WO2004113836A1 - 撮影映像表示方法 - Google Patents

撮影映像表示方法 Download PDF

Info

Publication number
WO2004113836A1
WO2004113836A1 PCT/JP2003/007861 JP0307861W WO2004113836A1 WO 2004113836 A1 WO2004113836 A1 WO 2004113836A1 JP 0307861 W JP0307861 W JP 0307861W WO 2004113836 A1 WO2004113836 A1 WO 2004113836A1
Authority
WO
WIPO (PCT)
Prior art keywords
captured
map
ground surface
image
aircraft
Prior art date
Application number
PCT/JP2003/007861
Other languages
English (en)
French (fr)
Inventor
Yasumasa Nonoyama
Yoshiko Maeda
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to CA2526105A priority Critical patent/CA2526105C/en
Priority to AU2003244321A priority patent/AU2003244321B8/en
Priority to PCT/JP2003/007861 priority patent/WO2004113836A1/ja
Priority to CN038266636A priority patent/CN1788188B/zh
Priority to US10/550,550 priority patent/US7800645B2/en
Priority to JP2005500913A priority patent/JPWO2004113836A1/ja
Priority to GB0525769A priority patent/GB2418558B/en
Priority to TW092117386A priority patent/TWI220839B/zh
Publication of WO2004113836A1 publication Critical patent/WO2004113836A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • G09B29/106Map spot or coordinate position indicators; Map reading aids using electronic means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention displays an image transmitted from an imaging device mounted on a helicopter on a map of a geographic information system, thereby displaying a natural disaster such as an earthquake or fire, an explosion, or a human accident such as a serious accident.
  • the present invention relates to a method for displaying a photographed video, characterized in that it is possible to easily and accurately determine a condition on the ground when a disaster such as a disaster occurs. Background art
  • the present invention has been made in order to solve the above-described problems, and the captured video is superimposed on a map of a geographic information system and displayed, so that the state of the captured ground surface can be grasped in a two-dimensional manner.
  • the display position of the image on the map is corrected, and a high-precision superimposed display is performed.
  • An object of the present invention is to provide a method for displaying a photographed image which can be performed easily and quickly.
  • a photographed image display method includes a method of processing and displaying a photographed image of the ground surface photographed by a photographing device mounted on an airborne body, and displaying the photographed position in the air. Three-dimensionally, calculate the shooting range of the ground surface where it was shot, calculate the shooting image according to the shooting range, and superimpose it on the geographic information system map and display it I do.
  • the parameters used in calculating the captured area of the captured ground surface are corrected, and the captured video is converted to a geographic information system map. It is superimposed and displayed with high accuracy.
  • FIG. 1 is a block diagram showing a system for implementing a captured video display method according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram of functions of the map processing means according to the first embodiment.
  • FIG. 3 is a photograph showing a display screen according to the first embodiment.
  • FIG. 4 is a photograph showing a display screen obtained by the captured video display method according to Embodiment 2 of the present invention.
  • FIG. 5 is a view for explaining Embodiment 3 of the present invention.
  • FIG. 6 is a diagram illustrating map processing according to the third embodiment.
  • FIG. 7 is a view for explaining Embodiment 4 of the present invention.
  • FIG. 8 is a diagram illustrating map processing according to the fourth embodiment.
  • FIG. 9 is a view for explaining Embodiment 5 of the present invention.
  • FIG. 10 is a diagram for explaining map processing according to the fifth embodiment.
  • FIG. 11 is a view for explaining map processing in a captured video display method according to Embodiment 6 of the present invention.
  • FIG. 12 is a diagram for explaining map processing in the captured video display method according to Embodiment 7 of the present invention.
  • FIG. 13 is a view for explaining a captured video display method according to Embodiment 8 of the present invention.
  • FIG. 14 is a block diagram showing a system for implementing the video display method according to Embodiment 9 of the present invention.
  • FIG. 15 is an explanatory diagram of functions of the map processing means according to the ninth embodiment.
  • FIG. 16 is a flowchart showing the operation in the video display method according to the ninth embodiment.
  • FIG. 17 shows the calculation of the photographed image frame in the map processing means in the ninth embodiment.
  • FIG. 4 is a diagram illustrating an angle parameter to be used.
  • FIG. 18 is a diagram for explaining calculation of a photographed image frame in the map processing means according to the ninth embodiment.
  • FIG. 19 is a diagram for explaining parameter correction in the map processing means according to the ninth embodiment.
  • FIG. 20 is a diagram showing the effect of the video display method according to the ninth embodiment.
  • FIG. 21 is a diagram for explaining the eleventh embodiment of the present invention.
  • FIG. 22 is a view for explaining Embodiment 12 of the present invention.
  • FIG. 23 is a flowchart showing the operation of the video display method according to Embodiment 14 of the present invention.
  • FIG. 24 is a diagram showing an effect in the video display method according to the embodiment 14.
  • FIG. 25 is a diagram for explaining the embodiment 15 of the present invention.
  • FIG. 26 is a diagram illustrating Embodiment 16 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention superimposes the captured images of the ground from the air on a map of a geographic information system (GIS: a system for displaying maps on a computer screen). It is intended to make it easy to check the consistency between the video information and the map, and to easily determine the target point. However, if the camera shoots the ground from the air, the image will always appear only in a fixed rectangular shape regardless of the direction of the camera. Is difficult.
  • GIS geographic information system
  • a location that changes in a complicated manner, such as a rectangle to a trapezoid or a rhombus, based on the attitude of the camera with respect to the ground, is calculated by using the camera information and the attitude information of the aircraft at the time of shooting the video.
  • FIG. 1 is a block diagram illustrating a system for implementing the method of the present invention
  • FIG. 2 is a diagram illustrating functions of a map processing unit.
  • the onboard system 100 is mainly composed of an imaging means for photographing the ground surface from the air, and an aircraft position measuring means 1 as an information collecting unit for acquiring information for three-dimensionally specifying the imaging position of the imaging means. 08 and a body attitude measuring means 107, and an on-board device having a transmitting means for transmitting the photographed image photographed by the photographing means and the information acquired by the information collecting unit.
  • the body 101 is equipped with a camera 102, which is a photographing means 105 for photographing the ground from the air.
  • the aircraft 101 is provided with aircraft position measuring means 108 that obtains the current standing information from the antenna 103 that is a GPS signal receiving unit and detects the aircraft position, and a gyro.
  • the photographing means 105 including the camera 102 photographs the ground, outputs a video signal thereof, and also outputs camera information such as the aperture and zoom of the camera.
  • the output signal from the aircraft position measuring means 108, the output signal from the aircraft attitude measuring means 107, the video signal from the camera photographing means 105, the camera information signal, the output signal from the camera attitude measuring means 106 Is multiplex-modulated by the multiplex modulation means 109, converted into a digital signal by the signal conversion means 110, and transmitted from the transmission means 104 having the tracking means 111 to the terrestrial system 200.
  • the ground system 200 is mainly composed of an input section for inputting information for three-dimensionally identifying a photographed image of the ground surface photographed by the photographing means from the air and a photographing position of the photographing means, and a signal for the inputted information. It consists of a signal processing unit that performs processing, a geographic information system that displays a map on the screen, and a map processing unit that performs video processing including information processed by the signal processing unit and displays the processed image on the display unit.
  • the signal from the on-board system 100 is received by the receiving means 201 having the tracking means 202, and the signal is converted by the signal converting means 203.
  • This signal is further extracted by the multiplex demodulation means 204 as a video signal and other information signals such as body position, body posture, camera posture, camera information, and the like.
  • the extracted signals are subjected to signal processing by the signal processing means 205, and the video signal is converted into moving image data 207 and still image data 208 by the map processing means 206 in the next step.
  • information signals including two-dimensional map data 209 and terrain data 210 of the geographic information system are also used for map processing by the map processing means 206.
  • 2 1 1 is a monitor display means.
  • FIG. 2 is a diagram schematically showing the map processing means of the captured video display system according to the present embodiment.
  • the map processing means 206 includes moving image data 20 and still image data 208, which are video signals, an aircraft position, an aircraft attitude, an information signal of a camera attitude, and a geographic information system.
  • 2D map data 2 The processing area is calculated based on the data of the camera and the 3D terrain data 2 10.
  • Image frame calculation 2 1 2), image deformation unit (image deformation 2 1 3) that deforms the above shot image according to the shooting range obtained in image frame calculation 2 1 2 It consists of a display unit (superimposed 2 14 etc.) that superimposes and displays deformed captured images.
  • Image deformation 2 1 3 is performed in accordance with this image frame. This image deformation is to deform the image so that the image becomes a trapezoid or a diamond-like shape that matches the map.
  • the superimposition 2 14 superimposes (pastes) the deformed image on the map of the geographic information system, and then displays this on monitor display means 211 such as a CRT.
  • Fig. 3 is a photograph in which the photographed image frame 302 is superimposed on the map 301 of the geographic information system, with the photographed image frame 303 matched to the map.
  • 304 is the flight path of the aircraft, and 305 is the aircraft position (camera position).
  • the photographed video 302 is superimposed on a two-dimensional map. Therefore, for example, if a disaster occurs (for example, The building that is awake) is visually recognized in the captured video 302, and the position is clicked (clicked) on the captured video 302, and then the captured video 302 is erased and the frame 30 is erased. If a two-dimensional map below the captured video 302 is displayed as the display of only 3, it is possible to quickly recognize where the checked position on the captured video corresponds on the map. Furthermore, if the display image of the monitor is displayed in a fixed direction regardless of the direction of the camera, it is easier to determine the target point.
  • the current position of the airframe 101 is measured, an image frame on the ground taken from the airplane is calculated on a map of the geographic information system, and the captured image is transformed according to the image frame.
  • a captured image with a map a plurality of consecutively captured images are sampled continuously at a predetermined period, and a plurality of continuous images are captured by a geographic information system. It is displayed by pasting it on a map, and it tries to identify the target point from the video pasted on the map.
  • Fig. 4 shows the monitor display screen by this method, where 304 is the flight path of the aircraft and 305 is the aircraft position (camera position).
  • the video taken by the camera along the flight path 304 is sampled at a predetermined timing to obtain each image frame, the photographed image is deformed to fit the image frame, and the image is pasted on the map 301.
  • 302 a to 300 f are the pasted images
  • 303 a to 303 f are the picture frames.
  • the calculation of the shooting image frame and the transformation of the image into each image frame are performed by calculation using the camera information at the time of shooting and the attitude information of the machine as described in the first embodiment.
  • the sampling period of each image may be changed according to the speed of the aircraft. Generally, when the aircraft speed is high, the sampling period is short, and when the aircraft speed is low, the sampling period is long.
  • the current position of the airframe 101 and the rotation angle and inclination (pan and tilt-camera attitude) of the camera 102 with respect to the airframe are measured, and based on the attitude of the camera, the geographic information system is measured. Calculates the image frame on the ground taken from the aircraft on the map of the aircraft, transforms the image taken according to the image frame and pastes it, and compares the image and the map.
  • the photographing frame is calculated based on the attitude of the camera as the photographing means, so that the positional relationship between the photographed image and the map can be confirmed while the ground condition with higher accuracy can be obtained. It becomes possible to identify.
  • the camera 101 is housed in the gimbal 112 as shown in FIG. 5 and the aircraft 101 performs level flight as shown in FIG. b)
  • the tilt of the camera 102 is the tilt from the center axis of the aircraft 101, and the rotation angle (pan) of the camera 102 is from the direction of travel of the aircraft 101. Is output as the rotation angle of.
  • the inclination ⁇ of the camera 102 is the inclination from the vertical plane. Is shown.
  • the calculation method of the camera image frame can be obtained by rotating and moving a rectangle (image frame) in 3D coordinates as a basis of computer graphics.
  • the target image frame can be obtained by performing a conversion process on the camera image frame based on the camera information and the aircraft information, and calculating the image frame when projected on the ground.
  • the calculation method of each coordinate in the 3D coordinates is obtained using the following matrix calculation method. 1) Calculation of the image frame in the reference state
  • the positions of the four image frames are calculated as relative coordinates with the position of the aircraft as the origin.
  • the shooting frame is calculated at the reference position based on the focal length, angle of view, and altitude of the camera, and the coordinates of four points are obtained.
  • the image plane is projected on the ground surface (y-axis altitude) to obtain the projection plane (image frame).
  • the coordinates after projection are converted by the following equation (3).
  • the current position of the airframe 101, the elevation angle and the angle of mouth of the airplane 101 are measured, and the elevation angle and the roll angle are used to measure the ground level taken from the airplane on the map of the geographic information system.
  • Calculates the image frame of the image transforms the captured image according to the image frame, and pastes it, and compares the image with the map.
  • Embodiment 4 by calculating the photographing frame from the position information of the airframe 101 with respect to the ground, it is possible to check the positional relationship between the photographed image and the map, and to obtain a more accurate ground condition. It becomes possible to identify. Now, assuming that the relationship between the aircraft and the camera is as shown in Fig.
  • the camera 102 is fixed to the aircraft 101 (without using the rim bar), and as shown in Fig. 7 (b), 1 0 1 If the aircraft itself is flying horizontally from the ground, the tilt of camera 102 is 0 because camera 102 is facing directly below. Degree. As shown in Figure (c), when the aircraft 101 is tilted, this is the attitude of the camera 102. Therefore, based on the elevation angle (pitch) and roll angle of the aircraft 101, the camera shooting frame is Perform calculations.
  • the positions of the four image frames are calculated as relative coordinates with the position of the aircraft as the origin.
  • the shooting frame is calculated at the reference position based on the focal length, angle of view, and altitude of the camera, and the coordinates of four points are obtained.
  • the image frame is rotated around the X axis from the roll angle ⁇ of the aircraft by the following formula.
  • the coordinates after rotation are calculated by the following equation (6).
  • the image frame is rotated around the Z axis from the aircraft's pitch angle of 0.
  • the coordinates after rotation are calculated by the following equation (7).
  • the image plane is projected on the ground surface (y-axis altitude) to obtain the projection plane (image frame).
  • the coordinates after casting are calculated by the following equation (8).
  • the current position of the airframe 101, the rotation angle and tilt of the camera 102 with respect to the airframe, and the elevation angle and roll angle of the airframe 101 are measured. Calculates the image frame on the ground taken from the airplane, transforms the captured image according to the image frame, pastes it, and compares the image with the map. According to the fifth embodiment, by calculating the photographing image frame from the posture information of the camera and the posture information of the aircraft, it is possible to confirm the positional relationship between the photographed image and the map, thereby obtaining a more accurate Can be identified.
  • the relationship between the aircraft 101 and the camera 102 is as shown in FIG. 9, assuming that the camera 102 is housed in the gimbal 1.12 and that the aircraft 101 flies in a free attitude, As shown in FIG. 7B, the tilt of the camera 102 and the rotation angle of the camera are output from the gimbal 112. The gyro outputs the elevation angle and roll angle of the aircraft 101 itself with respect to the ground.
  • the calculation method of the camera image frame can be obtained by rotating and moving a rectangle (image frame) in 3D coordinates as a basis of computer graphics.
