WO2004095018A1 - 光学異性体用分離剤 - Google Patents

光学異性体用分離剤 Download PDF

Info

Publication number
WO2004095018A1
WO2004095018A1 PCT/JP2004/005757 JP2004005757W WO2004095018A1 WO 2004095018 A1 WO2004095018 A1 WO 2004095018A1 JP 2004005757 W JP2004005757 W JP 2004005757W WO 2004095018 A1 WO2004095018 A1 WO 2004095018A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysaccharide derivative
porous carrier
separating agent
epoxy group
hydroxyl group
Prior art date
Application number
PCT/JP2004/005757
Other languages
English (en)
French (fr)
Inventor
Yoshio Okamoto
Chiyo Yamamoto
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to US10/551,681 priority Critical patent/US7772153B2/en
Priority to DE602004032335T priority patent/DE602004032335D1/de
Priority to EP04728898A priority patent/EP1632286B1/en
Priority to AT04728898T priority patent/ATE506118T1/de
Priority to JP2005505774A priority patent/JP4294028B2/ja
Publication of WO2004095018A1 publication Critical patent/WO2004095018A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/38Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
    • B01D15/3833Chiral chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/291Gel sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a separating agent for optical isomers and a method for producing the same.
  • Conventional technology
  • polysaccharides and derivatives thereof for example, cellulose, amylose esters, and olebamate derivatives exhibit high optical resolution.
  • chromatographic separating agents in which these are physically adsorbed and supported on silica gel are excellent separating agents that exhibit a wide range of optical resolution, a high number of plates, and durability (Y. Okamoto, M. Kawashima and K. Hatada, J. Am. Chem. Soc., 106, 5357, 1984).
  • solvent resistance is improved by a method of chemically bonding polysaccharide derivatives directly to silica gel, a method of crosslinking polysaccharide derivatives, or a method of both. It is considered that the method of having (JP-A-62-270602, JP-A-04-202141, JP-A-06-329561, JP-A-07-309784, JP-A-07-138301, JP-A-08-59702).
  • An object of the present invention is to provide a separating agent for optical isomers, which is capable of exhibiting a high optical resolution ability inherently possessed by a polysaccharide derivative and has solvent resistance, and a method for producing the same. .
  • the present invention provides, as a means for solving the problem, an optical isomer separating agent in which a polysaccharide derivative is supported on a porous carrier, wherein the porous carrier has an epoxy group, and the epoxy group and the hydroxyl group of the polysaccharide derivative.
  • a separating agent for an optical isomer which is chemically bonded to a part of the optical isomer.
  • the present invention provides a method for producing an optical isomer separating agent according to any one of claims 1 to 4, as another means for solving the problem,
  • optical isomers having a process of reacting a porous carrier having an epoxy group and a polysaccharide derivative having a hydroxyl group in an organic solvent under heating to chemically bond the porous carrier and the polysaccharide derivative.
  • a method for producing an agent is provided.
  • the present invention provides, as another means for solving the other problems, a method for producing an optical isomer separating agent according to any one of claims 1 to 4,
  • a porous carrier having an epoxy group and a polysaccharide derivative having a hydroxyl group are reacted in an organic solvent under heating to chemically bond the epoxy group of the porous carrier with the hydroxyl group of the polysaccharide derivative.
  • Process, and A method for producing an optical isomer separating agent comprising: a step of reacting a hydroxyl group of a product in a previous step with a compound having a functional group capable of reacting with the hydroxyl group.
  • the present invention provides an optical isomer of a substance in which a polysaccharide derivative is supported on a porous carrier, the porous carrier has an epoxy group, and the epoxy group and a part of the hydroxyl group of the polysaccharide derivative are chemically bonded.
  • the present invention relates to an optical device comprising a porous carrier carrying a polysaccharide derivative, the porous carrier having an epoxy group, and a chemical bond between the epoxy group and a part of the hydroxy group of the polysaccharide derivative.
  • the separating agent for optical isomers of the present invention is obtained by supporting a polysaccharide derivative on a porous carrier by chemical bonding.
  • a polysaccharide derivative at least a part (but not all) of a hydroxyl group of the polysaccharide is converted into an ester bond, a urethane bond, or an ether bond by a reaction with a compound having a functional group capable of reacting with the hydroxyl group.
  • a carbamate derivative or ester derivative of a polysaccharide is particularly preferable.
  • the polysaccharide is not particularly limited, and may be any of a synthetic polysaccharide, a natural polysaccharide and a modified natural product polysaccharide, as long as the polysaccharide is optically active.
  • 6-glucan (Bussullan), ⁇ -1, 3-glucan (eg ri-dran, schizophyllan etc.), ⁇ -1,3-glucan,] 3-1,2-glucan (Crown Gal polysaccharide), ⁇ -1,4—galactan,] 8—1,4—mannan, a—1,6—mannan, ⁇ -1,2-fructan (inulin),) 3-2,6-fructan (levan), ⁇ -1,4-xylan, ⁇ -1,3-xylan,] 3-1,4-chitosan, ⁇ -1 ,
  • chitin 4-1-acetyl-chitosan (chitin), pullulan, agarose, alginic acid, etc., including starch containing amylose.
  • cellulose, amylose,) 3-1,4-xylan, / 3-1-1,4-chitosan, chitin, ⁇ -1,4,1-mannan, inulin, curdlan, etc., from which high-purity polysaccharides can be easily obtained are preferred, and cellulose and amylose are particularly preferred.
  • the number-average degree of polymerization of the polysaccharide is 5 or more, preferably 10 or more. There is no particular upper limit, but it should be 100 or less. Is desirable in terms of ease of use.
  • the porous carrier has an epoxy group and can be obtained by introducing an epoxy group into a porous organic carrier and a porous inorganic carrier, and is preferably a porous inorganic carrier into which an epoxy group has been introduced.
  • Suitable as a porous organic carrier is a polymer material such as polystyrene, polyacrylamide, or polyacrylate, and suitable as a porous inorganic carrier is silica, alumina, magnesia, glass, kaolin, titanium oxide, Silicate and hydroxyapatite.
  • a particularly preferred carrier is silica gel, and the particle size of silica gel is 0.1 ID! ⁇ 10 0, preferably 1 / ⁇ ! Di300 Di, more preferably 1-100 ⁇ , particularly preferably 1-75 ⁇ .
  • Average pore size is 10 A ⁇ 100 Wm, preferably 50 A ⁇
  • the surface is desirably surface-treated to eliminate the effect of residual silanol, but there is no problem if no surface treatment is applied.
  • the binding ratio of the polysaccharide derivative is preferably 1 to 50 parts by mass, more preferably 1 to 20 parts by mass, and particularly preferably 1 to 10 parts by mass with respect to 100 parts by mass of the optical isomer separating agent. Better.
  • the binding rate of the polysaccharide derivative here means that the polysaccharide derivative in the separating agent for optical isomers Indicates the percentage of the account.
