WO2004109181A2 - Vorrichtung mit einer räumlichkeit zur aufnahme von hyperpolarisiertem edelgas - Google Patents

Vorrichtung mit einer räumlichkeit zur aufnahme von hyperpolarisiertem edelgas Download PDF

Info

Publication number
WO2004109181A2
WO2004109181A2 PCT/DE2004/000962 DE2004000962W WO2004109181A2 WO 2004109181 A2 WO2004109181 A2 WO 2004109181A2 DE 2004000962 W DE2004000962 W DE 2004000962W WO 2004109181 A2 WO2004109181 A2 WO 2004109181A2
Authority
WO
WIPO (PCT)
Prior art keywords
pfa
noble gas
hyperpolarized
polyimide
catheter
Prior art date
Application number
PCT/DE2004/000962
Other languages
English (en)
French (fr)
Other versions
WO2004109181A3 (de
Inventor
Stephan Appelt
Daniel Gembris
Jürgen HESSER
Horst Halling
Richard Patzak
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2004109181A2 publication Critical patent/WO2004109181A2/de
Publication of WO2004109181A3 publication Critical patent/WO2004109181A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0697Special properties of materials for vessel walls comprising nanoparticles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/228Assembling processes by screws, bolts or rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/07Hyperpolarised gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/031Not under pressure, i.e. containing liquids or solids only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/031Not under pressure, i.e. containing liquids or solids only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0527Superconductors
    • F17C2270/0536Magnetic resonance imaging

