WO2004112056A1 - 積層体ユニット - Google Patents

積層体ユニット Download PDF

Info

Publication number
WO2004112056A1
WO2004112056A1 PCT/JP2004/008664 JP2004008664W WO2004112056A1 WO 2004112056 A1 WO2004112056 A1 WO 2004112056A1 JP 2004008664 W JP2004008664 W JP 2004008664W WO 2004112056 A1 WO2004112056 A1 WO 2004112056A1
Authority
WO
WIPO (PCT)
Prior art keywords
bismuth
support substrate
layered compound
dielectric layer
oriented
Prior art date
Application number
PCT/JP2004/008664
Other languages
English (en)
French (fr)
Inventor
Yukio Sakashita
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to JP2005507013A priority Critical patent/JPWO2004112056A1/ja
Publication of WO2004112056A1 publication Critical patent/WO2004112056A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/10Metal-oxide dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)

Definitions

  • the present invention relates to a laminate unit including an electrode layer and a dielectric layer, and is particularly suitable for producing a small-sized and large-capacity thin-film capacitor having excellent dielectric characteristics.
  • LSI Large Scale Integrated circuit
  • CPU Central Processing Unit
  • a decoupling capacitor is generally connected between the power supply terminals of LSI.
  • the impedance required for power supply wiring is proportional to the operating voltage of LSI, and inversely proportional to the degree of integration, switching current, and operating frequency of LSI. Therefore, the impedance required for power supply wiring is extremely small in recent LSIs with high integration, low operating voltage, and high operating frequency.
  • the capacity of the decoupling capacitor must be increased, and the power supply terminal of the LSI and the decoupling capacitor must be connected. It is necessary to sufficiently reduce the inductance of the wiring connecting to the capacitor.
  • Electrolytic capacitors and multilayer ceramic capacitors are generally used as large-capacity decoupling capacitors.
  • the size of the electrolytic capacitor / multilayer ceramic capacitor is relatively large, integration with LSI is difficult. Therefore, it is necessary to mount the LSI on a circuit board separately from the LSI, and the wiring connecting the power supply terminal of the LSI and the decoupling capacitor is inevitably lengthened.
  • an electrolytic capacitor or a multilayer ceramic capacitor is used as the decoupling capacitor, it is difficult to reduce the inductance of the wiring connecting the power supply terminal of the LSI and the decoupling capacitor. was there.
  • a thin film capacitor smaller than an electrolytic capacitor or a multilayer ceramic capacitor In order to make the wiring connecting the power supply terminal of the LSI and the decoupling capacitor shorter, it is preferable to use a thin film capacitor smaller than an electrolytic capacitor or a multilayer ceramic capacitor.
  • Japanese Patent Laid-Open Publication No. 2000-1—153828 discloses that PZT, PLZT, (B a, S r) Ti O 3 (BST), Ta 2 O 5 It discloses a small-sized, large-capacity thin-film capacitor using such a method.
  • the thin film capacitor formed by these materials has a disadvantage that the temperature characteristics are inferior.
  • the dielectric constant of BST is 100000000 ppm. Because of the temperature dependence of C, when BST is used as the dielectric material, the capacitance at 80 ° C is smaller than that at 20 ° C. It varies by 16 to 24%. Therefore, a thin film capacitor formed using BST is a decoupling capacitor for LSIs with a high operating frequency where the ambient temperature can often reach 80 ° C or more due to heat generated by power consumption. , Not appropriate.
  • the dielectric thin film formed by these materials not only reduces the dielectric constant when the thickness is reduced, but also, for example, when an electric field of 100 kVZ cm is applied, the capacitance becomes small.
  • the dielectric thin film formed by these materials not only reduces the dielectric constant when the thickness is reduced, but also, for example, when an electric field of 100 kVZ cm is applied, the capacitance becomes small.
  • the question is that If these materials are used as dielectric materials for thin-film capacitors, it is difficult to obtain small-sized and large-capacity thin-film capacitors.
  • the dielectric thin film formed by these materials has low surface smoothness, there is a problem that if the thickness is reduced, insulation failure or the like is likely to occur.
  • Bismuth layered compounds have anisotropic crystal structure and basically exhibit ferroelectric properties.However, in certain orientation axis directions, ferroelectric properties are small, and as paraelectric substances. It is known to exhibit the properties of
  • the properties of the bismuth layered compound as a ferroelectric substance are not preferable when the bismuth layered compound is used as a dielectric of a thin film capacitor, because it causes a change in the dielectric constant. It is preferable that the property is sufficiently exhibited.
  • the bismuth layered compound has a small ferroelectric property, and has a dielectric layer in which the bismuth layered compound is oriented in the direction of the orientation axis showing the property as a paraelectric substance.
  • the development of thin film capacitors with excellent characteristics is desired.
  • the present invention is suitable for producing a small-sized, thin-film capacitor having excellent large-capacity dielectric properties, and has high brightness inorganic E
  • An object of the present invention and other objects is to form a dielectric material containing a bismuth layered compound, which is electrically conductive, on which a bismuth layered compound can be epitaxially grown.
  • a support substrate oriented in the azimuth direction; and a dielectric material containing a bismuth layered compound formed on the support substrate by epitaxial growth.
  • the [001] orientation refers to the [001] orientation in cubic, tetragonal, monoclinic, and orthorhombic.
  • the support substrate is formed of a material having conductivity and capable of epitaxially growing a dielectric material containing a bismuth layer compound on the support substrate, and at least the surface is formed of [ 0 0 1] Since it is oriented in the direction, it also functions as an electrode layer and a buffer layer. Therefore, the dielectric material containing the bismuth layered compound is epitaxially grown on the supporting substrate, and thus it is ensured. It becomes possible to form a dielectric layer containing a bismuth layered compound oriented in the [001] direction.
  • the c-axis of the bismuth layered compound contained in the dielectric layer can be oriented perpendicular to the supporting substrate.
  • the direction of the electric field substantially matches the c-axis of the bismuth layered compound contained in the dielectric layer, and is therefore included in the dielectric layer. Since the properties of the bismuth layered compound used as ferroelectrics can be suppressed and the properties as paraelectrics can be fully exhibited, it is possible to produce small, large-capacity thin-film capacitors. Will be possible.
  • the dielectric layer made of a dielectric material containing a compound has a high insulating property, the dielectric layer can be made thinner, and thus the thin film capacitor can be further miniaturized. .
  • the dielectric layer of the laminate unit according to the present invention has The inorganic EL element is arranged, another electrode is arranged on the inorganic EL element, and a voltage is applied between the support substrate and another electrode, so that the inorganic EL element emits light as desired. This makes it possible to manufacture a high-luminance inorganic EL device.
  • the dielectric material containing the bismuth layer compound may contain unavoidable impurities.
  • the material for forming the supporting substrate is not particularly limited as long as it has conductivity and is a material on which a dielectric material containing a bismuth layered compound can be epitaxially grown.
  • platinum Pt
  • ruthenium Ru
  • rhodium Rh
  • palladium Pd
  • iridium Ir
  • gold Au
  • silver Ag
  • copper C u
  • alloy or of the metal and the main component of these such as nickel (N i), N d O , N b O, R H_ ⁇ 2, O s O 2, I r O 2, R u 0 2, S r Mo O 3 , S r R u 0 3, C a R u O 3, S r V0 3, S r C r O 3, S r C o O 3, L a N i O 3, N b dope S mixture of r T i O 3 Oyo conductive oxide such Pikorera and oxide superconductor and, in order to form
  • the oxide superconductor used for forming the support substrate a copper oxide superconductor having a CuO 2 plane is preferable.
  • an example of a copper oxide superconductor having a CuO 2 plane that is particularly preferably used for forming a supporting substrate includes a stoichiometric composition formula: Biz Srz Can - i CU n O 2 n + 4 in BSCCO shown (bismuth * be sampled port Nchiumu calcium force wrapper-Okisai de.), the stoichiometric compositional formula: YB a 2 C u 3 0 7 - represented by ⁇ YB CO Tritium, bismuth, kappa, oxide).
  • the composition ratio of the copper oxide superconductor in the above composition formula is not particularly limited, and the composition ratio may be different as long as the crystal structure of the copper oxide superconductor can be maintained. .
  • the degree F should be 80% or more.
  • the c-axis orientation degree F is preferably 90%, and more preferably the c-axis orientation degree is 95% or more.
  • the c-axis orientation degree F of the conductive material is defined by the following equation (1).
  • (A k 1) ⁇ ) is the c-axis orientation ratio of the conductive material calculated using the X-ray diffraction intensity, that is, the (0 0 plane) of the conductive material.
  • h, k, and zo can each take any integer value of 0 or more.
  • the electrode layer is likely to be oriented in the [111] direction. Therefore, a dielectric material containing a bismuth layered compound is epitaxially grown on the electrode layer to form a dielectric layer made of the dielectric material containing the bismuth layered compound, and the bismuth layered compound is oriented in the [01] direction. In other words, it is extremely difficult to orient in the c-axis direction.
  • at least the surface is formed of a material having conductivity and capable of epitaxially growing a dielectric material containing a bismuth layered compound thereon.
  • a support substrate that is oriented in the direction and also functions as an electrode layer is used. At least on the support substrate whose surface is oriented in the [001] direction, the dielectric material containing the bismuth layered compound is epitaxy. Since the dielectric layer is formed by growth, it is possible to surely form the dielectric layer oriented in the [00 1] direction, that is, the c-axis direction.
  • a support substrate is formed from a metal such as nickel (Ni) or an alloy containing these as a main component, first, an amorphous substrate such as fused quartz, a polycrystalline substrate such as ceramic, or a heat-resistant glass substrate On another supporting substrate, such as a resin substrate, and anisotropically, and furthermore, a metal such as platinum (Pt) or ruthenium (Ru) or an alloy containing these metals as a main component.
  • a buffer layer oriented in the [01] direction is formed of a material capable of forming a support substrate having the function of an electrode layer by epitaxially growing a crystal.
  • Pt platinum
  • Ru ruthenium
  • a support substrate oriented in the [001] direction can be formed.
  • a support substrate having at least its surface oriented in the [00 1] direction is formed by a single-crystal conductive oxide, a mixture of conductive oxides, or an oxide superconductor.
  • a conductive oxide Has a conductive oxide, Select the plane in which the conductive oxide mixture or the oxide superconductor single crystal is oriented in the [001] direction, and select the conductive oxide, the conductive oxide mixture or the oxide superconductor.
  • a support substrate oriented in the [001] direction can be formed.
  • a polycrystalline conductive oxide, a mixture of conductive oxides, or an oxide superconductor may be used to form a support substrate having at least its surface oriented in the [001] direction.
  • a conductive oxide, a mixture of conductive oxides, or polycrystalline particles of an oxide superconductor are formed by a hot forking method such as a hot forging method or a hot pressing method. Orientation in the orientation, selecting a plane oriented in the [001] orientation, and cutting out a conductive oxide, a mixture of conductive oxides, or a polycrystal of oxide superconductor, 1]
  • a support substrate oriented in the direction can be formed.
  • the laminate unit includes a dielectric layer made of a dielectric material containing a bismuth layered compound oriented in the [001] direction, that is, the c-axis direction, on the supporting substrate.
  • the dielectric layer is formed by epitaxially growing a dielectric material containing a bismuth layered compound on a supporting substrate.
  • the dielectric layer is formed by epitaxially growing a dielectric material containing a bismuth layered compound on a supporting substrate oriented in the [001] direction, and thus is included in the dielectric layer.
  • Bismuth layered compound
  • the bismuth layer compound functions not as a strong dielectric but as a paraelectric, so it is small and This makes it possible to form a large-capacity thin-film capacitor having excellent dielectric properties.
  • the bismuth layered compound forming the dielectric layer a bismuth layered compound excellent in characteristics as a capacitor material is selected.
  • the bismuth layered compound has a stoichiometric composition: (B i 2 O 2 ) 2 + (A a _
  • the symbol 2 ⁇ in the stoichiometric composition formula is a positive integer, and the symbol ⁇ is sodium (Na), potassium (K), lead (Pb), barium (Ba), It is at least one element selected from the group consisting of strontium (Sr), calcium (Ca) and bismuth (Bi), and the symbols are iron (Fe), cobalt (Co), ROM (Cr), Gallium (Ga), Titanium (Ti), Niobium (Nb), Tantalum (Ta), Antimony (Sb), Manganese (Mn), Vanadium (V), Molybdenum ( Mo) and at least one element selected from the group consisting of tungsten (W).
  • the bismuth layered compound is not limited to those represented by the above composition formula, and is not particularly limited as long as the bismuth layered compound retains the crystal structure of the bismuth layered compound.
  • a bismuth layer compound, and each 45 O 3 1 consists of a (/ .pi. 1) pieces of Bae Ropusukai bets grating continuous layered base Ropusukai coat layer 1, (B i 2 O 2 ) 2 + layer 2 has a layered structure alternately stacked.
  • the number of layers of the layered perovskite layer 1 and (B i 2 O 2 ) 2+ layer 2 is not particularly limited, and at least a pair of (B i 2 O 2 ) 2+ layer 2 and It is sufficient to have one layered perovskite layer 1 sandwiched.
  • the c-axis of the bismuth layered compound means the direction connecting the pair of (B i 2 O 2 ) 2+ layers 2, that is, the [001] orientation.
  • the degree of orientation of the [001] orientation of the bismuth layered compound contained in the dielectric layer that is, the c-axis orientation degree is not necessarily 100%, and the c-axis orientation degree is not necessarily 100%. Should be 80% or more.
  • the c-axis orientation is preferably 90%, and more preferably 95% or more.
  • the degree of c-axis orientation of the bismuth layered compound is defined by equation (1).
  • the thickness of the dielectric layer is set to, for example, 100 nm or less.
  • a thin film capacitor having a relatively high dielectric constant and a low loss (ta ⁇ ⁇ ) can be obtained, a thin film having excellent leakage characteristics, improved withstand voltage, excellent temperature characteristics of dielectric constant, and excellent surface smoothness. It becomes possible to obtain a capacitor.
  • the bismuth layered compound contained in the dielectric layer has a composition represented by a stoichiometric composition formula: C a 'S iT d-B i T Ois. Where 0 ⁇ 1.
  • a bismuth layer compound having such a composition is used, a dielectric layer having a relatively large dielectric constant can be obtained, and the temperature characteristics thereof are further improved.
  • a part of the element represented by the symbol ⁇ or in the stoichiometric composition formula of the bismuth layered compound contained in the dielectric layer is composed of scandium (S c;), yttrium (Y), Lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd) , Terbium (Tb), dysprosium (Dy), holmium (Ho), erupium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) It is preferable to be substituted by at least one element e (yttrium (Y) or rare earth element) selected from the group consisting of:
  • the preferable substitution amount differs depending on the value of ⁇ .
  • the Curie temperature of the dielectric layer is preferably _100 ° C or higher, ° C or lower, and more preferably 150 ° C or higher and 50 ° C or lower.
  • one Curie point is 110 ° C.
  • the dielectric constant of the dielectric layer is improved.
  • Curie temperature can be measured by DSC (differential scanning calorimetry) or the like. When the Curie point becomes lower than room temperature (25 ° C), ta ⁇ ⁇ further decreases, and as a result, the loss Q value further increases.
  • the dielectric layer of the laminate unit according to the present invention has excellent leak characteristics, some of the elements represented by the symbol ⁇ or 5 in the stoichiometric composition formula of the bismuth layered compound are used. However, when the element is replaced by the element? E, the leakage characteristics of the dielectric layer can be further improved, which is preferable. For example, even when part of the element represented by the symbol or 5 in the stoichiometric composition formula of the bismuth layered compound is not replaced by the element /?
  • the laminate unit according to the present invention the dielectric layer, the leakage current when measured at electric field intensity 5 0 k V / cm, preferably, 1 X 1 0- 7 a / cm 2 or less, more preferably, 5 X 1 0 8 AZ cm 2 or less, and the short-circuit rate can be preferably 10% or less, more preferably 5% or less, but the stoichiometric composition of the bismuth layer compound in the stoichiometric composition formula some of the elements represented by the symbol or H is, the element W e, if it is substituted, the leakage current when measured under the same conditions, preferably, 5 X 1 0- 8 AZ cm 2 or less, more preferably, it can be in 1 X 1 0- 8 a / cm 2 or less, the short rate Preferably 5% or less, more preferably, it may be 3% or less.
  • the dielectric layer is formed by a vacuum deposition method, a sputtering method, a pulse laser deposition method (PLD), a metal organic chemical vapor deposition (MOC VD), an organic metal decomposition method (metal- organic decomposition (MOD) ⁇
  • PLD pulse laser deposition method
  • MOC VD metal organic chemical vapor deposition
  • MOD organic metal decomposition method
  • It can be formed using various thin film forming methods such as liquid phase method (CSD method) such as Zonore and Genole methods.
  • CSD method liquid phase method
  • the laminate unit including the support substrate and the dielectric layer according to the present invention can be used not only as a component of a thin film capacitor but also as a laminate unit for emitting an inorganic EL element. That is, in order to emit light from the inorganic EL element, an insulating layer is required between the supporting substrate and the inorganic EL element, but a dielectric containing a bismuth layered compound with improved c-axis orientation is used. A dielectric layer made of a material has a low insulating property. Therefore, an inorganic EL element is disposed on the dielectric layer, and another electrode is disposed on the inorganic EL element to separate the electrode from the supporting substrate. By applying a voltage between the electrodes, the inorganic EL element emits light as desired It becomes possible.
  • FIG. 1 is a diagram schematically showing the structure of a bismuth layered compound.
  • FIG. 2 is a schematic partial cross-sectional view of a laminated unit according to a preferred embodiment of the present invention.
  • FIG. 3 is a schematic partial cross-sectional view of a thin-film capacitor produced by using a laminated body cut according to a preferred embodiment of the present invention. DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
  • FIG. 2 is a schematic cross-sectional view of a laminate unit according to a preferred embodiment of the present invention.
  • the laminate cut 1 includes a dielectric layer 3 on a support substrate 2.
  • the support substrate 2 of the laminate unit 1 is formed of platinum (Pt) and oriented in the [001] direction.
  • the support substrate 2 functions to mechanically support the multilayer unit 1 and also functions as an electrode layer of the multilayer unit 1.
  • the supporting substrate 2 is formed of platinum (Pt) and is oriented in the [001] direction, the supporting substrate 2 functions as an electrode, and furthermore, a dielectric material including a bismuth layered compound is used. It has a function as a buffer layer that guarantees that the dielectric layer 3 containing the bismuth layered compound oriented in the [001] direction, that is, the c-axis direction, can be reliably formed by the epitaxial growth. I have.
  • the thickness of the support substrate 2 is determined so that a sufficient mechanical strength for mechanically supporting the laminate unit 1 is obtained.
  • the support substrate 2 oriented in the [001] direction, first, On another supporting substrate such as an amorphous substrate such as fused quartz, a polycrystalline substrate such as ceramics, a heat-resistant glass substrate, a resin substrate, etc., there is anisotropy, and platinum (Pt), A material capable of forming a support substrate having the function of an electrode layer by epitaxially growing a crystal of a metal such as ruthenium (Ru) or an alloy containing these metals as a main component. 0 1] A buffer layer oriented in the c-axis direction is formed. Next, platinum (Pt) crystals are epitaxially grown on the buffer layer, and platinum (Pt) is formed on the buffer layer. t) is formed, and then the buffer layer is peeled off from the support substrate.
