WO2004113621A1 - 水底トンネルの構築方法 - Google Patents

水底トンネルの構築方法 Download PDF

Info

Publication number
WO2004113621A1
WO2004113621A1 PCT/JP2003/010046 JP0310046W WO2004113621A1 WO 2004113621 A1 WO2004113621 A1 WO 2004113621A1 JP 0310046 W JP0310046 W JP 0310046W WO 2004113621 A1 WO2004113621 A1 WO 2004113621A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
box
penetrating
underwater tunnel
underwater
Prior art date
Application number
PCT/JP2003/010046
Other languages
English (en)
French (fr)
Inventor
Mitsuo Masuda
Hisashi Miura
Masaki Takaku
Masaaki Toyama
Original Assignee
Taisei Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corporation filed Critical Taisei Corporation
Priority to AU2003254845A priority Critical patent/AU2003254845A1/en
Publication of WO2004113621A1 publication Critical patent/WO2004113621A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/063Tunnels submerged into, or built in, open water
    • E02D29/073Tunnels or shuttering therefor assembled from sections individually sunk onto, or laid on, the water-bed, e.g. in a preformed trench

Definitions

  • the present invention relates to the construction of an underwater tunnel constructed by laying a precast box on the bottom of the water.
  • a submerged tunnel construction method has been implemented in which a box constructed in a production yard is towed to the destination and sunk to construct a submarine tunnel.
  • the submerged box has a length of about 100 m to 140 m, so a construction yard like a dock in a shipyard was built near the construction site to produce the box.
  • a method has been developed in which a divided box (unit) large enough to be lifted by a crane is manufactured, and a plurality of divided planes are connected to construct a large buried box (Patent Document 1). ⁇ 5).
  • Patent Document 2 among these, a plurality of blocks separated by a temporary cut-off such as a steel plate are connected on the water, and a large-sized submerged box body is constructed and then submerged.
  • Patent Literatures 3 to 5 disclose methods of constructing a large buried box by connecting a plurality of divided boxes on a work boat, transporting the work vessel to a destination, and then burying the buried box.
  • Patent document 1 JP 2000-178990
  • Patent Document 2 JP-B-48-6227
  • Patent Document 3 JP-A-6-193391
  • Patent Document 4 JP-A-111-140893 6
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2000-2507001 Problems to be Solved by the Invention
  • the above-mentioned conventional method of constructing an underwater tunnel using a planar body has the following problems.
  • the submerged sedimentation box is separated by a bulkhead. Since this partition is a temporary structure that is scattered after being laid, it is easier to construct it if it is not provided as much as possible.
  • a partition wall is provided for each divided face, so that it is necessary to construct and partition the partition walls.
  • the present invention has been made in order to solve the conventional problems as described above, and it is an object of the present invention to provide a method of constructing an underwater tunnel that can be efficiently constructed by using a penetrating box having both ends opened in the stretching direction. Aim.
  • the objective is to provide a method of constructing an underwater tunnel that can be constructed efficiently by reducing the number of bulkheads, since individual boxes can be easily laid down.
  • Another object of the present invention is to provide a method for constructing a submarine tunnel that can minimize the impact on the surrounding environment.
  • the method of constructing a submerged tunnel comprises the steps of: arranging a plurality of penetrating boxes having both ends opened in the stretching direction while joining the adjacent penetrating boxes at the water bottom A method of shutting off both ends of a group of boxes in which a plurality of the through-type face bodies are joined from outside water, draining internal water staying inside the group of boxes, and bringing the inside of the group of boxes into an aerial state. It is.
  • a penetrating box with both ends opened in the extending direction is joined to the end of the extended submerged tunnel, and a plurality of the penetrating boxes are joined to form a box group.
  • This is a method of shutting off the end of the penetrating box that has become an end from outside water, draining the internal water staying inside the box group, and bringing the inside of the box group into an air state.
  • a plurality of penetrating face bodies having both ends opened in the extending direction are joined to form a box group, and an end of the submerged tunnel extending to an end of the box group is joined to an end of the box group.
  • This method drains the internal water that stays inside while the section is shut off from the external water, and makes the inside of the box group an aerial state.
  • the submarine tunnel may be extended by repeating the construction of the box group and the drainage of the internal water remaining inside the box group. it can.
  • the method of constructing an underwater tunnel includes the steps of: constructing a plurality of underwater structures at intervals in water; A plurality of the penetrating boxes are arranged while being joined to each other, and the underwater structures are connected to each other by an underwater tunnel including at least a part of a box group in which the plurality of penetrating boxes are joined. This is a method of draining internal water staying inside the box group to make the inside of the box group an air state.
  • the method for constructing a submerged tunnel according to any one of the above in the joining of the penetrating boxes, water can be stopped between the penetrating boxes by a water-stopping material provided on an end face of the penetrating box. . Further, after joining the through-type boxes, water can be stopped between the through-type boxes. Further, the method for constructing an underwater tunnel according to the present invention is the method for constructing an underwater tunnel according to any one of the above, wherein the aerial state is independently provided inside the through-type box or inside the body.
  • a pipe for securing the pipe is also provided, and at the time of joining the through-type box or after the joining, the pipe is also joined in the extending direction, and when the through-type box is in a submerged state, the inside of the pipe is in an air state.
  • This method is characterized by this.
  • gas can be supplied from the surface of the pipe to the internal water retained inside the penetrating box.
  • the internal water inside the penetrating box is discharged to the outside water side from the opening provided in the penetrating box, and the external water is supplied to the inside water side from another opening provided in the penetrating box. By taking in, it is possible to circulate the internal water.
  • the method for constructing a submarine tunnel of the present invention includes: an excavation step of excavating a submarine floor; And a soil covering step of backfilling the penetrating box installed in the above with excavated soil generated in the excavating step.
  • the excavated soil excavated in the excavation step can be transported to a sediment carrier on water, and backfill soil for backfilling the penetrating box installed on the water bottom can be supplied from the sediment carrier.
  • the backfill soil supplied from the sediment transport ship can also be manufactured by adding a solidified material to excavated soil as a raw material on the sediment transport ship.
  • FIG. 1 is an explanatory diagram of Embodiment 1 of a method of constructing an underwater tunnel according to the present invention.
  • FIG. 2 is an explanatory view of Embodiment 2 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 3 is a perspective view of an embodiment of a penetrating box and a box with one wall.
  • FIG. 4 is an explanatory view of Embodiment 3 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 5 is an explanatory diagram showing an embodiment in which the internal water is drained at one time in the third embodiment.
  • FIG. 6 is an explanatory view showing an embodiment in which the underwater tunnel is extended by repeating the connecting step of the through-type facepieces and the drainage step of each unit in the third embodiment.
  • FIG. 7 is an explanatory view of Embodiment 4 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 8 is an explanatory view of Embodiment 5 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 9 is an explanatory diagram showing an embodiment in which a part of the underwater tunnel connecting the shafts in the fifth embodiment is constructed with a penetrating facepiece.
  • FIG. 10 is an explanatory diagram showing an embodiment of the primary water-stopping material.
  • FIG. 11 is an explanatory diagram showing an embodiment of the secondary water blocking material.
  • FIG. 12 is an explanatory view of Embodiment 6 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 13 is an explanatory diagram showing an embodiment of the gas supply path in the sixth embodiment.
  • FIG. 14 is an explanatory diagram of Embodiment 7 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 15 is an explanatory diagram of Embodiment 8 of the method of constructing an underwater tunnel according to the present invention.
  • FIG. 16 is an explanatory diagram showing an embodiment using a sediment transport ship in the eighth embodiment.
  • FIG. 17 is an explanatory diagram showing an embodiment using a sediment improvement ship in the eighth embodiment.
  • FIG. 4 is an explanatory view showing an example of a connecting member.
  • FIG. 19 is an explanatory view showing an embodiment of the tendon.
  • FIG. 20 is an explanatory diagram showing an embodiment in which a pile foundation is arranged. Explanation of reference numerals
  • the penetrating box 1 is a structure that constitutes the underwater tunnel 3. .
  • the underwater tunnel 3 is constructed by joining a plurality of penetrating boxes 1 at the bottom.
  • the box length of the penetration type box 1 is, for example, about 20 to 3 Om.
  • the penetrating box 1 used in the present invention is shorter than the box length conventionally used in the burial method so that it can be easily transported by lifting it with a hoist ship 41 equipped with a crane. It is preferred to use Then, if necessary, a plurality of penetrating boxes 1 (for example, 5 to 7 boxes) are integrated with a tendon at the bottom of the water (not shown).
  • the cross-sectional shape of the penetrating box 1 can be arbitrarily selected, such as rectangular or oval. Normally, a box culvert-type rectangular cross-section type penetration box 1 as shown in Fig. 1 is used. Both ends of the penetration box 1 are open and in a penetrating state. For this reason, when the penetrating box 1 is submerged in water, external water 22 freely penetrates inside.
  • a submerged tunnel 3 is constructed by connecting a plurality of penetrating boxes 1 that are flooded both inside and outside.
  • a plurality of penetrating boxes 1 opened at both ends in the stretching direction are joined at the water bottom to form a box group 10, and the box group 10 is extended to extend the water bottom.
  • Form Tunnel 3 3.
  • the internal water 21 stays in the group of boxes 10 only by joining a plurality of penetrating boxes 1 together.
  • a method of blocking both ends of the box group 10 from outside water there is a method of providing a partition 11 in the penetrating box 1 disposed at the end of the face group 10. The partition 11 can be attached after the penetration type box 1 is submerged on the bottom of the water.However, as shown in Fig. 3, a single-walled box 1a in which the partition It may be arranged only at the end of the group 10. Also, when the box group 10 is extended and the end of the underwater tunnel 3 projects above the water, the infiltration of the outside water 22 is also blocked, so the blockage from the outside water 22 here (See Figure 1).
  • the waterproof material 6 is arranged at the end of the penetrating box 1 in order to increase the water stopping property of the joint between the penetrating boxes 1.
  • the water-stopping material 6 includes a primary water-stopping material 6a that exhibits water-stopping property at the time of joining, and secondary water-stopping materials 6b and 6c that exhibit water-stopping property after joining.
  • the primary water-stopping material 6a is, for example, a linear water-stop seal disposed on the end faces of the penetrating boxes 1, 1 facing each other.
  • a known waterproof material such as a rubber seal or a gasket can be used.
  • the primary water-stopping material 6a is deformed when the penetration type box 1 is pressed against another penetration type surface body 1 and joined to exhibit water-stopping properties (see FIG. 10).
  • the secondary water-stopping materials 6b and 6c are members that exhibit water-stopping properties after, for example, temporary joining is completed.
  • the secondary water-stopping material 6b, 6c is attached to the end in advance before the joining of the penetration type face body 1, and after the joining, the secondary water-stopping material 6 made of a swelling rubber which swells due to the action of seepage water or the like.
  • b, and a secondary waterproof material 6c made of waterproof rubber with ⁇ -shaped cross section, which is attached from the inside where the penetration type box 1 is joined see Fig. 11). If the water is stopped only by the secondary waterproofing material 6c to be installed from inside, install the secondary waterproofing material 6c by diving work.
  • the primary water stop 6a and the secondary water stop 6b, 6c can be used alone or in combination.
  • the connecting material is used as needed to connect the penetrating type face bodies 1 and 1 to each other.
  • the connecting member is composed of, for example, a connecting steel rod 91 and a pair of pedestals 92.
  • the pedestal 92 is attached in advance so as to protrude from the outer or inner surface of the penetrating box 1.
  • a method of embedding the legs in the penetrating box 1 or a method of fixing it with anchor bolts can be adopted.
  • the pedestal 92 is preferably provided with a U-shaped notch so that the connecting steel bar 91 can be easily mounted.
  • a plurality of connecting members are arranged at intervals in the circumferential direction of the penetrating box 1 (not shown).
  • a connecting member is used to secure the connection between the penetrating panel bodies 1 and 1 until the prestress is introduced. You can also.
  • the connecting member can be removed and diverted after the plurality of penetrating boxes 1 have been integrated by the tendons 93. It can also be installed as is. 4> Tendon (Fig. 19)
  • the tension members 93 are arranged as necessary to integrally form the plurality of penetrating boxes 1.
  • a known PC steel wire, a PC steel stranded wire, a PC steel rod, or the like can be used as the tension member 93.
  • the tendon 93 is introduced into the sheath tube installed inside the skeleton such as the floor slab or the side wall of the penetration type face plate 1.
  • the sheath tube is arranged in the penetration direction of the penetration box 1, in other words, in the axial direction.
  • tension member 93 and the sheath tube may be arranged outside the frame to apply tension.
  • Embodiment 1 of the present invention will be described with reference to FIG.
  • the penetrating box 1 is manufactured at the Mutagami production yard.
  • a transfer device such as a water caster and roller conveyor using fluid pressure will be installed. Then, the lower floor slab, side walls, and upper floor slab of the penetrating box 1 are flowed in order and manufactured. At this time, if the match-casting method in which the end of the previously manufactured penetrating box 1 is used as a mold to manufacture the next penetrating box 1 is adopted, the joint can be manufactured with high accuracy. .
  • the completed penetrating box 1 is lifted by a hoist ship 41 equipped with a crane and transported to the destination.
  • the penetrating box 1 may be loaded on the hoist ship 41 and transported, or may be transported while being suspended by a crane.
  • the foundation 31 is constructed by dredging or excavating in advance as necessary, laying the ground crushed stone, laying a bag-like mortar pack, etc. Good.
  • the penetrating box 1 of the present invention is small-scale, and it is sufficient to perform excavation in sequence according to the progress of subsidence of the penetrating box 1. The impact on the surrounding environment is small even if this is done.
  • the penetrating box 1 After transporting the penetrating box 1 to above the place to be laid, the penetrating box 1 is laid next to the penetrating box 1 previously laid down. Since the penetrating box 1 is open at both ends, the external water 22 can freely enter the inside of the penetrating box 1. For this reason, buoyancy resistance is not easily received, and it can be easily installed on the water floor.
  • the penetrating box 1 is joined to the penetrating box 1 previously set.
  • the sinking through-type box 1 is drawn to the existing through-type box 1 side with a jack or the like to perform joining.
  • the penetrating boxes 1 and 1 collide with each other if the primary water-stopping material 6a is attached to the end surface of the penetrating box 1, the primary water-stopping material is deformed and the primary water-stopping is completed.
  • the connecting steel bars 91 etc. are placed between the pedestals 92 provided on the penetrating boxes 1, 1 for connection.
  • the connecting steel bar 91 can be easily attached from the outside of the penetrating box 1.
  • a foundation 31 is completed by injecting a base mortar or the like into the lower part of the penetrating box 1.
  • the apparent specific gravity of the penetrating box 1 after draining does not rise It is necessary to check whether the specific gravity is stable. For example, if the apparent specific gravity of the stable specific gravity is 1.05 or more, the own weight of the penetrating box 1 and the weight of the members arranged inside are divided by the volume of the outer shape of the penetrating box 1. Check that the value is 1.05 or more. If the weight does not reach the stable weight, the underwater tunnel 3 will be made to a stable weight by providing a water ballast, installing an ingot, or covering soil as described below. In this way, during the construction of the underwater tunnel 3, the internal water 21 is kept inside the housing group 10 and the internal water 21 is drained at once after the connection is completed.
  • the underwater tunnel 3 under construction can be laid down on the bottom in a stable state.
  • early drainage from the box group 10 means that it is necessary to secure a stable weight of the face group 10 at an early stage. You will be severely restricted.
  • the ballast is added, and the degree of freedom in the timing of covering soil is expanded, so that more efficient construction can be performed. . '' Example 2
  • the underwater tunnel 3 can be extended until the outside water 22 is shut off, for example, by protruding an end on the water. It can be built in stages by providing 1.
  • both ends of a group of boxes 10 connecting a plurality of penetrating boxes 1, 1, 1, 1, 1, 1 were closed off with partition walls 1 1, 1 1 and external water 22 was shut off.
  • any of the groups of boxes 10 can be partially and independently brought into the air state.
  • the drainage of the inland water 21 may be the previously constructed underwater tunnel 3 or an opening may be provided in a part of the box group 10 and a drain pipe may be connected from the opening to the water.
  • a method of continuously draining water may be used.
  • the single-walled housings 1a provided with the partition walls 11 are arranged, for example, at intervals of 100 to 15 Om in the length of the underwater tunnel.
  • the integration is performed every 5 to 7 boxes.
  • a tendon 93 is inserted into the sheath tube provided inside the frame so as to penetrate the box group 10.
  • a plurality of sheath pipes are arranged at intervals in the circumferential direction of the penetration type box 1.
  • the tension members 93 are provided from the one anchoring portion provided in the water bottom tunnel 3 adjacent to the box group 10 to the other. (Not shown).
  • the integrated box group 10 can be connected to the end of the adjacent underwater tunnel 3. That is, when the tension member 93 is tensioned to introduce the prestressed into the group of boxes 10 at a time and integrated, the anchoring portion of the tension member 93 is provided at the end of the adjacent underwater tunnel 3. Therefore, the group of boxes 10 can be integrated with the underwater tunnel 3 at the same time.
  • Example 3 is an example in which a plurality of penetrating boxes 1 are connected to the tips of the extended water bottom tunnels 3a and 3b, and the water bottom tunnel 3 is further extended.
  • the bottom tunnel 3a represents a tunnel extending gradually from the water to the deeper bottom
  • the bottom tunnel 3b represents a tunnel extending from the bottom or the ground. It is.
  • the extending submerged tunnels 3a and 3b are not necessarily It does not need to be constructed with the body 1, and can be constructed by various tunnel construction methods such as the propulsion tunnel method, the shield method, and the conventional submerged box method.
  • the tip of the extended water bottom tunnel 3 may be shielded from the outside water 22 by the partition 11 as shown in FIG. 4 or may be unblocked as shown in FIG.
  • a partition 11 is provided at the end of the group of boxes 10 that has newly become the tips of the underwater tunnels 3.
  • the partition 11 can be provided by making the box disposed at the tip of the face group 10 into a box 1a with one wall.
  • the embodiment in which the submerged tunnel 3 is further extended by forming the face group 10 at the tip of the extended submerged tunnel 3 has been described.
  • An embodiment in which the underwater tunnel 3c reaches the group 10 will be described.
  • a plurality of penetrating boxes 1 are arranged at an arbitrary position on the water floor to construct a box group 10.
  • the underwater tunnel 3 c is extended toward the constructed box group 10.
  • the construction method of the underwater tunnel 3c to be reached may be any method as described in the third embodiment.
  • the tip of the underwater tunnel 3c is connected to the end of the box group 10 so that the end of the box group 10 is cut off from the external water 22, the box group 10 has The partition 11 need not be provided.
  • the inner group 21 can be put in the air by draining the inner water 21 into the bottom tunnel 3c.
  • Example 5 is an example in which the underwater structures 5 such as the shaft 5a, artificial islands, and tunnels are connected using the penetrating facepiece 1.
  • FIG. 5 is an example in which the underwater structures 5 such as the shaft 5a, artificial islands, and tunnels are connected using the penetrating facepiece 1.
  • FIG. 8 is a diagram showing a state in which a plurality of penetrating facepieces 1 are arranged between two previously constructed shafts 5a, 5a, and the shafts 5a, 5a are connected.
  • the inland water 21 in the underwater tunnel 3d constructed by connecting a plurality of penetrating boxes 1, 1 • ⁇ ⁇ ⁇ can be drained to the shafts 5a and 5a.
  • the shaft 5a can be connected to an underwater tunnel 3e constructed by various methods.
  • FIG. 9 is a view showing an embodiment in which a part of the underwater tunnel 3 connecting the shafts 5a, 5a is constructed with the penetrating box 1. It is not always necessary to construct all of the bottom tunnels 3 connecting the shafts 5a, 5a with the penetrating box 1, and the space between the shafts 5a, 5a is combined with another method of constructing the bottom tunnels. If you connect, Example 6
  • the underwater tunnel 3 since the underwater tunnel 3 is constructed using the penetrating box 1, the internal water 21 temporarily stays in the box group 10. For this reason, there may be a problem that the water cannot enter the box group 10 only by diving work, or the water quality of the retained inland water 21 is deteriorated.
  • the inner water 21 stays in the bottom tunnel 3 for a long time.
  • the pipe 7 previously brought into the air state can be used for a monitoring channel or a gas supply channel.
  • a pipe 7a is attached in advance to the interior of the penetrating box 1 to be set.
  • Tube 7a The cross-sectional shape can be arbitrarily selected, such as circular or rectangular, and the size can be arbitrarily set according to the purpose of use. For example, when used on an audit road, it is preferable to secure enough space for the workers 71 to pass and to provide windows and doors on the wall of the pipe 7a. If the gas 72 is merely supplied to the internal water 21, the pipe diameter can be reduced.
  • the pipe 7a attached to the penetrating box 1 may be connected simultaneously when the penetrating boxes 1 and 1 are joined, or may be connected after connecting the boxes. Further, as shown in FIG. 13, a continuous pipe 7 b can be introduced into the underwater tunnel 3 later.
  • Fig. 13 shows a state in which a plurality of holes are provided on the surface of the pipe 7b, and a gas 72 such as air supplied through the pipe 7b is supplied to the internal water 21 to maintain the water quality.
  • the supply of the gas 72 can be carried out even when the pipe 7 used for the monitoring path is arranged.For example, a check valve is attached to the pipe 7 so that the internal water 21 does not enter the inside of the pipe 7 so that the gas 72 can be supplied. Can be supplied.
  • the completed type of the plurality of penetrating type facepieces 1 can be confirmed by aerial survey.
  • the embodiment in which the water quality is maintained by supplying the gas 72 to the internal water 21 is described.
  • the embodiment in which the water quality is maintained by circulating the internal water 21 is described. I do.
  • One of the openings 12 a is an opening for discharging the internal water 21 to the external water 22 side, and can be provided on the ceiling or the side wall of the penetration type box 1. It is preferable to attach a drainage pump or the like to the discharge opening 12a to forcibly discharge the internal water 21.
  • the other opening 12b is provided to take in the external water 22 into the internal water 21.
  • the opening of the penetrating box 1 installed at the extreme end can be used as the opening 12b.
  • Opening 1 2 a to circulate inland water 2 1 accumulated in the underwater tunnel 3 widely , 12 b are preferably provided near both ends of the retained internal water 21.
  • the underwater tunnel 3 constructed according to the above-described embodiment is usually covered with backfill soil 8.
  • Embodiment 8 describes this covering soil in detail.
  • Fig. 15 shows an example in which the excavated soil excavated by the dredger 42 is directly covered by the constructed underwater tunnel 3. This method can be used when the excavated ground is of good quality and suitable for backfill 8a. If the excavated soil can be used as it is, there is no need for temporary placement, so excavation and backfill work can be performed continuously. Excavated soil disposal costs are also unnecessary.
  • Figure 16 is a diagram showing a state where the excavated soil is temporarily loaded on the overwater sediment transport vessel 43, and then the submarine tunnel 3 after construction is gradually backfilled.
  • Soil improvement vessel 4 4 is a plant vessel for improving excavated soil into recyclable materials.
  • the soil improvement vessel 44 mixes the excavated soil excavated by the dredger 42 with the solidified material such as cement to produce improved soil.
  • the improved soil will be used as backfill soil 8b for backfilling the underwater tunnel 3.
  • the dredged excavated soil is put into the hopper 4 4 1 of the sediment improvement vessel 4 4, and the improved soil produced by adding the solidified material D It is dropped above the underwater tunnel 3 through a discharge device such as the above and used as backfill soil 8b. It is preferable that the sediment improvement boat 4 be accompanied by the construction of the underwater tunnel 3.
  • the underwater tunnel construction method of the present invention is as described above, and the following effects can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

