -binaphthyl and 2,2, -bis (di-p-tertiarybutylphenylphosphino) _1, 1, -binaphthyl.
  • BIPHEMP also includes a derivative of BIPHEMP, and specific examples include:
  • the catalyst used in the catalytic asymmetric hydrogenation reaction of the present invention can be prepared from a transition metal compound and an optically active phosphine ligand. You can also.
  • transition metal compounds di- ⁇ -chlorotetrakis (cyclootaten) 2rhodium, di-monochlorobis (1,5-cyclooctadiene) 2rhodium and 1,5-cyclooctadienebis ( Rhodium compounds such as acetonitrile) rhodium tetrafluoroborate, di / i_chlorotetrakis (cyclootaten) 2iridium, di_ ⁇ _cloguchibis (1,5-cyclooctadiene) 2iridium, di / i Iridium compounds such as —chlorotetrakis (ethylene) 2 iridium and 1,5-cyclooctagenbis (acetonitrile) iridium tetrafluoroborate; tetrachloro (-benzene) 2-ruthenium and tetrachloro [ ⁇ - ( ⁇ -cymene 2) Ruthenium compounds such as ruthenium.
  • the additive is not particularly limited as long as it is a compound capable of coordination.
  • a ruthenium compound when used, iridium, dimethylformamide and the like are preferred.
  • an iodine compound is preferred.
  • Specific examples of the iodine compound include tetramethylammonium iodide, tetra-n-butylammonium iodide, sodium iodide, potassium iodide and the like, and preferably sodium iodide.
  • the amount of the optically active phosphine ligand to be used is at least 1 equivalent, preferably 1 to 2 equivalents, as the optically active bidentate phosphine ligand to the transition metal compound,
  • the above twice-used amount is used.
  • the amount is twice as much as described above due to valence.
  • the amount of the additive to be used cannot be unconditionally determined by the composition ratio of the catalyst, but is usually in the range of 1 to 100 equivalents, preferably 1 to 100, based on the amount of the transition metal compound used. Equivalent range.
  • Ruthenium-optically active phosphine complexes include ruthenium-BINAP complex, ruthenium-BIPHEMP complex, ruthenium RROPHOS complex, ruthenium-DEGUPHOS complex, ruthenium DIOP complex, ruthenium-DIPAMP complex, ruthenium-DuPHOS complex, ruthenium-NOPHOS complex, ruthenium-NOPHOS complex, Ruthenium-PNNP complex, ruthenium-SKEWP HOS complex, ruthenium-BPPFA complex, ruthenium-SEGPHOS complex, ruthenium-CHIRAPHOS complex, ruthenium-H-BINAP complex and the like.
  • Ruthenium-BINAP complexes include RuHX 1 (R 3 _BINAP), RuX 2 (R-BINAP) and Ru CI (R-BINAP) (Et N) where X 1 and X 2 are Cl, CIO, : BF, P
  • R 3 _BINAP is [Formula 11]
  • R 3 represents a hydrogen atom, a methyl group or a tertiary butyl group, and the absolute configuration represents either S or R.
  • the complex is represented by N, N-dimethylformamide , Benzene, A1C1, SnCl, TiCI or ZnCl. ]
  • RuHCl (BINAP), RuHCl (T—BINAP), RuHCl (t-Bu-BINA
  • RuH (BF) T—BINAP
  • RuH (PF) BINAP
  • RuH (PF) T—BINAP
  • RuCl BINAP
  • RuCl T—BINAP
  • RuCl t-Bu—BINAP
  • RuCl (BINAP) dmf
  • RuCl T—BINAP
  • RuCl t_Bu—BINAP
  • T-BINAP 2,2'-bis (diphenylphosphino) -1, 1 of absolute configuration force or R '—Binaphthyl
  • T-B INAP means 2, 2' _bis (di__tolylphosphino) _1,1, —pinaphthyl with absolute configuration of S or R
  • t-Bu—BINAP 2,2'-bis (di-p-t-butylphenylphosphino) _1,1'-binaphthyl having an absolute configuration of S or R
  • Et represents an ethyl group
  • t-Bu represents , T_butyl group
  • dmf means N, N-dimethylformamide
  • n means 1 or 2. And the like.
  • Preferred ruthenium-optically active phosphine complexes include the following 1) and 2).
  • X 1 and X 2 each represent Cl, CIO, BF, PF, OCOCH, OCOCF, ⁇ CO—t—Bu or OSO CF, and R 3 —BINAP is
  • R 3 represents a hydrogen atom, a methyl group or a tertiary butyl group, and the absolute configuration represents either S or R.
  • the complex is represented by N, N-dimethylformamide , Benzene, A1C1, SnCl, TiCl or ZnCl. ].
  • BINAP means 2,2, _bis (diphenylphosphino) —1,1, -binaphthyl having an absolute configuration of S or R; BINAP has an absolute configuration of S or Means 2,2'-bis (di-p-tolylphosphino) -1,1, -binaphthyl of R; t-Bu-BI NAP means 2,2,1-bis (S or Ab in absolute configuration) (Di-pt-butylphenylphosphino) —means 1,1, -binaphthyl; dmf means N, N-dimethylformamide; n means 1 or 2. ].
  • Preferred ruthenium-optically active phosphine complexes of 1) include:
  • RuX 2 R-BINAP
  • N, N-dimethylformamide or benzene where X 2 represents CI
  • R 3 _BINAP has the same meaning as described above. ).
  • preferred ruthenium-optically active phosphine complexes of the type 2) include:
  • RuCl (BINAP) (dmf), RuCl (T—BINAP) (dmf) or RuCl (t-Bu-BINAP)
  • T-BINAP means 2,2, _bis (di-P-tolylphosphino) _1,1, -binaphthyl having an absolute configuration of S or R
  • t-Bu-BINAP means 2,2′-bis (di-pt-butylphenylphosphino) —1,1′-binaphthyl of absolute configuration force or R
  • dmf means N, N-dimethylformamide
  • n means 1 or 2.
  • iridium-optically active phosphine complexes include iridium-BINAP complex, iridium-BIPHEMP complex, iridium-RROPHOS complex, iridium- DEGUPHOS complex, iridium_DI ⁇ P complex, iridium-DIPAMP complex, iridium-DuPHOS complex, and iridium atom.
  • Preferred iridium-optically active phosphine complexes include an iridium-BINAP complex and an iridium BIPHEMP complex.
  • BINAP is BINAP, T-BINAP or t-Bu_BI
  • BIPHEMP is 2,2′-dimethoxy-1,6 ′
  • iodine compound is added as an additive, particularly, As the iodine compound, sodium iodide or iodine tetra
  • n-butylammonium Those to which n-butylammonium is added are also preferable.
  • [Ir (cod) C1] (where cod represents 1,5-cyclooctadiene) is also preferable.
  • cod represents 1,5-cyclooctadiene
  • 13 equivalents of sodium iodide is also used as an additive.
  • Rhodium-optically active phosphine complexes include rhodium-BINAP complex, rhodium-BIP HEMP complex, rhodium RROPHOS complex, rhodium-DEGUPHOS complex, rhodium-DIOP complex, rhodium-DIPAMP complex, rhodium-DuPHOS complex, rhodium-NORP HOS complex, Rhodium-PNNP complex, rhodium-SKEWPHOS complex, rhodium-BPPFA complex, rhodium-SEGPHOS complex, rhodium-CHIRAPHOS complex, rhodium-H-BINAP complex and the like.
  • the ⁇ -aminoacinoleacetic acid ester compound represented by formula (1) is reduced with hydrogen in the presence of a catalyst and an acid used for catalytic asymmetric hydrogenation.
  • Derivatives can be produced.
  • the type of the solvent is not particularly limited as long as it does not participate in the reaction.
  • Halogen solvents such as benzene with dichloro, ether solvents such as getyl ether, diisopropyl ether, and tetrahydrofuran, methanol solvents, ethanol, ⁇ - alcohol solvents such as propanol, i_propanol, 2-butanol and ethylene glycol, acetic acid And any mixed solvent of the above solvents.
  • Preferred solvents are halogen solvents, alcohol solvents, mixed solvents of halogen solvents and alcohol solvents, mixed solvents of halogen solvents and ether solvents, acetic acid, mixed solvents of acetic acid and alcohol solvents. And a mixed solvent of acetic acid and an ether-based solvent.
  • the solvent include methanol, n-propanol, i-propanol, 2-butanol, ethylene glycol, methylene chloride, 1,2-dichloroethane, benzene, and methanol monochloride.
  • Tylene n-propanol mono-methylene chloride, i-propanol mono-methylene chloride, n-propanol mono-tetrahydrofuran, acetic acid, i-propanol acetate and acetic acid-tetrahydrofuran, etc., preferably methylene chloride, n-propanol, n-propanol mono-methyl chloride And acetic acid.
  • acetic acid is preferably used when an iridium catalyst such as methylene chloride, n-propanol, or n-propano-mono-methylene chloride is used.
  • the amount of the catalyst used in the catalytic asymmetric hydrogenation reaction is in the range of 0.01 to 100 mol% with respect to the amount of the ⁇ _ aminoaminoacetic acid ester compound represented by the formula (1).
  • 0. 01- 20 mole% of the range more rather preferably is 0. 1 10 mol 0/0 range, and most preferably, 0.5 3 5 mole include the range of 0/0
  • the monoaminoacyl acetic acid ester compound represented by the formula (1) may be added to a solution containing an acid.
  • a further salt can be prepared and the salt added to the solution.
  • the acid used preferably includes a strong acid.
  • strong acids include HC1, HBr, HSO, HCIO, CHSOH, PhSOH, Ts
  • the amount of the acid used is in the range of 0.8 to 3 molar equivalents with respect to the amount of the ⁇ -aminoacylacetic acid ester represented by the formula (1), A range of equivalents, more preferably, a range of 0.9 to 1.5 molar equivalents is mentioned.
  • the amount of the above-mentioned acid to be used is roughly determined, and when a salt composed of the ⁇ -aminoacylacetic acid ester compound represented by the formula (1) and the acid is prepared and added, the acid contained in the salt is added. It means the whole amount including the amount.
  • an acetate can be added to the reaction system.
  • the acetate examples include an alkali metal acetate such as lithium acetate, sodium acetate and potassium acetate, and ammonium acetate, and the like, preferably an alkali metal acetate, for example, sodium acetate.
  • an alkali metal acetate such as lithium acetate, sodium acetate and potassium acetate, and ammonium acetate, and the like, preferably an alkali metal acetate, for example, sodium acetate.
  • the amount used when adding the acetate salt is in the range of 0.85 equivalents to the amount used of the aminoaminoacetic acid ester compound represented by the formula (1), and is preferably 0.8%.
  • the range is 8 to 2 equivalents.
  • Hydrogen used is usually hydrogen gas.
  • the pressure of the hydrogen used is usually in the range of 11 to 150 atm, preferably 10 to 150 atm, more preferably 30 to 100 atm.
  • the reaction temperature can be from 0 ° C to the boiling point of the solvent, preferably from 10 to 150 ° C, more preferably from 30 to 100 ° C. .
  • the reaction time varies depending on the reaction temperature and thus cannot be unconditionally determined. For example, when the reaction temperature is 50 ° C, 4 hours or more, and when it is 100 ° C, 3 hours or more is sufficient.
  • the target optically active ⁇ -hydroxy- ⁇ -aminocarboxylic acid derivative can be obtained by making the reaction solution basic and extracting with an appropriate solvent.
  • Diastereoselectivity (de: selectivity between syn-form and anti-form) of the optically active -hydroxy- ⁇ -amino carboxylic acid derivative represented by the formula (2) or (3) obtained according to the present invention, and enena
  • the enantioselectivity (ee) can be determined by subjecting the obtained optically active ⁇ -hydroxy-a-aminocarboxylic acid derivative to benzoylation and then performing instrumental analysis.
  • the diastereoselectivity (de: selectivity between syn- and anti-forms) can be determined by -NMR and the like, and the enantioselectivity (ee) can be determined by HPLC analysis using an optically active column.
  • the raw material of the aminoaminoacetic acid ester conjugate represented by the formula (1) can be produced by the following method.
  • an acid anhydride or an acyl chloride and isotitolyl acetate are used as bases (for example, bases include triethylamine, 1,8-diazabicyclo [5,4,0] indene-7-ene, etc.).
  • bases include triethylamine, 1,8-diazabicyclo [5,4,0] indene-7-ene, etc.
  • condensation is performed to form an oxazole derivative, and then the oxazole ring is cleaved with concentrated hydrochloric acid to produce a hydrochloride of a para-aminoacylacetic acid ester compound represented by the formula (1). be able to.
  • the obtained hydrochloride can be used for the next reduction reaction as it is,
  • the oxazole compound is cleaved with another acid or the hydrochloride is exchanged with another acid.
  • the hydrochloride of the aminoaminoacetic acid ester conjugate represented by the formula (1) can also be produced by the following method.
  • glycine is dehydrated and condensed with an alcohol in the presence of TsOH (p-toluenesulfonic acid) to form an ester, and then the amino group is converted to Boc with Boc 0 (di-t-butyl dicarbonate).
  • TsOH p-toluenesulfonic acid
  • the oxazole compound (2.26 g, 11. Immol) was dissolved in 4 mol / L hydrochloric acid-dioxane (18 ml) and methanol (18 ml), and the mixture was stirred at 60 ° C. for 24 hours. The solution was cooled to room temperature and concentrated. The residue was dissolved in methanol and concentrated again. This operation was repeated 5 times to completely remove the residual hydrochloric acid, and the obtained solid was washed with ether and collected by filtration. This solid was recrystallized from ethyl acetate and methanol to obtain 6 g (l. 42 g, 6.2 mmol, 56%) of a compound as a colorless solid.
  • the resulting crude product was subjected to benzoylation and subjected to instrumental analysis to determine de and ee. de was determined by ⁇ -NMR and ee was determined by HPLC.
  • the obtained crude product was dissolved in THF (tetrahydrofuran) (1.7 mL). Subsequently, BzCl (benzoyl lucide) (110 ⁇ L) and TEA (triethylamine) (380 ⁇ L) were added to the solution at 0 C. After stirring at room temperature for 1 hour, water, ethyl acetate and hexane were added to the reaction solution to stop the reaction. Subsequently, liquid separation was performed, and the organic layer was sequentially washed with an ImolZL hydrochloric acid solution and an aqueous sodium hydrogen carbonate solution, and dried over anhydrous sodium sulfate. Thereafter, the mixture was filtered and concentrated.
  • the desired product was produced by performing the same operation as in Example 1 except that the solvent was changed in various ways.
  • the amount of the catalyst used was in the range of 3.8-4.6 mol% with respect to the substrate.
  • the yield was shown as the sum of the two steps.
  • the substrate was 2-cyclohexyl-1-methoxycarbonyl 2-oxo-ethylammonium prepared in Reference Example 1, except that the chloride was changed and the solvent was changed to methylene chloride.
  • the desired product was obtained (yield: 84% (total of two steps), de: 95%, ee: 96%).
  • the obtained crude product was dissolved in THF (tetrahydrofuran) (2. OmL). Subsequently, BzCl (benzoyl sulfide) (130 ⁇ L) and TEA (triethylamine) (440 ⁇ L) were added to the solution at 0 ° C. After stirring at room temperature for 1 hour, the reaction solution was washed with water, ethyl acetate and hexane to stop the reaction. Subsequently, liquid separation was performed, and the organic layer was sequentially washed with 1 mol / L hydrochloric acid and an aqueous solution of sodium hydrogen carbonate, and dried over anhydrous sodium sulfate. Thereafter, the mixture was filtered and concentrated.
  • Example 13 The same procedure as in Example 13 was carried out except that the type of the solvent and the amount of the catalyst used were changed, to thereby produce an intended product.
  • the yield was shown as the sum of the two steps.
  • Example 13 Except that the reaction time was changed, the same procedure as in Example 13 was carried out to produce the desired product.
  • the amount of the catalyst used was in the range of 3.9-4. Lmol% based on the substrate. The yield was shown as the sum of the two steps.
  • the desired product was produced by performing the same operation as in Example 13 except that the solvent was changed to dichloroethane ((CH C1)), the reaction temperature was changed to 100 ° C, and the reaction time was changed to 3 hours.
  • the yield showed a total of 2 steps (Yield: 90% (2 steps total), de: 93% ee: 92%) 0
  • the desired product was produced by performing the same operation as in Example 13 except that the substrate and the solvent were changed.
  • the yield was shown as the sum of the two steps.
  • R n propyl group
  • the substrate was changed to 2-cyclohexyl-1-methoxycarbonyl 2-oxoethylammonium; chloride produced in Reference Example 1, and various reaction conditions were examined.
  • the conversion means a value calculated by analyzing the reaction mixture by HPLC and applying the peak areas of the substrate and the product to the following formula.
  • the number 4.37 in the formula is a value used to correct the sensitivity ratio between the substrate and the product at the measurement wavelength.
  • Retention time substrate 21.8 minutes, product 23.4 minutes.
  • the ee was determined by analyzing the benzoylated product of the product by HPLC. e e analysis conditions
  • Retention time R body 11.2 minutes, S body 15.3 minutes.
  • Example 44 Except that the additive (iodine compound), the acetate, the temperature and the reaction time were changed, the same procedure as in Example 44 was carried out to produce the desired product. The yield was shown as the sum of the two steps.
  • the amount of catalyst used was 3 mol of iridium based on the substrate. /.
  • (S) -Me The amount of O-Biphep used is 1.33 equivalents (4/3) based on the amount of iridium used.
  • the amount of the iodine compound indicates the number of equivalents to the amount of iridium used
  • the amount of the acetate indicates the number of equivalents to the substrate
  • TBAI means tetra-n-butylammonium iodide.
  • the target product was produced by performing the same operation as in Example 44 except that the substrate, the additive (iodine compound), the temperature and the reaction time were changed.
  • the yield was shown as the sum of the two steps.
  • the amount of substrate used: the amount of iridium used: (S) —the amount of Me-1 Biphep used: the amount of additive (iodine compound) used 100: 3: 4: 6, and acetate (acetic acid) Sodium) was used in an equivalent amount to the substrate.
  • ⁇ Bn is a benzyloxy group
  • Ph is a phenyl group
  • Me is a methyl group
  • Pr is a propyl group
  • ⁇ _Nap is a ⁇ -naphthyl group
  • TBAI is tetra-n-butylammonium iodide.
  • the target compound was produced by changing the ligand of Example 44 to (s) -BINAP and changing various conditions.
  • the yield was shown as the sum of the two steps.
  • the amount of the additive represents the number of equivalents to the amount of iridium used
  • the amount of acetate represents the number of equivalents to the substrate
  • the type of the solvent means the following symbols.
  • Phta means phthalimide
  • TBAB means tetra-n-butylammonium bromide
  • TBAI means tetra-n-butylammonium iodide
  • the desired product was obtained by performing the same operation as in Example 64 except that the ligand was changed to (S) -T-BINAP. (Yield: 85% (total of 2 steps), de:> 99%, ee: 71%)
  • optically active 3-hydroxy which is useful as an intermediate for medical and agricultural chemicals
  • An anti form of a minocarboxylic acid derivative can be efficiently produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法 技術分野
[0001] 本発明は、医 ·農薬の中間体として有用である光学活性 /3—ヒドロキシーひ—アミノカ ルボン酸誘導体の製造方法に関するものである。
背景技術
[0002] 光学活性 βーヒドロキシー aーァミノカルボン酸誘導体は、医 ·農薬等の生理活性物 質をはじめとする、種々のファインケミカル材料で有用な化合物の重要な中間体であ る。
光学活性 βーヒドロキシー aーァミノカルボン酸誘導体を製造する方法としては、ル テニゥムー光学活性ホスフィン錯体触媒を用いた触媒的不斉水素化反応により、ラセ ミ体の α _アミノアシル酢酸エステル化合物を不斉水素化し、シン選択的に光学活性 _ヒドロキシー α _ァミノカルボン酸誘導体を製造する方法が知られていた (例えば 非特許文献 1及び 2並びに特許文献 1参照。)。
一方、ォレフィン、ケトン及びィミン類の遷移金属触媒による不斉水素化反応はよく 知られていた。 (例えば非特許文献 3参照。)。
特許文献 1 :特開平 06 - 80617号公報
非特許文献 1 :J. Am. Chem. So , 1989, 1 1 1 , p. 9134-9135
非特許文献 2 : SYNTHESIS, 1992, p. 1248-1254
非特許文献 3 : R. Noyori e . Asymmetric Catalysis in Organic Synthesi s, ( 1994)Jhon Wiley& ; Sons, Inc, New York
発明の開示
発明が解決しょうとする課題
[0003] 非特許文献 1及び 2並びに特許文献 1に記載の方法は、光学活性 /3—ヒドロキシー ひ—アミノカルボン酸誘導体のシン体を選択的に製造する方法としては優れているも のである。
しかし、逆に光学活性 β—ヒドロキシーひ—アミノカルボン酸誘導体のアンチ体を直 接製造することはできないため、アンチ体を製造するためには、一旦シン体を製造し 、一方の立体を反転させなければならな力つた。
そのため、直接、光学活性 ;3—ヒドロキシー α—ァミノカルボン酸誘導体のアンチ体 を製造する方法が望まれてレ、た。
課題を解決するための手段
[0004] 本発明者らは、直接光学活性 /3—ヒドロキシーひ—アミノカルボン酸誘導体のアンチ 体を製造する方法について鋭意検討を重ねた結果、ァミノ基が無置換である α—アミ ノアシル酢酸エステルイ匕合物を、酸の存在下において、触媒的不斉水素化反応によ り水素化することによって、容易にアンチ体の光学活性 β—ヒドロキシー a—ァミノカル ボン酸誘導体が選択的に得られることを見出し、本発明を完成させた。
[0005] 即ち、本発明は、
1.式 ( 1 )
Figure imgf000004_0001
中、 R1は、 C アルキル基〔該 C アルキル基は C 芳香族基 [該芳香族基は、
1-20 1-20 4-12
ハロゲン原子、 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基、 c
1-6 1-6 1-6
アルキルカルボニルォキシ基又は C〇NR4R5 (式中、 R4及び R5は、それぞれ独立し
1-6
て、水素原子又は C アルキル基を意味する。)で任意に置換されていてもよい。 ]、
1-6
C アルコキシ基、 C アルコキシカルボニル基又は C〇NR4R5 (式中、 R4及び R5は、
1-6 1-6
それぞれ独立して、水素原子又は C アルキル基を意味する。)で任意に置換されて
1-6
いてもよい。〕、又は C 芳香族基〔該芳香族基は、ハロゲン原子、 C アルキル基、
4-12 1-6
C アルコキシ基、 C アルコキシカルボニル基、 C アルキルカルボニルォキシ基 [
1-6 1-6 1-6
該 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基及び C アルキル
1-6 1-6 1-6 1-6 カルボニルォキシ基は、 c 芳香族基 (該芳香族基は、ハロゲン原子で任意に置換
4-12
されていてもよい。)で任意に置換されていてもよレ、。 ]又は CONR4R5 (式中、 R4及び R5は、それぞれ独立して、水素原子又は C アルキル基を意味する。 )で任意に置換 されていてもよい。〕を意味し、
R2は、 C アルキル基〔該 C アルキル基は C 芳香族基 [該芳香族基は、ハロゲ
1-20 1-20 4-12
ン原子、 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基、 C アル
1-6 1-6 1-6 1-6 キルカルボニルォキシ基又は C〇NR4R5 (式中、 R4及び R5は、それぞれ独立して、水 素原子又は C アルキル基を意味する。)で任意に置換されていてもよい。 ]、 C ァ
1-6 1-6 ルコキシ基、 C アルコキシカルボニル基又は C〇NR4R5 (式中、 R4及び R5は、それ
1-6
ぞれ独立して、水素原子又は C アルキル基を意味する。 )で任意に置換されていて
1-6
もよい。〕、又は C 芳香族基 [該芳香族基は、ハロゲン原子、 C アルキル基、 C
4-12 1-6 1-6 アルコキシ基、 c アルコキシカルボニル基、 c アルキルカルボニルォキシ基又は
1-6 1-6
CONR4R5 (式中、 R4及び R5は、それぞれ独立して、水素原子又は C アルキル基を
1-6
意味する。)で任意に置換されていてもよレ、。 ]を意味する。 }で表されるひ—アミノアシ ル酢酸エステル化合物を、酸の存在下において、触媒的不斉水素化反応により水素 化することを特徴とする、式 (2)又は式 (3)
[化 6]
Figure imgf000005_0001
(式中、 R1及び R2は、前記と同じ意味を示す。)で表される光学活性 /3—ヒドロキシ - a—ァミノカルボン酸誘導体の製造方法。
2.前記触媒的不斉水素化反応に使用される触媒が、光学活性ホスフィン配位子を 有する、周期表第 VIII族の遷移金属の錯体である 1.記載の光学活性 —ヒドロキシ - ーァミノカルボン酸誘導体の製造方法。
3.前記周期表第 VIII族の遷移金属がルテニウム、イリジウム又はロジウムであり、光 学活性ホスフィン配位子が光学活性 2座ホスフィン配位子である 2.記載の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
4.前記周期表第 VIII族の遷移金属がルテニウムであり、光学活性 2座ホスフィン配 位子が式 (4)
Figure imgf000006_0001
(式中、 R3は、水素原子、メチル基又は三級ブチル基を意味し、絶対配置は S又は R のどちらかを意味する。)である 3.記載の光学活性 /3—ヒドロキシ-ひ-アミノカルボン 酸誘導体の製造方法。
5.前記周期表第 VIII族の遷移金属の錯体が RUHX RLBINAP) 、 RUX2 (R -B
INAP)又は Ru CI (R -BINAP) (Et N) (式中、 R3_BINAPは前記式(4)で表さ れる光学活性 2座ホスフィン配位子を意味し、 Etはェチル基を意味し、 X1及び X2は、 それぞれ Cl、 CIO、 BF、 PF、 OCOCH、 OCOCF、〇CO_t_Bu又は〇SO CF を意味するが、該錯体は、 N, N—ジメチルホルムアミド、ベンゼン、 A1C1、 SnCl、 Ti
CI又は ZnClで更に配位されていてもよい。)である 4.記載の光学活性 ーヒドロキ シー aーァミノカルボン酸誘導体の製造方法。
6.前記周期表第 VIII族の遷移金属の錯体が RuX2 (R -BINAP) (式中、 X2及び R3
-BINAPは前記と同じ意味を表わし、該錯体は、 N, N-ジメチルホルムアミド、ベン ゼン、 A1C1、 SnCl、 TiCl又は ZnClで更に配位されていてもよい。)である 5·記載 の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
7. N, N—ジメチルホルムアミド又はベンゼンで更に配位された RuX2 (R -BINAP)
(式中、 X2が CIを表わし、 R3_BINAPは前記と同じ意味を表わす。)を用いる 6.に記 載の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
8.前記周期表第 VIII族の遷移金属がイリジウムであり、光学活性 2座ホスフィン配位 子が R3— BINAP (R3— BINAPは、前記と同じ意味を表わす。)又は式(5)
[化 8]
Figure imgf000007_0001
[式中、 R6は、フエニル基、ナフチル基(該フエニル基及びナフチル基は C アルキル
1-6 基又は C アルコキシ基で任意に置換されていてもよレ、。)、シクロペンチル基又はシ
1-6
クロへキシノレ基を意味し、 R7は、メチル基又はメトキシ基を意味し、 R8は、水素原子、 メチル基、メトキシ基又は塩素原子を意味し、 R9は、水素原子、メチル基、メトキシ基、 ジメチルァミノ基又ジェチルァミノ基を意味し、絶対配置は S又は Rのどちらかを意味 する。 ]で表される化合物である 3.記載の光学活性 j3—ヒドロキシーひ-アミノカルボ ン酸誘導体の製造方法。
9.反応系中に酢酸塩を加える 8.記載の光学活性 ーヒドロキシー α—ァミノカルボン 酸誘導体の製造方法。
10.前記周期表第 VIII族の遷移金属の錯体を調製する際、ヨウ素化合物を添加す る 9.記載の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
11.前記光学活性 2座ホスフィン配位子が前記式(5)で表される化合物である 10. 記載の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
12.前記周期表第 VIII族の遷移金属の錯体を調製する際、 [Ir (cod) Cl] (式中、 c
2
odは、 1 , 5—シクロォクタジェンを意味する。)を使用する 11 ·記載の光学活性 ーヒ ドロキシー aーァミノカルボン酸誘導体の製造方法。
13.前記酸が強酸である 1.一 12.の何れか 1つに記載の光学活性 j3—ヒドロキシー a—ァミノカルボン酸誘導体の製造方法。
に関するものである。
以下、更に詳細に本発明を説明する。
尚、本発明中「n」はノルマルを、「i」はイソを、「s」はセカンダリーを、「t」はターシャリ 一を、「c」はシクロを、「o」はオルトを、「m」はメタを、「p」はパラを、「Me」はメチル基 を、「Et」はェチル基を、「Pr」はプロピル基を、「Bu」はブチル基を、「Pen」はペンチ ノレ基を、「Hex」はへキシル基を、「Hep」はへプチル基を、「Ph」はフエニル基を、「B n」はベンジル基を、「Bz」はベンゾィル基を、「Ac」はァセチル基を、「Ts」はパラトル エンスルホニル基を、「Boc」はターシャリーブトキシカルボ二ル基を意味する。
まず、置換基 R1及び R2の各置換基における語句について説明する。
[0007] ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げら れる。
[0008] C アルキル基としては、直鎖、分枝鎖状のもの及び C シクロアルキル基を含んで
1-6 3-6
いてもよく、メチノレ基、ェチル基、 n—プロピル基、 i_プロピル基、 c—プロピル基、 n—ブ チノレ基、 i一ブチル基、 s_ブチル基、 t_ブチル基、 c_ブチル基、 1ーメチルー c_プロピ ノレ基、 2—メチノレ一 c—プロピル基、 n—ペンチル基、 1—メチノレ _n_ブチル基、 2—メチノレ _n—ブチル基、 3—メチルー n—ブチル基、 1 , 1—ジメチノレー n—プロピル基、 1 , 2—ジメ チノレ _n—プロピル基、 2, 2—ジメチノレ— n—プロピル基、 1—ェチノレ— n—プロピル基、 c_ ペンチル基、 1ーメチノレー c_ブチル基、 2—メチノレー c_ブチル基、 3—メチルー cーブチノレ 基、 1 , 2—ジメチノレー c_プロピル基、 2, 3_ジメチルー c_プロピル基、 1—ェチルー c_ プロピル基、 2—ェチルー c—プロピル基、 n—へキシル基、 1ーメチルー n—ペンチル基、 2—メチノレー n ペンチル基、 3—メチルー n ペンチル基、 4ーメチルー n ペンチル基、 1 , 1 ジメチルー n ブチル基、 1, 2—ジメチルー n ブチル基、 1 , 3—ジメチノレー n—ブチ ル基、 2, 2—ジメチノレー n ブチル基、 2, 3 ジメチルー n ブチル基、 3, 3—ジメチルー n ブチル基、 1ーェチノレー n ブチル基、 2—ェチノレー n ブチル基、 1 , 1 , 2—トリメチル —n—プロピノレ基、 1 , 2, 2—トリメチノレ一 n—プロピル基、 1—ェチル 1—メチル _n—プロ ピノレ基、 1ーェチノレー 2—メチルー n プロピル基、 c一へキシル基、 1ーメチルー c—ペンチ ノレ基、 2—メチノレ _c—ペンチル基、 3—メチノレ _c—ペンチル基、 1—ェチノレ一 c_ブチル 基、 2_ェチル _c_ブチル基、 3_ェチル _c_ブチル基、 1 , 2_ジメチノレ _c_ブチル基 、 1 , 3—ジメチノレー c_ブチル基、 2, 2—ジメチル _c_ブチル基、 2, 3—ジメチル— c—ブ チル基、 2, 4_ジメチノレ _c_ブチル基、 3, 3_ジメチノレ _c_ブチル基、 l_n—プロピノレ _c—プロピル基、
2— n—プロピル _c—プ口ピル基、 1— i—プロピル _c—プ口ピル基、 2— i—プロピル _c—プ ロピノレ基、 1, 2, 2_トリメチノレ _c—プロピノレ基、 1, 2, 3_トリメチノレ _c—プロピノレ基、 2 , 2, 3—トリメチルー c—プロピル基、 1—ェチルー 2—メ
チノレ一 c—プロピル基、 2—ェチノレ一 1_メチル c—プロピル基、 2—ェチノレ一 2-メチノレ一 c -プロピル基及び 2-ェチル -3-メチル -C-プロピル基等が挙げられる。
[0009] C アルキル基としては直鎖、分枝鎖状のもの及び C シクロアルキル基を含んで
1-20 3-20
レヽてもよく、上記に加え、 1_メチル _1_ェチル _n—ペンチル基、 1_ヘプチル、 2_へ プチル基、 c—ヘプチル基、 1—ェチノレ— 1 , 2—ジメチノレ _n—プロピル基、 1—ェチノレ— 2 , 2_ジメチルー n—プロピル基、 1—ォクチル基、 3—ォクチル基
、 c—ォクチル基、 4—メチノレ— 3_n—ヘプチル基、 6—メチノレ _2_n—ヘプチル基、 2—プ ロピノレ— l_n—ヘプチル基、 2, 4, 4_トリメチノレ— l_n—ペンチル基、 1_ノニル基、 2— ノニノレ基、 2, 6_ジメチノレ一 4_n_ヘプチル基、 3—ェチノレ一 2, 2—ジメチル _3_n—ぺ ンチル基、 3, 5, 5_トリメチルー 1一 n キシル基、 1_デシル基、 2_デシル基、 4—デ シノレ基、 3, 7—ジメチノレー l_n—ォクチル基、 3, 7—ジメチル— 3_n—ォクチル基、 n—ゥ ンデシノレ基、 n—ドテンノレ基、 n トリテシノレ基、 n—テトラテンノレ基、 n ペンタデシノレ基 、 n キサデシル基、 n プタデシル基、 n—ォクタデシル基、 n—ノナデシル基及 び n—エイコシル基等が挙げられる。
[0010] C アルコキシ基としては、直鎖、分枝鎖状のもの及び C シクロアルコキシ基を含
1-6 3-6
んでいてもよぐメトキシ基、エトキシ基、 n プロポキシ基、 i プロポキシ基、 c プロボ キシ基、 n ブトキシ基、 i ブトキシ基、 s ブトキシ基、 t ブトキシ基、 c ブトキシ基、 1 ーメチルー c—プロポキシ基、 2—メチノレー c—プロポキシ基、 n ペンチルォキシ基、 1ーメ チルー n ブトキシ基、 2—メチルー n ブトキシ基、 3—メチルー n ブトキシ基、 1 , 1ージメ チノレー n プロポキシ基、 1 , 2—ジメチノレー n プロポキシ基、 2, 2—ジメチルー n_プロボ キシ基、 1—ェチルー n—プロポキシ基、 c—ペンチルォキシ基、 1ーメチノレー c—ブトキシ 基、 2—メチルー c—ブトキシ基、 3—メチルー c—ブトキシ基、 1 , 2_ジメチルー c—プロポキ シ基、 2, 3_ジメチノレ— c—プロポキシ基、 1—ェチノレ— c—プロポキシ基、 2—ェチノレ _c_ プロポキシ基、 n キシルォキシ基、 1—メチルー n—ペンチルォキシ基、 2—メチルー n —ペンチルォキシ基、 3—メチノレ— n—ペンチルォキシ基、 4—メチノレ— n—ペンチルォキ シ基、 1 , 1—ジメチノレー n—ブトキシ基、 1, 2_ジメチルー n—ブトキシ基、 1 , 3—ジメチル _n—ブトキシ基、 2, 2—ジメチルー n—ブトキシ基、 2, 3—ジメチルー n—ブトキシ基、 3, 3 ージメチルー n—ブトキシ基、 1ーェチルー n—ブトキシ基、 2—ェチノレー n—ブトキシ基、 1 , 1 , 2—トリメチルー n—プロポキシ基、 1 , 2, 2—トリメチルー n—プロポキシ基、 1一ェチル _1ーメチルー n—プロポキシ基、 1—ェチルー 2—メチルー n—プロポキシ基、 c—へキシル ォキシ基、 1ーメチノレー c—ペンチルォキシ基、 2—メチルー c—ペンチルォキシ基、 3—メ チル— c—ペンチルォキシ基、 1_ェチル _c—ブトキシ基、 2_ェチル _c—ブトキシ基、 3 —ェチノレー c—ブトキシ基、 1 , 2—ジメチノレー c—ブトキシ基、 1, 3—ジメチノレー c—ブトキシ 基、 2, 2—ジメチノレー c—ブトキシ基、 2, 3_ジメチルー c—ブトキシ基、 2, 4_ジメチルー c —ブトキシ基、 3, 3_ジメチルー c—ブトキシ基、 l_n_プロピル一 c—プロポキシ基、 2_n —プロピル _c—プロポキシ基、 プロピノレ— c—プロポキシ基、 2— i—プロピル _c—プ 口ポキシ基、 1 , 2, 2_トリメチルー c—プロポキシ基、 1 , 2, 3_トリメチルー c—プロポキシ 基、 2, 2, 3_トリメチノレ— c—プロポキシ基、 1—ェチノレ _2_メチル _c—プロポキシ基、 2 —ェチルー 1ーメチルー c—プロポキシ基、 2—ェチルー 2—メチノレー c—プロポキシ基及び 2 -ェチル -3-メチル -C-プロポキシ基等が挙げられる。
C アルコキシカルボニル基としては、直鎖、分枝鎖状のもの及び C シクロアルコ
1-6 3-6
キシカルボ二ル基を含んでいてもよぐメトキシカルボニル基、エトキシカルボニル基、 n—プロポキシ力/レポ二/レ基、 i一プロポキシカノレボニノレ基、 c一プロポキシ力/レポ二 ル基、 n—ブトキシカルボニル基、 i一ブトキシカルボニル基、 s—ブトキシカルボニル基 、 t一ブトキシカルボニル基、 c一ブトキシカルボニル基、 1ーメチノレー c一プロポキシカル ボニル基、 2—メチノレー c一プロポキシカルボニル基、 n—ペンチルォキシカルボニル基 、 1ーメチルー n—ブトキシカルボニル基、 2—メチノレー n—ブトキシカルボニル基、 3—メチ ノレ一 n—ブトキシカルボニル基、 1 , 1一ジメチルー n—プロポキシ
カルボニル基、 1, 2—ジメチノレー n—プロポキシカルボニル基、 2, 2—ジメチルー n—プロ ポキシカルボニル基、 1—ェチノレー n—プロポキシカルボニル基、 c—ペンチルォキシカ ルボニル基、 1—メチノレ— c—ブトキシカルボニル基、 2—メチノレ— c—ブトキシカルボニル 基、 3—メチノレ— c—ブトキシカルボニル基、 1, 2_ジメチノレ— c—プロポキシカルボニル 基、 2, 3_ジメチノレ— c—プロポキシカルボニル基、 1—ェチノレ— c—プロポキシカルボ二 ル基、 2—ェチノレー c—プロポキシカルボニル基、 n—へキシルォキシカルボニル基、 1_ メチノレー n—ペンチルォキシカルボニル基、 2—メチノレー n—ペンチルォキシカルボニル 基、 3—メチルー n—ペンチルォキシカルボニル基、 4ーメチルー n—ペンチルォキシカル ボニル基、 1 , 1一ジメチルー n—ブトキシカルボニル基、 1 , 2—ジメチルー n—ブトキシカ ルボニル基、 1 , 3—ジメチルー n—ブトキシカルボニル基、 2, 2—ジメチルー n—ブトキシ カルボニル基、 2, 3_ジメチノレ _n_ブトキシカルボニル基、 3, 3_ジメチノレ _n_ブトキ シカルボニル基、 1—ェチノレ— n—ブトキシカルボニル基、 2—ェチノレ _n_ブトキシカル ボニル基、 1, 1 , 2_トリメチノレ— n—プロポキシカルボニル基、 1, 2, 2_トリメチル _n_ プロポキシカルボニル基、 1—ェチノレ— 1—メチノレ _n_プロポキシカルボニル基、 1—ェ チノレー 2—メチノレ— n—プロポキシカルボニル基、 c—へキシルォキシカルボニル基、 1_ メチノレ— c—ペンチルォキシカルボニル基、 2—メチノレ— c—ペンチルォキシカルボニル 基、 3—メチノレ— c—ペンチルォキシカルボニル基、 1—ェチノレ— c—ブトキシカルボニル 基、 2—ェチノレ _c—ブトキシカルボニル基、 3—ェチノレ _c—ブトキシカルボニル基、 1, 2 —ジメチルー c—ブトキシカルボニル基、 1, 3—ジメチノレー c—ブトキシカルボニル基、 2, 2—ジメチルー c一ブトキシカルボニル基、 2, 3—ジメチルー c一ブトキシカルボニル基、 2 , 4一ジメチルー c一ブトキシカルボニル基、 3, 3—ジメチルー c一ブトキシカルボニル基、 l_n_プロピノレー c—プロポキシカルボニル基、 2_n_プロピノレー c—プロポキシカルボ二 ル基、 プロピノレー c—プロポキシカルボニル基、 2_i_プロピノレー c—プロポキシ力 ルボニル基、 1 , 2, 2_トリメチルー c—プロポキシカルボニル基、 1 , 2, 3_トリメチルー c 一プロポキシカルボニル基、 2, 2, 3—トリメチルー c—プロポキシカルボニル基、 1ーェチ ノレ一 2—メチルー c—プロポキシカルボニル基、 2—ェチノレー 1ーメチルー c—プロポキシ力 ルボニル基、 2—ェチルー 2—メチノレー c一プロポキシカルボニル基及び 2—ェチノレー 3— メチルー c_プロポキシカルボニル基等が挙げられる。
C アルキルカルボニルォキシ基としては、直鎖、分枝鎖状のもの及び C シクロア
1-6 3-6 ルキルカルボ二ルォキシ基を含んでいてもよぐメチルカルボニルォキシ基、ェチル カルボニルォキシ基、 n—プロピルカルボニルォキシ基、 i一プロピルカルボニルォキシ 基、 c_プロピルカルボニルォキシ基、 n_ブチルカルボニルォキシ基、 i一ブチルカル ボニルォキシ基、 s_ブチルカルボニルォキシ基、 t_ブチルカルボニルォキシ基、 c_ ブチルカルボニルォキシ基、 1ーメチノレー c—プロピルカルボニルォキシ基、 2—メチルー c—プロピルカルボニルォキシ基、 n—ペンチルカルボニルォキシ基、 1—メチルー n—ブ チルカルボニルォキシ基、 2—メチルー n ブチルカルボニルォキシ基、 3—メチルー n— ブチルカルボニルォキシ基、 1 , 1 ジメチルー n プロピルカルボニルォキシ基、 1 , 2 ジメチルー n—プロピルカルボニルォキシ基、 2, 2—ジメチノレー n プロピルカルボ二 ルォキシ基、 1—ェチノレー n—プロピルカルボニルォキシ基、 c—ペンチルカルボニルォ キシ基、 1—メチノレ _c_ブチルカルボニルォキシ基、 2—メチノレ _c_ブチルカルボニル ォキシ基、 3—メチノレー c_ブチルカルボニルォキシ基、 1, 2_ジメチルー c—プロピル力 ノレボニノレ才キシ基、 2, 3- ジメチノレ— c—プロピルカルボニルォキシ基、 1—ェチノレ— c—プロピルカルボ二ルォキ シ基、 2—ェチノレー c—プロピルカルボニルォキシ基、 n—へキシルカルボニルォキシ基 、 1—メチノレ— n—ペンチルカルボニルォキシ基、 2—メチノレ— n—ペンチルカルボニルォ キシ基、 3—メチノレー n—ペンチルカルボニルォキシ基、 4ーメチノレー n—ペンチルカルボ ニルォキシ基、 1 , 1_ジメチルー n—ブチルカルボニルォキシ基、
1 , 2 ジメチルー n ブチルカルボニルォキシ基、 1 , 3 ジメチルー n ブチルカルボ二 ルォキシ基、 2, 2 ジメチルー n ブチルカルボニルォキシ基、 2, 3 ジメチ ノレ _n_ブチルカルボニルォキシ基、 3, 3—ジメチルー n ブチルカルボニルォキシ基、 1ーェチルー n ブチルカルボニルォキシ基、 2—ェチノレー n ブチルカルボニルォキシ 基、 1 , 1 , 2—トリメチノレー n プロピルカルボニルォキシ基、 1 , 2, 2_トリメチルー n—プ 口ピルカルボニルォキシ基、 1ーェチノレー 1ーメチルー n プロピルカルボニルォキシ基 、 1ーェチルー 2—メチルー n プロピルカルボニルォキシ基、 c一へキシルカルボニルォ キシ基、 1ーメチノレー c ペンチルカルボニルォキシ基、 2—メチノレー c ペンチルカルボ ニルォキシ基、 3—メチルー c ペンチルカルボニルォキシ基、 1ーェチルー cーブチルカ ルボニルォキシ基、 2—ェチノレー c_ブチルカルボニルォキシ基、 3—ェチルー cーブチ ルカルボニルォキシ基、 1 , 2—ジメチノレー c_ブチルカルボニルォキシ基、 1, 3—ジメ チノレー c_ブチルカルボニルォキシ基、 2, 2_ジメチノレ _c_ブチルカルボニルォキシ 基、 2, 3_ジメチノレ _c_ブチルカルボニルォキシ基、 2, 4_ジメチノレ _c_ブチルカル ボニルォキシ基、 3, 3—ジメチノレー c_ブチルカルボニルォキシ基、 l_n_プロピル一 c —プロピルカルボニルォキシ基、 2_n—プロピノレー c—プロピルカルボニルォキシ基、 1 _i—プロピノレ _c—プロピルカルボニルォキシ基、 2_i—プロピノレ _c—プロピルカルボ二 ルォキシ基、 1, 2, 2-トリメチルー c-プロピルカルボニルォキシ基、 1 , 2, 3-トリメチ ノレ c—プロピルカルボニルォキシ基、 2, 2, 3 トリメチルー c—プロピルカルボニルォ キシ基、 1—ェチルー 2—メチノレー c—プロピルカルボニルォキシ基、 2—ェチルー 1ーメチ ノレ— c—プロピルカルボニルォキシ基、 2—ェチノレ— 2—メチノレ— c—プロピルカルボニル ォキシ基及び 2—ェチルー 3—メチルー c_プロピルカルボニルォキシ基等が挙げられる
[0013] C 芳香族基としては、 2_フリル基、 3_フリル基、 2_チェニル基、 3_チェニル基、
4-12
フエニル基、 ひ—ナフチル基、 j3 _ナフチル基、 o—ビフエ二リル基、 m—ビフエ二リル基 及び p_ビフェ二リル基等が挙げられる。
[0014] 次に、 R1及び R2の各置換基における具体例について説明する。
[0015] R1の具体例としては、メチノレ基、ェチル基、 n—プロピル基、 i一プロピル基、 c—プロピ ノレ、 n—ブチル基、 i一ブチル基、 s_ブチル基、 t_ブチル基、 c_ブチル基、 1ーメチルー c プロピル基、 2—メチルー c プロピル基、 n ペンチル基、 1ーメチノレー n ブチル基、 2—メチルー n ブチル基、 3—メチルー n ブチル基、 1, 1 ジメチルー n プロピル基、 1 , 2—ジメチルー n プロピル基、 2, 2—ジメチルー n—プロピル基、 1ーェチルー n プロピ ル基、 c ペンチル基、 1ーメチノレー c ブチル基、 2—メチルー c ブチル基、 3—メチルー c_ブチル基、 1, 2_ジメチルー c_プロピル基、 2, 3—ジメチノレー c_プロピル基、 1—ェ チノレー c—プロピル基、 2—ェチノレー c—プロピル基、 n—へキシル基、 1ーメチルー n ペン チル基、 2—メチルー n ペンチル基、 3—メチノレー n ペンチル基、 4ーメチノレー n ペンチ ル基、 1 , 1ージメチノレー n ブチル基、 1 , 2—ジメチルー n ブチル基、 1, 3—ジメチルー n ブチル基、 2, 2-ジメチルー n ブチル基、 2, 3_ジメチノレー n ブチル基、 3, 3_ジ メチノレ— n_ブチル基、 1—ェチノレ— n_ブチル基、 2—ェチノレ— n_ブチル基、 1 , 1, 2—ト リメチノレ一 n—プロピル基、 1, 2, 2_トリメチノレ _n—プロピル基、 1—ェチノレ _1—メチノレ一 n_プロピル基、 1—ェチノレ— 2—メチノレ _n_プロピル基、 c—へキシル基、 1_メチル _c_ ペンチル基、 2—メチノレ— c—ペンチル基、 3_メチル _c—ぺ
ンチル基、 1—ェチノレ _c_ブチル基、 2—ェチノレ _c_ブチル基、 3_ェチル _c—ブチノレ 基、 1 , 2—ジメチノレー c_ブチル基、 1, 3—ジメチル _c_ブチル基、 2, 2—ジメチル _c_ ブチル基、 2, 3_ジメチルー c_ブチル基、 2, 4—ジメチノレー c_ブチル基、 3, 3_ジメチ ノレ _c_ブチル基、 l_n_プロピノレー c—プロピル基、
2_n—プロピル一 c—プ口ピル基、 1 _i一プロピル一 c—プ口ピル基、
2_i—プロピル一 c—プロピル基、 1 , 2, 2_トリメチルー c—プロピル基、 1 , 2, 3_トリメチ ノレ _c—プロピル基、 2, 2, 3_トリメチノレ _c—プロピル基、 1—ェチノレ _2—メチノレ _c—プ 口ピル基、 2—ェチノレ _1—メチノレ _c—プロピル基、 2—ェチル一2—メチル _c—プロピノレ 基、 2—ェチノレ _3—メチノレ _c—プロピル基、
c_ヘプチル基、 c—ォクチル基、 2—フリノレ基、 3—フリノレ基、 2_チェニル基、
3_チェニル基、フエニル基、 o_メチルフエニル基、 m—メチルフエニル基、 p—メチノレ フエニル基、 o—メトキシフエニル基、 m—メトキシフエニル基、 p—メトキシフエニル基、 o —ベンジルォキシフエ二ル基、 m—べンジルォキシフエニル基、 p—ベンジルォキシフエ 二ノレ基、 o—クロ口フエ二ル基、 m—クロ口フエ二ル基、 p—クロ口フエ二ル基、 o—ブロモフ ェニル基、 m—ブロモフエニル基、 p_ブロモフエニル基、 ひ—ナフチル基、 β—ナフチ ル基及びべンジノレ基等が挙げられ、特に、 η—プロピル基、 i一プロピル基、 t一ブチル 基、 c—ペンチル基、 c一へキシル基、 c一へプチル基、フエニル基、 p—べンジルォキシ フエニル基、 m—メチルフエニル基、 p—メチルフエニル基、 β一ナフチル基、 ρ_ブロモ フエニル基及び 2-フリル基が挙げられる。
R2の具体例としては、メチル基、ェチル基、 η—プロピル基、 i一プロピル基、 c_プロピ ル基、 n -ブチル基、 i一ブチル基、 s -ブチル基、 t一ブチル基、 c一ブチル基、 1ーメチ ノレ一 c—プロピル基、 2—メチルー c—プロピル基、 n—ペンチル基、 1—メチルー n—ブチノレ 基、 2—メチルー n—ブチル基、 3—メチルー n—ブチル基、 1 , 1一ジメチルー n—プロピル 基、 1 , 2—ジメチノレー n—プロピル基、 2, 2_ジメチルー n—プロピル基、 1—ェチルー n— プロピル基、 c_ペンチル基、 1—メチルー c_ブチル基、 2—メチルー c_ブチル基、 3—メ チノレ— c_ブチル基、 1 , 2_ジメチノレ _c—プロピル基、 2, 3_ジメチノレ _c—プロピル基、 1—ェチノレ _c—プロピル基、 2—ェチノレ _c—プロピル基、 n—へキシル基、 1_メチル _n —ペンチル基、 2—メチノレ _n_ペンチル基、 3—メチノレ一 n—ペンチル基、 4—メチル _n_ ペンチル基、 1, 1_ジメチルー n—ブチル基、 1 , 2—ジメチノレー n—ブチル基、 1 , 3—ジメ チルー n—ブチル基、 2, 2_ジメチノレー n—ブチル基、 2, 3_ジメチルー n_ブチル基、 3, 3—ジメチノレ— n_ブチル基、 1—ェチノレ— n_ブチル基、 2—ェチノレ— n_ブチル基、 1, 1 , 2_トリメチルー n—プロピル基、 1 , 2, 2_トリメチルー n プロピル基、 1—ェチルー 1ーメ チルー n プロピル基、 1ーェチノレー 2—メチルー n プロピル基、 c一へキシル基、 1ーメチ ノレ c—ペンチル基、 2—メチノレー c—ペンチル基、 3—メチノレー c—ペンチル基、 1ーェチ ノレ— c_ブチル基、 2—ェチノレ— c_ブチル基、 3—ェチノレ— c_ブチル基、 1 , 2—ジメチル _c_ブチル基、 1 , 3_ジメチルー c_ブチル基、 2, 2_ジメチルー c_ブチル基、 2, 3—ジ メチノレー c_ブチル基、 2, 4_ジメチルー c_ブチル基、 3, 3_ジメチルー c_ブチル基、 1 _n—プロピノレ _c—プロピル基、 2_n—プ
口ピノレ _c—プロピル基、 l_i—プロピノレ— c—プロピル基、 2_i—プロピル _c—プロピル基 、 1 , 2, 2—トリメチノレ— c—プロピル基、 1 , 2, 3—トリメチル _c—プロピル基、 2, 2, 3—ト リメチノレ _c—プロピル基、 1—ェチノレ _2—メチノレ _c—プロピル基、 2—ェチノレ一 1_メチル _c—プロピル基、 2—ェチノレ _2—メチノレ _c—プロピル基、 2—ェチノレ _3—メチノレ _c—プ ロピ基ル、 c_ヘプチル基、 c—ォクチル基、フヱニル基及びベンジル基等が挙げられ 、特に、メチル基及びべンジル基が挙げられる。
好ましい式(1)で表される α—アミノアシノレ酢酸エステルイ匕合物としては、以下のも のが挙げられる。
D R1が C アルキル基又は C 芳香族基 (該芳香族基は、ハロゲン原子、 C アル
1-20 4-12 1-6 キル基、 C アルコキシ基又はべンジルォキシ基で任意に置換されていてもよい。 )
1-6
である式(1)で表される α アミノアシノレ酢酸エステル化合物。
2) R2が C アルキル基、又は C 芳香族基で置換された C アルキル基である式(1
1-6 4-12 1-6
)で表される α アミノアシノレ酢酸エステルイ匕合物。
3) R^SC アルキル基又は C 芳香族基 (該芳香族基は、ハロゲン原子、 C アル
1-20 4-12 1-6 キル基、 C アルコキシ基又はべンジルォキシ基で任意に置換されていてもよレ、。 )
1-6
であり、 R2が C アルキル基、又は C 芳香族基で置換された C アルキル基である
1-6 4-12 1-6
式( 1 )で表されるひ—アミノアシル酢酸エステルイ匕合物。
4) R1が n—プロピル基、 i一プロピル基、 t_ブチル基、 c—ペンチル基、 c—へキシル基、 c—ヘプチル基、フエニル基、 p—ベンジルォキシフエニル基、 m—メチルフエニル基、 p —メチルフエ二ル基、 /3 _ナフチル基、 p_ブロモフエニル基又は 2_フリル基である式( 1)で表されるひ—アミノアシル酢酸エステル化合物。 5) R2がメチル基又はべンジル基である式(1)で表される α—アミノアシル酢酸エステ ル化合物。
6) 1^が η—プロピル基、 i一プロピル基、 t_ブチル基、 c—ペンチル基、 c一へキシル基、 c—ヘプチル基、フエニル基、 p—ベンジルォキシフエニル基、 m—メチルフエニル基、 p —メチルフエ二ル基、 /3—ナフチル基、 p_ブロモフエニル基又は 2_フリル基であり、 R2 力 Sメチル基又はべンジル基である式(1)で表されるひ—アミノアシル酢酸エステル化 合物。
[0018] 本発明の触媒的不斉水素化反応に用レ、られる触媒としては、通常の触媒的不斉 水素化反応に用いられる触媒を使用することができる。 (非特許文献 3参照。 )
[0019] 好ましい触媒としては、光学活性ホスフィン配位子を有する、周期表第 VIII族の遷 移金属の錯体が挙げられる。
[0020] 周期表第 VIII族の遷移金属としては、鉄、コバルト、ニッケル、ルテニウム、ロジウム 、パラジウム、オスミウム、イリジウム及び白金が挙げられる力 ルテニウム、ロジウム及 びイリジウムが好ましい。
[0021] 本発明に使用する光学活性ホスフィン配位子は全て光学活性体となる。
光学活性ホスフィン配位子としては、光学活性 2座ホスフィン配位子が好ましレ、。 光学活性 2座ホスフィン配位子としては、 BINAP、 BIPHEMP、 RR〇PHOS、 DE GUPH〇S、 DIOP、 DIPAMP、 DuPHOS、 NORPH〇S、 PNNP、 SKEWPHOS 、 BPPFA、 SEGPH〇S、 CHIRAPHOS及び H—BINAP等が挙げられる。
8
[0022] BINAPとしては、 BINAPの誘導体も含まれ、具体例としては、 2, 2'—ビス(ジフエ ニルホスフイノ)— 1, 1,—ビナフチル、 2, 2,—ビス(ジー p—トリルホスフイノ)— 1 , 1,—ビ ナフチル、 2, 2 ' _ビス(ジ一 p—三級ブチルフエニルホスフイノ)— 1 , 1,—ビナフチル、 2 , 2'—ビス(ジ— m—トリルホスフイノ)— 1, 1 '—ビナフチル、 2, 2'—ビス(ジ— 3, 5—ジメ チルフエニルホスフイノ)— 1 , 1 '—ビナフチル、 2, 2'—ビス(ジ— p—メトキシフエ二ルホ スフイノ)_1, 1,—ビナフチル、 2, 2,_ビス(ジシクロペンチルホスフイノ)_1 , 1,—ピナ フチル、 2, 2 ' _ビス(ジシクロへキシルホスフイノ)_1, 1 '—ビナフチル、 2_ジ(β—ナ フチル)ホスフイノ— 2,—ジフエニルホスフイノ— 1, 1 '—ビナフチル及び 2—ジフエ二ル ホスフイノ— 2,—ジ(ρ—トリフルォロメチルフエニル)ホスフィノー 1, 1 '—ビナフチル等が 挙げられ、好ましくは、 2, 2,-ビス(ジフエ
ニルホスフイノ)— 1, 1,—ビナフチル、 2, 2,—ビス(ジー p—トリルホスフイノ)— 1, 1,—ビ ナフチル及び 2, 2,-ビス(ジ -p—三級ブチルフエニルホスフイノ)_1, 1,-ビナフチ ルが挙げられる。
[0023] BIPHEMPとしては、 BIPHEMPの誘導体も含まれ、具体例としては、
2, 2'—ジメチルー 6, 6'—ビス(ジフエニルホスフイノ)— 1, 1'—ビフエニル、 2, 2'—ジメ チル— 6, 6'—ビス(ジシクロへキシルホスフイノ)— 1, 1'—ビフエニル、 2, 2'—ジメチル _4, 4,_ビス(ジメチルァミノ)—6, 6,_ビス(ジフエニルホスフイノ)_1, 1,—ビフエ二 ノレ、 2, 2', 4, 4'—テトラメチル— 6, 6'—ビス(ジフエニルホスフイノ)— 1, 1'—ビフエ二 ノレ、 2, 2'—ジメトキシ— 6, 6'—ビス(ジフエニルホスフイノ)— 1, 1'—ビフエニル、 2, 2' , 3, 3'—テトラメトキシ— 6, 6'—ビス(ジフエニルホスフイノ)— 1, 1'—ビフエニル、 2, 2 ', 4, 4'—テトラメチル— 3, 3'—ジメトキシ— 6, 6'—ビス(ジフエニルホスフイノ)— 1, 1, —ビフエニル、 2, 2'—ジメチノレー 6, 6'—ビス(ジー p—トリルホスフイノ)— 1, 1'—ビフエ二 ノレ、 2, 2'_ジメチルー 6, 6'_ビス(ジー p—三級ブチルフエニルホスフイノ)_1, 1 '—ビ フエニル及び 2, 2,, 4, 4,ーテトラメチルー 3, 3,—ジメトキシ 6, 6,—ビス(ジ p—メト キシフエニルホスフイノ)_1, 1,ービフエエルが挙げられ、好ましくは 2, 2,—ジメトキシ -6, 6 '_ビス(ジフエニルホスフイノ)— 1, 1 '—ビフエニルが挙げられる。
[0024] その他の光学活性 2座ホスフィン配位子及びその誘導体の例を以下に図示するが 、これらに限定されるものではない。
[化 9]
P(C6H5)2 PROPHOS: = CH3
PROPHOS BENZPHOS: Rb = C6H5CH
P(C6H5)2 CyCPHOS: Rb = c-CgHn
D
H
Figure imgf000018_0001
[化 10]
)2
NORPHOS: )2
S EWPHOS
Figure imgf000019_0001
BPPFA: X = (CH3)2N
BPPFOH: X = OH
SEGPHOS
CHI APHOS
Figure imgf000019_0002
[0025] 本発明の触媒的不斉水素化反応に用いられる触媒は、遷移金属化合物及び光学 活性ホスフィン配位子より調製することができるが、必要に応じて配位可能な添加物 をカロえることもできる。
[0026] 遷移金属化合物としては、ジ— μ—クロロテトラキス(シクロオタテン) 2ロジウム、ジ— 一クロ口ビス(1, 5—シクロォクタジェン)2ロジウム及び 1, 5—シクロォクタジェンビス (ァセトニトリル)ロジウムテトラフルォロホウ酸塩等のロジウム化合物、ジ / i _クロロテ トラキス(シクロオタテン) 2イリジウム、ジ _ μ _クロ口ビス(1 , 5—シクロォクタジェン) 2 イリジウム、ジ / i—クロロテトラキス(エチレン) 2イリジウム及び 1 , 5—シクロォクタジェ ンビス(ァセトニトリル)イリジウムテトラフルォロホウ酸塩等のイリジウム化合物、テトラ クロ口( —ベンゼン) 2ルテニウム及びテトラクロ口 [ η - (ρ—シメン) ] 2ルテニウム等の ルテニウム化合物等が挙げられる。
[0027] 添加物としては、配位可能な化合物で有れば特に限定はしなレ、が、例えば、ルテ ニゥム化合物を使用する場合は、 Ν, Ν—ジメチルホルムアミド等が好ましぐイリジゥ ム化合物を使用する場合には、ヨウ素化合物が好ましい。 [0028] ヨウ素化合物の具体例としては、ヨウ化テトラメチルアンモニゥム、ヨウ化テトラ n—ブ チルアンモニゥム、ヨウ化ナトリウム及びヨウ化カリウム等が挙げられ、好ましくはヨウ化 ナトリウムが挙げられる。
[0029] 光学活性ホスフィン配位子の使用量は、光学活性 2座ホスフィン配位子として、遷 移金属化合物に対して 1等量以上、好ましくは 1一 2等量加えられ、
より好ましくは、 1. 1 1. 5等量加えられる。
但し、遷移金属化合物と光学活性 2座ホスフィン配位子が 1: 2の組成となる触媒的 不斉水素化反応に用いられる触媒においては、上述の 2倍の使用量が用いられる。 又、光学活性単座ホスフィン配位子を使用する場合は、価数の関係上、上述の 2倍 の使用量が用いられる。
添加物を加える場合の使用量としては、触媒の組成比により一概には決定できな いが、通常、遷移金属化合物の使用量に対して 1一 100等量の範囲、好ましくは、 1 一 10等量の範囲である。
触媒的不斉水素化反応に用いられる触媒を調製する場合は、通常、アルゴン等の 不活性ガスの存在下で行うことが好ましレ、。
[0030] 触媒的不斉水素化反応に用いられる触媒のうち、ルテニウム触媒について、更に 詳細に説明する。
ルテニウム—光学活性ホスフィン錯体としては、ルテニウム— BINAP錯体、ルテニゥ ム—BIPHEMP錯体、ルテニウム RROPHOS錯体、ルテニウム— DEGUPHOS錯 体、ルテニウム DIOP錯体、ルテニウム—DIPAMP錯体、ルテニウム—DuPHOS錯 体、ルテニウム— NORPHOS錯体、ルテニウム— PNNP錯体、ルテニウム— SKEWP HOS錯体、ルテニウム— BPPFA錯体、ルテニウム— SEGPHOS錯体、ルテニウム— CHIRAPHOS錯体及びルテニウム— H—BINAP錯体等が挙げられる。
[0031] 以下、ルテニウム一 BINAP錯体について詳細を記載するが、同様に他の光学活性 ホスフィン配位子を用いてもよい。
ルテニウム— BINAP錯体としては、 RuHX1 (R3_BINAP) , RuX2 (R -BINAP) 及び Ru CI (R -BINAP) (Et N) [式中、 X1及び X2は、それぞれ Cl、 CIO、: BF、 P
F、 OCOCH、 OCOCF、〇CO— t_Bu又は OSO CFを意味し、 R3_BINAPは、 [化 11]
Figure imgf000021_0001
(式中、 R3は、水素原子、メチル基又は三級ブチル基を意味し、絶対配置は S又は R のどちらかを意味する。)を意味する力 該錯体は、 N, N—ジメチルホルムアミド、ベ ンゼン、 A1C1、 SnCl、 TiCI又は ZnClで更に配位されていてもよレ、。 ]が挙げられ
、具体的には、 RuHCl (BINAP) 、 RuHCl (T—BINAP) 、 RuHCl (t-Bu-BINA
P) 、 RuH (CIO ) (BINAP) 、 RuH (CIO ) (T—BINAP) 、 RuH (BF ) (BINAP)
、 RuH (BF ) (T—BINAP) 、 RuH (PF ) (BINAP) 、 RuH (PF ) (T—BINAP) 、 R uCl (BINAP)、 RuCl (T—BINAP)、 RuCl (t一 Bu— BINAP)、 RuCl (BINAP) ( dmf) 、 RuCl (T—BINAP) (dmf) 、 RuCl (t_Bu— BINAP) (dmf) 、 RuCl (BIN
AP) (C H ) 、 RuCl (T—BINAP) (C H ) 、 RuCl (t_Bu— B
INAP) (C H ) 、 Ru (C10 ) (BINAP)、 Ru (C10 ) (T—BINAP)、 Ru (CIO ) (t_
Bu_BINAP)、 Ru (BF ) (BINAP)、 Ru (BF ) (T— BINAP)、 Ru (BF ) (t_Bu—
BINAP)、 Ru (PF ) (BINAP)、 Ru (PF ) (T—BINAP)、 Ru (OCOCH ) (BINA
P)、Ru (OC〇CF ) (BINAP)、 Ru (OCO-t-Bu) (BINAP)、 Ru (OCOCH ) (
T—BINAP)、 Ru (OCOCF ) (T—BINAP)、 Ru (OCOCH ) (t_Bu— BINAP)、
Ru (OCOCH ) (BINAP) (ZnCl )、 Ru (OCOCH ) (BINAP) (AICl )、 Ru (OC
OCH ) (BINAP) (SnCl )、 Ru (OCOCH ) (BINAP) (TiCI )、 Ru (OCOCH )
(T—BINAP) (ZnCl )、 Ru (OCOCH ) (T—BINAP) (AICl )、 Ru (OCOCH ) (
T—BINAP) (SnCl )、 Ru (OCOCH ) (T—BINAP) (TiCI )、 Ru CI (BINAP) (
Et N)、 Ru CI (T—BINAP) (Et N)、 Ru CI (t_Bu— BINAP) (Et N)、 Ru CI (
BINAP) (ZnCl ) (Et N)、 Ru CI (BINAP) (AICl ) (Et N)、 Ru CI (BINAP)
(SnCl ) (Et N)、 Ru CI (BINAP) (TiCI ) (Et N)、 Ru CI (T—BINAP) (Zn CI ) (Et N)、 Ru CI (T-BINAP) (A1C1 ) (Et N)、 Ru CI (T— BINAP) (SnCl
) (Et N)及び Ru Cl (T-BINAP) (TiCl ) (Et N) [式中、 BINAPは、絶対配置 力 又は Rの、 2, 2 '―ビス(ジフエニルホスフイノ)— 1 , 1 '—ビナフチルを意味し、 T一 B INAPは、絶対配置が S又は Rの、 2, 2' _ビス(ジ_ _トリルホスフィノ)_1 , 1,—ピナ フチルを意味し、 t一 Bu— BINAPは、絶対配置が S又は Rの、 2, 2'—ビス(ジ一 p— t— ブチルフエニルホスフイノ)_1 , 1 '—ビナフチルを意味し、 Etはェチル基を意味し、 t- Buは、 t_ブチル基を意味し、 dmfは、 N, N—ジメチルホルムアミドを意味し、 nは 1又 は 2を意味する。 ]等が挙げられる。
好ましい、ルテニウム—光学活性ホスフィン錯体としては、以下の 1)、 2)のものが挙 げられる。
D RuHX1 (R -BINAP) 、 RuX2 (R3— BINAP)又は Ru CI (R3— BINAP) (Et N)
[式中、 X1及び X2は、それぞれ Cl、 CIO、 BF、 PF、 OCOCH、 OCOCF、〇CO— t— Bu又は OSO CFを意味し、 R3— BINAPは、
[化 12]
Figure imgf000022_0001
(式中、 R3は、水素原子、メチル基又は三級ブチル基を意味し、絶対配置は S又は R のどちらかを意味する。)を意味する力 該錯体は、 N, N—ジメチルホルムアミド、ベ ンゼン、 A1C1、 SnCl、 TiCl又は ZnClで更に配位されていてもよレ、。 ]。
2) RuCl (BINAP) , RuCl (T-BINAP) , RuCl (t_Bu—
BINAP)、 RuCl (BINAP) (dmf) 、 RuCl (T— BINAP) (dmf) 、 RuCl (t_Bu_B
INAP) (dmf) 、 RuCl (BINAP) (C H ) 、 RuCl (T— BINAP) (C H )又は RuCl
(t-Bu-BINAP) (C H ) [式中、 BINAPは、絶対配置が S又は Rの、 2, 2,_ビス( ジフエニルホスフイノ)— 1 , 1,-ビナフチルを意味し、 T-BINAPは、絶対配置が S又 は Rの、 2, 2 '—ビス(ジー p—トリルホスフイノ)— 1 , 1,—ビナフチルを意味し、 t— Bu— BI NAPは、絶対配置が S又は尺の、 2, 2,一ビス(ジー p—t—ブチルフエニルホスフイノ)— 1 , 1,-ビナフチルを意味し、 dmfは、 N, N-ジメチルホルムアミドを意味し、 nは 1又 は 2を意味する。 ]。
[0033] 好ましい、 1)のルテニウム一光学活性ホスフィン錯体としては、
RuX2 (R -BINAP) (式中、 X2及び R3 - BINAPは前記と同じ意味を表わし、該錯体
2
は、 N, N—ジメチルホルムアミド、ベンゼン、 A1C1 、 SnCl 、 TiCl又は ZnClで更に
3 4 4 2 配位されていてもよレ、。)が挙げられ、更に好ましいものとしては、 N, N—ジメチルホ ルムアミド又はベンゼンで更に配位された RuX2 (R -BINAP) (式中、 X2が CIを表わ
2
し、 R3_BINAPは前記と同じ意味を表わす。)が挙げられる。
[0034] また、好ましレヽ 2)のルテニウム—光学活性ホスフィン錯体としては、
RuCl (BINAP) (dmf) 、 RuCl (T—BINAP) (dmf)又は RuCl (t-Bu-BINAP)
2 n 2 n 2
(dmf) [式中、 BINAPは、絶対配置が S又は尺の、 2, 2,一ビス(ジフヱニルホスフイノ n
1,-ビナフチルを意味し、 T-BINAPは、絶対配置が S又は Rの、 2, 2,_ビス( ジ -P—トリルホスフイノ)_1 , 1,-ビナフチルを意味し、 t-Bu-BINAPは、絶対配置 力 又は Rの、 2, 2 '—ビス(ジー p— t—ブチルフエニルホスフイノ)— 1 , 1 '—ビナフチル を意味し、 dmfは、 N, N-ジメチルホルムアミドを意味し、 nは 1又は 2を意味する。 ] が挙げられ、更に好ましいものとしては、 RuCl (BINAP) (dmf) [式中、 BINAPは、
2 n
絶対配置が S又は Rの、 2, 2,-ビス(ジフエニルホスフイノ)_1 , 1,-ビナフチルを意 味し、 dmfは、 N, N-ジメチルホルムアミドを意味し、 nは 1又は 2を意味する。 ]が挙 げられる。
[0035] 触媒的不斉水素化反応に用レ、られる触媒のうち、イリジウム触媒について、更に詳 細に説明する。
イリジウム—光学活性ホスフィン錯体としては、イリジウム一 BINAP錯体、イリジウム— BIPHEMP錯体、イリジウム— RROPHOS錯体、イリジウム— DEGUPHOS錯体、ィ リジゥム _DI〇P錯体、イリジウム— DIPAMP錯体、イリジウム— DuPHOS錯体、イリジ ゥム— NORPHOS錯体、イリジウム— PNNP錯体、イリジウム— SKEWPHOS錯体、 イリジウム— BPPFA錯体、イリジウム— SEGPHOS錯体、イリジウム— CHIRAPHOS 錯体及びイリジウム- H -BINAP錯体等が挙げられる。
[0036] 好ましいイリジウム—光学活性ホスフィン錯体としては、イリジウム— BINAP錯体又は イリジウム BIPHEMP錯体が挙げられる。
イリジウム— BINAP錯体としては、 BINAPが、 BINAP、 T—BINAP又は t— Bu_BI
NAPであるものが好ましぐまた、前記錯体を調製する際、添加物としてヨウ素化合 物を加えたものも好ましい。
また、イリジウム— BIPHEMP錯体としては、 BIPHEMPが 2, 2'—ジメトキシ一 6, 6 '
—ビス(ジフエニルホスフイノ)— 1, 1,—ビフエニル(Me〇— Biphep)であるものが好ま しぐ更に、前記錯体を調製する際、添加物としてヨウ素化合物をカ卩えたもの、特に、 ヨウ素化合物として、ヨウ素化ナトリウム又はヨウ素化テトラ
n—ブチルアンモニゥムを加えたものも好ましい。
[0037] 更に、前記イリジウム一 BINAP錯体又はイリジウム一 BIPHEMP錯体を調製する際
、 [Ir (cod) C1] (式中、 codは、 1, 5—シクロォクタジェンを意味する。)を加えたもの も好ましく、特に、その調製の際、イリジウムの使用量に対し、 1一 3等量のヨウ素化ナ トリウムも添加物として使用したものが好ましい。
[0038] 触媒的不斉水素化反応に用いられる触媒のうち、ロジウム触媒について、更に詳 細に説明する。
ロジウム—光学活性ホスフィン錯体としては、ロジウム— BINAP錯体、ロジウム— BIP HEMP錯体、ロジウム RROPHOS錯体、ロジウム— DEGUPHOS錯体、ロジウム— DIOP錯体、ロジウム— DIPAMP錯体、ロジウム— DuPHOS錯体、ロジウム—NORP HOS錯体、ロジウム— PNNP錯体、ロジウム— SKEWPHOS錯体、ロジウム— BPPF A錯体、ロジウム— SEGPHOS錯体、ロジウム— CHIRAPHOS錯体及びロジウム— H —BINAP錯体等が挙げられる。
発明を実施するための最良の形態
[0039] 本発明の光学活性 βーヒドロキシー α—ァミノカルボン酸誘導体の製造方法につい て説明する。
以下の式に示すように、式(1)で表される α アミノアシノレ酢酸エステル化合物を触 媒的不斉水素化反応に用いられる触媒及び酸の存在下において、水素で還元する ことにより、式(2)又は式(3)で表される光学活性 βーヒドロキシー
誘導体を製造することができる。
[化 13]
Figure imgf000025_0001
[0040] 通常、上記反応は溶媒中で行われる。
溶媒の種類としては、反応に関与しない溶媒であれば特に限定はしないが、例え ば 1 , 1—ジクロロェタン、 1 , 2—ジクロロェタン、塩化メチレン、クロ口ホルム、クロ口べ ンゼン及び 1, 2—ジクロ口ベンゼン等のハロゲン系溶媒、ジェチルエーテル、ジイソ プロピルエーテル、テトラヒドロフラン等のエーテル系溶媒、メタノーノレ、エタノール、 η —プロパノール、 i_プロパノール、 2—ブタノール及びエチレングリコール等のアルコー ル系溶媒、酢酸並びに上記の溶媒の任意の混合溶媒が挙げられる。
[0041] 好ましい溶媒としては、ハロゲン系溶媒、アルコール系溶媒、ハロゲン系溶媒とアル コール系溶媒の混合溶媒、ハロゲン系溶媒とエーテル系溶媒の混合溶媒、酢酸、酢 酸とアルコール系溶媒の混合溶媒及び酢酸とエーテル系溶媒の混合溶媒が挙げら れ、例えば、メタノール、 n—プロパノール、 i一プロパノール、 2—ブタノール、エチレン グリコール、塩化メチレン、 1 , 2—ジクロロェタン、クロ口ベンゼン、メタノーノレ一塩化メ チレン、 n プロパノール一塩化メチレン、 i プロパノール一塩化メチレン、 n プロパノ 一ノレーテトラヒドロフラン、酢酸、酢酸 i—プロパノール及び酢酸ーテトラヒドロフラン等 が挙げられ、好ましくは、塩化メチレン、 n プロパノール、 n プロパノール一塩化メチ レン及び酢酸等が挙げられる。
[0042] 又、ルテニウム触媒を用いる場合は、塩ィ匕メチレン、 n プロパノール、 n プロパノ 一ルー塩化メチレン等が好ましぐイリジウム触媒を用いる場合は、酢酸を用いるのが 好ましい。
[0043] 触媒的不斉水素化反応に用いられる触媒の使用量は、式(1)で表される《_ァミノ ァシル酢酸エステル化合物の使用量に対して、 0. 01— 100モル%の範囲であるが 、反応効率及びコスト的な観点から好ましくは、 0. 01— 20モル%の範囲、より好まし くは、 0. 1— 10モル0 /0の範囲、最も好ましくは、 0. 3— 5モル0 /0の範囲が挙げられる
[0044] 式(1)で表されるひ一アミノアシル酢酸エステル化合物を酸の存在する溶液に加え てもよいが、あらかじめ、式(1)で表されるひ—アミノアシノレ酢酸エステル化合物と酸よ りなる塩を調製し、その塩を溶液に加えることもできる。
ひ—アミノアシノレ酢酸エステル化合物の安定性の観点から、あらかじめ、式(1)で表 されるひ—アミノアシノレ酢酸エステルイ匕合物と酸よりなる塩を調製し、その塩を溶液に 加える方が好ましい。
[0045] 使用する酸としては、好ましくは、強酸が挙げられる。
強酸の具体例としては、 HC1、 HBr、 H SO 、 HCIO 、 CH SO H、 PhSO H、 Ts
2 4 4 3 3 3
OH、 CF SO H及び CF CO H等が挙げられ、好ましくは、 HCl及び TsOHが挙げら
3 3 3 2
れ、より好ましくは、 HC1が挙げられる。
酸の使用量は、式(1)で表される α—アミノアシル酢酸エステルィヒ合物の使用量に 対して、 0. 8— 3モル等量の範囲であり、好ましくは、 0. 9一 2モル等量の範囲、より 好ましくは、 0. 9-1. 5モル等量の範囲が挙げられる。
尚、上記の酸の使用量は、あら力じめ、式(1)で表される α _アミノアシル酢酸エス テル化合物と酸よりなる塩を調製して加える場合は、その塩に含まれる酸の量を含ん だ全量を意味する。
[0046] 又、反応系中に酢酸塩を添加することもできる。
酢酸塩としては、酢酸リチウム、酢酸ナトリウム及び酢酸カリウム等の酢酸アルカリ金 属及び酢酸アンモニゥム等が挙げられ、好ましくは、酢酸アルカリ金属が挙げられ、 例えば、酢酸ナトリウムが挙げられる。
酢酸塩を添加する場合の使用量としては、式(1)で表されるひ—アミノアシノレ酢酸ェ ステル化合物の使用量に対して、 0. 8 5等量の範囲であり、好ましくは、 0. 8— 2等 量の範囲である。
特に、イリジウム触媒を用いる場合は酢酸塩を添加するのが好ましい。
[0047] 使用する水素は、通常水素ガスを使用する。 使用する水素の圧力は、通常 1一 150気圧の範囲である力 好ましくは 10— 150 気圧、より好ましくは 30— 100気圧の範囲である。
[0048] 反応温度としては、 0°Cから溶媒の沸点までの範囲で反応を行うことができ、好まし くは 10 150°Cの範囲であり、より好ましくは 30 100°Cの範囲である。
[0049] 反応時間は、反応温度により変化するため一概に決定できないが、例えば、反応 温度が 50°Cの場合、 4時間以上、 100°Cの場合、 3時間以上行えば充分である。
[0050] 反応終了後は、溶媒を濃縮することにより、 目的の光学活性 /3—ヒドロキシーひ
—ァミノカルボン酸誘導体を塩として得ることができる。
又、反応液を塩基性とし、適当な溶剤で抽出することにより目的の光学活性 β—ヒドロキシー α—ァミノカルボン酸誘導体を得ることができる。
さらに、蒸留、再結晶及びシリカゲルカラムクロマトグラフィー等によって精製を行う ことで、純度の高レ、純度の高レ、式(2)又は式(3)で表される光学活性 /3—ヒドロキシー α—アミノカルボン酸誘導体を単離することができる。
[0051] 本発明で得られる、式(2)又は式(3)で表される光学活性 ーヒドロキシー α—ァミノ カルボン酸誘導体のジァステレオ選択性 (de:シン体とアンチ体の選択性)及びェナ ンチォ選択性(ee)は、得られた光学活性 βーヒドロキシー aーァミノカルボン酸誘導体 をべンゾィルイ匕した後、機器分析を行うことにより決定できる。
[0052] ベンゾィル化の方法を以下に示す。
[化 14]
OH OH
C02R
R R'
PhCOCI
2 ) ^IHCOPh
Figure imgf000027_0001
即ち、式(2)又は式(3)で表される光学活性 j3—ヒドロキシーひ—アミノカルボン酸誘 導体又はその塩を THF (テトラヒドロフラン)中、 NEt (トリエチルァミン)の存在下に
3
おいて、 PhCOCI (ベンゾイルク口リド)と反応させることにより、式(2)又は式(3)で表 される光学活性 βーヒドロキシー aーァミノカルボン酸誘導体のベンゾィル化物を製造 すること力 Sできる。
得られたベンゾィル化物は、
Figure imgf000028_0001
-NMR等により、ジァステレオ選択性(de :シン体とアンチ体の選択性)を、又、光学 活性カラムを用いた HPLC分析等により、ェナンチォ選択性(ee)を決定することが できる。
[0053] 原料となる、式(1)で表されるひ—アミノアシル酢酸エステルイ匕合物は、以下に示す 方法により製造することができる。
[化 15]
Figure imgf000028_0002
即ち、酸無水物又はァシルク口リドとイソ二トリル酢酸エステルを塩基 (塩基としては 、トリェチルァミン、 1, 8—ジァザビシクロ [5, 4, 0]ゥンデ力— 7—ェン等が挙げられる 。)の存在下において、縮合させて、ォキサゾールイ匕合物とした後、濃塩酸でォキサ ゾール環を開裂させることにより、式(1)で表されるひ—アミノアシル酢酸エステル化 合物の塩酸塩を製造することができる。
得られた塩酸塩はそのまま次の還元反応に使用することもできるが、
塩基等で処理することにより、式(1)で表されるひ—アミノアシル酢酸エステルイヒ合物 とすることちでさる。
又、他の酸の塩を得るには、ォキサゾール化合物を他の酸で開裂させるか又は塩 酸塩を他の酸で塩交換する。
[0054] 式(1)で表されるひ—アミノアシル酢酸エステルイ匕合物の塩酸塩は、以下に示す方 法でも製造することができる。
[化 16] R2OH Boc20
TsOH TsOH _ NaHCQ3→ Boc-HN^COz 2
COzH " Η,Ν
Δ
KHMDS
-78¾
R,COCI NH-Boc
4M HCレジオ
Figure imgf000029_0001
即ち、グリシンを TsOH (p—トルエンスルホン酸)の存在下において、アルコールと 脱水縮合させてエステルとした後、アミノ基を Boc 0 (二炭酸ジ _t_プチル)で Boc化
2
(t一ブトキシカルボ二ルイ匕)し、その後、 KHMDS (カリウムへキサメチルジシラジド)で 処理し、ァシルク口リドを加えてアミド化した後、 LHMDS (リチウムへキサメチルジシ ラジド)及び DMPU (1 , 3—ジメチノレー 3, 4, 5, 6 パーハイド口ピリミジン _2—オン)で 処理することにより転位反応を行い α _アミノアシノレ酢酸エステルイ匕合物の Boc体を 得た後、塩酸で Bocを脱離させることにより、式(1)で表される α _アミノアシル酢酸ェ ステル化合物の塩酸塩を製造することができる。
実施例
[0055] 以下、本発明について、実施例を挙げて詳述するが、本発明はこれらの実施例に なんら限定されるものではない。
[0056] 参考例 1 2—シクロへキシルー 1—メトキシカルボ二ルー 2—ォキソ—ェチルーアンモニゥ ム;クロリドの製造
[化 17]
Figure imgf000029_0002
メチルイソシァノエート(3· l lg)とシクロへキサン酸無水物(8. 20g, 1. 1当量)の DMF (N, N—ジメチルホルムアミド) (10. OmL)溶液に DBU (1 , 8—ジァザビシクロ [ 5, 4, 0] 7_ゥンデセン) (4. 7mL, 1. 0当量)を 0°C下で滴下した。室温で 11時間 攪拌した後、反応液を水で希釈し、 n キサン 酢酸ェチル(5 : 1)で抽出を行ない 、有機層を分離した。その後、有機層を、飽和食塩水、 lmol/L塩酸、飽和炭酸水 素ナトリウム水及び飽和食塩水で順次洗浄した後、無水硫酸ナトリウムで乾燥させた 。その後、沈殿物をろ過し、そのろ液を減圧下において濃縮した。得られた粗物を n— へキサン一酢酸ェチルから再結晶し、生成物(5. 00g, 75%)を得た。
融点 97. 5-101°C
IR(KBr)2931, 2852, 1719, 1599, 1199cm—1;
'H-NMR (400MHz, CDCI ) δ 1. 26—1. 89 (m, 10H, c— Hex— CH ) , 3. 45—
3 2
3. 48 (m, IH, c_Hex_H), 3. 91 (s, 3H, CO CH ) , 7. 74 (s, 1H, OCHN);
2 3
13C— NMR(100MHz, CDCI ) δ 25. 7, 25. 9, 30. 6, 35.4, 51. 9, 125. 2, 1
3
48. 6, 162. 6, 164. 1;
HRMS (FAB, NBA)C H N〇の計算値: 210. 1130(M++1).
11 16 3
実測値: 210. 1119.
[化 18]
Figure imgf000030_0001
ォキサゾール(lOmmol)を濃塩酸(5. OmL)とメタノーノレ(15. OmL)に溶解した。 溶液を 50°Cで 4時間攪拌した。その後、反応液を室温まで冷却し、濃縮した。残渣を ジェチルエーテル中で粉碎し、 α—ァミノ— —ケトエステルをろ取した。この固体を次 工程にそのまま用いた。 (収率: 67%)
IR(KBr)2931, 2856, 1752, 1719, 1560, 1508, 1458, 1276, 1144cm"1; H-NMR (400MHz, CDCI ) δ 1. 19-1. 50 (m, 5H, c—Hex—H) , 1. 66-1.
3
82 (m, 4H, c—Hex—H), 2. 18—2. 20 (m, IH, c—Hex—H), 2. 90—2. 95 (m, IH, c-Hex-H) , 3. 91 (s, 3H, CO CH , 5. 50 (s, COCHNH ) , 8. 92 (br, C
2 3) 3
OCHNH ) ;13C-NMR(100MHz, CDCI ) δ 25. 0, 25. 6, 25. 7, 27. 4, 29.
3 3
2, 48. 4, 54. 2, 60. 3, 163. 8, 201. 0; HRMS (FAB, NBA)C H NOの計
10 18 3 算値: 200. 1287(M+-C1).実測値: 200. 1282.
参考例 2 1—メトキシカルボ二ルー 3—メチル _2—ォキソ—ブチノレーアンモニゥム;クロリ ドの製造
[化 19]
Figure imgf000031_0001
参考例 1と同様にして対応するォキサゾールから目的化合物を得た。 (収率: 79%) IR (KBr) 2979, 2642, 1751 , 1720, 1508, 1438, 1387, 1275, 1234, 1013 cm"1; 'H-NMR (400MHZ, CD OD) δ 1. 12 (d, J=6. 4Hz, 3H, (CH ) CH) ,
3 3 2
1. 24 (d, J=7. 2Hz, 3H, (CH ) CH) , 3. 19-3. 28 (sep, J=7. 2Hz, 1H, (CH
3 2
) CH) , 3. 92 (s, 3H, CO CH ) ; 13C— NMR (100MHz, CD OD) δ 17. 7, 19
3 2 2 3 3
. 1 , 39. 8, 54. 6, 165. 3, 203. 6 ; HRMS (FAB, NBA) C H NOの計算値: 1
7 14 3
60. 0974 (M -Cl) .実測値: 160. 0973.
参考例 3 t_ブトキシカルボニルァミノ酢酸 ベンジルエステルの製造
[化 20] ^Y o TS0H H2N T J
o o
1 2 3 グリシン(35. Og)、: Bn〇H (ベンジルアルコール)(231mL) TsOH' H〇(p—トル エンスルホン酸 1水和物)(106g 1. 2当量)のベンゼン(469mL)溶液を共沸脱水 条件下で 29時間加熱還流させた。その後、反応液を室温まで冷却し、固体をろ取し 、ジェチルエーテルで洗浄後、 目的物 2 (168g)を得た。この固体を精製なしに次ェ 程に使用した。中間体 2 (168g)をジォキサン-水に溶解し、炭酸水素ナトリウム (47g , 1. 2当量)、 Boc〇(二炭酸ジ _t_プチル)(112g, 1. 1当量)を加え、 3時間攪拌 した後、濃縮した。残渣を lmol/L硫酸水素ナトリウム水溶液で洗浄し、酢酸ェチル で 3回抽出した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウ ムで乾燥させた後、ろ過し、濃縮した。残渣を、ジェチルエーテル キサンで晶析 し、 目的物 3 (1回目 54. 3g, 2回目 51. 2g, 3回目 7. 9g ;総量 113. 4g, 427mmol , 92%)を得た。
'H-NMR (400MHz, CDC1 ) δ 1. 45 (s, 9H, (CH ) C) , 3. 96 (d, J=5. 7Hz,
3 3 3 2H, CH NH), 5. 00 (br, IH, CH NH), 5. 18 (s, 2H, CH Ph) , 7. 34-7. 38
(m, 5H, Ar-H) .
参考例 4 4aの製造
[化 21]
Figure imgf000032_0001
原料 3(1. 06g, 4. OOmmol)をテトラヒドロフラン(8. OmL) こ溶角军し _78Cまで冷 却した。続いて KHMDS (カリウムへキサメチルジシラジド) (0. 5M溶液 9. OmL, 1 . 1当量)を 10分かけて加えた後、同温度で 2時間攪拌した。さらにイソプチリルクロリ ド(0.46mL, 1. 1当量)をカ卩え、同温度でさらに 3時間攪拌した。その後、反応液を 飽和塩化アンモニゥムでクェンチし、酢酸ェチル キサン(5: 1)で 3回抽出した。 その有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥さ せた後、ろ過し、濃縮した。残渣をシリカゲルクロマトフィー(へキサン:酢酸ェチル =3 :1)で精製し、 目的物 4a(l. 26g, 94%)を無色油状物で得た。
IR (液膜(neat" 2978, 1747, 1698, 1457, 1370, 1216, 1148, 1028cm"1;1 H-NMR (400MHz, CDC1 ) δ 1. 17 (d, J=6. 8Hz, 6H, (CH ) CH) , 1. 44 (s
, 9H, (CH ) C) , 3. 72-3. 76 (m, IH, (CH ) CH) , 4.48 (s, 2H, CH N) , 5
. 16 (s, 2H, CH Ph), 7. 32-7. 36 (m, 5H, Ar-H) ;13C_NMR(100MHz, C
DC1 ) δ 19. 6, 27. 8, 34. 6, 45. 6, 66. 9, 83. 7, 128. 4, 128. 5, 135.4, 1
52. 1, 168. 9, 180. 2;HRMS (FAB, NBA)C H NOの計算値: 336. 1811 (
M++1).実測値: 336. 1811.
参考例 5 - 9 4b - 4fの製造
参考例 4と同様の方法により 4b— 4fを製造した。
[化 22]
Figure imgf000032_0002
[表 1] 参考例 R 反応時間 生成物 収率
N o , (時間) (%)
5 n一プロピル基 3 4 b 8 8
6 t—プチル基 1 2 4 c 9 3
7 c—ペンチル基 2 4 d 7 1
8 c一へキシル基 1 2 4 e 94
9 c―ヘプチル基 2 4 f 9 7
4b 無色油状物
IR (液膜(neat) )2969, 1747, 1456, 1370, 1216, 1149, 1031cm— 1; —画 R (400MHz, CDCI ) δ 0. 96 (t, J=7. 3Hz, 3H, CH CH CH CO), 1. 43 (s, 9
3 3 2 2
H, (CH ) C), 1. 65-1. 70 (m, 2H, CH CH CH CO), 2. 91 (t, J=7. 3Hz, 2
3 3 3 2 2
H, CH CH CH CO), 4. 50 (s, 2H, CH N) , 5. 17(s, 2H, CH Ph), 7. 32-7
3 2 2 2 2
• 36 (m, 5H, Ar-H) ;13C— NMR(100MHz, CDCI ) δ 13. 7, 18. 4, 27. 8, 3
3
9. 8, 45. 3, 66. 9, 83. 7, 128. 4, 128. 4, 128. 6, 135. 4, 152. 2, 169. 0 , 175. 6;HRMS (FAB, NBA)C H NOの計算値: 336· 1811(M++1).実測
18 26 5
値: 336. 1804.
4c 無色油状物
IR (液膜 (neat) )2974, 1747, 1694, 1456, 1336, 1148, 1010cm"1; !H~NM R (400MHz, CDCI ) δ 1. 35 (s, 9H, (CH ) CCON), 1.44 (s, 9H, (CH ) C
3 3 3 3 3
OCO) , 4. 33 (s, 2H, CH N) , 5. 16 (s, 2H, CH Ph) , 7. 33—7. 36 (m, 5H,
2 2
Ar-H) ;13C-NMR(100MHz, CDCI ) δ 27. 1, 27. 8, 27. 9, 43. 1, 48. 3, 6
3
6. 0, 66. 9, 83. 2, 127. 6, 127. 9, 128. 3, 128. 3, 128. 4, 128. 5, 135. 4, 152. 7, 169. 1, 184. 6;HRMS(FAB, NBA) C H NOの計算値: 350. 1
19 28 5
967(M++1).実測値: 350. 1976.
4d
IR(KBr)2971, 2871, 1746, 1695, 1455, 1370, 1148, 1048, 1027cm—1;1 H-NMR (400MHz, CDCI ) δ 1.43 (s, 9H, (CH ) COCO), 1. 53-1. 94 (m
3 3 3
, 8H, c— Pen— CH ), 3. 80-3. 85 (m, 1H, c_Pen— CH) , 4.49 (s, 2H, CH N), 5. 16 (s, 2H, CH Ph) , 7. 31-7. 37 (m, 5H, Ar_H) ; C_NMR(100M
Hz, CDCl ) 5 25. 9, 27. 8, 30. 4, 45. 2, 45. 7, 66. 9, 83. 5, 128. 4, 128
. 5, 135. 4, 152. 1, 169. 0, 179. 1;HRMS (FAB, NBA)C H NOの計算 値: 362. 1967(M++1).実測値: 362. 1932.
4e 白色固体
IR(KBr)2931, 2853, 1737, 1691, 1450, 1368, 1323, 1193, 1146cm—1;1 H-NMR (400MHz, CDCl ) δ 1. 21—1. 42 (m, 4H, c-Hex-CH ) , 1. 67—1
. 80 (m, 4H, c-Hex-CH ) , 1. 91-2. 05 (m, 2H, c-Hex-CH ) , 3. 46 (tt, J
=3. 3, 11. 2Hz, CHCON) , 4. 47 (s, 2H, CH N) , 5. 15 (s, 2H, CH Ph) , 7
. 32-7. 36 (m, 5H, Ar—H) ; — NMR (100MHz, CDCl ) δ 25. 7, 25. 9, 2
7. 8, 29. 7, 44. 4, 45. 7, 66. 9, 83. 6, 128. 4, 128. 5, 135. 4, 152. 1, 1 69. 0, 179. 1 ;HRMS(FAB, NBA) C H NOの計算値: 376. 2124 (M++1)
.実測値: 376. 2148.
4f 白色固体
IR (液膜(neat" 2929, 2857, 1741, 1698, 1457, 1339, 1149, 1043cm"1;1 H-NMR (400MHz, CDCl ) δ 1. 44-1. 66 (m, 17H, c—Hep—H, (CH ) C) ,
1. 72-1. 78 (m, 2H, c—Hep—H), 1. 90—1. 97 (m, 2H, c—Hep—H), 3. 64— 3. 71 (m, 1H, CHCON) , 4. 47 (s, 2H, CH CO CH Ph) , 5. 16 (s, 2H, CH
CO CH Ph), 7. 30-7. 38 (m, 5H, Ar_H) ; 13C_NMR(100MHz, CDCl ) δ 2
6. 5, 27. 8, 31. 6, 45. 2, 45. 6, 66. 9, 83. 5, 128. 4, 128. 5, 135. 4, 15 2. 1, 169. 0, 180. 1;HRMS (FAB, NBA)C H NOの計算値: 390. 2280 (
M++1) .実測値:390. 2266.
参考例 10 5aの製造
[化 23]
Figure imgf000034_0001
4aの THF (テトラヒドロフラン)溶液を一 78。Cまで冷却した。この溶液に DMPU (1, 3—ジメチルー 3, 4, 5, 6—テトラヒドロー 2—ピリミジノン)(2. 0当量)と LHMDS (リチウ ムへキサメチルジシラジド) (2. 5当量)を 10分間かけて加え、同温度で 2時間攪拌し た後、反応液を飽和塩化アンモニゥム水溶液でタエンチした。その後、酢酸ェチルー へキサン(5 : 1)で 3回抽出し、その有機層を飽和炭酸水素ナトリウム水で洗浄し、無 水硫酸ナトリウムで乾燥させた後、ろ過し、濃縮した。残渣をシリカゲルクロマトフィー で精製し、 目的物 5aを無色油状物で得た。 (収率:85%)
IR (液膜(neat) ) 3431, 2977, 1759, 1715, 1496, 1367, 1251 , 1162cm—1 ; 1 H-NMR (400MHz, CDCI ) δ 0. 99 (d, J=6. 8Hz, 3H, (CH ) CH) , 1. 14 (d
3 3 2
, J=7. 1Hz, 3H, (CH ) CH) , 1. 44 (s, 9H, (CH ) C) , 2. 94—2. 99 (m, 1H,
3 2 3 3
(CH ) CH) , 5. 15-5. 29 (m, 3H, CHNH, CH Ph) , 5. 73 (d, J=7. OHz, IH
3 3 2
, CHNH) , 7. 31-7. 38 (m, 5H, Ar~H) NMR (100MHz, CDCI ) δ 17
3
. 4, 18. 7, 28. 2, 38. 4, 62. 1 , 68. 0, 80. 5, 128. 4, 128. 6, 134. 7, 154 . 8, 166. 7, 205. 1 ; HRMS (FAB, NBA) C H NOの計算値: 336. 1811 (M+
18 26 5
+ 1) .実測値: 336. 1816.
参考例 11一 15 5b - 5fの製造
参考例 10と同様の方法により 5b-5fを製造した。
[化 24]
Figure imgf000035_0001
[表 2] 参考例 R 反応時間 生成物 収率
N o . (時間) (%)
1 1 n—プロピル基 1 ' 5 5 b 8 7
1 2 t—ブチル基 2 5 c 7 5
1 3 c—ペンチル基 2 5 d 9 0
1 4 c —へキシル基 6 5 e 8 4
1 5 c —ヘプチル基 2 5 f 9 9
5b 無色油状物 IR (液膜(neat" 3432, 2970, 1759, 1715, 1496, 1368, 1253, 1163cm ; H-NMR (400MHz, CDCI ) δ 0.83 (t, J=7.3Hz, 3H, CH CH CH CO), 1.
3 3 2 2
44 (s, 9H, (CH ) CO), 1.52—1.62 (m, 2H, CH CH CH CO), 2.52—2.6
3 3 3 2 2
0 (m, 2H, CH CH CH CO), 5.05 (d, J=7.1Hz, 1H, CHNH) , 5.16 (d, J=l
3 2 2
2.3Hz, 1H, CH Ph) , 5.29(d, J=12.3Hz, 1H, CHPh), 5.74 (d, J=6.8H
2 2
z, IH, CHNH), 7.31-7.38 (m, 5H, Ar-H) NMR(100MHz, CDCI )
3 δ 13.4, 16.8, 19.5, 27.8, 28.2, 42.4, 63.7, 68.0, 80.5, 128.4, 12 8.6, 134.7, 154.9, 166.6, 201.0;HRMS(FAB, NBA)C H NOの計算
18 26 5 値: 336.1811 (M++1).実測値: 336.1788.
5c
IR (液膜(neat" 3376, 2977, 1758, 1713, 1504, 1368, 1326, 1252, 1162 cm"1; 'H-NMR (400MHZ, CDCI ) δ 1.18 (s, 9H, (CH ) CCOCH), 1.43(s
3 3 3
, 9H, (CH ) COCO), 5.15(d, J=12.3Hz, IH, CHPh), 5.20(d, J=12.3
3 3 2
Hz, IH, CH Ph), 5.52 (m, 2H, COCHNH), 7.29-7.37 (m, 5H, Ar_H)
2
;13C-NMR(100MHz, CDCI ) δ 26.1, 28.2, 44.7, 57.0, 67.7, 80.6, 1
3
28.3, 128.5, 128.6, 154.8, 167.6, 208.0;HRMS (FAB, NBA)C H
19 28
NOの計算値: 350.1967 (M++1).実測値: 350.1913.
5
5d
IR (液膜(neat" 3430, 2967, 2871, 1759, 1714, 1489, 1367, 1254, 1162 cm— H—NMR (400MHz, CDCI ) δ 1.34-1.94 (m, 17H, c— Pen_CH , (C
3 2
H ) CO), 3.14-3.18 (m, IH, CHCOCHNH) , 5.13-5.17 (m, 2H, CHN
3 3
H, CHPh), 5.29 (d, J=12. OHz, IH, CH Ph) , 5.76 (d, J=6.8Hz, 1H, CH
2 2
NH), 7.35-7.38 (m, 5H, Ar-H) ; 13C— NMR(100MHz, CDCI ) δ 26.0, 2
3
6.0, 28.2, 28.5, 30.3, 48.8, 63.5, 67.9, 80.5, 128.6,
134.8, 154.8, 166.8, 203.7;HRMS(FAB, NBA) C H NOの計算値: 3
20 28 5
62.1967(M++1).実測値: 362.1933.
5e
IR (液膜(neat) )3431, 2978, 2932, 2856, 1755, 1713, 1495, 1453, 1368 , 1337, 1251, 1161cm ; H-NMR (400MHz, CDCI ) δ 1.05-1.92 (m, 1
3
9H, c-Hex-CH , (CH ) CO), 2.64-2.68 (m, 1H, CHCOCHNH) , 5.14
2 3 3
(d, J=12.1Hz, 1H, CHPh), 5.18 (d, J=7.1Hz, 1H, CHNH) , 5.31 (d, J=
2
12.1Hz, 1H, CHPh), 5.73 (d, J=7. lHz, 1H, CHNH), 7.31—7.36 (m,
2
5H, Ar-H) ;1C-NMR(100MHz, CDCI ) δ 25.0, 25.5, 25.7, 27.6, 28.
3
3, 29. 1, 48.2, 62.3, 68.0, 80.5, 128.6, 128.7, 134.8, 154.9, 166 .7, 204.0;HRMS(FAB, NBA) C H NOの計算値: 376.2124(M++1).実
21 30 5
測値: 376.2118.
IR(ii¾l (neat) )3429, 2978, 2928, 2858, 1754, 1713, 1492, 1367, 1338 , 1254, 1163cm— ?H—NMR (400MHz, CDCI ) δ 1.24—1.93 (m, 21H, c—
3
Hep-CH , (CH ) C) , 2.88 (s, 1H, CHCOCHNH) , 5.14(d, 1H, J=12.0
2 3 3
Hz, CH Ph), 5.18 (d, 1H, J=7.6Hz, CHCOCHNH), 5.30 (d, 1H, J=12.
2
0Hz, CH Ph), 5.73 (d, J=6.8Hz, 1H, CHCOCHNH), 7.35-7.38 (m, 5
2
H, Ar-H) ;13C-NMR(100MHz, CDCI ) δ 26.2, 26.5, 28.0, 28.1, 28.2
3
, 29. 1, 30.3, 49.4, 62.4, 67.9, 80.4, 128.5, 128.6, 134.8, 154.9 , 166.7, 204.4;HRMS(FAB, NBA) C H NOの計算値: 390.2280 (M++
22 32 5
1).実測値: 390.2263.
参考例 16 6aの製造
[化 25]
Figure imgf000037_0001
5aを 4mol/Lの塩酸一ジォキサンに溶解し、室温下で 44時間攪拌した後、その反 応液を濃縮した。残渣をジェチルエーテル中で粉砕し、 目的物 6aをろ取した。この 固体を次工程にそのまま用いた。 (収率:97%)
IR(KBr)3403, 2972, 2936, 2654, 1762, 1736, 1523, 1267cm— 1; Η—ΝΜ R (400MHz, CDCI ) δ 0.96 (d, J=6.4Hz, 3H, (CH ) CH), 1.22 (d, J=6.7 Hz, 3H, (CH ) CH), 3.03—3.09(m, IH, (CH ) CH) , 5.24 (d, J=ll.6H
3 2 3 2
z, 2H, CH Ph), 5.33(d, J=12. OHz, 2H, CH Ph) , 5.47 (s, IH, COCHN)
2 2
, 7.32-7.38 (m, 5H, Ar— H), 9.00 (br) NMR(100MHz, CDC1 ) δ 1
3
7.1, 18.9, 38.9, 60.4, 67.0, 69.2, 128.6, 128.7, 128.8, 134.1, 1 63.3, 202.1;HRMS(FAB, NBA) C H NOの計算値: 236.1287 (M+— CI)
13 18 3
.実測値: 236. 1272.
参考例 17— 21 6b_6fの製造
参考例 16と同様の方法により 6b— 6fを製造した。
[化 26]
Figure imgf000038_0001
[表 3]
参考例 R 反応時間 生成物 収率
N 0 , (時間) (%)
1 7 n一プロピル基 4 8 6 b 80
1 8 t一ブチル基 6 2. 5 6 c 9 1
1 9 c一ペンチル基 6 3 6 d 定量的
20 c一へキシル基 7 2 6 e 定量的
2 1 c—ヘプチル基 24 6 f 定量的
6b
IR(KBr)2968, 2935, 2599, 1750, 1725, 1459, 1280, 1226, 1147cm—1;1 H-NMR (400MHz, CD OD) δ 0.84 (t, J=7.6Hz, 3H, CH CH CH CO), 1
3 3 2 2
.50-1.62 (m, 2H, CH CH CH CO), 2.64—2.80(m, 2H, CH CH CH C
3 2 2 3 2 2
0), 5.32(d, J=ll.6Hz, 1H, CH Ph), 5.41 (d, J=12. OHz, 1H, CH Ph),
2 2
7.36—7.46 (m, 5H, Ar— H) ;13C_NMR(100MHz, CD OD) δ 13.6, 17.6
3
, 43.4, 70.2, 129.8, 130.1, 135.8, 164.7, 199.2;HRMS(FAB, NBA )C H NOの計算値: 236.1287 (M-Cl).実測値: 236.1275.
13 18 5
6c IR(KBr)2971, 2900, 2867, 1747, 1718, 1543, 1508, 1265, 1239cm ; H-NMR (400MHz, CDCl ) δ 1.20 (s, 9H, (CH ) C) , 5.25 (s, 2H, CH Ph
3 3 3 2
), 5.62 (s, IH, COCHN), 7.30—7.37 (m, 5H, Ar— H) , 9.00 (br) ;13C— N MR(100MHz, CDCl ) δ 26.6, 44.9, 56.7, 69.2, 128.6, 128.7, 128.
3
9, 134.0, 163.6, 204.4;HRMS(FAB, NBA) C H NOの計算値: 250. 1
14 20 3
443 (M+-C1) .実測値: 250.1438.
6d
IR(KBr)2951, 1746, 1720, 1508, 1458, 1269, 1207cm— ?H— NMR (400 MHz, CDCl ) δ 1.44-2.02 (m, 8H, c— Pen— H) , 1.96—2.02 (m, IH, c— P
3
en-H) , 5.24 (d, J=12. OHz, IH, CH Ph) , 5.33—5.36 (m, 2H, CH Ph, C
2 2
OCHNH ) , 7.26-7.39 (m, 5H, Ar-H), 9.00 (br, COCHNH ) NMR
3 3
(100MHz, CDCl ) δ 25.9, 26.0, 28.3, 30.6, 49.1, 61.6, 69.2, 128.
3
6, 128.7, 128.8, 134.2, 163.3, 200.7;HRMS(FAB, NBA)C H NO
15 20 3 の計算値: 262.1443 (M-Cl) .実測値: 262.1445.
6e
IR(KBr)2931, 2854, 1747, 1719, 1509, 1266cm— ?H— NMR (400MHz, CDCl ) δ 0.97-1.36 (m, 5H, c— Hex
3
— H), 1.48-1.62 (m, 3H, c—Hex—H), 1.69—1.72 (m, IH, c—Hex—H), 2 .11-2.14 (m, IH, c—Hex—H), 2.78 (tt, J=3.2, 11.6Hz, IH, c—Hex—H ), 5.21 (d, J=12. OHz, IH, CH Ph) , 5.38 (d, J=12. OHz, IH, CH Ph) , 5.
2 2
53 (s, IH, COCHNH ) , 7.30-7.39 (m, 5H, Ar— H) , 8.93 (br, COCHNH
3
) ;1C-NMR(100MHz, CDCl ) δ 24.9, 25.5, 25.6, 27.2, 29.1, 48.3,
3 3
60.6, 69.2, 128.6, 128.8, 128.9, 134.2, 163, 3, 200.8;HRMS (FA B, NBA)C H NOの計算値: 276.1600(M+-C1).実測値: 276.1602.
16 22 3
6f
IR(KBr)2927, 2624, 1746, 1720, 1509, 1459, 1281, 1198, 1119cm—1;1 H-NMR (400MHz, CDCl ) δ 1.15—1. 18 (m, 1H, c-Hep-H) , 1.45—1.5
3
7(m, 10H, c-Hep-H) , 2.93—2.97 (m, IH, c-Hep-H) , 5.21 (d, J=12.0 Hz, 1H, CH Ph) , 5. 38 (d, J=13. 2Hz, 1H, CH Ph) , 5. 40 (s, 1H, COCH
NH ) , 7. 31-7. 39 (m, 5H, Ar_H) , 9. 01 (br, COCHNH ) ; 13C_NMR (100
Hz, CDC1 ) 5 26. 1 , 26. 5, 27. 9, 28. 1 , 28. 8, 30. 3, 49. 5, 60. 7, 69. 2
, 128. 6, 128. 8, 128. 9, 134. 2, 163. 3, 201 , 1 ; HRMS (FAB,
NBA) C H N〇の計算値: 290. 1756 (M+-C1) .実測値: 290. 1765.
参考例 22
[化 27]
Figure imgf000040_0001
ォキサゾール(102. 8mg)のメタノール(3. OmL)溶液に TsOH.H〇(p—トルエン
2
スルホン酸 1水和物)(230. Omg)を加え、 25時間加熱還流した。この溶液を濃縮し た後、ジェチルエーテル中で粉砕した。この粗物を精製せずに次工程に用いた。 'H-NMR (400MHz, CDC1 ) δ 1. 03 (d, J=6. 8Hz, 3H, (CH ) CH) , 1. 11 ( d, J=7. 1Hz, 3H, (CH ) CH) , 2. 34 (s, 3H, Ar— CH ), 3. 06 (sep, J=7. OHz
, 1H, (CH ) CH) , 5. 36 (s, 1H, CHNH ) , 7. 13 (d, J=8. 1Hz, 2H, Ar— H)
, 7. 70 (d, J=8. 2Hz, 2H, Ar_H) , 8. 46 (s, 2H, CHNH ) .
参考例 23 6gの製造
[化 28]
Figure imgf000040_0002
メチノレイソシァノエート(2. 97g, 30mmol) ,ベンゾィノレクロリド(2· 97g, 30mmol ) , TEA (トリエチルァミン)(12· 6ml, 90mmol)を THF (テトラヒドロフラン)
(50ml)に加え、室温下で 48時間攪拌した。その後、減圧下において溶媒を留去し 、残渣に酢酸ェチル(100ml)を加え、水、 lmol/L HCl (50ml)、
飽和 NaHCO (50ml)、飽和食塩水(50ml)で順次洗浄した。溶液を無水硫酸ナトリ ゥムで乾燥させた後、沈殿物を濾去し、減圧下において溶媒を留去した。残渣をシリ 力ゲルカラムクロマトグラフィー(100g,酢酸ェチル: n—へキサン = 1: 5)で精製し、 ォキサゾール化合物(4· 07g, 20mmol, 67%)を無色固体で得た。
H-NMR (400MHz, CDC1 ) : 53. 96 (s, 3H) , 7. 45— 7. 53 (3Η, m, Ar-H
3
), 7. 92 (s, 1H, oxazole-H) , 8. 00— 8. 12 (2H, m, Ar-H)
FT-IR v (KBr) :3108, 1717, 1582, 1561, 1516, 1495, 1433, 1354, 1
325, 1312, 1221, 1195, 1109, 1087, 1068, 1010, 936, 767, 688.
ォキサゾール化合物(2. 26g, 11. Immol)を 4mol/L塩酸—ジォキサン(18ml) 及びメタノール(18ml)に溶解し、 60°Cで 24時間攪拌した。その溶液を室温まで冷 却した後、濃縮した。残渣をメタノールに溶解した後、再度濃縮した。この操作を 5回 繰り返し、完全に残留塩酸を除去した後、得られた固体をエーテルで洗浄し、ろ取し た。この固体を酢酸ェチルとメタノールから再結晶し、化合物 6g(l. 42g, 6. 2mmol , 56%)を無色固体で得た。
'H-NMR (400MHz, CD OD): δ 3. 77(s, 3Η), 7. 60 (t, J=7. 6Hz, 2H) , 7.
3
77 (t, J=7. 6Hz, 1H)8. 17(dd, J=l. 6, 8. 8Hz2H) ;13C— NMR(100MHz, C D OD): δ (ppm) 54. 6, 130. 1, 131. 0, 134. 9, 136. 3, 165.4, 190. 0;F
3
ABMS (NBA) m/z:l 94 (M_Cl—) + ; FT-IR v (KBr) :3441, 2840, 1739, 1 max
688, 1597, 1274, 1217, 684.
参考例 24 6hの製造
[化 29]
Figure imgf000041_0001
参考例 23と同様にして対応するォキサゾールから目的化合物(6h)を得た。
'H-NMR (400MHz, CD OD): δ 3. 77(s, 3Η), 5. 23 (s, 2H) , 6. 04 (s, 1Η
3
), 7. 1— 7. 5(m, 7H, Ar-H) , 8. 14 (d, J=7. 2Hz, 2H) ; 13C— NMR(100MHz , CD OD): δ (ppm) 54. 5, 584, 71. 5, 116. 2, 127. 8, 128. 7, 129. 3, 12
3
9. 7, 133. 6, 137. 7, 165. 8, 166. 0, 187. 9; FABMS (NBA) m/z: 300 (M -CI") + ; FT-IR v (KBr) :3445, 2969, 1759, 1685, 1603, 1509, 1276, 1
254, 1222, 1176, 1075, 832, 743, 697. 参考例 25— 29 6i— 6mの製造
[化 30]
o 0
OMe
NH3 +CI"
6i-6m 参考例 23と同様の操作を行うことにより化合物 6i— 6mを製造した。
尚、各化合物の構造は、以下の通りとなる。
6i:R=p_メチルフエニル基
6j :R=m_メチルフヱニル基
6k:R= j3—ナフチル基
61:R=2_フリル基
6m:R=p_ブロモフエニル基
各化合物の機器データを以下に示す。
6i
JH-NMR (400MHz, CD OD): δ 2. 47 (s, 3Η) , 3. 77 (s, 3Η) , 6. 09 (s, IH
3
), 7. 42 (2H, d, J=8. OHz), 8. 05 (2H, d, J=8. OHz ;13C—NMR(1 OOMHz, C D OD): δ 21. 8, 54. 5, 58. 7, 130. 7, 131. 2, 132. 4, 148, 0, 165. 6, 18
3
9. 3;FT-IRv (KBr) :2995, 2826, 2626, 1739, 1685, 1604, 1505, 143
max
4, 1276, 1220, 1179, 1074, 968, 942, 863.
6j
'H-NMR (400MHZ, CD OD) : 52. 45 (s, 3H) , 3. 81 (s, 3H) , 6. 11 (s, IH
3
), 7. 4—7. 6(2H, Ar-H) , 7. 9一 8. 0(2H, Ar— H) ;13C—NMR(1 OOMHz, C D OD): δ 21. 3, 54. 6, 58. 8, 128. 3, 130. 0, 131. 2, 135. 0, 137. 0, 14
3
0, 3, 165. 5, 190. 1;FT— IRv (KBr): 3004, 2813, 2626, 1737, 1685, 1 max
602, 1511, 1434, 1275, 1228, 1168, 1072, 948, 889, 866, 785, 685. 6k
'H-NMR (400MHz, CD OD): δ 3. 75 (s, 3H), 6. 30 (s, 1H), 7. 6— 7. 75 (
3
2H, Ar-H), 7. 9— 8. 15(4H, ArH) , 8. 82(1H, s, Ar-H) NMR(100 MHz, CD OD): δ 54. 6, 58. 7, 125. 0, 128. 5, 129. 0, 129. 9, 131. 0, 1
3
31. 2, 132. 2, 133. 8, 134. 3, 137. 8, 165. 6, 189. 9;FT-IRv (KBr): max
3440, 2819, 1739, 1688, 1622, 1594, 1502, 1434, 1280, 1236, 1174,
1008, 937, 811, 760.
61
'H-NMR (400MHz, CD OD): δ 3. 82 (s, 3H), 5. 78 (s, 1H), 6. 80 (1H, d
3
d, J=l. 6, 4. 0Hz, Ar-H) , 7. 71 (1H, d, J=4. 0Hz, Ar— H) , 8. 00(1H, d, J= 1. 6Hz, Ar-H) NMR(100MHz, CD OD): δ 54. 7, 58.4, 114. 6, 12
3
4. 1, 151. 2, 151. 3, 165. 5, 177. 1;FT— IRv (KBr) :3430, 2973, 263 max
7, 1752, 1679, 1590, 1570, 1504, 1464, 1404, 1285, 1252, 1155, 108
8, 1079, 1036, 1023, 991, 951, 910, 876, 841, 769.
6m
H-NMR (400MHz, CD OD): δ 3. 78 (s, 3H) , 6. 11 (s, 1H) , 7. 79 (2H, A
3
r-H), 8. 05 (2H, Ar-H) ; 13C_NMR(100MHz, CD OD): δ 547, 589, 131
3
. 5, 132. 6, 133. 4, 133. 9, 165. 2, 189. 3;FT-IRv (KBr) :2810, 173 max
8, 1689, 1586, 1497, 1433, 1405, 1275, 1213, 1176, 1134, 1175, 966 , 940, 864, 816, 764, 676.
実施例 1 ーヒドロキシ _ a _アミノカルボン酸誘導体の製造
[化 31]
Figure imgf000043_0001
アルゴン雰囲気下において、 [RuCl (C H )] (10. lmg)と(S)_BINAP(25. 3
2 6 6 2
mg)および DMF (N, N—ジメチルホルムアミド) 400 μ Lをシュレンクチューブ中で混 合した。この混合溶液を脱気した後、 100°Cで 10分攪拌した。混合溶液の温度を室 温まで下げた後、 50°Cで 2. 5時間減圧乾燥させ、赤茶色の [RuCl (S)-BINAP] (
2
dmf) を、触媒として得た。参考例 2で製造した 1ーメトキシカルボ二ルー 3—メチルー 2_ n
ォキソ一ブチル一アンモニゥム;クロリド(169. 2mg)をメタノール(2. OmL)に溶解し、 脱気した後、その溶液を、上記触媒にアルゴン置換した力二ユーラでカ卩えた。 (残渣 をメタノール 1 · Omlで洗浄し、同様に加えた)溶液を、水素(lOOatm)中で 50°Cに おいて 48時間攪拌した。その後、反応液を濃縮し、 目的物を得た。
得られた粗物を、ベンゾィルイ匕し、機器分析することにより de及び eeを決定した。 de は、 ^—NMRにより決定し、 eeは、 HPLCにより決定した。
ベンゾイノレイ匕
得られた粗物を THF (テトラヒドロフラン) (1. 7mL)に溶解した。続いて BzCl (ベン ゾイルク口リド) (110 μ L)と TEA (トリエチルァミン)(380 μ L)を 0 Cで溶液に加えた 。室温で 1時間攪拌した後、反応液に水、酢酸ェチル及びへキサンを加え、反応を 停止させた。つづいて分液を行い、その有機層を ImolZL塩酸溶液、炭酸水素ナト リウム水溶液で順次洗浄し、無水硫酸ナトリウムで乾燥させた。その後、ろ過し、濃縮 を行った。続いてこの残渣をシリカゲルクロマトグラフフィー(酢酸ェチル: n キサン =1 : 3)で分取精製し、 目的物(162. lmg, 2工程 71%, de98%, 56%ee)を得た。 HPLC分析条件,カラム: CHIRALCEL OD— H (ダイセル化学工業株式会社), 移動相: n キサン/ i一プロパノール = 85/15,流速: 0. 5mL/分,保持時間: 2 R, 3R体 10. 6分, 2S, 3S体 15. 6分.
[ α ] 25 + 35. 4 (0. 99, CHC1 ) ; IR (液膜(neat) ) 3417, 2962, 1747, 1633, 1
D 3
538, 1455, 1372, 1062, 1011 cm"1; 'H-NMR (400MHZ, CDCl ) δ 1. 02 (d
3
, J=6. 8Hz, 3H, (CH ) CH) , 1. 05 (d, J=6. 6Hz, 3H, (CH ) CH) , 1. 77 (se
3 2 3 2
p, J=6. 6Hz, IH, (CH ) CH) , 2. 91 (d, J=8. 2Hz, IH, CHOH) , 3. 62 (dt, J
3 2
=3. 3, 8. 6Hz, IH, CHOH) , 3. 82 (s, 3H, CO CH ) , 4. 97 (dd, J=3. 3, 7.
2 3
3Hz, IH, CHNH) , 7. 14 (d, J=6. 6Hz IH, NH) 7. 44-7. 48 (m, 2H, Ar — H) , 7. 52-7. 56 (m, 1H Ar-H) , 7. 82-7. 85 (m 2H, Ar-H); HRMS (F AB, NBA) C H NOの計算値: 266. 1392 (M++ l) .実測値: 266. 1408. 実施例 2
[化 32]
Figure imgf000044_0001
原料の塩酸塩を参考例 22で製造したトシノレ酸塩に変更し、触媒の使用量を 6. 7 mol%とした事以外は実施例 1と同様の操作を行うことにより目的物を得た。 (収率: 7 2% (2工程合計)、 de : 94% ee : 22%)
[0071] 実施例 3— 11 溶媒の効果
溶媒を種々変更した事以外は実施例 1と同様の操作を行うことにより、 目的物を製 造した。尚、触媒の使用量は、基質に対して 3. 8-4. 6mol%の範囲であった。又、 収率は 2工程の合計で示した。
[化 33]
Figure imgf000045_0001
[表 4] 実施例 溶媒 収率 d e e e
No. (%) (%) (% )
3 /CH2C12 8 0 > 9 9 7 0
4 CH2C12 3 8 9 8 9 5
5 n 6 9 9 8 6 9
6 n / CH2C12 9 2 9 8 8 2
7 n- 9 1 9 5 8 1
8 i- 8 1 9 8 8 1
9 i- / CH2C12 7 2 9 5 8 0
10 2 9 1 9 1 7 4
11 (CH20H) 2 8 4 9 1 5 7
[0072] 実施例 12
[化 34]
Figure imgf000045_0002
基質を参考例 1で製造した 2—シクロへキシルー 1ーメトキシカルボ二ルー 2—ォキソ— ェチルーアンモニゥム;クロリドに変更し、溶媒を塩化メチレンに変更した事以外は実 施例 1と同様の操作を行うことにより、 目的物を得た (収率: 84% (2工程合計)、 de: 9 5%、 ee:96%)。
[α] 26 + 35.5(1.07, CHC1 );融点 94_97。C ;IR(KBr) 3545, 3493, 3281, 2
D 3
927, 2854, 1739, 1630, 1542, 1363, 1230, 1209cm—1;
'H-NMR (400MHz, CDC1 ) SO.97—1.30 (m, 5H, c— Hex— H) , 1.42—1.
3
51 (m, 1H, c— Hex— H), 1.65—1.84 (m, 4H, c— Hex— H), 2.03—
2.06 (m, 1H, c— Hex— H), 2.94 (d, J=8.4Hz, 1H, CHOH) , 3.68 (dt, J=3
.2, 8.8Hz, 1H, CHOH), 3.82 (s, 3H, CO CH ), 4.97 (dd, J=3.2, 7.6H
2 3
z, 1H, CHNH), 7. 18 (d, J=7.2Hz, NH), 7.44-7.47 (m, 2H, Ar— H) , 7. 51-7.56 (m, 1H, Ar— H) , 7.82—7.84 (m, 2H, Ar— H); HRMS(FAB, NB A)C H NOの計算値: 306.1705(M++1).実測値: 306.1724.
17 24 4
HPLC分析条件,カラム: CHIRALCEL OD—H (ダイセル化学工業株式会社), 移動相: n—へキサン/ i一プロパノール =85/15,流速: 0.5mL/分,保持時間: 2 R, 3R体 11.2分, 2S, 3S体 15.3分.
実施例 13
[化 35]
Figure imgf000046_0001
アルゴン雰囲気下において、 [RuCl (CH)] (10.3mg)と(S)_BINAP(27.3
2 6 6 2
mg)および DMF(N, N—ジメチルホルムアミド) 400 μ Lをシュレンクチューブ中で混 合した。この混合溶液を脱気した後、 100°Cで 10分攪拌した。混合溶液の温度を室 温まで下げた後、 50°Cで 2.5時間減圧乾燥させ、赤茶色の(S)_BINAP— Ru(II) を、触媒として得た。 6a(271.8mg)を塩化メチレン(2.5mL)に溶解し、脱気した後 、上記触媒にアルゴン置換した力二ユーラでカ卩えた。 (残渣を塩化メチレンで 0.5ml で洗浄し、同様に加えた)溶液を、水素(lOOatm)中で 50°Cにおいて 48時間攪拌し た。その後、反応液を濃縮し、 目的物を得た。
得られた粗物を、ベンゾィルイ匕し、機器分析することにより de及び eeを決定した。 de は、 H—NMRにより決定し、 eeは、 HPLCにより決定した。
[化 36]
Figure imgf000047_0001
ベンゾイノレイ匕
得られた粗物を THF (テトラヒドロフラン) (2. OmL)に溶解した。続いて BzCl (ベン ゾイルク口リド) (130 μ L)と TEA (トリエチルァミン)(440 μ L)を 0°Cで溶液に加えた 。室温で 1時間攪拌した後、反応液を水、酢酸ェチル及びへキサンをカ卩え、反応を停 止させた。続いて分液を行い、その有機層を lmol/L塩酸、炭酸水素ナトリウム水溶 液で順次洗浄し、無水硫酸ナトリウムで乾燥させた。その後、ろ過し、濃縮を行った。 続いてこの残渣をシリカゲルクロマトグラフィー(酢酸ェチル: n—へキサン =1: 2)で分 取精製し、 目的物を得た (収率: 87% (2工程合計)、 de: > 99%、 ee:96%)。
HPLC分析条件,カラム: CHIRALCEL OD— H (ダイセル化学工業株式会社), 移動相: n—へキサン /i_プロパノール =90/10,流速: 0.5mLZ分,保持時間: 2 R, 3R体 21. 6分, 2S, 3S体 30. 3分.
[ひ] 24 + 33. 9(1. 00, CDC1 ) ;融点 95. 5— 96°C;IR(KBr) 3414, 2961,
D 3
2935, 2858, 1749, 1647, 1519, 1192, 1064cm―
'H-NMR (400MHz, CDC1 ) δ 0. 95 (d, J=6. 6Hz, 3H, (CH ) CH) , 1. 13 (
3 3 2
d, J=6. 6Hz, 3H, (CH ) CH) , 1. 71 (m, IH, (CH ) CH) , 2. 92 (d, J=8. 4H
3 2 3 2
z, IH, CHOH) , 3. 63 (dt, J=3. 1, 8. 4Hz, IH, CHOH) , 4. 99 (dd, J=3. 3, 7. 3Hz, 1H, CHNH) , 5. 23 (d, J=12Hz, IH, CH— Ph), 5. 29 (d, J=12Hz,
2
IH, CH -Ph) , 7. 14 (d, J=7. 3Hz, 1H, CHNH) , 7. 34—7. 39 (m, 5H, Ar—
2
H), 7. 43-7. 47 (m, 2H, Ar_H) , 7. 52-7. 56 (m, IH, Ar_H) , 7. 81-7. 8 3(m, 2H, Ar-H) ;13C_NMR(100MHz, CDC1 ) δ 18. 9, 19. 0, 31. 5, 56.
3
2, 67. 6, 78. 9, 127. 2, 128. 4, 128. 6, 128. 7, 132. 0, 133.4, 134. 9, 167. 5, 170. 8;HRMS(FAB, NBA) C H NOの計算値: 342. 1705 (M++1
20 24 4
).実測値: 342. 1682. C H NOの元素分析計算値: C, 70. 36 ;H, 6. 79 ;N, 4. 10.実測値: C, 70. 26 ; H, 6. 82 ; N, 4. 06.
[0074] 実施例 14一 16 溶媒の効果
溶媒の種類及び触媒の使用量を変更した事以外は実施例 13と同様の操作を行う ことにより、 目的物を製造した。収率は 2工程の合計で示した。
[化 37]
Figure imgf000048_0001
[表 5] 実施例 溶媒 触媒 収率 d e e e
N ^ m 1 %) (%) (%) (%)
1 4 n一プロパノール 4 . 1 8 3 9 3 7 9
1 5 i —プロパノール 4 . 2 9 4 9 5 7 6
1 6 モノクロ ベンゼン 6 . 2 8 5 6 7 8 6
[0075] 実施例 17— 20 反応時間の検討
反応時間を変更した事以外は実施例 13と同様の操作を行うことにより、 目的物を製 造した。尚、触媒の使用量は、基質に対して 3. 9-4. lmol%の範囲であった。又、 収率は 2工程の合計で示した。
[化 38]
Figure imgf000048_0002
[表 6]
実施例 反応時間 収率 d e
N (時間) (% ) (%)
1 7 2 4 8 8 > 9 9 9 2
1 8 1 3 8 1 > 9 9 9 8
1 9 6 8 4 > 9 9 9 8 [0076] 実施例 21
溶媒をジクロロェタン((CH C1) )に、反応温度を 100°Cに、反応時間を 3時間に変 更した事以外は実施例 13と同様の操作を行うことにより、 目的物を製造した。収率は 2工程の合計で示した(収率: 90% (2工程合計)、 de: 93% ee:92%)0
[0077] 実施例 22— 32
基質及び溶媒を変更した事以外は実施例 13と同様の操作を行うことにより、 目的 物を製造した。収率は 2工程の合計で示した。
[化 39]
Figure imgf000049_0001
[表 7] 実施例 R 溶媒 収率 d e e e
No.
22 一 8 8 8 7 7 4
23 n CH2Cl2/n— ' 8 8 6 4 7 8
24 n一 n 5 3 8 1 5 8
25 t― n 8 9 9 2 7 9
26 c CH¾C12 7 7 9 6 56
27 CH2Cl ' 8 2 9 7 94
28 c n 8 5 9 5 9 5
29 c 8 5 9 9 9 4
30 c n— 8 0 9 6 5 4
31 c 94 9 4 7 9
32 c n— 8 6 94 9 7
R=n プロピル基
[a] 22 +14.8(1.01, CHC1 );融点 97— 99C;IR(KBr)3354, 2958 2867, 1
737, 1629, 1578, 1534, 1254, 1221cm_1;1H-NMR(400MHz, CDC1 ) δ 0
. 85 (t, 3Η J=7. 2Ηζ, 3Η, CH CH CH ) , 1. 28—1. 56 (m, 4H,
CH CH CH ) , 3. 29 (d, J=7. 6Hz 1H CHOH) , 4.05-4. 10 (m, 1H CHO
H), 4. 93 (dd, J=3. 2, 6.8Hz, IH, CHNH) , 5. 21 (d, J=12.4Hz, 1H CH
Ph), 5. 31 (d, J=12.4Hz, IH, CH Ph) 7. 14 (d, J=6. 8Hz, 1H CHNH), 7 . 26-7. 56 (m, 8H, Ar—H), 7. 82—7. 84 (m, 2H, Ar—H); C— NMR(100M Hz, CDCl ) 513. 8, 18. 9, 35. 3, 58. 3, 67. 7, 73. 1, 127. 2, 128. 2, 12
3
8. 4, 128. 7, 132. 1, 133. 3, 134. 9, 168. 0, 170. 3;HRMS(FAB, NBA) C H NOの計算値: 342. 1705 (M++l).実測値: 342. 1699.
20 24 4
HPLC分析条件,カラム: CHIRALCEL OD—H (ダイセル化学工業株式会社), 移動相: n—へキサン /i_プロパノール =90/10,流速: 0.5mLZ分,保持時間: 2 R, 3R体 26. 6分, 2S, 3S体 32. 3分.
R=t_ブチル基
[ひ] 22 + 23. 9(1. 00, CHC1 ); IR Ml (neat) ) 3373, 3064, 3033, 2958, 2
D 3
908, 2872, 1731, 1644, 1538, 1487, 1177, 1078cm"1; 'H-NMR (400M Hz, CDCl ) S O. 95 (s, 9H, (CH ) C) , 3. 33 (d, J=10Hz, IH, CHOH) , 3. 6
3 3 3
7(dd, J=3. 2, 9. 6Hz, 1H, CHOH) , 5. 02 (dd, J=3. 2, 7. 6Hz, IH, CHNH ), 5. 20 (d, J=12.4Hz, IH, CH Ph) , 5. 24 (d, J=12. 4Hz, IH, CH Ph) , 7.
2 2
10 (d, J=7. 6Hz, IH, CHNH), 7. 34-7. 40 (m, 5H, Ar_H) , 7. 43-7. 47 ( m, 2H, Ar—H), 7. 51—7. 55 (m, 1H, Ar—H), 7. 78—7. 81 (m, 2H, Ar—H) ;13C-NMR(100MHz, CDCl ) δ 26. 0, 35.4, 54. 5, 67. 6, 81. 1, 127. 1,
3
128. 5, 128. 6, 132. 0, 133. 4, 134. 6, 167. 3, 171. 1;HRMS(FAB, NB A)C H NOの計算値: 356· 1862(M++1).実測値: 356· 1827.
21 26 4
HPLC分析条件,カラム: CHIRALPAK AD (ダイセルィ匕学工業株式会社),移動 相: n—へキサン/ i一プロパノール =90/10,流速: 1· OmL/分,保持時間: 2R, 3 R体 26. 8分, 2S, 3S体 17. 8分.
1 =シクロペンチル基
[ひ] 24 + 20. 5(1. 00, CHC1 );融点 109— lll。C;IR(KBr)3414, 3342, 2938
D 3
, 2867, 1746, 1644, 1521, 1488, 1195cm"1; 'H-NMR (400MHZ, CDCl )
3 δ 1. 38-1. 88 (m, 9H, c— Pen— H) , 2. 95 (d, J=8. OHz, IH, CHOH), 3. 78 (dt, J=2. 8, 8. 8Hz, 1H, CHOH) , 4. 92 (dd, J=2. 8, 7. 2Hz, 1H, CHNH) , 5. 21 (d, J=12. 4Hz, 1H, CH Ph) , 5. 31 (d, J=12.4Hz, IH, CH Ph) , 7. 19
2 2
(d, J=6. 4Hz, IH, CHNH), 7. 34—7. 39 (m, 5H, Ar— H), 7. 43—7.47 (m, 2H, Ar-H) , 7. 51—7. 56 (m, IH, Ar— H) , 7. 81—7. 84 (m, 2H, Ar— H); C -NMR(100MHz, CDC1 ) δ 25. 1, 25. 5, 29. 0, 29. 8, 43. 5, 57. 3, 67. 5
3
, 78. 0, 127. 2, 128.4, 128. 6, 132. 0, 133. 4, 135. 0, 167. 6, 170. 5; HRMS (FAB, NBA)C H NOの計算値: 368. 1862 (M++1).実測値 368. 1
22 26 4
870.
HPLC分析条件,カラム: CHIRALPAK AD (ダイセルィ匕学工業株式会社),移動 相: n—へキサン/ i—プロパノール =90/10,流速: 1. OmLZ分,保持時間: 2R, 3 R体 25. 2分, 2S, 3S体 28. 9分.
1 =シクロへキシル基
融点 125— 127°C;IR(KBi 34O3, 2929, 2849, 1742, 1647, 1521, 1483, 1 211 cm"1; 'H-NMR (400MHZ, CDCl )
3
δ 0. 95-1. 78 (m, 10H, c— Hex— CH ), 1. 99(d, J=12. lHz, 1H, CHC (OH
2
) CHNH) , 2. 78 (d, J=8. 8Hz, IH, CHOH) , 3. 66 (dt, J=3. 2, 8. 8Hz, IH, CHOH), 4. 99 (dd, J=2. 9, 7. 3Hz, IH, CHNH), 5. 18(d, J=12. 2Hz, IH , CH Ph), 5. 34(d, J=12. 2Hz, IH, CH Ph), 7. 17 (d, J=6. 8Hz, IH, CHN
2 2
H), 7. 32-7. 56 (m, 8H, Ar-H) , 7. 81—7. 83 (m, 2H, Ar-H) ;13C— NMR( 100MHz, CDCl ) δ 25. 6, 26. 1, 29. 0, 29. 2, 40. 9, 55. 7, 67. 5, 77. 9,
3
127. 2, 128. 5, 128. 6, 131. 9, 133. 5, 135. 0, 167. 4, 170. 8 HRMS (F AB, NBA)C H NOの計算値: 382· 2018 (M++1).実測値: 382· 1993.
23 28 4
HPLC分析条件,カラム: CHIRALPAK AD (ダイセルィ匕学工業株式会社),移動 相: n—へキサン/ i一プロパノール =90/10,流速: 1· OmL/分,保持時間: 2R, 3 R体 18. 7分, 2S, 3S体 32. 3分.
1 =シクロへプチル基
[ひ] 25+12. 9(1. 00, CHC1 ) ;IR Ml (neat) )3418, 3064, 3033, 2925, 2
D 3
854, 1734, 1646, 1539, 1190, 1082cm"1; 'H-NMR (400MHZ, CDCl ) δ 1
3
. 24-1. 64 (m, 11H, c— Hep— H) , 1. 76—1. 89 (m, 2H, c— Hep— H), 2. 79( dd, J=5. 6, 8. 4Hz, 1H, CHOH) , 3. 70 (dt, J=3. 2, 8. 8Hz, 1H, CHOH) , 5. 01 (dd, J=3. 2, 7. 2Hz, 1H, CHNH) , 5. 18(d, J=12. 0Hz, 1H, CH Ph) , 5. 32 (d, J=12. OHz, 1H, CH Ph) , 7. 13 (d, J=7. OHz, CHNH) , 7. 32-7.
2
40 (m, 5H, Ar—H) , 7. 42—7. 46 (m, 2H, Ar—H) , 7. 51—7. 55 (m, 1H, Ar— H) , 7. 80-7. 82 (m, 2H, Ar-H) ; 13C_NMR (100MHz, CDCl ) δ 26. 1, 26
3
. 2, 28. 2, 28. 9, 30. 6, 42. 3, 55. 8, 67. 5, 77. 6, 127. 2, 128. 5, 128. 6, 131. 9, 133. 5, 135. 0, 167. 4, 170. 9 ; HRMS (FAB, NBA) C H NO
24 30 4 の計算値:; 396. 2175 (M++ 1) .実測値:; 396. 2195.
HPLC分析条件,カラム: CHIRALCEL OD—H (ダイセル化学工業株式会社), 移動相: n—へキサン /i_プロパノール = 90/10,流速: 0. 5mLZ分,保持時間: 2 R, 3R体 30. 5分, 2S, 3S体 34. 7分.
実施例 33 - 43
基質を参考例 1で製造した 2—シクロへキシルー 1ーメトキシカルボ二ルー 2—ォキソ一 ェチルーアンモニゥム;クロリドに変更し、種々の反応条件を検討した。
転化率は、反応液を HPLCで分析し、基質と生成物のピーク面積を以下の式に当 てはめることにより算出した値を意味する。尚、式中の、 4. 37という数字は、測定波 長における基質と生成物の感度比を補正するために用いた値である。
転化率 =生成物の面積/ (生成物の面積 +基質の面積 /4. 37) X 100
転化率の分析条件
分析方法: HPLC (島津 LClOAvp)、逆相ァイソクラチック分析
カラム: L_column ODS (化学物質評価技術研究機構) φ 4. 6mm X 250mm + C APCELLPAKSCX UG80 (株式会社 資生堂) φ 4. 6mm X 250mm
移動相:ァセトニトリル/ lOOmM KH PO緩衝溶液 =2/8 (v/v)
2 4
流速: 1. OmlZ分.
検出: UV215nm
保持時間:基質 21. 8分、生成物 23. 4分.
eeは、生成物をベンゾィル化した化合物を HPLCで分析することにより決定した。 e eの分析条件
分析方法: HPLC (島津 LC 1 OAvp)、順相ァイソクラチック分析
カラム: CHIRALCEL 〇D_H (ダイセル化学工業株式会社) 移動相: n キサン/イソプロパノール =85/15 (·
流速: 0.5ml/分.
検出: UV254nm
保持時間: R体 11.2分、 S体 15.3分.
[化 40]
Figure imgf000053_0001
園 実施例 圧力 反応温度 触媒 転化率 e e 立体
No. (kgf.cm-2) ( ) mol% 立体 (%) (R S)
33 3 0 50 4 S 9 5 ― 一
34 3 0 50 4 R 9 8 95.3 R
35 2 0 50 4 R 9 5 96.8 R
36 1 0 50 4 R 9 0 97.1 R
37 3 0 90 5 S 9 9 95.1 S
38 3 0 70 5 S 9 8 95.2 S
39 3 0 50 5 s 9 7 96.4 s
40 3 0 50 5 s 9 8 96.7 s
4 1 3 0 50 0.5 R 9 2 94.8 R
42 3 0 50 0.1 R 9 0 82.6 R
43 30 50 0.01 R 8 4 - 実施例 44 [Ir(cod)Cl]2_(S)— MeO— Biphep— Nalを触媒とする製造法。
[化 41]
[ lr(cod)CI ]2 (s)-MeO- Biphep
O Nal, NaOAc, AcOH, , 24
ΡΗ .0Ο2Μβ 1 ) H2(100atm) ^ ph .C02Me
NH3 +Cr 2) PhCOCI,Et3N,THF ¾HC0Ph
[Ir(cod)Cl]2(2.5mg, 0.0037mmol)、(S) - MeO— Biphep (5.8mg, 0.01 mmoD及びヨウ化ナトリウム(2· 3mg, 0.015mmol)を塩化メチレン(1. OmL)に加 えた溶液を凍結融解法(freeze—thawmethod)により脱気した。
溶液をアルゴン雰囲気下におレ、て、室温で 10分攪拌した。 得られた黄色の触媒を真空下で乾燥させた。該触媒に参考例 23で製造した 6g( 57. 4mg, 0. 25mmol)、 NaOAc (酢酸ナトリウム) (20. 5mg, 0. 25mmol)及び 脱気した AcOH (酢酸) (1. 2mL)をアルゴン雰囲気下で加えた。混合溶液を室温下 において、水素圧 100気圧で攪拌した。 24時間攪拌した後、反応溶液を lmol/L 塩酸(3. OmL)に加え、ジェチルエーテル 5mLで洗浄した。得られた水層を 40°C以 下で減圧下において濃縮乾固し、残查に無水エタノールをカ卩えて粉砕した。 白色固 体を濾去し、得られた透明の濾液を減圧下で濃縮した。残查を THF (テトラヒドロフラ ン)(3mL)に溶解し、その後、 PhCOCl (ベンゾイルク口リド) (35. 2mg, 0. 25mmo 1)及び Et N (トリエチルァミン)(75. 9mg, 0. 75mmol)を 0°Cにて加えた。室温で 1
3
時間攪拌した後、水及び酢酸ェチル(10mL)を加え、その有機層を、 ImolZL塩酸 (5mL)、飽和重曹水(5mL)、飽和食塩水で順次洗浄し、無水硫酸ナトリウムにて乾 燥し、沈殿物を濾去した後、減圧下で濃縮した。残查をシリカゲルカラムクロマトダラ フィー(20g,酢酸ェチル: n—へキサン = 1 : 2)によって精製し、 N-ベンゾィル体(57 . 8mg, 0. 19mmol, 77%, >99%de, 89. 6%ee)を無色固体で得た。
JH-NMR (400MHz, CDC1 ) δ ; 3. 79 (3Η, s) , 4. 56 (1Η, d, J=5. 6Hz) , 5.
3
24 (1H, dd, J=3. 6, 6. 8Hz) , 5. 40 (1H, dd, J=3. 6, 5. 6Hz) , 6. 87 (1H, br d) , 7. 2— 7. 4 (5H, m, Ar— H) , 7. 4一 7. 5 (2H, m, Ar— H) , 7. 5— 7. 6 (1H , m, Ar-H) , 7. 7— 7· 8 (2H, m, Ar-H) ; 13C_NMR (100MHz, CDC1 ) δ (pp
3 m) 52. 6, 59. 4, 75. 1 , 125. 9, 127. 1 , 128. 0, 128. 3, 128. 6, 132. 1, 1 33. 0, 139. l ; FT-IR v (KBr) : 3338, 1744, 1644, 1525, 1229, 1173, 6 max
93. ; FABMS (NBA) m/z : 300 (M+ l);
HPLC分析条件,カラム: CHIRALCEL OD_H (ダイセル化学工業株式会社), 移動相: n—へキサン/ i一プロパノール = 85/15,流速: 1. OmLZ分,保持時間: 2 R, 3R体 8. 6分, 2S, 3S体 12. 0分.
実施例 45 - 49
添加物(ヨウ素化合物)、酢酸塩、温度及び反応時間を変更した事以外は実施例 4 4と同様の操作を行うことにより、 目的物を製造した。収率は 2工程の合計で示した。 尚、触媒の使用量は、基質に対してイリジウムの使用量は 3mol。/。であり、 (S)-Me O—Biphepの使用量は、イリジウムの使用量に対して 1. 33当量(4/3)である。 又、表中、ヨウ素化合物の量は、イリジウムの使用量に対する当量数を表し、酢酸 塩の量は、基質に対する当量数を表し、 TBAIは、ヨウ化テトラ n—プチルアンモニゥ ムを意味する。
[化 42] Me
Figure imgf000055_0001
Ph
[表 9] 実施例 ヨウ素化合物 酢酸塩 温度 時間 収率 d e e e
N o . 種類 量 種類 量 (°C) ( h ) (% ) (% ) (%)
4 5 0 J 1 室温 3 7 9 > 9 9 7 7
4 6 TBAI 2 Ιΐ J 1 室温 2 4 7 7 > 9 9 8 7
4 7 KI 2 1 室温 2 4 5 7 9 6 8 7
4 8 Nal 2 1 4 0 2 4 7 9 9 6 8 7
4 9 TBAI 1. 1 J 1 室温 2 4 8 3 > 9 9 8 7 実施例 49一 56
基質、添加物 (ヨウ素化合物)、温度及び反応時間を変更した事以外は実施例 44と 同様の操作を行うことにより、 目的物を製造した。収率は 2工程の合計で示した。 尚、基質の使用量:イリジウムの使用量:(S)— Me〇一 Biphepの使用量:添加物(ョ ゥ素化合物)の使用量 = 100 : 3 : 4 : 6であり、酢酸塩 (酢酸ナトリウム)は、基質に対し て 1当量使用した。
表中、〇Bnはベンジルォキシ基を、 Phはフエニル基を、 Meはメチル基を、 Prはプ 口ピル基を、 β _Napは β一ナフチル基を、 TBAIは、ヨウ化テトラ n—ブチルアンモニ ゥムを意味する。
[化 43]
[ lr(cod)CI (s)-MeO- Biphep
0 OH
„ ,002Μβ 1 ) AcOH, H2(100 .C02Me
NH3 +Cr 2 ) PhCOCI, Et3N, THF NHCOPh [表 10] 実施例 R ョ iゥ素化合物 温度 時間 収率 d e e e
N o . 種類 (X) (h) (%) (%) C%)
49 p-OBn-Ph TBAI 室温 48 5 1 90
50 p - Me Ph TBAI 室温 48 64 > 9 9 86
5 1 p-OBn-Ph Nal 30 96 64 93
5 2 p-Me-Ph Nal 30 96 76 > 99 94
53 m-Me-Ph Nal 30 96 93 > 99 87
54 i3-Nap Nal 30 96 95 9 7 86
55 p-Br-Ph Nal 30 96 8 7 > 99 75
56 i-Pr NaT 30 96 50 > 99 8 2 実施例 57 - 74
実施例 44の配位子を(s)-BINAPに変更し、種々の条件を変更して目的化合物 を製造した。収率は 2工程の合計で示した。
尚、基質の使用量:イリジウムの使用量:(s)-BINAPの使用量=100:3:4でぁる。 表中、添加物の量は、イリジウムの使用量に対する当量数を表し、酢酸塩の量は、 基質に対する当量数を表し、又、溶媒の種類は、以下の記号を意味する。
A エタノール
B n_プロパノール
C i—プロパノール
D メタノーノレ:ベンゼン =1:2
E n—プロパノーノレ:テトラヒドロフラン =1:2
F i_プロパノール:酢酸 =1:1
G テトラヒドロフラン:酢酸 =1:1
H 酢酸
又、 Phtaは、フタルイミドを意味し、 TBABは、臭化テトラ n—ブチルアンモニゥムを 、 TBAIは、ヨウ化テトラ n—ブチルアンモニゥムを意味する。
[化 44]
Ω [lr{cod)CI ]2,(s)-BINAP
PhA./C02Me 1 ) 添加物、 醉酸塩、 H2 _
ΝΗπ+CI— 2) P COCl, EtaN,THF
Figure imgf000056_0001
[表 11] 実施例 溶媒 添加物 酢酸塩 圧力 時間 収率 d e e e
N o . 種類 量 種類 量 atin (h) (%) (%) (%)
5 7 A 0 0 100 48 87 86 41
5 8 B 0 0 50 48 84 88 50
5 9 C 0 0 100 48 83 88 58
6 0 D 0 0 50 48 81 40
6 1 E 0 0 100 48 37 92 66
6 2 H 0 J 1 100 48 83 98 69
6 3 H 0 J 1 100 48 79 >99 69
6 4 H 0 1 100 3 90 >99 69
6 5 H 0 1 , , 1 100 3 66 98 68
6 6 H 0 1 . 1 100 3 58 >99 69
6 7 H 0 3 100 3 79 96 68
6 8 F 0 1 100 48 58 86 57
6 9 G 0 J 1 100 48 57 97 54
7 0 H Phta 2 1 100 3 79 >99 69
7 1 H TBAI 2 1 100 3 32 >99 78
7 2 H TBAI 2 J 1 100 12 65 >99 79
7 3 H TBAI 2 1 100 24 70 >99 79
7 4 H TBAB 2 1 100 24 65 >99 75
[0083] 実施例 75
配位子を(S)— T一 BINAPに変更した事以外は、実施例 64と同様の操作を行うこと により目的物を得た。 (収率: 85% (2工程合計)、 de: > 99%、 ee: 71%)
産業上の利用可能性
[0084] 本発明により、医'農薬の中間体として有用である光学活性 ]3—ヒドロキシ
ミノカルボン酸誘導体のアンチ体を効率的に製造することができる。

Claims

請求の範囲 式 (1)
[化 1]
Figure imgf000058_0001
{式中、 R1は、 C アルキル基〔該 C アルキル基は C 芳香族基 [該芳香族基は、
1-20 1-20 4-12
ハロゲン原子、 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基、 C
1-6 1-6 1-6
アルキルカルボニルォキシ基又は C〇NR4R5 (式中、 R4及び R5は、それぞれ独立し
1-6
て、水素原子又は c アルキル基を意味する。)で任意に置換されていてもよい。 ]、
1-6
C アルコキシ基、 C アルコキシカルボニル基又は C〇NR4R5 (式中、 R4及び R5は、
1-6 1-6
それぞれ独立して、水素原子又は c アルキル基を意味する。)で任意に置換されて
1-6
いてもよい。〕、又は C 芳香族基〔該芳香族基は、ハロゲン原子、 C アルキル基、
4-12 1-6
C アルコキシ基、 C アルコキシカルボニル基、 C アルキルカルボニルォキシ基 [
1-6 1-6 1-6
該 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基及び C アルキル
1-6 1-6 1-6 1-6 カルボニルォキシ基は、 c 芳香族基 (該芳香族基は、ノ、ロゲン原子で任意に置換
4-12
されていてもよい。)で任意に置換されていてもよレ、。 ]又は CONR4R5 (式中、 R4及び R5は、それぞれ独立して、水素原子又は C アルキル基を意味する。 )で任意に置換
1-6
されていてもよレ、。〕を意味し、
R2は、 C アルキル基〔該 C アルキル基は C 芳香族基 [該芳香族基は、ハ
1-20 1-20 4-12
ロゲン原子、 C アルキル基、 C アルコキシ基、 C アルコキシカルボニル基、 c
1-6 1-6 1-6 1-6 アルキルカルボニルォキシ基又は CONR4R5 (式中、 R4及び R5は、それぞれ独立して 、水素原子又は C アルキル基を意味する。)で任意に置換されていてもよい。 ]、 C
1-6
アルコキシ基、 C アルコキシカルボニル基又は C〇NR4R5 (式中、 R4及び R5は、そ
1-6 1-6
れぞれ独立して、水素原子又は C アルキル基を意味する。)で任意に置換されてい
1-6
てもよい。〕、又は c 芳香族基 [該芳香族基は、ハロゲン原子、 C アルキル基、 C
4-12 1-6
アルコキシ基、 C アルコキシカルボニル基、 C アルキルカルボ二ルォキシ基又
1-6 1-6 1-6
は C〇NR4R5 (式中、 R4及び R5は、それぞれ独立して、水素原子又は C アルキル基
1-6 を意味する。)で任意に置換されていてもよい。 ]を意味する。 }で表される α -アミノア シル酢酸エステル化合物を、酸の存在下において、触媒的不斉水素化反応により水 素化することを特徴とする、式 (2)又は式 (3)
[化 2]
Figure imgf000059_0001
(式中、 R1及び R2は、前記と同じ意味を示す。)で表される光学活性 —ヒドロキシ - aーァミノカルボン酸誘導体の製造方法。
[2] 前記触媒的不斉水素化反応に使用される触媒が、光学活性ホスフィン配位子を有 する、周期表第 VIII族の遷移金属の錯体である請求項 1記載の光学活性 β -ヒドロ キシー aーァミノカルボン酸誘導体の製造方法。
[3] 前記周期表第 VIII族の遷移金属がルテニウム、イリジウム又はロジウムであり、光学 活性ホスフィン配位子が光学活性 2座ホスフィン配位子である請求項 2記載の光学活 性 /3—ヒドロキシー a—ァミノカルボン酸誘導体の製造方法。
[4] 前記周期表第 VIII族の遷移金属がルテニウムであり、光学活性 2座ホスフィン配位 子が式 (4)
Figure imgf000059_0002
(式中、 R3は、水素原子、メチル基又は三級ブチル基を意味し、絶対配置は S又は R のどちらかを意味する。 )である請求項 3記載の光学活性 βーヒドロキシー aーァミノ力 ルボン酸誘導体の製造方法。
[5] 前記周期表第 VIII族の遷移金属の錯体が RuHX R3 - BINAP) 、 RuX2 (R3 - BIN
2 2
AP)又は Ru Cl (R -BINAP) (Et N) (式中、 R3— BINAPは前記式(4)で表される
2 4 2 3
光学活性 2座ホスフィン配位子を意味し、 Etはェチル基を意味し、 X1及び X2は、それ ぞれ Cl、 CIO、 BF、 PF、 OCOCH、 OCOCF、〇CO— t— Bu又は OSO CFを意
4 4 6 3 3 2 3 味するが、該錯体は、 N, N—ジメチルホルムアミド、ベンゼン、 A1C1、 SnCl、 TiCl
3 4 4 又は ZnClで更に配位されていてもよい。)である請求項 4記載の光学活性
2
β—ヒドロキシー α—ァミノカルボン酸誘導体の製造方法。
[6] 前記周期表第 VIII族の遷移金属の錯体が RuX2 (R -BINAP) (式中、 X2及び R3 -
2
BINAPは前記と同じ意味を表わし、該錯体は、 N, N—ジメチルホルムアミド、ベンゼ ン、 A1C1、 SnCl、 TiCl又は ZnClで更に配位されていてもよレ、。)である請求項 5
3 4 4 2
記載の光学活性 βーヒドロキシー a—アミノカルボン酸誘導体の製造方法。
[7] N, N—ジメチルホルムアミド又はベンゼンで更に配位された RuX2 (R -BINAP) (式
2
中、 X2が C1を表わし、 R3_BINAPは前記と同じ意味を表わす。)を用いる請求項 6に 記載の光学活性 βーヒドロキシー aーァミノカルボン酸誘導体の製造方法。
[8] 前記周期表第 VIII族の遷移金属がイリジウムであり、光学活性 2座ホスフィン配位子 力 ¾3— BINAP (R3— BINAPは、前記と同じ意味を表わす。)又は式(5)
Figure imgf000060_0001
[式中、 R6は、フエニル基、ナフチル基(該フエニル基及びナフチル基は C アルキル
1-6 基又は C アルコキシ基で任意に置換されていてもよレ、。)、シクロペンチル基又はシ
1-6
クロへキシノレ基を意味し、 R7は、メチル基又はメトキシ基を意味し、 R8は、水素原子、 メチル基、メトキシ基又は塩素原子を意味し、 R9は、水素原子、メチル基、メトキシ基、 ジメチルァミノ基又ジェチルァミノ基を意味し、絶対配置は S又は Rのどちらかを意味 する。 ]で表される化合物である請求項 3記載の光学活性 β—ヒドロキシー a—ァミノ力 ルボン酸誘導体の製造方法。
[9] 反応系中に酢酸塩を加える請求項 8記載の光学活性 β -ヒドロキシー a -ァミノカル ボン酸誘導体の製造方法。
[10] 前記周期表第 VIII族の遷移金属の錯体を調製する際、ヨウ素化合物を添加する請 求項 9記載の光学活性 β—ヒドロキシー a—アミノカルボン酸誘導体の製造方法。
[11] 前記光学活性 2座ホスフィン配位子が前記式(5)で表される化合物である請求項 10 記載の光学活性 βーヒドロキシー a—アミノカルボン酸誘導体の製造方法。
[12] 前記周期表第 VIII族の遷移金属の錯体を調製する際、 [Ir (cod) Cl] (式中、 codは
、 1 , 5—シクロォクタジェンを意味する。)を使用する請求項 1 1記載の光学活性 j3—ヒ ドロキシー a—アミノカルボン酸誘導体の製造方法。
[13] 前記酸が強酸である請求項 1一 12の何れ力、 1項に記載の光学活性 /3—ヒドロキシー a—ァミノカルボン酸誘導体の製造方法。
PCT/JP2004/009829 2003-07-10 2004-07-09 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法 WO2005005371A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/563,763 US7799941B2 (en) 2003-07-10 2004-07-09 Process for producing optically active β-hydroxy-α-aminocarboxylic acid derivative
JP2005511542A JP3932413B2 (ja) 2003-07-10 2004-07-09 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
CA2531898A CA2531898C (en) 2003-07-10 2004-07-09 Process for producing optically active .beta.-hydroxy-.alpha.-aminoc arboxylic acid derivative
EP04747297.2A EP1650185B1 (en) 2003-07-10 2004-07-09 Process for production of optically active beta-hydroxy- alpha-aminocarboxylic acid derivatives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003272637 2003-07-10
JP2003-272637 2003-07-10
JP2003426226 2003-12-24
JP2003-426226 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005005371A1 true WO2005005371A1 (ja) 2005-01-20

Family

ID=34067375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009829 WO2005005371A1 (ja) 2003-07-10 2004-07-09 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法

Country Status (5)

Country Link
US (1) US7799941B2 (ja)
EP (1) EP1650185B1 (ja)
JP (1) JP3932413B2 (ja)
CA (1) CA2531898C (ja)
WO (1) WO2005005371A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075651A1 (ja) * 2005-01-12 2006-07-20 Nissan Chemical Industries, Ltd. 光学活性β-ヒドロキシ-α-アミノカルボン酸誘導体の製造法
JP2007161609A (ja) * 2005-12-09 2007-06-28 Chiba Univ 新規不斉イリジウム触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
JP2007230914A (ja) * 2006-03-01 2007-09-13 Chiba Univ 新規不斉ニッケル触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
WO2008041571A1 (fr) 2006-09-26 2008-04-10 Kaneka Corporation Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif
US8304216B2 (en) 2006-03-31 2012-11-06 Kaneka Corporation Method for production of erythro-or threo-2-amino-3-hydroxypropionic acid ester, novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol using those

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403760B2 (en) * 2013-03-14 2016-08-02 Avanti Polar Lipids, Inc. Compounds

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310847A (ja) * 1987-06-11 1988-12-19 Takasago Corp 光学活性アルコ−ルの製法
JPH02172956A (ja) 1988-12-23 1990-07-04 Sumitomo Pharmaceut Co Ltd エリスロ―3―(3,4―ジヒドロキシフェニル)セリン誘導体の新規製造法
JPH0680617A (ja) 1992-09-01 1994-03-22 Takasago Internatl Corp 光学活性ジヒドロスフィンゴシン類の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781609B2 (en) * 2005-01-12 2010-08-24 Nissan Chemical Industries, Ltd. Process for producing optically active β-hydroxy-α-aminocarboxylic acid derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310847A (ja) * 1987-06-11 1988-12-19 Takasago Corp 光学活性アルコ−ルの製法
JPH02172956A (ja) 1988-12-23 1990-07-04 Sumitomo Pharmaceut Co Ltd エリスロ―3―(3,4―ジヒドロキシフェニル)セリン誘導体の新規製造法
JPH0680617A (ja) 1992-09-01 1994-03-22 Takasago Internatl Corp 光学活性ジヒドロスフィンゴシン類の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM.SOC., vol. 111, 1989, pages 9134 - 9135
SYNTHESIS, 1992, pages 1248 - 1254

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075651A1 (ja) * 2005-01-12 2006-07-20 Nissan Chemical Industries, Ltd. 光学活性β-ヒドロキシ-α-アミノカルボン酸誘導体の製造法
US7781609B2 (en) 2005-01-12 2010-08-24 Nissan Chemical Industries, Ltd. Process for producing optically active β-hydroxy-α-aminocarboxylic acid derivative
JP2007161609A (ja) * 2005-12-09 2007-06-28 Chiba Univ 新規不斉イリジウム触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
JP4621918B2 (ja) * 2005-12-09 2011-02-02 国立大学法人 千葉大学 新規不斉イリジウム触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
JP2007230914A (ja) * 2006-03-01 2007-09-13 Chiba Univ 新規不斉ニッケル触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
JP4677562B2 (ja) * 2006-03-01 2011-04-27 国立大学法人 千葉大学 新規不斉ニッケル触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
US8304216B2 (en) 2006-03-31 2012-11-06 Kaneka Corporation Method for production of erythro-or threo-2-amino-3-hydroxypropionic acid ester, novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol using those
JP5261172B2 (ja) * 2006-03-31 2013-08-14 株式会社カネカ エリスロ又はスレオ−2−アミノ−3−ヒドロキシプロピオン酸エステルの製造方法、新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2008041571A1 (fr) 2006-09-26 2008-04-10 Kaneka Corporation Procédé de fabrication d'un ester d'acide bêta-hydroxy-alpha-aminocarboxylique optiquement actif
US8207370B2 (en) 2006-09-26 2012-06-26 Kaneka Corporation Process for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
JP5274256B2 (ja) * 2006-09-26 2013-08-28 株式会社カネカ 光学活性β−ヒドロキシ−α−アミノカルボン酸エステルの製造方法

Also Published As

Publication number Publication date
JP3932413B2 (ja) 2007-06-20
CA2531898C (en) 2012-01-03
US7799941B2 (en) 2010-09-21
EP1650185B1 (en) 2013-05-01
JPWO2005005371A1 (ja) 2006-08-24
US20060167300A1 (en) 2006-07-27
EP1650185A4 (en) 2007-06-20
EP1650185A1 (en) 2006-04-26
CA2531898A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
EP1301458B1 (en) Synthesis of functionalized and unfunctionalized olefins via cross and ring-closing metathesis
US7230134B2 (en) Method for the production of amines by reductive amination of carbonyl compounds under transfer-hydrogenation conditions
Han et al. Enantioselective Morita–Baylis–Hillman reaction promoted by l-threonine-derived phosphine–thiourea catalysts
KR20130106374A (ko) Nep 억제제의 제조에 유용한 중간체의 신규한 제조 방법
Rapi et al. Enantioselective Michael addition of malonates to aromatic nitroalkenes catalyzed by monosaccharide-based chiral crown ethers
Saylik et al. A new enantioselective synthesis of β-amino acids
EP1849792B1 (en) Biphosphine ruthenium complexes with chiral diamine ligands as catalysts
WO2005005371A1 (ja) 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造方法
ES2545903T3 (es) Compuestos de urea asimétricos y procedimiento para producir compuestos asimétricos por reacción de adición asimétrica de conjugado usando dichos compuestos como catalizador
Pandey et al. Retracted Article: A highly concise and practical route to clavaminols, sphinganine and (+)-spisulosine via indium mediated allylation of α-hydrazino aldehyde and a theoretical insight into the stereochemical aspects of the reaction
Lühr et al. Synthesis of chiral β2-amino acids by asymmetric hydrogenation
JP2007063275A (ja) 鉄触媒作用によるアリル型アルキル化
ES2544579T3 (es) Procedimiento de producción de un beta-aminoácido ópticamente activo
JP4621918B2 (ja) 新規不斉イリジウム触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
Morimoto et al. Preparation of axially chiral biphenyl diphosphine ligands and their application in asymmetric hydrogenation
US7094725B2 (en) Biphenyldiphosphine compounds
JP3710846B2 (ja) ケトイソホロン誘導体類の不斉水素化
von Rönn et al. Acetyl-BINOL as mimic for chiral β-diketonates: a building block for new modular ligands
JP4924814B2 (ja) 光学活性β−ヒドロキシ−α−アミノカルボン酸誘導体の製造法
CN100567255C (zh) 光学活性β-羟基-α-氨基羧酸衍生物的制造方法
JP2003160549A (ja) 光学活性β−アリールアミドの合成法
JP4677562B2 (ja) 新規不斉ニッケル触媒の製造方法とこれらを用いる光学活性β−ヒドロキシ−α−アミノ酸誘導体の製造方法
WO2006088142A1 (ja) 不斉合成用触媒およびそれに用いる配位子、並びにこれらを用いた不斉合成反応による光学活性化合物の製造方法
JP5009613B2 (ja) 不斉合成における使用のためのキラル配位子
JP2002255933A (ja) 光学活性7−アミノ−5−アザスピロ[2.4]ヘプタンの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019827.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005511542

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006167300

Country of ref document: US

Kind code of ref document: A1

Ref document number: 2531898

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10563763

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 240/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004747297

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747297

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10563763

Country of ref document: US