  • amorphous substrate such as fused quartz, a polycrystalline substrate such as ceramics, a heat-resistant glass substrate, a resin substrate, etc.
  • platinum (Pt) A material capable of forming a support
  • a support substrate oriented in the [001] direction is formed.
  • the laminate unit 1 includes a dielectric layer 3 formed on a support substrate 2.
  • the dielectric layer 3 is formed on the supporting substrate 2 by a metal-organic decomposition (MOD) method.
  • MOD metal-organic decomposition
  • a toluene solution of 2-ethylhexanoic acid Sr, a 2-ethylhexanoic acid solution of 2-ethylhexanoic acid B i, and a toluene solution of 2-ethylhexanoic acid Ti are mixed.
  • 1-mol of 2-ethylhexanoic acid S r, 4-mono of 2-ethylhexanoic acid B i, and 4-mol of 2-ethylhexanoic acid T i are mixed in a stoichiometric ratio, and toluene is mixed.
  • the obtained raw material solution is applied onto the supporting substrate 2 by spin coating, dried, and temporarily fired at a temperature at which the obtained dielectric layer 3 does not crystallize.
  • the dielectric layer 3 is fully baked, and is coated, dried, and pre-baked until a dielectric layer 3 having a required thickness, for example, a dielectric layer 3 having a thickness of 100 nm is obtained.
  • a series of operations consisting of coating, drying, preliminary baking and main baking are repeated.
  • the dielectric material containing the bismuth layer compound grows epitaxially, and the dielectric layer 3 oriented in the [001] direction, that is, the c-axis direction is formed.
  • the laminate unit 1 includes the support substrate 2 and the dielectric layer 3 formed on the support substrate 2, and the support substrate 2 has conductivity, and On top of that, the substrate 2 has a property that a dielectric material containing a bismuth layered compound can be epitaxially grown, and its surface is oriented in the [001] direction. Therefore, the dielectric material containing the bismuth layered compound is epitaxially grown on the support substrate 2 to include the bismuth layered compound oriented in the [001] direction, that is, the c-axis direction. It is possible to reliably form the dielectric layer 3 made of a dielectric material.
  • the laminate unit 1 includes the dielectric layer 3 formed of the dielectric material including the bismuth layered compound oriented in the [001] direction, that is, the c-axis direction. Therefore, for example, an upper electrode is provided on the dielectric layer 3 of the multilayer unit 1 according to the present embodiment to produce a thin film capacitor, and a thin film capacitor is formed between the support substrate 2 and the upper electrode.
  • the direction of the electric field approximately matches the c-axis of the bismuth layered compound contained in the dielectric layer 3, and therefore, the bismuth layered compound ferroelectric contained in the dielectric layer 3 Since it is possible to suppress the property as a paraelectric and sufficiently exhibit the property as a paraelectric, it is possible to produce a small-sized and large-capacity thin-film capacitor.
  • the laminate unit 1 includes the dielectric layer 3 formed of a dielectric material containing a bismuth layered compound oriented in the [001] direction, that is, the c-axis direction.
  • the dielectric layer 3 has high insulation properties, the dielectric layer 3 can be made thinner, so that the thin film capacitor can be further miniaturized.
  • FIG. 3 is a schematic partial cross-sectional view of a thin-film capacitor manufactured by using the multilayer unit 1 according to a preferred embodiment of the present invention.
  • the thin film capacitor 10 is composed of the multilayer unit 1 shown in FIG. 2 and the upper electrode layer 1 formed on the dielectric layer 3 of the multilayer unit 1. Has one.
  • the support substrate 2 of the multilayer unit 1 has a function of ensuring the mechanical strength of the entire thin film capacitor 10.
  • the support substrate 2 of the multilayer unit 1 functions as one electrode of the thin film capacitor 10 and also moves the c-axis of the bismuth layered compound contained in the dielectric layer 3 with respect to the electric field. It has a function as a buffer layer for making the orientation substantially parallel.
  • the dielectric layer 3 of the multilayer unit 1 has a function as a dielectric layer of the thin film capacitor 10.
  • an upper electrode layer 11 functioning as the other electrode of the thin-film capacitor 10 is formed on the dielectric layer 3 of the multilayer unit 1.
  • the material for forming the upper electrode layer 11 is not particularly limited as long as it has conductivity. Platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium ( Metals such as Pd), iridium (Ir), gold (Au), silver (Ag), copper (Cu), nickel (Ni) and alloys containing these as main components, NdO, N b O, R h O 2, O s O 2, I r O 2, R u O 2, S rMo O 3, S r R U_ ⁇ 3, C a R u O 3 , S r VO 3, S r C r O 3, S r C o O 3, L a N i O 3, N b de one-flop S r T i O 3 conductive oxide such and mixtures thereof, a etc.
  • the material for forming the upper electrode layer 11 is considered in terms of lattice matching with the material for forming the dielectric layer 3. It is possible to form a film at room temperature without using a base metal such as iron (Fe) or covanolate (Co), or an alloy such as WSi or MoSi. One can also be formed.
  • the thickness of the upper electrode layer 11 is not particularly limited as long as the function as the other electrode of the thin film capacitor 10 can be ensured.For example, the thickness is about 10 to 1000 nm. Can be set.
  • the method for forming the upper electrode layer 11 is not particularly limited, but includes a vacuum evaporation method, a sputtering method, a pulse laser evaporation method (PLD), and an organic metal-organic chemical vapor deposition method.
  • Vapor deposition: MOCVD), metal-organic decomposition (MOD) ⁇ Can be formed using various thin film forming methods such as liquid phase method (CSD method) such as sol-gel method.
  • the sputtering method is preferred from the viewpoint of the film formation rate.
  • the bismuth layer compound contained in the dielectric layer 3 has its c-axis substantially perpendicular to the support substrate 2 and the upper electrode layer 11. Oriented. Therefore, when an electric field is applied between the support substrate 2 and the upper electrode layer 11, the direction of the electric field almost coincides with the c-axis of the bismuth layered compound contained in the dielectric layer 3. However, by suppressing the ferroelectric properties of the bismuth layer compound contained in the dielectric layer 3, it is possible to sufficiently exhibit the properties as a paraelectric substance. It becomes possible to obtain a thin film capacitor 10.
  • the thin film capacitor 10 having such characteristics can be preferably used as a decoupling capacitor, particularly as a decoupling capacitor for an LSI having a high operating frequency.
  • the support substrate 2 of the laminate unit 1 is formed of platinum (Pt), but the support substrate 2 is formed of platinum (Pt).
  • t is not necessarily required, and is formed of a material having conductivity and capable of epitaxially growing a dielectric material including a bismuth layered compound thereon, and at least a surface formed of the material.
  • the material is not particularly limited as long as the material is oriented in the azimuth and has mechanical strength as a supporting substrate.
  • platinum Pt
  • ruthenium Ru
  • rhodium Rh
  • palladium Pd
  • iridium Ir
  • gold Au
  • silver Ag
  • copper Cu
  • alloy or mainly metals and these such as nickel (N i), N d O , N b O, R h 0 2, O s 0 2, I r O 2, R u 0 2, S r Mo O 3, S r R u O 3, C a R u 0 3, S r V0 3, S r C R_ ⁇ 3, S r C o OL a N i O 3, N b doped S r T i 0 3 conductive oxides and mixtures thereof, such as, stoichiometric compositional formula: B i 2 S r 2 C a n i C u n O 2 n + BSCC o
  • the support substrate 2 may be made of platinum (Pt) in the same manner as the case of forming the support substrate. it can.
  • the support substrate 2 is formed from a single-crystal conductive oxide, a mixture of conductive oxides, or an oxide superconductor, the conductive oxide, a mixture of conductive oxides, or an oxide is used.
  • the support substrate 2 oriented in the direction can be formed. Further, when the supporting substrate 2 is formed of a polycrystalline conductive oxide, a mixture of conductive oxides, or an oxide superconductor, the conductive oxide, the mixture of conductive oxides, or the oxide superconductivity is used. Hot forging method Orientation in [01] direction by hot working method such as
  • the [001] direction is oriented.
  • the formed supporting substrate 2 can be formed.
  • a conductive oxide, a mixture of conductive oxides, or polycrystalline particles of an oxide superconductor are oriented by a hot-king method such as a hot forging method or a hot pressing method.
  • a hot-king method such as a hot forging method or a hot pressing method
  • the degree of orientation in the [001] direction that is, the degree of c-axis orientation is 90% or more, it can be used as the supporting substrate 2 as it is.
  • logical composition formula: is provided with the S r B i 4 T i 4 O 15 dielectric layer 3 formed of a dielectric material containing a bismuth layer compound having a composition that is i Table in, on the support substrate 2
  • the dielectric layer 3 is formed with a dielectric material containing a bismuth layered compound having m other than 4.
  • dielectric layer 3 is formed with a dielectric material containing a bismuth layered compound having m other than 4.
  • dielectric layer 3 is formed with a dielectric material containing a bismuth layered compound having
  • the dielectric layer 3 of the multilayer unit 1 is formed by the organic metal splitting method (.metal-organic decomposition: MOD). It is not always necessary to form by metal decomposition method. Vacuum evaporation method, sputtering method, pulsed laser evaporation method (PLD), metal-organic chemical vapor deposition (MOCVD), ⁇
  • the dielectric layer 3 can also be formed by other thin film forming methods such as the Gnolet method or another liquid phase method (CSD method).
  • the laminate unit 1 is a thin film capacitor.
  • the multilayer unit 1 is used not only as a component of a thin film capacitor but also for emitting an inorganic electro-luminescence (EL) element. It can also be used as That is, in order to emit light from the inorganic EL element, an insulating layer is required between the support substrate 2 and the inorganic EL element. However, a dielectric material containing a bismuth layer compound having improved c-axis orientation is required.
  • the dielectric layer 3 has a high insulating property.Therefore, an inorganic EL element is disposed on the dielectric layer 3, and another electrode is disposed on the inorganic EL element, thereby forming an inorganic EL element. By applying a voltage, the inorganic EL element can emit light as desired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

