WO2004094357A1 - 固体酸触媒を用いたエーテルの製造方法 - Google Patents

固体酸触媒を用いたエーテルの製造方法 Download PDF

Info

Publication number
WO2004094357A1
WO2004094357A1 PCT/JP2004/005724 JP2004005724W WO2004094357A1 WO 2004094357 A1 WO2004094357 A1 WO 2004094357A1 JP 2004005724 W JP2004005724 W JP 2004005724W WO 2004094357 A1 WO2004094357 A1 WO 2004094357A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alcohol
ether
solid acid
acid catalyst
Prior art date
Application number
PCT/JP2004/005724
Other languages
English (en)
French (fr)
Inventor
Satoshi Furuta
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP2005505768A priority Critical patent/JPWO2004094357A1/ja
Publication of WO2004094357A1 publication Critical patent/WO2004094357A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups

Definitions

  • the present invention relates to a method for producing an ether such as dimethyl ether using an alcohol such as methanol as a raw material.
  • Ethers such as dimethyl ether (DME) have been noted as fuels.
  • DME dimethyl ether
  • JP-A-2002-193384 discloses a method for producing methanol using a synthesis gas obtained from natural gas as a raw material, and converting the methanol into a ⁇ -alumina catalyst ⁇ silica anoremina.
  • a method for synthesizing dimethyl ether by contacting with a dehydration catalyst such as a catalyst is described. Disclosure of the invention
  • An object of the present invention is to provide an ether synthesis method that allows the reaction to proceed in a short reaction time under a pressure of about normal pressure without heating the ether to a high temperature.
  • the present inventor has found that the ether synthesis reaction can be carried out with high efficiency by bringing a solid acid catalyst exhibiting super strong acid properties into contact with an alcohol, preferably in a gas phase.
  • the alcohol is brought into contact with the solid acid catalyst at a gas hourly space velocity of at least 150 hours, from the viewpoint of less deterioration of the catalyst.
  • the alcohol has 1 to 2 carbon atoms, and the temperature at the time of contact between the alcohol and the solid acid catalyst is 100 ° C. or higher.
  • the alcohol used as a raw material in the ether production method of the present invention is not particularly limited as long as it is an organic compound having an OH group, and particularly preferably has 1 to 2 carbon atoms, that is, methanol or ethanol.
  • Examples of the ether to be synthesized include dimethyl ether, getyl ether, and methylethyl ether.
  • Alcohol as a raw material may be diluted with an inert gas such as nitrogen gas or helium gas.
  • an inert gas such as nitrogen gas or helium gas.
  • As the ether raw material it is preferable to use substantially only alcohol, and it is not preferable that the raw material contains olefin.
  • a solid acid catalyst having properties of a super strong acid is used.
  • the properties of the superacid are as follows: Hammett's acidity function Ho is preferably ⁇ 14 or less, particularly preferably 16 or less.
  • the heat of adsorption of argon is preferably -20 kJ / mo1 or less, particularly preferably 130 kJ / o1 or less, more preferably 130 to 160 kJ / mo1 or less.
  • the heat of adsorption of argon was measured by elevating the temperature of the object to be measured to 300 ° C while evacuating the object to vacuum, introducing argon at the temperature of liquid nitrogen, and measuring the amount of adsorption by the volumetric method.
  • a solid acid catalyst in which a sulfate is supported on the surface of a crystalline metal oxide is preferable.
  • the metal oxide a metal oxide containing one or more metals such as zirconium, hafnium, titanium, silicon, germanium, and tin can be used. It is preferable that the catalyst contains 20 to 72% by weight, particularly 30 to 60% by weight / 0 , as the weight of these metal elements.
  • the sulfuric acid content is 0.7 to 7% by weight, preferably 1 to 6% by weight, particularly 2 to 5% by weight as elemental sulfur. If the sulfuric acid content is too high or too low, the catalytic activity decreases.
  • Specific examples of such a catalyst include a nozirconia sulfate catalyst and a sulfuric acid Z oxide catalyst described below.
  • the sulfuric acid / zirconia catalyst contains a zirconium (zirconium oxide) portion in which at least a part of the metal component of the metal oxide is zirconium, and contains a sulfuric acid component. You.
  • the metal oxide is defined as including a hydrated metal oxide.
  • the catalyst preferably contains aluminum oxide in an amount of 5 to 30% by weight, particularly 8 to 25% by weight in terms of aluminum element weight.
  • the alumina portion is crystallized, and it is particularly preferable that the alumina portion is substantially composed of ⁇ -alumina.
  • the method for producing the sulfuric acid-zirconia catalyst is not particularly limited, but one example is a hydrous zirconium oxide and / or zirconium oxide powder that is a precursor of zircoair (hereinafter referred to as “precursor powder”).
  • precursor powder a hydrous zirconium oxide and / or zirconium oxide powder that is a precursor of zircoair
  • a method is used in which a sulfur-containing compound is added to a powder of a palladium hydroxide, kneaded, molded, and fired. The following describes the method according to this method. The order of firing of the carrier, supporting of sulfuric acid, and the like can be appropriately changed. Further, the form of the sulfuric acid-zirconia catalyst may be a powder or a molded article.
  • the metal component contains aluminum in addition to zirconium, and it is preferable to add an alumina hydrate such as boehmite to the zirconium precursor powder.