  • a porous carrier having an epoxy group and a polysaccharide derivative having a hydroxyl group are reacted in an organic solvent under heating to form an epoxy group of the porous carrier and a hydroxyl group of the polysaccharide derivative.
  • a porous carrier having an epoxy group and a polysaccharide derivative having a hydroxyl group are reacted in an organic solvent under heating to form an epoxy group of the porous carrier and a hydroxyl group of the polysaccharide derivative.
  • a compound that catalyzes a binding reaction between an epoxy group on the porous carrier and a hydroxyl group on the polysaccharide derivative (BF 3 ′ Et 20 (ethyl ether), etc.) is reacted with a reaction system. Can be added inside.
  • a step of reacting a hydroxyl group of the product in the above step with a compound having a functional group capable of reacting with the hydroxyl group can be provided.
  • a compound having such a hydroxyl group and a functional group capable of reacting with the hydroxyl group is used to form an ester bond, a urethane bond, an ether bond, or the like by a conventionally known method.
  • the compound having a functional group capable of reacting with a hydroxyl group includes isocyanic acid derivatives, carboxylic acids, esters, acid halides, halides, epoxy compounds, aldehydes, alcohols, and other compounds having a leaving group. Any material may be used as long as it is, for example, a fatty acid, an alicyclic, aromatic, or heteroaromatic compound.
  • the separating agent for optical isomers of the present invention can be used as a stationary phase for chromatography, and can be applied to gas chromatography, liquid chromatography, thin-layer chromatography, electrophoresis and the like. ) Suitable for liquid chromatography, thin-layer chromatography, and electrophoresis. It can be applied not only to chromatographic separation agents, but also to host-guest separation agents, membrane separation, and liquid crystal materials.
  • the separation agent for optical isomers of the present invention, the stationary phase for chromatography using the same, and the stationary phase for continuous liquid chromatography can be used to separate a wide range of chiral compounds, especially in the analysis of pharmaceuticals, foods, agricultural chemicals, and fragrances.
  • Suitable for optical isomer analysis technology that performs optical resolution with a coefficient.
  • porous isomer and the polysaccharide derivative of the separating agent for optical isomers of the present invention are chemically bonded, when applied to a stationary phase of chromatography, the range of selection of a solvent as a mobile phase is widened.
  • the porous carrier and the polysaccharide derivative are chemically bonded via the epoxy group introduced into the porous carrier, the polysaccharide derivative has Since no defects occur in the regular structure, polysaccharide derivatives can exhibit the inherently high optical resolution ability.
  • porous carrier 1 represented by the following formula (silica gel with epoxy group introduced)
  • Porous carrier 1 Silica gel (particle diameter 7 m, pore diameter 1000A) 8.1 g of benzene (80 ml), (3-dalicidoxypropyl) trimethoxysilane (4 ml), pyridine (0.2 The reaction product was washed well with methanol, acetone, and hexane in that order, and collected with a 4G glass filter. The introduction ratio of the epoxy group was determined by thermogravimetric analysis. Example 1
  • optical isomer separating agent 4-1 represented by the following formula (separating agent in which epoxy group of porous carrier 1 and part of hydroxyl group of polysaccharide derivative 2 are chemically bonded, no catalyst)
  • a pyridine solution of polysaccharide derivative 2 (0.26 g) was added to porous carrier 1 (1.02 g), and the mixture was allowed to react at 70 for 92 hours to perform immobilization.
  • the hydroxyl group generated by ring opening of the xy group was converted to phenyl carbamate.
  • the obtained separating agent was collected with a 4G glass filter, washed well with pyridine and THF, and then packed in a column [25 ⁇ 0.20 cm (id)] by a slurry method.
  • the polysaccharide derivative binding rate (the ratio of the polysaccharide derivative in the optical isomer separating agent) of the obtained filler was calculated by the following equation by performing a thermogravimetric analysis of the filler.
  • optical isomer separating agent 4-2 represented by the following formula (separating agent in which epoxy group of porous carrier 1 and part of hydroxyl group of polysaccharide derivative 2 are chemically bonded, with catalyst)
  • Polysaccharide derivative 1 supported on porous carrier 1 at a ratio of 20 wt% 1.After leaving 14 g for 3 hours at 80 in toluene, BF 3 -Et 20 (l ⁇ ) was added. In addition, the mixture was reacted for 38 hours, and the unreacted hydroxyl group of the derivative and the hydroxyl group generated by ring opening of the epoxy group were converted to phenylcarbamate. The obtained separating agent was recovered with a 4G glass filter, washed well with pyridine and THF, and then packed in a column [25 ⁇ 0.20 cm (id)] by a slurry method. The binding ratio of the polysaccharide derivative (the ratio of the polysaccharide derivative in the separating agent for optical isomers) of the obtained filler was calculated in the same manner as in Example 1. Comparative Example 1
  • separating agent 5 represented by the following formula (separating agent in which a part of the hydroxyl groups at positions 2 and 3 of polysaccharide derivative 1 is chemically bonded via diisocyanate to silica gel with amino group introduced)
  • Silica gel particle size 7 ⁇ , pore size ⁇
  • benzene 100 ml
  • (3-aminopropyl) triethoxysilane 2 ml
  • pyridine 0.8 ml
  • the obtained separating agent 5 was collected with a 4G glass filter, washed well with pyridine and THF, and then packed in a column [25 x 0.20 cm (id)] by a slurry method.
  • the binding ratio of the polysaccharide derivative (the ratio of the polysaccharide derivative in the separating agent for optical isomers) of the obtained filler was calculated by the same method as in Example 1 by performing thermogravimetric analysis on the filler. Comparative Example 2
  • separating agent 6 represented by the following formula (separating agent in which a part of the hydroxyl group at position 6 of silica gel and polysaccharide derivative 2 with an amino group is chemically bonded via diisocyanate)
  • Hexamethylene diisocyanate (0.05 ml, 0.31 mmol) and pyridine (10 ml) were added to the obtained surface-treated silylation gel (1.01 g), and reacted at 80 for 44 hours.
  • An isocyanate group was introduced.
  • the introduction rate of the isocyanate group onto the silica gel was calculated in the same manner as in Synthesis Example 3 by sampling a small amount of a silica gel and precipitating it in methanol, and performing thermogravimetric analysis on the obtained precipitate. After that, a pyridine solution of polysaccharide derivative 2 was added, immobilization was performed, and finally, unreacted hydroxyl groups were converted to phenylcarbamate.
  • the obtained separating agent 6 was collected with a 4G glass filter, washed well with pyridine and THF, and then packed in a column [25 x 0.20 cm (id)] by a slurry method.
  • the binding ratio of the polysaccharide derivative (the ratio of the polysaccharide derivative in the separating agent for optical isomers) of the obtained filler was calculated by the same method as in Example 1 by performing thermogravimetric analysis on the filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