 延伸方向の両端部を開口した貫通型函体を使用し、効率よく施工できる水底トンネルの構築方法を提供すること。 延伸方向の両端部を開口した貫通型函体(1)を、水底において隣接する貫通型函体(1)に接合しながら複数個並べ、複数の前記貫通型函体を接合した函体群(10)の両端部を外水(22)から遮断し、前記函体群の内部に滞留する内水(21)を排水して函体群内を気中状態とする方法である。

Description

水底トンネルの構築方法
発明の属する技術分野
本発明は、 プレキャスト製の函体を水底に沈設して構築する水底トンネルの構築 明
方法に関するものである。 書 従来の技術
従来から製作ヤードで構築した函体を、 目的地まで曳航して沈設することによつ て水底トンネルを構築する沈埋工法が実施されていた。 通常、 沈設する函体は、 1 00 m〜 140 m程度の長さを有するため、 造船所のドックのような製作ヤードを 工事現場付近に構築して函体を製作していた。 このように長大な剛性の高い面体を 水底に沈設した場合、 水底の不等沈下や地震などの変動に伴って、 函体に大きな応 力が発生することがある。 このため、 クレーンで吊り上げることができる程度の大 きさの分割函体 (ユニット) を製作し、 複数の分割面体を連結して大型の沈埋函を 構築する方法が開発されている (特許文献 1〜5参照) 。
このなかの特許文献 2では、 鋼板等の仮締切りで仕切られたプロックを水上で複 数連結し、 大型の沈埋函本体を構築した後に沈設を行っている。 また、 作業船上で 分割函体を複数連結して大型の沈埋函を構築し、 目的地まで作業船で運搬した後に 沈埋函を沈設する方法が特許文献 3〜 5に開示されている。
特許文献 1 特開 2000— 178990号公報
特許文献 2 特公昭 48— 6227号公報
特許文献 3 特開平 6— 193391号公報
特許文献 4 特開平 1 1一 140893号公報 6
2 特許文献 5 : 特開 2 0 0 0— 2 5 7 0 9 1号公報 発明が解決しょうとする課題
前記した従来の面体を使用した水底トンネルの構築方法にあっては、 次のような 問題点がある。
く 1 >既設の水底トンネルの隣接地に新たに水底トンネルを構築する場合、 長大な 沈埋函を一時に設置しようとすれば、 既設の水底トンネルへの影響が避けられない 。 すなわち、 大型の沈埋函を沈設するためには、 大規模な掘削をおこなう必要があ り、 この大規模な掘削によって既設の沈埋函が影響を受ける場合がある。 このよう な問題に対処するために、 既設の水底トンネルに対策ェを施した後に掘削をおこな う必要がある。
く 2 >従来の方法では、 沈設する沈埋函は隔壁 (パルクヘッド) によって区切られ ている。 この隔壁は、 沈設後に撒去される一時的な構造物であるため、 できるだけ 設けない方が施工性は向上する。 し力 し、 上記した従来の方法においては、 沈埋函 の少なくとも両端、 方法によっては各分割面体ごとに隔壁を設けるため、 それらの 隔壁を構築し、 撒去する作業が必要になる。 発明の目的
本発明は上記したような従来の問題を解決するためになされたもので、 延伸方向 の両端部を開口した貫通型函体を使用し、 効率よく施工できる水底トンネルの構築 方法を提供することを目的とする。 特に、 個々の函体の沈設が容易で、 隔壁の数を 削減することで、 効率よく施工できる水底トンネルの構築方法を提供することを目 白勺とする。
また、 周辺環境への影響を最小限に抑えることができる水底トンネルの構築方法 を提供することを目的とする。
本発明は、 これらの目的の少なくとも一つを達成するものである。 3 課題を解決するための手段
上記のような目的を達成するために、 本発明の水底トンネルの構築方法は、 延伸 方向の両端部を開口した貫通型函体を、 水底において隣接する貫通型函体に接合し ながら複数個並べ、 複数の前記貫通型面体を接合した函体群の両端部を外水から遮 断し、 前記函体群の内部に滞留する内水を排水して函体群内を気中状態とする方法 である。
また、 延伸した水底トンネルの端部に、 延伸方向の両端部を開口した貫通型函体 を接合し、 前記貫通型函体を複数接合して函体群を構築した後に新たに水底トンネ ルの端部となった貫通型函体の端部を外水から遮断し、 前記函体群の内部に滞留す る内水を排水して函体群内を気中状態とする方法である。
さらに、 延伸方向の両端部を開口した貫通型面体を複数接合して函体群を構築し 、 前記函体群の端部に延伸した水底トンネルの端部を接合し、 前記函体群の端部が 外水から遮断された状態で内部に滞留する内水を排水して函体群内を気中状態とす る方法である。
ここで、 上記したいずれかに記載の水底トンネルの構築方法において、 前記函体 群の構築と函体群の内部に滞留する内水の排水を繰り返すことによつて水底トンネ ルを延伸することができる。
また、 本発明の水底トンネルの構築方法は、 水中に間隔を置いて複数の水中構造 物を構築し、 前記水中構造物間に延伸方向の両端部を開口した貫通型函体を、 水底 において隣接する貫通型面体に接合しながら複数個並べ、 複数の前記貫通型函体を 接合した函体群を少なくとも一部に含む水底トンネルによつて前記水中構造物間を 連結し、 前記水中構造物から前記函体群の内部に滞留する内水を排水して函体群内 を気中状態とする方法である。
ここで、 上記のいずれかに記載の水底トンネルの構築方法において、 前記貫通型 函体の接合時に貫通型函体の端面に備えた止水材で貫通型函体間を止水することが できる。 また、 前記貫通型函体の接合後に貫通型函体間を止水することもできる。 また、 本発明の水底トンネルの構築方法は、 上記のいずれかに記載の水底トンネ ルの構築方法において、 前記貫通型函体の内側又は躯体内部に独立して気中状態を 確保するための管を設け、 前記貫通型函体の接合時または接合後に前記管も延伸方 向に接合し、 前記貫通型函体が浸水状態のときに前記管の内部を気中状態にするこ とを特徴とした方法である。 ここで、 前記管の表面から前記貫通型函体の内部に滞 留した内水へ気体を供給することができる。 また、 前記貫通型函体の内部の内水を 貫通型函体に設けた開口部から外水側に吐出すると共に、 貫通型函体に設けた他の 開口部から外水を内水側に取り込むことで、 内水を循環させることもできる。
また、 本発明の水底トンネルの構築方法は、 水底を掘削する掘削工程と、 上記の いずれかに記載の水底トンネルの構築方法によって掘削した水底に貫通型函体を設 置する沈設工程と、 水底に設置した前記貫通型函体を前記掘削工程において発生し た掘削土によって埋め戻す覆土工程と、 からなる方法である。 ここで、 前記掘削ェ 程によつて掘削した掘削土を水上の土砂運搬船に搬送し、 前記土砂運搬船から水底 に設置した前記貫通型函体を埋め戻す埋戻土を供給することができる。 また、 前記 土砂運搬船から供給する埋戻土は、 前記土砂運搬船上で掘削土を原料に固化材を添 加して製造することもできる。
図面の簡単な説明
図 1は、 本発明の水底トンネルの構築方法の実施例 1の説明図である。
図 2は、 本発明の水底トンネルの構築方法の実施例 2の説明図である。
図 3は、 貫通型函体と片壁付き函体の実施例の斜視図である。
図 4は、 本発明の水底トンネルの構築方法の実施例 3の説明図である。
図 5は、 実施例 3において内水を一度に排水する実施例を示した説明図である。 図 6は、 実施例 3において貫通型面体の連結工程、 函体群単位の排水工程を繰り 返すことで水底トンネルを延伸する実施例を示した説明図である。
図 7は、 本発明の水底トンネルの構築方法の実施例 4の説明図である。
図 8は、 本発明の水底トンネルの構築方法の実施例 5の説明図である。
図 9は、 実施例 5において立坑間を連結する水底トンネルの一部を貫通型面体で 構築した実施例を示した説明図である。 図 1 0は、 一次止水材の実施例を示した説明図である。
図 1 1は、 二次止水材の実施例を示した説明図である。
図 1 2は、 本発明の水底トンネルの構築方法の実施例 6の説明図である。
図 1 3は、 実施例 6において気体供給路の実施例を示した説明図である。
図 1 4は、 本発明の水底トンネルの構築方法の実施例 7の説明図である。
図 1 5は、 本発明の水底トンネルの構築方法の実施例 8の説明図である。
図 1 6は、 実施例 8において土砂運搬船を使用する実施例を示した説明図である 図 1 7は、 実施例 8において土砂改良船を使用する実施例を示した説明図である 図 1 8は、 連結材の実施例を示した説明図である。
図 1 9は、 緊張材の実施例を示した説明図である。
図 2 0は、 杭基礎を配置した場合の実施例を示した説明図である。 符号の説明
1 - 貫通型函体 1 0 · ·函体群 1 1
1 2 開口部 2 1 · ·内水 2 2 外水
3 · 水底トンネル 5 · · ·水中構造物 D a 一次止水材 6 b 二次止水材 6 c · ·二次止水材 7 ·
8 · 埋戻土
発明の実施の形態
以下、 図面を参照しながら本発明の実施の形態について説明する。
< 1〉貫通型函体
貫通型函体 1は、 水底トンネル 3を構成する構造体である。.複数の貫通型函体 1 を水底で接合することによつて水底トンネル 3を構築する。 貫通型函体 1の函体長は、 例えば 2 0〜3 O m程度にする。 本発明で使用する貫 通型函体 1は、 クレーンを備えた起重機船 4 1で吊り上げるなどして容易に運搬で きるようにするため、 従来から沈埋工法で使用されていた函体長より短いものを使 用するのが好ましい。 そして、 必要に応じて水底において複数の貫通型函体 1 (例 えば 5〜 7函体) を緊張材により一体化する (図示せず) 。
貫通型函体 1の断面形状は矩形、 楕円形など任意に選択することができる。 通常 は、 図 1に示すようなボックスカルバート型の矩形断面の貫通型函体 1を使用する 貫通型函体 1の両端は開口されて貫通状態となっている。 このため、 水中に貫通 型函体 1を沈めると、 自由に外水 2 2が内部に浸入する。 この内外共に浸水した状 態の貫通型函体 1を複数連結して水底トンネル 3を構築する。 本発明では、 前述したように延伸方向の両端部を開口した貫通型函体 1を水底に おいて複数接合して函体群 1 0を構築し、 函体群 1 0を延伸することで水底トンネ ル 3を形成する。 このため、 貫通型函体 1を複数接合しただけでは、 函体群 1 0内 に内水 2 1が滞留した状態になる。 この函体群 1 0内に滞留した内水 2 1を排水し て気中状態の水底トンネル 3を構築するには、 函体群 1 0の両端を外水 2 2から遮 断する必要がある。 ここで、 外水から函体群 1 0の両端部を遮断する方法としては 、 面体群 1 0の端部に配置する貫通型函体 1に隔壁 1 1を設ける方法がある。 この 隔壁 1 1は、 貫通型函体 1を水底に沈設した後に取り付けることもできるが、 図 3 に示すような予め片側の開口部に隔壁 1 1を設けた片壁付き函体 1 aを面体群 1 0 の端部にのみ配置してもよい。 また、.函体群 1 0を延伸して水底トンネル 3の端部 が水上に突出した場合も外水 2 2の浸入が遮断されることになるため、 ここでいう 外水 2 2からの遮断に該当する (図 1参照) 。
さらに、 立坑 5 aや人工島等の外水 2 2を遮断した水中構造物 5に面体群 1 0の 端部が接続した場合も、 ここでい 外水 2 2からの遮断に該当する (図 8参照) 。 また、 外水 2 2から遮断された別の水底トンネル 3 a , 3 b , 3 c , 3 eに接続し た場合も、 ここでいう外水 2 2からの遮断に該当する (図 4 , 7, 9参照) 。 く 2 >止水材 (図 1 0 , 1 1 )
止水材 6は貫通型函体 1 , 1同士の接合部の止水性を高めるために貫通型函体 1 の端部に配置する。 止水材 6には、 接合時に止水性を発揮する一次止水材 6 aと、 接合後に止水性を発揮する二次止水材 6 b , 6 cがある。
一次止水材 6 aは、 例えば貫通型函体 1 , 1同士が対向する端面に配置する線状 の止水シールである。 一次止水材 6 aには、 ゴムシールやガスケットなど公知の止 水材料が使用できる。 この一次止水材 6 aは、 貫通型函体 1を別の貫通型面体 1に 押し付けて接合したときに変形して止水性を発揮する (図 1 0参照) 。
二次止水材 6 b, 6 cは、 例えば仮接合が完了した後に止水性を発揮する部材で ある。 二次止水材 6 b , 6 cには、 貫通型面体 1の接合前に予め端部に取り付けて おいて、 接合後に浸透水の作用などで膨潤させる膨潤ゴム製の二次止水材 6 bや、 貫通型函体 1を接合した内部から取り付ける断面 Ω型の止水ゴム製の二次止水材 6 cがある (図 1 1参照) 。 内部から取り付ける二次止水材 6 cのみによって止水を 行う場合は、 潜水作業によつて二次止水材 6 cの取り付けをおこなう。
これらの一次止水 6 aと二次止水 6 b , 6 cは、 単独又は併用して使用すること ができる。
< 3〉連結材 (図 1 8 )
連結材は、 貫通型面体 1 , 1同士を連結するために必要に応じて使用する。 連結材は、 例えば連結鋼棒 9 1と一組の台座 9 2で構成する。 台座 9 2は、 予め 貫通型函体 1の外面又は内面に突出するように取り付けておく。 台座 9 2を貫通型 函体 1に固定するために、 脚部を貫通型函体 1に埋め込む方法やアンカーボルトで 固定する方法が採用できる。 台座 9 2には U字型の切込みを設け、 容易に連結鋼棒 9 1を装着できるように構成するのが好ましい。
連結材は、 貫通型函体 1の周方向に間隔をおいて複数配置する (図示せず) 。 複数の貫通型函体 1ごとに後述する緊張材 9 3で一体ィヒする場合は、 プレストレ ストを導入するまでの貫通型面体 1, 1間の連結を確保するために連結材を使用す ることもできる。 この場合は、 連結材は緊張材 9 3によつて複数の貫通型函体 1が 一体ィ匕された後に撤去して、 転用することができる。 また、 そのまま取り付けてお くこともできる。 く 4 >緊張材 (図 1 9 )
緊張材 9 3は、 複数の貫通型函体 1を一体ィ匕するために必要に応じて配置する。 緊張材 9 3には、 公知の P C鋼線、 P C鋼より線、 P C鋼棒等が使用できる。 : 緊張材 9 3は、 例えば貫通型面体 1の床版や側壁等の躯体内部に設置したシース 管に揷入する。 シース管は、 貫通型函体 1の貫通方向、 言い換えると軸方向に配置 する。
なお、 緊張材 9 3及ぴシース管を躯体外部に配置して緊張力を与えることもでき る。 実施例 1
以下、 図 1を参照しながら本発明の実施例 1について説明する。
< 1 >函体の製作
貫通型函体 1は、 睦上の製作ヤードで製作する。
製作ヤードには、 例えば流体圧を利用したウォータキヤスタゃローラコンべャな どの移送装置を設置する。 そして、 貫通型函体 1の下床版、 側壁、 上床版を順に流 れ作業で製作する。 この際、 先に製作した貫通型函体 1の端部を型枠にして次の貫 通型函体 1を製作するマッチキャスト方式を採用すれば、 接合部を精度よく製作す ることができる。
完成した貫通型函体 1はクレーンを備えた起重機船 4 1で吊り上げて目的地まで 運搬する。 沈設地点までの運搬は、 貫通型函体 1を起重機船 4 1に積載して運搬し ても良いし、 クレーンで吊り下げたままの状態で運搬することもできる。
< 2 >函体の沈設 貫通型函体 1を沈設する場所は、 必要に応じて予め浚渫又は掘削し、 基礎碎石を 敷き均したり、 袋状のモルタルパックなどを敷設したりして基礎 3 1を構築してお く。 本発明の貫通型函体 1は小規模であり、 貫通型函体 1の沈設の進渉状況に合わ せて掘削を順次おこなっていけばよいため、 貫通型函体 1を設置するために掘削を おこなったとしても周辺環境に与える影響は少ない。
また、 杭基礎 3 2を構築しておき、 杭頭部に貫通型函体 1を設置することもでき る (図 2 0参照) 。
貫通型函体 1を沈設場所の上方まで運搬した後に、 貫通型函体 1を先に沈設した 貫通型函体 1の隣に沈設する。 貫通型函体 1は両端が開口されているため、 外水 2 2が自由に貫通型函体 1の内部に浸水することができる。 このため、 浮力抵抗も受 け難く、 容易に水底に沈設することができる。
< 3 >函体の連結
貫通型函体 1と先に沈設した貫通型函体 1を接合する。 例えば、 沈設した貫通型 函体 1を引き寄せジャッキ等で既設の貫通型函体 1側に引き寄せて接合をおこなう 。 貫通型函体 1, 1同士が衝突すると、 一次止水材 6 aが貫通型函体 1の端面に取 り付けてある場合は変形して一次止水が完了する。 ·
貫通型函体 1 , 1に設けた台座 9 2間に連結鋼棒 9 1等を配置して連結をおこな う。 台座 9 2を貫通型函体 1の外面に設けた場合は、 連結鋼棒 9 1を貫通型函体 1 の外部から容易に取り付けることができる。
貫通型函体 1を沈設した後に貫通型函体 1の下部に基礎モルタル等を注入して基 礎 3 1を完成させる。
貫通型函体 1を順次連結して、 複数の貫通型函体 1, 1 , 1 · · 'を連結した函 体群 1 0からなる水底トンネル 3の両端部が水上に突出すると、 外水 2 2が水底ト ンネル 3の内部に浸水することがなくなり、 水底トンネル 3の端部が外水 2 2から 遮断される。 この状態で、 水底トンネル 3の内部に滞留した内水 2 1を一気に排水 すれば、 気中状態の水底トンネル 3がー時に完成する。
排水にあたっては、 排水後の貫通型函体 1の見かけの比重が、 浮き上がりのない 安定した比重となっているかどうかを確認しておく必要がある。 例えば、 安定比重 を見かけの比重が 1. 05以上であるとする場合は、 貫通型函体 1の自重及び内部に配 置した部材の重量を、 貫通型函体 1の外形の体積で割った値が 1. 05以上になってい るかを確認する。 安定重量に達しない場合は、 水バラス ト設けたり、 インゴットを 設置したり、 後述する覆土を行うなどして水底トンネル 3を安定重量にする。 このように、 水底トンネル 3の構築中は函体群 1 0の内部に内水 2 1が滞留した 状態にしておき、 連結が完了した後に一時に内水 2 1を排水する方法を採用するこ とで、 構築中の水底トンネル 3を安定した状態で水底に沈設しておくことができる 。 すなわち、 函体群 1 0から早期に排水をおこなうということは、 面体群 1 0の安 定重量を早期に確保する必要があるということであるため、 パラストの追加や覆土 による埋め戻しのタイミングも厳しい制限を受けることになる。 これに対して、 あ る程度、 水底トンネル 3を浸水状態で延伸する場合は、 バラストを追加するタイミ ングゃ覆土のタイミングの自由度が広がるため、 より効率的な施工をおこなうこと が可能になる。 ' 実施例 2
以下、 図 2, 3を参照しながら本発明の実施例 2について説明する。 なお、 他の 実施例において記载する部分については説明を省略する。 く 1 >函体群の構築
水底トンネル 3は、 実施例 1で説明したように、 水上に端部が突出するなどして 外水 2 2が遮断される状態になるまで延伸することもできるが、 所定の間隔ごとに 隔壁 1 1を設けることによって段階的に構築していくこともできる。
例えば図 2に示すように、 複数の貫通型函体 1 , 1 , 1 , 1 , 1を連結した函体 群 1 0の両端を隔壁 1 1 , 1 1で締め切り、 外水 2 2を遮断した後に、 内水 2 1を 排水することによって、 任意の函体群 1 0を部分的に、 独立して気中状態にするこ とができる。 この場合の内水 2 1の排水先は、 先に構築済みの水底トンネル 3であ つても良いし、 函体群 1 0の一部に開口部を設け、 開口部から水上まで排水管を接 続して排水する方法であっても良い。
隔壁 1 1を設けた片壁付き函体 1 aは、 例えば水底トンネルの長さで 1 0 0〜 1 5 O m間隔ごとに配置する。
< 2 >面体群の一体化 (図 1 9、 図 2 )
貫通型面体 1を複数連結した函体群 1 0を緊張材 9 3によつて一体化する場合は 、 例えば 5〜 7函体毎に一体化をおこなう。
まず、 躯体内部に設けたシース管に函体群 1 0を貫くように緊張材 9 3を挿入す る。 シース管は、 通常、 貫通型函体 1の周方向に間隔を置いて複数配置されている 緊張材 9 3は、 函体群 1 0に隣接する水底トンネル 3に設けた一方の定着部から 他方の定着部に向けて挿入する (図示せず) 。 こうすることで一体化する函体群 1 0を隣接する水底トンネル 3の端部に接続することができる。 すなわち、 綮張材 9 3を緊張して函体群 1 0に一度にプレストレストを導入して一体ィ匕すると、 その緊 張材 9 3の定着部が隣接する水底トンネル 3の端部に設けられているため、 函体群 1 0を水底トンネル 3と一体ィ匕することが同時にできる。
なお、 貫通型面体 1の一体化が完了した後に必要に応じて連結鋼棒 9 1等を撤去 する。 函体群 1 0が緊張材 9 3のみで連結された場合は、 不等沈下や地震時などに 柔構造として対応することができる。 実施例 3
以下、 図 4〜 6を参照しながら本発明の実施例 3について説明する。 なお、 他の 実施例において記載する部分については説明を省略する。
実施例 3は、 延伸してきた水底トンネル 3 a , 3 bの先端に、 貫通型函体 1を複 数連結して、 水底トンネル 3を更に延伸していく実施例である。 ここで、 水底トン ネル 3 aは、 水上から徐々に水深の深い水底に向かって延伸してきたトンネルを表 したもので、 水底トンネル 3 bは、 水底又は地中から延伸してきたトンネルを表し たものである。 また、 延伸してきた水底トンネル 3 a , 3 bは、 必ずしも貫通型函 体 1で構築されている必要はなく、 推進トンネル工法、 シールド工法、 従来の沈埋 函工法など様々なトンネル構築方法によつて構築することができる。
延伸してきた水底トンネル 3の先端は、 図 4に示すように隔壁 1 1によって外水 2 2から遮断されていても良いし、 図 5に示すように遮断されていなくとも良レ、。 水底トンネル 3 a , 3 bの先端に貫通型函体 1を複数連結した後に、 新たに水底ト ンネル 3の先端となった函体群 1 0の端部に隔壁 1 1を設ける。 隔壁 1 1は、 面体 群 1 0の先端部に配置する函体を片壁付き函体 1 aとすることで設けることができ る。
そして、 函体群 1 0内の内水 2 1を水底トンネル 3 a, 3 b内に向けて排水する ことで、 函体群 1 0内を気中状態にすることができる。 また、 函体群 1 0 aの先端 に更に函体群 1 0 bを構築し、 貫通型函体 1の連結工程、 函体群 1 0 a , 1 0 b単 位の排水工程を繰り返すことで、 水底トンネル 3を延伸していくことができる (図 6参照) 。 実施例 4
以下、 図 7を参照しながら本発明の実施例 4について説明する。 なお、 他の実施 例において記載する部分については説明を省略する。
実施例 3では、 延伸してきた水底トンネル 3の先端に面体群 1 0を構築すること で水底トンネル 3を更に延伸していく実施例について説明したが、 実施例 4では水 底に構築した函体群 1 0に水底トンネル 3 cが到達する実施例について説明する。 実施例 4では、 水底の任意の場所に貫通型函体 1を複数並べ、 函体群 1 0を構築 しておく。 そして、 構築した函体群 1 0に向けて水底トンネル 3 cを延伸させる。 到達させる水底トンネル 3 cの構築方法は、 実施例 3でも述べたようにどのような 方法であってもよい。 また、 水底トンネル 3 cの先端部が函体群 1 0の端部に連結 することよって、 函体群 1 0の端部は外水 2 2から遮断されるため、 函体群 1 0に は隔壁 1 1を設けなくともよい。 水底トンネル 3 cが到達した後に、 内水 2 1を水 底トンネル 3 c内に排水することで函体群 1 0を気中状態にすることができる。 実施例 5
以下、 図 8 , 9を参照しながら本発明の実施例 5について説明する。 なお、 他の 実施例において記載する部分については説明を省略する。
実施例 5は、 立坑 5 a、 人工島、 トンネル等の水中構造物 5間を、 貫通型面体 1 を使用して連結する実施例である。
図 8は、 予め構築した 2つの立坑 5 a , 5 aの間に、 複数の貫通型面体 1を並べ て、 立坑 5 a, 5 a間を連結した状態を示した図である。 複数の貫通型函体 1, 1 • · ·を連結して構築した水底トンネル 3 d内の内水 2 1は、 立坑 5 a , 5 aへ排 水することができる。 また、 立坑 5 aには、 様々な方法で構築した水底トンネル 3 eを接続することができる。
また図 9は、 立坑 5 a , 5 a間を連結する水底トンネル 3の一部を貫通型函体 1 で構築した実施例を示した図である。 必ずしも立坑 5 a , 5 a間を連結する水底ト ンネル 3のすベてを貫通型函体 1で構築する必要はなく、 別の水底トンネルの構築 方法と組み合わせて立坑 5 a , 5 a間を連結すればょレ、。 実施例 6
以下、 図 1 2 , 1 3を参照しながら本発明の実施例 6について説明する。 なお、 他の実施例において記載する部分については説明を省略する。
本発明では、 貫通型函体 1を使用して水底トンネル 3を構築するため、 一時的に 内水 2 1が函体群 1 0内に滞留する。 このため、 潜水作業でしか函体群 1 0内に入 れなかったり、 滞留した内水 2 1の水質が劣化したりするなどの問題が生じる場合 もある。 特に、 水上に両端が突出するまで内水 2 1を滞留させた状態で水底トンネ ル 3を延伸させる場合は、 長期にわたって内水 2 1が水底トンネル 3内に滞留する 。 このため、 貫通型函体 1の内部に管 7を配置することで、 内水 2 1が滞留する函 体群 1 0からは独立して気中状態を確保できるように構成することができる。 先行 して気中状態にした管 7は、 監查路や気体供給路に使用することができる。 例えば、 沈設する貫通型函体 1の内部に予め管 7 aを取り付けておく。 管 7 aの 断面形状は円形、 矩形など任意に選択でき、 大きさも使用目的に応じて任意に設定 できる。 例えば、 監査路に使用する場合は作業員 7 1が通行できる大きさを確保し たり、 管 7 aの壁面に窓や扉を設けたりするのが好ましい。 また、 気体 7 2を内水 2 1に供給するだけであれば、 管径を小さくすることができる。
貫通型函体 1に取り付けた管 7 aは、 貫通型函体 1 , 1同士の接合時に同時に連 結しても良いし、 函体の連結後に連結しても良い。 また、 図 1 3に示すように、 連 続した管 7 bを後から水底トンネル 3内に揷入することもできる。 図 1 3は、 管 7 bの表面に複数の孔を設けて、 管 7 bを通って供給される空気などの気体 7 2を内 水 2 1に供給し、 水質を維持している状態を示した図である。 気体 7 2の供給は、 監查路に使用する管 7を配置した場合でも実施でき、 例えば管 7に逆止弁を付けて 管 7内部に内水 2 1が浸水しないようにして気体 7 2を供給することができる。 監查路として管 7を使用する場合は、 複数の貫通型面体 1を連結した出来型を気 中測量によつて確認することができる。 実施例 7
以下、 図 1 4を参照しながら本発明の実施例 7について説明する。 なお、 他の実 施例において記載する部分については説明を省略する。
実施例 6では、 気体 7 2を内水 2 1に供給することによって水質を維持する実施 例を説明したが、 実施例 7では内水 2 1を循環させることによって水質を維持する 実施例について説明する。
この実施例では、 水底トンネル 3に少なくとも二つの開口部 1 2 a , 1 2 bを設 ける必要がある。 一方の開口部 1 2 aは内水 2 1を外水 2 2側に吐出させるための 開口部であり、 貫通型函体 1の天井や側壁に設けることができる。 吐出用の開口部 1 2 aには排水ポンプなどを取り付けて、 強制的に内水 2 1を吐出させるのが好ま しい。
また、 他方の開口部 1 2 bは、 外水 2 2を内水 2 1側に取り込むために設ける。 最端部に設置した貫通型函体 1の開口部を開口部 1 2 bとして使用することができ る。 水底トンネル 3内に滞留した内水 2 1を広く循環させるために、 開口部 1 2 a , 1 2 bは滞留した内水 2 1の両端部付近にそれぞれ設けるのが好ましい。 実施例 8
以下、 図 1 5〜1 7を参照しながら本発明の実施例 8について説明する。 なお、 他の実施例において記載する部分については説明を省略する。
< 1 >水底トンネルの埋め戻し
上記した実施例によって構築した水底トンネル 3は、 通常、 埋戻土 8によって覆 土する。 実施例 8ではこの覆土について詳述する。
図 1 5は、 俊渫船 4 2で掘削した掘削土をそのまま構築後の水底トンネル 3に覆 土する実施例である。 この方法は掘削地盤が良質であり、 埋戻土 8 aとして適して いる場合に採用できる。 掘削した掘削土をそのまま利用できれば、 仮置きの必要が ないので掘削、 埋め戻し作業を連続して行うことができる。 また、 掘削土の処理費 も不要となる。
図 1 6は、 掘削した掘削土を一旦、 水上の土砂運搬船 4 3に積載し、 その後、 構 築後の水底トンネル 3を徐々に埋め戻していく状態を示した図である。
後述する改良土を使用する場合等も含めて水底トンネル 3が浸水状態のうちに覆 土をおこなうことで、 水底トンネル 3に別途、 パラストを追加しなくとも安定重量 を確保することができる。 また、 バラストを追加する場合も、 埋戻土 8による重量 を差し引いた分だけ追加すればよいため、 経済的であり、 水底トンネル 3の内空を 広く確保することもできる。 すなわち、 覆土によって安定重量を確保した水底トン ネル 3の内水 2 1を一時に排水しても、 水底トンネル 3は浮き上がることなく安定 した状態で水底に設置される。
< 2 >掘削土の改良
水底トンネル 3を構築するような水底の土砂は、 軟弱であってそのまま埋戻土 8 には適さない場合が多い。 そこで、 掘削土を土砂運搬船 4 3上で改良して埋戻土 8 bとして供給することができる。 ここで、 土砂の改良をおこなう土砂運搬船 4 3を 土砂改良船 4 4と呼ぶことにする。
土砂改良船 4 4は、 掘削土を再生利用可能な材料に改良するためのプラント船で ある。 土砂改良船 4 4では、 浚渫船 4 2で掘削した掘削土と、 セメントなどの固化 材を混合して改良土を製造する。 改良土は、 水底トンネル 3を埋め戻すための埋戻 土 8 bとして利用する。 例えば、 浚渫した掘削土を土砂改良船 4 4のホッパー 4 4 1に投入し、 固化材を添力 Dして製造した改良土を、 土砂改良船 4 4に備え付けたト レミ一管 4 4 2などの排出装置を介して水底トンネル 3の上方に投下して埋戻土 8 bとして利用する。 土砂改良船 4 4は、 水底トンネル 3の構築に合わせて伴走させ るのが好ましい。
この結果、 通常は産業廃棄物として処理されてしまう軟弱な掘削土を再生利用す ることができる。 そして、 ゴミの削減、 資源の有効利用が可能となり、 地球環境の 保護に有効である。 また、 掘削土を埋戻土 8に利用できるので材料費も削減できる 。 また、 改良した土を直ぐに利用すれば、 改良土をストックする必要がなく、 土砂 改良船 4 4を大規模にする必要がない。 発明の効果
本発明の水底トンネルの構築方法は、 以上説明したようになるから次のような効 果を得ることができる。
< 1〉貫通型函体を使用するため沈設が容易である。 また、 水底トンネルの構築後 には不要となる隔壁の数を最小限に抑えることができるため、 効率的に施工ができ 、 工費も削減できる。
< 2 >小型の貫通型函体を沈設して水底で連結することによって、 水底の周辺環境 への影響を最小限に抑えることができる。

Claims

請 求 の 範 囲 延伸方向の両端部を開口した貫通型函体を、 水底において隣接する貫通型函体に接 合しながら複数個並べ、
複数の前記貫通型函体を接合した面体群の両端部を外水から遮断し、
前記函体群の内部に滞留する内水を排水して函体群内を気中状態とする、 水底トンネルの構築方法。
2 .
延伸した水底トンネルの端部に、 延伸方向の両端部を開口した貫通型面体を接合し 前記貫通型函体を複数接合して函体群を構築した後に新たに水底トンネルの端部と なつた貫通型函体の端部を外水から遮断し、
前記函体群の内部に滞留する内水を排水して函体群内を気中状態とする、 水底トンネルの構築方法。
3 .
延伸方向の両端部を開口した貫通型函体を複数接合して函体群を構築し、 前記面体群の端部に延伸した水底トンネルの端部を接合し、
前記函体群の端部が外水から遮断された状態で内部に滞留する内水を排水して函体 群内を気中状態とする、
水底トンネルの構築方法。
4 .
請求項 1乃至 3のいずれかに記載の水底トンネルの構築方法において、
前記函体群の構築と面体群の内部に滞留する内水の排水を繰り返すことによって水 底トンネルを延伸することを特徴とした、
水底トンネルの構築方法。
5 .
水中に間隔を置!/、て複数の水中構造物を構築し、
前記水中構造物間に延伸方向の両端部を開口した貫通型面体を、 水底において隣接 する貫通型函体に接合しながら複数個並べ、
複数の前記貫通型函体を接合した函体群を少なくとも一部に含む水底トンネルによ つて前記水中構造物間を連結し、
前記水中構造物から前記函体群の内部に滞留する内水を排水して函体群内を気中状 態とする、
水底トンネルの構築方法。
6 .
請求項 1乃至 5のいずれかに記載の水底トンネルの構築方法において、
前記貫通型函体の接合時に貫通型函体の端面に備えた止水材で貫通型函体間を止水 することを特徴とした、
水底トンネルの構築方法。
7 .
請求項 1乃至 5のいずれかに記載の水底トンネルの構築方法において、
前記貫通型面体の接合後に貫通型函体間を止水することを特徴とした、
水底トンネルの構築方法。
8 .
請求項 1乃至 7のいずれかに記載の水底トンネルの構築方法において、
前記貫通型函体の内側又は躯体内部に独立して気中状態を確保するための管を設け 前記貫通型函体の接合時または接合後に前記管も延伸方向に接合し、
前記貫通型面体が浸水状態のときに前記管の内部を気中状態にすることを特徴とし た、
水底トンネルの構築方法。
9 .
請求項 8に記載の水底トンネルの構築方法において、
前記管の表面から前記貫通型函体の内部に滞留した内水へ気体を供給することを特 徴とした、
水底トンネルの構築方法。
1 0 .
請求項 1乃至 7のいずれかに記載の水底トンネルの構築方法において、
前記貫通型函体の内部の内水を貫通型函体に設けた開口部から外水側に吐出すると 共に、 貫通型面体に設けた他の開口部から外水を内水側に取り込むことで、 内水を 循環させることを特徴とした、
水底トンネルの構築方法。
1 1 .
水底を掘削する掘削工程と、
請求項 1乃至 5のいずれかに記載の水底トンネルの構築方法によって掘削した水底 に貫通型函体を設置する沈設工程と、
水底に設置した前記貫通型函体を前記掘削工程において発生した掘削土によつて埋 め戻す覆土工程と、 からなる、
水底トンネルの構築方法。
1 2 .
請求項 1 1記載の水底トンネルの構築方法において、
前記掘削工程によって掘削した掘削土を水上の土砂運搬船に搬送し、
前記土砂運搬船から水底に設置した前記貫通型函体を埋め戻す埋戻土を供給するこ とを特徴とした、
水底トンネルの構築方法。
1 3 .
請求項 1 2記載の水底トンネルの構築方法において、
前記土砂運搬船から供給する埋戻土は、 前記土砂運搬船上で掘削土を原料に固化材 を添加して製造することを特徴とした、
水底トンネルの構築方法。
PCT/JP2003/010046 2003-06-20 2003-08-07 水底トンネルの構築方法 WO2004113621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003254845A AU2003254845A1 (en) 2003-06-20 2003-08-07 Method of constructing underwater tunnel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003176630A JP3554933B1 (ja) 2003-06-20 2003-06-20 水底トンネルの構築方法
JP2003/176630 2003-06-20

Publications (1)

Publication Number Publication Date
WO2004113621A1 true WO2004113621A1 (ja) 2004-12-29

Family

ID=32959736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010046 WO2004113621A1 (ja) 2003-06-20 2003-08-07 水底トンネルの構築方法

Country Status (4)

Country Link
JP (1) JP3554933B1 (ja)
AU (1) AU2003254845A1 (ja)
TW (1) TW200506146A (ja)
WO (1) WO2004113621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985764A1 (en) * 2007-04-23 2008-10-29 Alpina S.p.A. Method for constructing an immersed tunnel and tunnel obtained by said method
CN112663673A (zh) * 2021-01-19 2021-04-16 西京学院 一种海底真空管道排水气结构及排水气方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413721B (zh) * 2009-05-19 2013-11-01 Hsiang Jung Lin 地下涵體吊灌構築工法
CN110042856B (zh) * 2019-05-07 2024-01-23 东华理工大学 一种用于堰塞湖泄流槽机械开挖的沉井及开挖方法
CN110565693A (zh) * 2019-08-15 2019-12-13 中铁第六勘察设计院集团有限公司 一种沉管隧道管段浇筑方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794334B2 (ja) * 1990-10-12 1998-09-03 大成建設株式会社 水底トンネル開口端の止水装置
JP3031507B2 (ja) * 1992-05-29 2000-04-10 前田建設工業株式会社 シールド到着方法
JP2002266373A (ja) * 2001-03-08 2002-09-18 Taisei Corp トンネル掘削機及び排土リサイクル装置
JP2002364009A (ja) * 2001-06-12 2002-12-18 Taisei Corp 接合函体及び函体の接続方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794334B2 (ja) * 1990-10-12 1998-09-03 大成建設株式会社 水底トンネル開口端の止水装置
JP3031507B2 (ja) * 1992-05-29 2000-04-10 前田建設工業株式会社 シールド到着方法
JP2002266373A (ja) * 2001-03-08 2002-09-18 Taisei Corp トンネル掘削機及び排土リサイクル装置
JP2002364009A (ja) * 2001-06-12 2002-12-18 Taisei Corp 接合函体及び函体の接続方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985764A1 (en) * 2007-04-23 2008-10-29 Alpina S.p.A. Method for constructing an immersed tunnel and tunnel obtained by said method
CN112663673A (zh) * 2021-01-19 2021-04-16 西京学院 一种海底真空管道排水气结构及排水气方法

Also Published As

Publication number Publication date
JP3554933B1 (ja) 2004-08-18
TWI337215B (ja) 2011-02-11
AU2003254845A1 (en) 2005-01-04
TW200506146A (en) 2005-02-16
JP2005009235A (ja) 2005-01-13

Similar Documents

Publication Publication Date Title
CN106284314A (zh) 喀斯特地貌旋挖成孔灌注桩施工方法
KR101650232B1 (ko) 종합발전설비의 반투과성 방파제
CN111853418B (zh) 一种用于管道修复的施工方法
JP6572103B2 (ja) プレキャスト構造体、地下構造物、洋上浮体構造物およびセグメント
Rasmussen Concrete immersed tunnels—Forty years of experience
JP3908464B2 (ja) 水底トンネルの構築方法
JP3554933B1 (ja) 水底トンネルの構築方法
CN113026757A (zh) 一种复杂地层顶管综合井快速开挖支护施工方法
CN109518674B (zh) 一种人工岛节段、装配式人工岛及装配式人工岛的建造方法
JP3194192B2 (ja) オープンシールド工法
KR20020089694A (ko) 교량의 우물통 기초의 지수막이 그라우팅 공법
CN111691481A (zh) 用于铺设截污干管的沉管法施工工艺
TW200417661A (en) Method for constituting a vertical well in water﹑vertical well in water﹑method for connection of a vertical well and a harizontal well﹑and construction of a well
JP3209503B2 (ja) 取・放水装置水中構築法
KR100721676B1 (ko) 잭업바지선과 가이드프레임을 이용한 산업시설용 냉각수의심층 취ㆍ배수를 위한 해상수직구 시공방법 및이너케이싱과 케이싱 클램프
JPH03275812A (ja) 軟弱海底地盤上の基礎施工法
CN114960756B (zh) 一种水下挂网掩蔽式隧道及其建造方法
JP3209502B2 (ja) 取・放水装置水中構築工法
JP3656366B2 (ja) 地下構造物構築工法
Koerner et al. Geotextiles used as flexible forms
JP2004092220A (ja) 水底トンネルの構造及び水底トンネルの構築方法
CN117211383A (zh) 富水砂层大直径新旧污水管道不停水快速接驳装置及工艺
CN111139869A (zh) 一种开挖式高防水综合管廊结构及其施工方法
Grimes et al. CONVEYANCE SYSTEM: PUMPING STATIONS AND CULVERTS.(WINNER OF 1994 JAMES WATT MEDAL).
JPH07259078A (ja) シ−ルド開口部用鋼材および地下連続壁の構築方法およ び立坑の鏡開き方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase