WO2004105436A1 - Procede pour chauffer des composants - Google Patents

Procede pour chauffer des composants Download PDF

Info

Publication number
WO2004105436A1
WO2004105436A1 PCT/DE2004/000812 DE2004000812W WO2004105436A1 WO 2004105436 A1 WO2004105436 A1 WO 2004105436A1 DE 2004000812 W DE2004000812 W DE 2004000812W WO 2004105436 A1 WO2004105436 A1 WO 2004105436A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
heating
laser
turbine blade
radiation
Prior art date
Application number
PCT/DE2004/000812
Other languages
German (de)
English (en)
Inventor
Stefan Oliver Czerner
Klaus Emiljanow
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to US10/556,644 priority Critical patent/US20070017607A1/en
Priority to JP2006529581A priority patent/JP4500815B2/ja
Priority to EP04728098A priority patent/EP1625771B1/fr
Publication of WO2004105436A1 publication Critical patent/WO2004105436A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications

Definitions

  • the invention relates to a method for heating components before and / or during further processing of the same.
  • Components such as turbine blades of gas turbines, must be heated during the production or maintenance of the same in order to carry out a wide variety of machining processes. This warming is also called preheating.
  • so-called surfacing is used in the maintenance of turbine blades.
  • the turbine blades to be welded In connection with cladding, the turbine blades to be welded have to be preheated to a desired process temperature. Reliable build-up welding can only be carried out when the turbine blade to be welded has been heated to the process temperature and is kept at the desired process temperature during build-up welding.
  • inductive systems are used for heating or preheating components.
  • Such inductive systems can be, for example, coils that heat the component based on inductive energy input.
  • the heating or preheating of components by means of inductive systems has the disadvantage that high temperature tolerances of up to 50 ° C. can occur on the component to be heated during the heating or preheating. This inaccurate temperature distribution on the component to be heated is disadvantageous. Furthermore, such inductive systems consume a lot of energy.
  • Another disadvantage of inductive systems is that, when heated or preheated, higher temperatures can occur inside the component than on the surface of the component. This can damage the component.
  • the present invention is based on the problem of creating a novel method for heating components. This problem is solved by a method with the features of claim 1.
  • at least one laser device is used for heating as the energy source.
  • laser devices for heating the component results in faster heating than in the heating methods known from the prior art. Furthermore, the use of laser devices ensures that no higher temperatures occur within the component to be heated than on its surfaces. Furthermore, laser devices have radiation energy with a narrowly definable specific wavelength. As this ensures a defined energy input to the component and advantageously influences the result of the heating of the component.
  • angles of incidence with which the laser beams strike the or each surface of the component to be heated are adapted to the contour of the corresponding surface. This improves the homogeneity of the energy input, in particular in the case of components such as turbine blades which have differently curved surfaces.
  • the heating of the component is measured and, depending on this, the heating is regulated in such a way that the power of the or each laser device is adapted to produce a desired temperature setpoint. This ensures that the desired temperature setpoint is maintained, which is particularly advantageous if the temperature setpoint of the heating is to be maintained over a longer period of time while the component is being processed.
  • Fig. 1 a highly schematic arrangement with a component to be heated
  • Fig. 2 a highly schematic arrangement with a component to be heated
  • Fig. 3 a highly schematic arrangement with a component to be heated
  • Clarification of a third embodiment of the method according to the invention Clarification of a third embodiment of the method according to the invention.
  • FIGS. 1 to 3. 1 to 3 each show different exemplary embodiments of the method according to the invention.
  • FIG. 1 shows a highly schematic of a turbine blade 10 of a high-pressure turbine of an aircraft engine. It is now within the meaning of the present invention to heat the turbine blade 10 of the high-pressure turbine before and / or during further processing thereof.
  • the further processing of the turbine blade 10 can be, for example, so-called build-up welding.
  • At least one laser device is used as the energy source for heating or preheating the component.
  • Diode lasers are preferably used as laser devices. The use of diode lasers is particularly advantageous. Alternatively or in addition to the diode lasers, however, other laser radiation sources can also be used as energy sources. His C0 2 laser, Nd laser, YAG laser or Eximer laser is mentioned here as an example.
  • the turbine blade 10 to be heated is irradiated on two sides by the laser devices. This means that radiation energy is applied to the turbine blade 10 to be heated from two radiation directions or is directed to the corresponding surfaces thereof.
  • 1 shows first arrows 11 and second arrows 12.
  • the first arrows 11 visualize the radiation of the turbine blade 10 to be heated from a first radiation direction
  • the second arrows 12 visualize the radiation thereof from a second radiation direction.
  • the two irradiation directions in the sense of arrows 11 and 12 serve to irradiate two different surfaces of the turbine blade 10.
  • the turbine blade 10 is heated due to the laser radiation.
  • the turbine blade 10 is irradiated from four directions.
  • 2 shows first arrows 13, second arrows 14, third arrows 15 and fourth arrows 16.
  • the first arrows 13 visualize a first direction of irradiation.
  • the second arrows 14 visualize a second irradiation direction, and the third and fourth arrows 15, 16 visualize a third and fourth irradiation direction.
  • Four different surfaces of the turbine blade 10 are irradiated here.
  • the exact selection or determination of the number of irradiation directions depends on the one hand on the component to be irradiated and on the other hand on the type of further processing of the component to be carried out before and / or during the irradiation.
  • FIG. 3 shows a further exemplary embodiment of the method according to the invention, in which the turbine blade 10 to be heated or preheated is irradiated from four directions by means of laser devices.
  • First arrows 17 thus visualize a first radiation direction
  • second arrows 18 a second radiation direction
  • third or fourth arrows 19 and 20 third and fourth directions of irradiation.
  • the angle of incidence with which the laser beams strike the surfaces of the turbine blade 10 to be heated are matched to the contour of the corresponding surfaces.
  • 3 shows that the laser beams in the sense of the first arrows 17 strike the turbine blade 10 at a different angle than the laser beams in the sense of the second arrows 18.
  • the turbine blade 10 is heated by the use of laser devices as energy sources.
  • the energy input to the turbine blade 10 to be heated therefore takes place without contact via the surfaces of the turbine blade 10.
  • the heating or preheating of the turbine blade 10 and thus the temperatures achieved on the respective surfaces of the turbine blade 10 are measured without contact via the surfaces.
  • This non-contact measurement is carried out using one or more pyrometers.
  • a pyrometer for temperature control is preferably used for each irradiation direction or for each surface of the turbine blade 10 to be irradiated or heated.
  • two pyrometers would accordingly and in the exemplary embodiments according to FIGS. 3 and 4 each use four pyrometers for temperature measurement on the respective surfaces. It follows directly from this that not only the energy input but also the temperature measurement takes place contactlessly over the surfaces of the turbine blade 10.
  • the heating or preheating of the component monitored by means of the contactless temperature measurement is used to regulate the heating of the turbine blade 10. It is within the meaning of the present invention that the or each pyrometer measures the temperature on the corresponding surface of the turbine blade 10 and a corresponding measurement signal is forwarded to a control device (not shown). These measurement signals are generated by the control device in this way processed that a desired temperature setpoint is achieved on the corresponding surface. For this purpose, the performance of the laser devices is influenced by the control device. After the desired temperature setpoint has been reached, the further regulation of the temperature takes over the power control of the respective laser device.
  • diode lasers are preferably used as laser devices.
  • the use of diode lasers which have a linear power output with linear control is particularly advantageous.
  • the heating or preheating is particularly preferably carried out when using diode lasers in a power range from 200 to 800 watts.
  • diode lasers enable radiation energy with a narrowly limited specific wavelength to be introduced onto the turbine blade 10 to be heated.
  • Focal lengths with positive, negative and parallel energy spreads of the laser radiation energy can be used.
  • a clearly defined machining surface can be achieved even with a changing arrangement of the component to be heated or the turbine blade 10 to be heated in the beam path.
  • the defined wavelength of the diode laser enables a particularly good and defined limitation of the energy spread.
  • the surface of the turbine blade 10 to be heated can be precisely irradiated and heated. 1 to 3 each show the parallel energy radiation from each of the radiation directions.
  • the turbine blade 10 is heated in particular in connection with a further processing of the turbine blade 10 to be carried out before and / or during the heating.
  • Such processing, in which heating or preheating of the turbine blade 10 is required, is so-called cladding or laser beam cladding.
  • Laser beam cladding is mainly used in the maintenance of gas turbines, especially aircraft engines, and it creates a metallurgical bond between base and filler materials. This is how laser beam cladding becomes used in maintenance in connection with wear zones on turbine blades, the wear zones primarily being the end faces of the turbine blades of high-pressure turbines.
  • the method according to the invention for heating or preheating turbine blades 10 can be used particularly advantageously.
  • the method according to the invention serves to preheat the base material or the turbine blade to be maintained. As described above in connection with the method according to the invention, these are heated using diode lasers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un procédé pour chauffer des composants avant et/ou pendant un traitement ultérieur de ces derniers. Selon cette invention, au moins un dispositif à laser est utilisé comme source d'énergie chauffante.
PCT/DE2004/000812 2003-05-17 2004-04-17 Procede pour chauffer des composants WO2004105436A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/556,644 US20070017607A1 (en) 2003-05-17 2004-04-17 Method for heating components
JP2006529581A JP4500815B2 (ja) 2003-05-17 2004-04-17 部品の加熱方法
EP04728098A EP1625771B1 (fr) 2003-05-17 2004-04-17 Procede pour chauffer des composants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322344A DE10322344A1 (de) 2003-05-17 2003-05-17 Verfahren zur Erwärmung von Bauteilen
DE10322344.4 2003-05-17

Publications (1)

Publication Number Publication Date
WO2004105436A1 true WO2004105436A1 (fr) 2004-12-02

Family

ID=33394728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000812 WO2004105436A1 (fr) 2003-05-17 2004-04-17 Procede pour chauffer des composants

Country Status (5)

Country Link
US (1) US20070017607A1 (fr)
EP (1) EP1625771B1 (fr)
JP (1) JP4500815B2 (fr)
DE (1) DE10322344A1 (fr)
WO (1) WO2004105436A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611757B2 (ja) * 2010-10-18 2014-10-22 株式会社東芝 加熱補修装置および加熱補修方法
US20140065320A1 (en) * 2012-08-30 2014-03-06 Dechao Lin Hybrid coating systems and methods
JP6050141B2 (ja) * 2013-02-22 2016-12-21 三井造船株式会社 硬化肉盛溶接装置及び方法
US10520919B2 (en) * 2017-05-01 2019-12-31 General Electric Company Systems and methods for receiving sensor data for an operating additive manufacturing machine and mapping the sensor data with process data which controls the operation of the machine
WO2023162253A1 (fr) * 2022-02-28 2023-08-31 ヤマザキマザック株式会社 Procédé de fabrication additive, système de fabrication additive, et programme de fabrication additive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19720652A1 (de) * 1996-05-17 1997-11-20 Siemens Ag Beheizungsvorrichtung und Verfahren zur Erwärmung eines Bauteils
US5701669A (en) * 1995-12-21 1997-12-30 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Repair method for lengthening turbine blades

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938418A (en) * 1973-12-14 1976-02-17 Gustav Wagner Maschinenfabrik Circular saw blade
JPS583478B2 (ja) * 1978-03-03 1983-01-21 株式会社日立製作所 レ−ザ加熱方法および装置
JPS57185918A (en) * 1981-05-06 1982-11-16 Hitachi Ltd Method and apparatus for heating metal by laser irradiation
JPS58221222A (ja) * 1982-06-16 1983-12-22 Sumitomo Metal Ind Ltd 耐食性鉄鋼の製造方法
US4539462A (en) * 1983-01-24 1985-09-03 Westinghouse Electric Corp. Robotic laser beam delivery apparatus
US4857699A (en) * 1987-01-30 1989-08-15 Duley Walter W Means of enhancing laser processing efficiency of metals
JPS63248587A (ja) * 1987-04-03 1988-10-14 Toshiba Corp タ−ビンロ−タおよびその肉盛溶接方法
JPH02175090A (ja) * 1988-12-27 1990-07-06 Isamu Miyamoto レーザビーム成形装置
US5493445A (en) * 1990-03-29 1996-02-20 The United States Of America As Represented By The Secretary Of The Navy Laser textured surface absorber and emitter
JPH058062A (ja) * 1991-07-03 1993-01-19 Toshiba Corp レーザ加工装置
JP3272534B2 (ja) * 1994-03-14 2002-04-08 三菱重工業株式会社 Al合金のレーザー溶接方法
JP3256090B2 (ja) * 1994-08-11 2002-02-12 松下電器産業株式会社 レーザ加熱ツール、レーザ加熱装置および方法
JPH09302410A (ja) * 1996-05-13 1997-11-25 Toshiba Corp レーザ焼入れ装置
US5759641A (en) * 1996-05-15 1998-06-02 Dimitrienko; Ludmila Nikolaevna Method of applying strengthening coatings to metallic or metal-containing surfaces
DE19639667C1 (de) * 1996-09-27 1998-03-12 Daimler Benz Aerospace Airbus Verfahren zum Schweißen von Profilen auf großformatigen Aluminium-Strukturbauteilen mittels Laserstrahlen
US6078022A (en) * 1997-12-30 2000-06-20 Lsp Technologies, Inc. Laser peening hollow core gas turbine engine blades
TW444275B (en) * 1998-01-13 2001-07-01 Toshiba Corp Processing device, laser annealing device, laser annealing method, manufacturing device and substrate manufacturing device for panel display
US6833405B1 (en) * 1998-07-31 2004-12-21 E. I. Du Pont De Nemours And Company Compositions containing liquid crystalline polymers
DE10037053C2 (de) * 2000-07-29 2002-06-13 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Plasmaimpulsverfestigen eines metallischen Bauteils
JP3686319B2 (ja) * 2000-08-30 2005-08-24 株式会社日立製作所 ガスタービン動翼の溶接方法
US6428858B1 (en) * 2001-01-25 2002-08-06 Jimmie Brooks Bolton Wire for thermal spraying system
US6752593B2 (en) * 2001-08-01 2004-06-22 Lsp Technologies, Inc. Articles having improved residual stress profile characteristics produced by laser shock peening
US6759626B2 (en) * 2001-08-01 2004-07-06 L&P Technologies, Inc. System for laser shock processing objects to produce enhanced stress distribution profiles
WO2003076150A1 (fr) * 2002-03-12 2003-09-18 Mitsuboshi Diamond Industrial Co., Ltd. Procede et systeme d'usinage d'un materiau fragile
US6857255B1 (en) * 2002-05-16 2005-02-22 Fisher-Barton Llc Reciprocating cutting blade having laser-hardened cutting edges and a method for making the same with a laser
US6977775B2 (en) * 2002-05-17 2005-12-20 Sharp Kabushiki Kaisha Method and apparatus for crystallizing semiconductor with laser beams
JP2004035953A (ja) * 2002-07-03 2004-02-05 Thk Co Ltd レーザー光を利用した焼入れ方法及び装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701669A (en) * 1995-12-21 1997-12-30 Mtu Motoren- Und Turbinen-Union Muenchen Gmbh Repair method for lengthening turbine blades
DE19720652A1 (de) * 1996-05-17 1997-11-20 Siemens Ag Beheizungsvorrichtung und Verfahren zur Erwärmung eines Bauteils

Also Published As

Publication number Publication date
JP4500815B2 (ja) 2010-07-14
EP1625771A1 (fr) 2006-02-15
EP1625771B1 (fr) 2012-08-29
US20070017607A1 (en) 2007-01-25
DE10322344A1 (de) 2004-12-02
JP2007537877A (ja) 2007-12-27

Similar Documents

Publication Publication Date Title
DE102005020072B4 (de) Verfahren zum Feinpolieren/-strukturieren wärmeempfindlicher dielektrischer Materialien mittels Laserstrahlung
EP4017674B1 (fr) Procédé d'oxycoupage au moyen d'un faisceau laser
EP0993345A1 (fr) Procede de pliage assiste par laser
EP1737603A1 (fr) Procede et dispositif pour souder au laser des composants en superalliages
DE102012003202A1 (de) Vorrichtung und Verfahren zum Bearbeiten von Werkstücken, insbesondere von Schneiden oder mit Schneiden versehenen Werkstücken, mit einem Nasslaser
EP1342510A2 (fr) Procédé de décapage d'éléments de moteur et dispositif d'exécution du procédé
AT508357A4 (de) Verfahren und vorrichtung zum laserunterstützten biegen von werkstücken
EP0069383A1 (fr) Procédé de traitement de surface de pièces à usiner
EP2700471A1 (fr) Procédé d'usinage d'une pièce
EP0686845A2 (fr) ContrÔle de composants céramiques
DE4308246A1 (de) Verfahren und Vorrichtung zur Steigerung der Wirtschaftlichkeit von Bearbeitungsmaschinen
WO2004105436A1 (fr) Procede pour chauffer des composants
DE102007008653A1 (de) Umformverfahren und Vorrichtung zur Durchführung eines Umformverfahrens
DE102020210724A1 (de) Fertigungseinrichtung, Verfahren und Computerprogrammprodukt zum additiven Fertigen von Bauteilen aus einem Pulvermaterial
EP0511274B1 (fr) Dispositif pour le traitement de surface de pieces au moyen d'un rayonnement lumineux
EP1702498B1 (fr) Procede pour chauffer des pieces
EP0698800B1 (fr) Procédé de la répartition de l'intensité du rayonnement laser pour le traitement de surfaces d'éléments
DE102010022094A1 (de) Verfahren und Vorrichtung zum Herstellen einer Grundplatte für eine Bipolarplatte einer Brennstoffzelle
DE19804577A1 (de) Verfahren und Vorrichtung zur Beseitigung von Formabweichungen an metallischen Bauteilen
DE102021102387A1 (de) Vorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
DE19720894A1 (de) Vorrichtung und Verfahren zur Reparatur lokal begrenzter Lackfilmfehler
DE102022126960A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung eines additiv gefertigten Bauteils
WO2024132388A1 (fr) Procédé et dispositif de planification pour planifier une irradiation localement sélective d'une région de travail avec au moins un faisceau d'énergie, et procédé et dispositif de fabrication pour la fabrication additive de composants à partir d'un matériau en poudre
DE102009061282B3 (de) Laserschweißsystem
DE102022123237A1 (de) Verfahren zur laserbasierten Bearbeitung eines länglichen Werkstücks und Laserbearbeitungsvorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004728098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006529581

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007017607

Country of ref document: US

Ref document number: 10556644

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004728098

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556644

Country of ref document: US