  • the target image frame can be obtained by performing a conversion process on the camera image frame based on the camera information and the aircraft information, and calculating the image frame when projected on the ground.
  • the calculation method of each coordinate in the 3D coordinates is obtained using the following matrix calculation method.
  • the positions of the four image frames are calculated as relative coordinates with the position of the aircraft as the origin.
  • the shooting frame is calculated at the reference position based on the focal length, angle of view, and altitude of the camera, and the coordinates of four points are obtained.
  • the image plane is projected onto the ground surface (y-axis altitude) to obtain a projection plane (image frame).
  • the coordinates after casting are given by the following equation 1 5
  • Equation 16 From the following Equation 16, obtain a general homogeneous coordinate system [ ⁇ , ⁇ , ⁇ , W], [Equation 16]
  • the current position of the aircraft 101, the rotation angle and tilt of the camera 102 with respect to the aircraft, and the elevation angle and roll angle of the aircraft 101 are measured.
  • the terrain altitude data is used to correct the flight position of the aircraft 101 to calculate the shooting frame.
  • the captured video is transformed according to the frame and pasted on the map of the Geographic Information System, and the captured video is compared with the map.
  • the position and altitude of the aircraft, the attitude information of the aircraft and the attitude information of the camera are used to make corrections based on the altitude and terrain information of the ground surface, and the shooting image frame is calculated by calculating the shooting frame. While confirming the positional relationship with the map, it is possible to identify ground conditions with higher accuracy.
  • the projection plane is obtained by casting the image frame on the ground surface (y-axis altitude).
  • the coordinates after casting are calculated by the following equation (18).
  • the relative altitude d used here is obtained by subtracting the terrain altitude at the target point from the absolute altitude from the horizon obtained from the GPS device, and using the relative altitude from the camera to obtain a highly accurate image frame. Calculate the position.
  • the current position of the aircraft 101 is measured, a photographic frame on the ground photographed from the aircraft is calculated on the map of the geographic information system, and the image taken in accordance with the photographic frame is calculated.
  • the captured video is continuously displayed on the map of the Geographic Information System.
  • the target point is specified from the video attached on the map.
  • placement is performed according to the calculated shooting image frame, the joining state of overlapping portions of each shot image is checked, and the degree of overlap of the images is the most
  • the position is corrected by moving the video as much as possible, and the correction value is used to transform the captured video on the map of the geographic information system in accordance with the frame of the captured image, and perform the bonding process.
  • Figure 12 shows the procedure. For example, two shot images 1 (A) and two shot images 2 (B) taken according to the movement of the aircraft 101 are overlapped, and the overlapped portion is detected. As described above, A and B are moved relative to each other to obtain a position correction value at the time of joining, and then to perform position compensation D to join. The position correction is performed in the image joining 'correction 2 15' in FIG.
  • a plurality of continuous images are joined with higher accuracy, and it is possible to identify the ground condition while checking the ground surface condition over a wider range.
  • the current position of the airframe 101, the mounting angle and inclination of the camera 102 with respect to the airframe, and the elevation angle and roll angle of the airframe 1 are measured. Calculates the image frame on the ground where the image was taken, transforms the image taken according to the image frame, and pastes it, and compares the image with the map.
  • FIG. 13 (b) is a time chart showing the procedure for correcting this.
  • the video signal is temporarily stored in the buffer during the GPS calculation time T from the GPS observation point t1 for detecting the aircraft position, and the video signal temporarily stored at t2 And transmit the aircraft position, aircraft attitude, camera information, etc.
  • the photographing frame by calculating the photographing frame from the mounting information of the photographing device, it is possible to identify a more accurate ground condition while confirming the positional relationship between the photographed image and the map. Become.
  • the captured image is deformed in accordance with the image frame, and the deformed image is superimposed on the map and pasted.
  • a shooting range on the map corresponding to the shot video shot by the user may be obtained, and the shot video may be displayed over the range on the map.
  • the map processing is performed on the ground system based on the information transmitted from the onboard system.
  • the onboard system may include a display or the like. Equipped with a display device, to perform map processing on the onboard system, display it on the onboard display device, transmit the processed information to the ground system, and display it on the ground system You may.
  • so-called landmarks such as intersections, stations, and large building corners, indicating characteristic points on a map are extracted from a captured image, and corresponding points are extracted from an area corresponding to a shooting range on the map.
  • the landmarks are extracted, and the parameters of the image frame calculation (hereinafter referred to as the image position, which is used to calculate the image frame that is the shooting range of the camera on the ground surface, are set so that the image matches the landmark on the map.
  • the machine's attitude which indicates the camera's attitude information and camera setting information
  • FIG. 14 is a block diagram showing the ninth embodiment.
  • the antenna 103 of FIG. 1 the multiplex modulation means 109, the signal conversion means 110, the tracking means 111, the temporary storage means 113, 07861
  • FIG. 15 is a functional explanatory diagram illustrating the map processing means.
  • the imaging means 105 by the camera 102 mounted on the airframe 101 captures the ground, outputs the video signal, and also outputs camera information such as the zoom of the camera.
  • the outputs of the body position measuring means 108, the body attitude measuring means 107, the photographing means 105, and the camera posture measuring means 106 are input to the signal processing means 205, and are subjected to signal processing, respectively. Are converted into moving image data 207 and still image data 208.
  • the output of the signal processing means 205 and the two-dimensional map data 209 are input to the map processing means 226 to perform map processing.
  • the map processing means 222 has the function shown in FIG. As shown in Fig. 15, in the map processing means 222, moving image data 207 and still image data 209, which are video signals, and information signals of the aircraft position, aircraft attitude, camera attitude, and two-dimensional geographic information system Reprocessing is performed using the map data 209.
  • the aircraft position which is the output of the aircraft position measurement means 108 in Fig. 14, and the pitch elevation and roll angles, which are the outputs of the aircraft attitude measurement means ⁇ 07, and the pan and tilt outputs which are the output of the camera attitude measurement means 106
  • the zoom of the camera 102 which is the output of the photographing means 105, the still image data 208 obtained by the signal processing means 205, and the two-dimensional map data 209 are read as input data (S21).
  • image frame calculation 212 is performed using the aircraft position, pitch elevation angle, roll angle, camera pan, tilt, and zoom as parameters (S22).
  • the corresponding landmarks obtained in S25 are compared with S23, and the image frame calculation of S22 is performed so that these landmarks match.
  • the photographing frame is calculated again based on the correction values of the parameters obtained in S28, and the still image data 208 is deformed in accordance with the photographing frame and superimposed on the map of the geographic information system (S 2 9) (S30) (S31). If no landmark is extracted in S23 or S25, the still image data 208 is transformed according to the image frame obtained in S22 and superimposed on the geographic information system map.
  • Fig. 17 shows the angle parameters used in image frame calculation 2 1 2 such as pitch elevation angle, roll angle, camera pan and tilt.
  • the calculation method of the photographic image frame is the same as that described above, and the photographic image frame in the reference state is rotated by each angle parameter, and then projected onto the ground surface, so that the photographic range of the camera on the ground surface, that is, the photographic image frame Get.
  • the origin is the aircraft position
  • the X axis is in the direction of aircraft travel
  • the z axis is perpendicular to the ground surface
  • the z axis is upward
  • the y axis is perpendicular to these X and z axes.
  • Fig. 18 (a) shows the calculated state of the image frame 42 in the reference state
  • Fig. 18 (b) shows the image frame 42 in the standard state rotated by each angle parameter. The state projected on the surface is shown.
  • the landmark coordinates (x 0 , y.) On the map to be compared here are the coordinates after performing the following conversion.
  • FIG. 20 (a) is a photograph in which the photographing frame 42 and the photographed image 43 are superimposed on the map 41 of the geographic information system without performing the correction according to the present invention.
  • 4 4 is the aircraft position (camera position).
  • the ninth embodiment it is not only possible to correct measurement errors of various measuring devices for measuring each parameter, but also to superimpose and display a video taken while operating a camera mounted on the aircraft on a map. In this case as well, it is possible to correct the error caused by the shift in the data acquisition timing of the shooting timing and the camera posture information (pan / tilt).
  • the roll / pitch correction is performed by the following calculation.
  • the camera is fixedly attached to the airframe and installed so that the angle of the pan / tilt does not change, even when the correction of the pan / tilt is not effective.
  • the attitude information of the aircraft that is, the roll / pitch
  • Embodiment 1 1.
  • two landmarks are extracted, and the landmark is determined by the distance between the two points. This is for correcting the altitude of the aircraft.
  • two landmarks are extracted in S23 of the ninth embodiment (FIG. 16)
  • two corresponding landmarks are extracted from the still image data 208 in the same manner (S24) (S25) .
  • the corresponding landmark is also extracted from the video in S25, the landmarks obtained in S23 and S25 are collated, and the distance between the landmark on the video and the two landmarks on the GIS map are compared.
  • the aircraft altitude in this case, the aircraft altitude is obtained as an absolute altitude from the sea level by the GPS device, so this altitude correction is the relative altitude of the ground surface) so that the distance between the two points is the same. Correct (S27) (S28).
  • the photographing frame is calculated again based on the correction value of the parameter obtained in S28, the still image data 208 is deformed according to the photographing frame, and is superimposed on the map of the geographic information system (S29). (S30) (S31) o
  • the altitude (relative altitude) h 'corrected by the distance between landmarks according to the present invention is defined as the absolute altitude of the aircraft.
  • Embodiment 1 2.
  • the parameter (pan / tilt) value used in the image frame calculation of S22 is corrected so that the corresponding landmark of the first point matches. Then, the difference between the corresponding landmark of the second point is calculated.
  • the vehicle attitude parameter (roll / pitch) value is corrected so as to be corrected (S27) (S28). Further, the photographing frame is calculated again based on the correction values of the parameters obtained in S28, and the still image data 208 is deformed according to the photographing frame and superimposed on the map of the geographic information system ( S29) (S30) (S31).
  • FIG. 22 is a diagram for explaining this, in which black circles indicate landmarks on the map, and black triangles indicate landmarks on the image.
  • Fig. 22 (a) shows the captured image superimposed and displayed on the GIS map
  • Fig. 22 (b) shows the state after performing the altitude correction according to Embodiment 11 above
  • Fig. 22 (c) Shows the state after the pan-tilt correction has been performed
  • FIG. 22D shows the state after the roll-pitch correction has been further performed.
  • the parameter adjustment based on the matching of the landmark of only one point can be performed even when it is difficult to superimpose a high-precision photographed image and a map over the entire photographing range.
  • the two landmarks more accurate superimposed display can be performed, and the situation of the photographed ground surface can be grasped more easily and quickly.
  • Embodiment 1 3.
  • the photographing frame is calculated again based on the correction values of the parameters obtained in S28, and the still image data 208 is deformed according to the photographing frame and superimposed and displayed on the map of the geographic information system (S28). 9) (S30) (S31).
  • map processing including the above-mentioned correction processing
  • more accurate superimposed display is performed compared to the case where the superimposition of the image and the map is corrected based on the position of one or two landmarks. This makes it easier and quicker to grasp the situation on the ground surface.
  • Embodiment 1 4.
  • the present embodiment relates to a process of superimposing and displaying a plurality of captured images at a predetermined cycle on a map when a plurality of continuous images are provided as still image data. Landmark extraction is performed on the obtained still images, and if landmarks are extracted as a result, the landmarks are extracted from all the still images. Not always. In live display processing, in which superimposed display is performed while capturing images, it is difficult to immediately execute image processing on all captured images to extract landmarks and correct them, due to the processing time.
  • a superimposition table of still images on which no landmarks are extracted This is done by re-calculating the image frame based on the correction value at the time of the previous correction, deforming the image according to the obtained image frame, and superimposing the image on the map of the geographic information system. This is to improve the superposition position accuracy.
  • FIG. 24 shows the monitor display screen by this method, where 41 is a map, 44 is the aircraft position (camera position), and 45 is the flight route of the aircraft. Video taken by a camera along the flight path 45 is sampled at a predetermined timing, and after superimposition position correction is performed, the video is superimposed and displayed on the map 41 of the geographic information system.
  • 43 to 43 g are images with shellfish fortune-telling, and 42 is the frame of the latest image 43 g.
  • Embodiment 14 even when landmarks are not extracted, the superimposed display position can be corrected, high-accuracy superimposed display can be performed, and a wide range of ground surface conditions that have been photographed can be obtained. It is easier and faster to grasp.
  • the fifteenth embodiment relates to a superimposed display process on a map in a case where a plurality of shot images are continuously shot at a predetermined cycle, and a plurality of continuous images are provided as still image data.
  • the continuous shooting video there are videos that have been subjected to repositioning correction by landmark collation, and video that cannot be superimposed by correction because landmarks cannot be extracted.
  • the correction value of each parameter obtained at the point where the landmark was extracted next is superimposed by applying it retroactively to the intermediate point between the point where the landmark was previously corrected and the point where correction was performed.
  • Display Position Correction In Fig. 25, gray squares indicate landmark extracted images, and white squares indicate images from which no landmark marks have been extracted.
  • Arrow G indicates that the superimposed position is corrected by using the superimposed position correction value from the image in which the landmark is extracted and the superimposed position is corrected. According to the fifteenth embodiment, the overlapping state between images when correction by landmark collation cannot be performed is improved as shown in FIG.
  • FIG. 25 (a) shows a case where this embodiment is not applied
  • FIG. 25 (b) shows a case where this embodiment is applied.
  • altitude correction data of a captured video extracted from a past flight video is registered and linked to a position, so that even when a landmark cannot be extracted from the captured video, the altitude correction of a shooting location can be performed.
  • the altitude correction value given by the difference between the absolute altitude and the relative altitude should be used at any time by registering and managing the altitude correction value at the shooting point as that point.
  • Altitude correction can be performed.
  • Figure 26 shows a state in which still images taken continuously are superimposed on the GIS map. In this figure, the case where two landmarks are extracted from the last one image 51 and the middle one image 52 and the correction value of the altitude is obtained is described.
  • Embodiment 16 of the present invention altitude correction data extracted from past flight flight images is registered at points on the map, so that altitude correction is performed even for images from which two or more landmarks cannot be extracted. Thus, superimposed display with higher accuracy can be performed. Industrial applicability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Business, Economics & Management (AREA)
  • Mathematical Physics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Signal Processing (AREA)
  • Processing Or Creating Images (AREA)
  • Instructional Devices (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

 空中より撮影された地表面の撮影映像の位置を3次元的に特定し、撮影された地表面の撮影範囲を計算して求め、その撮影範囲に合わせて撮影映像を変形した後、地理情報システムの地図上に重ねて表示する撮影映像表示方法であって、地理情報システムの地図と撮影映像からそれぞれランドマークを抽出し、対応するランドマークを照合することにより、撮影された撮影範囲の計算に使用するパラメータを補正する。

Description

明 細 書 撮影映像表示方法 技術分野
この発明は、例えばへリコプタに搭載された撮影装置から送信された 映像を、地理情報システムの地図上に重ね合わせて表示することにより、 震災、火災等の天災や爆発、重大事故等の人災等の災害が発生した場合、 地上の状況の判断を容易に、かつ精度良く行えるようにしたことを特徴 とする撮影映像表示方法に関するものである。 背景技術
従来の位置特定方法および装置は例えば特許第 2 6 9 5 3 9 3号公 報に示されているように、 空中における撮影位置を三次元的に特定し、 撮影位置に対する目標物の方向を計測し、予め作成されている地表面の 起伏についての高度情報を含む三次元地勢データから目標物の存在す る地表面を求め、地表面と撮影位置から目標物の方向に延びる直線との 交点位置として、空中から撮影した地表面の目標物の位置を特定してい る。
従来の位置特定方法および装置では、地表面における目標物の位置を 特定するために、前提として、 予め作成されている地表面の起伏につい ての高度情報を含む三次元地勢データが必要である。 また、 空中におけ る撮影位置を三次元的に特定し、撮影位置に対する目標物の方向を計測 するときに生じる計測誤差を補正することができず、正確な位置の特定 が困難である。さらに、位置の特定が目標物一点に限られているために、 地表面における状況を面的に把握することは不可能であるなどの問題 があった。 発明の開示
この発明は上記のような問題を解決するためになされたものであり、 撮影映像を地理情報システムの地図上に重ね合わせて表示することに よって、撮影された地表面の状況を面的に把握することを可能とし、 ま た、撮影映像と地図との照合によリ映像の地図上における表示位置を補 正して高精度な重畳表示を行い、撮影された地表面の状況把握をよリ容 易かつ速やかにできる撮影映像表示方法を提供することを目的とする。
この目的を達成するため、本発明に係る撮影映像表示方法は、空中の 機体に搭載された撮影装置により撮影された地表面の撮影映像を画像 処理して表示するものあって、空中における撮影位置を 3次元的に特定 し、撮影された地表面の撮影範囲を計算して求め、 その撮影範囲に合わ せて撮影映像を変形した後、これを地理情報システムの地図上に重ね合 わせて表示する。
また、空中の機体に搭載された撮影装置により撮影された地表面の撮 影映像を画像処理して表示するものあって、空中における撮影位置を 3 次元的に特定し、撮影された地表面の撮影範囲を計算して求め、 その撮 影範囲に合わせて撮影映像を変形した後、これを地理情報システムの地 図上に重ね合わせて表示する撮影映像表示方法であって、地理情報シス テムの地図と撮影映像からそれぞれランドマークを抽出し、対応するラ ンドマークを照合することにより、撮影された地表面の撮影範囲を計算 する際に使用するパラメータを補正し、撮影映像を地理情報システムの 地図上に精度良く重畳表示する。
この発明によれば、映像情報と地図との整合性を確認することが容易 となり、 目標地点の判別が容易にできるものである。 図面の簡単な説明
図 1はこの発明の実施の形態 1に係る撮影映像表示方法を実施する システムを示すプロック図である。
図 2は実施の形態 1における地図処理手段の機能説明図である。 図 3は実施の形態 1による表示画面を示す写真である。
図 4はこの発明の実施の形態 2に係る撮影映像表示方法によリ得ら れた表示画面を示す写真である。
図 5はこの発明の実施の形態 3を説明する図である。
図 6は実施の形態 3における地図処理を説明する図である。
図 7はこの発明の実施の形態 4を説明する図である。
図 8は実施の形態 4における地図処理を説明する図である。
図 9はこの発明の実施の形態 5を説明する図である。
図 1 0は実施の形態 5における地図処理を説明する図である。
図 1 1はこの発明の実施の形態 6に係る撮影映像表示方法の地図処 理を説明する図である。
図 1 2はこの発明の実施の形態 7に係る撮影映像表示方法の地図処 理を説明する図である。
図 1 3はこの発明の実施の形態 8に係る撮影映像表示方法を説明す る図である。
図 1 4はこの.発明の実施の形態 9に係る映像表示方法を実施するシ ステムを示すプロック図である。
図 1 5は実施の形態 9における地図処理手段の機能説明図である。 図 1 6は実施の形態 9による映像表示方法における動作を示すフロ 一チャートである。
図 1 7は実施の形態 9における地図処理手段の中の撮影画枠計算で 使用する角度パラメータを説明する図である。
図 1 8は実施の形態 9における地図処理手段の中の撮影画枠計算を 説明する図である。
図 1 9は実施の形態 9における地図処理手段の中のパラメータ補正 を説明する図である。
図 2 0は実施の形態 9による映像表示方法における効果を示す図で 図 2 1はこの発明の実施の形態 1 1を説明する図である。
図 2 2はこの発明の実施の形態 1 2を説明する図である。
図 2 3はこの発明の実施の形態 1 4に係る映像表示方法における動 作を示すフローチヤ一トである。
図 2 4は実施の形態 1 4に係る映像表示方法における効果を示す図 図 2 5はこの発明の実施の形態 1 5を説明する図である。
図 2 6はこの発明の実施の形態 1 6を説明する図である。 発明を実施するための最良の形態
実施の形態 1 .
まず、この発明の概略を説明する。 この発明は、 空中から地上を撮影 した撮影映像を、 地理情報システム (G I S = Geograph i c I nformat i on System 地図をコンピュータ画面上に表示するシステム) の地図上に重 ね合わせて表示することによって、映像情報と地図との整合性の確認を 容易にし、 目標地点の判別を容易にするものである。 ただし、 空中から カメラで地上を撮影した場合、その映像はカメラの向きに関わらず常に 一定の矩形形状にしか写らないため、撮影した映像を地理情報システム で得た地図上にそのまま重ね合わせる(貼り付ける)ことは困難である。 そこで本発明では、映像を撮影時のカメラ情報と機体の姿勢情報を用い た計算により、地上に対するカメラの姿勢等に基づいて、矩形から台形 あるいは菱形に近い形など、複雑に変わる撮影される地表面の撮影範囲 ( =撮影画枠) を計算により求め、 その画枠に合わせて映像を変形して 地図上に貼り付け、 表示するものである。
以下この発明の実施の形態 1に係る撮影映像処理方法及び撮影映像 処理システムについて図面を参照して説明する。図 1はこの発明の方法 を実施するシステムを説明するプロック図、図 2は地図処理手段の機能 を説明する図である。 この発明の方法は、 撮影装置 (=カメラ) 等を搭 載したヘリコプタ等の飛行体 (=機体) からなる機上系 1 0 0と、 機上 系 1 0 0からの信号を受信して処理する地上に設置された地上系 2 0 0とにより実現する。
機上系 1 0 0は、 主に、 空中から地表を撮影する撮影手段、 撮影手段 の撮影位置を 3次元的に特定するための情報を取得する情報収集部と しての機体位置計測手段 1 0 8や機体姿勢計測手段 1 0 7、上記撮影手 段で撮影された撮影映像と上記情報収集部で取得された情報とを送信 する送信手段を有する機上装置からなる。
即ち、 機上系 1 0 0において、 機体 1 0 1には、 空中から地上を撮影 する撮影手段 1 0 5であるカメラ 1 0 2力'《搭載されている。機体 1 0 1 は G P S信号受信部であるアンテナ 1 0 3により現在の ί立置情報を得 て、機体位置検出を行う機体位置計測手段 1 0 8、及びジャイロを備え、 さらに、 機体 1 0 1の姿勢すなわち仰角 (=ピッチ) とロール角を検出 する機体姿勢検出を行う機体姿勢計測手段 1 0 7を備えている。
カメラ 1 0 2を含む撮影手段 1 0 5は、 地上を撮影し、 その映像信号 を出力すると共に、 カメラの絞り、ズームなどのカメラ情報も併せて出 力する。 カメラ 1 0 2はジンバルに取り付けられ、 このジンバルはカメ ラの回転角 (=パン)、 傾き (=チルト) を検出するカメラ姿勢計測手 段 1 0 6を有しておりその値を出力する。
上記機体位置計測手段 1 0 8からの出力信号、機体姿勢計測手段 1 0 7からの出力信号、カメラ撮影手段 1 0 5の映像信号、カメラ情報信号、 カメラ姿勢計測手段 1 0 6からの出力信号は多重変調手段 1 0 9で多 重変調され、 信号変換手段 1 1 0でデジタル信号にされ、追尾手段 1 1 1を有する送信手段 1 0 4から地上系 2 0 0へ向けて送信される。
地上系 2 0 0は、 主に、空中から撮影手段が撮影した地表の撮影映像 及び上記撮影手段の撮影位置を 3次元的に特定するための情報を入力 する入力部、 入力した情報に対し信号処理を行う信号処理部、画面に地 図を表示する地理情報システム、信号処理部で処理された情報を含めて 映像処理し表示部に表示する地図処理部とから構成される。
即ち、機上系 1 0 0からの信号は、 追尾手段 2 0 2を有する受信手段 2 0 1で受信され、信号変換手段 2 0 3で信号変換される。この信号は、 さらに、 多重復調手段 2 0 4により、 映像信号とその他機体位置、 機体 姿勢、カメラ姿勢、 カメラ情報等の情報信号として取り出される。 取り 出されたこれらの信号を信号処理手段 2 0 5で信号処理し、映像信号は 動画データ 2 0 7および静止画データ 2 0 8として次のステップの地 図処理手段 2 0 6での地図処理に用いられる。 その他、地理情報システ 厶の 2次元地図データ 2 0 9、地勢データ 2 1 0を含めた情報信号も地 図処理手段 2 0 6での地図処理に用いられる。 2 1 1はモニタ表示手段 である。
図 2はこの実施の形態の撮影映像表示システムの地図処理手段の概 略を示す図である。地図処理手段 2 0 6は、 図 2に示すように、 映像信 号である動画データ 2 0フと静止画データ 2 0 8、機体位置、機体姿勢、 カメラ姿勢の情報信号、および地理情報システムの 2次元地図データ 2 0 9と 3次元地勢データ 2 1 0により処理を行うもので、 主に、撮影手 段が撮影した撮影映像の撮影範囲に対応する地理情報システムの地図 上の撮影範囲を求める撮影範囲計算部 (画枠計算 2 1 2 )、 画枠計算 2 1 2で求められた撮影範囲に合わせて上記撮影映像を変形する映像変 形部 (映像変形 2 1 3 )、 上記地図上の上記撮影範囲に上記変形された 撮影映像を重ね合わせて表示する表示部 (重ね合わせ 2 1 4等) から構 成される。
地図処理手段 2 0 6では、 まず、 画枠計算 2 1 2で、 機体位置の情報 信号によリ空中における撮影位置を 3次元的に特定し、カメラと機体の 地表面に対する姿勢に基づいて、撮影した地表面の撮影範囲 (=撮影画 枠) を計算により求める画枠計算を行う。 この画枠に合わせて映像変形 2 1 3を行う。 この映像変形は、 映像が地図に一致する台形あるいは菱 形に近い形等になるように映像を変形するものである。次に、 重ね合わ せ 2 1 4で、 変形した映像を地理情報システムの地図上に重ね合わせ (貼り合わせ)、 その後、 これを C R Tなどのモニタ表示手段 2 1 1で 表示する。
図 3は地理情報システムの地図 3 0 1上に、撮影画枠 3 0 3を地図に 合わせて、 撮影映像 3 0 2を重ね合わせた写真である。 3 0 4は機体の 飛行経路、 3 0 5は機体位置 (カメラ位置) である。 上述の変形処理を 含む地図処理を地図処理手段 2 0 6で行うことによリ、図 3に示すよう に、 映像と地図とがほぼ完全に一致し、 映像情報と地図との整合性を確 認することが容易となリ、 目標地点の判別が容易にできる。
また、 図 3のように、 カメラで撮影した画枠の映像を地図上に重ねて 表示することができる他に、撮影映像 3 0 2を消して画枠 3 0 3だけを 表示することも容易にできる。ここで撮影映像 3 0 2は 2次元の地図上 に重ね合わされている。従って、 例えは災害発生の場所 (例えば火災を 起しているビル)等を撮影映像 3 0 2で視認し撮影映像 3 0 2上でその 位置をチ: ϋック (クリック) し、 その後、 撮影映像 3 0 2を消して画枠 3 0 3のみの表示として撮影映像 3 0 2の下の 2次元の地図を表示さ せれば撮影映像上でチェックした位置が地図上のどこに相当するのか を迅速に認識することができる。 さらに、 カメラの向きに関わらず、 モ ニタの表示映像を一定の方向に表示するようにしておけば、 目標地点の 判別がさらに容易となる。
実施の形態 2 .
本実施形態では、機体 1 0 1の現在位置を測定し、 地理情報システム の地図上に機上から撮影した地上の撮影画枠を計算し、その撮影画枠に 合わせて、 撮影した映像を変形して貼り合わせ、 撮影映像と地図との照 合を行う際に、 連続して撮影した撮影映像を、複数枚連続して所定の周 期でサンプリングし、連続する複数枚の映像を地理情報システムの地図 上に貼リ合わせて表示を行い、その地図上に貼リ合わされた映像から目 標の地点を特定化しようとするものである。
図 4はこの方法によるモニタ表示画面を示すもので、 3 0 4は機体の 飛行経路、 3 0 5は機体位置 (カメラ位置) である。 飛行経路 3 0 4に 沿ってカメラから撮影した映像を所定のタイミングでサンプリングし て各画枠を求め、 撮影映像を画枠に合うように変形処理し、 地図 3 0 1 上に貼り付ける。 3 0 2 a〜 3 0 2 f は貼り付けた映像、 3 0 3 a〜 3 0 3 f はその画枠である。
撮影画枠の計算及び各画枠への映像の変形は、実施の形態 1 で説明し たように撮影時のカメラ情報と機体の姿勢情報を用いた計算によリ行 なう。 各画像のサンプル周期は、 機体の速度に応じて変えてもよい。 通 常、 機体の速度が速いときはサンプリング周期を短く、 機体速度が遅い ときはサンプリング周期を長くする。 本実施の形態 2では、地図と複数枚の連続映像による広範囲の地表面 の状況を確認しながら、 地上の状況を識別することが可能となり、 目標 地点の判別を一層効果的に行うことができる。
実施の形態 3 .
本実施の形態では、機体 1 0 1の現在位置と機体に対するカメラ 1 0 2の回転角と傾き (パンとチル卜-カメラの姿勢) を測定し、 このカメ ラの姿勢に基づいて地理情報システムの地図上に機上から撮影した地 上の撮影画枠を計算し、その撮影画枠に合わせて撮影した映像を変形し て貼り合わせ、 撮影映像と地図との照合を行う。
本実施の形態 3によれば、撮影手段であるカメラの姿勢に基づいて撮 影画枠を計算することによって、撮影映像と地図との位置関係を確認し ながら、 よリ精度の高い地上の状況を識別することが可能となる。 いま、 機体 1 0 1 とカメラ 1 0 2の関係を、 図 5のように、 カメラ 1 0 2がジンバル 1 1 2に収容され、機体 1 0 1は水平飛行を行うと仮定 すると、 同図 (b ) ( c ) に示すように、 カメラ 1 0 2の傾きは機体 1 0 1の中心軸からの傾き チルト) として、 カメラ 1 0 2の回転角度 (パン) は機体 1 0 1の進行方向からの回転角度として出力される。 す なわち、 (b ) の状態では、 カメラ 1 0 2が真下を向いているので傾き は 0度、 (c ) の状態ではカメラ 1 0 2の傾き Θ が垂直面からの傾きと なることを示している。
カメラの撮影画枠の計算方法は、コンピュータグラフィックスの基礎 として、 3 D座標内の矩形 (画枠) の回転移動と投象処理で得ることが 出来る。 基本は、 カメラの撮影画枠をカメラ情報と機体情報とによって 変換処理を行い、 地上へ投影した場合の図枠を計算することで、 目的の 画枠を得ることが出来る。 3 D座標内の各座標の計算方法は、 以下の行 列計算方法を使用して得る。 1 ) 基準状態での撮影画枠の計算
まず、 図 6 ( a ) に示すように、 画枠 4点の位置を機体の位置を原点 として、 相対座標として計算する。 撮影画枠を、 カメラの焦点距離と画 角と高度によって、 基準位置に計算、 4点の座標を得る。
2 ) カメラのチルト (z軸) にて、 4点の回転後の位置を計算
図 6 ( b ) に示すように、 カメラのチルト角度 0 から、 z軸のまわ りに撮影画枠を回転する。回転後の座標を次の数式 1で変換して求める, [数式 1 ]
Figure imgf000011_0001
3 ) カメラの方位角 (y軸) にて、 4点の回転後の位置を計算
図 6 ( c ) に示すように、 カメラの方位角 0 から、 y軸のまわり 撮影画枠を回転する。 回転後の座標を次の数式 2で変換して求める。
[数式 2]
Figure imgf000011_0002
4) 回転処理後の画枠を、 原点 (機体位置) から地表面 (y軸高度地点) に投影した図枠を計算
図 6 ( d ) に示すように、 撮影画枠を地表面 (y軸高度) に投象する ことで、 投象平面 (撮影画枠) を得る。 投影後の座標を次の数式 3で変 換して求める。
[数式 3]
Figure imgf000012_0001
次の数式 4で、 一般同次座標系 [ X , Υ , Ζ , W]を得る。 ただし、 dは 海抜高度である。
[数式 4 ]
[X Y Z W] = [x y z yld] 次に、 W' y /d)で割って 3 Dに戻すと次の数式 5となる。
[数式 5 ]
Figure imgf000012_0002
実施の形態 4 .
本実施の形態では、 機体 1 0 1の現在位置と、 機体 1 0 1の仰角と口 一ル角を測定し、 この仰角とロール角により、 地理情報システムの地図 上に機上から撮影した地上の撮影画枠を計算し、その撮影画枠に合わせ て、 撮影した映像を変形して貼り合わせ、 撮影映像と地図との照合を行 う。本実施の形態 4によれば、 機体 1 0 1の地上に対する位置情報から 撮影画枠を計算することによって、撮影映像と地図との位置関係を確認 しながら、 よリ精度の高い地上の状況を識別することが可能となる。 いま、 機体とカメラの関係を図 7のように、 カメラ 1 0 2が機体 1 0 1に固定 (つまリジンバルを使わない) されていると仮定すると、 同図 ( b ) に示すように、 機体 1 0 1 自身が地上から水平に飛行している場 合は、 カメラ 1 0 2が真下を向いているので、 カメラ 1 0 2の傾きは 0 度となる。 同図 (c) のように、 機体 1 0 1が傾いている場合はこれが カメラ 1 02の姿勢となるので、 機体 1 0 1の仰角 (ピッチ)、 ロール 角に基づいてカメラの撮影画枠の計算を行う。
1 ) 基準状態での撮影画枠の計算
図 8 ( a)に示すように、画枠 4点の位置を機体の位置を原点として、 相対座標として計算する。 撮影画枠を、 カメラの焦点距離と画角と高度 によって、 基準位置に計算、 4点の座標を得る。
2) 機体のロール (X軸) にて、 4点の回転後の位置を計算
図 8 ( b) に示すように、 次式により機体のロール角度 Θ から、 X 軸のまわりに撮影画枠を回転する。回転後の座標を次の数式 6で変換し て求める。
[数式 6] '
Figure imgf000013_0001
3) 機体のピッチ (z軸) にて、 4点の回転後の位置を計算
図 8 ( c) に示すように、 機体のピッチ角度 0 から、 Z軸のまわり に撮影画枠を回転する。 回転後の座標を次の数式 7で変換して求める。
[数式 7]
Figure imgf000013_0002
4) 回転処理後の画枠を、 原点 (機体位置) から地表面 (y軸高度地点) に投影した図枠を計算 07861
13 図 8 (d) に示すように、 撮像画枠を地表面 (y軸高度) に投象する ことで、 投象平面 (撮影画枠) を得る。 投象後の座標を次の数式 8で変 換して求める。
[数式 8]
Figure imgf000014_0001
次の数式 9により一般同次座標系 [X, Y, Z, W]を得る。
[数式 9]
次に、 W' (= y/d)で割って 3 Dに戻すと次の数式 1 0とな ,
[0072]
[数式 1 0]
Figure imgf000014_0002
実施の形態 5.
本実施の形態では、機体 1 01の現在位置と、機体に対するカメラ 1 02の回転角度と傾き、 それに機体 1 0 1の仰角とロール角を測定し、 これらにより、 地理情報システムの地図上に、 機上から撮影した地上の 撮影画枠を計算し、 その撮影画枠に合わせて、 撮影した映像を変形して 貼り合わせ、撮影映像と地図との照合を行う。本実施の形態 5によれば、 カメラの姿勢情報、機体の姿勢情報から撮影画枠を計算することによつ て、撮影映像と地図との位置関係を確認しながら、 より精度の高い地上 の状況を識別することが可能となる。
いま、 機体 1 0 1 とカメラ 1 0 2の関係を図 9のように、 カメラ 1 0 2がジンバル 1 . 1 2に収容され、また機体 1 0 1は自由な姿勢で飛行を 行うとすると、 同図 (b ) に示すように、 ジンパル 1 1 2からカメラ 1 0 2の傾きとカメラの回転角度が出力される。 また、 ジャイロから機体 1 0 1 自身の地上に対する仰角とロール角が出力される。
カメラの撮影画枠の計算方法は、コンピュータグラフィックスの基礎 として、 3 D座標内の矩形 (画枠) の回転移動と投象処理で得ることが 出来る。 基本は、 カメラの撮影画枠をカメラ情報と機体情報とによって 変換処理を行い、 地上へ投影した場合の図枠を計算することで、 目的の 画枠を得ることが出来る。 3 D座標内の各座標の計算方法は、 以下の行 列計算方法を使用して得る。
1 ) 基準状態での撮影画枠の計算
図 1 0 ( a ) に示すように、 画枠 4点の位置を機体の位置を原点とし て、 相対座標として計算する。 撮影画枠を、 カメラの焦点距離と画角と 高度によって、 基準位置に計算、 4点の座標を得る。
2 ) カメラのチルト (Z軸) にて、 4点の回転後の位置を計算
図 1 0 ( b ) に示すように、 カメラのチルト角度 0 から、 z軸のま わりに撮影画像を回転する変換をする。回転後の座標を次の数式 1 1で 変換して求める。
[数式 1 1 ] sin 0 0'
雞 0 4
0 1 :0;|
Figure imgf000015_0001
0 ひ 1
3 ) カメラの方位角 (y軸) にて、 4点の回転後の位置を計算 図 1t 0 (c) に示すように、 カメラの方位角度 0 から y軸のまわり に撮影画枠を回転する変換をする。回転後の座標を次の数式 1 2で変換 して求める。
[数式 1 2]
Figure imgf000016_0001
4) 機体のロール (x軸) にて、 4点の回転後の位置を計算
図 1 0 (d) に示すように、 機体のロール角度 0 から、 X軸のまわ リに撮影画枠を回転する変換をする。回転後の座標を次の数式 1 3で変 換して求める。
[数式 1 3]
[ ¾; !]- [¾■ y i]
Figure imgf000016_0002
5) 機体のピッチ (Z軸) にて、 4点の回転後 (回転角 Θ) の位置を 計算
図 1 0 (e) に示すように、 機体のピッチ角度 0 から、 z軸のまわ リに撮影画枠を回転する変換をする。回転後の座標を次の数式 1 4で変 換して求める。
[数式 1 4]
Figure imgf000017_0001
6) 回転処理後の画枠を、 原点 (機体位置) から地表面 (y軸高度地点) に投影した図枠を計算
図 1 0 ( f ) に示すように、 撮像画枠を地表面 (y軸高度) に投象す ることで、 投象平面 (撮像画枠) を得る。 投象後の座標を次の数式 1 5
1,- ,,
で変換して求める。
[数式 1 5]
J
Figure imgf000017_0002
7) 次の数式 1 6により、 一般同次座標系 [Χ, Υ, Ζ, W]を得る, [数式 1 6]
8) 次に、 W' (= y/d)で割って 3 Dに戻すと次の数式 1 7となる, [数式 1 7]
X: ζ ■
ά
W W W 実施の形態 6.
本実施の形態では、機体 1 0 1の現在位置と、機体に対するカメラ 1 02の回転角度と傾き、 それに機体 1 0 1の仰角とロール角を測定し、 地理情報システムの地図上に機上から撮影した地上の撮影画枠を計算 する。 その撮影画枠の 4点の計算処理において、 地勢高度データを利用 し、 機体 1 0 1の飛行位置を補正して撮影画枠を計算する。 その撮影画 枠に合わせて撮影した映像を変形して地理情報システムの地図上に貼 リ合わせ、 撮影映像と地図との照合を行う。
本実施の形態 6によれば、 機体の位置、 高度、 機体姿勢情報とカメラ の姿勢情報を使用し、 地表面の高度地勢情報によって補正を行い、 撮影 画枠を計算することによって、撮影映像と地図との位置関係を確認しな がら、 よリ精度の高い地上の状況を識別することが可能となる。
図 1 1に示すように、前述の実施の形態 5における回転後の地表面へ の撮影画枠の計算処理において、 機体の高度を、 G P S装置から得られ る海抜高度に対して、地表面の地勢高度情報を利用して撮影地点の地表 面高度 (相対高度 d =海抜高度一地表面高度) を使用し、 撮影画枠の 4 点の計算を実施する。
1 ) 回転処理後の画枠を、 原点 (機体位置) から地表面 (y軸高度地点) に投影した図枠を計算
撮影画枠を地表面 ( y軸高度) に投象することで、 投象平面を得る。 投象後の座標を次の数式 1 8で変換して求める。
[数式 1 8 ]
Figure imgf000018_0001
次の数式 1 9により、 一般同次座標系 [ x, Y , , w]を得る,
[数式 1 9 ] 次に、 W' (= y /d)で割って 3 Dに戻すと次の数式 2 0となる,
[数式 2 0 ]
Figure imgf000019_0001
y/d
ここで使用する相対高度 dを、 G P S装置から得られる地平線からの絶 対高度から目標地点の地勢高度を減算して求め、カメラからの相対高度 を利用することで、 精度の高い撮影画枠の位置を計算する。
実施の形態 7 .
本実施の形態では、機体 1 0 1の現在位置を測定し、 地理情報システ ムの地図上に、機上から撮影した地上の撮影画枠を計算し、 その撮影画 枠に合わせて撮影した映像を変形して貼り合わせ、撮影映像と地図との 照合を行う際に、 地図上に張り合わせる撮影映像を連続して複数枚、 連 続的に地理情報システムの地図上に張り合わせ表示を行い、その地図上 に張り合わされた映像から目標の地点を特定化する。
複数枚の撮影映像を地理情報システムの地図上に張り合わせを行う 処理において、計算された撮影画枠に従って配置を行い、各撮影映像の 重複部分の接合状態を確認し、映像の重なり具合がもっとも多くなるよ うに映像を移動して位置補正を行い、その補正値を使用して地理情報シ ステムの地図上に撮影映像を撮影画枠に合わせて変形し、貼り合わせ処 理を行う。
その手順を図 1 2に示す。機体 1 0 1の移動に従って撮影した例えば 2枚の撮影映像 1 ( A ) と撮影映像 2 ( B ) を重ね、 重複部分 (図の太 枠内 Cを検出し、 映像の重なり具合が最も多くなるように、 Aと Bを相 対的に移動し、接合時の位置補正値を得て、位置補正 Dを行い接合する。 位置補正は、 図 2の映像接合 '補正 2 1 5で行う。
本実施の形態 7によれば、複数枚の連続映像がよリ精度の高い接合と なり、 より広範囲の地表面の状況を確認しながら、地上の状況を識別す ることが可能となる。
実施の形態 8 .
本実施の形態では、機体 1 0 1の現在位置と、機体に対するカメラ 1 0 2の取り付け角度と傾き、 それに機体 1の仰角とロール角を測定し、 地理情報システムの地図上に、機上から撮影した地上の撮影画枠を計算 し、 その撮影画枠に合わせて撮影した映像を変形して貼り合わせ、撮影 映像と地図との照合を行う。
この処理を行う場合、機上系 1 0 0から送信される諸情報が完全に同 期して、地上系 2 0 0に受信されることが重要となり、 それを実現する ために機体位置計測手段の処理時間、カメラのジンパルによる姿勢計測 手段の処理時間、 映像送信の処理時間等の処理時間を調整し、撮影映像 に同期して送信する必要がある。 それを実現するために、 図 1に、 バッ ファを設け、これに機上のカメラの映像信号を一時的に記憶手段 1 1 3 で記憶し、 G P S等による機体位置検出の計算処理時間の遅延と同期さ せて、 地上系 2 0 0に送信する。
この関係を図 1 3により説明する。機体 1 0 1が G P S信号を受信し て、機体位置を検出するまでには Tの時間を要し、 この間に機体 1 0 1 は P 1の位置から P 2の位置まで移動している。 このため、機体の位置 検出が完了した時点では、カメラ 1 0 2が撮影している領域は P 1の位 置で撮影した領域から距離 Rだけ隔たつた領域となリ、 誤差が生じる。 これを修正する手順を示すタイムチャートが図 1 3 ( b ) である。 機 体位置検出のための G P S観測地点 t 1から G P S計算時間 Tの期間、 映像信号をバッファで一時保存し、 t 2において一時保存した映像信号 と機体位置、 機体姿勢、 カメラ情報等を合わせて送信する。
本実施の形態によれば、撮影装置の取付情報から撮影画枠を計算する ことによって、撮影映像と地図との位置関係を確認しながら、 より精度 の高い地上の状況を識別することが可能となる。
また、 上記各実施の形態では、 画枠を計算した後、 その画枠に合わせ て撮影映像を変形させ、その変形させた映像を地図に重ね合わせて貼り 合わせるようにしているが、単に撮影手段が撮影した撮影映像に対応す る地図上の撮影範囲を求め、地図上のその範囲に撮影映像を重ね合わせ て表示するようにしてもよい。
また、上記各実施の形態では、機上系から送信される情報に基づいて 地上系にて地図処理を行うようにしているが、これは特に限定するもの ではなく、機上系にディスプレイ等の表示装置を備え、機上系にて地図 処理を行うようにし、 それを機上系の表示装置に表示させたり、 処理し た情報を地上系に送信し、 地上系にて表示を行うようにしてもよい。 実施の形態 9 .
本実施の形態は撮影映像から、地図上の特徴的な地点を示す例えば交 差点や駅、大きな建物角などのいわゆるランドマークを抽出し、 また地 図上の撮影範囲に対応する領域から対応するランドマークを抽出し、映 像と地図上のランドマークが合致するように画枠計算のパラメータ(以 下、地表面におけるカメラの撮影範囲である撮影画枠を計算するために 用いる、機体位置■機^姿勢■力メラ姿勢情報とカメラ設定情報を示す) を調整することで、 G I S画面上に精度良く映像を変形して重畳表示する ものである。
以下、 図面を参照して説明する。図 1 4は実施の形態 9を示すブロッ ク図である。 なお、 図 1 4では、 図 1のアンテナ 1 0 3、 多重変調手段 1 0 9、 信号変換手段 1 1 0、 追尾手段 1 1 1、 一時記憶手段 1 1 3、 07861
21 送信手段 1 0 4、 受信手段 2 0 1、 追尾手段 2 0 2、 信号変換手段 2 0 3、 多重復調手段 2 0 4は図示を省略している。 図 1 5は地図処理手段 を説明した機能説明図である。
図 1 4において、 ヘリコプタ等の飛行体 (=機体) 1 0 1に搭載され た G P S装置等の機体位置計測手段 1 0 8により現在の位置情報を得 て機体位置測定を行う。 また機体 1 0 1はジャイロ等を備え、 この機体 姿勢計測手段 1 0 7により機体 1 0 1の姿勢すなわち仰角 (=ピッチ) とロール角を計測する。機体 1 0 1に搭載されたカメラ 1 0 2による撮 影手段 1 0 5は地上を撮影し、その映像信号を出力すると共にカメラの ズームなどのカメラ情報も併せて出力する。カメラ 1 0 2はジンパル等 に取り付けられ、 このカメラ姿勢計測手段 1 0 6によリカメラの回転角 ( =パン)、 傾き (=チルト) が計測される。
これら機体位置計測手段 1 0 8、機体姿勢計測手段 1 0 7、撮影手段 1 0 5、カメラ姿勢計測手段 1 0 6の出力は信号処理手段 2 0 5に入力 されてそれぞれ信号処理され、 カメラ撮影の映像信号は、 動画データ 2 0 7、静止画データ 2 0 8に変換される。信号処理手段 2 0 5の出力と 2次元地図データ 2 0 9は地図処理手段 2 2 6に入力され地図処理を 行う。
地図処理手段 2 2 6は図 1 5に示す機能を有する。地図処理手段 2 2 6では図 1 5に示すように、 映像信号である動画データ 2 0 7、静止画 データ 2 0 8と機体位置、機体姿勢、 カメラ姿勢の情報信号および地理 情報システムの 2次元地図データ 2 0 9によリ処理を行う。
地図処理手段 2 2 6では、まず空中における撮影位置を 3次元的に特 定し、 カメラと機体の地表面に対する姿勢に基づいて、撮影した地表面 の撮影範囲 (==撮影画枠) を計算により求める画枠計算 2 1 2を行う。 次に、地理情報システムの地図上の撮影範囲周辺に対応する範囲におい てランドマーク抽出 2 20を行い、静止画データ 20 8からもランドマ ーク抽出 22 1を行う。 これらのランドマ一クを合致させるためのラン ドマーク照合 2 22を行い、ランドマーク照合 2 2 2の結果に基づいて 映像変形■補正 223を行って、 撮影映像の地図上への重畳表示位置を 補正した後、映像を地理情報システムの地図上への重ね合わせ 2 1 4を 行う。最後に、 これを CR Tなどのモニタ表示手段 2 1 1によりモニタ 表示する。
次に図 1 6のフローチャートに基づき動作について説明する。 まず、 図 1 4における機体位置計測手段 1 08の出力である機体位置と、機体 姿勢計測手段 Ί 07の出力であるピッチ仰角、 ロール角、 カメラ姿勢計 測手段 1 06の出力であるパン、 チルト、 撮影手段 1 0 5の出力である カメラ 1 02のズーム、信号処理手段 205で得られた静止画データ 2 0 8、および 2次元地図データ 209をそれぞれ入力データとして読み 込む (S 2 1 )。 次に、 機体位置、 ピッチ仰角、 ロール角、 カメラのパ ン、チルト、ズームをパラメータとして画枠計算 2 1 2を行う(S 2 2)。 続いて地理情報システムの地図上の、画枠計算 2 1 2で求めた撮影範囲 に対応する領域の周辺でランドマーク抽出を行う (S 2 3)。 S 2 3で ランドマークが抽出された場合は、静止画データ 20 8から対応するラ ンドマークの抽出を行う (S 24) (S 25)。
S 2 5で映像からもランドマークが抽出された場合は、 S 23と S 2 5で得られた対応するランドマークを照合し、 これらのランドマークが 合致するように S 2 2の画枠計算で用いたパラメータ (例えばパン■チ ル卜) 値を補正する (S 2 6) (S 2 7) (S 2 8)。 さらに S 2 8で求 めたパラメータの補正値に基づいて再度撮影画枠を計算し、 この撮影画 枠にあわせて静止画データ 208を変形し、地理情報システムの地図上 に重畳表示する (S 2 9) (S 30) (S 3 1 )。 S 2 3または S 2 5でランドマークが抽出されなかった場合は、 S 2 2で求めた撮影画枠にあわせて静止画データ 2 0 8を変形し、地理情報 システムの地図上に重畳表示する (S 2 4 ) ( S 2 6 ) ( S 3 0 ) ( S 3 1 )。 図 1 7は画枠計算 2 1 2で使用する角度パラメータであるピッチ 仰角、 ロール角、 カメラのパン、 チル卜を示す。
撮影画枠の計算方法は前述の方法を用い、基準状態での撮影画枠を各 角度パラメータによって回転処理した後、地表面へ投影することにより, 地表面におけるカメラの撮影範囲、 すなわち撮影画枠を得る。 図 1 8に 示すように、 機体位置を原点とし、 機体進行方向に X軸、 地表面に対し て垂直上向きに z軸、 これら X軸、 z軸に対して垂直となるように y軸 をとると、 具体的計算は以下の通りである。
基準状態での撮影画枠の計算
カメラのチルトによる y軸まわりの回転
カメラのパンによる z軸まわりの回転
機体のロール角による X軸まわりの回転
機体のピッチ仰角による y軸まわりの回転
地表面 (絶対高度 (=海抜高度) 0の水平面) への投影
図 1 8 ( a) は基準状態での撮影画枠 4 2を計算した状態を、 図 1 8 ( b ) は、 基準状態での撮影画枠 4 2を各角度パラメータによって回転 処理した後、 地表面へ投影した状態を示す。
カメラのパン 'チルトを補正する方法を図 1 9を用いて説明する。 機 体高度を h、 チル卜の計測値を 0、 パンの計測値を ø、 画像上のランド マーク座標 (x, y )、 地図上でのランドマーク座標 (x 0 , y。) とし たとき、 補正後のチルト、 パンの値 0。、 0。は、 次の数式 2 1 を解くこ とで求めることができる。
[数式 2 1 ] f z - tan(90 . cos = x0
] h . tan0Q · sin 0 = y0
ただし、 ここで照合する地図上でのランドマーク座標 (x 0 , y。) は、 以下の変換を行った後の座標である。
機体のピッチ仰角による y軸まわりの逆回転
機体の口ール角による X軸まわりの逆回転
地表面 (絶対高度 (=海抜高度) 0の水平面) への投影
図 2 0 ( a ) は、 本発明による補正を行わずに、 地理情報システムの 地図 4 1上に撮影画枠 4 2と撮影映像 4 3を重ね合わせた写真であり、 図 2 0 ( b ) は本発明による補正を行い、 地理情報システムの地図 4 1 上に撮影画枠 4 2と撮影映像 4 3を重ね合わせた写真である。 4 4は機 体位置 (カメラ位置) である。 上述の補正処理を含む地図処理手段 2 2 6による処理を行うことにより、 図 2 0 ( b ) に示すように、 映像と地 図とが完全に一致し、高精度な重畳表示を行うことができ、撮影された 地表面の状況把握をより容易かつ速やかにできる。
この実施の形態 9によれば、各パラメータを計測する各種計測機器の 計測誤差を修正することができるだけでなく、機体に搭載されたカメラ を操作中に撮影された映像を地図上に重畳表示する場合にも、撮影タイ ミングとカメラ姿勢情報 (パン 'チルト) のデータ取得タイミングのず れによって発生した誤差を修正することが可能となる。
実施の形態 1 0 .
本実施の形態は、 上記実施の形態 9のパラメータ調整を、 パン 'チル 卜の補正ではなく、 機体の姿勢情報 (ロール' ピッチ) を補正すること で、撮影画枠の位置の補正を行う方法であり、ロール■ピッチの補正は、 以下の計算により行う。
チルト■パンによる回転処理までを行ったときの映像上のランドマー ク座標を (x y L z ) としたとき、 さらにロール 0 ■ ピッチ øに よる回転を行ったときのランドマーク座標 (x2, y 2, z2) は、 数式 22で求められる。
[数式 22]
+
Figure imgf000026_0001
さらに、地表面への投影を行う ンドマーク座標(x, y , z) は、 数式 23で求められる。
[数式 23]
(X y z)=[x2 y2 z2) ·— ここで、 hは機体高度であり、 地図上でのランドマーク座標を ( X 0 ' y。;) としたときの数式 24、
[数式 24]
Figure imgf000026_0002
を満たす e、 øが補正後のロール ø。、 ピッチ ø。である。
本実施の形態 1 0によれば、 カメラが機体に固定的に取り付けられ、 パン■チル卜の角度が変化しないように設置されているためにパン■チ ル卜の補正が有効でない場合にも、 機体の姿勢情報、 すなわちロール■ ピッチを修正することで、よリ現実に近い状態でのパラメータの補正が 可能となり、 高精度な重畳表示を行うことができるので、 撮影された地 表面の状況把握をよリ容易かつ速やかにできる。
実施の形態 1 1.
本実施の形態はランドマーク 2点を抽出し、 この 2点間の距離によリ 機体の高度補正を行うものである。 実施形態 9 (図 1 6) の S 23でラ ンドマークが 2点抽出された場合は、静止画データ 208からも同様に 対応する 2点のランドマークの抽出を行う (S 24) (S 25)。
S 25で映像からも対応するランドマークが抽出された場合は、 S 2 3と S 25で得られたランドマークを照合し、映像上のランドマー^ 2 点間の距離と GIS 地図上のランドマーク 2点間の距離が同じになるよ うに、 機体高度 (この場合、 機体高度は GPS装置による海面からの絶対 高度として取得されているため、 この高度補正は、 地表面の相対高度と なる) を補正する (S 27) (S 28)。
さらに S 28で求めたパラメータの補正値に基づいて再度撮影画枠 を計算し、 この撮影画枠にあわせて静止画データ 208を変形し、 地理 情報システムの地図上に重畳表示する (S 29) (S 30) (S 31 )o 図 21 (b) から分かるように、 この発明によるランドマーク間の距 離による補正を行った高度 (相対高度) h 'は、 機体の絶対高度を hと して
(地図上におけるランドマーク二点間の距離)
(相対高度) = (絶対高度) X ,
(画像上におけるフンドマーク—点間の距離) により求まる。 なお、 Eは地図上の距離、 Fは画像上の距離である。 上述の補正処理を含む地図処理手段 226による処理を行うことに より、 地表面が海面よりも高度がある地点に対する撮影映像も、 高精度 な重畳表示を行うことができ、撮影された地表面の状況把握をより容易 かつ速やかにできる。
実施の形態 1 2.
本実施の形態はランドマークの数に応じてパラメータの補正を行う ことにより、より精度の高い撮影映像と地図との重畳表示を可能にしよ うとするものである。 実施の形態 9 (図 1 6) の S 22でランドマーク が 2点抽出された場合は、静止画データ 208からも同様に対応する 2 点のランドマークの抽出を行う (S 24) (S 25)。 S 25で映像から もランドマークが抽出された場合は、 S 2 3と S 2 5で得られた対応す るランドマークを照合する (S 2 7)。
まず、 1点目の対応するランドマークが合致するように S 2 2の画枠 計算で用いたパラメータ (パン 'チルト) 値を補正し、 次に、 2点目の 対応するランドマークの差分を修正するように、 機体姿勢パラメータ (ロール■ ピッチ) 値を修正する (S 27) (S 2 8)。 さらに S 2 8で 求めた各パラメータの補正値に基づいて再度撮影画枠を計算し、この撮 影画枠にあわせて静止画データ 208を変形して、地理情報システムの 地図上に重畳表示する (S 2 9) (S 3 0) (S 3 1 )。
図 2 2はこれを説明する図であり、黒丸印は地図上のランドマークを, 黒三角印は画像上のランドマークを示している。 図 22 (a ) は GIS地 図上に撮影映像が重畳表示された状態を示し、 図 2 2 ( b) は上記実施 の形態 1 1による高度補正を行った後の状態、 図 2 2 ( c) はその後パ ン 'チルト補正を行った後の状態、 図 22 (d) は、 さらにロール - ピ ツチ補正を行った後の状態を示す。
この実施の形態 1 2によれば、 1点のみのランドマークの合致による パラメータの調整では、撮影範囲全般にわたっては、精度の高い撮影映 像と地図の重畳表示が困難であるような場合にも、 2点のランドマーク を使用することによって、 より高精度な重畳表示を行うことができ、撮 影された地表面の状況把握をより容易かつ速やかにできる。
実施の形態 1 3.
本実施の形態はランドマークが 3点以上抽出された場合、すべての 2 点間のパラメータ補正値を求め、その平均値をパラメータ補正値とする ものである。 実施の形態 9 (図 1 6) の S 2 3でランドマークが 2点以 上の複数点抽出された場合は、静止画データ 208からも同様に対応す る 2点以上の複数点のランドマークの抽出を行う (S 24) (S 2 5)o S 2 5で映像からもランドマークが抽出された場合は、 S 2 3と S 2 5で得られたランドマークから対応する 2点を選択し、それぞれ照合を 行うことによってパラメータの補正値を求める。これをランドマーク 2 点の選び方すべてについて行うことによって複数のパラメータ補正値 を取得し、パラメータ毎にこれら補正値の平均をとリ、 これら平均値を それぞれのパラメータの補正値とする (S 2 7) (S 2 8)。 さらに S 2 8で求めたパラメータの補正値に基づいて再度撮影画枠を計算し、この 撮影画枠にあわせて静止画データ 208を変形し、地理情報システムの 地図上に重畳表示する (S 2 9) (S 30) (S 3 1 )。
上述の補正処理を含む地図処理を行うことによリ、ランドマーク 1点 あるいは 2点の位置に基づいて映像と地図の重畳を表示の補正を行う 場合と比較して、 より高精度な重畳表示を行うことができ、撮影された 地表面の状況把握をよリ容易かつ速やかにできる。
実施の形態 1 4.
本実施の形態は、撮影映像を連続して所定の周期で複数枚撮影し、連 続する複数枚の映像が静止画データとして与えられる場合の地図上へ の重畳表示処理に関するものである。得られた静止画映像に対してラン ドマークの抽出処理を行い、 その結果ランドマークが抽出されれば GIS 地図との照合によって補正を行う力 全ての静止画映像からランドマー クの抽出を行うことができるとは限らない。撮影しながら重畳表示を行 うライブ表示処理において、全ての撮影画像に対して、画像処理を即時 に実行してランドマークを抽出し、補正を行うことは処理時間の関係で 困難である。
そのために、ランドマークが抽出されない静止画の地図上への重畳表 示は、 前回補正を行ったときの補正値に基づいて再度画枠計算を行い、 求めた撮影画枠にあわせて映像を変形し、地理情報システムの地図上に 重畳表示することによリ、 重畳位置精度を向上させるものである。
この処理は、 図 2 3の S 2 4、 S 2 6、 S 3 2、 S 3 3、 S 3 1に相 当し、 S 2 4で対応するランドマークが抽出された場合は実施の形態 9 と同じ処理を行う。図 2 4はこの方法によるモニタ表示画面を示すもの で、 4 1は地図、 4 4は機体位置 (カメラ位置)、 4 5は機体の飛行経 路である。飛行経路 4 5に沿ってカメラから撮影した映像を所定のタイ ミングでサンプリングして、 それぞれ重畳位置補正を行った後、地理情 報システムの地図 4 1上に重畳表示している。 4 3 a〜4 3 gは貝占り付 けた画像、 4 2は最新の画像 4 3 gの撮影画枠である。
本実施の形態 1 4では、 ランドマークが抽出されない場合にも、重畳 表示位置の補正を行うことができ、高精度の重畳表示を行うことができ るとともに、撮影された広範囲にわたる地表面の状況把握をより容易か つ速やかにできる。
実施の形態 1 5 .
本実施の形態 1 5では、撮影映像を連続して所定の周期で複数枚撮影 し、連続する複数枚の映像が静止画データとして与えられる場合の地図 上への重畳表示処理に関するものである。連続撮影映像には、 ランドマ ークの照合によリ重畳位置補正を実行した映像と、ランドマークが抽出 できず、 照合による重畳位置補正が行えない撮影映像が存在する。
この場合、 リアルフライト時には、上記実施の形態 1 4で示したよう に、次にランドマークが抽出されるまで前回の補正値を継続使用するが, 過去のフライ 卜映像を使用して地図上に映像の重畳表示を行う処理に おいては、 ライブフライト時に比べ、位置補正の処理時間に余裕ができ る。 そこで、 過去のフライト映像を地図上に重畳表示する場合は、 図 2 2003/007861
30
5に示すように、次にランドマークが抽出された地点で求めた各パラメ ータの補正値を、前回ランドマーク照合による補正を行った地点との中 間地点までさかのぼって適用することにより重畳表示位置の補正を行 図 2 5において、 グレーの四角はランドマーク抽出画像を、 白の四角 はランドマークマークが抽出されなかった画像を示す。 また、 矢印 Gは ランドマークが抽出されて重畳位置補正を行った画像からその重畳位 置補正値を流用して重畳位置を補正することを示している。この実施の 形態 1 5により、ランドマークの照合による補正ができない場合の画像 間の重複状態は、 図 2 5に示すように改善される。
図 2 5 ( a ) は本実施の形態を適用しない場合を示し、 図 2 5 ( b ) は本実施の形態を適用した場合を示す。ランドマークの照合による映像 の重畳表示位置補正が行えた撮影映像を基点とし、重畳表示補正が行わ れた撮影映像間の中間地点を目指して、前後に映像の重複部分の合致率 を最大にするように映像の配置を調整することで、連続して撮影された 映像を、 G I S地図上に、 より高精度に重畳表示することができる。 本実施の形態 1 5によれば、過去の飛行映像を G I S地図上に重畳表示 する処理において、 ランドマークが抽出されない場合にも、 重畳表示位 置の補正を行うことができる。 また、画像間の重複具合がランドマーク 抽出画像で分断されることなく、 より滑らかに、連続した高精度な重畳 表示を行うことができるとともに、撮影された広範囲にわたる地表面の 状況把握をよリ容易かつ速やかにできる。
実施の形態 1 6 .
本実施の形態では、過去の飛行映像から抽出される撮影映像の高度補 正データを、位置にリンクして登録することによって、撮影映像からラ ンドマークを抽出できない場合も、撮影地点の高度補正を行うものであ P T/JP2003/007861
31 る。
ランドマークの合致によって高度補正処理が実行できた場合に、絶対 高度と相対高度の差で与えられる高度補正値は、撮影地点にその地点の 高度補正値として登録管理することによって、いつでも利用することが でき、 次回以降、 その地点に近い地点を機体が飛行した場合には、 処理 時間の限られたライブフライト時や、静止画と地図で対応するランドマ ークが 2点以上抽出できない場合にも、 高度補正を行うことができる。 図 2 6は、 連続して撮影された静止画像を、 G I S地図上に重畳表示さ れた状態を示す。 この図の中で、最後の 1枚の画像 5 1と中間の 1枚の 画像 5 2で 2点のランドマークが抽出され、高度の補正値が取得できた 場合を説明している。
画像 5 1と画像 5 2においては、 2点以上のランドマークが合致する ことから高度の補正値が取得できその補正値をそれぞれ 6 1、 6 2とす ると、 地図の地点としての高度補正値 6 1、 6 2をシンボルとして登録 を行い、 2点以上のランドマークが抽出できない映像に対して、 その地 点の高度補正値を提供することによって、力メラの取付角度のみならず, 地表の高度による誤差の補正を行い、 連続して撮影された映像を、 G I S 地図上に、 より高精度に重畳表示することができる。
本実施の形態 1 6では、過去の飛行フライト映像から抽出された高度 補正データを地図上の地点に登録することで、 2点以上のランドマーク を抽出できない映像に対しても、高度補正を行うことができ、 より高精 度な重畳表示を行うことができる。 産業上の利用可能性
震災、 火災等の天災や、 爆発、 重大事故等の人災が発生した場合、 へ リコプタ等の機上から地上の状況を撮影する撮影映像表示装置に利用 できる。

Claims

請 求 の 範 囲
1 . 空中の機体に搭載された撮影装置により撮影された地表面の撮影映 像を画像処理して表示する撮影映像表示方法であって、
空中における撮影位置を 3次元的に特定し、撮影された地表面の撮影 範囲を計算して求め、 その撮影範囲に合わせて撮影映像を変形した後、 これを地理情報システムの地図上に重ね合わせて表示するようにした ことを特徴とする撮影映像表示方法。
2 . 空中の機体に搭載された撮影装置により撮影された地表面の撮影映 像を画像処理して表示する撮影映像表示方法であって、
空中における撮影位置を 3次元的に特定し、連続して撮影された複数 枚の地表面の各撮影範囲を計算して求め、その各撮影範囲にあわせて各 撮影映像を変形した後、これら複数枚の撮影映像を地理情報システムの 地図上に重ね合わせて表示するようにしたことを特徴とする撮影映像 表示方法。
3 . 重ね合わせる複数の撮影映像は、 互いに一部を重複させ、 その重複 部における重複状態が最も多くなるように撮影映像を移動補正した後、 接合するようにしたことを特徴とする請求項 2に記載の撮影映像表示 方法。
4 . 重ね合わせる複数の撮影映像は、 連続して撮影した映像を所定の周 期でサンプリングして得るようにした請求項 2に記載の撮影映像表示 方法。
5 . 撮影された地表面の撮影範囲を、上記撮影装置の上記機体に対する 傾きと回転角度に基づいて計算して求めるようにした請求項 1に記載 の撮影映像表示方法。
6 . 撮影された地表面の撮影範囲を、 上記機体の地表面に対する傾きと ロール角度に基づいて計算して求めるようにした請求項 1に記載の撮 影映像表示方法。
7 . 撮影された地表面の撮影範囲を、上記撮影装置の上記機体に対する 傾きと回転角度及び上記機体の地表面に対する傾きとロール角度とに 基づいて計算して求めるようにした請求項 1に記載の撮影映像表示方 法。
8 . 地表面の撮影範囲を計算して求めた後、 上記撮影範囲の地表面の高 度を、予め作成されている地表面の起伏についての高度情報を含む 3次 元地勢データを利用して取得し、撮影地点の高度を、機体の絶対高度か ら地表面の高度を減算した相対高度として計算し、その撮影範囲に合わ せて、撮影映像を変形して地理情報システムの地図上に重ね合わせて表 示するようにした請求項 1に記載の撮影映像表示方法。
9 . 空中の機体に搭載された撮影装置により地表面を撮影し、 その地表 面に存在する状況を識別することを目的とする撮影映像表示方法であ つて、
空中における撮影位置を 3次元的に特定し、撮影した映像に、上記機 体位置情報、 カメラ情報、 機体情報を同期させて送信し、
受信側では撮影された地表面の撮影範囲を計算して求め、その撮影範 囲に合わせて撮影映像を変形した後、地理情報システムの地図上に重ね 合わせて表示するようにしたことを特徴とする撮影映像表示方法。
1 0 . 地図上に重ね合わせた撮影映像を、撮影範囲枠のみ残して消すこ とができるようにした請求項 1に記載の撮影映像表示方法。
1 1 . 上記地理情報システムの地図と上記撮影映像からそれぞれランド マークを抽出し、 対応するランドマークを照合することにより、撮影さ れた地表面の撮影範囲を計算する際に使用するパラメータを補正し、撮 影映像を地理情報システムの地図上に精度良く重畳表示するようにし たことを特徴とする請求項 1に記載の撮影映像表示方法。
1 2 . 上記地理情報システムの地図と連続して撮影された上記複数枚の 撮影映像からそれぞれランドマークを抽出し、対応するランドマークを 照合することにより、撮影された地表面の撮影範囲を計算する際に使用 するパラメータを補正し、撮影映像を地理情報システムの地図上に精度 良く重畳表示するようにしたことを特徴とする請求項 2に記載の撮影 映像表示方法。
1 3 . 抽出したランドマークの数に応じて、補正するパラメータを変更 するようにしたことを特徴とする請求項 1 1に記載の撮影映像表示方 法。
1 4 . 抽出したランドマークを基に、上記撮影装置の上記機体に対する 傾きと回転角度を補正して、撮影された地表面の撮影範囲を計算するよ うにしたことを特徴とする請求項 1 1に記載の撮影映像表示方法。
1 5 . 抽出したランドマークを基に、上記機体の地表面に対する傾きと ロール角度を補正して、撮影された地表面の撮影範囲を計算するように したことを特徴とする請求項 1 1に記載の撮影映像表示方法。
1 6 . 抽出したランドマーク 2点を用い、 2点間の距離に基づいて上記 機体の高度を補正し、撮影された地表面の撮影範囲を計算するようにし たことを特徴とする請求項 1 1に記載の撮影映像表示方法。
1 7 . 抽出したランドマークが 3つ以上の場合に、 各ランドマークの 2 点間におけるパラメータ補正値の平均値を用いて、撮影された地表面の 撮影範囲を計算するようにしたことを特徴とする請求項 1 1に記載の 撮影映像表示方法。
1 8 . 上記地理情報システムの地図と各撮影映像の複数枚からそれぞれ ランドマークを抽出する際に、対応するランドマークがない場合、撮影 された地表面の撮影範囲を計算する際に使用するパラメータを、前回ラ ンドマ一クを抽出したときの補正値に基づいて補正し、互いに一部を重 複して接合させて地図上に重畳表示する撮影映像を、その重複部におけ る重複状態が最も多くなるように移動した後、接合するようにしたこと を特徴とする請求項 1 2に記載の撮影映像表示方法。
1 9 . 地理情報システムの地図と各撮影映像からそれぞれランドマーク を抽出し、前回ランドマークを抽出したときの撮影映像と現在の撮影映 像の中間地点まで遡り、連続して撮影された地表面の各撮影範囲を計算 する際に使用するパラメータを現在の補正値に基づいて補正し、これら 複数枚の撮影映像を地理情報システムの地図上に精度良く重畳表示す るようにしたことを特徴とする請求項 1 2に記載の撮影映像表示方法。
2 0 . ランドマークの合致によって撮影映像の高度補正処理が実行され た地点に、 高度補正値として登録を行い、 次回以降、 その地点に近い地 点を飛行した場合に、上記登録した高度補正値を高度補正の基準値とし て再度利用することを可能としたことを特徴とする請求項 1 6に記載 の撮影映像表示方法。
PCT/JP2003/007861 2003-06-20 2003-06-20 撮影映像表示方法 WO2004113836A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2526105A CA2526105C (en) 2003-06-20 2003-06-20 Image display method and image display apparatus
AU2003244321A AU2003244321B8 (en) 2003-06-20 2003-06-20 Picked-up image display method
PCT/JP2003/007861 WO2004113836A1 (ja) 2003-06-20 2003-06-20 撮影映像表示方法
CN038266636A CN1788188B (zh) 2003-06-20 2003-06-20 拍摄图像显示方法及拍摄图像显示装置
US10/550,550 US7800645B2 (en) 2003-06-20 2003-06-20 Image display method and image display apparatus
JP2005500913A JPWO2004113836A1 (ja) 2003-06-20 2003-06-20 撮影映像表示方法
GB0525769A GB2418558B (en) 2003-06-20 2003-06-20 Image display apparatus
TW092117386A TWI220839B (en) 2003-06-20 2003-06-26 Photographic image display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007861 WO2004113836A1 (ja) 2003-06-20 2003-06-20 撮影映像表示方法

Publications (1)

Publication Number Publication Date
WO2004113836A1 true WO2004113836A1 (ja) 2004-12-29

Family

ID=33524172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007861 WO2004113836A1 (ja) 2003-06-20 2003-06-20 撮影映像表示方法

Country Status (8)

Country Link
US (1) US7800645B2 (ja)
JP (1) JPWO2004113836A1 (ja)
CN (1) CN1788188B (ja)
AU (1) AU2003244321B8 (ja)
CA (1) CA2526105C (ja)
GB (1) GB2418558B (ja)
TW (1) TWI220839B (ja)
WO (1) WO2004113836A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166084A (ja) * 2005-12-12 2007-06-28 Olympus Imaging Corp カメラ及びカメラの表示方法
JP2007241085A (ja) * 2006-03-10 2007-09-20 Mitsubishi Electric Corp 撮影映像処理システム及び撮影映像処理装置並びに撮影映像表示方法
JP2007248364A (ja) * 2006-03-17 2007-09-27 Pasuko:Kk 建物形状変化検出方法及び建物形状変化検出システム
JP2007249103A (ja) * 2006-03-20 2007-09-27 Zenrin Co Ltd 道路画像作成システム及び道路画像作成方法,及び道路画像合成装置
JP2007333998A (ja) * 2006-06-15 2007-12-27 Hitachi Ltd 地図の自動生成装置
JP2008005450A (ja) * 2006-06-20 2008-01-10 Kubo Tex Corp 3次元仮想空間を利用したビデオカメラのリアルタイム状態把握、制御の方法
JP4560128B1 (ja) * 2009-08-13 2010-10-13 株式会社パスコ 地図画像統合データベース生成システム及び地図画像統合データベース生成プログラム
JP2011112556A (ja) * 2009-11-27 2011-06-09 Nec Corp 捜索目標位置特定装置及び捜索目標位置特定方法並びにコンピュータプログラム
JP2011191186A (ja) * 2010-03-15 2011-09-29 Mitsubishi Electric Corp 3次元変化検出装置
US8508527B2 (en) 2008-07-07 2013-08-13 Samsung Electronics Co., Ltd. Apparatus and method of building map for mobile robot
JP2014057228A (ja) * 2012-09-13 2014-03-27 Hitachi Ltd 画像伝送システムおよび画像伝送方法
JP2016138826A (ja) * 2015-01-28 2016-08-04 株式会社トプコン 測量データ処理装置、測量データ処理方法およびプログラム
JP2016176751A (ja) * 2015-03-19 2016-10-06 日本電気株式会社 目標情報取得装置及び目標情報取得方法
CN106875096A (zh) * 2017-01-17 2017-06-20 山西省地震局 一种地震房屋损失评估系统
JP2019028560A (ja) * 2017-07-26 2019-02-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォーム、画像合成方法、プログラム、及び記録媒体
JP2019032682A (ja) * 2017-08-08 2019-02-28 ヤンマー株式会社 自動走行システム
US20210027434A1 (en) * 2017-10-06 2021-01-28 Google Llc Systems and Methods for Leveling Images
JP2021177134A (ja) * 2020-05-07 2021-11-11 国際航業株式会社 撮影システム、及び撮影方法
US11175651B2 (en) 2015-04-24 2021-11-16 SZ DJI Technology Co., Ltd. Method, device and system for presenting operation information of a mobile platform
JP7474137B2 (ja) 2020-06-30 2024-04-24 キヤノン株式会社 情報処理装置およびその制御方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2526105C (en) * 2003-06-20 2010-08-10 Mitsubishi Denki Kabushiki Kaisha Image display method and image display apparatus
US20080078865A1 (en) * 2006-09-21 2008-04-03 Honeywell International Inc. Unmanned Sensor Placement In A Cluttered Terrain
US8253797B1 (en) * 2007-03-05 2012-08-28 PureTech Systems Inc. Camera image georeferencing systems
US8319165B2 (en) * 2007-07-03 2012-11-27 Holland Kyle H Variable rate chemical management for agricultural landscapes
JP4623088B2 (ja) * 2007-11-30 2011-02-02 ソニー株式会社 地図表示装置と地図表示方法および撮像装置
US9459515B2 (en) 2008-12-05 2016-10-04 Mobileye Vision Technologies Ltd. Adjustable camera mount for a vehicle windshield
US8428341B2 (en) * 2008-12-08 2013-04-23 Electronics And Telecommunications Research Institute Apparatus for calculating 3D spatial coordinates of digital images and method thereof
US9127908B2 (en) 2009-02-02 2015-09-08 Aero Vironment, Inc. Multimode unmanned aerial vehicle
CA3011940C (en) 2009-09-09 2019-06-11 Aerovironment, Inc. Systems and devices for remotely operated unmanned aerial vehicle report-suppressing launcher with portable rf transparent launch tube
JP5471224B2 (ja) * 2009-09-15 2014-04-16 ソニー株式会社 撮像システム、撮像装置、情報処理装置及び撮像方法
CN103443839B (zh) * 2011-03-28 2016-04-13 松下知识产权经营株式会社 图像显示装置
US9215383B2 (en) * 2011-08-05 2015-12-15 Sportsvision, Inc. System for enhancing video from a mobile camera
CN102495522A (zh) * 2011-12-01 2012-06-13 天津曙光敬业科技有限公司 基于无人直升机航拍的360°空中全景互动漫游系统的制作方法
JP2013126107A (ja) * 2011-12-14 2013-06-24 Samsung Yokohama Research Institute Co Ltd デジタル放送受信装置
JP5379334B1 (ja) * 2012-06-12 2013-12-25 オリンパスイメージング株式会社 撮像装置
US8918234B2 (en) * 2012-09-17 2014-12-23 Bell Helicopter Textron Inc. Landing point indication system
CN107065914B (zh) * 2013-07-05 2020-04-28 深圳市大疆创新科技有限公司 无人飞行器的飞行辅助方法和装置
US10365804B1 (en) * 2014-02-20 2019-07-30 Google Llc Manipulation of maps as documents
CN104079834B (zh) * 2014-07-02 2017-07-14 中国科学院长春光学精密机械与物理研究所 全景式航空相机拍照周期的计算方法
CN104469155B (zh) * 2014-12-04 2017-10-20 中国航空工业集团公司第六三一研究所 一种机载图形图像虚实叠加方法
US9936133B2 (en) * 2015-08-19 2018-04-03 Harris Corporation Gimbaled camera object tracking system
CN108600607A (zh) * 2018-03-13 2018-09-28 上海网罗电子科技有限公司 一种基于无人机的消防全景信息展示方法
KR20210102889A (ko) * 2018-11-21 2021-08-20 광저우 엑스에어크래프트 테크놀로지 씨오 엘티디 측량 및 매핑 표본점의 계획 방법, 장치, 제어 단말기 및 저장 매체
JP2020088821A (ja) * 2018-11-30 2020-06-04 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像生成装置、画像生成方法、プログラム、及び記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210456A (ja) * 1996-11-19 1998-08-07 Sumitomo Electric Ind Ltd 映像監視システム
JPH11331831A (ja) * 1998-05-15 1999-11-30 Mitsubishi Electric Corp 画像上の位置判読装置
JP2002369189A (ja) * 2001-06-06 2002-12-20 Ffc:Kk カメラ映像表示装置およびカメラ映像表示方法
JP2003005628A (ja) * 2001-06-20 2003-01-08 Mitsubishi Electric Corp 写真画像処理装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8324318D0 (en) * 1983-09-12 1983-10-12 British Telecomm Video map display
US4825232A (en) * 1988-03-25 1989-04-25 Enserch Corporation Apparatus for mounting aerial survey camera under aircraft wings
US5200902A (en) * 1990-10-09 1993-04-06 Pilley Harold R Airport control/management system
FR2706599B1 (fr) * 1993-06-09 1995-08-18 Eurocopter France Système de visée pour aéronef.
JP3498852B2 (ja) * 1993-10-20 2004-02-23 富士写真光機株式会社 雲台情報表示用コントローラ
DE4419359A1 (de) * 1994-06-03 1995-12-07 Wolfram Dipl Ing Kirchner Verfahren zur Erfassung, Auswertung, Ausmessung und Speicherung von Geo-Informationen
JP3653769B2 (ja) * 1995-02-07 2005-06-02 朝日航洋株式会社 流れ計測方法及び装置
JP2695393B2 (ja) 1995-04-10 1997-12-24 川崎重工業株式会社 位置特定方法および装置
US5589901A (en) * 1995-05-15 1996-12-31 Means; Kevin P. Apparatus and method for synchronizing search and surveillance devices
US5818951A (en) * 1995-10-13 1998-10-06 Infrared Service Corporation Methods and related apparatus for generating thermographic survey images
JP3225434B2 (ja) * 1996-04-23 2001-11-05 重之 山口 映像提示システム
US6529615B2 (en) * 1997-10-10 2003-03-04 Case Corporation Method of determining and treating the health of a crop
FR2775814B1 (fr) * 1998-03-06 2001-01-19 Rasterland Sa Systeme de visualisation d'images tridimensionnelles realistes virtuelles en temps reel
JP3128549B2 (ja) * 1999-04-26 2001-01-29 三菱電機株式会社 三次元画像表示方法
JP3410391B2 (ja) * 1999-05-31 2003-05-26 株式会社エヌ・ティ・ティ・データ 遠隔撮影システム、撮影指示装置、撮影装置、情報表示装置及び遠隔撮影方法
JP3466512B2 (ja) * 1999-07-07 2003-11-10 三菱電機株式会社 遠隔撮影システム、撮影装置及び遠隔撮影方法
US6694064B1 (en) * 1999-11-19 2004-02-17 Positive Systems, Inc. Digital aerial image mosaic method and apparatus
EP1307797B2 (en) * 2000-05-17 2009-04-08 The Boeing Company Intuitive vehicle and machine control
TW552561B (en) * 2000-09-12 2003-09-11 Asml Masktools Bv Method and apparatus for fast aerial image simulation
US6925382B2 (en) * 2000-10-16 2005-08-02 Richard H. Lahn Remote image management system (RIMS)
JP3992452B2 (ja) 2000-11-09 2007-10-17 日立ソフトウエアエンジニアリング株式会社 変化検出装置、変化検出方法及び該方法に係るプログラムを記憶した記憶媒体並びにシステム
JP2002182556A (ja) * 2000-12-12 2002-06-26 Ntt-Me Hokuriku Corp 地図データ修正方法
AU2002308651A1 (en) * 2001-05-04 2002-11-18 Leberl, Franz, W. Digital camera for and method of obtaining overlapping images
US7054741B2 (en) * 2002-02-11 2006-05-30 Landnet Corporation Land software tool
TW593978B (en) * 2002-02-25 2004-06-21 Mitsubishi Electric Corp Video picture processing method
CA2386651A1 (en) * 2002-05-16 2003-11-16 Dan Keith Andersen Method of monitoring utility lines with aircraft
US6535816B1 (en) * 2002-06-10 2003-03-18 The Aerospace Corporation GPS airborne target geolocating method
CA2526105C (en) * 2003-06-20 2010-08-10 Mitsubishi Denki Kabushiki Kaisha Image display method and image display apparatus
US7358498B2 (en) * 2003-08-04 2008-04-15 Technest Holdings, Inc. System and a method for a smart surveillance system
US7236613B2 (en) * 2003-08-29 2007-06-26 The Boeing Company Methods and apparatus for infrared resolution of closely-spaced objects
US6822742B1 (en) * 2003-12-19 2004-11-23 Eastman Kodak Company System and method for remote quantitative detection of fluid leaks from a natural gas or oil pipeline
US7654826B2 (en) * 2004-10-04 2010-02-02 Solid Terrain Modeling Three-dimensional cartographic user interface system
US7186978B2 (en) * 2004-10-15 2007-03-06 Millennium Enginerring And Integration Company Compact emissivity and temperature measuring infrared detector
US7411196B2 (en) * 2005-08-18 2008-08-12 Itt Manufacturing Enterprises, Inc. Multi-sensors and differential absorption LIDAR data fusion
US7538876B2 (en) * 2006-06-12 2009-05-26 The Boeing Company Efficient and accurate alignment of stereoscopic displays
US20080074494A1 (en) * 2006-09-26 2008-03-27 Harris Corporation Video Surveillance System Providing Tracking of a Moving Object in a Geospatial Model and Related Methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10210456A (ja) * 1996-11-19 1998-08-07 Sumitomo Electric Ind Ltd 映像監視システム
JPH11331831A (ja) * 1998-05-15 1999-11-30 Mitsubishi Electric Corp 画像上の位置判読装置
JP2002369189A (ja) * 2001-06-06 2002-12-20 Ffc:Kk カメラ映像表示装置およびカメラ映像表示方法
JP2003005628A (ja) * 2001-06-20 2003-01-08 Mitsubishi Electric Corp 写真画像処理装置

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166084A (ja) * 2005-12-12 2007-06-28 Olympus Imaging Corp カメラ及びカメラの表示方法
JP2007241085A (ja) * 2006-03-10 2007-09-20 Mitsubishi Electric Corp 撮影映像処理システム及び撮影映像処理装置並びに撮影映像表示方法
US8259993B2 (en) 2006-03-17 2012-09-04 Pasco Corporation Building shape change detecting method, and building shape change detecting system
JP2007248364A (ja) * 2006-03-17 2007-09-27 Pasuko:Kk 建物形状変化検出方法及び建物形状変化検出システム
WO2007108357A1 (ja) * 2006-03-17 2007-09-27 Pasco Corporation 建物形状変化検出方法及び建物形状変化検出システム
JP4624287B2 (ja) * 2006-03-17 2011-02-02 株式会社パスコ 建物形状変化検出方法及び建物形状変化検出システム
JP2007249103A (ja) * 2006-03-20 2007-09-27 Zenrin Co Ltd 道路画像作成システム及び道路画像作成方法,及び道路画像合成装置
JP2007333998A (ja) * 2006-06-15 2007-12-27 Hitachi Ltd 地図の自動生成装置
JP2008005450A (ja) * 2006-06-20 2008-01-10 Kubo Tex Corp 3次元仮想空間を利用したビデオカメラのリアルタイム状態把握、制御の方法
US8508527B2 (en) 2008-07-07 2013-08-13 Samsung Electronics Co., Ltd. Apparatus and method of building map for mobile robot
JP4560128B1 (ja) * 2009-08-13 2010-10-13 株式会社パスコ 地図画像統合データベース生成システム及び地図画像統合データベース生成プログラム
JP2011038944A (ja) * 2009-08-13 2011-02-24 Pasuko:Kk 地図画像統合データベース生成システム及び地図画像統合データベース生成プログラム
WO2011019071A1 (ja) * 2009-08-13 2011-02-17 株式会社パスコ 地図画像統合データベース生成システム及び地図画像統合データベース生成プログラム
US9001203B2 (en) 2009-08-13 2015-04-07 Pasco Corporation System and program for generating integrated database of imaged map
JP2011112556A (ja) * 2009-11-27 2011-06-09 Nec Corp 捜索目標位置特定装置及び捜索目標位置特定方法並びにコンピュータプログラム
JP2011191186A (ja) * 2010-03-15 2011-09-29 Mitsubishi Electric Corp 3次元変化検出装置
JP2014057228A (ja) * 2012-09-13 2014-03-27 Hitachi Ltd 画像伝送システムおよび画像伝送方法
JP2016138826A (ja) * 2015-01-28 2016-08-04 株式会社トプコン 測量データ処理装置、測量データ処理方法およびプログラム
JP2016176751A (ja) * 2015-03-19 2016-10-06 日本電気株式会社 目標情報取得装置及び目標情報取得方法
US11175651B2 (en) 2015-04-24 2021-11-16 SZ DJI Technology Co., Ltd. Method, device and system for presenting operation information of a mobile platform
CN106875096A (zh) * 2017-01-17 2017-06-20 山西省地震局 一种地震房屋损失评估系统
CN106875096B (zh) * 2017-01-17 2020-10-02 山西省地震局 一种地震房屋损失评估系统
JP2019028560A (ja) * 2017-07-26 2019-02-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd モバイルプラットフォーム、画像合成方法、プログラム、及び記録媒体
JP2019032682A (ja) * 2017-08-08 2019-02-28 ヤンマー株式会社 自動走行システム
US20210027434A1 (en) * 2017-10-06 2021-01-28 Google Llc Systems and Methods for Leveling Images
US11823359B2 (en) * 2017-10-06 2023-11-21 Google Llc Systems and methods for leveling images
JP2021177134A (ja) * 2020-05-07 2021-11-11 国際航業株式会社 撮影システム、及び撮影方法
JP6991268B2 (ja) 2020-05-07 2022-02-03 国際航業株式会社 測量システム、及び測量方法
JP7474137B2 (ja) 2020-06-30 2024-04-24 キヤノン株式会社 情報処理装置およびその制御方法

Also Published As

Publication number Publication date
AU2003244321B2 (en) 2007-08-16
US7800645B2 (en) 2010-09-21
CA2526105A1 (en) 2004-12-29
TW200501741A (en) 2005-01-01
US20060215027A1 (en) 2006-09-28
AU2003244321A1 (en) 2005-01-04
GB2418558A (en) 2006-03-29
GB2418558B (en) 2007-07-04
GB0525769D0 (en) 2006-01-25
CA2526105C (en) 2010-08-10
CN1788188B (zh) 2012-02-29
AU2003244321B8 (en) 2008-02-21
CN1788188A (zh) 2006-06-14
TWI220839B (en) 2004-09-01
JPWO2004113836A1 (ja) 2006-08-03

Similar Documents

Publication Publication Date Title
WO2004113836A1 (ja) 撮影映像表示方法
US20110282580A1 (en) Method of image based navigation for precision guidance and landing
JP5134784B2 (ja) 空中写真測量方法
JP2008186145A (ja) 空撮画像処理装置および空撮画像処理方法
JP5748561B2 (ja) 航空写真撮像方法及び航空写真撮像装置
EP2466256A1 (en) System that generates map image integration database and program that generates map image integration database
JP2008304260A (ja) 画像処理装置
JP6433200B2 (ja) 演算装置、演算方法、およびプログラム
TW593978B (en) Video picture processing method
EP4008997A1 (en) Surveying system, surveying method, and surveying program
CN111247389B (zh) 关于拍摄设备的数据处理方法、装置及图像处理设备
KR101255461B1 (ko) 도로시설물 자동 위치측정 방법
JP3808833B2 (ja) 空中写真測量方法
JP5716273B2 (ja) 捜索目標位置特定装置、捜索目標位置特定方法及びプログラム
JP3569627B2 (ja) 画像上の位置判読装置
CN113296133A (zh) 一种基于双目视觉测量与高精度定位融合技术实现位置标定的装置及方法
JP5857419B2 (ja) 目標標定装置及び目標標定方法
KR100956446B1 (ko) 디지털 항공영상을 이용하여 3차원 객체의 외관 텍스쳐 자동 추출방법
JP2007241085A (ja) 撮影映像処理システム及び撮影映像処理装置並びに撮影映像表示方法
KR100745105B1 (ko) 촬영 영상 표시 방법 및 촬영 영상 표시 장치
JP5885974B2 (ja) 空中写真画像データの対応点設定方法及び対応点設定装置並びに対応点設定プログラム
JP2003316259A (ja) 撮影映像処理方法及び撮影映像処理システム
CN109840920A (zh) 航拍目标空间信息配准方法及航空器空间信息显示方法
CN116753962B (zh) 一种桥梁的航线规划方法及装置
Kolecki et al. Calibration of an IR camera system for automatic texturing of 3D building models by direct geo-referenced images

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN GB IL JP KR US

WWE Wipo information: entry into national phase

Ref document number: 2005500913

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003244321

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006215027

Country of ref document: US

Ref document number: 10550550

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057021367

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2526105

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 0525769.6

Country of ref document: GB

Ref document number: 0525769

Country of ref document: GB

Ref document number: 20038266636

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057021367

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10550550

Country of ref document: US