WO2005004270A1 - 燃料電池装置及び燃料電池の燃料供給方法 - Google Patents

燃料電池装置及び燃料電池の燃料供給方法 Download PDF

Info

Publication number
WO2005004270A1
WO2005004270A1 PCT/JP2004/009609 JP2004009609W WO2005004270A1 WO 2005004270 A1 WO2005004270 A1 WO 2005004270A1 JP 2004009609 W JP2004009609 W JP 2004009609W WO 2005004270 A1 WO2005004270 A1 WO 2005004270A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
concentration
mixed solution
methanol
Prior art date
Application number
PCT/JP2004/009609
Other languages
English (en)
French (fr)
Inventor
Go Sudo
Kenji Katori
Masahiko Tahara
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/563,508 priority Critical patent/US7201980B2/en
Publication of WO2005004270A1 publication Critical patent/WO2005004270A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • H01M8/04447Concentration; Density of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/045Humidity; Ambient humidity; Water content of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention provides optimal power generation for the required output mode.
  • the present invention relates to a fuel cell device capable of doing so. More specifically, the present invention relates to a fuel cell device and a fuel supply method for a fuel cell, which can optimize the concentration of a mixed solution as a fuel according to a required output mode.
  • a fuel cell is a power generation device that generates power by supplying fuel to a fuel electrode and supplying air containing oxygen as an oxidant to an air electrode. In recent years, it has attracted attention as a power generation device that does not pollute the environment because the substance is water.
  • DMFC direct methanol fuel cell
  • Force S known.
  • DMFC direct methanol fuel cell
  • the anode reaction of the fuel cell does not proceed only with methanol, which is the fuel, so a mixed solution of methanol and water is mixed with the fuel cell. Power is generated by supplying it to the anode.
  • methanol and water are suitable in advance.
  • a method of producing a mixed solution mixed with a sharp composition and supplying the mixed solution to the DMFC while maintaining the concentration of the mixed solution at a constant level. While collecting pure methanol in the mixed solution in which the methanol has been consumed, the mixed solution is circulated in the circulation system, and the DM
  • the DMFC system can be simplified, but the energy density of the fuel body decreases. If the concentration of methanol in the mixed solution is increased to increase the energy density, the degradation rate of the power generator (MEA: Membrane and Electrode Assemblies) constituting the DMFC increases.
  • MEA Membrane and Electrode Assemblies
  • the methanol concentration at which the maximum output is obtained is different from the methanol concentration at which the maximum efficiency is obtained, and the methanol and water are mixed as soon as possible.
  • the methanol concentration cannot be changed according to the DMFC operating conditions.
  • the mixing is generally performed so that the maximum concentration of DMFC can be obtained.
  • a method of maintaining the methanol concentration of the solution has been adopted, and tracking of the load of the fuel cell has been performed by coordinating the fuel cell and the secondary battery. Therefore, the maximum output cannot be obtained by adjusting the methanol concentration to obtain the maximum efficiency, and the maximum output cannot be obtained, and the mixed solution, which is the fuel, is converted to the output required for the fuel cell. Optimal accordingly It was difficult to adjust the concentration to a suitable level.
  • a fuel cell device that can generate electric power by optimizing the concentration of the mixed solution according to the load condition of the fuel cell.
  • the fuel cell device performs concentration adjustment using a liquid fuel, and adjusts the concentration of the liquid fuel to an optimum concentration according to the fuel cell and an output mode required for the fuel cell. And means. ADVANTAGE OF THE INVENTION
  • concentration of a liquid fuel can be adjusted so that it may become an optimal density
  • the optimal concentration for example, when power is generated at all times using liquid fuel whose concentration has been adjusted to obtain maximum power generation efficiency and maximum output is required In this case, power can be generated using liquid fuel of the appropriate concentration.
  • the concentration adjusting means can adjust the concentration of the liquid fuel by reusing the liquid fuel used for power generation in the fuel cell, and the resources required for power generation Can be used without waste.
  • the concentration adjusting means may include a plurality of fuel mixing means, and each of the plurality of fuel mixing means may generate a liquid fuel having a predetermined concentration.
  • a required fuel mixer is selected according to the required output mode. Liquid fuel can be supplied to the fuel cell from the selected fuel mixture.
  • the fuel cell device may include a concentration detecting means for detecting the concentration of the liquid fuel.
  • a concentration detecting means for detecting the concentration of the liquid fuel.
  • the concentration detecting means may be arranged between the fuel cell and the plurality of fuel mixers, so that the substantial concentration of the liquid fuel consumed by the fuel cell can be detected more accurately. >-Can also be issued.
  • a fuel supply method for a fuel cell according to the present invention detects an output mode required for a fuel cell that generates electric power using liquid fuel, and optimizes the concentration of the liquid fuel in accordance with the output mode K. It is characterized by adjusting the concentration. According to the fuel supply method for a fuel cell according to the present invention, it is possible to supply a liquid fuel having an optimum concentration according to an output mode required for the fuel cell.
  • FIG. 1 is a graph showing characteristics of a fuel cell, and is a graph showing a relationship between a cell density and a power density with respect to a current density.
  • Figure 2 is a graph showing the relationship between the power density and the methanol concentration. It is.
  • FIG. 3 is a configuration diagram showing an example of the fuel cell device according to the present invention.
  • FIG. 4 is a configuration diagram illustrating an example of the fuel cell device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a graph showing the relationship between the methanol concentration and the fuel cell characteristics when the inventors of the present invention generate power using DMFC.
  • the horizontal axis in FIG. 1 is the current density, and the left vertical axis is DMFCC.
  • FIG. 4 shows a cell voltage of a power generation cell to be formed.
  • the right vertical axis shows the power density of DMFC.
  • the methanol concentration of the mixed solution used as the fuel is determined.
  • the cell voltage and the electric power with respect to the current density are determined for each methanol concentration.
  • the density relationship was investigated.
  • the conditions of the methanol concentration 1.0, 0.6, 0.4 mo1 / L
  • A, B, and C conditions respectively.
  • the cell voltage tended to decrease as the current density increased, and was the same under the conditions A, B, and C.
  • the power density increases as the current density increases, but the ratio of the increase in the power density to the current density tends to decrease as the value of the current density increases. Also, the power density tended to take the maximum value at a specific value of the current density. In the case of condition A, 4009609
  • FIG. 2 is a graph showing the relationship between the maximum output density obtained from the characteristic curve showing the cell voltage and the power density of the DMFC shown in FIG. 1 and the output density at a constant cell voltage.
  • Fig. 2 shows four levels of maximum output, 450 mV output, 500 mV output, and 40 OmV output as parameters. Show me.
  • the methanol concentration should be around 0.6 mo1 / L. It can be seen that by adjusting this, a higher output density can be obtained at the same cell voltage than when the methanol concentration is 1.0 or 0.4 mo1 / L. In other words, it can be seen that there is an optimum methanol concentration at which the power density can be obtained most efficiently with respect to the power density required for the power generation cell. In addition, at an output density of about 40 to 70 mWZ cm2, the cell voltage becomes 450 to 50 OmV.
  • power generation efficiency can be increased by generating power at an optimum methanol concentration according to the required output.
  • an output of 90 mW / cm 2 or more can be obtained by adjusting the methanol concentration to around lmo1 ZL.
  • the output mode in this specification refers to a load that includes qualitative characteristics of the power generation cell, such as output voltage or output power, and specific conditions, such as a maximum value or a specific numerical range in each characteristic.
  • FIG. 3 is a configuration diagram of the fuel cell device according to the present example.
  • the fuel cell device according to the present invention is configured on the basis of the above-described basic idea of the present invention. It has a mechanism that can be adjusted according to the operating conditions.
  • the fuel cell device 1 of this example is a direct methanol fuel cell, but the fuel is not limited to methanol, and any fuel cell that generates power using liquid fuel can be used. Of course, anything can be used.
  • the fuel cell device 1 is composed of a methanol tank 2, mixers 3a and 3b, valves 11 and 12, 13 and 14, 15 and 16 and 17 and 18; 22 2, filters 4, 8, 9, cooler 5, cell stack 6 cooler drain 7, blower 41, and piping connecting these parts to form a fluid flow path .
  • the pump 21 sucks the methanol from the tank 2 with the nozzle 11 open and supplies the methanol to the mixers 3a and 3b.
  • the mixers 3a and 3b are provided with concentration sensors 31 and 32, respectively, for monitoring the methanol concentration of the mixed solution.
  • the gas containing water is discharged from the outlet on the air electrode side of the cell stack 6, and the water separated from this gas is mixed.
  • the methanol concentration of the mixed solution can be adjusted by supplying it to the devices 3a and 3b. Also, water can be separately supplied to the mixers 3a and 3b. Furthermore, by monitoring the methanol concentration with the concentration sensors 31 and 32, the concentration of the mixed solution can be controlled with high accuracy.
  • the mixers 3 a and 3 b generate mixed solutions adjusted to have different concentrations, respectively, and supply the cell stack 6 with a mixed solution having a required methanol concentration.
  • the required methanol concentration is the optimum methanol concentration for the output mode required for the cell stack 6, and is, for example, used in the above-described evaluation.
  • the mixed solution 3a is adjusted to have a methanol concentration of 0.6 mo1 / L.
  • the mixer 3b generates a mixed solution whose concentration has been adjusted to have a methanol concentration of 1 mol / L.
  • a mixed solution of 0.6 mol / L is supplied to the cell stack 6 from the mixer 3a.
  • a 1 mo1 / L mixed solution is supplied to the cell stack 6 from the mixer 3b. Supply.
  • valve 13 In the flow path connecting the mixers 3a, 3b and the cell stack 6, there are provided a valve 13, a filter 4, a pulp 14, and a cooler 5. Thus, the flow path is secured with the valves 13 and 14 opened. After the mixed solution supplied from the mixers 3a and 3b is filtered to remove impurities, the temperature is reduced by the cooler 5 and the cell stack is removed.
  • the flow path to the air intake of the cell / restack which explains the operation of Jinjin, is provided with blowers 41, 18 and 18 which are taken in by the blower 41. After the impurities are removed by the filter 9, the air is supplied to the Celster V-c 6 via the valve 18 and O o
  • the cell stack 6 sends the mixed solution used for power generation to the mixer 3b.
  • the mixed solution of o, ⁇ is re-used to produce the mixed solution supplied from the mixer 3b to the cell stack 6. Used.
  • the concentration sensor 32 provided in the mixer 3b monitors the methanol concentration of the mixed solution in the mixer 3b, and the mixer 3b monitors the mixing concentration in the mixer 3b. The amount of water or fuel flowing into the mixer 3b can be adjusted so that the methanol concentration of the solution becomes a predetermined value.
  • Cooler Gas 7 exhausts the air after the water has been separated.
  • the filter 8 removes impurities from the water separated by the cooler drain and supplies the mixed water to the mixers 3 a and 3 b via the pump 22 and the pulp 17.
  • the flow of air and moisture from the pump 6 to the mixers 3a and 3b is performed by the pump 22 driving force.
  • the mixers 3a and 3b each have a predetermined methanol concentration.
  • the adjusted mixed solution is supplied to the cell stack V6, and the fuel and moisture contained in the mixed solution and gas discharged from the cell stack 6 can be reused. Even if the output mode required for the cell stack 6 changes frequently, the output mode required by switching the mixer that supplies the mixed solution to the cell stack 6 is also required.
  • the optimal mixed solution for the cell stack can be supplied to the cell stack. Also, cell stack
  • the mixer 3 a If the maximum efficiency operation and the maximum output operation are frequently changed with respect to 6, add methanol and water as needed to adjust the methanol concentration of the mixed solution. As a result, an overflow may occur in the circulation system in which the mixed solution flows.
  • the mixer 3 a according to the circulation system constituting the fuel cell device 1 of this example, the mixer 3 a
  • FIG. 4 is a configuration diagram of the fuel cell device according to the present example.
  • D M D M
  • the fuel cell device 100 supplies air as an oxidant to the fuel cell 101, the fuel electrode side supply piping system 50 for supplying fuel to the fuel electrode of the fuel cell 101, and the fuel cell 101.
  • Anode-side supply piping system 60 that discharges products generated by power generation from the fuel electrode side of the fuel cell 101
  • Anode-side exhaust piping system 70 that exhausts power generation products from the fuel electrode side A piping system 80 is provided.
  • the DC-DC converter 113 connected to the fuel cell 101 and the load 114 connected to the DC-DC converter 113 are connected to the fuel cell 101. From the power.
  • the control controller 112 controls the driving of each device constituting the fuel cell device 100.
  • the fuel cell 101 has a stack structure in which power generation cells having an electrolyte membrane sandwiched between an air electrode and a fuel electrode are stacked.
  • This electrolyte membrane is a solid polymer electrolyte membrane widely used in direct methanol fuel cells, and for example, a fluororesin-based ion conductive membrane can be used.
  • the fuel electrode side supply piping system 50 is provided with a metal tank 104, a metal tank 104, and a metal tank supply pump 105, which sucks up the metal tank from the force.
  • Mixer 106 that produces a mixed solution of methanol and water supplied from a fuel supply pump 105, a mixed solution that receives the mixed solution from the fuel mixer 106, and a fuel cell 1
  • a water-soluble circulating pump 103 to be supplied to 01 and a concentration sensor 1-15 consisting of a flow path between the fuel cell 101 and the fuel-soluble circulating pump 103 Is done.
  • the air electrode side supply piping system 60 is composed of a piping 61 for taking in air from the outside of the fuel cell device 100, and an air supply pump 102 for supplying air to the fuel cell 101.
  • the fuel electrode side exhaust piping system 70 includes a carbon dioxide remover 1 16 that removes carbon dioxide contained in the mixed solution discharged from the fuel cell 101, and a fuel cell device 10 that removes the exhaust gas from which carbon dioxide has been removed. It is composed of a processing unit 110 that discharges to the outside of 0.
  • the air electrode side discharge piping system 80 is a gas-liquid separator 108 that separates moisture from the exhaust gas discharged from the fuel cell 101, a moisture reservoir 109 that stores the separated moisture, a moisture reservoir Electromagnetic pulp provided in the flow path from 109 to the fuel mixer 106, and the exhaust gas from which moisture is separated by the gas-liquid separator 108 is discharged to the outside of the fuel cell device 100 It is composed of the device 110.
  • the processing device 110 is included in both the fuel electrode side discharge piping system 70 and the air electrode side discharge piping system 80.
  • the methanol supply pump 105 sucks up the methanol from the methanol tank 104 and supplies it to the fuel mixer 106.
  • Fuel The water-soluble circulation pump 103 supplies the mixed solution to the fuel cell 101 from the fuel mixer 106 that mixes methanol and water to generate a mixed solution.
  • the fuel mixer 106 can adjust the methanol concentration of the mixed solution, and adjusts the mixed solution concentration to obtain the optimum methanol concentration according to the load 114. .
  • information on the concentration of methanol detected by the concentration sensor 115 is sent to the control controller, and the fuel mixer 106 adjusts the concentration of methanol in the mixed solution. Referred to.
  • the concentration sensor 115 is located immediately before the fuel cell 101, that is, the fuel mixer 106 and the fuel JP2004 / 009609
  • the mixed solution consumed in the fuel cell 101 is circulated to the fuel mixer 106 also serving as a carbon dioxide remover, and is again supplied to the fuel cell 101 by the water-soluble fuel circulation pump 103.
  • the fuel mixer 106 which also serves as ash dioxide removal ⁇ , separates carbon dioxide from the mixed liquid discharged by the fuel cell 101, and separates the carbon dioxide from the mixed liquid.
  • the mixed solution itself is the cooling medium for the fuel cell.
  • the fuel cell device 100 does not require a separate cooling channel. Therefore, the temperature rise of the fuel cell 101 can be suppressed without separately flowing cooling water to the fuel cell device 100.
  • the fuel cell device using liquid fuel such as the fuel cell device 100 of the present embodiment has a higher compression ratio than the case where gaseous fuel such as hydrogen gas is used because the mixed solution itself has incompressibility. It has the advantage that a back pressure valve is not required.
  • the fuel cell 101 sends the mixed solution used for power generation to the carbon dioxide remover, and the mixed solution from which the carbon dioxide has been removed by the carbon dioxide remover 116 is again subjected to the predetermined measurement by the fuel mixer 106. It is used to produce a mixed solution with a Knoll concentration. If the mixed solution used for power generation contains water, this water is also mixed with methanol by the fuel mixer 106 to generate power for the fuel cell 101. Reused. Therefore, the fuel cell 101 2004/009609
  • the mixed solution can be caused to flow by the driving force generated in the fuel aqueous solution circulation pump 103.
  • the air supply pump 102 takes in air, which is an oxidizing agent, from the atmosphere via a pipe 61 and supplies it to the fuel cell 101.
  • the air used for power generation in the fuel cell 101 is separated from moisture by the gas-liquid separator 108 and discharged to the atmosphere via the processing device 110.
  • the water separated from the air discharged from the fuel cell 101 is stored in the water reservoir 109 and then sent to the fuel mixer 106 to be used to generate a mixed solution.
  • an electromagnetic valve 111 provided between the moisture storage 109 and the fuel mixer 106 controls the supply amount of water supplied from the moisture storage 109 to the fuel mixer 106. adjust.
  • the electromagnetic valve 111 may be controlled by the control controller 112 in accordance with the concentration of methanol and the load 114 detected by the concentration sensor 115.
  • the opening and closing of the electromagnetic valve 1 11 can be performed in conjunction with the fuel mixer 106.
  • the fuel cell 101 is optimal according to the load 111 2004/009609
  • the fuel mixer 106 is controlled so as to be able to generate 15 different powers, and the mixed solution having the optimum methanol concentration for the load 114 is used for the power generation condition of the fuel cell. It is generated freely according to the requirements and supplied to the fuel cell.
  • the air discharged from the fuel cell 101 is sent to the blower 41.
  • the blower 41 separates the moisture contained in the air, and the separated moisture is sent to the moisture storage 42.
  • the moisture stored in the moisture reservoir 42 is sent to the fuel mixer 106 while the flow rate is adjusted by the electromagnetic valve 111, and is reused for power generation by the fuel cell 101.
  • the gas-liquid separator 108 sends the air from which the water has been separated to the processing device 110, and the processing device 110 discharges the exhaust gas to the outside of the fuel cell device 100.
  • the gas-liquid separator 108, the water storage device 109, and the fuel mixer 106 may be provided with a heater so that the remaining water does not freeze.
  • extra space may be provided in the gas-liquid separator 108, the water storage unit 109, and the fuel mixer 106 so that these devices are not damaged by frozen water. . Furthermore, by forming the pipes constituting the fuel cell device 100 from an elastic material, it is possible to prevent the pipes from being damaged by freezing of water. . Industrial applicability
  • the fuel cell device of the present invention it is possible to generate electric power by using a fuel having an optimum concentration according to the output mode required for the fuel cell, and to improve the efficiency with respect to the output of the fuel cell. It can generate power well. Further, according to the fuel cell device of the present invention, The fuel concentration can be quickly switched to the optimal concentration according to the required output mode switching. This makes it possible to quickly switch the fuel concentration to the optimum concentration according to the required output mode, while continuing to generate power from the fuel cell. Therefore, it is possible to constantly generate power with good power generation efficiency.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池に要求される出力に応じて最適な発電を行うことができる。燃料混合器106は混合溶液のメタノール濃度を調整することでき、負荷114に応じて最適なメタノール濃度となるように混合溶液の濃度を調整する。また、濃度センサ115で検出されたメタノール濃度に関する情報は、制御コントローラ112に通知され、燃料混合器106が混合溶液のメタノール濃度を調整する際に参照される。さらに燃料電池の直前に濃度センサ115を設けることにより、燃料電池に供給される混合溶液の実質的なメタノール濃度を検出して発電を行うことができる。

Description

燃料電池装置及び燃料電池の燃料供給方法
技術分野 明
本発明は、 要求される出力モー ドに対して最適な発電を行 う 田
こ と ができ る燃料電池装置に関する。 さ らに詳しく は、 燃料と される混合溶液の濃度を要求される 出力モー ドに応 じて最適 化する こ と ができ る燃料電池装置および燃料電池の燃料供給 方法に関する。
背景技術
燃料電池は、 燃料極に燃料を供給し、 空気極に酸化剤と され る酸素を含む空気を供給する こ と によ り 発電を行 う 発電装置 であ り 、 発電によ り 生成される生成物が水である こ とから環境 を汚染する こ と がない発電装置と して近年注目 されている。
このよ う な燃料電池の一つ と して、 メ タ ノ ールを直接燃料電 池に供給して発電を行 う ダイ レク ト メ タ ノ ール型燃料電池 ( D M F C : Direct Methanol Fuel Cell) 力 S知 られている。 D M F Cによって発電を行 う 際には、 燃料であるメ タ ノ ールだけで は燃料電池のァノ ー ド反応が進行しないため、 メ タ ノールと水 と が混合された混合溶液を燃料電池のア ノ ー ドに供給する こ とで発電が行われている。
従来、 メ タ ノ ールと水とが混合された混合溶液を D M F Cに 供給する供給方法と しては、 あ らかじめメ タ ノ ールと水と が適 切な組成で混合された混合溶液を生成し、 こ の混合溶液の濃度 を一定に維持しなが ら D M F C に供給する供給方法が知 られ ている また、 混合溶液が循環する循環系を設け、 発電によつ てメ タ ノ一ルが消費された混合溶液に純粋なメ タ ノ ールを捕 給しなが ら当該混合溶液を循環系に循環させる と と もに、 D M
F C の力 ソー ドで生成された生成水を回収 しなが ら混合溶液 を適度な濃度に調整する方法も行われている。
しかしなが ら、 あ ら力 じめメ タ ノールと水と を混合してね < 場合には、 D M F Cのシステムの簡便化が図れるが、 燃料白体 のェ不ルギー密度は低下する。 エネルギー密度を上げよ う と し て 、 混合溶液のメ タ ノ ール濃度を増加させる と 、 D M F C を構 成する発電体 (M E A : Membrane and Electrode Assembli e s ) の劣化速度が増加する。
また、 最大出力が得られるメ タ ノ ール濃度と最大効率が得ら れる メ タ ノール濃度と は異なる こ と が分かってお り 、 あ ら力 じ めメ タ ノ ールと水 と が混合された混合溶液を用いる方法では メ タ ノ ール濃度を D M F C の運転状況に応 じて変更する こ と ができない。
一方、 D M F Cのカ ソー ドで生成された生成水を回収しなが らメ タ ノ ールと混合する方法では、 一般に D M F Cの最大出力 が得 られる メ タ ノ ール濃度 と なる よ う に混合溶液のメ タ ノ一 ル濃度を維持する方法が採られてお り 、 燃料電池の負荷に対す る追従は、 燃料電池と二次電池と が連携する こ と で行われてい た。 したがって、 最大効率が得られる よ う にメ タ ノ ール濃度を 調整して発電を行 う方法では最大出力が得られない う え、 燃料 と される混合溶液を燃料電池に要求される 出力に応 じて最適 なメ タ ノ ール濃度に調整する こ と は困難であった。 このよ つ に 燃料電池の出力特性、 発電効率特性を最大限に引き 出すために は 、 燃料と される混合溶液の濃度を燃料電池に求め られる出力 の種類に応じて変更する こ と が望ま しい。
よって、 本発明は、 上述した実情を鑑みてなされた のであ
- り 、 燃料電池に要求される出力に応じて最適な発電を行 つ と ができ る燃料電池装置を提供する こ と を 目的とする。
さ らに詳しく は、 燃料電池の負荷の状況に応じて混合溶液の 濃度を最適化 して発電を行 う こ と ができ る燃料電池装置 よ ぴ燃料電池の燃料供給方法を提供する こ と を 目 的とする o 発明の開示
本発明にかかる燃料電池装置は、 液体燃料を用いて ¾を行 燃料電池と前記燃料電池に要求される 出力モ ー ドに応 じて 刖記液体燃料の濃度を最適な濃度に調整する濃度調整手段 と を備える こ と を特徴とする。 本発明にかかる燃料電池装置によ れば、 出力モー ドに応じて最適な濃度と なる よ う に液体燃料の 濃度を調整して燃料電池に供給する こ と ができ る。 最適な濃度 で燃料電池を作動させる こ と によ り 、 例えば、 通.常時には最大 発電効率が得られる よ う に濃度が調整された液体燃料を用い て発電を行い、 最大出力が必要な場合にはそれに適した濃度の 液体燃料を用いて発電を行う こ と ができ る。
本発明にかかる燃料電池装置においては、 前記濃度 整手段 は前記燃料電池で発電に使用 された液体燃料を再利用 して刖 記液体燃料の濃度を調整する こ と もでき、 発電に必要な資源を 無駄なく 利用する こ と が可能と なる。 また、 本発明にかかる燃料電池装置においては、 前記濃度調 整手段は複数の燃料混合手段から構成され、 前記複数の燃料混 合手段にそれぞれ所定の濃度の液体燃料を生成させても良い。 さ ら に複数の燃料混合手段がそれぞれ出力モー ドに最適な濃 度の液体燃料を生成している こ と によ り 、 要求される出力モー に応じて所要の燃料混合器を選択して、 選択された燃料混合 から液体燃料を燃料電池に供給する こ とができ る。
本発明にかかる燃料電池装置においては、 前記液体燃料の濃 度を検出する濃度検出手段を備えていても良い。 例えば、 記濃 度検出手段を前記複数の燃料混合器に配置 してお く こ と に よ り 、 燃料混合器で生成される液体燃料の濃度を精度良く 検出 し て制御する こ と ができ る。 また、 前記濃度検出手段を前記燃料 電池と 刖記複数の燃料混合器と の間に配置しておいても良く 、 燃料電池で消費される液体燃料の実質的な濃度を よ り 正確に 検 ·>- 出する と もでき る。
本発明にかかる燃料電池の燃料供給方法は、 液体燃料を用い て発電を行 う燃料電池に要求される出力モー ドを検知 し、 前記 出力モ Kに応 じて前記液体燃料の濃度を最適な濃度に調整 する こ と を特徴とする。 本発明にかかる燃料電池の燃料供給方 法によれば 、 燃料電池に要求される出力モー ドに応じて最適な 濃度の液体燃料を供給する こ と ができ る。
0面の籣単な説明
図 1 は 、 燃料電池の特性を示すグラフであ り 、 電流密度に対 するセル電圧及び電力密度の関係を示すダラ フである。
図 2 は 、 メ タ ノ ール濃度に対する出力密度の関係を示すグラ フである。
図 3 は、 本発明にかかる燃料電池装置の一例を示す構成図で ある。
図 4 は、 本発明にかかる燃料電池装置の一例を示す構成図で ある。 発明を実施するため の最良の形態
以下 、 本発明にかかる燃料電池装置及び燃料電池の燃料供給 方法について説明する。 まず、 図 1 及び図 2 を参照しなが 本 発明 を創作する に至った本件発明者等の着眼点について説明 する o
図 1 は、 本件発明者等が D M F Cによって発電を行つた際の メ タ ノ ール濃度と燃料電池特性と の関係を示すグラ フである。 図 1 の横軸は電流密度であ り 、 左縦軸は D M F C を構
成する発電セルのセル電圧を示す。 また、 右縦軸は、 D M F C の電力密度を示す。 燃料と される混合溶液のメ タ ノ ール濃度を 1 . 0 , 0 . 6 , 0 . 4 m o l Z Lの 3 条件と り 、 それぞれの メ タ ノ ール濃度について電流密度に対するセル電圧及ぴ電力 密度の関係を調べた。 以下、 メ タ ノ ール濃度の各条件 ( 1 . 0 , 0 . 6 , 0 . 4 m o 1 / L ) をそれぞれ A, B , C条件と称す。 図 1 によれば、 セル電圧は、 電流密度が増大する と と もに低 下する傾向にあ り 、 各条件 A、 B、 Cで同様であった。 また、 電力密度は電流密度を増大させる と と もに増大するが、 電流密 度に対して電力密度が増大する割合は、 電流密度の値が大きい ほど小さ く なる傾向にあった。 また、 電力密度は、 電流密度の 特定の値で最大値を取る傾向にあった。 なお、 条件 Aの場合の 4009609
6 電力密度は、 本評価の電流密度の範囲内で極大値を取らなかつ たが、 電流密度が増大する と と もに電力密度が増加する割合は 小さ く なる傾向にあった。
図 2 は、 図 1 に示した D M F C のセル電圧及ぴ電力密度が示 す特性曲線よ り 得 られた最大出力密度 と一定のセル電圧にお ける出力密度の関係を示すグラフである。 なお、 図 2 は、 パラ メータ と して最高出力、 4 5 0 m V出力、 5 0 0 m V出力、 4 0 O m V出力の 4水準と り 、 メ タ ノール濃度に対する出力密度 をグラフに示してレ、る。
本評価で用いた発電セルの場合、 出力密度が 4 0〜 7 0 m W / c m 2付近で発電セルを運転する際には、 メ タ ノ ール濃度を 0 . 6 m o 1 / L付近に調整する こ と でメ タ ノ ール濃度が 1 . 0, 0 . 4 m o 1 / L の場合に比べて同 じセル電圧において髙 い出力密度を得られる こ とが分かる。 すなわち、 発電セルに要 求される 出力密度に対 して最も効率良 く そ の出力密度を得る こ と ができ る最適なメ タ ノール濃度が存在する こ と がわかる。 また、 4 0 〜 7 0 m W Z c m 2付近の出力密度においてはセル 電圧が 4 5 0〜 5 0 O mVとな り 、 発電セルに接続される負荷が 比較的小さい場合や二次電池に充電する際に好適と される。 す なわち、 要求される出力に応じて最適なメ タ ノ ール濃度で発電 を行う こ と によ り 、 発電効率を高く する こ と が出来る。 また、 発電セルに要求される負荷が大きい場合には、 メ タ ノール濃度 を lm o 1 Z L付近に調整する こ と で 9 0 m W / c m 2 以上の 出力を得る こ とが出来る。 このよ う に、 D M F Cに要求される 出力モー ドに応 じて最適なメ タ ノ ール濃度が存在する傾向が あ り 、 要求された出力モー ドに応じて燃料の濃度を調整する こ とが効率良く 発電を行 う場合には重要である こ と が分かる。 な お、 本明細書中の出力モー ドと は、 出力電圧又は出力電力の如 さ発電セルの定性的な特性と、 各特性における最大値や特定の 数値範囲の如き具体的な条件を含む負荷からの要求である。
次に 、 本発明にかかる燃料電池装置の一例について説明する 図 3 は 、 本例にかかる燃料電池装置の構成図である。 本発明に かかる燃料電池装置は上述した本件発明の基本的な思想に基 づいて構成されてお り 、 燃料と される混合溶液のメ タ ノ ール濃 度を燃料電池に要求される出力モー ドに応 じて調整でき る機 構を備える。 なお、 本例の燃料電池装置 1 は、 ダイ レク トメ タ ノ一ル型燃料電池であるが、 燃料はメ タ ノ ールに限定されず、 液体燃料を用いて発電を行 う 燃料電池であれば如何なる も の でも良いこ と は勿論である。
燃料電池装置 1 は、メ タ ノールタ ンク 2 、混合器 3 a , 3 b、 パルブ 1 1, 1 2, 1 3, 1 4, 1 5 , 1 6, 1 7, 1 8 、 ポ ンプ 2 1, 2 2 、 フ ィ ルタ 4, 8, 9 、 冷却器 5 、 セルス タ ツ ク 6 冷却器 ド レイ ン 7 、 ブロア 4 1 、 及びこれら各部を繋い で流体の流路を形成する配管から構成される。
こ こで、 先ず、 混合溶液がセルスタ ッ ク 6 に供給されるまで の燃料電池装置 1 の動作について説明する。 ポンプ 2 1 は、 ノ ルブ 1 1 が開かれた状態でメ タ ノ ールタ ンク 2 力 ら メ タ ノ一 ノレを吸い上げ、 混合器 3 a, 3 b にメ タ ノ ールを供給する。 混 合器 3 a , 3 b にはそれぞれ濃度センサ 3 1 , 3 2 が け りれ てお り 、 混合溶液のメ タ ノール濃度をモニ タ ーする。 後述する よ う にセルス タ ッ ク 6 の空気極側の排出 口 から水分を含むガ スが排出される こ と力 ら、 このガスから分離された水分を混 器 3 a, 3 b に供給する こ とで混合溶液のメ タ ノール濃度を調 整する こ と ができ る。 また、 別途水分を混合器 3 a, 3 b に供 給する こ と もでき る。 さ らに、 濃度センサ 3 1, 3 2 でメ タ ノ ール濃度をモニターする こ と によ り 、 精度良く 混合溶液の濃度 制御を行う こ と が可能と なる。
混合器 3 a, 3 b はそれぞれ異なる濃度と なる よ う に調整さ れた混合溶液を生成し、 セルスタ ッ ク 6 に対して、 所要のメ タ ノ ール濃度を有する混合溶液を供給する。 こ こで、 所要のメ タ ノ ール濃度と は、 セルス タ ック 6 に要求される出力モー ドに対 して最適なメ タ ノ ール濃度であ り 、 例えば、 上述した評価で用 い られた発電セルによ ってセルス タ ッ ク 6 が構成されている 場合、 混合器 3 a は 0 . 6 m o 1 / Lのメ タ ノ ール濃度と なる よ う に調整された混合溶液を生成する。 また、 混合器 3 b は、 1 m o 1 / L のメ タ ノ ール濃度 と なる よ う に濃度が調整され た混合溶液を生成する。 セルス タ ッ ク 6 に要求される出力密度 が 7 0 mW/ c m 2付近である場合、 混合器 3 a から 0 . 6 m o 1 / L の混合溶液をセルス タ ッ ク 6 に供給する。 また、 セル ス タ ッ ク 6 に要求される 出力密度が 9 0 m W/ c m 2 以上で ある場合には、 混合器 3 b から 1 m o 1 / Lの混合溶液をセル ス タ ッ ク 6 に供給する。 すなわち、 セルス タ ッ ク 6 に要求され る出力密度に応じて、 セルス タ ック 6 に混合溶液を供給する混 合器 3 a, 3 b を切 り 換える こ と によ り 、 スタ ックセル 5 6 に 要求される 出力モー ドに応 じて調整された最適なメ タ ノ ール 濃度を有する混合溶液を素早く 供給する こ と ができ る。
また、 混合器 3 a, 3 b とセルスタ ッ ク 6 を繋ぐ流路にはパ ルブ 1 3 、 フ ィ ルタ 4 、 パルプ 1 4、 冷却器 5 が設け られてお り 、 バルブ 1 3, 1 4 が開かれた状態で流路が確保される。 混 合器 3 a, 3 b から供給される混合溶液は 、 フィ ルタ 4 で不純 物が除去された後、 冷却器 5 で温度が下げられてセルスタ ック
6 に供給され o。
続いて、 ;空気がセルス タ ツク に取り 込まれるまでの燃料電池
¾晋の動作について説明する セ /レスタ ック の空気取り 入れ口 までの流路には、 ブロア 4 1 フイ ノレタ 9 、 ノ ルブ 1 8 が設け られてお り 、 ブロ ア 4 1 で取り 込まれた空 はフィルタ 9 で不 純物が除去された後、 バルブ 1 8 を介してセルスタ Vク 6 に供 給され O o
さ つに ¾mいて、 セノレス タ ック の燃料極側から発電後の混合溶 液が排出される際の燃料電池装置 1 の動作について説明する。 セルス タ ッ ク 6 は発電に使用 された混合溶液を混合器 3 b に 送る - o 、 ~~ の混合溶液は、 混合器 3 b からセルス タ ッ ク 6 に供給 される混合溶液の生成に再利用 される。 混合器 3 b に設け られ た濃度センサ 3 2 は混合器 3 b 内の混合溶液のメ タ ノ一ル濃 度をモ二ターしてお り 、 混合器 3 b は混合器 3 b 内の混合溶液 のメ タ ノ ール濃度が所定の値と なる よ う に混合器 3 b に流入 する水分や燃料の流入量を調整する こ と ができ る。
いて 、 セルス タ ッ ク 6 の酸素極側から空気を排出する の 燃料電池装置 1 の動作について説明する 。 セルス タ ッ ク 6 は酸 ン11 極側の排出口から発電後の空気を排出 し、 バルブ 1 5 が開か れた状態で確保された流路を介して冷却器 ド レイ ン 7 に空気 を送る。 冷却器 ド レイ ン 7 は、 空気に含まれる水分を再度混
3 a , 3 b における混合溶液の濃度調整に利用するために分 離して、 バルブ 1 6 を介してフィルタ 8 に送る。 冷却器 ド、レィ ン 7 は、 水分が分離されたあ との空気を排気する。 フ ィ ルタ 8 は 、 冷却器 ド レイ ンで分離された水分から不純物を除去した後 ポンプ 2 2及びパルプ 1 7 を介して混合器 3 a , 3 b に供給す る o こ こで、 セルスタ ッ ク 6 から混合器 3 a , 3 b に至る空気 及び水分の流動はポンプ 2 2駆動力によって行われる。
- のよ う に順次燃料電池装置 1 の動作について説明 したが、 本例にかかる燃料電池装置 1 によれば、 混合器 3 a, 3 b はそ れぞれ所定のメ タ ノ ール濃度に調整された混合溶液をセルス タ V ク 6 に供給し、 セルス タ ッ ク 6 から排出される混合溶液や ガスに含まれる燃料や水分を再利用する こ と ができ る。 また、 セルス タ ッ ク 6 に要求される 出力モー ドが頻繁に変更される 合で も 、 混合溶液をセルス タ ッ ク 6 に供給する混合器を切 り 替える こ と で要求 された出力モー ドに対 して最適な混合溶液 をセルスタ ッ ク に供給する こ とができ る。 また、 セルスタ ッ ク
6 に対 して最大効率運転と最大出力運転が頻繁に変更される よ う な場合には、 混合溶液のメ タ ノ ール濃度を調整するために メ タ ノ ールや水を随時追加する こ と と な り 、 混合溶液が流動す る循環系でオーバー フ ローが発生する可能性がある。 しかし、 本例の燃料電池装置 1 を構成する循環系によれば、 混合器 3 a
3 b の容積を必要以上に大き く する こ と なく 、 オーバー フ ロ ー を低減する こ と もでき る。
次に、 本発明にかかる燃料電池装置の別の例について説明す る o 図 4 は、 本例にかかる燃料電池装置の構成図である。 D M
F C と される燃料電池装置 1 0 0 を流動する空気及び燃料の 流れを説明 しなが ら、 燃料電池装置 1 0 0 の動作について説明 する o 燃料電池装置 1 0 0 は、 燃料電池 1 0 1 、 燃料電池 1 0 1 の 燃料極に燃料を供給する燃料極側供給配管系 5 0 、 燃料電池 1 0 1 に酸化剤 と される空気を供給する空気極側供給配管系 6 0 、 燃料電池 1 0 1 の燃料極側から発電による生成物を排出す る燃料極側排出配管系 7 0 、 燃料電池の空気極側から排気する 空気極側排出配管系 8 0 を備える。 また、 燃料電池 1 0 1 に接 続される D C — D C コ ンノ ータ 1 1 3 と、 D C — D C コ ンパ一 タ 1 1 3 に接続される負荷 1 1 4 は燃料電池 1 0 1 カゝ ら電力 を取 り 出す。 制御コ ン ト ローラ 1 1 2 は、 燃料電池装置 1 0 0 を構成する各装置の駆動を制御する。
燃料電池 1 0 1 は、 電解質膜を空気極及び燃料極で挟み込ん だ発電セルが積層されたスタ ック構造を備える。 こ の電解質膜 は、 ダイ レク ト メ タ ノ ール型燃料電池に広く 用い られている固 体高分子型電解質膜と され、 例えばフ ッ素樹脂系のイオン導電 膜を用いる こ と ができ る。
燃料極側供給配管系 5 0 は、 メ タ ノ ールタ ンク 1 0 4 、 メ タ ノ ールタ ンク 1 0 4 力 ら メ タ ノ ールを吸い上げる メ タ ノ ール 供給ポンプ 1 0 5 、 メ タ ノ ール供給ポンプ 1 0 5 から供給され たメ タ ノ ールと水分と を混合した混合溶液を生成する燃料混 合器 1 0 6 、 燃料混合器 1 0 6 から混合溶液を受け取って燃料 電池 1 0 1 に供給する燃料水溶性循環ポンプ 1 0 3 、 及ぴ燃料 電池 1 0 1 と燃科水溶性循環ポンプ 1 0 3 と の間の流路の設 け られる濃度センサ 1 1 5 カゝら構成される。
空気極側供給配管系 6 0 は、 燃料電池装置 1 0 0 の外部から 空気を取 り 込むための配管 6 1 、 空気を燃料電池 1 0 1 に供給 する空気供給ポンプ 1 0 2 から構成される。 燃料極側排出配管系 7 0 は、 燃料電池 1 0 1 から排出される 混合溶液に含まれる二酸化炭素を除去する二酸化炭素除去器 1 1 6 、 二酸化炭素が除去された排気を燃料電池装置 1 0 0 の 外部に排出する処理装置 1 1 0 から構成される。
空気極側排出配管系 8 0 は、 燃料電池 1 0 1 から排出される 排気から水分を分離する気液分離器 1 0 8 、 分離された水分を 貯蔵する水分貯蔵器 1 0 9 、 水分貯蔵器 1 0 9 から燃料混合器 1 0 6 への流路に設け られる電磁パルプ 1 1 1 、 気液分離器 1 0 8 で水分が分離された排気を燃料電池装置 1 0 0 の外部に 排出する処理装置 1 1 0 から構成される。 なお、 処理装置 1 1 0 は、 燃料極側排出配管系 7 0 と空気極側排出配管系 8 0 の両 方に含まれる。
続いて、 本例の燃料電池装置 1 0 0 の動作について説明する。 先ず、 燃料と される混合溶液を燃料電池装置 1 0 0 に循環させ る際の動作について説明する。
メ タ ノ ール供給ポンプ 1 0 5 は、 メ タ ノ ールタ ンク 1 0 4 力 らメ タ ノ ールを吸い上げて燃料混合器 1 0 6 に供給する。 燃料 水溶性循環ポンプ 1 0 3 は、 メ タ ノ ールと水分と を混合して混 合溶液を生成する燃料混合器 1 0 6 から燃料電池 1 0 1 に混 合溶液を供給する。 燃料混合器 1 0 6 は混合溶液のメ タ ノ ール 濃度を調整する こ と でき、 負荷 1 1 4 に応じて最適なメ タ ノ ー ル濃度と なる よ う に混合溶液の濃度を調整する。 また、 濃度セ ンサ 1 1 5 で検出 されたメ タ ノ ール濃度に関する情報は制御 コ ン ト ローラに通知され、 燃料混合器 1 0 6 が混合溶液のメ タ ノ ール濃度を調整する際に参照される。 さ らに、 濃度センサ 1 1 5 は、 燃料電池 1 0 1 の直前、 即ち燃料混合器 1 0 6 と燃料 JP2004/009609
13 電池 1 0 1 と の間に配置されている こ と 力ゝら、 濃度が ftした 場合でも燃料電池 1 0 1 で消費される混合溶液の実質的なメ タ ノ一ル濃度を検出する こ と ができ、 出力モー ドに応じて i 度 良 < 濃度が調整された混合溶液を用いて発電を行 う と がで ぎ る
燃料電池 1 0 1 で消費された混合溶液は二酸化炭素除去器 を兼ねた燃料混合器 1 0 6 に循環され、 再度燃料水溶性循環ポ ンプ 1 0 3 によって燃料電池 1 0 1 に供給される。 二酸化灰 ぺ 除 ¾¾-を兼ねた燃料混合器 1 0 6 は、 燃料電池 1 0 1 によつて 排出 された混合液体か ら二酸化炭素を分離して処理装置 1 1
0 に送 り 、 処理装置 1 1 0 は二酸化炭素を大気に排出する メ タ ノ ールの如き液体燃料を用いた燃料電池装置においては、 混 合溶液そのものが燃料電池の冷却媒体であ り 、 燃料電池装置 1 0 0 は別途冷却流路を必要と,しない。 したがって、 別途冷却水 を燃料電池装置 1 0 0 に流動させる こ と な く 燃料電池 1 0 1 の温度上昇を抑制する こ と もでき る。 また、 本例の燃料電池装 置 1 0 0 の如き液体燃料を用いた燃料電池装置は、 混合溶液自 身が非圧縮性を有する こ と から水素ガス の如き気体の燃料を 用いる場合に比べて背圧弁が不要と なる利点を有する。
燃料電池 1 0 1 は発電に使用 した混合溶液を二酸化炭素除 去器に送り 、 二酸化炭素除去器 1 1 6 で二酸化炭素が除去され た混合溶液は燃料混合器 1 0 6 で再度所定のメ タ ノ ール濃度 を有する混合溶液を生成するために利用 される。 また、 発電に 使用 された混合溶液が水分を含んでいる場合には、 こ の水分も 燃料混合器 1 0 6 によ ってメ タ ノ ールと 混合されて燃料電池 1 0 1 の発電に再利用される。 したがって、 燃料電池 1 0 1 か 2004/009609
14 ら排出 された排出流体に含まれる メ タ ノ ールや水分を再利用 する こ と によ り 、 メ タ ノールの如き燃料や水分を効率良く 利用 して癸電を行 う こ とができ る。 なお、燃料極側供給配管系 5 0 、 及び燃料極側排出配管系 7 0 においては、 燃料水溶液循環ボン プ 1 0 3 で発生する駆動力によって混合溶液を流動させる こ と ができ る。
続いて、 空気極側供給配管系 6 0 、 及び空気極側排出配管系 8 0 に空気を循環させる際の燃料電池装置 1 0 0 の動作につ いて説明する。
空気供給ポンプ 1 0 2 は、 酸化剤である空気を配管 6 1 を介 して大気から取り 込み、 燃料電池 1 0 1 に供給する。 燃料電池 1 0 1 で発電に用い られた空気は気液分離器 1 0 8 に よ って 水分と分離され、 処理装置 1 1 0 を介して大気に排出 される。 燃料電池 1 0 1 から排出 された空気か ら分離された水分は水 分貯蔵器 1 0 9 に貯蔵された後、 燃料混合器 1 0 6 に送られて 混合溶液を生成するために利用 される。 また、 水分貯蔵器 1 0 9 と燃料混合器 1 0 6 と の間に設け られる電磁バルブ 1 1 1 は、 水分貯蔵器 1 0 9 から燃料混合器 1 0 6 へ供給される水の 供給量を調整する。 電磁バルブ 1 1 1 は、 濃度セ ンサ 1 1 5 が 検出 したメ タ ノ ール濃度及ぴ負荷 1 1 4 に応 じて制御コ ン ト ローラ 1 1 2 によって制御される場合もある。 さ らに電磁バル ブ 1 1 1 の開閉を燃料混合器 1 0 6 と連動 して行 う こ と もで さ る。
また、 負荷 1 1 4 が変化した場合には、 負荷 1 1 4 の変化に 関する情報が制御コ ン ト ローラ 1 1 2 に通知される。 制御コ ン ト ローラ 1 1 2 は、 負荷 1 1 4 に応じて燃料電池 1 0 1 が最適 2004/009609
15 な発電を行 う こ と ができ る よ う に燃料混合器 1 0 6 を制御 し、 負荷 1 1 4 に対して最適なメ タ ノ ール濃度を有する混合溶液 が燃料電池の発電状況に応じて 自在に生成され、 燃料電池に供 給される こ と になる。
燃料電池 1 0 1 カゝら排出される空気は、 ブロア 4 1 に送られ る。 ブロ ア 4 1 は、 こ の空気に含まれる水分は分離され、 分離 した水分が水分貯蔵器 4 2 に送られる。 水分貯蔵器 4 2 に貯蔵 された水分は、 その流量が電磁バルブ 1 1 1 で調節されなが ら 燃料混合器 1 0 6 に送られ、 燃料電池 1 0 1 の発電に再利用 さ れる。 また、 気液分離器 1 0 8 は、 水分が分離された空気を処 理装置 1 1 0 に送り 、 処理装置 1 1 0 はこ の排気を燃料電池装 置 1 0 0 の外部に排出する。 気液分離器 1 0 8 、 水分貯蔵器 1 0 9 、 及び燃料混合器 1 0 6 は、 残留する水分が凍結しないよ う にヒ ータが設け られていても良い。 また、 凍結した水分によ つてこれら装置が破損しないよ う に、 気液分離器 1 0 8 、 水分 貯蔵器 1 0 9 、 及び燃料混合器 1 0 6 に余分なスペースを設け ておいても良い。 さ らにまた、 燃料電池装置 1 0 0 を構成する 配管を弾性を有する材料で形成する こ と によ り 、 これら配管が 水分の凍結によって破損する こ と を防止する こ と も可能であ る。 産業上の利用可能性
本発明にかかる燃料電池装置によれば、 燃料電池に要求され る 出力モー ドに応 じて最適な濃度の燃料によ って発電を行 う こ と ができ、 燃料電池の出力に対して効率良く 発電を行う こ と ができ る。 さ らに、 本発明にかかる燃料電池装置によれば、 要 求される 出力モー ドの切替に応 じて燃料の濃度を最適な濃度 に素早く 切 り 替える こ と ができ る。 これによ り 、 燃料電池の発 電を継続して行いなが ら、 要求される出力モー ドに応じて燃料 の濃度を最適な濃度に素早く 切 り 替える こ と ができ る。 よって、 発電効率が良好な状態で常時発電を行う こ と ができ る。

Claims

請求の範囲
1 . 液体燃料を用いて発電を行 う燃料電池と
前記燃料電池に要求される 出力モー ドに応 じて前記液体燃 料の濃度を最適な濃度に調整する濃度調整手段 と を備える こ と
を特徴とする燃料電池装置。
2 . 前記濃度調整手段は、 前記燃料電池で発電に使用 された液 体燃料を再利用 して前記液体燃料の濃度を調整する こ と
を特徴とする請求項 1 記載の燃料電池装置。
3 . 前記濃度調整手段は複数の燃料混合手段から構成され、 前記複数の燃料混合手段はそれぞれ所定の濃度の液体燃料 を生成する こ と
を特徴とする請求項 1 記載の燃料電池装置。
4 . 前記複数の燃料混合手段から前記出力モー ドに対して最適 な濃度の液体燃料を生成する燃料混合手段が選択される こ と を特徴とする請求項 3記載の燃料電池。
5 . 前記液体燃料の濃度を検出する濃度検出手段を備える こ と を特徴とする請求項 1 記載の燃料電池装置。
6 . 前記濃度検出手段は、 前記複数の燃料混合器に配置される こ と
を特徴とする請求項 5記載の燃料電池装置。
7 . 前記濃度検出手段は、 前記燃料電池と前記複数の燃料混合 器と の間に配置される こ と
を特徴とする請求項 5記載の燃料電池装置。
8 . 液体燃料を用いて発電を行 う燃料電池に要求される出力モ 一 ドを検知し、
前記出力モー ドに応 じて前記液体燃料の濃度を最適な濃度 に調整する こ と
を特徴とする燃料電池の燃料供給方法。
PCT/JP2004/009609 2003-07-07 2004-06-30 燃料電池装置及び燃料電池の燃料供給方法 WO2005004270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/563,508 US7201980B2 (en) 2003-07-07 2004-06-30 Fuel cell apparatus and method for feeding a fuel for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-271581 2003-07-07
JP2003271581A JP4697380B2 (ja) 2003-07-07 2003-07-07 燃料電池装置及び燃料電池の燃料供給方法

Publications (1)

Publication Number Publication Date
WO2005004270A1 true WO2005004270A1 (ja) 2005-01-13

Family

ID=33562661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009609 WO2005004270A1 (ja) 2003-07-07 2004-06-30 燃料電池装置及び燃料電池の燃料供給方法

Country Status (3)

Country Link
US (1) US7201980B2 (ja)
JP (1) JP4697380B2 (ja)
WO (1) WO2005004270A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110045A2 (en) * 2004-05-11 2005-11-24 Mti Microfuel Cells Inc. Single pump fuel cell system
US7977001B2 (en) * 2005-09-14 2011-07-12 Hitachi, Ltd. Electronic equipment with fuel cell-power supply unit

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529373B2 (ja) * 2003-04-28 2010-08-25 ソニー株式会社 燃料電池および燃料電池の運転方法
JP4665381B2 (ja) * 2003-07-07 2011-04-06 ソニー株式会社 燃料電池システム及び電気機器
DE102004056952A1 (de) * 2004-11-25 2006-06-08 Nucellsys Gmbh Brennstoffzellensystem mit Flüssigkeitsabscheider
JP4882240B2 (ja) * 2005-02-23 2012-02-22 富士通株式会社 燃料電池
JP5057278B2 (ja) * 2005-05-10 2012-10-24 日本電気株式会社 固体高分子型燃料電池及び固体高分子型燃料電池の起動方法
JP4984019B2 (ja) * 2005-05-11 2012-07-25 日本電気株式会社 固体高分子型燃料電池及び固体高分子型燃料電池の運転方法
EP1760816A3 (en) * 2005-08-31 2010-05-05 Samsung SDI Co., Ltd. Method and apparatus for water management in direct methanol fuel cell system using heat exchanger
JP4870980B2 (ja) 2005-12-14 2012-02-08 株式会社東芝 燃料電池システム及びその制御方法
JP2008310996A (ja) 2007-06-12 2008-12-25 Toshiba Corp 燃料電池システム及びその制御方法
TWI344719B (en) * 2007-09-11 2011-07-01 Iner Aec Executive Yuan Fuel supplying and controlling method and fuel cell apparatus using the same
DE102007062165A1 (de) * 2007-12-21 2009-06-25 Sabik Informationssysteme Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennstoffzelle
DK2291880T3 (da) 2008-04-24 2014-05-05 Ird Fuel Cells As Metode og system til at bestemme og styre methanolkoncentration i DMFC baseret på impedansmålinger
KR100993467B1 (ko) 2008-06-17 2010-11-09 삼성에스디아이 주식회사 직접 메탄올형 연료전지 스택 및 직접 메탄올형 연료전지시스템
WO2010058811A1 (ja) * 2008-11-21 2010-05-27 株式会社日立製作所 燃料電池
JP2010225470A (ja) * 2009-03-24 2010-10-07 Daihatsu Motor Co Ltd 燃料電池システム
CN102403525B (zh) * 2010-09-16 2016-02-03 流体公司 具有渐进析氧电极/燃料电极的电化学电池系统
JP6021630B2 (ja) * 2012-12-19 2016-11-09 ダイハツ工業株式会社 燃料電池システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086193A1 (en) * 2000-11-22 2002-07-04 Acker William P. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
JP2003022830A (ja) * 2001-05-02 2003-01-24 Toshiba Corp 燃料電池発電装置、燃料電池発電装置の運転方法及び組電池
JP2003132924A (ja) * 2001-10-30 2003-05-09 Yuasa Corp 直接メタノール形燃料電池システム
JP2003217643A (ja) * 2002-01-21 2003-07-31 Seijiro Suda 発電方法及び装置
JP2003297401A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 直接型液体燃料燃料電池発電装置およびその制御方法
JP2003331885A (ja) * 2002-05-17 2003-11-21 Daihatsu Motor Co Ltd 燃料電池装置
JP2004164954A (ja) * 2002-11-12 2004-06-10 Seiko Epson Corp 燃料電池システムおよび燃料電池システムを備える機器、発電ユニット、移動体、玩具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6686081B2 (en) * 2001-05-15 2004-02-03 Mti Microfuel Cells, Inc. Methods and apparatuses for a pressure driven fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020086193A1 (en) * 2000-11-22 2002-07-04 Acker William P. Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system
JP2003022830A (ja) * 2001-05-02 2003-01-24 Toshiba Corp 燃料電池発電装置、燃料電池発電装置の運転方法及び組電池
JP2003132924A (ja) * 2001-10-30 2003-05-09 Yuasa Corp 直接メタノール形燃料電池システム
JP2003217643A (ja) * 2002-01-21 2003-07-31 Seijiro Suda 発電方法及び装置
JP2003297401A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 直接型液体燃料燃料電池発電装置およびその制御方法
JP2003331885A (ja) * 2002-05-17 2003-11-21 Daihatsu Motor Co Ltd 燃料電池装置
JP2004164954A (ja) * 2002-11-12 2004-06-10 Seiko Epson Corp 燃料電池システムおよび燃料電池システムを備える機器、発電ユニット、移動体、玩具

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110045A2 (en) * 2004-05-11 2005-11-24 Mti Microfuel Cells Inc. Single pump fuel cell system
WO2005110045A3 (en) * 2004-05-11 2006-06-15 Mti Microfuel Cells Inc Single pump fuel cell system
US7175934B2 (en) 2004-05-11 2007-02-13 Mti Microfuel Cells Inc. Single pump fuel cell system
US7977001B2 (en) * 2005-09-14 2011-07-12 Hitachi, Ltd. Electronic equipment with fuel cell-power supply unit

Also Published As

Publication number Publication date
JP4697380B2 (ja) 2011-06-08
JP2005032610A (ja) 2005-02-03
US7201980B2 (en) 2007-04-10
US20060159968A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2005004270A1 (ja) 燃料電池装置及び燃料電池の燃料供給方法
US9093679B2 (en) Method of shutting down fuel cell system
US7622209B2 (en) Fuel cell system and fuel cell starting method
JP2005183354A (ja) 燃料電池システム
JP2007035509A (ja) 燃料電池システム
US20070218323A1 (en) Methods of Operating Fuel Cell Power Generators, and Fuel Cell Power Generators
US7588844B2 (en) Method of starting up operation of fuel cell at low temperature
JP2006236862A (ja) 燃料電池システム及びそれを搭載した車両
KR100799841B1 (ko) 연료 전지 시스템, 연료 전지 발전 장치 및 그 운전 방법
US8895199B2 (en) Fuel cell system using hydrogen from electrolyzer of sea water
JP2007141779A (ja) 燃料電池システム
WO2009104368A1 (ja) 燃料電池システム、および、燃料電池システムの制御方法
JP2004327354A (ja) 燃料電池および燃料電池の運転方法
JP2005158553A (ja) 燃料電池システム
JP2005158555A (ja) 燃料電池システム
JP2009016057A (ja) 燃料電池装置およびその駆動方法
JP2009054546A (ja) 燃料電池装置の駆動方法
JP6307536B2 (ja) 燃料電池システムの低温起動方法
JP7035982B2 (ja) 燃料電池システム
CN107851826A (zh) 用于测量和控制甲醇燃料电池中的甲醇浓度的方法
JP4742495B2 (ja) 燃料電池システム
JP4945968B2 (ja) 燃料電池システム
JP2003229165A (ja) 固体高分子型燃料電池
JP7380609B2 (ja) 燃料電池システム
JP2005032600A (ja) 気液分離システムおよび気液分離方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006159968

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563508

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10563508

Country of ref document: US

122 Ep: pct application non-entry in european phase