本発明は、高い光学分割能力を有し、かつ耐溶剤性を兼ね備えた光学異性体用分離剤を提供する。すなわち、シリカゲル等の多孔質担体に、セルロース又はアミロースのカルバメート誘導体又はエステル誘導体等の多糖誘導体が担持された光学異性体用分離剤であり、エポキシ基を有する多孔質担体と多糖誘導体のヒドロキシル基の一部とが化学結合している光学異性体用分離剤である。

Description

明細書 光学異性体用分離剤 発明の属する技術分野
本発明は、 光学異性体用分離剤及びその製造法に関する。 従来の技術
従来から、 多糖類やその誘導体、 例えばセルロース、 アミロースのエステル、 力ルバメート誘導体が高い光学分割能力を示すことは、 よく知られている。 また、 これらをシリカゲル上に物理的に吸着、 担持させたクロマトグラフィー用分離剤 が、 幅広い光学分割能、 高い段数、 耐久性を示す優れた分離剤であることもよく 知られている (Y. Okamoto, M. Kawashima and K. Hatada, J. Am. Chem. Soc. , 106, 5357, 1984) 。
しかしながら、 これらの分離剤は、 多糖誘導体をシリカゲルに物理的な吸着に よって担持させているため、 多糖誘導体を溶解せしめる溶剤は、 移動相等に使用 することができず、 分離条件選択に制約があった。
また試料を溶解する溶剤にも制限があり、 移動相として使用可能な溶剤に対し て溶解性の小さい試料では、 特にクロマ卜分取時において大きな問題があった。 更に分離剤に強く吸着する汚染物質の洗浄においても、 洗浄液が制限されるとい う問題があった。
これらの点から、 多糖誘導体を担持した分離剤で、 かつ耐溶剤性を兼ね備えた 分離剤が求められていた。
このような問題を解決するため、 多糖誘導体をシリカゲルに直接化学結合させ る方法、 多糖誘導体同士を架橋させる方法、 又は両方の方法によって耐溶剤性を 持たせる方法が考えられている (特開昭 62-270602号公報、 特開平 04- 202141号 公報、 特開平 06-329561号公報、 特開平 07-309784号公報、 特開平 07-138301号 公報、 特開平 08- 59702号公報) 。
しかしながら、 これらの手法では、 多糖誘導体の置換基のいずれかを化学結合 又は架橋反応に使用するため、 多糖誘導体が持つ規則正しい構造に欠陥が生じ, 多糖誘導体が本来持つ高い光学分割能力を発揮できないという問題があった。
発明の開示
本発明は、 多糖誘導体が本来有している高い光学分割能力を発揮することがで き、 かつ耐溶剤性を兼ね備えた光学異性体用分離剤、 及びその製造法を提供する ことを課題とする。
本発明は、 課題の解決手段として、 多孔質担体に多糖誘導体が担持された光学 異性体用分離剤であり、 多孔質担体がエポキシ基を有しており、 前記エポキシ基 と多糖誘導体のヒドロキシル基の一部とが化学結合している光学異性体用分離剤 を提供する。
また本発明は、 他の課題の解決手段として、 請求項 1〜4のいずれかに記載の 光学異性体用分離剤の製造法であり、
エポキシ基を有する多孔質担体とヒドロキシル基を有する多糖誘導体を、 有機 溶媒中、 加温下で反応させ、 多孔質担体と多糖誘導体とを化学的に結合させるェ 程を具備する光学異性体用分離剤の製造法を提供する。
また本発明は、 他の課題の別の解決手段として、 請求項 1〜4のいずれかに記 載の光学異性体用分離剤の製造法であり、
エポキシ基を有する多孔質担体とヒドロキシル基を有する多糖誘導体を、 有機 溶媒中、 加温下で反応させ、 多孔質担体が有するエポキシ基と多糖誘導体が有す るヒドロキシル基とを化学的に結合させる工程、 及び 前工程における生成物が有するヒドロキシル基と、 前記ヒドロキシル基と反応 しうる官能基を有する化合物とを反応させる工程を具備する光学異性体用分離剤 の製造法を提供する。
本発明は、 多孔質担体に多糖誘導体が担持され、 多孔質担体がエポキシ基を有 しており、 前記エポキシ基と多糖誘導体のヒドロキシル基の一部とが化学結合し ている物の光学異性体用分離剤としての用途である。
本発明は、 多孔質担体に多糖誘導体が担持され、 多孔質担体がエポキシ基を有 しており、 前記エポキシ基と多糖誘導体のヒド□キシル基の一部とが化学結合し ている物により光学異性体を分離する方法である。 発明の詳細な説明
本発明の光学異性体用分離剤は、 多孔質担体に対し、 多糖誘導体が化学結合に より担持されたものである。
多糖誘導体は、 多糖が有するヒドロキシル基の少なくとも一部 (但し、 全部で はない。 ) が、 ヒドロキシル基と反応可能な官能基を有する化合物との反応によ り、 エステル結合、 ウレタン結合、 エーテル結合等を形成したものを用いること ができ、 特に多糖のカルバメート誘導体又はエステル誘導体が好ましい。
多糖は、 合成多糖、 天然多糖及び天然物変成多糖のいずれかを問わず、 光学活 性であればいかなるものでもよいが、 好ましくは結合様式の規則性の高いものが 望ましい。
例示すれば /3— 1 , 4—グルカン (セルロース) 、 ひ一 1 , 4—グルカン (ァ ミロース、 アミ口べクチン) 、 0!— 1, 6—グルカン (デキストラン) 、
6—グルカン (ブスッラン) 、 β - 1 , 3—グルカン (例えば力一ドラン、 シゾ フイラン等) 、 α— 1, 3—グルカン、 ]3— 1, 2—グルカン (Crown Gal l多 糖) 、 β - 1 , 4—ガラクタン、 ]8— 1 , 4—マンナン、 a— 1 , 6—マンナン、 β— 1, 2—フラクタン (ィヌリン) 、 )3— 2, 6—フラクタン (レバン) 、 β - 1 , 4ーキシラン、 β— 1 , 3—キシラン、 ]3— 1, 4—キトサン、 α— 1 ,
4一 Ν—ァセチルキトサン (キチン) 、 プルラン、 ァガロース、 アルギン酸等で あり、 アミロースを含有する澱粉も含まれる。
これらの中では、 高純度の多糖を容易に入手できるセルロース、 アミロース、 )3 - 1 , 4ーキシラン、 /3— 1 , 4—キトサン、 キチン、 β— 1 , 4一マンナン、 ィヌリン、 カードラン等が好ましく、 特にセルロース、 アミロースが好ましい。 多糖の数平均重合度 ( 1分子中に含まれるビラノースあるいはフラノース環の 平均数) は 5以上、 好ましくは 1 0以上であり、 特に上限はないが、 1 0 0 0以 下であることが取り扱いの容易さの点で望ましい。
多孔質担体はエポキシ基を有するもので、 多孔質有機担体及び多孔質無機担体 にエポキシ基を導入して得ることができ、 好ましくはエポキシ基を導入した多孔 質無機担体である。
多孔質有機担体として適当なものは、 ポリスチレン、 ポリアクリルアミド、 ポ リアクリレート等からなる高分子物質であり、 多孔質無機担体として適当なもの は、 シリカ、 アルミナ、 マグネシア、 ガラス、 カオリン、 酸化チタン、 ケィ酸塩、 ヒドロキシァパタイ卜などである。
特に好ましい担体はシリカゲルであり、 シリカゲルの粒径は 0 . I D!〜 1 0 删、 好ましくは 1 /ζ π!〜 3 0 0 Di、 更に好ましくは 1〜 1 0 0 ΠΚ 特に好まし くは 1〜7 5 μιηである。 平均孔径は 1 0 A〜1 0 0 wm、 好ましくは 5 0 A〜
5 0 , 0 0 O Aである。 表面は残存シラノールの影響を排除するために表面処理 が施されていることが望ましいが、 全く表面処理が施されていなくても問題ない。 多糖誘導体結合率は、 光学異性体用分離剤 1 0 0質量部に対して、 1〜 5 0質 量部が好ましく、 更に好ましくは 1〜 2 0質量部、 特に 1〜 1 0質量部が望まし い。 ここでいう多糖誘導体の結合率とは、 光学異性体用分離剤中の多糖誘導体が 占める割合を示す。
次に、 本発明の多孔質担体に対し、 多糖誘導体が化学結合で担持された光学異 性体用分離剤の製造法について説明する。
まず、 最初の工程において、 エポキシ基を有する多孔質担体とヒドロキシル基 を有する多糖誘導体を、 有機溶媒中、 加温下で反応させ、 多孔質担体が有するェ ポキシ基と多糖誘導体が有するヒドロキシル基とを化学的に結合させる。
この工程における具体的な処理法としては、 例えば、
①エポキシ基を有する多孔質担体に、 多糖誘導体の溶液 (ピリジン溶液等) を 加え、 加熱しながら撹拌する方法、 又は
②多糖誘導体を、 エポキシ基を有する多孔質担体に物理的吸着手段により担持 させた後、 溶媒 (クロ口ホルム、 トルエン等) を加え、 加熱しながら撹拌する方 法、
を適用することができる。
上記①及び②のいずれの方法においても、 多孔質担体上のエポキシ基と多糖誘 導体上のヒドロキシル基との結合反応を触媒する化合物 〔B F 3 ' Et20 (ェチル エーテル) 等〕 を反応系中に添加することができる。
本発明の製造法においては、 必要に応じて、 更に上記工程における生成物が有 するヒドロキシル基と、 前記ヒドロキシル基と反応しうる官能基を有する化合物 とを反応させる工程を設けることができる。
上記工程で得られた生成物には、 エポキシ基を有する多孔質担体と多糖誘導体 との化学結合に関与しなかった多糖誘導体のヒドロキシル基と、 エポキシ基の開 環により新たに生じたヒドロキシル基が存在する。
よって、 このようなヒドロキシル基と、 前記ヒドロキシル基と反応しうる官能 基を有する化合物により、 従来公知の方法で、 エステル結合、 ウレ夕ン結合、 あ るいはエーテル結合等を形成させることにより、 誘導体化する。 ここでヒドロキシル基と反応しうる官能基を有する化合物としては、 イソシァ ン酸誘導体、 カルボン酸、 エステル、 酸ハライド、 ハロゲン化物、 エポキシ化合 物、 アルデヒド、 アルコール、 及びその他の脱離基を有する化合物であればいか なるものでも良く、 例えば脂肪酸、 脂環族、 芳香族、 ヘテロ芳香化合物等を用い ることができる。
本発明の光学異性体用分離剤は、 クロマトグラフィーの固定相として用いるこ とができ、 ガスクロマトグラフィー、 液体クロマトグラフィー、 薄層クロマトグ ラフィー、 電気泳動等に適用することができ、 特に (連続式) 液体クロマトダラ フィ一法、 薄層クロマトグラフィー、 電気泳動に好適である。 また、 クロマトグ ラフィー用分離剤のみならず、 ホストゲスト分離剤、 膜分離、 液晶材料への応用 も可能である。
本発明の光学異性体用分離剤、 それを用いたクロマトグラフィーの固定相、 連 続式液体クロマトグラフィーの固定相は、 特に医薬品、 食品、 農薬、 香料の分析 において、 幅広いキラル化合物を、 高い分離係数をもって光学分割する光学異性 体分析技術に適している。
本発明の光学異性体用分離剤は、 多孔質担体と多糖誘導体が化学結合している ので、 クロマトグラフィー固定相に適用した場合、 移動相としての溶媒の選択範 囲が広がる。
更に本発明の光学異性体用分離剤は、 多孔質担体と多糖誘導体が、 多孔質担体 に導入されたエポキシ基を介して化学結合しているため、 従来技術のように、 多 糖誘導体が持つ規則正しい構造に欠陥が生じることがないため、 多糖誘導体が本 来持つ高い光学分割能力を発揮できる。 実施例
以下、 実施例によって本発明を具体的に説明するが、 本発明はこれらの実施例 に限定されるものではない。 合成例 1
下記式で表される多糖誘導体 1の合成 (6-0-トリチルセル口
Figure imgf000008_0001
500 mlの三つ口フラスコに、 セルロース(5. 03 g, 31 腿 ol)、 LiCl (3. 40 g, 81 Dunol)、 N, N-ジメチルァセトアミド(50 ml)を加え、 数時間 80 X:で膨潤させた後、 トリチルクロライド(38. 3 g, 137讓 ol)、 ピリジン(100 ml)を加えて、 12時間反 応させた。 生成物はメタノールに再沈殿させ、 遠心分離により回収した。 合成例 2
下記式で表される多糖誘導体 2の合成 〔2, 3-ビス(3, 5-ジメチルフエニルカル バメート)セルロース〕
Figure imgf000008_0002
多糖誘導体 2 多糖誘導体 1 (1. 08 g, 2. 67 Dunol)、 ピリジン(15 ml)を入れた後、 3, 5-ジメチ ルフエ二ルイソシァネート(1. 59 g, 10. 7 删 ol)を加え、 8(TCで 18時間反応させ、 2, 3位のヒドロキシル基を力ルバメートに変換した。 得られた沈殿をメタノール に再沈殿させ、 遠心分離によりピリジンがなくなるまでメ夕ノ一ルで洗つた後に、 酸 (HC1/メタノール =1/50)を用いて 6位のヒドロキシル基の保護基を外した。 生 成物は、 メタノールでよく洗って遠心分離によって回収した。 合成例 3
下記式で表される多孔質担体 1の合成 (エポキシ基を導入したシリカゲル)
Figure imgf000009_0001
多孔質担体 1 シリカゲル (粒径 7 m、 細孔径 1000A) 8. 1 gに対して、 ベンゼン(80 ml)、 (3 -ダリシドキシプロピル) トリメトキシシラン(4 ml)、 ピリジン(0. 2 ml)を加 え、 8(TCで 17時間反応させ、 生成物はメタノール、 アセトン、 へキサンの順で よく洗い 4Gガラスフィルターによって回収した。 エポキシ基の導入率は、 熱重 量分析により、 有機物の含有量を測定して求めた。 実施例 1
下記式で表される光学異性体用分離剤 4-1の合成 (多孔質担体 1のエポキシ基 と多糖誘導体 2のヒドロキシル基の一部を化学結合させた分離剤、 触媒無し)
Figure imgf000010_0001
多孔質担体 1
Figure imgf000010_0002
多孔質担体 1 (1. 02 g)に多糖誘導体 2 (0. 26 g)のピリジン溶液を加え、 70 で 92時間反応させて固定化を行った後、 誘導体の未反応のヒドロキシル基、 ェポ キシ基の開環により生じたヒドロキシル基をフエ二ルカルバメートに変換した。 得られた分離剤は、 4Gガラスフィルターで回収し、 ピリジン、 THFでよく洗い流 した後、 スラリー法によりカラム 〔25 X 0. 20cm (i. d. )〕 に充填した。 尚、 得られ た充填剤の多糖誘導体結合率 (光学異性体用分離剤中の多糖誘導体が占める割 合) は、 充填剤の熱重量分析を行い、 下記式より算出した。
多糖結合率 =
〔 (最終的に得られた充填剤中の有機物の重量) 一 (多糖誘導体を添加する前の 官能基導入シリカゲル中の有機物の重量) 〕 充填剤の全重量 実施例 2
下記式で表される光学異性体用分離剤 4-2の合成 (多孔質担体 1のエポキシ基 と多糖誘導体 2のヒドロキシル基の一部を化学結合させた分離剤、 触媒有り)
Figure imgf000011_0001
多孔質担体 1
Figure imgf000011_0002
多孔質担体 1 (1. 00 g)に多糖誘導体 2 (0. 25 g)のピリジン溶液、 触媒 BF3 · Et20 (2 //】)を加え、 80 で 25時間反応させ、 誘導体の未反応のヒドロキシル基、 エポキシ基の開環により生じたヒドロキシル基をフエ二ルカルバメ一トに変換し た。 得られた分離剤は、 4Gガラスフィルターで回収し、 ピリジン、 THFでよく洗 い流した後、 スラリー法によりカラム 〔25 X 0. 20cm (i. d. )〕 に充填した。 尚、 得 られた充填剤の多糖誘導体結合率 (光学異性体用分離剤中の多糖誘導体が占める 割合) は、 実施例 1と同様の方法により算出した。 実施例 3
下記式で表される光学異性体用分離剤 4-3の合成 (多糖誘導体 1を多孔質担体 1に予めコーティングしてから、 クロ口ホルム中で化学結合させた分離剤、 触媒 有り)
Figure imgf000012_0001
多孔質担体 1
1) Coating 多糖誘導体 1 (20 wt¾)
2) dry Chloroform I BF3 · Et20
Figure imgf000012_0002
多糖誘導体 1を 20 Wt¾の割合で多孔質担体 1に担持させたもの 1. 11 gを、 ク ロロホルム中、 60でで 3時間放置した後、 BF3 - Et20(l l)を加え、 38時間反応 させ、 多糖誘導体 1の未反応のヒドロキシル基、 エポキシ基の開環により生じた ヒドロキシル基をフエ二ルカルバメートに変換した。 得られた分離剤は、 4Gガ ラスフィルターで回収し、 ピリジン、 THFでよく洗い流した後、 スラリー法によ りカラム 〔25X0.20cm (i.d.)〕 に充填した。 尚、 得られた充填剤の多糖誘導体結 合率 (光学異性体用分離剤中の多糖誘導体が占める割合) は、 実施例 1と同様の 方法により算出した。 実施例 4
下記式で表される分離剤 4-4の合成 (多糖誘導体 1を多孔質担体 1に予めコー ティングしてからトルエン中で化学結合させた分離剤、 触媒有り)
Figure imgf000013_0001
Figure imgf000013_0002
多糖誘導体 1を 20 wt%の割合で多孔質担体 1に担持させたもの 1. 14 gを、 ト ルェン中、 80でで 3時間放置した後、 BF3 - Et20 (l μ ΐ)を加え、 38時間反応させ、 誘導体の未反応のヒドロキシル基、 エポキシ基の開環により生じたヒドロキシル 基をフエ二ルカルバメートに変換した。 得られた分離剤は、 4Gガラスフィルタ 一で回収し、 ピリジン、 THFでよく洗い流した後、 スラリー法によりカラム 〔25 Χ0. 20cm (i. d. ) に充填した。 尚、 得られた充填剤の多糖誘導体結合率 (光学異 性体用分離剤中の多糖誘導体が占める割合) は、 実施例 1と同様の方法により算 出した。 比較例 1
下記式で表される分離剤 5の合成 (アミノ基を導入したシリカゲルと多糖誘導 体 1の 2, 3位のヒドロキシル基の一部を、 ジィソシァネートを介して化学結合さ せた分離剤)
Figure imgf000014_0001
シリカゲル (粒径 7 μπι、 細孔径 ΙΟΟΟΑ) 10. 1 gに対して、 ベンゼン(100 ml)、 (3 -ァミノプロピル) トリエトキシシラン(2 ml) , ピリジン(0. 8 ml)を加え、 80 で 12時間反応させた。 生成物は、 メタノール、 アセトン、 へキサンの順で良く 洗い 4Gガラスフィル夕一によって回収した。
得られた表面処理シリカゲル(1. 00 g)にへキサメチレンジイソシァネート (0. 15 ml, 0. 94 mmol)、 ピリジン(10 ml)を加えて、 80でで 12時間反応させィソ シァネート基を導入した。 イソシァネート基のシリカゲル上への導入率は、 シリ 力ゲルを少量サンプリングしてメタノールに沈殿させ、 得られた沈殿物の熱重量 分析を行い、 合成例 3と同様の方法にて算出した。
その後、 多糖誘導体 1 (0. 18 g)のピリジン溶液を加え、 固定化を行った。 上澄 み溶液を取り出し、 再びピリジンを加える作業を数回行い、 未反応のへキサメチ レンジイソシァネートを取り除いた。 その後、 酸 (HC1 /メタノール =1/50)により 脱保護し、 3, 5-ジメチルフエ二ルイソシァネートを加えて未反応のヒドロキシル 基をフエ二ルカルバメートに変換した。
得られた分離剤 5は、 4Gガラスフィルターで回収し、 ピリジン、 THFでよく洗 い流した後、 スラリー法によりカラム 〔25 x0. 20cm (i. d. )〕 に充填した。 尚、 得 られた充填剤の多糖誘導体結合率 (光学異性体用分離剤中の多糖誘導体が占める 割合) は、 充填剤の熱重量分析を行い、 実施例 1と同様の方法により算出した。 比較例 2
下記式で表される分離剤 6の合成 (アミノ基を導入したシリカゲルと多糖誘導 体 2の 6位のヒドロキシル基の一部をジイソシァネートを介して化学結合させた 分離剤)
Figure imgf000015_0001
シリカゲル (粒径 7 ΠΙ、 細孔径 lOOOA) 10. 1 gに対して、 ベンゼン(100 ml) , (3-ァミノプロピル) トリエトキシシラン(2 ml)、 ピリジン(0. 8 ml)を加え、 80で で 12時間反応させた。 生成物は、 メタノール、 アセトン、 へキサンの順で良く 洗い 4Gガラスフィルターによって回収した。
得られた表面処理シリ力ゲル(1. 01 g)にへキサメチレンジイソシァネート (0. 05 ml, 0. 31 mmol) , ピリジン(10 ml)を加えて、 80でで 44時間反応させイソ シァネート基を導入した。 イソシァネート基のシリカゲル上への導入率は、 シリ 力ゲルを少量サンプリングしてメタノールに沈殿させ、 得られた沈殿物の熱重量 分析を行い、 合成例 3と同様の方法にて算出した。 その後に多糖誘導体 2のピリ ジン溶液を加え、 固定化を行い、 最後に未反応のヒドロキシル基をフエニルカル バメートに変換した。
得られた分離剤 6は、 4Gガラスフィルターで回収し、 ピリジン、 THFでよく洗 い流した後、 スラリー法によりカラム 〔25 x0. 20cm (i. d. )〕 に充填した。 尚、 得 られた充填剤の多糖誘導体結合率 (光学異性体用分離剤中の多糖誘導体が占める 割合) は、 充填剤の熱重量分析を行い、 実施例 1と同様の方法により算出した。 応用例 1
実施例で得られた各分離剤 4-1〜4-4と、 比較例で得られた分離剤 5, 6を用い、 HPLCによる、 次に示す各種ラセミ体に対する光学分割能力 (分離係数、 ひ) を 測定した。 結果を表 1に示す。
Figure imgf000016_0001
Figure imgf000016_0002
表 1
Figure imgf000017_0001
α= (より強く保持される対掌体の保持係数) / (より弱く保持される対掌体 の保持係数)
流速: 0. 1 ml/min.
移動相:へキサン/イソプロパノール =98/2 (v/v)

Claims

請求の範囲
1 . 多孔質担体に多糖誘導体が担持された光学異性体用分離剤であり、 多孔質 担体がエポキシ基を有しており、 前記エポキシ基と多糖誘導体のヒドロキシル基 の一部とが化学結合している光学異性体用分離剤。
2 . 多糖誘導体がセルロース又はアミロースである請求項 1記載の光学異性体 用分離剤。
3 . 多糖誘導体が多糖の力ルバメート誘導体又はエステル誘導体である請求項 1又は 2記載の光学異性体用分離剤。
4 . 多孔質担体がシリ力ゲルである請求項 1〜 3のいずれかに記載の光学異性 体用分離剤。
5 . クロマトグラフィーの固定相として用いられる請求項 1〜4のいずれかに 記載の光学異性体用分離剤。
6 . 連続式クロマトグラフィーの固定相として用いられる請求項 1〜4のいず れかに記載の光学異性体用分離剤。
7 . 請求項 1〜 6のいずれかに記載の光学異性体用分離剤の製造法であり、 エポキシ基を有する多孔質担体とヒドロキシル基を有する多糖誘導体を、 有機 溶媒中、 加温下で反応させ、 多孔質担体と多糖誘導体とを化学的に結合させるェ 程を具備する光学異性体用分離剤の製造法。
8 . 請求項 1〜 6のいずれかに記載の光学異性体用分離剤の製造法であり、 エポキシ基を有する多孔質担体とヒドロキシル基を有する多糖誘導体を、 有機 溶媒中、 加温下で反応させ、 多孔質担体が有するエポキシ基と多糖誘導体が有す るヒドロキシル基とを化学的に結合させる工程、 及び
前工程における生成物が有するヒドロキシル基と、 前記ヒドロキシル基と反応 しうる官能基を有する化合物とを反応させる工程を具備する光学異性体用分離剤 の製造法。
9 . 多孔質担体に多糖誘導体が担持され、 多孔質担体がエポキシ基を有してお り、 前記エポキシ基と多糖誘導体のヒドロキシル基の一部とが化学結合している 物の光学異性体用分離剤としての用途。
1 0 . 多孔質担体に多糖誘導体が担持され、 多孔質担体がエポキシ基を有して おり、 前記エポキシ基と多糖誘導体のヒドロキシル基の一部とが化学結合してい る物により光学異性体を分離する方法。
PCT/JP2004/005757 2003-04-24 2004-04-22 光学異性体用分離剤 WO2004095018A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/551,681 US7772153B2 (en) 2003-04-24 2004-04-22 Separating agent for enantiomeric isomers
DE602004032335T DE602004032335D1 (de) 2003-04-24 2004-04-22 Trennbares mittel für optischen isomer
EP04728898A EP1632286B1 (en) 2003-04-24 2004-04-22 Separating agent for optical isomer
AT04728898T ATE506118T1 (de) 2003-04-24 2004-04-22 Trennbares mittel für optischen isomer
JP2005505774A JP4294028B2 (ja) 2003-04-24 2004-04-22 光学異性体用分離剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003119326 2003-04-24
JP2003-119326 2003-04-24

Publications (1)

Publication Number Publication Date
WO2004095018A1 true WO2004095018A1 (ja) 2004-11-04

Family

ID=33308098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005757 WO2004095018A1 (ja) 2003-04-24 2004-04-22 光学異性体用分離剤

Country Status (8)

Country Link
US (1) US7772153B2 (ja)
EP (1) EP1632286B1 (ja)
JP (1) JP4294028B2 (ja)
KR (1) KR101011784B1 (ja)
CN (1) CN100391593C (ja)
AT (1) ATE506118T1 (ja)
DE (1) DE602004032335D1 (ja)
WO (1) WO2004095018A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129659A1 (ja) * 2006-05-09 2007-11-15 National University Corporation Nagoya University 光学異性体分離用充填剤
WO2007129658A1 (ja) * 2006-05-09 2007-11-15 National University Corporation Nagoya University 光学異性体分離用充填剤
WO2007148834A1 (ja) 2006-06-23 2007-12-27 Daicel Chemical Industries, Ltd 光学異性体の分析方法又は分離方法
CN102060995A (zh) * 2010-11-19 2011-05-18 中南大学 一种硅胶负载二硫代氨基甲酸盐重金属螯合树脂的制备方法
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472255B1 (en) * 2009-08-26 2016-05-25 Daicel Corporation Separating agent for optical isomer
US8859757B2 (en) * 2010-06-18 2014-10-14 Daicel Corporation Separating agent for optical isomers
EP2522647B1 (en) 2011-05-10 2014-04-30 DSM IP Assets B.V. Process of separating chiral isomers of chroman compounds and their derivatives and precursors
EP2573063A1 (en) 2011-09-23 2013-03-27 DSM IP Assets B.V. Process for preparing chiral quinone
CN104028253B (zh) * 2014-06-23 2015-10-28 镇江出入境检验检疫局检验检疫综合技术中心 一种金纳米颗粒-多糖键合硅胶固定相及其制备方法
CN106268657A (zh) * 2015-05-14 2017-01-04 株式会社大赛璐 光学异构体用分离剂
WO2023208514A1 (en) 2022-04-28 2023-11-02 F. Hoffmann-La Roche Ag Chiral separation of n-phthaloyl-d/l-glutamic acid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270602A (ja) 1986-05-19 1987-11-25 Daicel Chem Ind Ltd 多糖誘導体の製造方法
JPH04202141A (ja) 1990-11-29 1992-07-22 Nakarai Tesuku Kk 光学分割剤の製造法
JPH06329561A (ja) 1993-05-24 1994-11-29 Daicel Chem Ind Ltd 分離剤
JPH07138301A (ja) 1993-09-22 1995-05-30 Nakano Vinegar Co Ltd 新規多糖誘導体,その製造法及びその用途
JPH07309784A (ja) 1994-05-17 1995-11-28 Daicel Chem Ind Ltd 光学異性体用分離剤
JPH0859702A (ja) 1993-06-22 1996-03-05 Daicel Chem Ind Ltd 光学異性体用分離剤およびその製造法
JPH11255671A (ja) * 1998-03-11 1999-09-21 Daicel Chem Ind Ltd 光学異性体のクロマト分離法
JP2002350413A (ja) * 2001-05-24 2002-12-04 Daicel Chem Ind Ltd 分離用カラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539399A (en) * 1984-07-27 1985-09-03 Advanced Separation Technologies Inc. Bonded phase material for chromatographic separations
EP0231515B1 (en) * 1985-12-27 1990-09-26 Daicel Chemical Industries, Ltd. Utilisation of optically active carboalkylated amino alcohols in optical resolution
JPH0713030B2 (ja) * 1986-04-02 1995-02-15 エーザイ株式会社 光学異性体用分離剤
US5302633A (en) * 1990-11-29 1994-04-12 Nacalai Tesque, Inc. Optical resolution agent and process for the preparation of the same
US5679572A (en) * 1993-09-22 1997-10-21 Daicel Chemical Industries, Ltd. Separation of chiral compounds on polysaccharide supports
CN1136183C (zh) * 1994-02-25 2004-01-28 代科化学工业株式会社 光学活性甲羟戊酸内酯类化合物的制造方法
US6736967B2 (en) * 2001-06-07 2004-05-18 Daicel Chemical Industries, Ltd. Separating agent for enantiomeric isomers
JP2005017268A (ja) * 2003-05-30 2005-01-20 Daicel Chem Ind Ltd 光学異性体用分離剤、その製造方法、及び光学異性体用分離カラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270602A (ja) 1986-05-19 1987-11-25 Daicel Chem Ind Ltd 多糖誘導体の製造方法
JPH04202141A (ja) 1990-11-29 1992-07-22 Nakarai Tesuku Kk 光学分割剤の製造法
JPH06329561A (ja) 1993-05-24 1994-11-29 Daicel Chem Ind Ltd 分離剤
JPH0859702A (ja) 1993-06-22 1996-03-05 Daicel Chem Ind Ltd 光学異性体用分離剤およびその製造法
JPH07138301A (ja) 1993-09-22 1995-05-30 Nakano Vinegar Co Ltd 新規多糖誘導体,その製造法及びその用途
JPH07309784A (ja) 1994-05-17 1995-11-28 Daicel Chem Ind Ltd 光学異性体用分離剤
JPH11255671A (ja) * 1998-03-11 1999-09-21 Daicel Chem Ind Ltd 光学異性体のクロマト分離法
JP2002350413A (ja) * 2001-05-24 2002-12-04 Daicel Chem Ind Ltd 分離用カラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883002B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
US8883001B2 (en) 2004-11-29 2014-11-11 Daicel Chemical Industries, Ltd. Separating agent for optical isomers and separation column for optical isomers
WO2007129659A1 (ja) * 2006-05-09 2007-11-15 National University Corporation Nagoya University 光学異性体分離用充填剤
WO2007129658A1 (ja) * 2006-05-09 2007-11-15 National University Corporation Nagoya University 光学異性体分離用充填剤
US8053543B2 (en) 2006-05-09 2011-11-08 National University Corporation Nagoya University Filler for optical isomer separation
US8124712B2 (en) 2006-05-09 2012-02-28 National University Corporation Nagoya University Filler for optical isomer separation
JP5531287B2 (ja) * 2006-05-09 2014-06-25 国立大学法人名古屋大学 光学異性体分離用充填剤
JP5540368B2 (ja) * 2006-05-09 2014-07-02 国立大学法人名古屋大学 光学異性体分離用充填剤
WO2007148834A1 (ja) 2006-06-23 2007-12-27 Daicel Chemical Industries, Ltd 光学異性体の分析方法又は分離方法
CN102060995A (zh) * 2010-11-19 2011-05-18 中南大学 一种硅胶负载二硫代氨基甲酸盐重金属螯合树脂的制备方法

Also Published As

Publication number Publication date
KR20070066815A (ko) 2007-06-27
CN100391593C (zh) 2008-06-04
US7772153B2 (en) 2010-08-10
ATE506118T1 (de) 2011-05-15
DE602004032335D1 (de) 2011-06-01
CN1758959A (zh) 2006-04-12
JP4294028B2 (ja) 2009-07-08
EP1632286B1 (en) 2011-04-20
KR101011784B1 (ko) 2011-02-07
EP1632286A4 (en) 2007-09-12
US20060189796A1 (en) 2006-08-24
JPWO2004095018A1 (ja) 2006-07-13
EP1632286A1 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP3190206B2 (ja) 光学異性体用分離剤およびその製造法
EP0978498B1 (en) Separating agent for optical isomers and process for producing the same
US20070163961A1 (en) Separating agent for enantiomeric isomer
JP4294028B2 (ja) 光学異性体用分離剤
EP2028487B1 (en) Filler for optical isomer separation
JPH0813844B2 (ja) 多糖のアルキル置換フエニルカルバメ−ト誘導体
US7740758B2 (en) Separating agent including polysaccharide derivative having a polycyclic structure
JP5896903B2 (ja) 多糖誘導体及びその製造方法並びに分離剤
JPH0475893B2 (ja)
JP2001163806A (ja) 光学異性体分離剤
JP4871861B2 (ja) 光学異性体分離剤
JPS62270602A (ja) 多糖誘導体の製造方法
JPH11255671A (ja) 光学異性体のクロマト分離法
WO2003004149A1 (fr) Agent de separation d'isomere optique et procede de preparation de cet agent
JP4430881B2 (ja) 液体クロマトグラフィー用光学異性体分離用充填剤の製造方法
JPH10249191A (ja) 分離剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505774

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057013455

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048062021

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006189796

Country of ref document: US

Ref document number: 10551681

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4500/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004728898

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004728898

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10551681

Country of ref document: US