  • the amount of zirconium added to the zirconia precursor powder should be such that the amount of zirconium in the finally obtained solid acid catalyst is 20 to 72% by weight, especially 30 to 60% by weight as the elemental weight of zirconium.
  • the amount of aluminum component added is such that the amount of alumina in the catalyst is 5 to 30% by weight, particularly 8 to 25% by weight as the aluminum element weight.
  • the sulfur-containing compound is a compound containing a sulfuric acid or a compound containing a sulfur that can be converted into a sulfuric acid by a subsequent treatment such as calcination.
  • the sulfur-containing compound include sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, thionyl chloride, and dimethyl sulfate.
  • Sulfuric acid-containing compounds containing sulfuric acid are preferred. Ammonium sulfate and dimethyl sulfate are preferably used because they have low corrosiveness in production equipment. In particular, ammonium sulfate is most preferably used.
  • the sulfur-containing compound is used as a solution such as an aqueous solution, and is brought into contact with the raw material powder.
  • the amount of the sulfur-containing compound added is such that the amount of sulfuric acid occupying in the finally obtained solid acid catalyst is 0.7 to 7% by weight, preferably 1 to 6% by weight, particularly 2 to 6% by weight of elemental sulfur. Preferably, it is 5% by weight.
  • the method of kneading is not particularly limited, and a kneading machine generally used for catalyst preparation can be used.
  • a solvent such as water
  • the mixture is mixed with a stirring blade is preferably used, but there is no particular limitation on the order of charging the raw materials and additives.
  • water is usually added as the above solvent, but an organic solvent such as ethanol, isopropanol, acetone, methyl ethyl ketone, and methyl isobutyl ketone may be added.
  • the temperature and the kneading time during kneading vary depending on the zirconia precursor powder, alumina precursor powder, sulfur-containing compound, etc., which are the raw materials, but are not particularly limited as long as a preferable pore structure can be obtained.
  • an acid such as nitric acid, a base such as ammonia, an organic compound, a metal salt, a ceramic fiber, a surfactant, zeolite, clay, and the like are added and kneaded. It does not matter.
  • the molding method after the kneading is not particularly limited, and a molding method generally used for catalyst preparation can be used.
  • extrusion molding using a screw type extruder or the like is preferably used because it can be efficiently molded into an arbitrary shape such as a pellet shape or a honeycomb shape.
  • the size of the molded product is not particularly limited, but is usually formed to have a cross-sectional length of 0.5 to 2 O mm.
  • a cylindrical pellet with a diameter of about 0.5 to 10 mm and a length of about 0.5 to 15 mm can be easily obtained.
  • the firing after molding is performed in a gas atmosphere such as air or nitrogen, but it is particularly preferable to perform the firing in air.
  • the firing temperature depends on the firing time, gas flow rate, etc. Although it varies depending on the forming conditions, it is generally from 400 to 900 ° C, preferably from 500 to 800 ° C.
  • the calcination time varies depending on other calcination conditions such as the calcination temperature and the gas flow rate, but is generally preferably from 0.05 to 20 hours, particularly preferably from 0.1 to 10 hours, and more preferably from 0.2 to 5 hours.
  • the sulfuric acid / tin oxide catalyst contains a tin oxide part in which at least a part of the metal component of the metal oxide is tin, and contains a sulfuric acid component.
  • the metal oxide is defined as containing a hydrated metal oxide.
  • the specific surface area of the catalyst is 1 0 0 m 2 g or more, particularly preferably 1 0 0-2 0 0 111 2 8.
  • the method for producing the sulfuric acid tin oxide-based catalyst is not particularly limited.
  • a production method in which a sulfur-containing compound is contained in tin oxide and then calcined can be used.
  • the form of the sulfuric acid tin oxide-based catalyst may be a powder, a molded body, or a carrier formed of components other than tin oxide with tin oxide formed on the surface thereof.
  • the sulfur-containing compound is a compound containing a sulfuric acid or a compound containing a sulfur that can be converted into a sulfuric acid by a subsequent treatment such as calcination.
  • the sulfur-containing compound include sulfuric acid, ammonium sulfate, sulfurous acid, ammonium sulfite, thionyl chloride, and dimethyl sulfate.
  • the sulfur-containing compound is brought into contact with tin oxide using a solution such as an aqueous solution.
  • the amount of the tin oxide and the sulfur-containing compound added is 20 to 72% by weight, particularly 30 to 72% by weight, based on the weight of tin element in the final solid acid catalyst.
  • the sulfuric acid content is preferably 0.7 to 10% by weight, preferably 1 to 9% by weight, particularly preferably 2 to 8% by weight, as elemental sulfur.
  • the sintering is performed in a gas atmosphere such as air or nitrogen. It is preferably carried out in The firing temperature varies depending on other firing conditions such as the firing time and the gas flow rate, but is generally 300 to 900 ° C, preferably 400 to 800 ° C. Although the firing time varies depending on other firing conditions such as the firing temperature and the gas flow rate, it is generally 0.05 to 20 hours, preferably 0.1 to 10 hours, and more preferably 0.2 to 5 hours.
  • a solution containing organic acid ions, particularly carboxylate ions particularly an aqueous solution.
  • an aqueous solution an aqueous solution of a carboxylic acid ammonium salt such as ammonium acetate or a carboxylic acid metal salt is preferably used.
  • the ether production method of the present invention involves contacting an alcohol in a gaseous phase with a solid acid catalyst having superacidic properties to produce an ether by a dehydration reaction of the alcohol.
  • the reaction is performed at a temperature such that the alcohol is in the gas phase.
  • the reaction state may be diluted with an inert gas such as nitrogen gas.
  • the reaction may be performed in a state where the pressure is lower than the atmospheric pressure, and usually 0.5 to 10 atm.
  • the pressure can be controlled at a pressure of 0.3 to 0.3 MPa.
  • a water-absorbing agent that absorbs water generated during the reaction may be used, but according to the present invention, it is not particularly necessary to use it.
  • the reaction is carried out in a flow system, and the gas hourly space velocity of the alcohol as a raw material is at least 1,500 hours, preferably at least 3,000 hours, particularly preferably 5,000 to 500,000 hours.
  • the temperature at the time of contact between the alcohol and the solid acid catalyst is preferably not less than 00 ° C, particularly preferably 105 to 300 ° C, and more preferably 120 to 240 ° C.
  • a commercially available dried zirconium hydroxide powder having an average particle size of 1.5 / m was used as a hydrated zirconia powder.
  • a commercially available pseudo-boehmite powder having an average particle size of 10 ⁇ was used as the hydrated alumina powder.
  • 1860 g of the hydrous zirconia powder and 120 g of the hydrous anoremina powder were mixed, further added with 575 g of ammonium sulfate, and kneaded for 45 minutes while adding water with a kneader equipped with stirring blades.
  • the obtained kneaded material was extruded from an extruder having a circular opening having a diameter of 1.6 mm to form a cylindrical pellet, and dried at 110 ° C. to obtain a dried pellet.
  • a part of the dried pellet was calcined at 675 ° C for 1.5 hours to obtain a zirconium sulfate-based catalyst (hereinafter, also referred to as S
  • This SZA was used by sizing a cylindrical shape having an average diameter of 1.4 mm and an average length of 4 mm obtained by firing to 16 to 24 mesh.
  • the specific surface area of SZA was 158 m 2 / g, and the pore diameter was 0.002 ⁇ :
  • the pore volume of L • // in was 0.3 lm l Zg.
  • the median pore diameter in the range of 0.002 to 0.05 / m pore diameter of SZA was 5.5 nm.
  • the heat of adsorption of argon was 124.3 kJ, mo1.
  • the zirconia portion was substantially tetragonal zirconia.
  • the amount of zirconia in the solid acid catalyst was 41.8% by weight of elemental zirconium, the amount of alumina was 15.7% by weight of elemental aluminum, and the amount of sulfuric acid was 3.09% by weight of elemental sulfur. .
  • tin chloride S n C 1 4 ⁇ nH 2 0, manufactured by Wako Pure Chemical Industries, Ltd.
  • 100 g was dissolved in water 3 L, the precipitate was formed by dropping ammonia water (25% concentration), pH 8 and became.
  • the precipitate separated by filtration was dispersed in a 4% by weight aqueous solution of ammonium acetate, filtered again, and dried in air at 100 ° C. for 24 hours to obtain a precursor 1.
  • 4 g of the obtained Precursor 1 was brought into contact with 6 OmL of 6 N sulfuric acid for 1 hour, filtered, dried in air at 100 ° C for 2 hours, and calcined in air at 500 ° C for 3 hours.
  • a sulfuric acid tin oxide catalyst 1 hereinafter, also referred to as STOL
  • This STO 1 is in powder form, and the specific surface area of STO 1 is 1 3 Pore Diameter 0.002 ⁇ :
  • the pore volume of L 0 ⁇ m was 0.1 lm l / g.
  • STO l Fine The median pore diameter in the pore diameter range of 0.002 to 0.05 ⁇ was 3. 1 nm.
  • the heat of adsorption of argon was -29.7 kJ / mo1.
  • the tin oxide portion was substantially tetragonal tin oxide.
  • the amount of tin oxide in the solid acid catalyst was 71.4% by weight as elemental tin, and the amount of sulfuric acid was 1.96% by weight as elemental sulfur.
  • This MO-817 was in a powder form, had a specific surface area of 152 m 2 Zg, a pore volume of 0.002 to 10 / zm, and a pore volume of 0.1 lm 1 Zg.
  • the median pore diameter in the range of 0.002 to 0.05 // m of the pore diameter of MO—817 was 2.8 nm.
  • the heat of adsorption of argon was 131.0 kj / mo1.
  • the tin oxide portion was substantially tetragonal tin oxide.
  • the amount of tin oxide in the solid acid catalyst was 70.6% by weight of elemental tin and the amount of sulfuric acid was 2.44% by weight of elemental sulfur.
  • 0.1 cm 3 (0.1 g) of these catalysts was charged into a fixed bed flow-through reactor having a vertical length of 10 cm and an inner diameter of 0.35 cm, and carrier gas of 58 m 1 / min. While methanol is flowing, methanol 1; u1 is introduced in a pulse form from the upper end of the reactor in 0.1 second, and the product at the lower end outlet is measured for the content of methanol and DME by gas chromatography and then transferred to the DME. Was determined. The introduction was performed 10 times, and the average value was measured. The gas space velocity of the alcohol in this case is 34800Zh. The reaction pressure was atmospheric pressure.
  • Table 1 shows the measurement results. It can be seen that in the case of Experimental Examples 4 and 5 where the reaction temperature is 90 ° C when methanol is not in the gas phase, conversion to DME does not occur. 1 2 3 4 5 Catalyst SZA ST01 M0-817 ST01 M0-817 Reaction temperature (° c) 200 200 200 90 90.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 エーテルの製造を、短い反応時間で、かつ、常圧程度の圧力下で、高温に加熱することなく、反応を進行させることができるエーテル合成方法を提供する。 超強酸特性を示す固体酸触媒に気相状態のアルコールを接触させることにより、エーテル合成反応が高い効率で行われることを見出した。この場合に、アルコールをガス空間速度1500/時以上の条件で固体酸触媒に接触させることが、触媒の劣化が少ない点から好ましい。また、アルコールの炭素数が1~2であり、アルコールと固体酸触媒の接触時の温度が100℃以上であることが好ましい。

Description

明細書 固体酸触媒を用いたエーテルの製造方法 技術分野
本発明は、 メタノールなどのアルコールを原料として、 ジメチルエーテルなど のエーテルを製造する方法に関する。
, 背景技術
ジメチルエーテル (以下、 D M Eともいう) などのエーテルは、 燃料として注 目されている。 その製造方法としては、 例えば、 特開 2 0 0 2— 1 9 3 8 6 4号 公報には天然ガスから得た合成ガスを原料として、 メタノールを合成し、 このメ タノールを γアルミナ触媒ゃシリカァノレミナ触媒などの脱水触媒と接触させるこ とでジメチルエーテルを合成する方法が記載されている。 発明の開示
しかし、 従来のエーテルの製造方法では、 高圧、 高温が必要であり、 反応時間 が長いため、 製造に多くのエネルギーを必要としていた。 本発明は、 エーテルの 製造を、短い反応時間で、かつ、常圧程度の圧力下で、高温に加熱することなく、 反応を進行させることができるエーテル合成方法を提供することを目的とする。 本発明者は、 超強酸特性を示す固体酸触媒に好ましくは気相状態のアルコール を接触させることにより、 エーテル合成反応が高い効率で行われることを見出し た。 この場合に、 アルコールをガス空間速度 1 5 0 0ノ時以上の条件で固体酸触 媒に接触させることが、 触媒の劣化が少ない点から好ましい。 また、 アルコール の炭素数が 1〜2であり、 アルコールと固体酸触媒の接触時の温度が 1 0 0 °C以 上であることが好ましい。 発明を実施するための最良の形態 〔アルコール〕
本発明のエーテル製造方法の原料となるアルコールは、 O H基を有する有機化 合物であれば特に限定されないが、 特には炭素数が 1〜 2、 すなわち、 メタノー ルまたはエタノールが好ましい。 合成されるエーテルとしては、 ジメチルエーテ ノレ、 ジェチルエーテル、 メチルェチルエーテルなどが挙げられる。 原料としての アルコールは、 窒素ガス、 ヘリウムガスなどの不活性ガスで希釈されていてよい 力 エーテル原料としては、 実質的にアルコールのみを用いることが好ましく、 原料にォレフィンが含まれることは好ましくない。
〔固体酸触媒〕
本発明には、超強酸の特性を示す固体酸触媒が用いられる。超強酸の特性とは、 ハメッ トの酸度関数 Hoが— 1 4以下、 特には一 1 6以下が好ましい。 また、 ァ ルゴン吸着熱が、 _ 20 k J /m o 1以下、 特には一 3 0 k J / o 1以下、 更 には一 30〜一 60 k J/mo 1以下が好ましい。 このアルゴン吸着熱は、 測定 対象を真空に排気しながら 300°Cまで昇温した後、 液体窒素温度でアルゴンを 導入して、 容量法により吸着量を測定したものであり、 詳細は、 J .P h y s .C h em.B、 V o l .1 0 5、 N o. 40、 p.96 6 7— (200 1 ) に開示され る。
本発明に使用する固体酸触媒としては、 結晶性の金属酸化物の表面に硫酸根を 担持した固体酸触媒が好ましい。 金属酸化物としては、 ジルコニウム、 ハフニゥ ム、 チタン、 ケィ素、 ゲルマニウム、 スズなどの金属を 1種または 2種以上含む 金属酸化物を用いることができる。 触媒中に、 これらの金属元素重量として 20 ~7 2重量%、 特には 30〜6 0重量 °/0含むことが好ましい。 硫酸分の割合は、 硫黄元素重量として 0. 7〜7重量%、 好ましくは 1〜6重量%、 特には 2〜5 重量%である。 硫酸分が多すぎても少なすぎても触媒活性は低下する。 このよう な触媒の具体例としては、 以下に述べる硫酸ノジルコニァ系触媒、 硫酸 Z酸化ス ズ系触媒がある。
〔硫酸 ジルコニァ系触媒〕
硫酸 /ジルコニァ系触媒は、 金属酸化物の少なくとも一部分の金属成分がジル コニゥムであるジルコニァ (ジルコニウム酸化物) 部分を含み、 硫酸分を含有す る。 なお、 金属酸化物は、 含水金属酸化物を含むものとして定義される。
ジルコニァ部分は実質的に正方晶ジルコニァからなることが好ましレ、。これは、 粉末 X線回折により確認でき、 具体的には、 C uKa線による 20 = 30. 2° の正方晶ジルコユアの回折ピークで確認できる。 回折ピークで確認できる程度に 結晶化しており、単斜晶ジルコユアは含まれていない方が好ましレ、。 2 Θ = 30. 2° の正方晶ジルコエアの回折ピーク面積 (S 30) と 20 = 28. 2° の単斜 晶ジルコユアの回折ピーク面積(S 28) の比(S 28/S 30) が 1. 0以下、 特には 0. 05以下が好ましい。
また、 触媒中にアルミニウム酸化物をアルミニウム元素重量として 5〜30重 量%、 特には 8〜25重量%含むことが好ましい。 このアルミナ部分は、 結晶化 しており、 特には実質的に γ—アルミナからなることが好ましい。
硫酸 Ζジルコニァ系触媒の製法は特に限定されないが、 一例を挙げれば、 ジルコエアの前駆体となる粉体(以下、 「前駆体粉体」 という) である含水ジルコ 二ゥム酸化物および またはジルコ二ゥム水酸化物の粉体に硫黄分含有化合物を 加えて混練し、 成形し、 焼成する方法が用いられる。 以下にこの方法に沿って説 明を行う ι 担体の焼成、硫酸分の担持などはその順序を適宜変更できる。また、 硫酸 Ζジルコユア系触媒の形態は、 粉体でも、 成形体でもよい。
硫酸 ジルコユア系触媒において、 金属成分としてはジルコニウムに加え、 ァ ルミユウムを含むことが特に好ましく、 ジルコニァ前駆体粉体にベーマイ トのよ うなアルミナ水和物を加えることが好ましい。ジルコニァ前駆体粉体の添カ卩量は、 最終的に得られる固体酸触媒中に占めるジルコ-ァ量がジルコュゥム元素重量と して 20〜72重量%、 特には 30〜60重量%となるように用いるのが好まし く、 また、 アルミニウム成分添加量は、 触媒中のアルミナ量がアルミニウム元素 重量として 5〜 30重量%、 特には 8〜 25重量%含むようにすることが好まし い。
硫黄分含有化合物は、 硫酸分を含有する化合物、 または、 その後の焼成などの 処理により硫酸分に変換されうる硫黄分を含んだ化合物である。 硫黄分含有化合 物としては、 硫酸、 硫酸アンモニゥム、 亜硫酸、 亜硫酸アンモニゥム、 塩化チォ ニル、 ジメチル硫酸などが挙げられるが、 硫酸分を含んだ硫酸分含有化合物が好 ましく用いられ、 硫酸アンモニゥム、 ジメチル硫酸が製造装置の腐食性も低く好 ましい。 特には硫酸アンモ-ゥムが最も好ましく用いられる。
通常、 硫黄分含有化合物は水溶液のような溶液として用い、 前記の原料粉末に 接触させる。 硫黄分含有化合物の添加量は、 最終的に得られる固体酸触媒中に占 める硫酸分量が、硫黄元素重量として 0 . 7〜7重量%、好ましくは 1〜6重量%、 特には 2 ~ 5重量%となるようにするのが好ましい。
〔混練〕
混練の方法には特に限定は無く、 一般に触媒調製に用いられている混練機を用 いることができる。 通常は原料を投入し、 水等の溶媒を加えて攪拌羽根で混合す るような方法が好ましく用いられるが、 原料および添加物の投入順序など特に限 定はない。 混練の際には上記溶媒として通常水を加えるが、 エタノール、 イソプ ロパノール、 アセトン、 メチルェチルケトン、 メチルイソプチルケトンなどの有 機溶媒を加えて良い。 混練時の温度や混練時間は、 原料となるジルコニァ前駆体 粉体、 アルミナ先駆体紛体、 硫黄分含有化合物などにより異なるが、 好ましい細 孔構造が得られる条件であれば、 特に制限はない。 同様に本発明の触媒性状が維 持される範囲内であれば、 硝酸などの酸やアンモニアなどの塩基、 有機化合物、 金属塩、 セラミックス繊維、 界面活性剤、 ゼォライト、 粘土などを加えて混練し ても構わない。
〔成形〕
混練後の成形方法には特に限定は無く、 一般に触媒調製に用いられている成形 方法を用いることができる。 特に、 ペレット状、 ハニカム状などの任意の形状に 効率よく成形できるので、 スクリュー式押出機などを用いた押出成形が好ましく 用いられる。 成形物のサイズは特に制限はないが、 通常、 その断面の長さが 0 . 5〜2 O mmの大きさに成形される。 例えば円柱状のペレッ トであれば、 通常直 径 0 . 5〜1 0 mm、 長さ 0 . 5〜 1 5 mm程度のものを容易に得ることができ る。
〔成形後の焼成〕
成形後の焼成は、 空気または窒素などのガス雰囲気中において行われるが、 特 には空気中で行うことが好ましい。 焼成温度は焼成時間、 ガス流通量など他の焼 成条件によっても異なるが、 一般に 4 0 0〜 9 0 0 °C、 好ましくは 5 0 0〜8 0 0 °Cである。 焼成時間は焼成温度、 ガス流通量など他の焼成条件によっても異な るが、 一般に 0 . 0 5〜2 0時間、 特に 0 . 1〜 1 0時間、 さらには 0 . 2〜5 時間が好ましい。
〔硫酸 酸化スズ系触媒〕
硫酸/酸化スズ系触媒は、 金属酸化物の少なくとも一部分の金属成分がスズで ある酸化スズ部分を含み、 硫酸分を含有する。 なお、 金属酸化物は、 含水金属酸 化物を含むものとして定義される。 触媒の比表面積は 1 0 0 m 2 g以上、 特に は 1 0 0〜2 0 0 111 2 8が好ましい。
酸化スズの特性としては、 非晶質の酸化スズを用いることもできるが、 実質的 に正方晶の結晶構造を持つ酸化物からなることが好ましい。 これは、 粉末 X線回 折により確認でき、 具体的には、 C u Kひ線による 2 0 = 2 6 . 6 ° の回折ピー クで確認できる。 回折ピークで確認できる程度に結晶化しており、 結晶子径が 1 0〜5 0 n m、 特には 2 0〜4 5 n mであることが好ましレヽ。
硫酸 酸化スズ系触媒の製法は特に限定されないが、 一例を挙げれば、 酸化ス ズに硫黄分含有化合物を含ませ、 その後、 焼成する製造方法を用いることができ る。 硫酸ノ酸化スズ系触媒の形態は、 粉体でも、 成形体でもよく、 酸化スズ以外 の成分からなる担体の表面に酸化スズを形成したものでもよレ、。
酸化スズは、 どのような形態も用いることができるが、 特にはメタスズ酸が好 ましく用いられる。 硫黄分含有化合物は、 硫酸分を含有する化合物、 または、 そ の後の焼成などの処理により硫酸分に変換されうる硫黄分を含んだ化合物である。 硫黄分含有化合物としては、 硫酸、 硫酸アンモニゥム、 亜硫酸、 亜硫酸アンモニ ゥム、 塩化チォニル、 ジメチル硫酸などが挙げられる。 通常、 硫黄分含有化合物 は水溶液のような溶液を用いて、 酸化スズに接触させる。 上記の酸化スズ、 硫黄 分含有化合物の添加量は、 最終的に得られる固体酸触媒中に占める酸化スズをス ズ元素重量として 2 0〜 7 2重量%、 特には 3 0〜7 2重量%、 硫酸分を、 硫黄 元素重量として 0 . 7〜 1 0重量%、 好ましくは 1〜9重量%、 特には 2〜 8重 量%であるのが好ましい。
焼成は、 空気または窒素などのガス雰囲気中において行われるが、 特には空気 中で行うことが好ましい。 焼成温度は焼成時間、 ガス流通量など他の焼成条件に よっても異なるが、 一般に 300〜 900°C、 好ましくは 400〜800°Cであ る。 焼成時間は焼成温度、 ガス流通量など他の焼成条件によっても異なるが、 一 般に 0. 05〜20時間、 特に0. 1〜10時間、 さらには 0. 2〜5時間が好 ましい。
酸化スズの表面は、 硫黄分含有化合物に接触させる前に、 有機酸イオン、 特に はカルボン酸イオンを含む溶液、 特には水溶液で前処理することが好ましい。 こ のような水溶液としては、 酢酸アンモニゥムなどのカルボン酸アンモニゥム塩、 カルボン酸金属塩の水溶液が好ましく用いられる。
〔エーテル合成反応〕
本発明のェ一テル製造方法は、 気相状態のアルコールを、 超強酸特性を示す固 体酸触媒に接触させ、 アルコールの脱水反応によりエーテルを製造するものであ る。 アルコールが気相になるような温度で反応を行わせる。 反応状態が、 窒素ガ スなどの不活性ガスで希釈されていてもよい。 圧力が大気圧よりも低い状態で反 応を行わせてもよく、 通常は 0. 5〜 10気圧でよい。 また、 触媒にアルコール を間欠的に接触させるパルス法では、 圧力を 0. ].〜0. 3MP aで行わせるこ とができる。 反応時に生成する水を吸収する吸水剤などを用いてもよいが、 本発 明によれば、 特に用いる必要はない。
反応は流通式で行われ、 原料となるアルコールのガス空間速度は、 1500ノ 時以上、 好ましくは 3000 時以上、 特に好ましくは 5000〜 500000 時である。
アルコールのガス空間速度 〔1ノ時〕 は、
(気化したアルコールを理想気体として室温で扱った流量 〔m 1 時〕 + 室 温での希釈用不活性ガス流量 〔m 1 時〕) / 触媒量 〔m 1 ] により定義され る。
アルコールと固体酸触媒の接触時の温度は、 丄 00°C以上、 特には 105〜3 00°C、 さらには 120〜240°Cが好ましい。
実施例
以下、 実施例により詳細に説明する。 〔硫酸 Zジルコニァ系触媒 S Z Aの調製〕
市販の乾燥水酸化ジルコニウムを乾燥した平均粒径 1. 5 / mの粉体を含水ジ ルコニァ粉体として用いた。 また、 平均粒径 10 μπιの市販の擬ベーマイ ト粉体 を含水アルミナ粉体として用いた。 この含水ジルコユア粉体 1 860 gと含水ァ ノレミナ粉体 1 1 20 gを混合し、 さらに硫酸アンモニゥム 575 gを加え、 攪拌 羽根のついた混練機で水を加えながら 45分間混練を行った。 得られた混練物を 直径 1. 6 mmの円形開口を有する押出機より押し出して円柱状のペレツトを成 形し、 1 10°Cで乾燥して乾燥ペレツトを得た。 続いてこの乾燥ペレツ トの一部 を 675°Cで 1. 5時間焼成し、 硫酸 ジルコニァ系触媒 (以下、 S ZAともい う) を得た。
この S ZAは、 焼成により得られた平均直径 1. 4mm、 平均長さ 4 mmの円 柱状を 1 6〜24メッシュに整粒して用いた。 S Z Aの比表面積は 1 58 m2/ g、 細孔直径 0. 002〜: L◦ //inの細孔容積は 0. 3 lm l Zgであった。 S Z Aの細孔直径 0. 002〜0. 05 / mの範囲における中央細孔直径は 5. 5 nmであった。 アルゴン吸着熱は、 一24. 3 k J, mo 1であった。 得られた 固体酸触媒は、 ジルコユア部分が実質的に正方晶ジルコニァであった。 また、 固 体酸触媒中に占めるジルコユア量はジルコニウム元素重量として 41.8重量%、 アルミナ量はアルミニウム元素重量として 1 5. 7重量%、 硫酸分は硫黄元素重 量として 3. 09重量%であった。
〔硫酸/酸化スズ系触媒 S T O 1の調製〕
市販の塩化スズ (S n C 14 · nH20、 和光純薬製) 100 gを水 3 Lに溶解 し、 アンモニア水 (25%濃度) を滴下して沈殿を形成し、 pHは 8となった。 濾別した沈殿を 4重量%の酢酸アンモ-ゥム水溶液に分散させ、 再度濾別して空 気中 100°Cで 24時間乾燥し、 前駆体 1を得た。 得られた前駆体 1の 4 gを 6 N硫酸 6 OmLに 1時間接触させ、 濾過し、 空気中 100 °Cで 2時間乾燥し、 さ らに、 空気中 500°Cで 3時間焼成して、 硫酸 酸化スズ系触媒 1 (以下、 ST O lともいう) を得た。
この S TO 1は、 粉末状であり、 STO 1の比表面積は 1 3
Figure imgf000008_0001
細孔 直径 0. 002〜: L 0 μ mの細孔容積は 0. lm l/gであった。 STO lの細 孔直径 0. 002〜0. 05 μιηの範囲における中央細孔直径は 3. l nmであ つた。 アルゴン吸着熱は、 —29. 7 k J/mo 1であった。 得られた固体酸触 媒は、 酸化スズ部分が実質的に正方晶酸化スズであった。 また、 固体酸触媒中に 占める酸化スズ量はスズ元素重量として 7 1. 4重量%、 硫酸分は硫黄元素重量 として 1. 96重量%であった。
〔硫酸 酸化スズ系触媒 MO— 81 7の調製〕
市販のメタスズ酸 (S n〇2、 山中産業製) 100 gを 4重量%の酢酸アンモ ニゥム水溶液に分散させ、 濾別して空気中 100°Cで 24時間乾燥し、 前駆体 2 を得た。得られた前駆体 2の 4 gを 6 N硫酸 60 m Lに 1時間接触させ、濾過し、 空気中 100°Cで 2時間乾燥し、 さらに、 空気中 500°Cで 3時間焼成して、 硫 酸/酸化スズ系触媒 (以下、 MO— 8 1 7ともいう) を得た。
この MO— 8 1 7は、粉末状であり、 比表面積は 1 52m2Zg、細孔直径 0. 002〜10 /zmの細孔容積は 0. lm 1 Zgであった。 MO— 8 1 7の細孔直 径 0. 002〜0. 05 //mの範囲における中央細孔直径は 2. 8 nmであった。 アルゴン吸着熱は、 一 3 1. 0 k j/mo 1であった。 得られた固体酸触媒は、 酸化スズ部分が実質的に正方晶酸化スズであった。 また、 固体酸触媒中に占める 酸化スズ量はスズ元素重量として 70. 6重量%、 硫酸分は硫黄元素重量として 2. 44重量%であった。
〔パルス反応〕
これらの触媒 0. 1 cm3 (0. 1 g) を、 上下方向長さ 1 0 cm、 内径 0. 35 cmの固定床流通式反応器中に充填し、 ヘリウム 58m 1 /分のキャリアガ スを流しながら、 反応器の上端からメタノール 1; u 1を 0. 1秒でパルス状に導 入し、 下端出口での生成物をガスクロマトグラフィ一によりメタノールと DME の含有量を測定し、 DMEへの転化率を求めた。 導入は 10回行い、 その平均値 を測定 とした。 この場合のアルコールのガス空間速度は、 34800Z時であ る。 また、 反応圧は、 大気圧であった。
この測定結果を表 1に示す。 メタノールが気相状態にない反応温度が 90°Cの 実験例 4、 5の場合には、 DMEへの転化が起こらないことがわかる。 1 2 3 4 5 触媒 SZA ST01 M0-817 ST01 M0-817 反応温度 (°c) 200 200 200 90 90
DM E転化率 (%) 59 79 92 1 4
〔流通式反応〕
これらの触媒 l cm3、 上下方向長さ 50 cm、 内径 1 c mの固定床流通式反 応器中に充填し、 メタノールを窒素ガスで希釈し、 大気圧の反応圧力で反応器の 上端から導入し、 下端出口での生成物をサンプリングし、 メタノールと DMEの 含有量をガスクロマトグラフィ一により測定し、 DMEへの転化率を求めた。 実験結果を表 2に示す。 実験例 7、 10では触媒が劣化するが、 ガス空間速度 が 1 500Z時以上の条件では触媒の劣化が緩和され、 3000 時以上の条件 では、 触媒の劣化が起こることなく、 DMEの製造が可能なことがわかる。 表 2
Figure imgf000010_0001
産業上の利用可能性
本発明によれば、 常圧程度の圧力下で、 かつ比較的低温でアルコールを原料とし てエーテルを合成することが可能となる。 したがって、 目的とするエーテルを効 率よく生産することができる。

Claims

請求の範囲
1 . 気相状態のアルコールを、 超強酸特性を示す固体酸触媒に接触させ、 アル コールの脱水反応によりエーテルを製造するエーテルの製造方法。
2 . アルコールをガス空間速度 1 5 0 0 時以上の条件でアルコールを固体酸 触媒に接触させる請求項 1記載のエーテルの製造方法。
3 . アルコールの炭素数が 1〜2であり、 アルコールと固体酸触媒の接触時の 温度が 1 0 0 °C以上である請求項 1記載のエーテルの製造方法。
PCT/JP2004/005724 2003-04-23 2004-04-21 固体酸触媒を用いたエーテルの製造方法 WO2004094357A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505768A JPWO2004094357A1 (ja) 2003-04-23 2004-04-21 固体酸触媒を用いたエーテルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003117892 2003-04-23
JP2003-117892 2003-04-23

Publications (1)

Publication Number Publication Date
WO2004094357A1 true WO2004094357A1 (ja) 2004-11-04

Family

ID=33308057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005724 WO2004094357A1 (ja) 2003-04-23 2004-04-21 固体酸触媒を用いたエーテルの製造方法

Country Status (2)

Country Link
JP (1) JPWO2004094357A1 (ja)
WO (1) WO2004094357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655818B2 (en) 2005-02-15 2010-02-02 Arkema France Process for dehydrating glycerol to acrolein

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759825A (en) * 1980-08-18 1982-04-10 Ugine Kuhlmann Manufacture of aliphatic ether
JPH05140019A (ja) * 1991-03-29 1993-06-08 Texaco Chem Co 硫酸化剤で処理した第iv族元素酸化物を用いるアルキル第三級アルキルエーテルの合成法
JPH0987222A (ja) * 1995-09-20 1997-03-31 Cosmo Sogo Kenkyusho:Kk ジイソプロピルエーテルの製造法
JPH11158102A (ja) * 1997-12-01 1999-06-15 Petroleum Energy Center Found ジブチルエーテルの製造方法
JP2003073320A (ja) * 2001-08-30 2003-03-12 Kansai Electric Power Co Inc:The ジメチルエーテルの合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759825A (en) * 1980-08-18 1982-04-10 Ugine Kuhlmann Manufacture of aliphatic ether
JPH05140019A (ja) * 1991-03-29 1993-06-08 Texaco Chem Co 硫酸化剤で処理した第iv族元素酸化物を用いるアルキル第三級アルキルエーテルの合成法
JPH0987222A (ja) * 1995-09-20 1997-03-31 Cosmo Sogo Kenkyusho:Kk ジイソプロピルエーテルの製造法
JPH11158102A (ja) * 1997-12-01 1999-06-15 Petroleum Energy Center Found ジブチルエーテルの製造方法
JP2003073320A (ja) * 2001-08-30 2003-03-12 Kansai Electric Power Co Inc:The ジメチルエーテルの合成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655818B2 (en) 2005-02-15 2010-02-02 Arkema France Process for dehydrating glycerol to acrolein

Also Published As

Publication number Publication date
JPWO2004094357A1 (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
KR960012094B1 (ko) 에틸렌을 에틸렌 옥사이드로 산화시키는데 적합한 은 촉매와 그 제조방법
JP4994664B2 (ja) 固体酸触媒を用いたエステル交換反応によるエステルの製造方法
BR112019002346B1 (pt) Método para a manufatura de um catalisador de síntese de amônia, material suportado em metal e catalisador compreendendo o referido material
JP3553066B2 (ja) 純粋のもしくはガス混合物中に含有されている一酸化二窒素の接触分解の方法
CN111225743B (zh) 用于选择性和稳定地生产烯烃的复合催化剂
JP5863964B2 (ja) メタノール製造用触媒とその製造方法、およびメタノールの製造方法
JP2559038B2 (ja) 改良された銀触媒
JPH05146679A (ja) 触媒または触媒前駆体の製造方法
JPH09502129A (ja) エポキシ化触媒及び方法
JPS624444A (ja) 銀含有触媒およびその製造方法
US7850842B2 (en) Zr02-base catalyst carrier and method for the production thereof
WO2018102676A1 (en) Copper catalysts for the preparation of ethylene glycol
WO2023214236A1 (en) Making catalysts for oxidative dehydrogenation
JP2017081812A (ja) マンガン−ジルコニウム系複合酸化物及びその製造方法、並びにその用途
WO2004094357A1 (ja) 固体酸触媒を用いたエーテルの製造方法
WO2023214235A1 (en) Catalysts for oxidative dehydrogenation
CN113979471B (zh) 一种金红石型二氧化钛纳米复合物的合成方法
CN112295561B (zh) 一种环氧化催化剂及其制备方法
WO2014034880A1 (ja) 7-オクテナールの製造方法
JP7410507B2 (ja) 複合物、触媒及びアンモニアの製造方法
JP2003236382A (ja) 水性ガスシフト反応用触媒
JP4150771B2 (ja) シクロヘキサノール脱水素反応用触媒
WO2019208281A1 (ja) インデンの製造方法
JP2002012426A (ja) ジルコニウム酸化物およびその製造方法ならびにそれを用いた窒素酸化物分解触媒
US11364488B2 (en) Supported cobalt-containing fischer-tropsch catalyst, process for preparing the same and uses thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505768

Country of ref document: JP

122 Ep: pct application non-entry in european phase