Definitions

  • the invention relates to a device with a space for receiving hyperpolarized noble gas.
  • the invention also relates to the use of PFA and / or polyimide compounds for such a device.
  • the object of the invention is to provide a device with which the hyperpolarization of noble gases, in particular of hyperpolarized 129 xenon, can be obtained over a longer period of time.
  • the device has a space for receiving hyperpolarized noble gas, which at least partially, preferably completely, has PFA and / or polyimide compounds at the points which are in contact with the hyperpolarized noble gas.
  • the device can therefore also have a space which consists partly of PFA and partly of polyimide compounds.
  • hyperpolarized noble gas includes 129 xenon.
  • the relaxation times of other hyperpolarized noble gases can also be extended by the compounds according to the invention.
  • Form I (Formula I) referred to as basic units.
  • the PFA connections advantageously also have excellent dielectric properties and can be used in a very wide temperature range (approx. -200 ° C to 260 ° C).
  • Polyimides are understood to be polymers with imide groups as essential structural units of the main chain. According to formulas II and III, the imide groups can exist as linear or cyclic units:
  • polyimides are generally also referred to as polymers which, in addition to imide groups, also contain amide (polyamideimides), ester (polyesterimides) and ether groups (polyetherimides) as constituents of the main chain.
  • Polyimides are advantageous and are also resistant to high temperatures. They are characterized by high strength in a wide temperature range (-240 to 370 C °), high heat resistance (up to 360 C °), high application temperatures (250-320 C °), thermostability and. Flame retardancy. Another advantageous property is the resistance to dilute alkalis and acids, solvents, fats and oils. Particularly high polyimides Thermostability are the poly (bismalein imides) of formula IV.
  • Hydrogen-free type V polyimides based on pyrazine tetracarboxylic anhydride and diaminothiadiazole have very high oxidation stability and are stable in air up to 600 ° C.
  • PFA and / or polyimide compounds can be used for devices according to the invention, such devices advantageously maintaining the hyperpolarization of the noble gases over comparatively long periods of time.
  • the hyperpolarization is maintained for over 10 minutes (Tl relaxation time, decrease in longitudinal magnetization to 1 / e).
  • Tl relaxation time decrease in longitudinal magnetization to 1 / e.
  • the hyperpolarization of other noble gases is also evident extended.
  • the hyperpolarized noble gases can be used for imaging processes over the period of time mentioned, that is to say long compared to the prior art.
  • Such devices are among other things for the generation, storage and / or transport of hyperpolarized noble gases such.
  • All devices are meant without restriction, which are suitable for the generation, storage and / or transport of hyperpolarized noble gases such as 129 xenon and which are in direct contact with them.
  • Storage in particular also means storage in appropriately designed PFA and / or polyimide containers, eg. B. bottles, storage vessels and so on. Embodiments are conceivable, such as. B.
  • PFA bottles with septa that maintain the hyperpolarization of noble gases.
  • PFA for the transport of hyperpolarized 129 xenon z.
  • PFA for the transport of hyperpolarized 129 xenon z.
  • PFA for the transport of hyperpolarized 129 xenon z.
  • PFA as material for a hose and of course the hose itself, in which the hyperpolarized noble gas is directed to a location to be examined or to a sample.
  • Such a tube can also be designed particularly advantageously as a catheter, through the inner cavity of which a hyperpolarized noble gas and in particular hyperpolarized 129 xenon is passed to a specific examination site inside a human or animal body.
  • the inner coating of the catheter comes with the noble gas to be transported, such as. B. hyperpolarized 129 xenon, in contact.
  • an inner coating of the catheter made of PFA advantageously has the effect that the noble gas and in particular the hyperpolarized 129 xenon are practically loss-free at the site of the examination, e.g. B. into a heart or other organ.
  • Such a catheter conducts hyperpolarized noble gas such as 129 xenon practically without loss, that is, without depolarization, directly to the examination area or to the field-of-view in magnetic resonance tomography examinations.
  • the noble gas dissolves in the tissue or in the blood vessel walls (e.g. artery walls) and can be detected by magnetic resonance imaging.
  • Such catheters are particularly suitable for radiation-free cardiac catheterizations.
  • 3D PTCA examinations percutaneous transluminal coronary angioplasty
  • PTCA examinations for reducing the radiation dose have hitherto been carried out with limited visual control, which easily leads to perforation of the veins.
  • the catheter advantageously has a smooth inner coating and / or surface, which is possible when using PFA as the material for the tubular part of the catheter.
  • a catheter has an inner diameter of approximately 0.36 millimeters.
  • the catheter or tube or the probe has a biocompatible outer cover.
  • a biocompatible outer cover This is to be understood as an outer shell made of a material that is in veins, in the memory tube, and generally does not lead to any allergic or other negative side effects or reactions in the body for the patient or for an animal.
  • the devices mentioned have a multilayer structure.
  • a PFA catheter can be combined with other advantageous features for cardiac examinations. These include z. B. Understand guide wires, stents and balloons for the dilatation of coronary arteries.
  • the guide wire advantageously comprises a material that leads to a visible contrast in a magnetic resonance tomograph.
  • the guide wire can in particular consist of titanium.
  • -Pipe with a larger inner diameter than a catheter for cardiac examinations should be chosen, since the access diameters are usually larger for gastrointestinal examinations.
  • PFA and polyimide compounds can also be selected particularly advantageously as materials for connecting means, for. B. to connect a catheter to an output of a (storage) vessel or a polarizer with hyperpolarized noble gases.
  • ball valves, pipe connections, union nuts, blind plugs, reducing screw connections, angle screw connections, screw-in screw connections and other connecting means such as connecting pieces, flanges and so on, selected from the PFA and / or polyimide connections, in particular as components for polarizers, in order to ensure the hyperpolarization of the noble gas over comparatively long periods of time.
  • a PFA tube as the device according to the invention can be designed particularly advantageously so that it can withstand a high vacuum, so that a polarizer can be evacuated before polarization.
  • the polarizer is evacuated to reduce the oxygen content, which would otherwise lead to a decrease in the hyperpolarization of the noble gas.
  • Hoses in polarizers designed in this way advantageously bring about miniaturization and, as a result, a price reduction of the polarizers. There is no need for inflexible and expensive stainless steel cables in the polarizer.
  • PFA tubes are also particularly advantageous as connections to a polarizer.
  • the hose should withstand pressures of at least seven bar, such as occur in the hyperpolarization of noble gases.
  • the gaseous noble gas or a noble gas dissolved in a liquid can be transported with a high density, so that more noble gas is transported per unit of time.
  • hyperpolarized noble gas as a contrast agent can be dissolved in a suitable solution which maintains the polarization of the hyperpolarized noble gas.
  • a suitable solution which maintains the polarization of the hyperpolarized noble gas.
  • noble gas e.g. B. 129 xenon
  • ethanol e.g. ethanol
  • hyperpolarized 129 xenon dissolved in ethanol to achieve a higher density, since more hyperpolarized 129 xenon can be dissolved in ethanol at room / body temperature and normal pressure.
  • the relaxation of such noble gases dissolved in accompanying solutions is reduced because the probability of wall contact then decreases due to less diffusion. It is also advantageous that the hose is prevented from bursting in the case of hoses of this type.
  • Polyimide compounds can also be used for devices for storing and transporting polarized 129 xenon. In this way, the advantages of these substances can be used for this purpose.
  • the polyimide vespel as a connecting means for connections to polarizers advantageously has the effect that hyperpolarized noble gases, in particular hyperpolarized 129 xenon, retain their polarization for a sufficiently long time and can be introduced into devices made of PFA with little loss.
  • the devices should have small amounts, if any, of paramagnetic material and even smaller amounts of ferromagnetic material.
  • Magnetic resonance examinations eg. B. Magnetic resonance imaging in question.
  • the term lossless here means that the Tl time is significantly longer than the transit time of the noble gas through the device. In the best case, hyperpolarized noble gas is transported through the device without demonstrable loss of polarization.
  • An MR tomograph means a system for the spatial detection of spin polarization.
  • B. also a corresponding SQUID-based system in the low field area.
  • a detection system based on microcoils is also conceivable.
  • the devices mentioned have at least one micro-coil for the detection of magnetic resonance signals.
  • a catheter can have at least one micro coil.
  • microcoils are used to record magnetic resonance spectra with high resolution in time.
  • Micro coils are usually made of copper.
  • the microcoil (s) are attached to the outer skin of the catheter, e.g. B. glued. They can be surrounded by a biocompatible outer shell.
  • the microcoil sends signals that cause transverse magnetization of the noble gas.
  • the decrease in the transverse magnetization of the hyperpolarized noble gas is measured by the micro coil over time. After Fourier transformation, a spectrum of the investigated location is obtained and thus information about the molecular structure.
  • Statements about tissue deposits can be made by using e.g. B. hyperpolarized 129 xenon in connection with catheters made of PFA / polyimide also possible without magnetic resonance imaging.
  • One method for maintaining the hyperpolarization of noble gases provides for a device comprising PFA and / or polyimide compounds to be used at the sites which are in contact with the hyperpolarized noble gas during the method.
  • the exemplary embodiment relates to a tubular catheter made of PFA, which is made from a connecting means
  • ® polyimide e.g. B. Vespel and additionally PFA connections can be connected directly to a device for hyperpolarization of noble gases.
  • the catheter tube 7 has an inside diameter of% inches and at one end a connecting means consisting of the elements 2 to 6.
  • the catheter is thus connected to a device for hyperpolarization of 19 xenon or a storage vessel with hyperpolarized xenon gas.
  • the connecting means for a catheter 7 to a glass tube component 1 of a polarization tors or a storage unit made of glass comprises the following elements:
  • Catheter 7 is attached to an X A inch screw fitting 6, e.g. B. attached to a PFA screw 6.
  • Tube 5 At the opposite end of the pipe fitting 6, a pipe 5 made of Vespel with a% inch outer diameter is attached. Tube 5 in turn has at its opposite end an increase in the outside diameter to 9.35 mm. Behind the wall thickening of tube 5, the union part of a nut 4 (outside diameter: 20 mm) with an internal fine thread (1 mm pitch) reaches from the outside on the opposite side. Nut 4 is made of Vespel or another polyimide. About the nut 4, the tube 5 is a 9 mm
  • the threaded piece 2 made of Vespel is glued to the glass tube 1 with an adhesive which maintains the hyperpolarization of noble gases and is screwed into the nut 4 to seal the connection to the tube 5.
  • the tube 5 is an alkali resistant O-ring 3 made of ethylene propylene (EP) screwed against the glass tube 1 and thus sealed.
  • EP ethylene propylene
  • connection means 2 to 6 are designed as part of the catheter.
  • the connection means 2 to 6 can also be present in this or modified form as a component of a polarizer.
  • PFA hoses are particularly advantageously arranged in the polarizer for the transport of the noble gases, since they are flexible and can replace stainless steel lines.
  • the 9 mm glass tube 1 represents the outlet of a vessel with hyperpolarized xenon or a hyperpolarizer.
  • a polarizer has a so-called glass cell in which the polarization process takes place by means of lasers.
  • the glass tube 1 represents the output of such a glass cell, via which the polarized 129 xenon is conducted out of the polarizer or storage vessel.
  • Polarized 129 xenon is generated and accumulated using rubidium and a laser, which optically pumps the rubidium in the glass cell of the polarizer.
  • the hyperpolarized 129 xenon is transported to a storage unit via PFA hoses and connecting means according to the invention, and is dissolved there in a solvent.
  • Perflurocarbon, perfluorinated compounds, lipophilic substances such as edible oil, and alcohols such as ethanol, benzene, toluene and their deuterated variants are suitable as solvents.
  • the substances are chosen so that they have a high gas solubility for hyperpolarized 129 xenon and other noble gases.
  • the solvent can be injected by means of a syringe through a membrane embedded in the storage vessel.
  • the dissolved xenon can then by means of a catheter or a syringe made of PFA and / or polyimide to the target location, e.g. B. in the heart, gastrointestinal tract or the mouth / throat to teeth and visualized by magnetic resonance imaging.
  • the surprising discovery was made that over a path length of two meters in a PFA tube with an inner diameter of two millimeters, no loss of hyperpolarization of 129 xenon occurred at the outlet of the tube. In comparison, a loss of 10% already occurred at the exit of a 20 cm long glass tube with the same test conditions and identical flow conditions. This underlines the excellent properties of the material compared to glass, stainless steel, titanium and so on.
  • a PFA tube can hold 129 xenon over 10 minutes without a loss of hyperpolarization of the noble gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung mit einer Räum­lichkeit zur Aufnahme von hyperpolarisiertem Edelgas. Die Vorrichtung umfasst an den Stellen, die mit dem Edelgas in Kontakt stehen, zumindest teilweise PFA­ -und/oder Polyimid-Verbindungen. Die Erfindung betrifft zudem die Verwendung von PFA und Polyimid für Vorrichtungen, für derartige Vorrichtun­gen, wobei diese mit den polarisierten Edelgasen, ins­besondere mit 129Xenon in Kontakt stehen. Die Erfindung betrifft insbesondere einen Katheter (7), umfassend PFA(Perfluor-Alkoxy-Polymer)-Verbindungen und/oder Polyimid-Verbindungen und/oder Verbindungsmit­tel (2, 3, 4, 5, 6) aus PFA und/oder Polyimid für einen Anschluß 1 an einen Polarisator und/oder ein Speicher­ gefäß zur Polarisierung von Edelgasen, insbesondere für polarisiertes 129Xenon.

Description

B e s c h r e i b u n g
Vorrichtung mit einer Räumlichkeit zur Aufnahme von hyperpolarisiertem Edelgas
Die Erfindung betrifft eine Vorrichtung mit einer Räumlichkeit zur Aufnahme von hyperpolarisiertem Edelgas. Die Erfindung betrifft zudem die Verwendung von PFA- und/oder Polyimid-Verbindungen für eine derartige Vorrichtung.
Aus der Druckschrift DE 199 27 159 Cl ist bekannt, eine Vorrichtung zur Polarisation von Edelgasen insbesondere mit Verbindungsmitteln aus Glas und/oder Edelstahl zu versehen. Edelstahl weist für die Depolarisierung der polarisierten Edelgas-Atome nachteilig jedoch nur Zeiten in der Größenordnung von Sekunden auf und kann Magnetresonanz-Messungen stören. Glas weist zwar (T1-) Re- laxationszeiten in der Größenordnung von Minuten auf, jedoch nachteilig eine mangelnde mechanische Flexibilität.
Es ist bekannt, dass polarisierte 129Xenon-Atome schon durch Stoß gegen die Begrenzungsflächen eines Polarisa- tors sehr rasch ihre Hyperpolarisation verlieren.
Aufgabe der Erfindung ist es, eine Vorrichtung bereit zu stellen, mit der die Hyperpolarisation von Edelgasen, insbesondere von hyperpolarisiertem 129Xenon über einen längeren Zeitraum erhalten werden kann. Erfindungsgemäß weist die Vorrichtung eine Räumlichkeit zur Aufnahme von hyperpolarisiertem Edelgas auf, die an den Stellen, die mit dem hyperpolarisierten Edelgas in Kontakt stehen zumindest teilweise, vorzugsweise voll- ständig PFA- und/oder Polyimidverbindungen aufweist .
Die Vorrichtung kann also auch eine Räumlichkeit aufweisen, die zum Teil aus PFA- und zum Teil aus Polyimid-Verbindungen besteht .
Als hyperpolarisiertes Edelgas ist unter anderem 129Xenon gemeint. Es können aber auch die Relaxationszeiten anderer hyperpolarisierter Edelgase durch die erfindungsgemäßen Verbindungen verlängert werden.
Durch derartige Vorrichtungen, die die Aufrechterhaltung der Hyperpolarisation des Edelgases gewährleisten, ist es möglich, dieses auch an schwer zugängliche Orte wie z. B. in das Innere menschlicher oder tierischer Körper zu transportieren und mittels bildgebender Verfahren für diagnostische und/oder therapeutische Zwecke zu nutzen.
Mit PFA-Verbindungen werden hier allgemein Copolymere mit Gruppierungen wie
-CF2—CF2—C-CF2
I C1-CnF2n+ 1
(Formel I) als Grundeinheiten bezeichnet. Die PFA-Verbindungen weisen vorteilhaft auch ausgezeichnete dielektrische Eigenschaften auf und sind in einem sehr weiten Temperaturbereich (ca. -200 C° bis 260 C°) einsetzbar.
Als Polyimide werden Polymere mit Imid-Gruppen als wesentliche Struktureinheiten der Hauptkette verstanden. Die Imid-Gruppen können entsprechend den Formeln II bzw. III als lineare oder cyclische Einheiten vorliegen:
Figure imgf000004_0001
(Formel I I ) ( Formel I I I )
Als Polyimide werden im Rahmen der Erfindung allgemein auch Polymere bezeichnet, die neben Imid- auch Amid- (Polyamidimide) , Ester- (Polyesterimide) und Ether- Gruppen (Polyetherimide) als Bestandteile der Hauptkette enthalten.
Polyimide sind vorteilhaft, zudem hochtemperaturbestän- dig. Sie zeichnen sich durch hohe Festigkeit in einem weiten Temperaturbereich (-240 bis 370 C°) , hohe Wärmeformbeständigkeit (bis 360 C°), hohe Anwendungstemperaturen (250-320 C°) , Thermostabilität u. Flammwidrigkeit aus. Eine weitere vorteilhafte Eigenschaft ist die Be- ständigkeit gegen verdünnte Laugen und Säuren, Lösungsmittel, Fette und Öle. Polyimide mit besonders hoher Thermostabilität sind die Poly (bismalein-imide) der Formel IV.
Figure imgf000005_0001
(Formel IV)
Sehr hohe Oxidationsstabilität besitzen Wasserstofffreie Polyimide des Typs V auf der Basis von Pyrazin- tetracarbonsäureanhydrid und Diaminothiadiazol, die an der Luft bis 600 C° beständig sind.
Figure imgf000005_0002
(Formel V)
Es hat sich herausgestellt, dass PFA- und/oder Polyimid-Verbindungen für erfindungsgemäße Vorrichtungen verwendet werden können, wobei derartige Vorrichtungen vorteilhaft die Hyperpolarisation der Edelgase über vergleichsweise lange Zeiträume aufrecht erhalten.
Beispielsweise wird im Falle von hyperpolarisierten 129Xenon-Atomen die Polarisation bis über 10 Minuten (Tl-Relaxationszeit, Abnahme der Longitudinal- Magnetisierung auf 1/e) aufrecht erhalten. Die Hyperpolarisation anderer Edelgase wird ebenfalls deutlich verlängert. Dadurch sind die hyperpolarisierten Edelgase über die genannte Zeitspanne, das heißt lange im Vergleich zum Stand der Technik, für bildgebende Verfahren nutzbar.
Die Relaxationszeiten gelten für einen Durchgang des
Xenons durch ein Rohr aus PFA und/oder Polyimid und einer Durchgangszeit von einigen Sekunden. Eine Depolari- sierung der Atome, wie sie sich im Falle von Edelstahl beispielsweise durch Stoß gegen die Wände der Vorrich- tungen ergibt, wird erheblich reduziert.
Erfindungsgemäß wird somit auch die Verwendung von PFA- und/oder Polyimid-Verbindungen als Materialien für Vorrichtungen zur Aufrechterhaltung der Hyperpolarisation derartiger Edelgase beansprucht.
Derartige Vorrichtungen sind unter anderem zur Erzeugung, zur Lagerung und/oder zum Transport von hyperpolarisierten Edelgasen wie z. B. 129Xenon geeignet.
Es sind alle Vorrichtungen ohne Einschränkung gemeint, die zur Erzeugung, Lagerung und/oder zum Transport von hyperpolarisierten Edelgasen wie 129Xenon geeignet sind und mit diesen in unmittelbarem Kontakt stehen.
Mit Lagerung ist insbesondere auch die Lagerung in entsprechend ausgestalteten PFA- und/oder Polyimid-Be- hältern, z. B. Flaschen, Vorratsgefäßen und so weiter gemeint. Es sind Ausgestaltungen denkbar, wie z. B.
PFA-Flaschen mit Septen, die die Hyperpolarisation von Edelgasen erhalten. Mit der Verwendung von PFA für den Transport von hyperpolarisiertem 129Xenon ist z. B. auch die Verwendung von PFA als Material für einen Schlauch und natürlich der Schlauch selbst gemeint, in dem das hyperpolarisierte Edelgas an einen zu untersuchenden Ort oder an eine Probe geleitet wird.
Ein derartiger Schlauch kann besonders vorteilhaft auch als Katheter ausgeführt sein, durch dessen inneren Hohlraum ein hyperpolarisiertes Edelgas und insbesonde- re hyperpolarisiertes 129Xenon an einen spezifischen Untersuchungsort im Innern eines menschlichen oder tierischen Körpers geleitet wird. Dabei kommt die Innenbe- schichtung des Katheters mit dem darin zu transportierenden Edelgas, wie z. B. hyperpolarisiertem 129Xenon, in Kontakt. Das heißt, dass eine Innenbeschichtung des Katheters aus PFA vorteilhaft bewirkt, dass das Edelgas und insbesondere das hyperpolarisierte 129Xenon praktisch verlustfrei an den Ort der Untersuchung, z. B. in ein Herz oder ein anderes Organ, geleitet werden kann.
Ein solcher Katheter leitet hyperpolarisiertes Edelgas wie 129Xenon praktisch verlustfrei, das heißt ohne Depo- larisation direkt bis zum Untersuchungsgebiet bzw. zum field-of-view bei Magnetresonanz-tomographischen Untersuchungen. Das Edelgas löst sich dort nach Austritt aus dem Katheter entsprechend im Gewebe bzw. in Blutgefäßwänden (z. B. Arterienwänden) und kann durch Magnetresonanz-Tomographie nachgewiesen werden.
Derartige Katheter sind insbesondere für strahlungs- freie Herzkatheterisierungen geeignet. Aus dem Stand der Technik bekannte 3D-PTCA-Untersuchungen (Percutane Transluminare Coronare Angioplastie) werden auf diese Weise ohne Röntgenbelastung und andere negative Begleiterscheinungen, wie allergischer Reaktionen, auf die bisher notwendige Jodbelastung durchführbar. Nach dem Stand der Technik erfolgen bisher PTCA-Untersuchungen zur Reduktion der Strahlendosis mit eingeschränkter visueller Kontrolle, was leicht zu einer Perforation von Adern führt. Die Nachteile der bekannten Verfahren, wie die vergleichsweise hohe Mortalität, die Erfordernis von Bypässen oder Nebenwirkungen durch Jod, können mit erfindungsgemäßen Kathetern aus PFA- und/oder Polyimid- Verbindungen für hyperpolarisierte Edelgase und Magnetresonanz-Untersuchungen in Zukunft ausgeschlossen wer- den.
Der Katheter weist vorteilhaft eine glatte Innenbe- schichtung und/oder Oberfläche auf, was bei Verwendung von PFA als Material für den schlauchförmigen Teil des Katheters möglich ist.
In einer besonders vorteilhaften Ausgestaltung der Erfindung weist ein Katheter einen Innen-Durchmesser von etwa 0,36 Millimeter auf. Mit solch einem Katheter werden therapeutische oder diagnostische Verfahren mittels Magnetresonanz-Tomographie an Herzgefäßen ermöglicht und die Führung des Katheters wesentlich vereinfacht.
In einer weiteren Ausgestaltung der Erfindung weist der Katheter oder Schlauch oder die Sonde eine biokompatible Außenhülle auf. Hierunter ist eine Außenhülle aus einem Material zu verstehen, das in Adern, in der Spei- seröhre, und allgemein im Körper zu keinen allergischen oder andersartig negativen Nebeneffekten oder Reaktionen für den Patienten oder für ein Tier führt. In diesem Falle sind die genannten Vorrichtungen mehrschich- tig aufgebaut .
Ein Katheter aus PFA kann für Herzuntersuchungen mit weiteren vorteilhaften Merkmalen kombiniert werden. Hierunter sind z. B. Führungsdrähte, Stents und Ballone für die Dilatation von Herzkranzgefäßen zu verstehen. Der Führungsdraht umfasst vorteilhaft ein Material, das in einem Magnetresonanz-Tomographen zu einem sichtbaren Kontrast führt . Der Führungsdraht kann insbesondere aus Titan bestehen.
Für Magen-Darm-Untersuchungen kann zum Transport des hyperpolarisierten Edelgases ein PFA-Schlauch oder
-Rohr mit größerem Innendurchmesser gewählt werden, als bei einem Katheter für Herzuntersuchungen, da die Zugangsdurchmesser bei Magen-/Darmuntersuchungen in der Regel größer sind.
PFA- wie auch Polyimid-Verbindungen können besonders vorteilhaft auch als Materialien für Verbindungsmittel gewählt werden, z. B. um einen Katheter an einen Ausgang eines (Speicher-) Gef ßes oder eines Polarisators mit hyperpolarisierten Edelgasen anzuschließen.
In einer weiteren Ausgestaltung der Erfindung werden auch Kugelhähne, Rohrverbindungen, Überwurfmuttern, Blindstopfen, Reduzierverschraubungen, Winkeleinschraubverschraubungen, Einschraubversehraubungen und andere Verbindungsmittel, wie Stutzen, Flansche und so weiter aus den PFA- und/oder Polyimid-Verbindungen, insbesondere als Bestandteile für Polarisatoren, gewählt, um die Hyperpolarisierung des Edelgases über vergleichsweise lange Zeiträume zu gewährleisten.
Ein PFA-Schlauch als erfindungsgemäße Vorrichtung kann besonders vorteilhaft so ausgestaltet sein, dass er ein Hochvakuum aushält, damit ein Polarisator vor der Polarisation evakuiert werden kann. Die Evakuierung des Po- larisators wird zur Reduktion des Sauerstoffgehaltes durchgeführt, der ansonsten zu einer Abnahme der Hyperpolarisation des Edelgases führen würde. Durch so ausgestalte Schläuche in Polarisatoren wird vorteilhaft eine Miniaturisierung und damit einhergehend auch eine preisliche Reduktion der Polarisatoren bewirkt. Auf unflexible und teure Edelstahlleitungen im Polarisator kann verzichtet werden.
PFA-Schläuche sind auch als Anschlüsse an einen Polarisator besonders vorteilhaft. Der Schlauch sollte hierzu Drücke von mindestens sieben bar aushalten, wie sie bei der Hyperpolarisation von Edelgasen auftreten. In diesem Fall kann der Transport des gasförmigen oder in einer Flüssigkeit gelösten Edelgases mit hoher Dichte erfolgen, so dass mehr Edelgas je Zeiteinheit transpor- tiert wird.
Hyperpolarisiertes Edelgas als Kontrastmittel kann hierzu in einer geeigneten Lösung gelöst sein, die die Polarisation des hyperpolarisierten Edelgases erhält . Beispielsweise kann Edelgas, z. B. 129Xenon, in Ethanol gelöst sein, um eine höhere Dichte zu erzielen, da in Ethanol bei Raum-/Körpertemperatur und Normaldruck mehr hyperpolarisiertes 129Xenon gelöst werden kann. Die Re- laxation derartig in Begleitlδsungen gelöster Edelgase wird reduziert, da die Wahrscheinlichkeit des Wandkontaktes dann durch geringere Diffusion abnimmt. Weiterhin vorteilhaft ist, dass bei derartig ausgeführten Schläuchen das Platzen des Schlauches vermieden wird.
Polyimid-Verbindungen lassen sich ebenfalls für Vorrichtungen zur Lagerung und zum Transport von polarisiertem 129Xenon verwenden. Hierdurch können die Vorteile dieser Substanzen zu diesem Zwecke ausgenutzt werden.
® Beispielsweise bewirkt das Polyimid-Vespel als Verbindungsmittel für Anschlüsse an Polarisatoren vorteilhaft, dass hyperpolarisierte Edelgase, insbesondere hyperpolarisiertes 129Xenon, ihre Polarisation ausreichend lange beibehalten und in Vorrichtungen aus PFA Verlust- arm eingeleitet werden können.
Die Vorrichtungen sollten, wenn überhaupt, geringe Mengen paramagnetisches Material, und noch geringere Mengen ferromagnetisches Material aufweisen.
Als bildgebendes Verfahren kommen Magnetresonanzunter- suchungen, z. B. Magnetresonanz-Tomographie in Frage.
Der Begriff verlustfrei bedeutet hierbei, dass die Tl-Zeit deutlich länger ist als die Transitzeit des Edelgases durch die Vorrichtung. Im besten Fall wird hyperpolarisiertes Edelgas ohne nachweisbaren Verlust der Polaristion durch die Vorrichtung transportiert.
Mit MR-Tomograph ist ein System zur räumlichen Erfas- sung von Spin-Polarisation gemeint, also z. B. auch ein entsprechendes SQUID-basiertes System im Niederfeldbereich. Auch ein auf Mikrospulen basierendes Detektions- system ist denkbar.
Es kann sich auch als zweckmäßig erweisen, dass die In- nenbeschichtung eines Katheters oder eines Verbindungs- mittels eines Katheters an einen Polarisator oder eine Speichereinheit als Bestandteil ein Polyimid enthält. Dadurch werden besonders vorteilhaft Magnetresonanz- tomographische Untersuchungen, auch direkt am Herzen, z. B. mittels hyperpolarisierten 129Xenon als Kontrastmittel ermöglicht.
In einer weiteren Ausgestaltung der Erfindung weisen die genannten Vorrichtungen mindestens eine Mikrospule zur Detektion von Magnetresonanzsignalen auf.
Insbesondere ein Katheter kann mindestens eine Mikrospule aufweisen. Mikrospulen werden gemäß Stand der Technik dazu verwendet, um Magnetresonanz-Spektren zeitlich hochaufgelöst aufzunehmen. Mikrospulen bestehen regulär aus Kupfer. Die Mikrospule (n) werden an der Außenhaut des Katheters befestigt, z. B. angeklebt. Sie können von einer biokompatiblen Außenhülle umgeben sein. Die Mikrospule sendet Signale aus, die eine Transversal-Magnetisierung des Edelgases hervorrufen. Die Abnahme der Transversal-Magnetisierung des hyperpolarisierten Edelgases wird durch die Mikrospule über die Zeit gemessen. Nach Fourier-Transformation erhält man ein Spektrum des untersuchten Ortes und somit eine Information über die Molekularstruktur. Aussagen über Gewebeablagerungen sind mittels der Verwendung von z. B. hyperpolarisierten 129Xenon in Verbindung mit Kathetern aus PFA/Polyimid auch ohne Magnetresonanz- tomographische Untersuchungen möglich.
Ein Verfahren zur Aufrechterhaltung der Hyperpolarisation von Edelgasen sieht vor, während des Verfahrens eine Vorrichtung umfassend PFA- und/oder Polyimid- Verbindungen an den Stellen, die mit dem hyperpolarisierten Edelgas in Kontakt stehen, zu verwenden.
Im weiteren wird die Erfindung an Hand eines Ausführungsbeispiels und der beigefügten Figur näher beschrieben.
Das Ausführungsbeispiel betrifft einen schlauchformigen Katheter aus PFA, der über Verbindungsmittel aus einem
® Polyimid, z. B. Vespel und zusätzlich PFA-Verbindungen direkt an eine Vorrichtung zur Hyperpolarisation von Edelgasen angeschlossen werden kann.
Der Katheter-Schlauch 7 weist einen Innen-Durchmesser von %-Zoll und an einem Ende ein aus den Elementen 2 bis 6 bestehendes Verbindungsmittel auf. Damit wird der Katheter an eine Vorrichtung zur Hyperpolarisation von 19Xenon oder einem Vorratsgefäß mit hyperpolarisiertem Xenon-Gas angeschlossen. Das Verbindungsmittel für einen Katheter 7 an ein Glasrohrbauteil 1 eines Polarisa- tors oder einer aus Glas bestehenden Speichereinheit umfasst die folgenden Elemente:
2 Vespel -Gewindestück
3 O-Ring (Ethylenpropylen)
4 Vespel0-Mutter
5 Vespel -Rohr
6 PFA-420-6
7 Katheter: " PFA-Schlauch
Katheter 7 wird an eine XA Zoll Rohverschraubung 6, z. B. an eine PFA-Verschraubung 6 angebracht.
An das gegenüberliegende Ende der Rohrverschraubung 6 ist ein Rohr 5 aus Vespel mit einem % Zoll Außendurchmesser angebracht. Rohr 5 wiederum weist an seinem gegenüberliegenden Ende eine Vergrößerung des Außen- Durchmessers auf 9,35 mm auf. Hinter die Wandverdickung von Rohr 5 greift von außen der Überwurfteil einer Mutter 4 (Außendurchmesser: 20 mm) mit einem Innenfeinge- winde (1 mm Steigung) an der gegenüberliegenden Seite. Mutter 4 besteht aus Vespel oder einem anderen Polyi- mid. Über die Mutter 4 wird das Rohr 5 an ein 9 mm
Glasrohr 1 abgedichtet . Das Gewindestück 2 aus Vespel ist mit einem die Hyperpolarisation von Edelgasen erhaltenden Kleber an das Glasrohr 1 geklebt und wird zum Abdichten der Verbindung an das Rohr 5 in die Mutter 4 geschraubt. Das Rohr 5 wird dabei über einen alkalire- sistenten O-Ring 3 aus Ethylenpropylen (EP) gegen das Glasrohr 1 geschraubt und somit abgedichtet .
In diesem Falle sind die Verbindungsmittel 2 bis 6 als Bestandteil des Katheters ausgeführt. Die Verbindungs- mittel 2 bis 6 können aber auch in dieser oder abgeänderter Form als Bestandteil eines Polarisators vorliegen. Im Polarisator selbst sind PFA-Schläuche besonders vorteilhaft zum Transport der Edelgase angeordnet, da sie flexibel sind und Edelstahlleitungen ersetzen kön- nen.
Das 9 mm Glasrohr 1 stellt den Ausgang eines Gefäßes mit hyperpolarisiertem Xenon oder eines Hyperpolarisa- tors dar. Ein Polarisator weist erfindungsgemäß eine sogenannte Glaszelle auf, in der der Polarisationsvor- gang mittels Lasern stattfindet. Das Glasrohr 1 stellt hier den Ausgang einer solchen Glaszelle dar, über den das polarisierte 129Xenon aus dem Polarisator oder Speichergefäß geleitet wird. Polarisiertes 129Xenon wird dabei mittels Rubidium und eines Lasers, welcher das Ru- bidium in der Glaszelle des Polarisators optisch pumpt, erzeugt und akkumuliert.
Das hyperpolarisierte 129Xenon wird über PFA-Schläuche und erfindungsgemäße Verbindungsmittel in eine Speichereinheit transportiert, und dort in einem Lösungs- mittel gelöst. Als Lösungsmittel kommen Perflurocarbon, perfluorierte Verbindungen, lipophile Substanzen wie Speiseöl, und Alkohole, wie Ethanol, Benzol, Toluol und deren deuterierte Varianten in Frage. Die Substanzen werden so gewählt, dass sie ein hohes Gaslösevermögen für hyperpolarisierte 129Xenon und andere Edelgase aufweisen.
Die Injektion des Lösungsmittels kann mittels einer Spritze durch eine im Speichergefäß eingelassene Memb- ran erfolgen. Das gelöste Xenon kann dann mittels eines Katheters oder einer Spritze aus PFA- und/oder Polyimid an den Zielort, z. B. im Herzen, Magen-Darm-Trakt oder den Mund-/Rachenraum an Zähne transportiert und durch Magnetresonanz-Tomographie sichtbar gemacht werden.
Im Vergleich zu Glas und anderen aus dem Stand der
Technik bisher verwendeten Materialien weist PFA die Eigenschaft auf, die Hyperpolarisation auch über lange Zeiträume von 10 Minuten und länger und über vergleichsweise lange Wege aufrecht zu erhalten.
So wurde im Rahmen der Erfindung die überraschende Erkenntnis gewonnen, dass über eine Weglänge von zwei Metern in einem PFA-Schauch mit einem Innendurchmesser von zwei Millimetern keinerlei Verlust der Hyperpolarisation von 129Xenon am Ausgang des Schlauchs auftrat. Im Vergleich hierzu trat bei gleichen Versuchsbedingungen und identischen Strömungsverhältnissen am Ausgang eines 20 cm langen Glasrohrs bereits ein Verlust von 10 % auf. Dies unterstreicht die hervorragenden Eigenschaften des Materials gegenüber Glas, Edelstahl, Titan und so weiter.
Ein Gefäß aus PFA kann 129Xenon über 10 Minuten aufnehmen, ohne dass ein Verlust der Hyperpolarisation des Edelgases nachweisbar ist.

Claims

P a t e n t a n s p r ü c h e
1. Vorrichtung mit einer Räumlichkeit zur Aufnahme von hyperpolarisiertem Edelgas, dadurch gekennzeichnet, dass die Räumlichkeit an den Stellen, die mit dem hyperpolarisierten Edelgas in Kontakt stehen, zumindest teilweise PFA- und/oder Polyimid- Verbindungen aufweist .
2. Vorrichtung zur Aufrechterhaltung der Hyperpolarisation von Edelgasen, dadurch gekennzeichnet, dass die Vorrichtung an den Stellen, die mit dem hyperpolarisierten Edelgas in Kontakt stehen, zumindest teilweise aus PFA- und/oder Polyimid- Verbindungen besteht .
3. Vorrichtung nach Anspruch 1 oder 2 , dadurch gekenn- zeichnet, dass die Vorrichtung Vespel" als Polyimid- Verbindung umfasst .
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ein Polarisator zur Hyperpolarisation von Edelgasen ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ein Aufbewahrungsgefäß, z. B. ein Speicher, für hyperpolarisiertes Edelgas ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ein Verbindungsmittel (2, 3, 4, 5, 6) ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung ein Schlauch ist .
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der Schlauch eine Wandnenndicke von mindestens einem Millimeter aufweist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung bei Überdruck und/oder im Hochvakuum betrieben werden kann.
10. Vorrichtung nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, dass die Vorrichtung ein medizinisches Gerät ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Vorrichtung ein Katheter (7) ist.
12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass der Katheter (7) einen Schlauch mit einem Innendurchmesser von kleiner als einem Millimeter aufweist .
13. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 12, gekennzeichnet durch eine biokompatible Außenhülle .
14. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 13, dadurch gekennzeichnet, dass die Vorrichtung einen Führungsdraht umfasst, welcher die Polarisation des Edelgases erhält .
15. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die Vorrichtung einen Ballon zur Dilatation von Körpergefäßen aufweist .
16. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 15, dadurch gekennzeichnet, dass die Vorrichtung einen Stent aufweist .
17. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Vorrichtung eine Sonde ist.
18. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 17, dadurch gekennzeichnet, dass die Vorrichtung an einem ihrer Enden geschlossen ist.
19. Vorrichtung nach einem der vorhergehenden Ansprüche 10 bis 18, dadurch gekennzeichnet, dass die Vorrichtung Mittel zur Rückhaltung von Teilen des hyperpolarisierten Edelgases aufweist.
20. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Vorrichtung eine Spritze ist.
21. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese mindestens eine Mikrospule umfasst.
22. Verfahren zur Aufrechterhaltung der Hyperpolarisation von Edelgasen, dadurch gekennzeichnet, dass während des Verfahrens eine Vorrichtung nach einem der vorhergehenden Patentansprüche verwendet wird.
23. Verwendung von PFA- (Perfluor-Alkoxy-Polymere) und/oder Polyimid-Verbindungen für Vorrichtungen mit einer Räumlichkeit zur Aufnahme von hyperpolarisierten Edelgasen.
24. Verwendung von PFA- (Perfluor-Alkoxy-Polymere) und/oder Polyimid-Verbindungen nach Anspruch 23, dadurch gekennzeichnet, dass die Verbindungen direkten Kontakt zum hyperpolarisierten Edelgas haben.
25. Verwendung von PFA- (Perfluor-Alkoxy-Polymere) und/oder Polyimid-Verbindungen nach einem der Ansprüche 23 oder 24 als Materialien für Vorrichtungen zur Erzeugung, Aufbewahrung oder zum Transport von hyperpolarisierten Edelgasen.
PCT/DE2004/000962 2003-05-27 2004-05-08 Vorrichtung mit einer räumlichkeit zur aufnahme von hyperpolarisiertem edelgas WO2004109181A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324365.8 2003-05-27
DE2003124365 DE10324365A1 (de) 2003-05-27 2003-05-27 Vorrichtung mit einer Räumlichkeit zur Aufnahme von hyperpolarisiertem Edelgas

Publications (2)

Publication Number Publication Date
WO2004109181A2 true WO2004109181A2 (de) 2004-12-16
WO2004109181A3 WO2004109181A3 (de) 2005-07-07

Family

ID=33494768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000962 WO2004109181A2 (de) 2003-05-27 2004-05-08 Vorrichtung mit einer räumlichkeit zur aufnahme von hyperpolarisiertem edelgas

Country Status (2)

Country Link
DE (1) DE10324365A1 (de)
WO (1) WO2004109181A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1043064B1 (en) * 2018-10-31 2020-06-02 Stefan Golkowsky Dr "methods and devices for imaging pulmonary and/or cardiac vasculature"

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927159C1 (de) * 1999-06-15 2001-01-04 Forschungszentrum Juelich Gmbh Vorrichtung für die Polarisation von Edelgasen mit einem Verbindungselement für zwei Leitungen, von denen wenigstens eine aus Glas besteht
WO2001070102A2 (en) * 2000-03-20 2001-09-27 Medi-Physics, Inc. Meted hyperpolarized noble gas dispensing methods and associated devices
US20030009126A1 (en) * 1998-06-17 2003-01-09 Zollinger David L. Resilient containers for hyperpolarized gases and associated methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4083702A (en) * 1976-07-19 1978-04-11 The Perkin-Elmer Corporation Chromatographic column fittings
DE3528531A1 (de) * 1985-08-08 1987-02-19 Nk Optik Ges Fuer Elektro Opti Applikationssonde eines strahlungskoagulators und verfahren zu ihrer herstellung
US4976720A (en) * 1987-01-06 1990-12-11 Advanced Cardiovascular Systems, Inc. Vascular catheters
DE69016983T2 (de) * 1989-12-29 1995-07-06 Med Inst Inc Flexibler knickbeständiger Katheter.
JPH085167B2 (ja) * 1992-01-06 1996-01-24 パイロット インダストリーズ、インコーポレイテッド フルオロポリマー複合材料製チューブおよびその製造方法
US5328472A (en) * 1992-07-27 1994-07-12 Medtronic, Inc. Catheter with flexible side port entry
JPH06217988A (ja) * 1993-01-26 1994-08-09 Terumo Corp 血管穿刺器具
CA2566929C (en) * 1995-03-10 2009-04-21 Bard Peripheral Vascular, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
US5609629A (en) * 1995-06-07 1997-03-11 Med Institute, Inc. Coated implantable medical device
US5747128A (en) * 1996-01-29 1998-05-05 W. L. Gore & Associates, Inc. Radially supported polytetrafluoroethylene vascular graft
DE60009387D1 (de) * 1999-06-15 2004-05-06 Medtronic Inc Medizinischer Katheter mit einem Schlauch der abschnittsweise aus Polyetherimide besteht zum Auffüllen eines Ballons
AUPQ646900A0 (en) * 2000-03-27 2000-04-20 Sge International Pty Ltd Metal ferrule for capillary tubing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030009126A1 (en) * 1998-06-17 2003-01-09 Zollinger David L. Resilient containers for hyperpolarized gases and associated methods
DE19927159C1 (de) * 1999-06-15 2001-01-04 Forschungszentrum Juelich Gmbh Vorrichtung für die Polarisation von Edelgasen mit einem Verbindungselement für zwei Leitungen, von denen wenigstens eine aus Glas besteht
WO2001070102A2 (en) * 2000-03-20 2001-09-27 Medi-Physics, Inc. Meted hyperpolarized noble gas dispensing methods and associated devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROSEN ET AL: "Polarized 129Xe optical pumping/spin exchange and delivery system for magnetic resonance spectroscopy and imaging studies" REVIEW OF SCIENTIFIC INSTRUMENTS, Februar 1999 (1999-02), XP002131321 *

Also Published As

Publication number Publication date
DE10324365A1 (de) 2005-01-05
WO2004109181A3 (de) 2005-07-07

Similar Documents

Publication Publication Date Title
DE19983227B4 (de) Überzug zum Sichtbarmachen von medizinischen Einrichtungen bei der magnetischen Resonanz-Abbildung, diesen umfassendes magnetisches Resonanz-Bilderzeugnis-System und Verfahren zum Sichtbarmachen von medizinischen Einrichtungen
DE69820415T2 (de) Verfahren zur bilderzeugung mit magnetischer resonanz
JP3645569B2 (ja) 過分極した貴ガスを利用した磁気共鳴映像化
DE10117752C1 (de) Kernspintomographievorrichtung mit einer Einrichtung zur Bewegungskorrektur
DE102006011242A1 (de) Verfahren zur Rekonstruktion einer 3D-Darstellung
DE102005027951A1 (de) Medizinisches System zur Einführung eines Katheters in ein Gefäß
WO1992011928A1 (de) Darreichungsform für mikrobläschen-echokontrastmittel
EP0856312B1 (de) Verwendung von Trospiumchlorid zur Herstellung eines Arzneimittels zur Behandlung von Blasenkrankheiten
DE60111944T2 (de) Verfahren und vorrichtung zur abgabe dosierter mengen hyperpolarisierten edelgases
DE10003726A1 (de) Vorrichtung zur Untersuchung von Kontrastmittelverläufen unter Einfluss der Gravitation
EP2240546B9 (de) Verfahren zur Herstellung von mit Eisenoxidnanopartikel beschichtete Instrumente für die Invasivmedizin
DE60031128T2 (de) Sonde für die mikrodialyse
WO2004109181A2 (de) Vorrichtung mit einer räumlichkeit zur aufnahme von hyperpolarisiertem edelgas
Jackson et al. In vivo EPR spectroscopy: biomedical and potential diagnostic applications
DE60311142T2 (de) Verfahren für die magnetische resonanzbildgebung
CN1864627A (zh) 对比度增强剂雾化吸入肺部核磁共振成像方法
DE102006034389A1 (de) Katheter zum Einsatz bei Magnet-Resonanz-unterstützten interventionellen Verfahren
DE10000823A1 (de) Einbringen von Gasen in eine Körperflüssigkeit
DE102020120717A1 (de) Medizinprodukte mit sofort ablösbarer dauerhaft proliferationshemmender Beschichtung mit mindestens einer Limus-Substanz sowie Verfahren zur Herstellung
DE10324353A1 (de) Verfahren zum Transport eines hyperpolarisierten Edelgases
DE102020104261A1 (de) Medizinische Vorrichtung und Verfahren zur Erzeugung einer plasmaaktivierten Flüssigkeit
Egorova et al. The Effect of Aqueous Solution of Silver Nanoparticles on Rat Behavior
DE60031973T2 (de) Verfahren zur bilderzeugung durch magnetische resonanz
DE102011006325A1 (de) Verfahren zur Anpassung der Dichte einer Endoskopiekapsel
DE10142394A1 (de) Katheter für NMR-Untersuchungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase