WO2004102835A1 - 基地局、移動局、通信システムおよび通信方法 - Google Patents

基地局、移動局、通信システムおよび通信方法 Download PDF

Info

Publication number
WO2004102835A1
WO2004102835A1 PCT/JP2004/006811 JP2004006811W WO2004102835A1 WO 2004102835 A1 WO2004102835 A1 WO 2004102835A1 JP 2004006811 W JP2004006811 W JP 2004006811W WO 2004102835 A1 WO2004102835 A1 WO 2004102835A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
power
allocated
channel
transmission power
Prior art date
Application number
PCT/JP2004/006811
Other languages
English (en)
French (fr)
Inventor
Takahiko Yamazaki
Michiaki Takano
Ryoichi Fujie
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US10/556,730 priority Critical patent/US7424305B2/en
Priority to EP04732806A priority patent/EP1626511A1/en
Publication of WO2004102835A1 publication Critical patent/WO2004102835A1/ja
Priority to US12/034,242 priority patent/US20080153536A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/322Power control of broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/16Deriving transmission power values from another channel

Definitions

  • the present invention relates to a base station, a mobile station, a communication system, and a communication method, and particularly to transmission power control between a base station and a mobile station.
  • HSDPA High Speed Downlink Packet Access
  • HS-PDS CH High Speed Downlink Packet Access
  • HS-PDSCH high-speed downlink shared channel
  • the base station scheduler determines the transmission priority of each mobile station in each transmission unit time.
  • the mobile station with the first transmission priority is assigned Allocate 10 HS-PDSCHs, assign 3 HS-PDSCHs to the mobile station with 2nd transmission priority, and assign 2 HS-PDSCHs to the 3rd mobile station with the same transmission priority.
  • the radio circuit between the base station and each target mobile station to be allocated is A technique called adaptive modulation is used to determine the modulation scheme and coding rate according to the line quality state, and the code resources for each mobile station to be allocated are determined.
  • the radio link quality status is reported from each mobile station to the base station as a link quality indicator CQI.
  • the values of CQI are defined in Tables 7A, 7B, 7C, 7D, and 7E of Non-Patent Document 1 below.
  • Non-Patent Document 2 The method for deriving the CQI value in the above HSDP A method is described in Non-Patent Document 2 below.
  • the mobile station receives all the HS-PDSCH power in a logarithm of the received CPI CH (Common Pilot Channel) power and the offset ⁇ ⁇ (measured power offset notified from the upper layer). Estimate by adding. Further, the mobile station sets the above HS-PDSCH power as the desired signal power, calculates the ratio with the interference power, and determines the CQI based on this ratio.
  • ⁇ ⁇ is set by upper parameters. Specifically, Non-Patent Document 3 below describes that the setting is made by "Radio Link Set Up" of an NBA P (Node B Application Part) message.
  • Non-patent literature 1 describes that the setting is made by "Radio Link Set Up" of an NBA P (Node B Application Part) message.
  • the present invention has been made in view of the above, and has as its object to provide a method for allocating mobile stations by a scheduler, and to provide a base station that keeps the total transmission power of HS_PDSCH within a predetermined power. I do. It is another object of the present invention to perform power allocation without waste by setting the total transmission power of HS-PDSCH to a maximum value within a predetermined power. Further, it is another object of the present invention to improve the transmission efficiency by correcting the CQI according to the correction of the power allocation for keeping the power within the predetermined power as described above. Disclosure of the invention
  • a base station that communicates with a mobile station by using a common channel common to a plurality of mobile stations and a plurality of shared channels assigned to each mobile station by a predetermined number. And, for example, a ratio between the mobile station allocated power, which is the sum of the shared channel transmission power allocated to one mobile station, and the common channel transmission power, and a transmission power ratio determined for each mobile station.
  • the mobile station allocation power of each mobile station is determined from the obtained transmission power ratio and the transmission power of the common channel, and the sum of the mobile station allocation power of the communication destination mobile station is a predetermined upper limit value.
  • the base station including the scheduler sets, for example, the sum of the HS-PDSCH power to each mobile station so as not to exceed the transmission power of the HS-PDSCH of the own base station. It is possible to ensure communication quality in a communication system without the occurrence of HS-PDSCH, which cannot ensure performance such as rate. ' BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a system configuration diagram of Embodiment 1 of the present invention
  • FIG. 2 is a diagram showing a CQI table in the present invention
  • FIG. 3 is an operation of Embodiment 1 of the present invention.
  • FIG. 4 is an operation explanatory diagram of Embodiment 5 of the present invention.
  • FIG. 5 is an explanatory diagram of mobile station grouping according to Embodiment 6 of the present invention.
  • FIG. 7 is an explanatory diagram of the operation of the sixth embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of the operation of the seventh embodiment of the present invention.
  • FIG. 8 is an explanatory diagram of the operation of the eighth embodiment of the present invention.
  • FIG. 9 is an operation explanatory diagram of Embodiment 9 of the present invention
  • FIG. 10 is an operational explanatory diagram of Embodiment 10 of the present invention.
  • Embodiment 1 will be described with reference to FIGS. 1, 2, and 3.
  • FIG. 1 is a diagrammatic representation of Embodiment 1
  • FIG. 5 is a system configuration diagram showing Embodiment 1 of the present invention.
  • the mobile communication system includes a radio network controller (Radio Network Controller: hereinafter referred to as RNC) 1, a base station 2, and a plurality of mobile stations 3 communicating with the base station 2.
  • RNC Radio Network Controller
  • the communication from the base station 2 to each mobile station 3 includes, besides an individual channel unique to each mobile station, a shared channel called HS—PDSCH (High Speed-Physical Downlink Shared Channel), and A common channel called CPICH (Common Pilot Channel) is used.
  • the RNC 1 includes a transmission data storage unit 4 and an HS—PDSCH power transmitted from the base station 2 to each mobile station 3.
  • the base station 2 has a transmission data queue 7 composed of transmission queues corresponding to the respective mobile stations 3, a state of the transmission data queue 7, a CQI value and a residual code which are line quality indicators for each mobile station 3.
  • a scheduler 8 for allocating mobile stations 3 to transmit at the radio frame transmission timing with a certain algorithm based on the number of resources, etc., a CQI acquisition unit 9 for acquiring CQI from each mobile station, and requests for all channels to be transmitted
  • the transmission power control unit 10 which sums the power and keeps it within the total transmission power, the Tx unit 11, which is the transmission unit, the Rx unit 12, which is the reception unit, the transmission / reception sharing unit 13, and the base station antenna Tena 14 and
  • the mobile station 3 includes a data receiving unit 15, a mobile station power allocation obtaining unit 16 that obtains a power offset ⁇ for the mobile station from the RNC 1 by using an NBAP (Node B Application Part) message, etc., Power measurement section 17 for measuring the CP ICH reception power from the base station 2 and the base station 2, and the reception HS—PDSCH power and other information obtained by the reception power measurement section 17 from the CP ICH reception power and the power offset ⁇ .
  • the SI Ril determining unit 18 for obtaining an estimated value of the signal-to-interference ratio (SIR) from the power of the SIR, and the CQ I is determined based on the SI estimated value obtained by the SIR estimating unit 18 and transmitted to the base station 2. It has a CQI transmitting section 19, a TRX 20 as a transmitting / receiving section, and a mobile station antenna 21.
  • SIR signal-to-interference ratio
  • the high-speed downlink shared channel called ⁇ S—PDSCH is shared between the mobile stations 3 by scheduling of the scheduler 8 of the base station 2 to share the data. And use it.
  • Fig. 2 shows an example of the table indicating the CQI. This is the table defined in Table 7A, 7B, 7C, 7D, 7E of "3GPP, Specific on TS25.214V5.4.0" Thus, the above 7D is shown as an example.
  • base station 2 transmits a maximum of 1441 1-bit "Transport Block” while satisfying transmission conditions with a block error rate of 0.1 or less.
  • 16-Q AM can be selected as the modulation method, and the required code resource at that time is 10 codes (10 HS-PDSCHs). Assume that for a CQI value of 1 to 30, the signal-to-interference power ratio (SIR) or the mobile station received signal power increases in 1 dB steps.
  • SIR signal-to-interference power ratio
  • FIG. 2 shows a step different from 1 dB.
  • the maximum number of HS-PDSCHs of the base station 2 is set to 15 by the setting unit 6 for the number of code resources of the RNC 1 in all embodiments.
  • the ratio of the transmission power of CPICH to the total transmission power P of base station 2 is 10 °. It is assumed that the ratio of the transmission power of all other channels to the total transmission power P of base station is 10%. Therefore, the sum of transmission powers allowed for all HS-PDSCHs ('hereinafter referred to as “predetermined power”) is 80% of the total transmission power of base station 2.
  • FIG. 3 is a diagram explaining the transmission power allocation operation of the scheduler 8 in the base station 2.
  • the scheduler 8 sets the three mobile stations a, b, and c as transmission candidates based on the state of the transmission data queue 7, the CQI value reported from each mobile station 3, the number of residual code resources, and the like. select.
  • the transmission priority level is in the order of mobile stations a, b, and c.
  • PllsTOCll is the transmission power power (dB) of HS—PDSCH
  • PCPIC11 is the transmission power (dB) of CPICH
  • the reference power adjustment ⁇ (dB) in equation (1) is set to 0 here.
  • the above operation is performed at each wireless frame transmission timing, that is, at predetermined time intervals.
  • the mobile station power allocation setting unit 5 sets The offset ⁇ to be determined can be treated as one parameter in the calculation formula, and can be called a transmission power calculation parameter.
  • the transmission power control unit 10 obtains the value of each offset ⁇ from the mobile station power allocation setting unit 5 by using an NBAP “Radio Link Setup” message or the like. It is assumed that the value of offset ⁇ has been obtained from power control unit 10.
  • the scheduler 8 performs allocation within a range that does not exceed a predetermined power of 80% from the mobile station selected as a transmission candidate.
  • the sum of the powers of mobile station a and mobile station b is 70%, and the sum of the power of mobile station c is 90%, which exceeds the predetermined power, and exceeds the predetermined power. Only a and mobile station b are allocated as transmitting mobile stations (communication mobile stations), and mobile station c is not allocated.
  • HS-PDSCHs are set for mobile station a and two for mobile station b. This is the CQI that each mobile station transmits to base station 2. The value is determined by "Number of HS-PDSCH" in the table in Fig. 2. As described above, the base station 2 including the scheduler 8 transmits the HS—PDS to each mobile station.
  • the HS-PDSCH Since the total sum of the CH power is set so as not to exceed the transmission power of the HS-PD S CH of the base station, the HS-PDSCH, which cannot secure the performance such as a predetermined error rate, does not occur and the Communication quality can be ensured.
  • offset ⁇ is set by mobile station power allocation setting section 5 of RNC 1.
  • setting of offset T is not limited to this, and other means may be used.
  • the offset ⁇ is the transmission power of the shared channel HS—PD SCH with respect to the transmission power of the common channel CP I CH when the transmission power is considered as a real number. It is the ratio of the power allocated to the mobile station and the transmission power ratio of this invention. This mobile station allocated power is the sum of the transmission power allocated to each HS-PDSCH in each mobile station.
  • the transmission power of the base station can be calculated by equation (1) with reference to the table of FIG. Even if ⁇ is not 0, there is no problem if the offset ⁇ is referred to as the transmission power ratio of HS-PD SCH to CPI CH. ,
  • the above-mentioned predetermined power is the allocatable power in the present invention.
  • the operation of the method in which the scheduler 8 obtains P TalSC combat, that is, HS-PDSCH transmission power (dB) by equation (1) and assigns it to each mobile station, is stored in storage means (not shown); It may be implemented by the software (program) provided.
  • the operation of the scheduler 8 in the following embodiments is also stored in storage means (not shown). & May be implemented by the provided software (program).
  • the second embodiment is an extended function of the first embodiment.
  • the total power allocated to the mobile station is 70%, and there is a remaining 10% up to the predetermined power.
  • the HS-PDSCH allocated power of each mobile station is increased according to the ratio of the predetermined power of the base station and the total sum of the initially allocated power (40% and 30% in the above example). Let it.
  • the transmission power of the HS-PDSCH of the base station can be used without excess and deficiency, transmission errors can be reduced, and communication quality in the communication system can be improved.
  • the third embodiment is an extended function of the first embodiment.
  • the scheduler 8 determines in advance which mobile station should increase the HS-PDSCH power.
  • the residual may be redistributed to a plurality of mobile stations, for example, by equally dividing the residual.
  • the present embodiment by increasing the HS-PDSCH allocation power of the mobile station, it is possible to use the transmission power of the HS-PDSCH of the base station of the base station without excess or shortage. As a result, transmission errors are reduced, and communication quality in the communication system can be improved.
  • Embodiment 4 is an extension of the second or third embodiment.
  • the scheduler 8 performs power redistribution of 40% to 50% for the mobile station a, so that the power increases by 1 dB.
  • adaptive modulation is performed by correcting CQI to 11.
  • the upper limit number of mobile stations to be allocated at an arbitrary radio frame transmission timing is determined, and the power allocated to all mobile stations is set to the same value.
  • the configuration of the system is the same as that in FIG. 1 described in the first embodiment, and the conditions such as the predetermined power and the upper limit of the code resource are the same as those in the first embodiment.
  • the mobile station power allocation setting unit 5 of the RNC 1 sets the allocated mobile station upper limit number to, for example, 4 and equally divides the predetermined power of 80% by 4, so that the allocated power of all mobile stations is 20%, that is,
  • the offset ⁇ is set to 3 dB so as to be twice the CPICH power.
  • the upper limit number of mobile stations is notified from the RNC 1 to the base station 2.At a certain radio frame transmission timing, the scheduler 8 determines the transmission data queue status, the CQI value reported from each mobile station power, and the number of remaining code resources. Mobile stations are allocated, but four or more mobile stations are not allocated due to restrictions on the maximum number of mobile stations to be allocated. Therefore, as long as the code resources are sufficient, all HS—PDSCH are transmitted as in the case of radio frame transmission timing T 1 (using 15 code resources) on the left side of FIG. A predetermined power can be allocated.
  • the allocated power of the mobile station and the upper limit number of mobile stations are determined in advance by the RNC 1, so that the scheduler 8 controls the power for scheduling. There is no need to acquire the assignment from the transmission power control unit 10, and the configuration and operation of the scheduler 8 can be simplified.
  • FIG. 5 The configuration of the system is the same as that of FIG. 1 described in the first embodiment, and the conditions such as the predetermined power and the upper limit of the code resource are the same as in the first embodiment.
  • determination of the upper limit number of mobile stations to be assigned at an arbitrary wireless frame transmission timing is the same as in the fifth embodiment.
  • the difference from the fifth embodiment is that the mobile station power allocation setting unit 5 of the RNC 1 performs grouping based on differences such as the service class of each mobile station and the distance of the mobile station from the base station, and the power distribution according to this grouping. The point is to assign
  • the power distribution is determined according to the “RRC connection request” of “3GPP Specification TS25.331 10. 2.39” and the “Measured results on MCH CPICH Ec / NO” in the information element of the RN C 1 Can be realized by setting the value of each offset ⁇ ⁇ ⁇ ⁇ in the mobile station assigned power setting unit 5. Also, as in the fifth embodiment, the RNC 1 sets the assigned mobile station upper limit number to 4. It is assumed that
  • the scheduler may transmit at a certain radio frame transmission timing. It is assumed that mobile stations a to f are transmission candidates based on the status of the data queue, the CQI value, and the number of remaining code resources.
  • mobile stations a, b, and c belong to mobile station group A with a power distribution of 30%, and mobile stations d, e, and f have a power distribution of 10%. If it belongs to% mobile station group B, scheduler 8 selects two from each group. The priorities in group A are in the order of mobile stations a, b, and c, and the priorities in group B are in the order of mobile stations d, e, and f. As a result, mobile stations a and b are allocated, mobile station c is not allocated, and mobile stations d and e having the next highest priority are allocated.
  • two mobile station groups are selected from mobile station group A and two mobile station groups are selected from mobile station group B as shown in Fig. , B, d, and e are allocated, and it is possible to use the predetermined power of 80% without excess or deficiency, thereby improving the throughput of the communication system.
  • the sum of the HS-PDSCH power of the mobile station selected as the transmission station exceeds the predetermined power ⁇ ⁇ , and some mobile stations are not allocated.
  • each mobile station By changing the allocation of HS-PDSCH power, the occurrence of unallocated mobile stations is prevented.
  • the scheduler 8 determines the state of the transmission data queue and the CQI reported from each mobile station at a certain radio frame transmission timing. Based on the value and the number of remaining code resources, three mobile stations are selected as transmission candidates.
  • the transmission power allocation is the same as in the first embodiment.
  • the scheduler 8 Since the total power allocated to the mobile stations a to c exceeds a predetermined power of 80%, the scheduler 8 performs re-scheduling according to the instruction of the transmission power control unit 10. For example, the mobile station a The power distribution is changed from 40% to 30% for mobile station b, and from 30% to 15% for mobile station b. The CQI value received from each mobile station is corrected accordingly, and adaptive modulation is performed. Do.
  • the priority order for reducing the power is set to the order of the mobile stations a, b,.
  • CQI is corrected by reducing the CQI value by 1 per dB for the power reduction ratio.
  • the allocation of the number of code resources is reduced from two to one from Fig. 2.
  • the same procedure applies to CQI correction of mobile stations to which 40% power can be allocated.
  • the mobile station 4 having the HS-PDSCH power of 15% can be further allocated.
  • the power of the mobile station a having the largest HS-PDSCH power may be reduced to 30%, and the sum of the mobile stations a to c may be set to 80%.
  • the scheduler 8 transmits three mobile stations at a certain radio frame transmission timing based on the state of the transmission data queue, the CQI value reported from each mobile station, and the number of residual code resources. Select as a candidate.
  • the transmission power allocation is the same as in the first embodiment.
  • the total power allocated to mobile stations a to c is 90%.
  • a power exceeding a predetermined power of 80% The transmission power control unit 10 compresses the allocated power of each mobile station to 80% / 90% before transmitting.
  • the HS—PDS CH power of mobile station a is
  • mobile station b is 26.7 (%)
  • mobile station c is 17.7 (%).
  • the transmission power is compressed, so that the transmission error tends to increase.
  • the configuration and the operation procedure of the scheduler 8 can be simplified.
  • the scheduler 8 determines three mobile stations a, b, and c from the state of the transmission data queue 7, the CQI value reported from each mobile station 3, the number of residual code resources, and the like. Is pre-selected as a transmission candidate.
  • the value estimated as the received HS -PDSC H power P I1SPDSCII by each mobile station from the CP ICH power P CPrai is the base station's total HS -PD For the number of SCHs, that is, here, 15 SCHs.
  • This estimation of the received HS—PDSC H power P11SPDSC1I is performed using equation (1) described in the first embodiment.
  • PCPIC11 is the reception power of the CPICH in the mobile station.
  • the P excitation SC11 (estimated power allocated to the mobile station) calculated by each mobile station using the above equation (1) is the sum of the transmission powers P diligent SPDsai of all 15 HS -PDS CHs. Then, each mobile station determines its own I value based on this value and notifies the base station 2.
  • P 11SPDSC C calculated (estimated) is the mobile station allocated power estimated value in the present invention.
  • the offset ⁇ ⁇ here is the ratio between the received HS -PDSC H power P 1ISPDSCII and the received power of CPICH, and can be called the received power ratio. Further, when calculating P CPM ⁇ P PSPDSC11 using a calculation formula other than the formula (1), it is also possible to call it a reception power calculation parameter.
  • the base station can correct the CQI value determined based on the HS-PD SCH power overestimated by the mobile station to an appropriate value, reducing transmission errors, Communication quality in a communication system can be improved.
  • the configuration of the system is the same as that of FIG. 1 described in the first embodiment, and the conditions such as the predetermined power and the upper limit of the code resource are also the same as in the first embodiment.
  • the difference from the ninth embodiment is that even if the total number of HS-PDS CHs allocated to a certain radio frame transmission timing is less than 15, HS-; CQI correction according to the total number of PDSCHs is not possible. In that it is done.
  • the definition of offset ⁇ is the power offset of all HS-PDSCHs and CPICHs transmitted by the base station. Therefore, the transmission power of the CP I CH is 10% of the total transmission power of the base station, the power of all other channels is 10%, and the predetermined power allowed for all HS-PDS CHs is 80%. Using the same assumptions as the form,
  • the value estimated as the received HS_PDSCH by each mobile station from the power of the CPICH is the total transmission power of the base station HS-PDSCH.
  • the total number of HS-PDSCHs assigned to a certain radio frame transmission timing is equal to the total HS-PDSC H count of the base station (15 in the above embodiment). Even if it is less than this, as described above, CQI correction is performed according to the total number of HS-PDSCHs used, so that transmission efficiency can be improved.
  • the first decimal place is rounded up to an integer as described above, but if the first decimal place is 0, it is rounded down to an integer. It may be.
  • the CPICH power has been described as 10%, but another value may be used.
  • the total power of the HS-PDSCH is described as 80%, other values such as 40% and 60% do not lose generality.
  • the maximum HS-PDSCH number has been described as 15, but another value such as 10 may be used.
  • the communication method according to the present invention is useful for a wireless communication system that performs transmission power control.
  • transmission power control is performed so that the total transmission power of HS-PDSCH is within a predetermined power. It is suitable for base stations that perform

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明にかかる基地局(2)は、複数の移動局(3)に対して共通な共通チャネルと各移動局3に所定数ずつ割り当てられる複数の共用チャネルとにより、移動局(3)との間で通信を行うための構成として、たとえば、一の移動局に割り当てられる上記共用チャネルの送信電力の和である移動局割当電力と上記共通チャネルの送信電力との比であり、移動局毎に定まる送信電力比を獲得し、上記獲得した送信電力比と上記共通チャネルの送信電力とから各移動局の移動局割当電力を決定し、通信先の移動局の上記移動局割当電力の和が所定の上限値である割り当て可能電力を超えないように通信先移動局を選択するスケジューラ(8)、を備えることとした。

Description

明 細 書 基地局、.移動局、 通信システムおよび通信方法 技術分野
この発明は、 基地局、 移動局、 通信システムおよび通信方法に関するものであ り、 特に、 基地局と移動局との間の送信電力制御に関するものである。 背景技術
近年、 携帯電話機等の移動端末 (移動局) においては、 多量の静 '止画や短時間 の動画等を扱うためのマルチメディァ対応が進められており、 それに伴って大容 量かつ高速のデータ伝送方法が必要となっている。 この大容量かつ高速のデータ 伝送方法としては、 HSDPA (High Speed Downlink Packet Access)方式があ り、下り方向(基地局から移動局への方向)の伝送速度のみを高速化した HS— P D S CH (High Speed-Physical Downlink Shared Channel:高速下り共用チヤネ ル) 等を用いたデータ送信方法が検討されている。
これは、 移動局へ多量のデータを通信網から基地局を介して送信する場合、 上 記 HS— PDSCHを用いて、 パケット化したデータを送信するものであり、 複 数の移動局に同時に多量データを送信する必要がある場合には、 この H S— P D S CHと称される高速下り共用チャネルを、 基地局スケジューラのスケジユーリ ングにより移動局間でシェアし合うことで、 共用して用いるようになっている。 - すなわち、 基地局スケジューラにより、 各送信単位時間に各移動局の送信優先順 位を決定し、 たとえば、 符号リソースとして HS— PDSCHが 15本あるとし た場合、 送信優先順位 1番の移動局に HS— PDSCHを 10本割り当て、 送信 優先順位 2番の移動局に H S— P D S C Hを 3本割り当て、 送信優先順位 3番の 移動局に H S— P D S C Hを 2本割り当てるがごとくスケジューリングする。 上記スケジユーリングにおいては、 基地局と割り当て各対象移動局間の無線回 線品質状態に応じて変調方式、符号化率を決定する適応変調という手法がとられ、 割り当て対象移動局ごとの符号リソースが決定される。 ここで、 上記無線回線品 質状態は、 各移動局より、 回線品質指標 CQ Iとして基地局に通知される。 CQ Iの値については、 下記非特許文献 1の表 7 A, 7B, 7C, 7D, 7Eにて定義され ている。
上記 H SDP A方式における C Q I値の導出方法については、 下記非特許文献 2に記載されている。
すなわち、 移動局は受信する全 H S-PDS CHの電力は、 上記移動局の受信 CP I CH (Common Pilot Channel) の電力にオフセット Γ (上位レイヤより通 知される測定電力オフセット) を対数で加算することによって推定する。 さらに 移動局では、 上記 H S-PDS CH電力を所望信号電力とし、 干渉電力との比を 求め、 これを基準に上記 CQ Iを決定していることになる。 なお、 下記非特許文 献 3において Γは上位パラメータにて設定されるとの記載がある。 .具体的には下 記非特許文献 3に NBA P (Node B Application Part) メッセージの "Radio L ink Set Up" にて設定されるとの記載がある。 非特許文献 1.
3GPP Specification TS25.214V5.4.0
非特許文献 2.
3GPP Specification TS25.214V5.4.06A.2
非特許文献 3.
3GPP Specification TS25.433V5.4.08.2.17.2 しかしながら、 上記各文献は、 スケジューラによる移動局の割り当て方法を規 定するものではなく、 またオフセット Γの値の定義について Γが基地局の送信す る全 H S— PDSCHの CP I CHとの電力オフセットであるのか、 移動局ごと の H S— P D S CHと C P I C Hとの電力オフセット 、 を明確に規定するもの ではない。 したがって、 スケジューラによる移動局の割り当てを適切に行わない と、 基地局の H S - P D S C Hの送信電力の総計が、 許容されている電力すなわ ち総送信電力から他の個別チャネルおよび共通チャネル分の電力を減算した電力 を上回るという、 不適切な割り当てが発生する可能性があった。
本発明は、 上記に鑑みてなされたものであって、 スケジューラによる移動局の 割り当てについての方法を提示し、 H S _ P D S C Hの全送信電力を所定電力内 に収める基地局を提供することを目的とする。 また、 所定電力内で H S— P D S C Hの全送信電力を最大値として無駄のない電力割り当てを行うことを目的とす る。 さらに、 上記のように所定電力内に収めるための電力割り当ての補正に応じ て C Q Iも補正することによって伝送効率を向上させることを目的とする。 発明の開示
本発明にかかる基地局にあっては、 複数の移動局に対して共通な共通チャネル と各移動局に所定数ずつ割り当てられる複数の共用チャネルとにより、 移動局と の間で通信を行う基地局であって、 たとえば、 一の移動局に割り当てられる上記 共用チャネルの送信電力の和である移動局割当電力と上記共通チャネルの送信電 力との比であり、 移動局毎に定まる送信電力比を獲得し、 上記獲得した送信電力 比と上記共通チャネルの送信電力とから各移動局の移動局割当電力を決定し、 通 信先の移動局の上記移動局割当電力の和が所定の上限値である割り当て可能電力 を超えないように通信先移動局を選択するスケジューラ、 を備えたことを特徴と する。
この発明によれば、 上記スケジューラを含む基地局が、 たとえば、 各移動局へ の H S— P D S C H電力の総和が自基地局の H S - P D S C Hの送信電力を超え ないように設定するので、 所定の誤り率等の性能を確保できない H S— P D S C Hが発生することなく、 通信システムにおける通信品質を確保することが可能と なる。 ' 図面の簡単な説明
第 1図は、 本発明の実施の形態 1のシステム構成図であり、 第 2図は、 本発明 における C Q Iテーブルを示す図であり、 第 3図は、 本発明の実施の形態 1の動 作説明図であり、 第 4図は、 本発明の実施の形態 5の動作説明図であり、 第 5図 は、 本発明の実施の形態 6の移動局グルーピングの説明図であり、 第 6図は、 本 発明の実施の形態 6の動作説明図であり、 第 7図は、 本発明の実施の形態 7の動 作説明図であり、 第 8図は、 本発明の実施の形態 8の動作説明図であり、 第 9図 は、 本発明の実施の形態 9の動作説明図であり、 第 1 0図は、 本発明の実施の形 態 1 0の動作説明図である。 発明を実施するための最良の形態
以下に、 本発明にかかる基地局、 移動局、 通信システムおよび通信方法の実施 の形態を図面に基づいて詳細に説明する。 なお、 この実施の形態により本発明が 限定されるものではない。
実施の形態 1 .
実施の形態 1を第 1図、 第 2図、 第 3図を用いて説明する。
第 Γ図は、 この発明の実施の形態 1を示すシステム構成図である。
この実施の形態 1における移動通信システムは、無線ネットワーク制御装置(R adio Network Controller:以後、 R N Cと呼ぶ) 1および基地局 2と、 この基地 局 2と通信する複数の移動局 3とからなる。
基地局 2から各移動局 3への通信には、 それぞれの移動局に固有の個別チヤネ ル以外に、 H S— P D S C H (High Speed-Physical Downlink Shared Channel :高速下り共用チャネル) と呼ばれる共用チャネル、および C P I C H (Common Pilot Channel:共通パイ口ットチャネル) と呼ばれる共通チャネルが使用される また、 上記 R N C 1は、 送信データ格納部 4と、 基地局 2から各移動局 3に送 信する H S— P D S C H電力の C P I C H電力に対する電力オフセット Γを設定 する移動局電力割当設定部 5と、 基地局 2の HS— PDSC Hの最大本数を設定 する符号リソース数設定部 6と、 を有する。
まだ、 上記基地局 2は、 各移動局 3に対応する送信キューから構成されている 送信データキュー 7と、 送信データキュー 7の状態や移動局 3毎の回線品質指標 である C Q I値および残符号リソース本数等から一定のアルゴリズムで無線フレ ーム送信タイミングにて送信する移動局 3を割り当てるスケジューラ 8と、 各移 動局からの C Q Iを取得する C Q I取得部 9と、 送信すべき全チャネルの要求電 力の総計をとつた上で総送信電力内に抑える送信電力制御部 10と、 送信部であ る Tx部 11と、 受信部である Rx部 12と、 送受信共用部 13と、 基地局アン テナ 14と、 を有する。
また、上記移動局 3は、データ受信部 15と、 NBAP (Node B Application Part) メッセージ等により RNC 1から自移動局用の電力オフセット Γを取得す る移動局電力割当取得部 16と、 送受信電力および基地局 2からの CP I CH受 信電力を測定する受信電力測定部 17と、 この受信電力測定部 17にて CP I C H受信電力と電力オフセット Γとから得られた受信 HS— PDSCH電力および その他の電力から信号対干渉比(S I R)の推定値を求める S I Ril定部 18と、 この S I R推定部 18が求めた S I 推定値に基づき CQ Iを決定し、 これを基 地局 2に送信する C Q I送信部 19と、 送受信部である T R X 20と、 移動局ァ ンテナ 21と、 を有する。
上記システムにおいては、 移動局 3へ多量のデータを基地局 2から送信する場 合、 上記 HS— PDSCHを用いて、 パケット化したデータを送信するものであ り、 複数の移動局 3に同時に多量データを送信する必要がある場合には、 この Η S— PDS CHと称される高速下り共用チャネルを、 基地局 2のスケジューラ 8 のスケジユーリングにより移動局 3間でシェアし合うことで、 共用して用いるよ うになつている。
上記 CQ Iを示すテーブルの一例を第 2図に示す。 これは "3GPP, Specif icati on TS25.214V5.4.0"の表 7 A, 7B, 7 C, 7D, 7 Eにて定義されるテーブル から、 一例として上記の 7 Dを示したものである。
たとえば、 C Q I # 25が移動局 3より通知された場合、 プロックエラーレー ト 0. 1以下とレ、う送信条件を満たしつつ、最大で 1441 1 bitの "Transport Block"を、基地局 2は送信することができ、変調方式は 16—Q AMを選択でき 、その時の所要符号リソースは 10コード(HS— PDSCHが 10本)となる。 CQ I値の 1から 30に対して、 信号対干渉電力比 (S I R) または移動局受信 信号電力が 1 d Bステップで上昇していると仮定する。
なお、 本仮定は、 便宜上のものであり、 仮に第 2図が 1 dBと異なるステップ になっていたとしても本特許の特徴をなんら損なうものではない。
つぎに、 上記のように構成された移動通信システムの動作について説明する。 なお、 本明細書では、 すべての実施の形態において、 RNC 1の符号リソース数 ' 設定部 6により基地局 2の HS— PDSCH.の最大本数は 15本と設定されてい るものとする。 また、 基地局 2の総送信電力 Pに対する C P I CHの送信電力の 比率は 10°ん その他の全チャネルの送信電力の基地局総送信電力 Pに対する比 率も 10%と仮定する。 したがって、 全 HS— PDSCHに許容される送信電力 の和 ('以後、 「所定電力」 と呼ぶ) は基地局 2の総送信電力の 80 %ということ になる。
第 3図は、 基地局 2におけるスケジューラ 8の送信電力割り当て動作を説明す る図である。
スケジューラ 8は、 ある無線フレーム送信タイミングにおいて、 送信データキ ユー 7の状態、各移動局 3から報告される CQ I値、残符号リソース本数等より、 3つの移動局 a, b, cを送信候補として選択する。 ここで、 送信優先面位は移 動局 a, b, cの順とする。
このとき、 RNC1内の移動局電力割当設定部 5での移動局ごとのオフセッ Γの設定により、 第 3図左側に示すように、 移動局ごとに送信電力が割り当てら れていたとする。
第 3図における H S— P D S C H電力は、 それぞれ P CP1CII+ Γ + Λ in dB … ( 1 )
により算出される。 ここで、 PllsTOCllは HS— PDS CHの送信電力電力 (dB) 、 PCPIC11は CP I CHの送信電力 (dB) である。 (1) 式における参照電力調整 値 (Reference power adjustment) Δ (dB) は、 ここでは 0としている。 この (1) 式は "3GPP Specification TS25.214V5.4.0 6A.2" の第 38ページに記載 されている移動局における P11SPDSC11の算出式を基地局用に流用したものである。 すなわち、 移動局 aに してはオフセット Γ=6 dBとして CP I CH (10 %) の 4倍の電力で 40%を割り当て、 同様に、 移動局 bに対してはオフセット Γ=5 dBで 30%を割り当て、 移動局 cに対してはオフセット Γ=3 dBで 2 0%を割り当てる。
以上の動作が各無線フレーム送信タイミングにおいて、 すなわち、 所定時間間 隔で行われる。
また、 基地局における P11SPDSC„の算出は上記 (1) 式によらなくてもよい。 他の 算出式により PCPMIから PIBPDSC„を算出する場合、上記移動局電力割当設定部 5が設 ' 定するオフセット Γは、 算出式中の 1つのパラメータとして扱うことが可能であ り、 送信電力算出パラメータと呼ぶことが可能である。
この実施の形態においては、 送信電力制御部 10が各オフセット Γの値を、 移 動局電力割当設定部 5から NBAPの "Radio Link Setup" メッセージ等で取得 しており、 スケジューラ 8は、 上記送信電力制御部 10からオフセット Γの値を 取得しているものとする。 スケジューラ 8は、 送信候補として選択した移動局か ら所定電力 80 %を超えない範囲で割り当てを行う。
すなわち、 移動局 a, 移動局 bの電力の合計までで 70 %、 移動局 cを加える と 90 %となり所定電力を超えてしまうので、 スケジューラ 8は、 送信電力制御 部 1 0の指示により移動局 a, 移動局 bのみを送信移動局 (通信先移動局) とし て割り当て、 移動局 cは割り当てない。
第 3図において、 HS— PDSCHが移動局 aに対して 8本、 移動局 bに対し て 2本設定されているが、 これはそれぞれの移動局が基地局 2に送信する C Q I 値により、 第 2図の表の "Number of HS-PDSCH" により決定されるものである。 以上のように、 スケジューラ 8を含む基地局 2は、 各移動局への H S— P D S
CH電力の総和が、 その基地局の HS— PD S CHの送信電力を超えないように 設定するので、 所定の誤り率等の性能を確保できない H S— P D S C Hが発生す ることなく、 通信システムにおける通信品質を確保することができる。
なお、 上記の説明においては、 オフセット Γを RNC 1の移動局電力割当設定 部 5が設定することとしたが、 オフセット Tの設定はこれに限らず、 他の手段を 用いることとしてもよい。
上記の説明において参照電力調整値 Δ = 0としているので、 オフセット Γは送 信電力を真数で考えれば、 共通チャネル CP I CHの送信電力に対する共用チヤ ネル HS— PD S CHの送信電力である移動局割り当て電力の比であり、 この発 明の送信電力比である。 この移動局割り当て電力は、 それぞれの移動局において 各 H S— P D S CHに割り当てられる送信電力の和である。
また、 Δが 0でない場合であっても、 第 2図のテーブルを参照して (1) 式に より基地局の送信電力を算出することが可能である。 Δが 0でない場合であって も、 オフセット Γを CP I CHに対する HS— PD S CHの送信電力比と称して も問題はない。 、
また、 上記の所定電力がこの発明における割り当て可能電力である。
また、 上記のようにスケジューラ 8が (1) 式により P„SPDSC„、 すなわち、 HS —PDSCHの送信電力 (dB) を求めて各移動局に割り当てる方法の動作は、 図示しない記憶手段に;!各納されているソフトウェア (プログラム) によって実施 されてもよい。
また、 以後の実施の形態におけるスケジューラ 8の動作についても、 同様に、 図示しない記憶手段に! &納されているソフトウェア (プログラム) によって実施 されてもよい。
実施の形態 2.
実施の形態 2は、 実施の形態 1の拡張機能である。 上記実施の形態 1においては、 移動局への割り当て電力合計は 70 %であり、 所定電力まで 10%の残余がある。 そこで、 スケジューラ 8は、 各移動局割り当 て電力に、 さらに残余分を再配分し、 伝送誤りをさらに低減する。 すなわち、 移 動局 aについては、 「 40 % X 80 %/ 70%=45. 7 %J 、 移動局 bにつレヽ ては、 「 30 %x 80 %/ 70%=34. 3 %」 の送信電力を最終的に割り当て る。
このように、 本実施の形態においては、 各移動局の HS— PDSCH割り当て 電力を、 基地局の所定電力と当初割り当て電力 (上記例では 40 %および 30 % ) の総和との比に従って増カ卩させる。 これにより、 基地局の HS— PDSCHの 送信電力を過不足なく使用することが可能になり、 伝送誤りが低減され、 通信シ ステムにおける通信品質を向上させることができる。
実施の形態 3.
実施の形態 3は、 実施の形態 1の拡張機能である。
上記実施の形態 1においては、 移動局への割り当て電力合計は 70 %であり、 所定電力まで 10 %の残余がある。 そこで、 スケジューラ 8は、 特定の移動局の 割り当て電力にざらに残余分を再配分し、伝送誤りをさらに低減する。たとえば、 移動局 aについて 「 40 % + 10 % = 50 %」 の電力を最終的に割り当てて送信 する。
なお、 どの移動局の HS— PDS CH電力を増カ卩させるかについては、 予めス ケジユーラ 8が優先順位を決定しておくものとする。
また、 1つの移動局について残余分すベてを 配分する以外に、 複数の移動局 に、 たとえば、 残余分を均等分割して再配分してもよい。
このように、 本実施の形態においては、 移動局の HS— PDSCH割り当て電 力を増加させることにより、 基地局の基地局の H S-PDS C Hの送信電力を過 不足なく使用することが可能になり、 伝送誤りが低減され、 通信システムにおけ る通信品質を向上させることができる。
実施の形態 4. 実施の形態 4は、 上記実施の形態 2または 3の拡張機能である。
上記実施の形態 3において、 スケジューラ 8は、 移動局 aに対して 4 0 %から 5 0 %の電力再配分を行うので、 1 d Bの電力増加となる。
この実施の形態 4においては、 移動局 aから報告されていた C Q I値が 1 0で . あった場合に、 C Q Iを 1 1と補正して適応変調を行う。
ただし、 第 2図の C Q Iテーブルは、 隣接 C Q I値での移動局受信信号電力差 が 1 d Bステップとなるように作成されているものとする。 これにより、 移動局 bに対しては、 より大きな "Transport Block Size" のデータを送信することが でき、 スループットの向上に寄与できる。
なお、 実施の形態 2の拡張も、 全ての割り当て移動局に対して、 電力再配分に 応じて上記と同様の C Q I補正を行う。
, 実施の形態 5 .
つづいて、 実施の形態 5の処理を、 第 4図を用いて説明する。
この実施の形態は、 任意の無線フレーム送信タイミングにおける割り当て移動 局上限数を決定しておき、 移動局の割り当て電力を全て同じ値に設定するもので ある。 システムの構成は、 実施の形態 1で説明した第 1図と同様であり、 所定電 力や符号リソースの上限等の条件も実施の形態 1と同様とする。
R N C 1の移動局電力割当設定部 5は、 割り当て移動局上限数を、 たとえば、 4と設定し、 所定電力 8 0 %を 4で均等割りし、 移動局の割り当て電力がすべて 2 0 %、 すなわち、 C P I C H電力の 2倍となるようにオフセット Γを 3 d Bに 設定しておく。
この移動局上限数は、 R N C 1から基地局 2に通知され、 スケジューラ 8は、 ある無線フレーム送信タイミングにおいて、 送信データキューの状態、 各移動局 力 ら報告される C Q I値、 残符号リソース本数より、 移動局を割り当てるが、 割 り当て移動局上限数の制約から 4つ以上の移動局の割り当ては行わない。 したが つて、 符号リソースが足りている限り、 第 4図左側の無線フレーム送信タイミン グ二 T 1 (符号リソースを 1 5本使用) の場合のように、 全 H S— P D S C Hに 所定電力を割り当てることができる。
なお、 第 4図右側の無線フレーム送信タイミング二 T 2の場合は、 3つの移動 局にて符号リソース本数上限の 1 5本を使用してしまったので、 2 0 %の電力は 非送信となっている。
無線フレーム送信タイミング = T 1において、 第 4図のように 4つの移動局を 割り当て、 無線フレーム送信タイミング = Τ 2では、 3つの移動局を割り当てる 動作をスケジューラ 8が行うが、 上記のように、,本実施の形態においては、 割り 当て総電力を所定電力とするべく、 移動局の割り当て電力およぴ移動局上限数を R N C 1であらかじめ定めておくため、 スケジューラ 8は、 スケジューリングに あたって電力割り当てを送信電力制御部 1 0から取得する必要がなく、 スケジュ ーラ 8の構成、 動作を簡略化できる。
実施の形態 6 .
つづいて、 実施の形態 6を、 第 5図, 第 6図を用いて説明する。 システムの構 成は、 実施の形態 1で説明した第 1図と同様であり、 所定電力や符号リソースの 上限等の条件も実施の形態 1と同様とする。
この実施の形態において、 任意の無線フレーム送信タイミングにおける割り当 て移動局上限数を決定しておくのは、 実施の形態 5と同様である。 実施の形態 5 との違いは、 R N C 1の移動局電力割当設定部 5が移動局ごとのサービスクラス や移動局の基地局からの距離等、 の違いでグルーピングし、 このグルーピングに 応じて電力配分を割り当てる点である。
かかる電力配分は、 たとえば、 "3GPP Specification TS25. 331 10. 2. 39" の "RRC connection request" メッセーンの information Element でめる Mea sured results on MCHの CPICH Ec/NO" に応じて、 RN C 1が移動局割り当て電 力設定部 5に対して各オフセット Γの値を設定することによって実現できる。 また、 : R N C 1は、 実施の形態 5と同様に、 割り当て移動局上限数を 4と設定 しているものとする。
たとえば、 スケジューラが、 ある無線フレーム送信タイミングにおいて、 送信 データキューの状態, C Q I値, 残符号リソース本数等より、 移動局 a〜 f を送 信候補としたとする。
ここで、 第 5図のように、 上記オフセット Γの設定により、 移動局 a, b , c が電力配分 3 0 %の移動局グループ Aに属し、 移動局 d , e, f が電力配分 1 0 %の移動局グループ Bに属していた場合、 スケジューラ 8は、 それぞれのグルー プから 2つを選択する。グループ A内の優先順位は、移動局 a , b , cの順とし、 グループ B内の優先順位は、 移動局 d , e , f の順とする。 これにより、 移動局 a , bが割り当てられ、 移動局 cの割り当は行わず、 つぎに優先順位が高い移動 局 d , eを割り当てる。
これにより、 割り当て移動局上限数 4を満たしつつ、 その内訳を、 第 6図のよ うに、 移動局グループ Aから 2つ、 移動局グループ Bから 2つ、 を選択するよう にして、 移動局 a, b, d , eに割り当てを行 、、 所定電力 8 0 %を過不足なく 利用することが可能となり、 通信システムのス —プットを向上させることがで さる。
実施の形態 7 . .
つづいて、 実施の形態 7の処理を、 第 7図を用いて説明する。 システムの構成 は、 実施の形態 1で説明した第 1図と同様であり、 所定電力や符号リソースの上 限等の条件も実施の形態 1と同様とする。
実施の形態 1では、 送信候捕として選択した移動局の H S - P D S C H電力の 和が所定電力を超えた^^、 割り当てられない移動局が発生したが、 この実施の 形態においては、各移動局の H S - P D S C H電力の配分を変更することにより、 割り当てられない移動局の発生を防止する。
この実施の形態においては、 まず、 実施の形態 1と同様に、 第 7図左側のよう に、 スケジューラ 8が、 ある無線フレーム送信タイミングにおいて、 送信データ キューの状態, 各移動局から報告される C Q I値, 残符号リソース本数より、 3 つの移動局を送信候補として選択する。 送信電力割り当ては、 実施の形態 1と同 様とする。
ム目 bb移動局 a〜 cの割り当て電力を総計すると、 所定電力 8 0 %を超えるので、 ス ケジユーラ 8は、 送信電力制御部 1 0の指示により再スケジユーリングを行い、 たとえば、 移動局 aについては電力配分を 4 0 %→ 3 0 %とし、 移動局 bについ ては 3 0 %→ 1 5 %とし、 これに応じて各移動局から受信した C Q I値を補正し た上で適応変調を行う。 ここでは電力を削減する優先順位を移動局 a , b , …の 順とする。
実施の形態 4と同様に、 電力減少比率分だけ、 1 d Bあたり C Q I値一つ分の 減少として C Q Iの補正を行う。 本実施の形態では、 3 0 %の電力を割り当て可 能な移動局が再スケジューリングによって' 1 5 %の割り当てになったので、 C Q 1 = 9から C Q 1 = 6へ 3 d B落ちの C Q Iに補正した上で、 第 2図より符号リソ ース本数の割り当ても 2本から 1本になっている。 4 0 %の電力を割り当て可能 な移動局の C Q I補正についても同様な手順となる。
さらに、 再スケジューリングによって電力が逆に 1 5 %剰余するので、 H S— P D S C H電力が 1 5 %である移動局 4をさらに割り当てることが可能となる。 以上の構成により、 所定電力 8 0 %を過不足なく利用することが可能となり、 より多くの移動局と 1つの無線フレーム送信タイミングにて通信を行うことが可 となる c
また、最も H S— P D S C H電力が大きい移動局 aの電力を 3 0 %に減らして、 移動局 a〜 cの和を 8 0 %にしてもよ 1、。
実施の形態 8 .
つづいて、 実施の形態 8の処理を、 第 8図を用いて説明する。 システムの; If成 は、 実施の形態 1で説明した第 1図と同様であり、 所定電力や符号リソースの上 限等の条件も実施の形態 1と同様とする。
第 8図左側のように、 スケジューラ 8は、 ある無線フレーム送信タイミングに おいて、 送信データキューの状態, 各移動局から報告される C Q I値, 残符号リ ソース本数より、 3つの移動局を送信候補として選択する。 送信電力割り当ては 実施の形態 1と同様とする。 移動局 a〜 cの割り当て電力を総計すると 9 0 %と なり、 所定電力 80%を超える力 送信電力制御部 10により、 各移動局の割り 当て電力を 80 %/ 90 %に圧縮して送信する。
この結果、 第 8図右側のように、 移動局 aの HS— PDS CH電力は、
40x80/90 = 35. 6 (%)
となり、 同様に、 移動局 bは、 26. 7 (%) 、 移動局 cは 17. 7 (%) とな る。
この実施の形態では、 送信電力を圧縮するので、 伝送誤りを増加させる傾向が あるが、スケジューラ 8による再割り当てが不要なので、スケジューラ 8の構成、 および動作手順が簡略ィ匕できる。
実施の形態 9.
つづいて、 実施の形態 9の処理を、 第 9図を用いて説明する。 システムの構成 は、 実施の形態 1で説明した第 1図と同様であり、 所定電力や符号リソースの上 限等の条件も実施の形態 1と同様とする。
本実施の形態においては、 オフセット Γの定義を、 当該基地局が送信するすべ ての H S-PDS CH送信電力 (総割り当て電力) と C P I CH送信電力との電 力オフセットとする。 したがって、 基地局の総送信電力に対する CP I CHの送 信電力を 10%、 全他チャネルの電力を 10%、 全 HS— PDSCHに許容され る所定電力を 80%とし、 これまでの実施の形態と同様の仮定を用いれば、 オフセット Γ= 80。/。/ 10%= 9 d Β
となり、 移動局にかかわらず一定になる。 この決定は、 RNC 1の移動局電力割 当設定部 5が行う。
ここでは、スケジューラ 8により、ある無線フレーム送信タイミングにおいて、 送信データキュー 7の状態, 各移動局 3から報告される CQ I値, 残符号リソー ス本数等より、 3つの移動局 a, b, cが送信候補として予め選択されているも のとする。
このとき、 上記オフセット Γの定義から、 各移動局が CP I CHの電力 PCPrai から受信 H S-PDSC H電力 PI1SPDSCIIとして推定した値は、 基地局全 H S-PD SCH本数分、 すなわち、 ここでは、 15本分となる。 この受信 HS— PDSC H電力 P11SPDSC1Iの推定は、 実施の形態 1で説明した (1) 式を用いて行われる。 な お、 移動局における] PCPIC11は、 移動局における CP I CHの受信電力である。 各移動局がそれぞれ前記 (1) 式を用いて算出する P励 SC11 (移動局割り当て電 力推定値) は、 15本すベての H S-PDS C Hの送信電力 P„SPDsaiの総和であり 、各移動局は、この値に基づいて自局の I値を決定し、基地局 2に通知する。 ここで算出 (推定) する P11SPDSC„が、 この発明における移動局割り当て電力推定 値 ある。
また、 ここでのオフセット Γは受信 H S-PDSC H電力 P 1ISPDSCIIと C P I C H の受信電力との比であり、 .受信電力比と呼ぶことができる。 また、 ( 1 ) 式以外 の算出式を使用して PCPM^ら P„SPDSC11を算出する際には、受信電力算出パラメータ と呼ぶことも可能である。
一方、 基地局 2のスケジューラ 8が (1) 式を用いて算出する PIISPDSC11も、 各移 動局に割り当てる送信電力 P11SPDSC11の総和である。 これは、 所定電力 (総送信電力 の 80%) に等しく、 各 HS— PDS CHに均等に割り当てるので、 第 9図のよ うに、 ある無線フレーム送信タイミング T 1において、 移動局 aの HS— PDS C Hの割り当て本数を 3本とすれば、 実際に移動局 aが受信する HS— PDSC Hの電力は、移動局 aが推定した値に対して 3本 /15本 =ー7 dBとなるので、 基地局 2は移動局 aから受けた CQ Iを 7 d B分補正して、 すなわち、 値を 7減 算するネ甫正を行った上で、 適応変調をかけることになる。
ただし、 第 2図の C Q Iテーブルは、 隣接 C Q I値での移動局受信信号電力差 が 1 dBステップとなるように作成されているものとする。 他の移動局について も同様である。
上記のような構成とすることにより、 基地局の H S-PDSC Hの送信電力を 過不足なく使用することが可能になる。
また、 移動局が過大に推定した H S— PD S CH電力に基づいて決定した CQ I値を、 基地局が適切な値に補正することが可能となり、 伝送誤りが低減され、 通信システムにおける通信品質を向上させることができる。
実施の形態 10. '
つづいて、 実施の形態 10の処理を、 第 10図を用いて説明する。 システムの 構成は、 実施の形態 1で説明した第 1図と同様であり、 所定電力や符号リソース の上限等の条件も実施の形態 1と同様とする。
実施の形態 9との違いは、 ある無線フレーム送信タイミングに割り当てた H S — PDS CHの合計本数が 15本に満たない場合であっても、 HS—; PDSCH の合計数に応じた CQ I補正が行われる点にある。
本実施の形態においては、 実施の形態 9と同様に、 オフセット Γの定義を、 当 該基地局の送信する全 HS— PDS CHと CP I CHとの電力オフセットとする。 したがって、 基地局の総送信電力に対する CP I CHの送信電力が 10%、 全他 チャネルの電力が 10 %、 全 H S— P D S CHに許容される所定電力が 80 %と なり、 これまでの実施の形態と同様の仮定を用いれば、
オフセット Γ = 80。/。/ 10 %= 9 d B
と一定になる。 この決定は、 RNC 1の移動局電力割当設定部 5が行う。
このとき、 上記オフセット Γの定義から、 各移動局が CP I CHの電力から受 信 H S _ P D S C Hとして推定した値は、 基地局 H S-PDSC H全送信電力と なる。
第 10図のように、 無線フレーム送信タイミング T1において、 移動局 aの H S— PD S CHの割り当て本数を 3本, 移動局 bの HS— PDSCHの割り当て 数を 5本とすれば、 HS— PDSCHの合計数は 8本となり、 実際に移動局 aが 受信する H S— P D S C Hの電力は、 実施の形態 9と同様の理由により 3本 / 8 本 =— 4. 3 dBとなる。
第 2図の C Q Iテーブルは、 隣接 C Q I値での移動局受信信号電力差が 1 d B ステップとなるように作成されているものとすると、 CQ Iの値を 4. 3減算す る必要があるが、 CQ I値は整数であるので、 誤り率等に関して安全側を採用し て CQ Iを 5減算し、 適応変調をかける。 上記の例のように、 CQ Iの必要減算量が整数にならない場合は、 上記のよう に小数点以下第 1位を繰り上げて整数化するものとする。
以上のように、 本実施の形態においては、 ある無線フレーム送信タイミングに 割り当てた H S-PD S C Hの合計本数が基地局の全 H S-PDSC H本数 (上 記実施の形態では 15本) に満たない場合であっても、 上記のように、 使用され る H S— P D S C Hの合計数に応じた C Q I補正が行われるため、 伝送効率を向 上させることができる。
なお、 上記説明では、 CQ Iの必要減算量が整数にならない場合は、 上記のよ うに小数点以下第 1位を繰り上げて整数化するとしたが、 小数点以下第 1位が 0 の場合は切り捨てて整数化してもよい。
また、 上記すべてめ実施の形態では、 CP I CH電力を 10%として説明して きたが、 他の値をとつてもよい。 また、 HS—PDSCHの全電力を 80%とし て説明したが、 40 %、 60 %のような他の値をとっても一般性を失わない。 ま た、 所定割り当て移動局上限数を 4として説明したが、 8のような他の値をとつ てもよい。 また、 最大 HS— PDSCH数を 15として説明してきたが 10のよ うな他の値をとつてもよい。
以上、 本発明によれば、 通信システムにおける通信品質を確保できる、 という 効果を奏する。 産業上の利用可能性
以上のように、 本発明にかかる通信方法は、 送信電力制御を行う無線通信シス テムに有用であり、 特に、 HS— PDSCHの送信電力の総計を所定電力内に納 めるように送信電力制御を行う基地局に適している。

Claims

請 求 の 範 囲
1 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り当 . てられる複数の共用チャネルとにより、 移動局との間で通信を行う基地局であつ て、
一の移動局に割り当てられる上記共用チャネルの送信電力の和である移動局割 当電力と上記共通チャネルの送信電力との比であり、 移動局毎に定まる送信電力 比を獲得し、
上記獲得した送信電力比と上記共通チャネルの送信電力とから各移動局の移動 局割当電力を決定し、
通信先の移動局の上記移動局割当電力の和が所定の上限値である割り当て可能 電力を超えないように通信先移動局を選択するスケジューラ、
を備えたことを特徴とする基地局。
2 . 上記スケジューラは、
上記選択した通信先移動局の移動局割当電力の和が上記割り当て可能電力に満 たない場合、 少なくとも 1つの通信先移動局の移動局割当電力を増加させること を特徴とする請求の範囲第 1項に記載の基地局。
3 . 上記スケジューラは、
通信先移動局の移動局割当電力を増加させた場合、 該通信先移動局が通知する 上記共有チャネルの回線品質を示す回線品質指標を、 上記移動局割当電力の増加 量に応じて補正することを特徴とする請求の範囲第 2項に記載の基地局。
4 . 上記スケジューラは、
通信先移動局数の上限値である移動局上限数を獲得し、 上記割り当て可能電力 を該移動局上限数以下の移動局に割り当てることを特徴とする請求の範囲第 1項 に記載の基地局。
5 . 上記スケジューラは、 '
上記選択した通信先移動局の移動局割当電力の和が上記割り当て可能電力を超 過した場合、 少なくとも 1つの通信先移動局の移動局割当電力を減少させるごと を特徴とする請求の範囲第 1項に記載の基地局。
6 . 上記スケジューラは、
通信先移動局の移動局割当電力を減少させた場合、 該通信先移動局が通知する 上記共用チャネルの回線品質を示す回線品質指標を、 上記移動局割当電力の減少 量に応じて補正することを特徴とする請求の範囲第 5項に記載の基地局。
7 . 上記複数の共用チャネルは所定時間間隔で所定の移動局に所定数ずつ割り 当てられ、
上記スケジューラは、
上記所定時間間隔で上記移動局割当電力の和が所定の上限値である割り当て可 能電力を超えないように通信先移動局を選択することを特徴とする請求の範囲第 1項に記載の基地局。
8 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り当 てられる複数の共用チャネルとにより、 移動局との間で通信を行う基地局であつ て、
上記共用チャネルに割り当て可能な送信電力の上限値である割り当て可能電力 を、 各通信先移動局に割り当てられた共用チャネル数に応じて分割することによ り各通信先移動局に割り当てられる共用チャネルの送信電力の和である移動局割 当電力を決定するスケジューラ、
を備えたことを特徴とする基地局。
9 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り当 てられる複数の共用チャネルとにより、 移動局との間で通信を行う基地局であつ て、
上記共用チャネルに割り当てる送信電力の和である総割り当て電力と上記共通 チ^ネルの送信電力の比である送信電力比を獲得し、
上記獲得した送信電力比と上記共通チャネルの送信電力とから総割り当て電力 を決定し、
該決定した総割り当て電力を、 各通信先移動局に割り当てられた共用チャネル 数に応じて分割することにより各通信先移動局に割り当てられる共用チャネルの 送信電力の和である移動局割当電力を決定するスケジューラ、
を備えたことを特徴とする基地局。
1 0 . 上記通信先移動局が、 上記送信電力比を獲得し該獲得した送信電力比と 該通信先移動局の上記共通チャネルの受信電力から推定した移動局割当電力推定 値に基づいて上記共用チャネルの回線品質を示す回線品質指標を通知した場合、 上記スケジューラは、
上記通信先移動局の移動局電力推定値と上記移動局割当電力に基づレ、て上記通 知された回線品質指標を補正することを特徴とする請求の範囲第 9項に記載の基 地局。
' 1 1 . 複数の移動局との間で、 所定時間毎に所定の移動局に所定数ずつ割り当 てられる複数の共用チャネルにより通信を行う基地局であって、
当該基地局が上記共用チャネルに割り当てる送信電力の和が、 所定の上限値で ある割り当て可能電力を超えないように通信先移動局を選択するスケジューラ、 を備えたことを特徴とする基地局。
1 2 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 移動局と基地局が通信を行う通信シス テムにおける移動局であり、
当該移動局に送信される上記共用チャネルの受信電力の和である移動局受信電 力と上記共通チャネルの受信電力の比であり当該移動局に対して定まる受信電力 比を獲得し、 '- 該獲得した受信電力比と当該移動局の上記共通チャネルの受信電力とから当該 移動局に割り当てられた共用チャネルの送信電力値である移動局割当電力推定値 を推定し、 該推定した移動局割当電力推定値に基づいて上記共用チャネルの回線 品質を示す回線品質指標を上記基地局に通知することを特徴とする移動局。
1 3 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 移動局と基地局が通信を行う通信シス テムにおける移動局であり、
上記共用チャネルに上記基地局が割り当てる送信電力の和である総割り当て電 力と上記共通チャネノレの受信電力の比である受信電力比を獲得し、
該獲得した受信電力比と当該移動局の上記共通チャネルの受信電力とから当該 移動局に割り当てられた共用チャネルの送信電力値である移動局割当電力推定値 を推定し、 該推定した移動局割当電力推定値に基づいて上記共用チャネルの回線 品質を示す回線品質指標を上記基地局に通知することを特徴とする移動局。
1 4 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 基地局と移動局との間で通信を行う通 信システムであって、
上記基地局が、
一の移動局に割り当てられる上記共用チャネルの送信電力の和である移動局割 当電力と上記共通チャネルの送信電力との比であり、 移動局毎に定まる送信電力 比を獲得し、 獲得した送信電力比と上記共通チヤネルの送信電力とから各移動局 の移動局割当電力を決定し、 通信先の移動局の上記移動局割当電力の和が所定の 上限値である割り当て可能電力を超えないように通信先移動局を選択するスケジ ユーラ、
を備え、
上記移動局が、
自局に送信される上記共用チャネルの受信電力の和である移動局受信電力と上 記共通チャネルの受信電力の比であり自局に対して定まる受信電力比を獲得し、 獲得した受信電力比と自局の上記共通チャネルの受信電力とから自局に割り当て られた共用チャネルの送信電力値である移動局割当電力推定値を推定し、 該推定 した移動局割当電力推定値に基づいて上記共用チャネルの回線品質を示す回線品 質指標を上記基地局に通知することを特徴とする通信システム。
1 5 · 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 基地局と移動局との間で通信を行う通 信システムであって、
上記基地局が、
上記共用チャネルに割り当てる送信電力の和である総割り当て電力と上記共通 チャネルの送信電力の比である送信電力比を獲得し、 上記獲得した送信電力比と 上記共通チャネルの送信電力とから総割り当て電力を決定し、 該決定した総割り 当て電力を、 各通信先移動局に割り当てられた共用チャネル数に応じて分割する ことにより各通信先移動局に割り当てられる共用チャネルの送信電力の和である 移動局割当電力を決定するスケジューラ、
を備え、
さらに、 上記スケジューラが、
上記通信先移動局が上記送信電力比を獲得し該獲得した送信電力比と該通信先 移動局の上記共通チャネルの受信電力から推定した移動局割当電力推定値に基づ いて上記共用チャネルの回線品質を示す回線品質指標を通知した場合に、 上記通 信先移動局の移動局電力推定値と上記移動局割当電力に基づいて上記通知された 回線品質指標を補正し、
上記移動局が、
上記共用チャネルに上記基地局が割り当てる送信電力の和である総割り当て電 力と上記共通チャネルの受信電力の比である受信電力比を獲得し、 該獲得した受 信電力比と自局の上記共通チャネルの受信電力とから自局に割り当てられた共用 チャネルの送信電力値である移動局割当電力推定値を推定し、 該推定した移動局 割当電力推定値に基づいて上記共用チャネルの回線品質を示す回線品質指標を上 記基地局に通知することを特徴とする通信システム。
1 6 . 複数の移動局に対して共通な共通チャネルと、 各移動局に所定数ずつ割 り当てられる複数の共用チャネルとにより、 移動局との間で通信を行う基地局に おける通信方法であって、
一の移動局に割り当てられる上記共用チャネルの送信電力の和である移動局割 当電力と上記共通チャネルの送信電力の比であり移動局毎に定まる送信電力比を 獲得するステップと、
上記獲得した送信電力比と上記共通チャネルの送信電力とから各移動局の移動 局割当電力を決定するステップと、
該移動局割当電力の和が所定の上限値である割り当て可能電力を超えな!/ヽよう に通信先移動局を選択するステップと、
を含むことを特徴とする通信方法。
1 7 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 移動局との間で通信を行う基地局にお ける通信方法であって、
上記共用チャネルに割り当てる送信電力の和である総割り当て電力と上記共通 チャネルの送信電力の比である送信電力比を獲得するステツプと、
上記獲得した送信電力比と上記共通チャネルの送信電力とから総割り当て電力 を決定するステップと、
該決定した総割り当て電力を、 各通信先移動局に割り当てられた共用チャネル 数に応じて分割することにより各通信先移動局に割り当てられる共用チャネルの 送信電力の和である移動局割当電力を決定するステップと、
を含むことを特徴とする通信方法。
1 8 . 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 移動局と基地局が通信を行う通信シス テムにおける通信方法であって、
上記移動局が、 自局に割り当てられる上記共用チャネルの送信電力の和である 移動局割当電力と上記共通チャネルの送信電力の比であり自局に対して定まる送 信電力比を獲得するステップと、
上記移動局が、 該獲得した送信電力比と自局の上記共通チャネルの受信電力と 力 ら自局に割り当てられた共用チャネルの送信電力値である移動局割当電力推定 値を推定し、 該推定した移動局割当電力推定値に基づいて上記共用チャネルの回 線品質を示す回線品質指標を上記基地局に通知するステップと、
上記基地局が、 一の移動局に割り当てられる上記共用チャネルの送信電力の和 である移動局割当電力と上記共通チャネルの送信電力の比であり移動局毎に定ま る送信電力比を獲得するステップと、
上記基地局が、 上記獲得した送信電力比と上記共通チャネルの送信電力とから 各移動局の移動局割当電力を決定し、 通信先の移動局の上記移動局割当電力の和 が所定の上限値である割り当て可能電力を超えないように通信先移動局を選択す 上記基地局が、 上記選択した通信先移動局の移動局割当電力の和が上記割り当 て可能電力に満たない場合、 少なくとも 1つの通信先移動局の移動局割当電力を 増加させ、 該移動局割当電力を増加させた通信先移動局が通知する上記回線品質 指標を、 上記移動局割当電力の増加量に応じて補正するステップと、
を含むことを特徴とする通信方法。 1 9 . ' 複数の移動局に対して共通な共通チャネルと各移動局に所定数ずつ割り 当てられる複数の共用チャネルとにより、 移動局と基地局が通信を行う通信シス テムにおける通信方法であって、
上記移動局が、 上記共用チャネルに対して上記基地局が割り当てる送信電力の 和である総割り当て電力と上記共通チャネルの送信電力の比である送信電力比を 獲得するステップと、
上記移動局が、 該獲得した送信電力比と自局の上記共用チャネルの受信電力と から自局に割り当てられた共用チャネルの送信電力値である移動局割当電力推定 値を推定し、 該推定した移動局割当電力推定値に基づいて上記共用チャネルの回 線品質を示す回線品質指標を上記基地局に通知するステップと、
上記基地局が、 上記共用チャネルに割り当てる送信電力の和である総割り当て 鼋力と上記共通チャネルの送信電力の比である送信電力比を獲得するステップと、 上記基地局が、 上記獲得した送信電力比と上記共通チャネルの送信電力とから 総割り当て電力を決定し、 該決定した総割り当て電力を、 各通信先移動局に割り 当てられた共用チャネル数に応じて分割することにより各通信先移動局に割り当 てられる共用チャネルの送信電力の和である移動局割当電力を決定するステップ と、 '
上記基地局が、 上記移動局電力推定値と上記移動局割当電力に基づいて上記移 動局から通知された回線品質指標を補正するステツプと、
を含むことを特徴とする通信方法。
PCT/JP2004/006811 2003-05-16 2004-05-13 基地局、移動局、通信システムおよび通信方法 WO2004102835A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/556,730 US7424305B2 (en) 2003-05-16 2004-05-13 Base station, mobile station, communication system, and communication method
EP04732806A EP1626511A1 (en) 2003-05-16 2004-05-13 Base station, mobile station, communication system, and communication method
US12/034,242 US20080153536A1 (en) 2003-05-16 2008-02-20 Base station, mobile station, communication system, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003138888A JP2004343524A (ja) 2003-05-16 2003-05-16 基地局、移動局、通信システムおよび通信方法
JP2003-138888 2003-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/034,242 Division US20080153536A1 (en) 2003-05-16 2008-02-20 Base station, mobile station, communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2004102835A1 true WO2004102835A1 (ja) 2004-11-25

Family

ID=33447315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006811 WO2004102835A1 (ja) 2003-05-16 2004-05-13 基地局、移動局、通信システムおよび通信方法

Country Status (5)

Country Link
US (2) US7424305B2 (ja)
EP (1) EP1626511A1 (ja)
JP (1) JP2004343524A (ja)
CN (1) CN1788436A (ja)
WO (1) WO2004102835A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411363C (zh) * 2006-09-27 2008-08-13 华为技术有限公司 一种高速下行共享信道资源分配方法
CN102598768A (zh) * 2009-09-15 2012-07-18 株式会社Ntt都科摩 无线基站和移动通信方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100508437C (zh) * 2003-12-22 2009-07-01 上海贝尔阿尔卡特股份有限公司 高速下行链路共享信道的信道码动态管理方法
JP4717485B2 (ja) * 2005-03-30 2011-07-06 京セラ株式会社 無線通信装置、無線通信システム及び無線通信方法
US7904105B2 (en) 2005-04-29 2011-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for allocating power in a communication network
MX2007013814A (es) * 2005-05-04 2008-04-17 Nokia Corp Tamanos de pasos de control de potencia variable para acceso de paquetes con enlace ascendente a alta velocidad (hsupa).
CN100415020C (zh) * 2005-10-31 2008-08-27 上海华为技术有限公司 一种高速物理下行共享信道的码资源分配方法
JP4698418B2 (ja) * 2005-12-28 2011-06-08 株式会社エヌ・ティ・ティ・ドコモ 通信システム、通信装置、通信方法及びプログラム
JP4805016B2 (ja) * 2006-05-19 2011-11-02 京セラ株式会社 通信システム、通信装置、及び通信レート変更方法
EP2036265A4 (en) * 2006-06-30 2013-06-26 Ericsson Telefon Ab L M IMPROVING THE COVER FOR A HSDPA CHANNEL (HSDPA - HIGH SPEED DOWNLINK PACKET ACCESS)
KR100740911B1 (ko) * 2006-09-20 2007-07-19 포스데이타 주식회사 무선 통신 시스템에서 하향 링크 전력을 할당하는 방법 및장치
US8825099B2 (en) 2007-01-09 2014-09-02 Qualcomm Incorporated CQI reporting for MIMO transmission in a wireless communication system
US8837337B2 (en) * 2007-01-12 2014-09-16 Qualcomm Incorporated Signaling of power information for MIMO transmission in a wireless communication system
WO2009019751A1 (ja) * 2007-08-03 2009-02-12 Fujitsu Limited 無線基地局の送信電力制御方法及び無線基地局
CN101159455B (zh) * 2007-11-06 2011-04-20 华为技术有限公司 高速下行共享物理信道的可用功率利用方法及装置
US20090161613A1 (en) * 2007-11-30 2009-06-25 Mark Kent Method and system for constructing channel quality indicator tables for feedback in a communication system
JP4937152B2 (ja) * 2008-02-01 2012-05-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、移動通信システム及び無線基地局
JP4610643B2 (ja) * 2008-08-12 2011-01-12 日本電信電話株式会社 無線回線割当方法及び該方法を実行する制御局装置
GB2489757B (en) 2011-05-16 2013-12-18 Renesas Mobile Corp Mobile Communications Network
US9106559B2 (en) * 2012-01-16 2015-08-11 University Of South Florida Systems and methods for automatically selecting a communication channel
JP5875540B2 (ja) * 2013-02-12 2016-03-02 株式会社Nttドコモ 無線基地局、ユーザ端末、無線通信システム、及び無線通信方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234203A (ja) * 1997-11-19 1999-08-27 Oki Electric Ind Co Ltd 送信電力制御装置
JP2000224231A (ja) * 1999-02-02 2000-08-11 Hitachi Ltd 移動通信システム及びパケットデータ送信方法
JP2002118515A (ja) * 2000-10-11 2002-04-19 Oki Electric Ind Co Ltd 移動体通信システム
WO2002047408A2 (en) * 2000-10-25 2002-06-13 Qualcomm Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
JP2002261687A (ja) * 2001-02-28 2002-09-13 Nec Corp 移動通信システム及びその送信電力制御方法並びにそれに使用する基地局
JP2002369258A (ja) * 2001-04-03 2002-12-20 Samsung Electronics Co Ltd 符号分割多重接続移動通信システムにおける制御データ伝送方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538257B1 (en) * 1989-11-06 1996-04-10 Calcomp Inc. Digitizer tablet system with dual-mode cursor/mouse
US6249683B1 (en) * 1999-04-08 2001-06-19 Qualcomm Incorporated Forward link power control of multiple data streams transmitted to a mobile station using a common power control channel
EP1418687B1 (en) * 1999-12-24 2008-03-19 NTT DoCoMo, Inc. Information distributing method and information distribution control device
SE517030C2 (sv) * 2000-06-06 2002-04-02 Ericsson Telefon Ab L M Metod och anordning för val av modulerings- och kodningsregler i ett radiokommunikationssystem
US6768727B1 (en) * 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
JP3479840B2 (ja) * 2000-11-22 2003-12-15 日本電気株式会社 移動通信制御方法及びそのシステム並びに移動局
US20020094833A1 (en) * 2001-01-12 2002-07-18 Telefonaktiebolaget Lm Ericsson (Publ). Downlink power control of a common transport channel
JP3551937B2 (ja) * 2001-02-28 2004-08-11 日本電気株式会社 移動通信システムにおける通信制御方法及びそれに使用する基地局
US20040114555A1 (en) * 2001-10-04 2004-06-17 Takahiro Hayashi Radio control apparatus, base station mobile communication method, mobile communication program, recording medium containing the same, and mobile communication system
KR100493079B1 (ko) * 2001-11-02 2005-06-02 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 광대역 부호 분할다중 접속 통신 시스템에서 순방향 채널 품질을 보고하는장치 및 방법
US6963755B2 (en) * 2002-01-09 2005-11-08 Qualcomm, Incorporated Method and apparatus for coherently combining power control commands to initialize communication
JP3548162B2 (ja) * 2002-02-15 2004-07-28 松下電器産業株式会社 送信装置
KR100878808B1 (ko) * 2002-02-18 2009-01-14 엘지전자 주식회사 전력 제어 레이트 결정 방법
CN1640095A (zh) 2002-04-08 2005-07-13 三菱电机株式会社 数据发送装置以及数据发送方法
KR100891816B1 (ko) * 2002-05-11 2009-04-07 삼성전자주식회사 비동기 부호분할다중접속 이동통신시스템에서 고속 순방향 물리공유채널의 전력 오프셋 정보 전송 방법
JP2004032640A (ja) * 2002-06-28 2004-01-29 Matsushita Electric Ind Co Ltd 送信電力制御方法、通信端末装置及び基地局装置
JP3679089B2 (ja) * 2002-11-20 2005-08-03 松下電器産業株式会社 基地局装置および再送パケットの送信電力制御方法
CN100461933C (zh) * 2003-04-30 2009-02-11 富士通株式会社 传输频带分配设备
WO2005032075A1 (ja) 2003-09-26 2005-04-07 Mitsubishi Denki Kabushiki Kaisha 通信装置およびスケジューリング方法
EP1727382A1 (en) 2004-02-27 2006-11-29 Mitsubishi Denki Kabushiki Kaisha Scheduler, base station, and scheduling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234203A (ja) * 1997-11-19 1999-08-27 Oki Electric Ind Co Ltd 送信電力制御装置
JP2000224231A (ja) * 1999-02-02 2000-08-11 Hitachi Ltd 移動通信システム及びパケットデータ送信方法
JP2002118515A (ja) * 2000-10-11 2002-04-19 Oki Electric Ind Co Ltd 移動体通信システム
WO2002047408A2 (en) * 2000-10-25 2002-06-13 Qualcomm Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
JP2002261687A (ja) * 2001-02-28 2002-09-13 Nec Corp 移動通信システム及びその送信電力制御方法並びにそれに使用する基地局
JP2002369258A (ja) * 2001-04-03 2002-12-20 Samsung Electronics Co Ltd 符号分割多重接続移動通信システムにおける制御データ伝送方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411363C (zh) * 2006-09-27 2008-08-13 华为技术有限公司 一种高速下行共享信道资源分配方法
CN102598768A (zh) * 2009-09-15 2012-07-18 株式会社Ntt都科摩 无线基站和移动通信方法
CN102598768B (zh) * 2009-09-15 2014-12-10 株式会社Ntt都科摩 无线基站和移动通信方法

Also Published As

Publication number Publication date
EP1626511A1 (en) 2006-02-15
JP2004343524A (ja) 2004-12-02
US7424305B2 (en) 2008-09-09
US20060240858A1 (en) 2006-10-26
US20080153536A1 (en) 2008-06-26
CN1788436A (zh) 2006-06-14

Similar Documents

Publication Publication Date Title
WO2004102835A1 (ja) 基地局、移動局、通信システムおよび通信方法
JP5054186B2 (ja) 通信ネットワークにおいてセル間干渉を管理するための方法及び装置
KR101101722B1 (ko) 다수의 기지국들 중에서 전송 스케줄링 조정
JP4840448B2 (ja) 無線通信システムでセル間干渉を制御するための上りリンクリソース割り当て
JP5169689B2 (ja) 通信装置
JP4295206B2 (ja) 高速共有チャネル用の無線リソース管理
US8000289B2 (en) Mobile communication system, base station, radio network controller, and resource allocation control method used therefor
EP2218273B1 (en) Resource scaling in wireless communication systems
JP4921475B2 (ja) スループット最適化キャリア割り当て
EP2337414B1 (en) Method and apparatus for resource distribution between multiple users
EP2166714A1 (en) Radio resource management method and apparatus for implementing the method
JP2007267070A (ja) 無線リソース割り当て方法及びそれを用いる無線リソース割り当て装置並びに基地局
JP2010226712A (ja) 周波数資源割当てのためのセル間干渉予測方法
US8908551B2 (en) Self adaptive multi-level downlink power control for noise-limited wireless cellular networks
KR20070079084A (ko) 이동 통신 시스템, 무선 기지국, 이동국, 및 이동 통신방법
JP4984880B2 (ja) 移動通信システムおよびその無線リソース割当方法ならびに基地局
US20070274263A1 (en) Slot allocation method for use in cellular radio communication system and base station for use in the same system
WO2007039513A1 (en) A method and apparatus for allocation of radio resources
JP4041495B2 (ja) 伝送帯域割り付け装置
CN101119142A (zh) 控制RoT的上行功率调度方法及码道资源分配方法
JP5541411B2 (ja) 無線通信ネットワークにおいてリソースブロックを割り当てるための方法および装置
RU2389160C2 (ru) Оптимизированное по пропускной способности назначение несущей
CN107534536B (zh) 用于协调式无线电资源指派的方法和系统
EP2139290A1 (en) Method in a wireless communication network to perform scheduling of resources and scheduler for a wireless communication network

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048128921

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006240858

Country of ref document: US

Ref document number: 10556730

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004732806

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004732806

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10556730

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP