WO2004099429A1 - 高重合度オリゴ糖の製造法 - Google Patents

高重合度オリゴ糖の製造法 Download PDF

Info

Publication number
WO2004099429A1
WO2004099429A1 PCT/JP1993/001192 JP9301192W WO2004099429A1 WO 2004099429 A1 WO2004099429 A1 WO 2004099429A1 JP 9301192 W JP9301192 W JP 9301192W WO 2004099429 A1 WO2004099429 A1 WO 2004099429A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
reaction
oligosaccharide
degree
ethanol
Prior art date
Application number
PCT/JP1993/001192
Other languages
English (en)
French (fr)
Inventor
Isao Karube
Takashi Morita
Original Assignee
Isao Karube
Takashi Morita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isao Karube, Takashi Morita filed Critical Isao Karube
Priority to US08/211,919 priority Critical patent/US5580762A/en
Publication of WO2004099429A1 publication Critical patent/WO2004099429A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to a method for producing an oligosaccharide having a high degree of polymerization, and more particularly, to a method for producing an oligosaccharide having a high degree of polymerization from a polysaccharide as a raw material.
  • oligosaccharides can be obtained directly as fermentation products, many are usually produced by digestion of polysaccharides. Conventionally, polysaccharides have been degraded by enzymatic hydrolysis and acid hydrolysis in aqueous systems.
  • the resulting oligosaccharides are about 2 to 6-mer, especially low-molecular-weight dimer or trimer, and more than this, especially higher than 10-mer
  • the yield of oligosaccharides is low and its efficient production is generally difficult.
  • Oligosaccharides with a low degree of polymerization are used as low-potency sweeteners, anti-cariogenic sweeteners, and the like.
  • those with a high degree of polymerization are said to have an effect of increasing useful enterobacteria such as bifidobacteria, but research has not progressed because it is difficult to obtain oligosaccharides with a high degree of polymerization . Therefore, highly polymerized oligosaccharides and methods for producing them are strongly desired.
  • punolanase is used in combination with various amylase to improve the yield of glucose and maltose.
  • pullulanase to produce oligosaccharides with a high degree of polymerization is not known.
  • the present invention has been made in view of the above, and has as its object to efficiently produce a high degree of polymerization oligosaccharide, using a polysaccharide as a raw material, and enzymatically decomposing the high degree of oligosaccharide. It is an object to provide a method for obtaining Disclosure of the invention
  • the present inventor has conducted various studies to solve the above problems, and as a result, has found that the use of a hydrophilic organic solvent in the reaction system for enzymatic degradation produces oligosaccharides with a high degree of polymerization, The present invention has been reached.
  • the present invention provides a method for producing an oligosaccharide by decomposing a polysaccharide using a hydrolase that cleaves a bond between saccharides constituting the polysaccharide, wherein the polysaccharide and the hydrolase are
  • This is a method for producing a highly polymerized oligosaccharide, characterized by coexisting in a mixture of a hydrophilic organic solvent and water.
  • the high-polymerization degree oligosaccharide mainly refers to one having about 5 to 20 mer.
  • the method for producing a highly polymerized oligosaccharide of the present invention comprises enzymatic degradation using a polysaccharide as a raw material in a mixed system of a hydrophilic organic solvent and water.
  • examples of the polysaccharide as a raw material include starch, cellulose, chitin, chitosan, dextran, agar, xylan, and the like.
  • an enzyme that cleaves a bond between constituent sugars of the above polysaccharide is used.
  • Agarase and xylanase are used for the above polysaccharide.
  • These enzymes include an endo-type that randomly cleaves the inside of the polysaccharide and an exo-type that cleaves from the end, and the endo-type is preferred in the present invention. If it is desired that the resulting oligosaccharide does not have a side chain, it is advisable to cut the branch bond in advance with a debranching enzyme such as isoamylase.
  • the enzyme reaction may be performed in a liquid phase, or may be performed using a so-called immobilized enzyme in which the enzyme is bound to an insoluble carrier.
  • the immobilization method is not particularly limited.
  • the hydrophilic organic solvent used in the enzymatic reaction include alcohol, which is a polar protic solvent such as ethanol, methanol, propanol, butanol, pentanol, and hexanol, acetone, dioxane, and the like.
  • Examples include polar aprotic solvents such as tetrahydrofuran, acetonitrile, dimethylsulfoxide, and dimethylformamide.
  • the enzyme reaction is carried out in a mixed system of these hydrophilic organic solvents and water.
  • ethanol is particularly preferred, and 30 to 90 ( ⁇ / ⁇ )% is preferred.
  • the starch concentration is preferably not more than 20 (W / v)% based on the reaction solution from the viewpoint of the yield.
  • the hydrolase and hydrophilic organic solvent to be used and the concentration thereof are appropriately set depending on the polysaccharide used as the raw material and the degree of polymerization of the oligosaccharide to be obtained.
  • the polysaccharide is starch
  • amylase is used as a hydrolase
  • ethanol is used as a hydrophilic organic solvent.
  • the concentration of ethanol is increased, an oligosaccharide having a high degree of polymerization is obtained, but the overall yield tends to decrease.
  • pullulanase is used in addition to amylase as a hydrolase, high yield is obtained.
  • An oligosaccharide having a high degree of polymerization can be obtained at a high rate.
  • the enzymatic reaction is preferably performed under the optimal conditions of the enzyme used, but may be performed under mild conditions in order to increase the degree of polymerization of the resulting oligosaccharide.
  • the optimum conditions include, for example, when starch is decomposed with ⁇ -amylase, 50 ° C. and pH 6.0 to 7.0.
  • the degree of polymerization of the oligosaccharide to be obtained is adjusted by changing the reaction conditions, particularly the reaction time, the amount of the enzyme relative to the raw material substrate, and the like.
  • the conditions should be determined in advance by analyzing the reaction product by HPLC (high performance liquid chromatography) or the like.
  • reaction products fractionate using gel filtration or HPLC.
  • a reaction system having an ethanol concentration of 60% (V / V) or more most of the generated high-molecular-weight oligosaccharides are obtained as precipitates, which can be accumulated by centrifugation or the like. Further, after dissolving to an appropriate concentration, purify by gel filtration or the like as necessary.
  • amylase is an endo-type hydrolase that randomly cleaves ⁇ -1,4 darcoside bonds in starch.
  • concentration of water in the reaction system decreases, The corresponding equilibrium changes to a reverse transition or synthesis. That is, by carrying out such an enzymatic reaction in a high-concentration hydrophilic organic solvent system, the equilibrium of the reaction is shifted, so that an oligosaccharide having a high degree of polymerization, which cannot be obtained in an aqueous system, can be obtained.
  • the present invention can be applied to a case where a polysaccharide other than starch and an enzyme that hydrolyzes the same are used by such an action.
  • FIG. 1 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 2 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 3 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 4 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 5 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 6 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 7 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 8 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 9 is a diagram showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • FIG. 10 is a graph showing the ratio of oligosaccharides of each degree of polymerization to the total amount of reaction products.
  • Example 2 The immobilized enzyme used in Example 2 and the following was obtained by adding an excess amount of enzyme to chitopearl (CHITOPEARL BCW-3510: manufactured by Fuji Boseki Co., Ltd.) in a wet weight of 10 g per 30 ml of buffer solution. After adding the solution (stock solution) and gently stirring for 1 hour at room temperature, the solution immobilized by allowing it to stand at 4 ° C for 1 night or more was added to the reaction solution at a rate of 0.6 to 1 Og (wet weight) was used. All enzyme reactions were performed in a stationary state.
  • the following ethanol concentrations are V / V%, and all are mixtures with 50 mM phosphate buffer.
  • the reaction products were analyzed by heating at 90 ° C for 10 minutes after the reaction to inactivate the enzyme, followed by HP LC, and the polymerization of the total amount of the reaction products (excluding unreacted substrate) was performed. The ratio of oligosaccharides was calculated.
  • HPLC used LC-6AD and RID-6A manufactured by Shimadzu Corporation, and used TSKgel AMIDE80 or Asahipak NH2P-50 as a column.
  • Example 2 Using 30 L of buffer solution and 240 L of immobilized BAN, 10 (W / V)% wheat starch was decomposed in the same manner as in Example 1 (reaction time: 120 hours). The reaction products were analyzed using the reaction supernatant in the case of water only, the precipitate in the reaction solution dissolved in warm water in the case of ethanol 60, 70, and 80%, and the above in the case of ethanol 50%. This was done for both clearing and precipitation. The results are shown in Table 2 and FIG.
  • Example 2 the immobilized ⁇ -amylase (derived from Bacillus subtilis, manufactured by Wako Pure Chemical Industries, Ltd .: 015-03731 for chemicals) was used in an amount of 0.8 g per 10 ml of the reaction solution. (70 hours), and the products having a polymerization degree of 1 to 16 were analyzed. The results are shown in Table 3 and FIG.
  • Reaction solution 1 was prepared using ⁇ -amylase from Aspergillus orizae (manufactured by Novo Industrie: 800 L of wanga minole), and ⁇ -amylase from Bacillus licheniformis (120 L of terminol mine). Using 0.8 g per 0 ml, the enzyme was digested in the same manner as in the above example (70 hours), and the reaction products in the supernatant and the precipitate were analyzed. The results are shown in Table 4 and Fig. 4 (A: Whanga mill, B: Tamma mill).
  • reaction products were analyzed by changing the substrate concentration.
  • the substrate used was a suspension of wheat starch 10%, 20%, and 30% (W / V) in 90% ethanol (pH 6.0), and 120 L of immobilized termamyl was added to reaction solution 1 0.8 g was added to Om.l, and the mixture was reacted at 50 ° C for 24 hours.
  • the results of analyzing the products in the precipitate after the reaction are shown in Table 6 and FIG. Table 6
  • the results show that the ratio of oligosaccharides with a high degree of polymerization in the product is hardly affected by the substrate concentration, but that the yield decreases when the substrate concentration is too high.
  • the substrate starch concentration is 20 (W / V)% or less. Is preferred in terms of yield.
  • Example 8 Next, an example in which ⁇ -amylase and pulnase are used in combination as hydrolases to produce a high-polymerized oligosaccharide from starch in the presence of ethanol will be described.
  • FIG. 10 shows the results of a reaction carried out in the same manner as described above using only 120 g of Termamyl immobilized as a hydrolase per 10 ml of the reaction solution.
  • the yield after reaction for 180 hours was 7.5%.
  • polysaccharides are enzymatically decomposed in a mixed system of a hydrophilic organic solvent and water, so that highly severe oligosaccharides can be efficiently produced.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

小 明細書 高重合度ォリゴ糖の製造法 技 術 分 野
本発明は、 高重合度オリゴ糖の製造法に関し、 詳しくは、 多糖類を原料として 重合度の高いオリゴ糖を製造する方法を提供するものである。
¾a
近年、 糖質が生理機能と関わりがあることが知られるようになり、 研究が活発 に行われている。 また、 低齲蝕性のものや、 腸内細菌叢を正常化する働きをする もの、 静菌作用を有するもの、 あるいはサイクロデキストリンのように包接作用 を有するものなど、 種々の作用を有するオリゴ糖が知られるようになり、 食品ェ 業等に貢献している。
オリゴ糖は、 直接酴酵生産物として得られるものもあるが、 通常は多糖類の分 解によって製造されるものが多い。 従来、 多糖類の分解は、 水系での酵素分解、 酸加水分解が行われている。
しかし、 上記の水系での酵素分解では、 得られるオリゴ糖は 2〜 6量体程度、 特に 2、 3量体の低分子のものが多く、 これ以上、 特に 1 0量体以上の高重合度 のォリゴ糖の収率は低く、 その効率的な生産は一般に困難である。
低重合度のォリゴ糖は、 低力口リ一甘味料ゃ抗齲蝕性甘味料等に利用されてい る。 一方、 高重合度のものはビフィズス菌などの有用な腸内細菌を増加させる働 きがあるとされているが、 高重合度オリゴ糖を得るのが困難であるために、 研究 は進んでいない。 したがって、 高重合度オリゴ糖及びその生産法が強く望まれて いる。
また、 澱粉工業において、 グルコースやマルトースの収率向上のためにプノレラ ナ一ゼが各種アミラーゼと併用されている。 しかし、 高重合度オリゴ糖の生産に プルラナーゼを使用することは知られていない。 -l - 本発明は、 上記観点からなされたものであり、 高重合度オリゴ糖を効率よく製 造することを目的としたものであり、 多糖類を原料として、 酵素分解により高重 合度オリゴ糖を得る方法を提供することを課題とする。 発 明 の 開 示
本発明者は、 上記課題を解決するために種々研究を重ねた結果、 酵素分解の反 応系に親水性有機溶媒を使用することにより、 高重合度のォリゴ糖が生成される ことを見出し、 本発明に至った。
すなわち本発明は、 多糖類を、 この多糖類を構成する糖同士の結合を切断する 加水分解酵素を用いて分解することによりオリゴ糖を製造する方法において、 多 糖類と前記加水分解酵素とを、 親水性有機溶媒と水との混合物中で共存させるこ とを特徴とする高重合度オリゴ糖の製造法である。
尚、 本発明においては、 高重合度オリゴ糖とは、 主として 5〜2 0量体程度の ものをいう。
以下、 本発明を詳細に説明する。
上述したように、 本発明の高重合度オリゴ糖の製造法は、 多糖類を原料として、 親水性有機溶媒と水との混合系で酵素分解を行うことからなる。
ここで、 原料となる多糖類としては、 例えば、 澱粉、 セルロース、 キチン、 キ トサン、 デキストラン、 ァガー、 キシラン等が挙げられる。
酵素分解に用いる酵素は、 上記多糖類の構成糖同士の結合を切断する酵素が用 いられ、 例えば上記多糖類に対して、 各々アミラーゼ、 プルラナ一ゼ、 セルラー ゼ、 キチナーゼ、 キトサナーゼ、 デキストラナ一ゼ、 ァガラ一ゼ、 キシラナ一ゼ が使用される。 これらの酵素には、 多糖類の内部をランダムに切断するエンド型、 末端から切断していくェキソ型等があるが、 本発明にはエンド型が好ましい。 ま た、 得られるオリゴ糖に側鎖がない方が望ましい場合には、 前もってィソァミラ —ゼのような枝切り酵素で分岐結合を切断しておくとよい。
また、 酵素反応は液相で行ってもよいが、 酵素を不溶性担体に結合したいわゆ る固定化酵素を用いて行ってもよい。 本発明においては、 固定化法は特に問わな い。 酵素反応に使用する親水性有機溶媒としては、 エタノール、 メタノール、 プロ パノ一ル、 ブタノール、 ペンタノ一ル、 へキサノ一ル等の極性プロトン性溶媒で あるアルコ一ノレ類の他、 アセトン、 ジォキサン、 テトラヒドロフラン、 ァセトニ トリル、 ジメチルスルホキシド、 ジメチルホルムァミ ド等の極性非プロトン性溶 媒等が挙げられ、 これらの親水性有機溶媒と水との混合系で酵素反応を行う。 澱 粉を α—アミラーゼで分解する場合には、 エタノールが特に好ましく、 3 0〜 9 0 (ν/ν) % が好ましい。 また、 エタノール濃度が高い場合には、 澱粉濃度は、 反応液に対して 2 0 (W/v) %以下であることが、 収率の点から好ましい。
使用する加水分解酵素、 親水性有機溶媒とその濃度は、 原料に用いる多糖類や 得ようとするオリゴ糖の重合度により適宜設定する。 例えば、 多糖類が澱粉であ る場合には、 加水分解酵素としてァミラーゼ、 親水性有機溶媒としてエタノール が挙げられる。 この場合、 エタノール濃度を高くすると重合度の高いオリゴ糖が 得られる一方、 全体の収率は低下する傾向にあるが、 加水分解酵素としてアミラ —ゼに加えてプルラナ一ゼを併用すると、 高い収率で重合度の高いオリゴ糖を得 ることができる。
酵素反応は、 用いる酵素の至適条件下で行うのが好ましいが、 得られるオリゴ 糖の重合度を高くするために、 穏やかな条件下で反応を行ってもよい。 至適条件 としては、 例えば澱粉を α—アミラーゼで分解する場合には 5 0 °C、 p H 6 . 0 〜 7 . 0が挙げられる。
反応条件、 特に反応時間、 原料基質に対する酵素量等を変化させることにより、 得ようとするオリゴ糖の重合度を調整する。 予め、 H P L C (高速液体クロマ卜 グラフィー) 等により、 反応生成物を分析し、 条件を決定しておくとよい。
反応生成物の中から希望の重合度のものを得るには、 ゲル濾過法や H P L Cを 用いて分取する。 また、 エタノール濃度が 6 0 % (V/V) 以上の反応系では、 生成 した高重合度オリゴ糖は、 ほとんどが沈澱物として得られるので、 これを遠心分 離等により集積することができる。 さらに、 適当な濃度に溶解してから必要に応 じてゲル濾過等で精製する。
例えば —アミラーゼは、 澱粉の α— 1 , 4ダルコシド結合をランダムに切断 するエンド型の加水分解酵素である。 しかし、 反応系の水の濃度が減少すると反 応の平衡が逆方向の転移又は合成に変化する。 すなわち、 高濃度の親水性有機溶 媒系でこのような酵素反応を行わせることにより、 反応の平衡をシフトさせ、 水 系では得られな 、高重合度のォリゴ糖を得ることができるようになる。 このよう な作用により、 澱粉以外の多糖類と、 これを加水分解する酵素を使用した場合に も本発明は適用できると考えられる。
尚、 本発明においては、 反応を有機溶媒系で行うことにより、 雑菌等による汚 染の心配がないので、 滅菌処理操作、 設備が不要である。 図面の簡単な説明
図 1 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 2 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 3 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 4 反応生成物総量に対する各重合度のオリゴ糖の割合を示した図。
図 5 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 6 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 7 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 8 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 9 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。
図 1 0 反応生成物総量に対する各重合度のォリゴ糖の割合を示した図。 発明を実施するための最良の形態
以下に、 本発明の実施例を、 澱粉からのグルコオリゴ糖の製造を例として説明 する。 尚、 実施例 2以下において使用した固定化酵素は、 緩衝液 3 0 m 1に対し、 湿潤重量で 1 0 gのキトパール (CHITOPEARL BCW-3510 : 富士紡績(株) 製) に、 過剰量の酵素溶液 (原液) を加え、 室温で 1時間緩やかに攪拌した後、 4 °Cで 1 中夜以上静置することにより固定化したものを、 反応液 1 O m 1に対し、 0 . 6 〜1 . O g (湿潤重量) 使用した。 酵素反応は、 いずれも静置で行った。
また、 以下のエタノールの濃度は V/V %であり、 いずれも 5 0 mMリン酸緩 衝液との混合物である。 反応生成物の分析は、 反応後に 90°Cで 1 0分間加熱して酵素を失活させた後、 HP LCにより行い、 得られた反応生成物の総量 (未反応基質を除く) に対する 各重合度のォリゴ糖の割合を算出した。
HPLCは、 島津製作所製 LC- 6AD、 RID- 6Aを用い、 カラムは、 TSKgel AMIDE80、 又は Asahipak NH2P-50を使用した。
<実施例 1〉
始めに、 固定化されていない酵素を使用した例を説明する。
10(W/V)%小麦澱粉を、 エタノール 0、 30、 40、 50、 60%溶液 (pH 7. 0) に懸濁し、 0. 24KNU (キロノボユニット : 1 KNUは、 1時間に 5. 25 gの澱粉を分解する酵素量) の α—アミラーゼ (B AN240 L (Baci llus subtilis由来):ノボインダストリ一製) 100〃 1を加え、 50。Cで 96 時間反応を行った。
反応後の上清中に含まれるオリゴ糖の濃度を測定し、 これらの総量に対する割 合を表 1及び図 1に示す。
表 1 ェ タ ノ ー ル濃度 (%( V/V))
里 A' 1=) ifxfr.
0 30 40 50 60
1 7.1 4.1 3.3 5.2 12.5
2 42.5 13.5 12.5 14.5 19.7
3 23.8 16.2 15.7 15.9 15.8
4 10.7 7.3 7.5 7.5 7.1
5 2.9 14.2 9.9 11.9 17.7
6 3.0 32.8 31.6 32.1 27.1
7 3.6 8.7 15.4 9.7 0
8 3.3 1.6 2.8 1.6 0
9 2.3 1.7 1.4 1.5 0
10 0.8 0 0 0 0 収率^)
55.8 28.1 18.2 15.4 1.7
(上清中) この結果から、 エタノールを反応系に加えると、 水のみの系と比べて 5量体以 上のオリゴ糖の量比が高くなることがわかる。 また、 エタノール濃度が高くなる と原料に対するオリゴ糖の総量 (収率) が著しく低下したが、 これは重合度が高 くなるとエタノールで沈澱するためであることが後の実験によりわかった。
ぐ実施例 2 >
次に、 固定化酵素を用いた例を説明する。
緩衝液 30m lに対し、 固定化した BAN 240 Lを用い、 実施例 1と同様に 1 0(W/V)%小麦澱粉の分解を行った (反応時間 1 20時間) 。 反応生成物の分析 は、 水のみの場合は反応上清について、 エタノール 60、 70、 80%の場合は、 反応液中の沈澱物を温水に溶解したものについて、 エタノール 50%の場合は、 上清及び沈澱の両方について行つた。 結果を表 2及び図 2に示す。
表 2 ェ タ ノ ー ル濃度 (%( V/V))
重合度
0 50 60 70 80
1 2.4 4.4 4.6 1.4 0.4
2 60.2 15.1 15.4 9.3 4.1
3 15.1 15.7 15.3 15.0 9.0
4 3.2 7.8 8.2 8.1 6.1
5 7.2 16.8 15.7 9.6 4.5
6 5.6 28.4 26.7 28.0 14.1
7 3.1 3.3 4.1 19.5 19.5
8 1.3 2.1 2.1 2.5 12.3
9 0.8 2.4 2.4 1.3 8.9
1 0 1.1 2.3 1.8 1.5 6.5
1 1 0 1.8 1.3 1.2 5.5
1 2 0 0 0 1.1 4.8
1 3 0 0 0 1.0 4.2
14 0 0 0 0.6 0 沈澱 0 32.5 56.9 100 50.6 収率
(%) 上清 12.0 55.8 0 0 0 この結果から、 高濃度エタノール中では、 反応生成物における高重合度オリゴ 糖の比率が高く、 しかも収率もよいことがわかる。
ぐ実施例 3 >
固定化した α—アミラーゼ (Bacillus subtilis由来、 和光純薬工業 (株) 製: 化学用 015-03731) を、 反応液 1 0 m 1に対して 0 . 8 g使用し、 実施例 2と同 様に反応を行い (7 0時間) 、 重合度 1〜1 6の生成物を分析した。 結果を表 3 及び図 3に示す。
表 3
Figure imgf000009_0001
この結果から明らかなように、 エタノ一ル濃度が高くなるほど高重合度ォリゴ 糖が生成し、 それらは反応液中に沈澱物として得られることがわかる。
<実施例 4 >
次に、 異なる酵素を固定化したものを用いて分解生成物の比較を行った。 Aspergillus orizae由来の α—ァミラ一ゼ (ノボインダストリ一製: ファンガ ミノレ 8 0 0 L ) 、 及び Bacillus licheniformis由来の 一ァミラ一ゼ (ノボイン ダストリ一製:ターマミノレ 1 2 0 L ) を、 反応液 1 0 m 1に対して 0 . 8 g使用 し、 上記実施例と同様に酵素分解し (7 0時間) 、 上清及び沈澱物中の反応物の 分析を行った。 結果を表 4及び図 4 (A : ファンガミル、 B :タ一マミル) に示 す。
表 4
Figure imgf000010_0001
その結果、 いずれの酵素を用いても、 反応液にエタノールを加えると高重合度 のオリゴ糖が得られた。
<実施例 5 >
さらに高濃度エタノール中で反応を行った。 酵素は固定ィ匕したターマミル 1 2 0 Lを、 反応液 10m lに対して 0. 8 g使用し、 上記と同様に反応を行い、 沈 澱物の分析を行った。 尚、 反応液の PHは 6. 0とし、 190時間反応を行った。 結果を表 5及び図 5に示す。 表 5
Figure imgf000011_0001
この結果から、 90%程度の高濃度のエタノール中においても、 水系では得ら れないような高重合度のォリゴ糖が得られることがわかつた。
ぐ実施例 6 >
次に、 基質濃度を変えて反応生成物の解析を行った。 基質は、 小麦澱粉 1 0、 20、 30 (W/V) %となるように 90%エタノール (pH6. 0) に懸濁したものを使用し、 固定化したターマミル 120 Lを、 反 応液 1 Om.lに対して 0. 8 g加え、 50°Cで 24時間反応を行った。 反応後の 沈澱物中の生成物を解析した結果を、 表 6及び図 6に示す。 表 6
Figure imgf000012_0001
この結果から、 生成物中の高重合度オリゴ糖の比率は、 基質濃度にほとんど影 響されないが、 基質濃度が高すぎると収率が低下することがわかる。 本実施例の ようにエタノール濃度が高い場合には、 基質澱粉濃度は 20 (W/V) %以下である ことが収率の点で好ましい。
<実施例 7 >
さらに、 基質澱粉の種類を変えて、 酵素分解を行った。
20 (W/V) %可溶性澱粉、 小麦澱粉、 トウモロコシ澱粉、 ポテト澱粉、 サツマ ィモ澱粉の 90%エタノール懸濁液(pH 6. 0) に、 固定化したターマミル 1 20 Lを、 反応液 10m 1に対して 0. 8 g加え、 50 °Cで 240時間反応を行 つた。 沈澱中の生成物を分析した結果を表 7及び図 7に示す。
表 7
Figure imgf000014_0001
この結果から、 澱粉の種類に拘らず、 反応液にエタノールを加えると、 高重合 度のォリゴ糖が得られることがわかる。
く実施例 8 > 次に、 加水分解酵素として α—アミラーゼとプルナーゼを併用し、 エタノール 存在下で澱粉から高重合度ォリゴ糖を製造した例を説明する。
10(W/V)%ポテト澱粉を、 エタノール 85% (V/V) 溶液 (pH7. 0 ) に懸 濁し、 各々別に固定化した夕一マミル 120L及びプルラナ一ゼ「ァマノ」 (天 野製薬(株) : Klebsiella pneumoniae由来) を、 各々反応液 1 0m lに対して 0 4 gづっ使用し、 50°Cで反応を行った。 沈殿中に含まれるオリゴ糖の濃度を測 定し、 これらの総量に対する割合を図 8に示す。 180時間反応後のオリゴ糖の 収率 (重合度 20まで、 以下同じ) は 61. 1 %であった。 また、 同様の条件で 反応系におけるポテト澱粉の濃度を変化させて反応を行つた結果を図 9に示す。 180時間反応後の収率は、 澱粉濃度 20 %では 52. 6 %、 澱粉濃度 30 %で は 66. 5%であった。
一方、 加水分解酵素として固定化したターマミル 120 Lのみを反応液 10m 1に対して 0. 8 g使用して上記と同様に反応を行った結果を図 10に示す。 1 80時間反応後の収率は、 7. 5%であった。
実施例 2、 3に示したように、 α—アミラーゼのみを使用した場合は、 ェタノ ール濃度が高くなるほど高重合度ォリゴ糖の割合が高くなる一方、 全体的な収率 が低下するが、 プルラナ一ゼを併用すると、 高いエタノール濃度においても高い 収率が得られ、 重合度、 収率ともに向上させることが可能であることがわかる。 さらに、 実施例 6に示したように、 高エタノール濃度では基質濃度が高いと収 率が低下するが、 プルラナーゼを併用すると基質濃度を 30%と高くしても、 高 収率を維持できることが明らかである。 産業上の利用可能性
本発明は、 多糖類を親水性有機溶媒と水との混合系で酵素分解を行うこととし たことにより、 高重度ォリゴ糖を効率よく製造することができる。

Claims

請求の範囲
1 . 多糖類を、 この多糖類を構成する糖同士の結合を切断する加水分解酵素を 用いて分解することによりオリゴ糖を製造する方法において、 多糖類と前記加水 分解酵素とを、 親水性有機溶媒と水との混合物中で共存させることを特徴とする 高重合度ォリゴ糖の製造法。
2 . 前記多糖類が澱粉であり、 前記加水分解酵素がァミラ—ゼであり、 前記親 水性有機溶媒がェタノ一ルである請求の範囲第 1項記載の高重合度ォリゴ糖の製 造法。
3 . 前記加水分解酵素としてさらにプルラナーゼを併用することを特徴とする 請求の範囲第 2項記載の高重合度ォリゴ糖の製造法。
4 . 前記親水性有機溶媒の濃度が、 3 0〜9 0 (V/V) %である請求の範囲第 1 項〜第 3項のいずれか一項に記載の高重合度ォリゴ糖の製造法。
PCT/JP1993/001192 1992-08-25 1993-08-25 高重合度オリゴ糖の製造法 WO2004099429A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/211,919 US5580762A (en) 1992-08-25 1993-08-25 Method of producing an oligosaccharide of a higher polymerization degree

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/226155 1992-08-25
JP22615592 1992-08-25
JP5/196373 1993-08-06
JP5196373A JPH06121693A (ja) 1992-08-25 1993-08-06 高重合度オリゴ糖の製造法

Publications (1)

Publication Number Publication Date
WO2004099429A1 true WO2004099429A1 (ja) 2004-11-18

Family

ID=26509712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/001192 WO2004099429A1 (ja) 1992-08-25 1993-08-25 高重合度オリゴ糖の製造法

Country Status (3)

Country Link
US (1) US5580762A (ja)
JP (1) JPH06121693A (ja)
WO (1) WO2004099429A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2345606A1 (en) * 2000-09-27 2002-03-27 The Governors Of The University Of Alberta Grain fractionation
EP2158224A4 (en) * 2007-06-13 2012-02-01 Univ Alberta HIGH VISCOSITY BETA-GLUCAN PRODUCTS AND METHODS OF PREPARATION
JP5681923B2 (ja) * 2010-03-29 2015-03-11 愛知県 高濃度糖化液の製造方法
EP3166981A4 (en) * 2014-07-09 2018-03-07 Cadena Bio, Inc. Oligosaccharide compositions and methods for producing thereof
EP3182981B1 (en) * 2014-08-22 2022-09-28 Isothrive Inc. Process for the production of isomaltooligosaccharides
AU2015305276B2 (en) 2014-08-22 2020-08-20 Isothrive Inc. Process for the production of isomaltooligosaccharides
BR112017015614B1 (pt) 2015-01-26 2023-05-09 Kaleido Biosciences, Inc Composições farmacêuticas e seus métodos de produção, usos de uma preparação terapêutica de glicano e kit farmacêutico
ES2938746T3 (es) 2015-01-26 2023-04-14 Dsm Nutritional Products Llc Composiciones de oligosacáridos para el uso como alimento para animales y sus métodos para producirlas
EP3285777B1 (en) 2015-04-23 2021-06-09 Kaleido Biosciences, Inc. Glycan therapeutics and methods of treatment
WO2019090181A1 (en) 2017-11-03 2019-05-09 Kaleido Biosciences, Inc. Methods of producing glycan polymers
CN112094955B (zh) * 2020-09-15 2023-07-07 淄博职业学院 纯品多糖制备寡糖的方法
CN113845605B (zh) * 2021-11-03 2023-02-24 中国科学院海洋研究所 一种单一高聚合度壳寡糖的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196297A (ja) * 1987-02-09 1988-08-15 Yaizu Suisan Kagaku Kogyo Kk マリトオリゴ糖―配糖体化合物の製造方法
JPH0466094A (ja) * 1990-07-04 1992-03-02 Akebono Brake Res & Dev Center Ltd 澱粉含有材料の酵素分解方法によるオリゴ糖の製造方法
JPH04210597A (ja) * 1990-12-12 1992-07-31 Nippon Shokuhin Kako Co Ltd マルトヘキサオース、マルトヘプタオース含有澱粉糖の製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1035516B (it) * 1969-10-24 1979-10-20 Hayashibara Co Procedimento per la produzione di sciroppi amido
US4604352A (en) * 1984-09-18 1986-08-05 Michigan Biotechnology Institute Co-culture production of thermostable enzymers and ethanol
US4717662A (en) * 1985-01-31 1988-01-05 Miles Laboratories, Inc. Thermal stabilization of alpha-amylase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196297A (ja) * 1987-02-09 1988-08-15 Yaizu Suisan Kagaku Kogyo Kk マリトオリゴ糖―配糖体化合物の製造方法
JPH0466094A (ja) * 1990-07-04 1992-03-02 Akebono Brake Res & Dev Center Ltd 澱粉含有材料の酵素分解方法によるオリゴ糖の製造方法
JPH04210597A (ja) * 1990-12-12 1992-07-31 Nippon Shokuhin Kako Co Ltd マルトヘキサオース、マルトヘプタオース含有澱粉糖の製造法

Also Published As

Publication number Publication date
JPH06121693A (ja) 1994-05-06
US5580762A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
Zhang et al. Preparation of chitooligosaccharides from chitosan by a complex enzyme
Kumar et al. A comparative study on depolymerization of chitosan by proteolytic enzymes
WO2004099429A1 (ja) 高重合度オリゴ糖の製造法
EP0688872A1 (en) Process for preparing starchy products
JPS62259554A (ja) 小麦及び他の穀類のペントサン含有デンプンからのグルコ−スシロツプ及び純化デンプンの改良製造法
JP4202439B2 (ja) フラボノイド可溶化法、その糖転移法及び高濃度フラボノイド溶液
JPH0568580A (ja) 高級キトサンオリゴ糖乃び高級キチンオリゴ糖の製造方法
JPS6318480B2 (ja)
JPH0759585A (ja) プルランオリゴ糖の製造法
JPH0440997B2 (ja)
Misaki et al. Degradation of elsinan by alpha amylases, and elucidation of its fine structure
JPH0430276B2 (ja)
JP2678622B2 (ja) 酵素法による単糖類の新規製造方法
US6528644B1 (en) Acetoacetylated saccharides and process of making the same
Ohnishi et al. Kinetic Properties of the Rhizopus Glucoamylase and Bacillus α‐Amylase, which are Immobilized on Cellulofine
JPH06169769A (ja) ペクチン分解酵素
JP3630378B2 (ja) ガラクトシルグリセロール類の製造方法
JP4402878B2 (ja) 新規モノアセチルキトオリゴ糖及びその製造方法、並びにキチンオリゴ糖及びキトサンオリゴ糖の製造方法
JP3995774B2 (ja) 新規α−フコシダーゼ
Ohkatsu et al. Glycolipid Enzyme Models. VI.--Hydrolysis of Cellulose and Amylose
Sreenath et al. Effect of Pullulanase and α‐Amylase on Hydrolysis of Waxy Corn Starch
JP2840772B2 (ja) グルコースの増収方法
KR970008130B1 (ko) 이소말토덱스트린 및 이의 제조방법
JPH089989A (ja) β−マンノシルオリゴ糖の製造方法
JPH05236982A (ja) デキストランの製造法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 08211919

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US