明細書 積層体ュニッ ト 技術分野
本発明は、 電極層および誘電体層を含む積層体ュニッ トに関するも のであり、 とくに、 小型で、 かつ、 大容量の誘電特性に優れた薄膜コ ンデンサを作製するのに好適であると ともに、 高輝度の無機 E L anorganic electro-luminescence ァノくィスを作 するのに; u し 積 層体ユニッ トに関するものである。 従来の技術
近年、 C P U ( Central Processing Unit)に代表される L S I (Large Scale Integrated circuit) の動作周波数はますます向上している。 動 作周波数の高い L S Iは、 非常に電源ノイズが発生しやすく、 電源ノ ィズが発生すると、 電源配線の寄生抵抗および寄生ィンダクタンスの 影響によって、 電圧降下が生じるため、 L S I を誤動作させる原因と なる。
電源ノィズに起因するこのような電圧降下を防止するため、一般に、 L S Iの電源端子間には、 デカップリングコンデンサが接続される。
L S Iの電源端子間に、 デカップリングコンデンサを接続すれば、 電 源配線のインピーダンスが低下するため、 電源ノイズに起因する電圧 降下を効果的に抑制することができる。
電源配線に要求されるインピーダンスは、 L S I の動作電圧に比例 するとともに、 L S I の集積度、 スイッチング電流および動作周波数 に反比例する。 したがって、 集積度が高く、 動作電圧が低く、 動作周 波数が高い近年の L S I においては、 電源配線に要求されるインピー ダンスは非常に小さい。
このようなィンピーダンスを達成するためには、 デカップリングコ ンデンサを大容量化するとともに、 L S Iの電源端子とデカップリン グコンデンサとを接続する配線のィンダクタンスを十分に小さくする 必要がある。
大容量のデカップリングコンデンサと しては、 電解コンデンサや積 層セラミックコンデンサが一般に用いられる。 しかしながら、 電解コ ンデンサゃ積層セラミックコンデンサは比較的サイズが大きいため、 L S I との一体化が困難である。 したがって、 L S I とは別個に、 回 路基板に実装する必要が生じ、 L S Iの電源端子とデカップリングコ ンデンサとを接続する配線が必然的に長くなってしまう。 その結果、 デカップリングコンデンサとして、 電解コンデンサや積層セラミ ック コンデンサを用いた場合には、 L S Iの電源端子とデカップリングコ ンデンザとを接続する配線のィンダクタンスを小さくすることが困難 であるという問題があった。
L S Iの電源端子とデカップリングコンデンサとを接続する配線を より短くするためには、 電解コンデンサや積層セラミックコンデンサ よりも小型な薄膜コンデンサを用いることが好適である。
日本国公開特許公報第 2 00 1— 1 5 3 8 2号は、 誘電体の材料と して、 P Z T、 P L Z T、 (B a , S r ) T i O 3 (B S T)、 T a 2 O 5などを用いた小型で、 容量の大きい薄膜コンデンサを開示している。 しかしながら、 これらの材料によって、 形成された薄膜コンデンサ は、 温度特性が劣るという欠点を有している。 たとえば、 B S Tの誘 電率は、 一 1 000 4 00 0 p p mノ。 Cの温度依存性を有してい るため、 誘電体の材料として、 B S Tを用いた場合には、 8 0°Cでの 静電容量が、 2 0°Cでの静電容量と比べて、 一 6〜一 24 %も変化す る。 したがって、 B S Tを用いて、 形成された薄膜コンデンサは、 電 力消費に伴う発熱によって、 周囲の温度がしばしば 8 0°C以上に達す ることがある動作周波数の高い L S I用のデカップリングコンデンサ としては、 適当ではない。
さらに、 これらの材料によって、 形成された誘電体薄膜は、 その厚 みが薄くなると、 誘電率が低下するだけでなく、 たとえば、 1 0 0 k VZ c mの電界を加えた場合に、 静電容量が大きく低下するという問 題があり、 これらの材料を、 薄膜コンデンサの誘電体材料として、 用 いた場合には、 小型で、 かつ、 大容量の薄膜コンデンサを得ることは 困難である。
加えて、 これらの材料によって、 形成された誘電体薄膜は、 表面平 滑性が低いため、 その厚みを薄くすると、 絶縁不良などが生じやすく なるという問題もある。
このような問題を解決するためには、 薄膜コンデンサの誘電体とし て、 ビスマス層状化合物を用いることが考えられる。 ビスマス層状化 合物については、 竹中正著 「ビスマス層状構造強誘電体セラミックス の粒子配向とその圧電'焦電材料への応用」、京都大学工学博士論文( 1 9 8 4 ) の第 3章の第 2 3〜 3 6頁に記載されている。
ビスマス層状化合物は結晶構造に異方性を有しており、 基本的に、 強誘電体としての性質を示すが、 ある配向軸方向については、 強誘電 体としての性質が小さく、 常誘電体としての性質を示すことが知られ ている。
ビスマス層状化合物が持つ強誘電体としての性質は、 ビスマス層状 化合物を、 薄膜コンデンサの誘電体として利用する場合には、 誘電率 の変動をもたらすため、 好ましくなく、 ビスマス層状化合物の常誘電 体としての性質が十分に発揮されることが好ましい。
よって、 ビスマス層状化合物の強誘電体としての性質が小さく、 常 誘電体としての性質を示す配向軸方向に、 ビスマス層状化合物が配向 された誘電体層を備え、 小型で、 かつ、 大容量の誘電特性に優れた薄 膜コンデンサの開発が望まれている。
他方、 高輝度の無機 E L (inorganic electro-luminescence) ァノ ィ スを作製するには、 電極と、 無機 E L素子との間に、 絶縁性の高い絶 縁層を設けることが要求されており、 ビスマス層状化合物の強誘電体 としての性質が小さく、 常誘電体としての性質を示す配向軸方向に、 ビスマス層状化合物が配向された誘電体層を備えた高輝度の無機 E L デバイスの開発が望まれている。 発明の開示
したがって、 本発明は、 小型で、 かつ、 大容量の誘電特性に優れた 薄膜コンデンサを作製するのに好適であるとともに、 高輝度の無機 E
L (inorganic electro-luminescence) テノくイス ¾ 作製するのに適した 積層体ュニッ トを提供することを目的とするものである。
本発明のかかる目的およびその他の目的は、 導電性を有し、 かつ、 その上で、 ビスマス層状化合物を含む誘電体材料をェピタキシャル成 長させることができる材料により、 形成され、 少なく とも表面が [ 0 0 1 ] 方位に配向された支持基板と、 前記支持基板上で、 ビスマス層 状化合物を含む誘電体材料をェピタキシャル成長させて、 形成され、
[ 0 0 1 ] 方位に配向されたビスマス層状化合物を含む誘電体材料よ りなる誘電体層が積層された積層体ュニッ トによって達成される。 ここに、 [ 0 0 1 ] 方位とは、 立方晶、 正方晶、 単斜晶および斜方晶 における [ 0 0 1 ] 方位のことをいう。
本発明によれば、 支持基板は、 導電性を有し、 かつ、 その上で、 ビ スマス層状化合物を含む誘電体材料をェピタキシャル成長させること ができる材料により、 形成され、 少なく とも表面が [ 0 0 1 ] 方位に 配向されているから、 電極層およびバッファ層としても機能し、 した がって、 支持基板上で、 ビスマス層状化合物を含む誘電体材料をェピ タキシャル成長させて、確実に、 [ 0 0 1 ]方位に配向したビスマス層 状化合物を含む誘電体層を形成することが可能になる。
したがって、 本発明によれば、 誘電体層に含まれるビスマス層状化 合物の c軸を、 支持基板に対して、 垂直に配向させることが可能にな るから、 たとえば、 誘電体層上に、 上部電極を設け、 支持基板と上部 電極との間に電圧を印加した場合に、 電界の方向が、 誘電体層に含ま れるビスマス層状化合物の c軸とほぼ一致し、 したがって、 誘電体層 に含まれるビスマス層状化合物の強誘電体としての性質を抑制して、 常誘電体としての性質を十分に発揮させることが可能になるから、 小 型で、 かつ、 大容量の薄膜コンデンサを作製することが可能になる。
さらに、 本発明によれば、 c軸配向性が向上されたビスマス層状化 合物を含む誘電体材料よりなる誘電体層は高い絶縁性を有しているか ら、 誘電体層を薄膜化することができ、 したがって、 薄膜コンデンサ を、 より一層小型化することが可能になる。
また、 c軸配向性が向上されたビスマス層状化合物を含む誘電体材 料よりなる誘電体層は高い絶縁性を有しているから、 本発明にかかる 積層体ュニッ トの誘電体層上に、 無機 E L素子を配置するとともに、 無機 E L素子上に、 別の電極を配置し、 支持基板と別の電極との間に 電圧を加えることによって、 無機 E L素子を、 所望のように、 発光さ せることが可能になり、 高輝度の無機 E Lデバイスを作製することが できる。
本発明において、 ビスマス層状化合物を含む誘電体材料は、 不可避 的な不純物を含んでいてもよい。
本発明において、支持基板を形成するための材料は、導電性を有し、 かつ、 その上で、 ビスマス層状化合物を含む誘電体材料をェピタキシ ャル成長させることができる材料であれば、 とくに限定されるもので はないが、 白金 (P t )、 ルテニウム (R u)、 ロジウム (R h)、 パラ ジゥム (P d)、 イ リジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u)、 ニッケル (N i ) などの金属およびこれらを主成分とする合金や、 N d O、 N b O、 R h〇2、 O s O2、 I r O2、 R u 02、 S r Mo O 3、 S r R u 03、 C a R u O3、 S r V03、 S r C r O3、 S r C o O3、 L a N i O3、 N b ドープ S r T i O 3などの導電性酸化物およ ぴこれらの混合物ならびに酸化物超伝導体などが、 支持基板を形成す るために、 好ましく使用される。
本発明において、 支持基板を形成するために用いられる酸化物超伝 導体としては、 C u O2面を有する銅酸化物超伝導体が好ましい。
本発明において、 支持基板を形成するために、 とくに好ましく使用 される C u O2面を有する銅酸化物超伝導体の例と しては、 化学量論 的組成式 : B i z S r z C a n— i C U n O 2 n + 4で示される B S C C O (ビスマス *ス ト口ンチウム ·カルシウム .力ッパー ·ォキサイ ド)、 化学量論的組成式 : YB a 2C u 307— δで示される YB CO (イツ トリ ウム · ビスマス . カッパ一 . オキサイ ド) が挙げられる。 なお、 銅酸化物超伝導体の前記組成式の構成元素比はとくに限定されるもの ではなく、 銅酸化物超伝導体の結晶構造を保持できる範囲で、 構成元 素比が異なっていてもよい。
本発明において、支持基板に含まれている導電性を有する材料の [0 0 1 ] 方位の配向度、 すなわち、 c軸配向度 が 1 0 0 %であること は必ずしも必要でなく、 c軸配向度 Fが 80%以上であればよい。 c 軸配向度 Fが 9 0 %であることが好ましく、 c軸配向度 が 9 5 %以 上であると、 より好ましい。
ここに、 導電性を有する材料の c軸配向度 Fは、 次式 ( 1 ) によつ て定義される。
F (%) = {P- P0) / ( 1 -P0) X 1 00 … ( 1 ) 式 ( 1 ) において、 尸。は、 完全にランダムな配向をしている多結 晶体の c軸配向比、 すなわち、 完全にランダムな配向をしている多結 晶体の (00 面からの反射強度 /。 (0 0 _?) の合計∑ /。 (00 と、 その多結晶体の各結晶面 ゾ) からの反射強度 /。 (A k 1) の合計∑ I 0 ih k nとの比 ({∑ /。 (0 0 7) Z∑ /。 (A k 1)}) であり、 は、 X線回折強度を用いて算出された導電性を有 する材料の c軸配向比、 すなわち、 導電性を有する材料の (0 0 面からの反射強度 / (0 0 1) の合計∑ I (00 2) と、 その材料の 各結晶面 h k nからの反射強度 I {h k 1) の合計∑ I {h k 1) との比 ({∑ / (0 0 2) /∑ / {h k 1)}) である。 ここに、 h、 k、 ゾは、 それぞれ、 0以上の任意の整数値を取ることができる。 ここに、 尸0は既知の定数であるから、 (0 0 面からの反射強度 / (0 0 i) の合計∑ / (0 0 2) と、 各結晶面 h k I、 からの反 射強度 I {h k 1) の合計∑ I {h k 1) が等しいとき、 すなわち、 尸 = 1のときに、 導電性を有する材料の c軸配向度 は 1 00 %とな る。
溶融石英などによって形成された支持基板に、 白金などよりなる電 極層を直接形成する場合には、電極層が、 [ 1 1 1 ]方位に配向しやす いため、 電極層上に、 ビスマス層状化合物を含む誘電体材料をェピタ キシャル成長させて、 ビスマス層状化合物を含む誘電体材料よりなる 誘電体層を形成し、 ビスマス層状化合物を [0 0 1 ] 方位に.、 すなわ ち、 c軸方向に配向させることがきわめて困難になる。 しかしながら、 本発明においては、 導電性を有し、 かつ、 その上で、 ビスマス層状化 合物を含む誘電体材料をェピタキシャル成長させることができる材料 により、 形成され、 少なく とも表面が [0 0 1 ] 方位に配向され、 電 極層としても機能する支持基板を用い、 少なく とも表面が [0 0 1 ] 方位に配向された支持基板上で、 ビスマス層状化合物を含む誘電体材 料をェピタキシャル成長させて、誘電体層が形成されるから、確実に、 [00 1 ] 方位に、 すなわち、 c軸方向に配向された誘電体層を形成 することが可能になる。
本発明において、 白金 (P t )、 ルテニウム (R u)、 ロジウム (R h)、 パラジウム (P d)、 イリジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u)、 ニッケル (N i ) などの金属およびこれらを主成分とする 合金によって、 支持基板を形成する場合には、 まず、 溶融石英などの アモルファス性基板、 セラミ ックスなどの多結晶基板、 耐熱ガラス基 板、 樹脂基板などの別の支持基板上に、 異方性があり、 かつ、 その上 で、 白金 (P t )、 ルテニウム (R u) などの金属あるいはこれらの金 属を主成分とする合金の結晶をェピタキシャル成長させて、 電極層の 機能を有する支持基板を形成することができる材料によって、 [0 0 1 ] 方位に、 すなわち、 c軸方向に配向されたバッファ層を形成し、 バッファ層上で、 白金 (P t )、 ルテニウム (R u) などの金属あるい はこれらの金属を主成分とする合金の結晶をェピタキシャル成長させ て、 電極層の機能を有する支持基板を形成した後、 支持基板から、 バ ッファ層を剥離することによって、 [00 1 ]方位に配向された支持基 板を形成することができる。
一方、 本発明において、 単結晶の導電性酸化物、 導電性酸化物の混 合物あるいは酸化物超伝導体によって、 少なく ともその表面が [00 1 ] 方位に配向された支持基板を形成する場合には、 導電性酸化物、 導電性酸化物の混合物あるいは酸化物超伝導体の単結晶が [ 0 0 1 ] 方位に配向されている面を選択して、 導電性酸化物、 導電性酸化物の 混合物あるいは酸化物超伝導体の単結晶を切り出すことによって、
[ 0 0 1 ] 方位に配向された支持基板を形成することができる。
さらに、 本発明において、 多結晶の導電性酸化物、 導電性酸化物の 混合物あるいは酸化物超伝導体によって、 少なく ともその表面が [ 0 0 1 ]方位に配向された支持基板を形成する場合には、導電性酸化物、 導電性酸化物の混合物あるいは酸化物超伝導体の多結晶の粒子を、 ホ ッ トフォージング法ゃホッ トプレス法などのホッ トヮーキング法によ つて、 [ 0 0 1 ] 方位に配向させ、 [ 0 0 1 ] 方位に配向されている面 を選択して、 導電性酸化物、 導電性酸化物の混合物あるいは酸化物超 伝導体の多結晶を切り出すことによって、 [ 0 0 1 ]方位に配向された 支持基板を形成することができる。 導電性酸化物、 導電性酸化物の混 合物あるいば酸化物超伝導体の多結晶の粒子を、 ホッ トフォージング 法やホッ トプレス法などのホッ トワーキング法によって、 配向させた 場合に、 [ 0 0 1 ]方位への配向度 、すなわち、 c軸配向度 が 9 0 % 以上であるときは、そのまま、支持基板として利用することができる。 本発明において、 積層体ュニッ トは、 支持基板上に、 [ 0 0 1 ] 方位 に、 すなわち、 c軸方向に配向されたビスマス層状化合物を含む誘電 体材料よりなる誘電体層を備えている。
本発明において、 誘電体層は、 ビスマス層状化合物を含む誘電体材 料を、 支持基板上で、 ェピタキシャル成長させることによって形成さ れる。
誘電体層は、 [ 0 0 1 ]方位に配向されている支持基板上で、 ビスマ ス層状化合物を含む誘電体材料をェピタキシャル成長させて、 形成さ れるから、 誘電体層に含まれているビスマス層状化合物を、 確実に、
[ 0 0 1 ] 方位に、 すなわち、 c軸方向に配向させることができ、 し たがって、 本発明にかかる積層体ユニッ トを用いて、 薄膜コンデンサ を構成したときに、 誘電体層に含まれるビスマス層状化合物は、 強誘 電体と してではなく、 常誘電体として機能するから、 小型で、 かつ、 大容量の誘電特性に優れた薄膜コンデンサを形成することが可能にな る。
誘電体層を形成するビスマス層状化合物としては、 コンデンサ材料 としての特性に優れたビスマス層状化合物が選ばれる。
ビスマス層状化合物は、 化学量論的組成式: (B i 2O2) 2 + (Aa_
1 Bm03 m+ 1) 2—、 あるいは、 B i 2 m— で表わされる 組成を有している。 ここに、 化学量論的組成式中の記号 2Πは正の整数 であり、 記号^ は、 ナトリ ウム (N a )、 カリ ウム (K)、 鉛 (P b )、 バリ ウム (B a )、 ス トロンチウム (S r )、 カルシウム (C a ) およ びビスマス (B i ) からなる群より選ばれる少なく とも 1つの元素で あり、 記号 は、 鉄 (F e )、 コバルト (C o )、 ク ロム (C r )、 ガ リ ウム (G a )、 チタン (T i )、 ニオブ (N b )、 タンタル (T a )、 アンチモン ( S b )、 マンガン (Mn)、 バナジウム (V)、 モリブデン (M o ) およびタングステン (W) からなる群より選ばれる少なく と も 1つの元素である。 記号^ および または Bを 2つ以上の元素で構 成する場合、 それらの比率は任意である。 なお、 ビスマス層状化合物 は、 上記組成式によって表わされるものに限定されるものではなく、 ビスマス層状化合物の結晶構造を保持していれば、 とくに限定される ものではない。
第 1図に示されるように、 ビスマス層状化合物は、 それぞれが 45 O3 1 aで構成される (/π— 1 ) 個のぺロプスカイ ト格子が連なった 層状べロプスカイ ト層 1 と、 (B i 2O2) 2 +層 2 とが、 交互に積層さ れた層状構造を有している。
層状ぺロブスカイ ト層 1 と (B i 2O2) 2+層 2の積層数は、 とくに 限定されるものではなく、 少なく とも一対の (B i 2O2) 2+層 2と、 これらに挟まれた一つの層状べロブスカイ ト層 1を備えていれば十分 である。
ビスマス層状化合物の c軸とは、 一対の (B i 2O2) 2+層 2同士を 結ぶ方向、 すなわち、 [ 0 0 1 ] 方位を意味する。
これらのビスマス層状化合物のうち、 コンデンサ材料としての特性 に優れたビスマス層状化合物が、 誘電体層を形成するために用いられ る。
本発明において、 誘電体層を形成するために用いられるビスマス層 状化合物は、 コンデンサ材料としての特性に優れたビスマス層状化合 物であれば、 とくに限定されるものではないが、 化学量論組成式にお いて、 π= 4の化学量論的組成式: (B i 2O2) 2+ (A3 4O13) 2 -、 あるいは、 B i 2^43 4O i 5で表わされるビスマス層状化合物が コンデンサ材料としての特性に優れ、 好ましく使用される。
本発明において、誘電体層に含まれているビスマス層状化合物の [0 0 1 ] 方位の配向度、 すなわち、 c軸配向度 が 1 0 0 %であること は必ずしも必要でなく、 c軸配向度 が 8 0 %以上であればよい。 c 軸配向度 が 9 0 %であることが好ましく、 c軸配向度 が 9 5 %以 上であると、 より好ましい。
ビスマス層状化合物の c軸配向度 は、 式 ( 1 ) によって定義され る。
このよ うに、 ビスマス層状化合物を、 [0 0 1 ] 方位に、 すなわち、 c軸方向に配向させることによって、 誘電体層の誘電特性を大幅に向 上させることが可能になる。
すなわち、 本発明にかかる積層体ユニッ トの誘電体層上に、 たとえ ば、 上部電極を形成して、 薄膜コンデンサを作製した場合、 誘電体層 の膜厚をたとえば 1 0 0 n m以下にしても、 比較的高い誘電率と低い 損失 ( t a η δ ) を有する薄膜コンデンサを得ることができ、 リーク 特性に優れ、 耐圧が向上し、 誘電率の温度特性に優れ、 表面平滑性に も優れた薄膜コンデンサを得ることが可能になる。
本発明において、 とくに好ましくは、 誘電体層に含まれるビスマス 層状化合物が、 化学量論的組成式: C a 'S iT d- B i T Ois で表わされる組成を有している。 ここに、 0≤ χ≤ 1である。 このよ うな組成を有するビスマス層状化合物を用いると、 比較的大きな誘電 率を有する誘電体層が得られるとともに、 その温度特性がさらに向上 する。 本発明において、 誘電体層に含まれるビスマス層状化合物の化学量 論的組成式中の記号^ または で表わされる元素の一部が、 スカンジ ゥム (S c;)、 イッ トリ ウム (Y)、 ランタン (L a )、 セリ ウム (C e )、 プラセオジム (P r )、 ネオジム (N d)、 プロメチウム (Pm)、 サマ リ ウム (Sm)、 ユウ口ピウム (E u)、 ガドリニウム (G d)、 テルビ ゥム (T b)、 ジスプロシウム (D y)、 ホルミウム (H o)、 エルピウ ム (E r )、 ツリ ウム (Tm)、 イッテルビウム (Y b) およびルテチ ゥム (L u) からなる群より選ばれる少なく とも 1つの元素 e (ィ ッ トリ ウム (Y) または希土類元素) によって置換されていることが 好ましい。
元素 ? eによって、 置換する場合には、 好ましい置換量は、 πの値 により異なるが、 たとえば、 2π= 3のときは、 化学量論的組成式: Β i 2 2一 ^ ? e H3 Ο 2において、 好ましくは、 0. 4≤ Λ:≤ 1. 8 であり、 より好ましくは、 1. O x^ l . 4である。 元素 ? eによ る置換量をこの範囲に設定すれば、 誘電体層のキュリー温度 (強誘電 体から常誘電体への相転移温度) を、 好ましくは、 _ 1 00°C以上、 1 00°C以下、 より好ましくは、 一 5 0°C以上、 5 0°C以下に収める ことが可能となる。 キュリ一点が一 1 0 0°Cないし + 1 00°Cである と、 誘電体層の誘電率が向上する。 キュリー温度は、 D S C (示差走 査熱量測定) などによって測定することができる。 なお、 キュリー点 が室温 ( 2 5°C) 未満になると、 t a η δがさらに減少し、 その結果、 損失 Q値がさらに上昇する。
また、 = 4の場合には、 化学量論的組成式: B i 2A3_XR e XB 4O1 5において、 好ましくは、 0. 0 1 ≤ Λ:≤ 2. 0であり、 より好 ましくは、 0. 1 ^ Λ·≤ 1. 0である。
本発明にかかる積層体ュニッ トの誘電体層は、 優れたリーク特性を 有しているが、 ビスマス層状化合物の化学量論的組成式中の記号^ ま たは 5で表わされる元素の一部が、 元素 ? eによって、 置換されてい る場合には、 誘電体層のリーク特性を一層向上させることができ、 好 ましい。 たとえば、 ビスマス層状化合物の化学量論的組成式中の記号 また は 5で表わされる元素の一部が、 元素/? eによって、 置換されていな い場合においても、 本発明にかかる積層体ユニッ トの誘電体層は、 電 界強度 5 0 k V/ c mで測定したときのリーク電流を、 好ましくは、 1 X 1 0— 7 A/ c m2以下、 より好ましくは、 5 X 1 0 8AZ c m2 以下に抑制することができ、 しかも、 ショート率を、 好ましくは、 1 0%以下、 より好ましくは、 5 %以下にすることができるが、 ビスマ ス層状化合物の化学量論的組成式中の記号 または Hで表わされる 元素の一部が、 元素 W eによって、 置換されている場合には、 同条件 で測定したときのリーク電流を、 好ましくは、 5 X 1 0— 8 AZ c m2 以下、 より好ましくは、 1 X 1 0— 8 A/ c m 2以下にすることができ、 ショート率を、 好ましくは、 5%以下、 より好ましくは、 3%以下に することができる。
本発明において、 誘電体層は、 真空蒸着法、 スパッタリング法、 パ ルス レーザー蒸着法 ( P L D)、 有機金属化学気相成長法 (meta organic chemical vapor deposition: MOC VD)、 有機金属分解法 (metal - organic decomposition: MOD) ゃゾノレ · ゲノレ法などの 液相法 (C S D法) などの各種薄膜形成法を用いて、 形成することが できる。 とくに低温で、 誘電体層を形成する必要がある場合には、 プ ラズマ CVD、 光 CVD、 レーザー CVD、 光 C S D、 レーザー C S D法を用いることが好ましい。
本発明にかかる支持基板および誘電体層を含む積層体ュニッ トは、 薄膜コンデンサの構成部品としてだけでなく、 無機 E L素子を発光さ せるための積層体ユニッ トとして用いることもできる。 すなわち、 無 機 E L素子を発光させるためには、 支持基板と、 無機 E L素子との間 に、 絶縁層が必要であるが、 c軸配向性が向上されたビスマス層状化 合物を含む誘電体材料よりなる誘電体層は髙ぃ絶縁性を有しており、 したがって、 誘電体層上に、 無機 E L素子を配置するとともに、 無機 E L素子上に、 別の電極を配置し、 支持基板と別の電極との間に電圧 を加えることによって、 無機 E L素子を、 所望のように、 発光させる ことが可能になる。
本発明の前記およびその他の目的や特徴は、 添付図面に基づいた以 下の説明から明らかになるであろう。 図面の簡単な説明
第 1図は、 ビスマス層状化合物の構造を模式的に示す図である。 第 2図は、 本発明の好ましい実施態様にかかる積層体ュニッ トの略 一部断面図である。
第 3図は、 本発明の好ましい実施態様にかかる積層体ュ-ッ トを用 いて、 作製された薄膜コンデンサの略一部断面図である。 発明の好ましい実施態様の説明
第 2図は、 本発明の好ましい実施態様にかかる積層体ュニッ 卜の略 —部断面図である。
第 2図に示されるように、本実施態様にかかる積層体ュ-ッ ト 1は、 支持基板 2上に、 誘電体層 3を備えている。
本実施態様においては、積層体ュニッ ト 1の支持基板 2は、 白金(P t ) によって形成され、 [ 0 0 1 ] 方位に配向されている。
したがって、 支持基板 2は、 積層体ユニッ ト 1を機械的に支持する ために機能するとともに、 積層体ュニッ ト 1 の電極層としても機能す る。
また、 支持基板 2は、 白金 (P t ) によって形成され、 [ 0 0 1 ] 方 位に配向されているから、 電極としての機能と、 その上で、 ビスマス 層状化合物を含む誘電体材料をェピタキシャル成長させて、 [ 0 0 1 ] 方位に、 すなわち、 c軸方向に配向されたビスマス層状化合物を含む 誘電体層 3を確実に形成できるように保証するバッファ層としての機 能を有している。
支持基板 2の厚さは、 積層体ュニッ ト 1を機械的に支持するために 十分な機械的強度が得られるように決定される。
[ 0 0 1 ] 方位に配向された支持基板 2を形成するには、 まず、 溶 融石英などのアモルファス性基板、 セラミ ックスなどの多結晶基板、 耐熱ガラス基板、 樹脂基板などの別の支持基板上に、 異方性があり、 かつ、 その,上で、 白金 (P t )、 ルテニウム (R u ) などの金属あるい はこれらの金属を主成分とする合金の結晶をェピタキシャル成長させ て、 電極層の機能を有する支持基板を形成することができる材料によ つて、 [ 0 0 1 ] 方位に、 すなわち、 c軸方向に配向されたバッファ層 が形成され、 次いで、 バッファ層上で、 白金 (P t ) の結晶をェピタ キシャル成長させて、 バッファ層上に、 白金 (P t ) の支持基板が形 成され、 その後、 支持基板から、 バッファ層を剥離することによって、
[ 0 0 1 ] 方位に配向された支持基板が形成される。
第 2図に示されるように、本実施態様にかかる積層体ュニッ ト 1は、 支持基板 2上に形成された誘電体層 3を備えている。
本実施態様において、 誘電体層 3は、 ビスマス層状化合物の化学量 論的組成式において、 /π = 4 、 3 = B i 2 + S r とした化学量論的組 成式: S r B i 4 T i 5で表わされ、 コンデンサ材料としての特性 に優れたビスマス層状化合物を含む誘電体材料によって形成されてい る。
本実施態様においては、 誘電体層 3は、 有機金属分解法 (metal - organic decomposition: M O D ) によって、 支持基板 2上に开成さ れる。
具体的には、 2—ェチルへキサン酸 S rのトルエン溶液と、 2 —ェ チルへキサン酸 B i の 2—ェチルへキサン酸溶液と、 2—ェチルへキ サン酸 T iのトルエン溶液を、 2—ェチルへキサン酸 S rが 1モル、 2 —ェチルへキサン酸 B i が 4モノレ、 2—ェチルへキサン酸 T i が 4 モルとなるように、 化学量論比で混合し、 トルエンで希釈して、 得た 原料溶液を、 スピンコーティング法によって、支持基板 2上に塗布し、 乾燥後、 得られた誘電体層 3を結晶化させない温度条件で、 仮焼成す る。
次いで、 仮焼成した誘電体層 3上に、 スピンコーティング法によつ て、 同じ原料溶液を塗布して、 乾燥し、 仮焼成し、 この操作を繰り返 す。
仮焼成が完了すると、 誘電体層 3が本焼成され、 必要な厚さの誘電 体層 3、 たとえば、 1 0 0 n mの厚さの誘電体層 3が得られるまで、 塗布、 乾燥、 仮焼成、 塗布、 乾燥、 仮焼成および本焼成よりなる一連 の操作が繰り返される。
この過程で、 ビスマス層状化合物を含む誘電体材料はェピタキシャ ル成長し、 [ 0 0 1 ] 方位に、 すなわち、 c軸方向に配向された誘電体 層 3が形成される。
本実施態様によれば、 積層体ユニッ ト 1は、 支持基板 2と、 支持基 板 2の上に形成された誘電体層 3を備えており、 支持基板 2は、 導電 性を有し、 かつ、 その上で、 ビスマス層状化合物を含む誘電体材料を ェピタキシャル成長させることができる性質を有し、 その表面が [ 0 0 1 ] 方位に配向しているから、 支持基板 2は、 バッファ層としても 機能し、 したがって、 支持基板 2上で、 ビスマス層状化合物を含む誘 電体材料をェピタキシャル成長させて、 [ 0 0 1 ]方位に、すなわち、 c軸方向に配向されたビスマス層状化合物を含む誘電体材料よりなる 誘電体層 3を、 確実に形成することが可能になる。
したがって、 本実施態様によれば、 積層体ュニッ ト 1は、 [ 0 0 1 ] 方位に、 すなわち、 c軸方向に配向されたビスマス層状化合物を含む 誘電体材料によって形成された誘電体層 3を有しているから、 たとえ ば、 本実施態様にかかる積層体ユニッ ト 1の誘電体層 3上に、 上部電 極を設けて、 薄膜コンデンサを作製し、 支持基板 2と上部電極との間 に電圧を印加したときに、 電界の方向が誘電体層 3に含まれているビ スマス層状化合物の c軸とほぼ一致し、 したがって、 誘電体層 3に含 まれているビスマス層状化合物の強誘電体としての性質を抑制して、 常誘電体と しての性質を十分に発揮させることが可能になるから、 小 型で、 かつ、 大容量の薄膜コンデンサを作製することが可能になる。
さらに、 本実施態様によれば、 積層体ュニッ ト 1は、 [ 0 0 1 ] 方位 に、 すなわち、 c軸方向に配向されたビスマス層状化合物を含む誘電 体材料によって形成された誘電体層 3を有し、 c軸配向性が向上され たビスマス層状化合物を含む誘電体層 3は高い絶縁性を有しているか ら、 誘電体層 3を薄膜化することができ、 したがって、 薄膜コンデン サを、 より一層小型化することが可能になる。
第 3図は、 本発明の好ましい実施態様にかかる積層体ュニッ ト 1を 用いて、 作製された薄膜コンデンサの略一部断面図である。
第 3図に示されるように、 薄膜コンデンサ 1 0は、 第 2図に示され た積層体ュニッ ト 1 と、 積層体ュ-ッ ト 1の誘電体層 3上に形成され た上部電極層 1 1を備えている。
本実施態様において、 積層体ユニッ ト 1の支持基板 2は、 薄膜コン デンサ 1 0全体の機械的強度を確保する機能を有している。
さらに、 積層体ュニッ ト 1の支持基板 2は、 薄膜コンデンサ 1 0の 一方の電極としての機能を有するとともに、 誘電体層 3に含まれたビ スマス層状化合物の c軸を、 電界に対して、 実質的に平行に配向させ るためのバッファ層としての機能を有している。
本実施態様において、 積層体ユニッ ト 1の誘電体層 3は、 薄膜コン デンサ 1 0の誘電体層としての機能を有している。
本実施態様においては、 積層体ユニッ ト 1の誘電体層 3上に、 薄膜 コンデンサ 1 0の他方の電極として、 機能する上部電極層 1 1が形成 されている。
上部電極層 1 1を形成するための材料は、 導電性を有していれば、 とくに限定されるものではなく、 白金 (P t )、 ルテニウム (R u)、 ロジウム (R h)、 パラジウム (P d)、 イリジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u)、 ニッケル (N i ) などの金属およびこれらを 主成分とする合金や、 N d O、 N b O、 R h O2、 O s O2、 I r O2、 R u O2、 S rMo O3、 S r R u〇3、 C a R u O3、 S r VO3、 S r C r O3、 S r C o O3、 L a N i O3、 N b ド一プ S r T i O3など の導電性酸化物およびこれらの混合物、 I TOなどの導電性ガラスな どを用いて、 上部電極層 1 1を形成することができる。 さらに、 積層 体ュニッ ト 1の支持基板 2とは異なり、 上部電極層 1 1を形成するた めの材料としては、 誘電体層 3を形成する材料との格子整合性を考慮 する必要がなく、 室温における成膜も可能であるから、 鉄 (F e )、 コ バノレト (C o ) などの卑金属や、 W S i 、 M o S i などの合金を用い て、 上部電極層 1 1を形成することもできる。 上部電極層 1 1の厚さ としては、 薄膜コンデンサ 1 0の他方の電極としての機能を確保可能 であれば、 とくに限定されるものではなく、 たとえば、 1 0ないし 1 0 0 0 0 n m程度に設定することができる。
上部電極層 1 1の形成方法は、 とくに限定されるものではなく、 真 空蒸着法、 スパッタリ ング法、 パルス レーザー蒸着法 (P L D )、 有機 金厲ィ匕学気相成長法 (metal-organic chemical vapor deposition : M O C V D )、 有機金属分解法 (metal - organic decomposition: M O D ) ゃゾル · ゲル法などの液相法 (C S D法) などの各種薄膜形成法 を用いて、 形成することができる。 これらのうちでは、 成膜速度の面 から、 スパッタリング法が好ましい。
以上のように構成された薄膜コンデンサ 1 0においては、 誘電体層 3に含まれたビスマス層状化合物は、 その c軸が、 支持基板 2および 上部電極層 1 1に対して、 実質的に垂直方向に配向されている。 した がって、支持基板 2と上部電極層 1 1 との間に電界が印加されたとき、 電界の方向が、 誘電体層 3 に含まれたビスマス層状化合物の c軸とほ ぼ一致するから、 誘電体層 3に含まれたビスマス層状化合物の強誘電 体としての性質を抑制して、 常誘電体としての性質を十分に発揮させ ることが可能になり、 小型で、 かつ、 大容量の薄膜コンデンサ 1 0を 得ることが可能になる。
このような特性を有する薄膜コンデンサ 1 0は、 デカップリングコ ンデンサ、 とくに、 動作周波数の高い L S I用のデカップリングコン デンサとして、 好ましく利用することができる。
本発明は、 以上の実施の形態に限定されることなく、 特許請求の範 囲に記載された発明の範囲内で種々の変更が可能であり、 それらも本 発明の範囲内に包含されるものであることはいうまでもない。
たとえば、 前記実施態様においては、 積層体ュニッ ト 1の支持基板 2は、 白金 (P t ) によって形成されているが、 支持基板 2を白金 (P t ) によって形成することは必ずしも必要でなく、 導電性を有し、 か つ、 その上で、 ビスマス層状化合物を含む誘電体材料をェピタキシャ ル成長させることができる材料により、 形成され、 少なく とも表面が
[0 0 1 ] 方位に配向され、 支持基板としての機械的強度を有する材 料であれば、 とくに限定されるものではない。 たとえば、 白金 (P t ) に代えて、 ルテニウム (R u)、 ロジウム (R h)、 パラジウム (P d)、 イリジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u)、 ニッケル (N i ) などの金属およびこれらを主成分とする合金や、 N d O、 N b O、 R h 02、 O s 02、 I r O2、 R u 02、 S r Mo O3、 S r R u O3、 C a R u 03、 S r V03、 S r C r〇3、 S r C o O L a N i O3、 N b ドープ S r T i 03などの導電性酸化物およびこれらの混合物、 化学量論的組成式: B i 2 S r 2C a n i C u n O 2 n + 4で示される B S C C o (ビスマス ' ス ト口ンチウム · カノレシゥム ' 力ッノ 一 ·ォキサ ィ ド)、 化学量論的組成式: YB a 2C u 307— δで示される YB CO (イッ トリ ウム ' ビスマス ' カッパ一 ' オキサイ ド) などの酸化物超 伝導体によって、 支持基板 2を形成してもよい。 本発明において、 ル テニゥム (R u)、 ロジウム (R h)、 パラジウム (P d)、 イリジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u)、 ニッゲル (N i ) など の金属およびこれらを主成分とする合金によって、 支持基板を形成す る場合には、 支持基板 2は、 白金 (P t ) によって、 支持基板を形成 する場合と同様に、 作製することができる。 一方、 単結晶の導電性酸 化物、 導電性酸化物の混合物あるいは酸化物超伝導体によって、 支持 基板 2を形成する場合には、 導電性酸化物、 導電性酸化物の混合物あ るいは酸化物超伝導体の単結晶が [00 1 ] 方位に配向されている面 を選択して、 導電性酸化物、 導電性酸化物の混合物あるいは酸化物超 伝導体の単結晶を切り出すことによって、 [00 1 ]方位に配向された 支持基板 2を形成することができる。 さらに、 多結晶の導電性酸化物、 導電性酸化物の混合物あるいは酸化物超伝導体によって、 支持基板 2 を形成する場合には、 導電性酸化物、 導電性酸化物の混合物あるいは 酸化物超伝導体の多結晶の粒子を、 ホッ トフォージング法ゃホッ トプ レス法などのホッ トワーキング法によって、 [0 0 1 ]方位に配向させ、
[0 0 1 ] 方位に配向されている面を選択して、 導電性酸化物、 導電 性酸化物の混合物あるいは酸化物超伝導体の多結晶を切り出すことに よって、 [00 1 ]方位に配向された支持基板 2を形成することができ る。 導電性酸化物、 導電性酸化物の混合物あるいは酸化物超伝導体の 多結晶の粒子を、 ホッ トフォージング法ゃホッ トプレス法などのホッ トヮ一キング法によって、配向させた場合に、 [0 0 1 ]方位への配向 度 、 すなわち、 c軸配向度 が 9 0 %以上であるときは、 そのまま、 支持基板 2として利用することができる。
また、 前記実施態様においては、 積層体ュニッ ト 1は、 支持基板 2 上に、 ビスマス層状化合物の化学量論的組成式において、 /π= 4、 3=B i 2 + S r とした化学量論的組成式 : S r B i 4T i 4O15で表 わされる組成を有するビスマス層状化合物を含む誘電体材料によって 形成された誘電体層 3を備えているが、 支持基板 2上に、 ビスマス層 状化合物の化学量論的組成式において、 n= 4、 A3=B i 2+ S r と した化学量論的組成式: S r B i 4T i 4Oi 5で表わされる組成を有す るビスマス層状化合物を含む誘電体材料によって、 誘電体層 3を形成 することは必ずしも必要でなく、 mが 4以外のビスマス層状化合物を 含む誘電体材料によって、誘電体層 3を形成することもでき、 さらに、 構成元素を異にする他のビスマス層状化合物を含む誘電体材料によつ て、 誘電体層 3を形成することもできる。
さらに、 前記実施態様においては、 積層体ユニッ ト 1の誘電体層 3 ま、 有機金属分角旱法 (.metal - organic decomposition: MOD) に よって形成されているが、 誘電体層 3を、 有機金属分解法によって形 成することは必ずしも必要でなく、 真空蒸着法、 スパッタ リ ング法、 パルス レーザー蒸着法 (P L D)、 有機金属化学気相成長法 (metal- organic chemical vapor deposition: M O C V D )、 ンノレ · グノレ法なと の他の液相法 (C S D法) などの他の薄膜形成法によって、 誘電体層 3を形成することもできる。
また、 前記実施態様においては、 積層体ユニッ ト 1は、 薄膜コンデ ンサの構成部品として、 用いられているが、 積層体ユニッ ト 1は、 薄 膜コンデンサの構成部品と してだけでなく 、 無機 E L ( inorganic electro-luminescence) 素子を発光させるための積層体ュニッ トと し て用いることもできる。 すなわち、 無機 E L素子を発光させるために は、 支持基板 2と、 無機 E L素子との間に、 絶縁層が必要であるが、 c軸配向性が向上されたビスマス層状化合物を含む誘電体材料よりな る誘電体層 3は高い絶縁性を有しており、 したがって、 誘電体層 3上 に、 無機 E L素子を配置するとともに、 無機 E L素子上に、 別の電極 を配置し、 無機 E L素子に電圧を加えることによって、 無機 E L素子 を、 所望のように、 発光させることが可能になる。
本発明によれば、 小型で、 かつ、 大容量の誘電特性に優れた薄膜コ ンデンサを作製するのに好適であると と もに、 高輝度の無機 E L norganic electro-luminescence)ケノくィスを作製するのに適し 7こ孭 層体ュニッ トを提供することが可能になる。

Claims

請求の範囲
1. 導電性を有し、 かつ、 ビスマス層状化合物を含む誘電体材料をェ ピタキシャル成長させることができる材料によって、 形成され、 少 なく とも表面が [0 0 1 ] 方位に配向された支持基板と、 前記支持 基板上で、 ビスマス層状化合物を含む誘電体材料をェピタキシャル 成長させて、形成され、 [0 0 1 ]方位に配向されたビスマス層状化 合物を含む誘電体材料よりなる誘電体層が積層された積層体ュニッ
2. 前記支持基板が、 白金 (P t )、 ルテニウム (R u)、 ロジウム (R h)、 パラジウム (P d)、 イリジウム ( I r )、 金 (Au)、 銀 (A g)、 銅 (C u) およびニッケル (N i ) お びこれらを主成分とす る合金よりなる群から選ばれた少なく とも一種の材料によって形成 されている請求の範囲第 1項に記載の積層体ユニッ ト。
3. 前記支持基板が、 S r R u 03、 C a R u 03、 S r VO3、 S r C r 03、 S r C o 03、 L a N i 03、 N b ドープ S r T i O3を含 むぺロブスカイ ト構造を有する導電性酸化物およびこれらの混合物 ならびに組成式: B i 2 S r 2C a n i C u n O 2 n + 4で表わされる B S C CO (ビスマス · ス トロンチウム · カルシウム · カッパ一 'ォ キサイ ド) および組成式 : YB a 2C u 307— δで表わされる ΥΒ CO (イッ トリ ウム ' ビスマス ' 力ッパー · ォキサイ ド) を含む C u O 2面を有する銅酸化物超伝導体よりなる群から選ばれた少なく とも一種の単結晶材料によって形成されている請求の範囲第 1項に 記載の積層体ュニッ ト。
4. 前記支持基板が、 前記単結晶材料を、 [0 0 1 ] 方位に配向された 面で、 切断することによって、 形成されている請求の範囲第 3項に 記載の積層体ユニッ ト。
5. 前記支持基板が、 S r R u O3、 C a R u〇 3、 S r VO3、 S r C r O 3、 S r C o O 3、 L a N i 03、 N b ドープ S r T i 03を含 むべロブスカイ ト構造を有する導電性酸化物およびこれらの混合物 ならびに組成式: B i 2 S r 2 C a n i C ii nOs n + 4で表わされる B S C CO (ビスマス . ス トロンチウム ' カルシウム ' カツパー · ォ キサイ ド) および組成式 : Y B a 2C u 3O7— Sで表わされる Y B CO (イッ トリ ウム · ビスマス · 力ッパ一 ·ォキサイ ド) を含む C u O 2面を有する銅酸化物超伝導体よりなる群から選ばれた少なく とも一種の多結晶材料を、 [ 0 0 1 ]方位に配向して、形成されてい る請求の範囲第 1項に記載の積層体ュニッ ト。
6. 前記支持基板が、 前記多結晶材料を、 [ 0 0 1 ] 方位に配向された 面で、 切断することによって、 形成されている請求の範囲第 5項に 記載の積層体ユニッ ト。
7. 前記支持基板が、 前記多結晶材料を、 配向度が 9 0 %以上になる ように、 [0 0 1 ]方位に配向させて、形成されている請求の範囲第 5項に記載の積層体ュニッ ト。
8. 前記誘電体層が、 組成式 : (B i 2O 2) 2 + (Am_1 Bm03 a+ 1) 2一、 あるいは、 B i mO 3m+ 3で表わされる組成を有する ビスマス層状化合物 (記号 は正の整数であり、 記号^ は、 ナトリ ゥム (N a )、 カリ ウム (K:)、 鉛 (P b )、 ノくリ ウム (B a )、 ス ト 口ンチウム (S r )、 カルシウム (C a ) およびビスマス (B i ) 力 らなる群より選ばれる少なく とも 1つの元素であり、 記号 は、 鉄 (F e )、 コバル ト (C o )、 ク ロム (C r )、 ガリ ウム (G a )、 チ タン (T i )、 ニオブ (N b )、 タンタル (T a )、 アンチモン (S b )、 マンガン (Mn)、 バナジウム (V)、 モリブデン (M o ) およびタ ングステン (W) からなる群より選ばれる少なく とも 1つの元素で ある。 記号^ および Zまたは^を 2つ以上の元素で構成する場合、 それらの比率は任意である。)を含んでいる請求の範囲第 1項に記載 の積層体ュニッ ト。
9. 導電性を有し、 かつ、 ビスマス層状化合物を含む誘電体材料をェ ピタキシャル成長させることができる材料によって、 形成され、 少な く とも表面が [00 1 ] 方位に配向された支持基板と、 前記支持基板 上で、 ビスマス層状化合物を含む誘電体材料をェピタキシャル成長さ せて、形成され、 [00 1 ]方位に配向されたビスマス層状化合物を含 む誘電体材料よりなる誘電体層が積層された積層体ュ-ッ 卜と、 上部 電極層とを備えた薄膜コンデンサ。
PCT/JP2004/008664 2003-06-12 2004-06-14 積層体ユニット WO2004112056A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005507013A JPWO2004112056A1 (ja) 2003-06-12 2004-06-14 積層体ユニット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/460,763 2003-06-12
US10/460,763 US6930875B2 (en) 2003-06-12 2003-06-12 Multi-layered unit

Publications (1)

Publication Number Publication Date
WO2004112056A1 true WO2004112056A1 (ja) 2004-12-23

Family

ID=33511077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008664 WO2004112056A1 (ja) 2003-06-12 2004-06-14 積層体ユニット

Country Status (3)

Country Link
US (1) US6930875B2 (ja)
JP (1) JPWO2004112056A1 (ja)
WO (1) WO2004112056A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598871A1 (en) * 2003-02-27 2005-11-23 TDK Corporation Thin-film capacitative element and electronic circuit or electronic equipment including the same
KR100561840B1 (ko) * 2003-07-09 2006-03-16 삼성전자주식회사 전극층, 이를 구비하는 발광소자 및 전극층 제조방법
KR100576849B1 (ko) * 2003-09-19 2006-05-10 삼성전기주식회사 발광소자 및 그 제조방법
WO2007010768A1 (ja) * 2005-07-15 2007-01-25 Murata Manufacturing Co., Ltd. コンデンサおよびその製造方法
US8184426B2 (en) * 2006-12-25 2012-05-22 National Institute For Materials Science Dielectric element and method for producing the dielectric element
US20110082045A1 (en) * 2009-10-02 2011-04-07 Gilbert Douglas J Extremely low resistance materials and methods for modifying and creating same
US8211833B2 (en) * 2010-06-04 2012-07-03 Ambature, Llc Extremely low resistance composition and methods for creating same
WO2011041766A1 (en) * 2009-10-02 2011-04-07 Ambature L.L.C. High temperature superconducting films and methods for modifying and creating same
US8404620B2 (en) * 2011-03-30 2013-03-26 Ambature, Llc Extremely low resistance compositions and methods for creating same
CN104538539B (zh) * 2014-12-25 2017-06-27 内蒙古科技大学 一种电卡效应致冷复合厚膜材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132615A (ja) * 1990-09-25 1992-05-06 Hokuriku Electric Ind Co Ltd ビスマス層状構造化合物薄膜の製造方法
JPH08330304A (ja) * 1995-03-30 1996-12-13 Sony Corp 酸化物膜成膜方法、半導体装置の製造方法、並びに超伝導体薄膜の成膜方法
JPH0974169A (ja) * 1995-09-05 1997-03-18 Toshiba Corp 薄膜キャパシタ
JPH11103024A (ja) * 1997-09-29 1999-04-13 Hitachi Ltd 強誘電体素子および半導体装置
JP2003151976A (ja) * 2001-08-28 2003-05-23 Tdk Corp 高誘電率絶縁膜、ゲート絶縁膜および半導体装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000A (en) * 1841-03-12 Improvement in the manufacture of starch
US56A (en) * 1836-10-15 Dock-plate
US11A (ja) * 1836-08-10
US5A (en) * 1836-08-10 Thomas blancharjq
JPS56144523A (en) 1980-04-11 1981-11-10 Tdk Electronics Co Ltd Method of manufacturing laminated capacitor
US5206788A (en) * 1991-12-12 1993-04-27 Ramtron Corporation Series ferroelectric capacitor structure for monolithic integrated circuits and method
JPH05335174A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品
JPH05335173A (ja) 1992-05-28 1993-12-17 Murata Mfg Co Ltd 積層セラミック電子部品及びその製造方法
US5248564A (en) 1992-12-09 1993-09-28 Bell Communications Research, Inc. C-axis perovskite thin films grown on silicon dioxide
US5426075A (en) * 1994-06-15 1995-06-20 Ramtron International Corporation Method of manufacturing ferroelectric bismuth layered oxides
KR100199095B1 (ko) 1995-12-27 1999-06-15 구본준 반도체 메모리 셀의 캐패시터 구조 및 그 제조방법
JP3193302B2 (ja) 1996-06-26 2001-07-30 ティーディーケイ株式会社 膜構造体、電子デバイス、記録媒体および強誘電体薄膜の製造方法
JP3195265B2 (ja) * 1997-01-18 2001-08-06 東京応化工業株式会社 Bi系強誘電体薄膜形成用塗布液およびこれを用いて形成した強誘電体薄膜、強誘電体メモリ
JP3472087B2 (ja) 1997-06-30 2003-12-02 Tdk株式会社 膜構造体、電子デバイス、記録媒体および酸化物導電性薄膜の製造方法
US5994276A (en) 1997-09-08 1999-11-30 Mcmaster University Composite high Tc superconductor film
JP3549715B2 (ja) * 1997-10-15 2004-08-04 日本電気株式会社 Bi層状強誘電体薄膜の製造方法
US6096343A (en) 1997-10-27 2000-08-01 Gerhard Gergely Instant calcium/soybean granules, their use and process for their preparation
JPH11214245A (ja) 1998-01-23 1999-08-06 Murata Mfg Co Ltd 薄膜積層コンデンサおよびその製造方法
JP4228437B2 (ja) 1998-10-21 2009-02-25 株式会社村田製作所 薄膜積層コンデンサおよびその製造方法
US6566698B2 (en) * 2000-05-26 2003-05-20 Sony Corporation Ferroelectric-type nonvolatile semiconductor memory and operation method thereof
JP2003209179A (ja) 2002-01-15 2003-07-25 Fujitsu Ltd 容量素子及びその製造方法
JP4036707B2 (ja) * 2002-08-12 2008-01-23 三洋電機株式会社 誘電体素子および誘電体素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132615A (ja) * 1990-09-25 1992-05-06 Hokuriku Electric Ind Co Ltd ビスマス層状構造化合物薄膜の製造方法
JPH08330304A (ja) * 1995-03-30 1996-12-13 Sony Corp 酸化物膜成膜方法、半導体装置の製造方法、並びに超伝導体薄膜の成膜方法
JPH0974169A (ja) * 1995-09-05 1997-03-18 Toshiba Corp 薄膜キャパシタ
JPH11103024A (ja) * 1997-09-29 1999-04-13 Hitachi Ltd 強誘電体素子および半導体装置
JP2003151976A (ja) * 2001-08-28 2003-05-23 Tdk Corp 高誘電率絶縁膜、ゲート絶縁膜および半導体装置

Also Published As

Publication number Publication date
JPWO2004112056A1 (ja) 2006-09-07
US6930875B2 (en) 2005-08-16
US20040252440A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US6876536B2 (en) Thin film capacitor and method for fabricating the same
US20070279838A1 (en) Composition for Thin Film Capacitive Device, Insulating Film With High Delectric Constant, Thin Film Capacitive Device, Thin-Film Laminated Capacitor and Process for Producing Thin Film Capacitive Device
JPWO2003021606A1 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
EP1598872A1 (en) High dielectric constant insulating film, thin-film capacitive element, thin-film multilayer capacitor, and method for manufacturing thin-film capacitive element
US6891714B2 (en) Multi-layered unit including electrode and dielectric layer
WO2004112056A1 (ja) 積層体ユニット
JP3856142B2 (ja) 薄膜容量素子用組成物、高誘電率絶縁膜、薄膜容量素子および薄膜積層コンデンサ
US6977806B1 (en) Multi-layered unit including electrode and dielectric layer
TWI234174B (en) Thin film capacitive element, and electronic circuit and electronic device including the same
JP4761106B2 (ja) 積層体ユニットおよび薄膜容量素子
US6958900B2 (en) Multi-layered unit including electrode and dielectric layer
US6788522B1 (en) Multi-layered unit including electrode and dielectric layer
JP2004165370A (ja) 電源ノイズ低減用薄膜コンデンサ
WO2004077462A1 (ja) 電極層および誘電体層を含む積層体ユニット
WO2004077561A1 (ja) 電極層および誘電体層を含む積層体ユニット
WO2004077563A1 (ja) 電極層および誘電体層を含む積層体ユニット
WO2004077564A1 (ja) 薄膜容量素子ならびにそれを含んだ電子回路および電子機器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507013

Country of ref document: JP

122 Ep: pct application non-entry in european phase