WO2004093311A1 - 差電圧増幅回路 - Google Patents

差電圧増幅回路 Download PDF

Info

Publication number
WO2004093311A1
WO2004093311A1 PCT/JP2003/004929 JP0304929W WO2004093311A1 WO 2004093311 A1 WO2004093311 A1 WO 2004093311A1 JP 0304929 W JP0304929 W JP 0304929W WO 2004093311 A1 WO2004093311 A1 WO 2004093311A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
differential
amplifier
input
resistor
Prior art date
Application number
PCT/JP2003/004929
Other languages
English (en)
French (fr)
Inventor
Akira Haraguchi
Takashi Matsumoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004570904A priority Critical patent/JPWO2004093311A1/ja
Priority to PCT/JP2003/004929 priority patent/WO2004093311A1/ja
Priority to TW092108941A priority patent/TWI241764B/zh
Publication of WO2004093311A1 publication Critical patent/WO2004093311A1/ja
Priority to US11/088,938 priority patent/US7084700B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45928Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit
    • H03F3/45968Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction
    • H03F3/45973Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using a feedback circuit
    • H03F3/45977Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection using IC blocks as the active amplifying circuit by offset reduction by using a feedback circuit using switching means, e.g. sample and hold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a canceling of an input offset voltage applied to a differential voltage amplifying circuit, and particularly to a differential voltage amplifying circuit required to detect a differential voltage with high accuracy.
  • a technique disclosed in Patent Document 1 will be described with reference to FIG.
  • a sense resistor 102 for detecting a charging / discharging current from the secondary battery 101 and a differential voltage amplifier circuit 104 for amplifying a terminal voltage of the sense resistor 102 are provided.
  • the microcontroller 105 has an AZD converter 107, a current detection circuit 108, a remaining capacity calculation circuit 109, and a switch control circuit 110.
  • the two input terminals of the differential voltage amplifier 104 are short-circuited by the switch 103, and the output of the differential voltage amplifier 104 when the input differential voltage is made zero is digitalized by the A / D converter 107.
  • the value is converted to a value, and the value is obtained and stored in advance as an offset voltage value.
  • the value obtained by adding or subtracting the offset voltage value obtained earlier from the output voltage value of the difference voltage amplifier circuit 104 when amplifying the terminal voltage of the sense resistor 102 is a value corresponding to the charging current or discharging current.
  • the remaining capacity calculation circuit 109 calculates the remaining capacity. This Thus, it is possible to reduce the error in the calculation result of the remaining capacity of the secondary battery 101 due to the offset voltage.
  • Patent Literature 1 JP-A-7-19-111 0
  • the input voltage value of the differential voltage amplifier circuit is corrected. Indicates the state in which the input offset voltage value is included.
  • the input voltage range that the differential voltage amplifier circuit originally has is shifted by the input offset voltage, and the range obtained by subtracting the range occupied by the input offset voltage is the input voltage range of the differential voltage amplifier circuit in the conventional technology. Range. For this reason, there is a problem that the measurement range is limited because the input voltage range used for measurement is narrowed, and measurement accuracy is reduced.
  • the input offset voltage changes with temperature, an error will occur between the corrected output voltage value and the actual difference voltage depending on the measured temperature. Since the remaining battery power is calculated based on the integrated output voltage value, the measurement error is also integrated, and the error from the actual remaining battery value may become so large that it cannot be ignored. is there. In order to avoid this problem, there is a problem that the remaining battery power must be given a margin and a warning of the remaining battery power must be issued, and the battery capacity cannot be used to the maximum. Also, if the input offset voltage value is measured every time the measurement is performed, the load on the MPU increases and the current consumption increases.
  • the input differential voltage of the differential voltage amplifier circuit includes the input offset voltage value, it is necessary to perform a correction calculation to remove the influence of the offset voltage value from the input differential voltage every time the differential voltage measurement is performed. . Therefore, it is necessary to perform arithmetic processing in the MPU every time the correction calculation is performed. This is a problem because control is complicated and current consumption is increased.
  • the present invention has been made to solve at least one of the problems of the above-described conventional technology, and it is possible to prevent a possible input voltage range from being narrowed, to eliminate the need for correction calculation by an MPU, etc.
  • An object of the present invention is to provide a differential voltage amplifying circuit capable of detecting a differential voltage with little influence and high accuracy. Disclosure of the invention
  • a differential voltage amplifier circuit is a differential voltage amplifier circuit including a first differential amplifier, comprising: a first input path from a first input terminal to the first differential amplifier; A first switch section that short-circuits the input path of the second input path from the input terminal to the first differential amplifier, and a voltage that holds the short-circuit output voltage output from the first differential amplifier when the input path is short-circuited A holding unit, a second switch unit for connecting the output terminal of the first differential amplifier to the voltage holding unit when holding the short-circuit output voltage, a short-circuit output voltage and a first reference voltage held by the voltage holding unit.
  • a bias voltage terminal for setting a bias point of the input voltage of the first differential amplifier.
  • the first reference voltage is supplied when the input paths are short-circuited, and the subtraction circuit is supplied when the differential voltage is amplified. Output as the second reference voltage.
  • a third switch section for supplying.
  • a first resistor connected to the first input terminal, a second resistor connected to the second input terminal, and a third resistor connected to the bias voltage terminal And a fourth resistor connected to the output terminal of the first differential amplifier.
  • a connection point between the first resistor and the third resistor is connected to the non-inverting input terminal of the first differential amplifier.
  • the connection point between the second and fourth resistors is connected to the inverting input terminal of the first differential amplifier, and the resistance values of the first and second resistors and the third and fourth resistors are The feature is that the resistance value with the container is equal.
  • the subtraction circuit section includes the second differential amplifier.
  • a fifth resistor connected to the output terminal of the second differential amplifier; and a sixth resistor connected to the voltage holding unit.
  • the connection between the fifth resistor and the sixth resistor is provided.
  • the connection point is connected to the inverting input terminal of the second differential amplifier, the first reference voltage is input to the non-inverting input terminal of the second differential amplifier, and the resistance values of the fifth resistor and the sixth resistor are equal It is characterized.
  • the first and second switches when the input paths are short-circuited, the first and second switches are turned on, and the third switch supplies the first reference voltage to the bias voltage terminal. Is done. As a result, the input offset voltage of the first differential amplifier is held in the voltage holding unit. When the differential voltage is amplified, the first and second switches are turned off, and the output of the subtraction circuit is supplied to the bias voltage terminal as the second reference voltage by the third switch.
  • this eliminates the need to store the input offset voltage in the MPU, which eliminates the need for a test or the like that calculates the input offset voltage in a highly accurate measurement environment and stores the input offset voltage in the MPU. Therefore, the test equipment can be simplified, and the cost of the test can be reduced.
  • the input path of the first differential amplifier is It is characterized in that the short circuit is performed at specified intervals.
  • the input offset voltage value can be updated periodically, and the input offset voltage value can be canceled by following the variation of the offset with time due to temperature or the like. . Therefore, it is possible to measure a voltage value with higher accuracy than the voltage value obtained by the conventional correction calculation.
  • the voltage holding unit is provided with a capacitor. With this, the voltage holding unit can hold the short-circuit output voltage output from the first differential amplifier when the input paths are short-circuited.
  • At least one of the paths is provided with an input switch section, and the input switch section is in a connected state when the differential voltage is amplified, and is in a disconnected state when the input paths are short-circuited.
  • the input switch section is turned off, so that the differential voltage amplifier circuit can be disconnected from the external circuit, and the input paths can be short-circuited.
  • differential voltage amplifier circuit according to claim 7 is characterized in that a first buffer amplifier is provided on a path from the third switch section to the third resistor.
  • the current flowing through the first resistor or the third resistor does not change the first or second reference voltage supplied to the bias voltage terminal, so that the input voltage of the first differential amplifier is biased. Since the points can be kept constant, a highly accurate difference voltage measurement result can be obtained.
  • a circuit configuration in which the first reference voltage is generated from the voltage dividing point of the resistance voltage division can be configured, and the method of generating the first reference voltage can be freely set.
  • a second buffer amplifier is provided in a path from the first input terminal to the first resistor, and the second resistor is connected to the second resistor from the second input terminal.
  • a third buffer amplifier is provided in the path to.
  • difference voltage amplifier circuit according to claim 9 is characterized in that a fourth buffer amplifier is provided in a path from the voltage holding unit to the sixth resistor.
  • the voltage applied to the sixth resistor can be kept constant regardless of the circuit configuration of the voltage holding unit. Also, current outflow or current inflow from the voltage holding unit is suppressed, and voltage fluctuation can be reduced. Therefore, a highly accurate difference voltage measurement result can be obtained. Further, the capacity of the voltage holding unit can be further reduced.
  • a fourth switch section is provided on a path through which the first reference voltage is input to the non-inverting input terminal of the second differential amplifier, and the fourth switch section includes: It is characterized in that it is connected when differential voltage is amplified and disconnected when input paths are short-circuited.
  • the first reference voltage is applied only to the second buffer amplifier, and when the differential voltage is amplified, the first reference voltage is applied only to the second differential amplifier. Therefore, the load connected to the first reference voltage can be made equal between the time of the short circuit and the time of the amplification. Therefore, it is possible to suppress the difference between the inflow and outflow of the current from the first reference voltage, suppress the fluctuation of the first reference voltage, and obtain a highly accurate difference voltage measurement result. Further, it is possible to adopt a circuit configuration for generating the first reference voltage from the voltage dividing point of the resistance division, and the method of generating the first reference voltage can be freely set.
  • the secondary battery pack according to claim 11 includes a sense section for detecting a charge / discharge current, and a differential voltage amplifier circuit according to at least any one of claims 1 to 10.
  • the differential voltage amplifier amplifies a differential voltage output from the sense unit according to a charge / discharge current.
  • a charge / discharge current detection A differential voltage amplifier circuit according to at least one of claims 1 to 10, wherein the differential voltage amplifier outputs a difference output from the sense unit in accordance with a charging / discharging current. It is characterized by amplifying a voltage.
  • a short-circuit output from the differential amplifier when two input paths to the differential amplifier are short-circuited.
  • the bias voltage setting unit sets a first reference voltage when a short circuit occurs between input paths. In the differential voltage amplification, a difference voltage between the short-circuit output voltage held in the voltage holding unit and the first reference voltage is set.
  • FIG. 1 is a circuit diagram of the first embodiment.
  • FIG. 2 is a circuit diagram of a second embodiment.
  • FIG. 3 is a circuit diagram of a third embodiment.
  • FIG. 4 is a circuit diagram of a fourth embodiment. .
  • FIG. 5 is a circuit diagram of a fifth embodiment.
  • FIG. 6 is a circuit diagram of a sixth embodiment.
  • FIG. 7 is a circuit diagram of the prior art. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram showing a secondary battery pack provided with a differential voltage amplifier circuit according to the present invention.
  • This secondary battery pack includes a secondary battery 101, a sense resistor 102, secondary battery terminals 111 and 112, and a differential voltage amplifier 1.
  • the rechargeable battery pack is configured so that it can be attached to and detached from the equipment used, such as a charger and a load.
  • a charger is connected to terminals 111 and 112
  • charging current flows to the battery 101 and the terminal
  • a load is connected to 111 and 112
  • a discharge current flows to the battery 101.
  • the sense resistor 102 on the current path is set to a low resistance. That is common.
  • the difference voltage amplifying circuit section 1 amplifies a minute difference voltage obtained when a charge / discharge current flows through the sense resistor 102. It has an input terminal IN1, an input terminal IN2, a bias voltage input terminal VO, and a differential voltage amplifier circuit output terminal 0T1. Inside the difference voltage amplifying circuit unit 1, a voltage holding unit 2, a subtraction circuit unit 3, a differential amplifier OP1, resistors R1 to R4, switches SW1 to SW5, and a bias voltage terminal VR are provided inside the difference voltage amplifying circuit unit 1, a voltage holding unit 2, a subtraction circuit unit 3, a differential amplifier OP1, resistors R1 to R4, switches SW1 to SW5, and a bias voltage terminal VR are provided.
  • the voltage holding unit 2 includes a capacitor C1
  • the subtraction circuit unit 3 includes a differential amplifier OP2 and resistors R5 to R7.
  • the input terminal IN1 and the input terminal IN2 are connected to both ends of the sense resistor 102.
  • the input terminal IN1 is connected to the resistor R1 and one end of the switch SW1 at the node N1 via the switch SW4, and the input terminal IN2 is connected to the resistor R at the node N2 via the switch SW5. 2 and connected to the other end of switch SW1.
  • resistor R 3 One end of resistor R 3 is connected to bias voltage terminal VR, and one end of resistor R 4 Is connected to the output of the differential amplifier 0 P 1. Then, the resistor R 1 and the resistor R 3 are connected at the node N 3 and then connected to the non-inverting input terminal of the differential amplifier 0 P 1, and the resistor R 2 and the resistor R 4 are connected at the node N 4 After being connected, it is connected to the inverting input terminal of differential amplifier 0P1.
  • the output of the differential amplifier P1 is input to the resistor R4, the switch SW2, and the output terminal 0T1 of the differential voltage amplification circuit.
  • the difference voltage amplifier circuit output terminal 0 T 1 is connected to a battery remaining charge calculator (not shown), and the battery remaining charge calculator calculates the remaining battery charge based on the measurement result of the difference voltage amplifier 1. .
  • the subtraction circuit section 3 includes a resistor R5 to which the output of the differential amplifier 0P2 is input.
  • the resistor R5 and the resistor R6 are connected at the node N6, and the node N6 is connected to the differential amplifier.
  • Connected to the inverting input terminal of P2.
  • the bias voltage input terminal VO is connected to the non-inverting input terminal of the differential amplifier OP2 via the resistor R7.
  • the switch SW3 is connected so that the output of the subtraction circuit unit 3 and the bias voltage input terminal VO can be switched, and is connected to the bias voltage terminal VR.
  • the subtraction circuit unit 3 and the switch SW3 constitute a bias voltage setting unit that sets a bias point of the input voltage of the differential amplifier OP1.
  • the input voltages V IN 1 and V IN 2 are applied to the input terminals IN 1 and IN 2, and the bias voltage VO 1 is applied to the bias voltage input terminal VO.
  • the output of the differential amplifier 0 P 1 when the input path is short-circuited is the output voltage VOUT 1
  • the output of the differential amplifier OP 1 during the differential voltage amplification is the output voltage VOUT 1 A
  • the output of the differential amplifier OP 2 The output is defined as the output voltage VOUT2
  • the input offset voltages of the differential amplifiers ⁇ 1 and OP2 are defined as VOFF1 and VOFF2, respectively.
  • the voltage offset unit 2 Prior to the operation of amplifying the difference voltage, the voltage offset unit 2 holds the input offset voltage VOFF1 of the difference voltage amplifier 0P1. When a short circuit occurs between the input paths, switches SW1 and SW2 are turned on, and switches SW4 and SW5 are turned off. You.
  • the switch SW3 connects the bias voltage terminal VR and the bias voltage input terminal VO.
  • the voltage applied to the nodes N1, N2 when the switch SW1 is connected is defined as the short-circuit voltage VINR.
  • a bias voltage V01 is applied to the bias voltage terminal VR.
  • the divided voltage by the resistors R 1 and R 3 is applied to the node N 3, and the voltage value is expressed by (Equation 1) with respect to the node N 1.
  • V0UT 1 V01 + (1 + RR 4 / RR 2) x VO FF 1-(Equation 4)
  • AV RR 4ZRR 2
  • VOUT 1 of the differential amplifier 0 P 1 when the input paths are short-circuited is expressed by (Equation 5).
  • V0UT 1 V01 + AVXV0FF 1- (Equation 5)
  • the switch SW2 since the switch SW2 is in the conductive state, the capacitor C1 is charged up to the output voltage VOUT1. Then, even when the switch SW2 is disconnected, the voltage is maintained.
  • switches SW1 and SW2 are turned off, and switches SW4 and SW5 are turned on.
  • the switch SW3 connects the bias voltage terminal VR to the output of the subtraction circuit 3. 200
  • Node N5 holds the voltage VOUT1 calculated by (Equation 5). At this time, the divided voltage by the resistors R5 and R6 is applied to the node N6, and the voltage value is expressed by (Equation 6).
  • V01 + VOF F 2 (VOUT 2 -VOUT 1) xR R 6 / (R 5 + RR 6) + V 0 U T 1 ... (Equation 7)
  • VOUT 2 2 V01 -VOUT l + 2 xVOFF 2- (Equation 8)
  • Equation 9 Since the switches SW4 and SW5 are conducting, the input voltages VINl and VIN2 are applied to the nodes N1 and N2, respectively.
  • the output voltage VOUT 2 of the differential amplifier OP 2 is applied to the bias voltage terminal VR. Therefore, the output voltage VOUT 1 A during differential voltage amplification of the differential amplifier OP1 is obtained in the same manner as (Equation 3), and becomes as shown in (Equation 10).
  • VOUT l A VOUT 2 + AVx (V I N 1 -V I N 2) + (A V + 1) xVOFF 1 (Equation 11)
  • VOUT 1 A VO 1 + AVX (V I N 1 -V I N2) + 2 x VO F F 2 ... (Equation 12)
  • VOUT 1 A VO 1 + AVX (VI N 1 -VI N2)...
  • the output voltage VO UT 1 A at the time of differential voltage amplification of the differential amplifier OP 1 obtained by (Equation 13) and (Equation 13) is the difference Output via the voltage amplifier circuit output terminal 0 T 1. That is, it has a bias point adjusted by the bias voltage V01 applied to the bias voltage input terminal VO, and the difference between the input voltages VIN1 and VIN2 is not affected by the input offset voltage V0FF1.
  • Output voltage VOUT 1 A multiplied by AV is output.
  • the input offset voltage VOFF1 of the differential amplifier 0P1 fluctuates due to temperature
  • the input offset voltage value VOFF1 can be canceled following the fluctuation. Therefore, compared to the conventional voltage value measurement method using correction calculation, the voltage measurement can be performed with improved accuracy, and the battery remaining amount can be measured more accurately.
  • the input offset voltage VOFF1 can be updated periodically, and the input offset voltage VOFF1 can be canceled by following the variation of the offset with time due to temperature or the like. It becomes possible. Therefore, it is possible to measure a voltage value with higher accuracy than the voltage value obtained by the conventional correction calculation.
  • the difference voltage amplifying circuit section 1B in FIG. 2 is connected between the capacitor C1 of the voltage holding section 2 and the resistor R6 of the subtraction circuit section 3 in addition to the difference voltage amplifying circuit section 1 of the first embodiment.
  • a connected buffer amplifier BA 1 is provided.
  • the operation at the time of short-circuiting between the input paths and the operation at the time of amplification of the difference voltage are the same as those in the first embodiment, and thus detailed description is omitted.
  • the output voltage V 0 UT 1 held in the capacitor C 1 is input to the subtraction circuit unit 3 via the buffer amplifier BA 1.
  • the current flowing through the resistors R5 and R6 is supplied from the buffer amplifier: BA1, and is not supplied from the capacitor C1. Therefore, the holding voltage of the capacitor C1 is maintained at a constant value.
  • the buffer amplifier BA1 is not provided, the difference voltage increases. During the width operating period, discharge from capacitor C1 to resistor R6 occurs. At this time, the holding voltage of the capacitor C1 decreases and an error occurs in the output of the differential amplifier OP2, so that a highly accurate output voltage VOUT1A cannot be obtained.
  • the capacitance of the capacitor C1 is increased to avoid the above problem, problems such as an increase in the circuit occupation area of the capacitor C1 occur.
  • the buffer amplifier BA1 it is possible to keep the voltage held in the voltage holding unit 2 constant regardless of the size of the capacitor C1 of the voltage holding unit 2. Therefore, a more accurate output voltage VOUT1A can be obtained. Further, since the capacitance of the capacitor C1 of the voltage holding unit 2 can be further reduced, the area occupied by the capacitor C1 in the circuit can be reduced.
  • the differential voltage amplifier circuit section 1C in FIG. 3 includes a buffer amplifier BA2 connected between the switch SW3 and the bias voltage terminal VR in addition to the differential voltage amplifier circuit section 1B of the second embodiment.
  • the resistors R 8 and R 9 are connected to the bias voltage input terminal VO, and the bias voltage V 01 applied to the bias voltage input terminal V 0 is the voltage divided by the resistors R 8 and R 9.
  • the operation of the differential voltage amplifying circuit section 1C is the same as that of the first embodiment, and a detailed description is omitted.
  • the bias voltage VO 1 When a short circuit occurs between the input paths, the bias voltage VO 1 is applied to the resistor R 3 via the buffer amplifier B A 2 and the bias voltage terminal VR. Therefore, the current flowing through the resistors Rl and R3 is supplied by the sofa amplifier BA2. Therefore, the bias voltage VO 1 is maintained at a constant value.
  • the buffer amplifier B A2 when the buffer amplifier B A2 is not provided, the bias voltage VO 1 which is a divided voltage changes due to the current flowing to the resistors R 1 and R 3. As a result, a problem arises in that a highly accurate output voltage VOUT 1 A cannot be obtained.
  • the buffer amplifier BA2 the current flowing through the resistors R1 and R3 does not flow through the bias voltage input terminal VO. Therefore, since the bias voltage V 01 is not changed, a highly accurate The result of the difference voltage measurement can be obtained. Further, it is possible to adopt a circuit configuration for generating the external offset voltage VO1 from the voltage dividing point of the resistive voltage division, and the method of generating the external offset voltage VO1 can be freely set.
  • the difference voltage amplification circuit section 1D of FIG. 4 includes a switch SW 6 connected between the bias voltage input terminal VO and the resistor R7 in addition to the difference voltage amplification circuit section 1C of the third embodiment.
  • the operation of the differential voltage amplifying circuit section 1D is the same as that of the differential voltage amplifying circuit section 1 in the first embodiment, and therefore a detailed description is omitted.
  • the switch SW6 When a short circuit occurs between the input paths, the switch SW6 is turned off, and the bias voltage VO1 is applied to the non-inverting input terminal of the buffer amplifier BA2 via the switch SW3.
  • the switch SW 6 when the differential voltage is amplified, the switch SW 6 is turned on, and the switch SW 3 connects the non-inverting input terminal of the buffer amplifier BA 2 to the output of the subtraction circuit 3, so that the bias voltage V01 is switched to the switch SW. 6 is applied to the non-inverting input terminal of the differential amplifier 0 P 2.
  • the bias voltage VO1 is applied to both the buffer amplifier BA2 and the differential amplifier ⁇ P2 during a short circuit between the input paths, and the bias voltage VO1 is applied during the difference voltage amplification.
  • the voltage is applied only to the differential amplifier OP2, and the number of terminals connected to the bias voltage input terminal VO differs between the case of short circuit and the case of differential voltage amplification, and the amount of input / output current differs. .
  • the bias voltage V01 changes, and a problem arises in that a highly accurate output voltage VOUT1A cannot be obtained.
  • the bias voltage V01 is applied only to the buffer amplifier BA2 when the input paths are short-circuited, and the bias voltage VO1 is applied only to the differential amplifier OP2 when the differential voltage is amplified.
  • the difference between the input and output currents is reduced by matching the number of connection terminals at the time of short circuit and at the time of amplification. Therefore, it is possible to suppress the fluctuation of the bias voltage VO1, and it is possible to obtain a highly accurate output voltage VOUT1A.
  • the bias voltage VO1 is generated from the voltage dividing point of the resistor voltage dividing. This makes it possible to freely set the method of generating the bias voltage V01.
  • the path from the buffer amplifier BA1 to the resistor R6 can be provided with a switch SW7 that is turned on when a short circuit occurs between the input paths and turned off when the differential voltage is amplified. This prevents the path from the switch SW6 to the non-inverting input terminal of the differential amplifier OP2 from being in a floating state when a short circuit occurs between the input paths.
  • the difference voltage amplification circuit section 1E of FIG. 5 includes a buffer amplifier BA3 and a buffer amplifier BA3 connected between the input terminal IN1 and the resistor R1 in addition to the difference voltage amplification circuit section 1D of the fourth embodiment. It has a buffer amplifier BA4 connected between the input terminal IN2 and the resistor R2.
  • the node N1 is connected to the ground voltage Vss via the switch SW1, and the node N2 is connected to the ground voltage Vss via the switch SW8.
  • the operation of the differential voltage amplifying circuit unit 1E is the same as that of the differential voltage amplifying circuit unit 1 in the first embodiment, and thus a detailed description is omitted.
  • switches SW4, SW5, and SW6 are turned off, and switches SW1, SW2, and SW8 are turned on.
  • the switch SW3 connects the bias voltage terminal VR and the bias voltage input terminal VO.
  • the resistors R1 and R2 are connected to the ground voltage Vss via the buffer amplifiers BA3 and BA4.
  • switches SW4, SW5, and SW6 are turned on, and switches SW1, SW2, and SW8 are turned off.
  • the switch SW3 connects the non-inverting input terminal of the buffer amplifier BA2 and the output of the subtraction circuit unit 3.
  • the current flowing through the resistors Rl and R2 is supplied by the buffer amplifiers BA3 and BA4, so that the input voltages VIN1 and VIN2 are maintained at constant values.
  • the buffer amplifiers BA3 and BA4 are not provided, the input voltages VIN1 and VIN2 will change when current flows through the resistors R1 and R2. As a result, high A problem arises that an accurate output voltage VOUT 1 A cannot be obtained. Therefore, by providing the buffer amplifiers BA3 and BA4, it is possible to obtain a highly accurate difference voltage measurement result.
  • FIG. 6 is a circuit diagram showing a secondary battery charger 6 including the differential voltage amplifier circuit unit 1 according to the present invention.
  • the rechargeable battery charger 6 has a differential voltage amplifier circuit 1, input terminals IN 1 and IN 2, a bias voltage input terminal VO, a differential voltage amplifier circuit output terminal T1, and a sense resistor 102, in addition to: It has a charging circuit 5 and terminals P1 to P4.
  • the operation of the differential voltage amplifying circuit unit 1 is the same as that of the first embodiment, and thus the detailed description is omitted.
  • the battery pack 7 including the secondary battery BT1 is connected to the secondary battery charger 6 via terminals P1 and P2.
  • a power supply (not shown) such as an AC adapter is connected to the terminals P3 and P4. Then, the battery pack 7 is charged by the secondary battery charger 6, and the result of the differential voltage measurement at the time of charging can be obtained by the differential voltage amplifying circuit 1.
  • the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and modifications can be made without departing from the spirit of the present invention.
  • the scope of use of the present invention is not limited to secondary battery packs and secondary battery chargers, and it goes without saying that the present invention can be used for equipment that needs to measure a minute voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

 入力電圧可能範囲が狭まることを防止し、MPU等による補正計算を不要とすると共に、温度変化による影響が少なく高精度な差電圧の検出が可能な差電圧増幅回路を提供することを目的とする。入力経路間の短絡時には、入力経路短絡時の差動増幅器OP1の出力電圧VOUT1がコンデンサC1に保持される。そして差電圧増幅時には、コンデンサC1に保持された出力電圧VOUTとバイアス電圧VO1との減算処理が減算回路部3で行われ、出力電圧VOUT2がバイアス電圧端子VRに印加され、その電圧を基準として入力電圧VIN1、VIN2の電圧差を増幅率AV倍した出力電圧VOUT1Aが差電圧増幅回路部出力端子OT1を介して出力される。

Description

明 細 書 差電圧増幅回路 技術分野
本発明は、 差電圧増幅回路に適用される入力オフセッ ト電圧のキャン セルに関するものであり、 特に高精度な差電圧の検出が求められる差電 圧増幅回路に関するものである。 背景技術
近年、 高精度な電流検出手段がますます求められている。 例えば、 ノ 一トパソコンなどの各種携帯電子機器では、 二次電池残量の測定の高精 度化が要求されており、 そのためには高精度な電流検出手段が必要とさ れる。
従来の技術として、 特許文献 1に開示される技術を第 7図を用いて説 明する。 第 7図に示す従来技術の回路では、 二次電池 1 0 1から充放電 電流を検出するセンス抵抗 1 0 2と、 センス抵抗 1 0 2の端子電圧を増 幅する差電圧増幅回路 1 0 4と、 差電圧増幅回路 1 0 4の二つの入力端 子を短絡して入力差電圧を一時的に零にするためのスィツチ 1 0 3とを 備える。 またマイクロコン トローラ 1 0 5は AZD変換器 1 0 7、 電流 検出回路 1 0 8、 残容量演算回路 1 0 9およびスィツチ制御回路 1 1 0 を有する。
スィッチ 1 0 3により差電圧増幅回路 1 0 4の二つの入力端子を短絡 し、 入力差電圧を零にしたときの差電圧増幅回路 1 0 4の出力を A/D 変換器 1 0 7でディジタル値へ変換し、 その値をオフセッ ト電圧値とし て予め求めて記憶しておく。 そしてセンス抵抗 1 0 2の端子電圧を増幅 するときの差電圧増幅回路 1 0 4の出力電圧値から、 先ほど求めたオフ セッ ト電圧値を加減した値が、 充電電流または放電電流に対応した値と して用いられ、 残容量演算回路 1 0 9で残容量が演算される。 これによ り、 オフセッ ト電圧による二次電池 1 0 1の残容量の演算結果の誤差を 小さくすることが可能となる。
なお、 先行技術文献を以下に示す。
特許文献 1 特開平 7— 1 9 1 1 1 0号公報
上記従来の技術に示す様に、 差電圧増幅回路の入力オフセッ ト電圧値 を検出して出力電圧値に加減算することにより検出結果に補正を行う方 法においては、 差電圧増幅回路の入力電圧値には入力オフセ.ッ ト電圧値 が含まれた状態である。 その結果、 差電圧増幅回路が本来備える入力電 圧可能範囲は、 入力オフセッ ト電圧分ずれることとなり、 入力オフセッ ト電圧が占める範囲を差し引いた範囲が従来技術における差電圧増幅回 路の入力電圧可能範囲となる。 そのため測定に用いられる入力電圧可能 範囲が狭まるために測定範囲が限定され、 測定精度が低下するなどの問 題がある。
また、 入力オフセッ ト電圧が温度により変化する場合、 測定温度によ つては、 補正計算された出力電圧値と、 実際の差電圧との間には誤差が 発生する。電池残量は積算された出力電圧値に基づいて算出されるため、 測定誤差も積算されることとなり、 実際の電池残量値との誤差が無視で きない程度に大きくなる場合があり問題である。 またこの問題を避ける ため、 電池残量に余裕を持たせて残量不足の警告を出さざるを得ず、 電 池容量を最大限に利用できないという問題がある。 また、 測定のたびに 入力オフセッ ト電圧値を測定する場合には、 M P Uの負担増加や消費電 流の増加などが発生し問題である。
また、 差電圧増幅回路の入力差電圧に入力オフセッ ト電圧値が含まれ た状態であるため、 差電圧測定のたびに入力差電圧からオフセッ ト電圧 値の影響を取り除く補正計算を行う必要がある。 そのため補正計算のた びに M P Uでの演算処理を行う必要があり、 制御が繁雑であると共に、 電流消費も大きくなり問題である。
また、 入力オフセッ ト電圧を M P Uに記憶させるため、 高精度な測定 環境下で入力オフセッ ト電圧を算出し M P Uに記憶するテス トが必要と なる。 そのため試験装置が大がかりになる問題や、 試験が高価になる問 題が発生し問題である。
本発明は前記従来技術の課題の少なくとも 1つを解消するためになさ れたものであり、 入力電圧可能範囲が狭まることを防止し、 M P U等に よる補正計算を不要とすると共に、 温度変化による影響が少なく高精度 な差電圧の検出が可能な差電圧増幅回路を提供することを目的とする。 発明の開示
前記目的を達成するために請求項 1に係る差電圧増幅回路では、 第 1 差動増幅器を備える差電圧増幅回路において、 第 1入力端子から第 1差 動増幅器への第 1入力経路および第 2入力端子から第 1差動増幅器への 第 2入力経路の入力経路間を短絡する第 1スィツチ部と、 入力経路間の 短絡時に、 第 1差動増幅器から出力される短絡出力電圧を保持する電圧 保持部と、 短絡出力電圧の保持に際して、 第 1差動増幅器の出力端子と 電圧保持部とを接続する第 2スィッチ部と、 電圧保持部に保持されてい る短絡出力電圧と第 1基準電圧とを減算する減算回路部と、 第 1差動増 幅器の入力電圧のバイァス点を設定するバイァス電圧端子に、 入力経路 間の短絡時には第 1基準電圧を供給し、 差電圧増幅時には減算回路部の 出力を第 2基準電圧として供給する第 3スィツチ部とを備えること特徴 とする。
また請求項 2に係る差電圧増幅回路では、 第 1入力端子に接続される 第 1抵抗器と、 第 2入力端子に接続される第 2抵抗器と、 バイアス電圧 端子に接続される第 3抵抗器と、 第 1差動増幅器の出力端子に接続され る第 4抵抗器とを備え、 第 1抵抗器と第 3抵抗器との接続点が第 1差動 増幅器の非反転入力端子へ接続され、 第 2抵抗器と第 4抵抗器との接続 点が第 1差動増幅器の反転入力端子へ接続され、 第 1抵抗器と第 2抵抗 器との抵抗値および第 3抵抗器と第 4抵抗器との抵抗値が等しいこと特 徴とする。
また請求項 3に係る差電圧増幅回路では、 減算回路部は、 第 2差動増 幅器と、 第 2差動増幅器の出力端子に接続される第 5抵抗器と、 電圧保 持部に接続される第 6抵抗器とを備え、 第 5抵抗器と第 6抵抗器との接 続点が第 2差動増幅器の反転入力端子へ接続され、 第 1基準電圧が第 2 差動増幅器の非反転入力端子へ入力され、 第 5抵抗器と第 6抵抗器との 抵抗値が等しいこと特徴とする。
請求項 1乃至 3に係る差電圧増幅回路では、 入力経路間の短絡時にお いて、 第 1、 2スィッチ部が導通状態とされ、 第 3スィッチ部によりバ ィァス電圧端子に第 1基準電圧が供給される。 これにより、 第 1差動増 幅器の入力オフセッ ト電圧が電圧保持部に保持される。 また差電圧増幅 時において、 第 1、 2スィ ッチ部が非導通状態とされ、 第 3スィ ッチ部 によりバイァス電圧端子に減算回路部の出力が第 2基準電圧として供給 3れる o
これにより、 差電圧増幅回路の入力オフセッ ト電圧値をキャンセルす ることが可能となる。 よって入力オフセッ ト電圧の影響により差電圧増 幅回路の入力電圧可能範囲が狭まることがなく、 測定精度の低下を防止 することができる。
またこれにより、 差電圧増幅回路の入力オフセッ ト電圧が温度により 変動する場合にも、 その変動に追従して入力オフセッ ト電圧値をキャン セルすることが可能となる。 よって従来の補正計算による電圧値の測定 方法と比して、 精度が向上した電圧測定が可能となるため、 より正確な 電池残量の測定をすることができる。
またこれにより、 入力オフセッ ト電圧値の影響を取り除く補正計算を 差電圧測定のたびに M P Uで行う必要がなくなる。 よって、 制御を簡素 化することができると共に、 電流消費の低減を図ることができる。
またこれにより、 入力オフセッ ト電圧を M P Uに記憶させる必要がな くなるため、 高精度な測定環境下で入力オフセッ ト電圧を算出し M P U に記憶させる試験等が不要となる。 そのため試験装置を簡素化すること ができると共に、 試験を低価格化することができる。
また請求項 4に係る差電圧増幅回路で.は、 第 1差動増幅器の入力経路 間の短絡は、 規定の周期ごとに行われることを特徴とする。
これにより、定期的に入力オフセッ ト電圧値の更新をすることができ、 温度等による経時的なオフセッ トの変動に対しても追従して入力オフセ ッ ト電圧値をキャンセルすることが可能となる。 よって従来の補正計算 により求められた電圧値と比して、 より精度が向上した電圧値を測定す ることが可能となる。
また請求項 5に係る差電圧増幅回路では、 電圧保持部はコンデンサを 備えて構成されること特徴とする。 これにより電圧保持部は、 入力経路 間の短絡時に第 1差動増幅器から出力される短絡出力電圧を保持するこ とができる。
また請求項 6に係る差電圧増幅回路では、 第 1入力経路のうち第 1入 力端子から第 1スィツチ部に至る経路、 または第 2入力経路のうち第 2 入力端子から第 1スィツチ部に至る経路の少なく とも何れか一方に入力 スィッチ部を備え、 入力スィッチ部は、 差電圧増幅時には接続状態とさ れ、 入力経路間の短絡時には非接続状態とされること特徴とする。
これにより、 入力スィッチ部が非導通状態とされることで、 差電圧増 幅回路を外部回路から切り離した上で入力経路間の短絡を行うことがで きる。
また請求項 7に係る差電圧増幅回路では、 第 3スィツチ部から第 3抵 抗器への経路に第 1バッファアンプを備えることを特徴とする。
これにより、 第 1抵抗器や第 3抵抗器に流れる電流が、 バイアス電圧 端子に供給される第 1または第 2基準電圧を変化させることがなくなる ことにより、 第 1差動増幅器の入力電圧のバイァス点を一定に維持する ことができるため、 高精度な差電圧測定の結果を得ることができるよう になる。 また、 第 1基準電圧を抵抗分圧の分圧点から発生させる回路構 成にすることが可能となり、 第 1基準電圧の発生方法を自由に設定する ことができる。
また請求項 8に係る差電圧増幅回路では、 第 1入力端子から第 1抵抗 器への経路に第 2バッファアンプを備え、 第 2入力端子から第 2抵抗器 への経路に第 3バッファアンプを備えることを特徴とする。
これにより、 第 1および第 2抵抗器に印加される電圧値は、 第 1抵抗 器、 第 3抵抗器に流れる電流によって影響を受けなくなるため、 高精度 な差電圧測定の結果を得ることができるようになる。
また請求項 9に係る差電圧増幅回路では、 電圧保持部から第 6抵抗器 への経路に第 4バヅファアンプを備えることを特徴とする。
これにより、 電圧保持部の回路構成にかかわらず第 6抵抗器に印加さ れる電圧を一定に保つことが可能となる。 また、 電圧保持部からの電流 流出あるいは電流流入は抑えられ、 電圧変動を低減することができる。 よって、 高精度な差電圧測定の結果を得ることができるようになる。 ま た、 電圧保持部の容量をより小さくすることができる。
また請求項 1 0に係る差電圧増幅回路では、 第 1基準電圧が第 2差動 増幅器の非反転入力端子へ入力される経路に第 4スィ ツチ部を備え、 第 4スィ ッチ部は、 差電圧増幅時には接続状態とされ、 入力経路間の短絡 時には非接続状態とされることを特徴とする。
これにより、 入力絰路間の短絡時には第 1基準電圧が第 2バッファァ ンプのみに与えられ、 差電圧増幅時には第 1基準電圧が第 2差動増幅器 のみに与えられることとなる。 よって、 短絡時と増幅時との間で第 1基 準電圧に接続される負荷を同等とすることができる。 よって第 1基準電 圧からの電流の流出入の差を抑えることが可能となり、 第 1基準電圧の 変動が抑えられ、 高精度な差電圧測定の結果を得ることができるように なる。 また、 第 1基準電圧を抵抗分圧の分圧点から発生させる回路構成 にすること等が可能となり、 第 1基準電圧の発生方法を自由に設定する ことができる。
また請求項 1 1 に係る二次電池パックでは、 充放電電流を検出するセ ンス部と、 請求項 1乃至請求項 1 0の少なく とも何れか 1項に記載の差 電圧増幅回路とを備え、 差電圧増幅器は、 充放電電流に応じて前記セン ス部より出力される差電圧を増幅することを特徴とする。
また請求項 1 2に係る二次電池充電器では、 充放電電流を検出するセ ンス部と、 請求項 1乃至請求項 1 0の少なく とも何れか 1項に記載の差 電圧増幅回路とを備え、 差電圧増幅器は、 充放電電流に応じて前記セン ス部より出力される差電圧を増幅することを特徴とする。
これにより、 測定による電池残量値と実電池残量値との誤差を小さく することが可能となる。 よって実際の電池容量を最大限に利用すること ができる。
また請求項 1 3に係る差電圧増幅回路では、 差動増幅器を備える差電 圧増幅回路において、 差動増幅器への 2つの入力経路間が短絡された場 合の、 差動増幅器からの短絡出力電圧を保持する電圧保持部と、 差動増 幅器の入力電圧のバイァス点を設定するバイァス電圧設定部とを備え、 バイァス電圧設定部は、入力経路間の短絡時には第 1基準電圧を設定し、 差電圧増幅時には前記電圧保持部に保持されている短絡出力電圧と前記 第 1基準電圧との差分電圧を設定することを特徴とする。
これにより、 差電圧増幅回路の入力オフセッ ト電圧値をキャンセルす ることが可能となるため、 入力オフセッ ト電圧の影響により差電圧増幅 回路の入力電圧可能範囲が狭まることがなく、 測定精度の低下を防止す ることができる。 また差電圧増幅回路の入力オフセッ ト電圧が温度によ り変動する場合にも、 その変動に追従して入力オフセッ ト電圧値をキヤ ンセルすることが可能となる。 図面の簡単な説明
第 1図は、 第 1実施形態の回路図である。
第 2図は、 第 2実施形態の回路図である。
第 3図は、 第 3実施形態の回路図である。
第 4図は、 第 4実施形態の回路図である。 .
第 5図は、 第 5実施形態の回路図である。
第 6図は、 第 6実施形態の回路図である。
第 7図は、 従来技術の回路図である。 発明を実施するための最良の形態
以下、 本発明の差電圧増幅回路について具体化した実施形態を第 1図 乃至第 5図に基づき図面を参照しつつ詳細に説明する。
第 1実施形態を第 1図の回路図を用いて説明する。 第 1図は、 本発明 に係る差電圧増幅回路を備えた二次電池パックを示す回路図である。 こ の二次電池パックは二次電池 1 0 1、 センス抵抗 1 02、 二次電池端子 1 1 1および 1 12、 差電圧増幅回路部 1を備える。
二次電池パックは充電器や負荷である使用機器に対して着脱可能に構 成され、 端子 1 1 1、 1 1 2に充電器が接続されると電池 1 0 1に充電 電流が流れ、 端子 1 1 1、 1 1 2に負荷が接続されると電池 1 0 1に放 電電流が流れるようになつている。 ここで、 充放電電流に対して二次電 池 1 0 1や二次電池端子 1 1 1、 1 1 2に十分な電圧を得るために、 電 流経路上のセンス抵抗 102は低抵抗とすることが一般的である。
差電圧増幅回路部 1はセンス抵抗 1 02に充放電電流が流れることに より得られる微小な差電圧を増幅する。 そして入力端子 IN 1、 入力端 子 I N 2、 バイアス電圧入力端子 VO、 差電圧増幅回路部出力端子 0 T 1を備える。 差電圧増幅回路部 1の内部には、 電圧保持部 2、 減算回路 部 3、 差動増幅器 OP 1、 抵抗器 R 1乃至 R4、 スイ ッチ SW1乃至 S W5、 バイアス電圧端子 VRが備えられる。 また、 電圧保持部 2にはコ ンデンサ C 1が備えられ、 減算回路部 3には差動増幅器 OP 2、 抵抗器 R 5乃至 R 7が備えられる。 抵抗器 R 1乃至 R 7はそれそれ抵抗値 1乃至 RR 7を備え、 ; RR 1 =RR 2、 RR 3 =RR 4 R R 5 = R R 6 = 2 xRR 7の関係をもつ値である。
センス抵抗 1 02の両端には入力端子 I N 1および入力端子 I N 2が 接続される。 入力端子 I N 1はスイッチ SW4を介して、 ノード N 1に おいて抵抗器 R 1およびスィ ヅチ SW 1の一端へ接続され、 入力端子 I N 2はスイッチ SW5を介して、 ノード N 2において抵抗器 R 2および スィッチ S W 1の他端へ接続される。
また抵抗器 R 3の一端はバイァス電圧端子 VRへ、 抵抗器 R 4の一端 は差動増幅器 0 P 1の出力へ接続される。 そして抵抗器 R 1と抵抗器 R 3とがノード N 3において接続された上で差動増幅器 0 P 1の非反転入 力端子へ接続され、 抵抗器 R 2と抵抗器 R4とがノード N4において接 続された上で差動増幅器 0 P 1の反転入力端子へ接続される。 また差動 増幅器◦ P 1の出力は抵抗器 R 4、 スィッチ SW2および差電圧増幅回 路部出力端子 0 T 1へ入力される。 差電圧増幅回路部出力端子 0 T 1は 電池残量演算部 (不図示) へと接続され、 電池残量演算部では差電圧増 幅回路部 1の測定結果に基づいて電池残量を算出する。
電圧保持部 2のコンデンサ C 1の一端は接地電圧 V s sとされ、 他端 (ノード N 5 ) はスィッチ S W 2および抵抗器 R 6へ接続される。 減算 回路部 3では、差動増幅器 0 P 2の出力が入力される抵抗器 R 5を備え、 抵抗器 R 5と抵抗器 R 6 とがノード N 6において接続され、 ノード N 6 が差動増幅器◦ P 2の反転入力端子へ接続される。 一方、 バイァス電圧 入力端子 VOが抵抗器 R 7を介して差動増幅器 OP 2の非反転入力端子 へ接続される。 スィッチ SW3は、 減算回路部 3の出力とバイアス電圧 入力端子 VOとが切り替え可能に接続され、 バイァス電圧端子 VRへ接 続される。
なお、 減算回路部 3とスィ ッチ SW3とによって、 差動増幅器 OP 1 の入力電圧のバイァス点を設定するバイァス電圧設定部を構成する。
入力端子 I N 1、 I N 2には入力電圧 V I N 1、 V I N 2が、 バイァ ス電圧入力端子 VOにはバイアス電圧 VO 1が印加される。 また、 入力 経路間の短絡時の差動増幅器 0 P 1の出力を出力電圧 VOUT 1、 差電 圧増幅時の差動増幅器 OP 1の出力を出力電圧 VOUT 1 A、 差動増幅 器 OP 2の出力を出力電圧 VOUT 2と、 差動増幅器 ΟΡ 1、 OP 2の 入力オフセッ ト電圧をそれぞれ VO F F 1、 VOFF 2と定義する。
入力経路間の短絡時の動作について説明する。 差電圧の増幅動作に先 立ち、 差電圧増幅器 0 P 1の入力オフセッ ト電圧 VO F F 1を電圧保持 部 2に保持する動作である。入力経路間の短絡時には、スィツチ S W 1、 SW2が導通状態とされ、 スイ ッチ SW4、 SW5が非導通状態とされ る。 またスィ ツチ SW3はバイアス電圧端子 VRとバイアス電圧入力端 子 VOとを接続する。
スイッチ S W 1が接続状態時にノード N 1、 N 2,に印加される電圧を 短絡電圧 V I NRと定義する。 またバイアス電圧端子 VRにはバイアス 電圧 V01が印加される。 このとき、 ノード N 3には抵抗器 R 1、 R 3 による分圧電圧が印加され、その電圧値はノ一 N 1を基準にすると(式 1 ) で表される。
(V01 - VI NR) XRR 1/ (RR 1 +RR 3) … (式 1) 同様にノード N 4には、抵抗器 R 2、R 4による分圧電圧が印加され、 その電圧値はノード N 2を基準にすると (式 2) で表される。
(VOUT 1— VI NR) XRR 2/ (RR 2 +RR 4) … (式 2) 差動増幅器 0 P 1の反転入力端子と非反転入力端子とは同電圧になる ため、入力オフセッ ト電圧 VO F F 1を考慮すると(式 3 )が成立する。
( V 01 - V I NR) XRR 1/ (RR 1 +RR 3) + V 0 F F 1 = (VOUT 1 -VI NR) XRR 2/ (R 2 +RR 4 ) … (式 3)
RR 1 =RR 2、 R R 3 = R R 4の関係を用いて (式 3) を整理する と、 (式 4) が得られる。
V0UT 1 =V01 + ( 1 +RR 4/RR 2 ) x VO F F 1 - (式 4) ここで増幅率 AV = RR 4ZRR 2と定義し、 AVは 1よりも十分に 大きいことを考慮すれば、 入力経路間の短絡時における差動増幅器 0 P 1の出力電圧 VOUT 1は (式 5) で表される。
V0UT 1 =V01 +AVXV0FF 1- (式 5)
またスィッチ SW2が導通状態であるため、 コンデンサ C 1は出力電 圧 VOUT 1の電圧まで充電される。 そしてスィツチ SW2が非接続と されてもその電圧は保持される。
次に差電圧増幅時の動作について説明する。 差電圧増幅時には、 スィ ツチ SW 1、 SW2が非導通状態とされ、 スィッチ SW4、 SW5が導 通状態とされる。 またスィ ツチ SW3はバイアス電圧端子 VRと減算回 路部 3の出力とを接続する。 200
11 ノード N 5には (式 5) で求めた電圧 VOUT 1が保持されている。 このとき、ノード N 6には抵抗器 R 5、R 6による分圧電圧が印加され、 その電圧値は (式 6) で表される。
(VOUT 2 -VOUT 1) XR 6/ (RR 5 +RR 6) +VOU T 1… (式 6) - 差動増幅器 0 P 2の非反転入力端子にはバイァス電圧 V 01が印加さ れるため、 差動増幅器 0 P 2の入力オフセッ ト電圧 VOFF 2を考慮す ると (式 7 ) が成立する。
V01 +VOF F 2 = (VOUT 2 -VOUT 1 ) xR R 6 / (R 5 +RR 6 ) + V 0 U T 1… (式 7 )
RR 5 =RR 6であるため、 (式 7) を整理すると (式 8) が得られ る o
VOUT 2 = 2 V01 -VOUT l + 2 xVOFF 2- (式 8) (式 8) の VOUT 1に (式 5) を代入すると、 (式 9) が得られる VOUT 2 =V01 -AVxVOFF l + 2 xVOFF 2- (式 9) スイッチ SW4、 SW5が導通状態のため、 ノード N 1、 N 2にはそ れそれ入力電圧 V I N l、 VI N 2が印加される。 またバイアス電圧端 子 VRには差動増幅器 OP 2の出力電圧 VOUT 2が印加される。 よつ て差動増幅器 OP 1の差電圧増幅時における出力電圧 VOUT 1 Aは、 (式 3 ) と同様にして得られ、 (式 1 0) のようになる。
(VOUT 2 -VI N 1 ) XRR 1/ (RR 1 +RR 3) +VOF F 1 +V I N 1二 (VOUT 1 A-V I N 2) XRR 2/ (RR 2 +RR 4 ) + V I N 2 - (式 10 )
RR 1 =RR 2、 RR 3 = R 4の関係を用いて (式 3) を整理し、 増幅率 AVを用いると (式 1 1) が得られる。
VOUT l A = VOUT 2 +AVx (V I N 1 -V I N 2) + ( A V + 1) xVOFF 1··· (式 1 1)
(式 1 1 ) において増幅率 A V>> 1であるため、 ( AV+ 1 ) を A Vと見なせる。 また (式 1 1)の VOUT 2に (式 9) を代入すると (式 12 ) が得られる。
VOUT 1 A = VO 1 +AVX (V I N 1 -V I N2) + 2 x VO F F 2… (式 12 )
よって (式 1 2 ) より、 増幅率 A Vによって A V倍される差動増幅器 0 P 1の入力オフセヅ ト電圧 VO F F 1の影響が排除されることが分か る。 ここで、 差動増幅器 0 P 2の入力オフセッ ト電圧 VO F F 2には増 幅率 AV (A Vには 1 00などの値が用いられる場合がある) が乗じら れていないことから、 入力オフセヅ ト電圧 VO F F 2の項 (2 XVOF F 2 ) の影響は他項と比して小さいため無視できる。 よって、 (式 1 3 ) が求まる。
VOUT 1 A = VO 1 +AVX (VI N 1 -VI N2) … (式 13) そして (式 1 3) で求まる差動増幅器 OP 1の差電圧増幅時の出力電 圧 VO U T 1 Aは、 差電圧増幅回路部出力端子 0 T 1を介して出力され る。 すなわち、 バイアス電圧入力端子 VOに印加されたバイアス電圧 V 01により調整されたバイアス点をもち、 入力オフセッ ト電圧 V 0 F F 1の影響を受けずに、 入力電圧 V I N 1、 V I N 2の電圧差を増幅率 A V倍した出力電圧 VOUT 1 Aが出力される。
これにより、 差動増幅器 0 P 1の入力オフセッ ト電圧値 VO F F 1を キャンセルすることが可能となる。 よって入力オフセッ ト電圧が A V倍 されてしまうことにより、 差電圧増幅回路において差動増幅が可能な入 力電圧可能範囲が狭まることがなく、 測定精度の低下を防止することが できる。 また増幅率 A V倍をより高く設定することが可能となる。
またこれにより、 差動増幅器 0 P 1の入力オフセッ ト電圧 VO F F 1 が温度により変動する場合にも、 その変動に追従して入力オフセッ ト電 圧値 VOFF 1をキャンセルすることが可能となる。 よって従来の補正 計算による電圧値の測定方法と比して、 精度が向上した電圧測定が可能 となるため、 より正確な電池残量の測定をすることができる。
またこれにより、 従来技術と比した場合、 入力オフセッ ト電圧 V〇 F F 1の影響を取り除く補正計算を差電圧測定のたびに MP Uで行う必要 がなくなる。 よって、 制御を簡素化することができると共に、 差電圧測 定に伴う電流消費を低下させることができる。 また、 入力オフセッ ト電 圧 VO F F 1を MP Uに記憶させる必要がなくなるため、 高精度な測定 環境下で入力オフセヅ ト電圧 VO F F 1を算出し MP Uに記憶させる試 験等が不要となる。そのため試験装置を簡素化することができると共に、 試験を低価格化することができる。
ここで、 差電圧増幅時の動作の期間中に、 入力経路間の短絡動作を規 定の周期をもって行うことが可能である。 すなわちコンデンサ C 1に保 持される差動増幅器 OP 1の出力電圧 VOUT 1を定期的に更新するこ とが可能である。
これにより、 定期的に入力オフセッ ト電圧 VOFF 1の更新をするこ とができ、 温度等による経時的なオフセッ トの変動に追従して入力オフ セヅ ト電圧値 VO FF 1をキャンセルすることが可能となる。 よって従 来の補正計算により求められた電圧値と比して、 より精度が向上した電 圧値を測定することが可能となる。
なお入力経路間の短絡時において、 スィッチ SW4、 SW5が非導通 状態とされることにより、 差電圧増幅回路部 1を外部回路から切り離し た上で入力オフセッ ト電圧 VO F F 1の計測を行うことができる。
第 2実施形態を第 2図を用いて説明する。 第 2図の差電圧増幅回路部 1 Bは、 第 1実施形態の差電圧増幅回路部 1に加えて、 電圧保持部 2の コンデンサ C 1と減算回路部 3の抵抗器 R 6との間に接続される、 バッ ファアンプ BA 1を備える。 ここで入力経路間の短絡時および差電圧増 幅時の動作は第 1実施形態と同様のため、 詳細な説明は省略する。
差電圧増幅時において、 コンデンサ C 1に保持されている出力電圧 V 0 U T 1が、バッファアンプ B A 1を介して減算回路部 3へ入力される。 減算回路部 3において、 抵抗器 R 5、 R 6を介して流れる電流は、 バッ ファアンプ: B A 1が供給することとなり、 コンデンサ C 1から供給され ることはない。よってコンデンサ C 1の保持電圧は一定値が維持される。 一方、 バッファアンプ B A 1が備えられていない場合には、 差電圧増 幅時の動作期間中に、コンデンサ C 1から抵抗器 R 6に放電が行われる。 このときコンデンサ C 1の保持電圧が低下し、 差動増幅器 OP 2の出力 に誤差が生じるため、 高精度な出力電圧 VOUT 1 Aが得られない。 ま た前記の問題を避けるため、 コンデンサ C 1の容量を大きくすると、 コ ンデンサ C 1の回路占有面積が増加する等の問題が発生する。
よってバッファアンプ BA 1を備えることにより、 電圧保持部 2のコ ンデンサ C 1の容量の大きさにかかわらず電圧保持部 2の保持電圧を一 定に保つことが可能となる。 よって、 より高精度な出力電圧 VO U T 1 Aを得ることができるようになる。 また、 電圧保持部 2のコンデンサ C 1の容量をより小さくすることができるため、 コンデンサ C 1の回路占 有面積を減少させることが可能となる。
第 3実施形態を第 3図を用いて説明する。 第 3図の差電圧増幅回路部 1 Cは、 第 2実施形態の差電圧増幅回路部 1 Bに加えて、 スィッチ SW 3とバイァス電圧端子 VRとの間に接続される、 バッファアンプ B A 2 を備える。 またバイアス電圧入力端子 VOには抵抗器 R 8、 R 9が接続 されており、 バイァス電圧入力端子 V 0に与えられるバイアス電圧 V 0 1は抵抗器 R 8、 R 9の分圧である。 ここで差電圧増幅回路部 1 Cの動 作は第 1実施形態と同様のため、 詳細な説明は省略する。
入力経路間の短絡時にはバイァス電圧 VO 1が、 バッファアンプ B A 2およびバイアス電圧端子 VRを介して抵抗器 R 3へ印加される。 従つ て、 抵抗器 R l、 R 3を介して流れる電流は、 ノ ソファアンプ BA2が 供給することとなる。よってバイアス電圧 VO 1は一定値が維持される。 一方、 バッファアンプ B A 2が備えられていない場合には、 抵抗器 R 1や R 3への電流により、 分圧電圧であるバイアス電圧 VO 1が変化し てしまう。 その結果、 高精度な出力電圧 VOUT 1 Aが得られないとい う問題が発生する。
よってバッファアンプ BA2を備えることにより、 抵抗器 R 1や R 3 に流れる電流がバイァス電圧入力端子 VOに流れることはない。よって、 バイアス電圧 V 01を変化させることがなくなることにより、 高精度な 差電圧測定の結果を得ることができるようになる。 また、 外部オフセッ ト電圧 VO 1を抵抗分圧の分圧点から発生させる回路構成にすること等 が可能となり、 外部オフセッ ト電圧 VO 1の発生方法を自由に設定する ことができる。
第 4実施形態を第 4図を用いて説明する。 第 4図の差電圧増幅回路部 1 Dは、 第 3実施形態の差電圧増幅回路部 1 Cに加えて、 バイアス電圧 入力端子 VOと抵抗器 R 7との間に接続されるスィ ツチ SW 6を備える, ここで差電圧増幅回路部 1 Dの動作は第 1実施形態における差電圧増幅 回路部 1と同様のため、 詳細な説明は省略する。
入力経路間の短絡時にはスィッチ SW6は非導通状態とされ、 バイァ ス電圧 VO 1が、 スイ ッチ SW3を介してバッファアンプ B A 2の非反 転入力端子へ印加される。 また差電圧増幅時にはスィ ツチ SW 6は導通 状態とされ、 スィ ツチ S W 3はバッファアンプ B A 2の非反転入力端子 と減算回路部 3の出力とを接続するため、 バイアス電圧 V01が、 スィ ツチ S W 6を介して差動増幅器 0 P 2の非反入力転端子へ印加される。 一方、 スイッチ SW6が備えられていない場合には、 入力経路間の短 絡時にはバイァス電圧 VO 1がバヅファアンプ B A 2と差動増幅器◦ P 2の両者に印加され、 差電圧増幅時にはバイァス電圧 VO 1が差動増幅 器 OP 2のみに印加されることとなり、 短絡時と差電圧増幅時とでバイ ァス電圧入力端子 VOに接続される端子数が異なり、 入出力される電流 量が異なることとなる。 このため、 バイアス電圧 V 01が変化してしま い、高精度な出力電圧 VO U T 1 Aが得られないという問題が発生する。 よってスィッチ SW 6を備えることにより、 入力経路間の短絡時には バイアス電圧 V 01がバッファアンプ B A 2のみに与えられ、 差電圧増 幅時にはバイアス電圧 VO 1が差動増幅器 OP 2のみに与えられること で、 短絡時と増幅時とで接続端子数を一致させることにより、 入出力さ れる電流の差を小さくする。 よってバイァス電圧 VO 1の変動を抑える ことが可能となり、 高精度な出力電圧 VOUT 1 Aを得ることができる ようになる。 また、 バイアス電圧 VO 1を抵抗分圧の分圧点から発生さ せる回路構成にすること等が可能となり、 バイアス電圧 V 01の発生方 法を自由に設定することができる。
なおバッファアンプ BA 1から抵抗器 R 6への経路に、 入力経路間の 短絡時には導通状態、 差電圧増幅時には非道通状態とされるスィ ツチ S W 7を備えることが可能である。 これにより、 入力経路間の短絡時にお いて、 スィツチ SW6から差動増幅器 OP 2の非反転入力端子までの経 路がフローティング状態とされることを防止する事ができる。
第 5実施形態を第 5図を用いて説明する。 第 5図の差電圧増幅回路部 1 Eは、 第 4実施形態の差電圧増幅回路部 1 Dに加えて、 入力端子 I N 1と抵抗器 R 1との間に接続されるバッファアンプ B A 3および入力端 子 I N 2と抵抗器 R 2との間に接続されるバッファアンプ BA4を備え る。 また、 ノード N 1はスイッチ S W 1を介して接地電圧 V s sに接続 され、 ノード N 2はスィッチ SW8を介して接地電圧 V s sに接続され る。 ここで差電圧増幅回路部 1 Eの動作は第 1実施形態における差電圧 増幅回路部 1と同様のため、 詳細な説明は省略する。
入力経路間の短絡時にはスィッチ SW4、 SW5、 SW6が非導通状 態とされ、 スィッチ SW1、 SW2、 SW8が導通状態とされる。 また スィッチ SW3はバイァス電圧端子 VRとバイァス電圧入力端子 VOと を接続する。 この時スィッチ SW1、 SW8の導通により、 バッファァ ンプ BA3、 B A 4を介して抵抗器 R 1、 R 2が接地電圧 V s sに接続 される。
差電圧増幅時にはスィツチ SW4、 SW5、SW6が導通状態とされ、 スィッチ SW 1、 SW2、 SW8が非導通状態とされる。 またスイッチ S W3は、 バッファアンプ B A 2の非反転入力端子と減算回路部 3の出 力とを接続する。 この時、 抵抗器 R l、 R 2を介して流れる電流は、 パ ヅファアンプ B A 3、 B A 4が供給することとなるため、 入力電圧 V I N 1、 V I N 2は一定値が維持される。 一方、 バッファアンプ B A 3、 B A 4が備えられていない場合には、 抵抗器 R 1や R 2に電流が流れた ときに、 入力電圧 V I N 1、 V I N2が変化してしまう。 その結果、 高 精度な出力電圧 V O U T 1 Aが得られないという問題が発生する。 よつ てバッファアンプ B A 3、 B A 4を備えることにより、 高精度な差電圧 測定の結果を得ることができるようになる。
第 6実施形態を第 6図を用いて説明する。 第 6図は、 本発明に係る差 電圧増幅回路部 1を備えた二次電池充電器 6を示す回路図である。 二次 電池充電器 6は差電圧増幅回路部 1、 入力端子 I N 1および I N 2、 バ ィァス電圧入力端子 V O、 差電圧増幅回路部出力端子◦ T 1、 センス抵 抗 1 0 2に加えて、 充電回路 5、 端子 P 1乃至 P 4を有する。 ここで差 電圧増幅回路部 1の動作は第 1実施形態と同様のため、 詳細な説明は省 略する。
二次電池 B T 1を備える電池パック 7は端子 P 1、 P 2を介して二次 電池充電器 6に接続される。 また、 端子 P 3、 P 4には A Cアダプタ等 の電源 (不図示) が接続される。 そして二次電池充電器 6によって電池 パック 7は充電され、 充電時における差電圧測定の結果を差電圧増幅回 路部 1によって得ることができる。
これにより、 差電圧増幅回路部 1によって高精度な差電圧測定の結果 を得ることができるため、 二次電池充電器 6は高精度な充放電電流を測 定できる。 よって、 より正確な電池残量の測定をすることができる。 尚、 本発明は前記実施形態に限定されるものではなく、 本発明の趣旨 を逸脱しない範囲内で種々の改良、 変形が可能であることは言うまでも ない。 本発明の使用範囲は二次電池パック、 二次電池充電器に限らず、 微小な電圧を測定する必要がある機器に使用可能であることは言うまで もない。 産業上の利用可能性
以上の説明から明らかなように本発明によれば、 差動増幅器の入カオ フセッ ト電圧をキャンセルすることにより、 入力電圧可能範囲が狭まる ことを防止し、 M P U等による補正計算を不要とすると共に、 温度変化 による影響が少なく高精度な差電圧の検出が可能な差電圧増幅回路を提 供することが可能となる

Claims

請 求 の 範 囲
1 . 第 1差動増幅器を備える差電圧増幅回路において、
第 1入力端子から第 1差動増幅器への第 1入力経路および第 2入力端 子から第 1差動増幅器への第 2入力経路の入力経路間を短絡する第 1ス ィツチ部と、
入力絰路間の短絡時に、 前記第 1差動増幅器から出力される短絡出力 電圧を保持する電圧保持部と、
短絡出力電圧の保持に際して、 前記第 1差動増幅器の出力端子と前記 電圧保持部とを接続する第 2スィツチ部と、
前記電圧保持部に保持されている短絡出力電圧と第 1基準電圧とを減 算する減算回路部と、
前記第 1差動増幅器の入力電圧のバイァス点を設定するバイアス電圧 端子に、 入力経路間の短絡時には前記第 1基準電圧を供給し、 差電圧増 幅時には前記減算回路部の出力を第 2基準電圧として供給する第 3スィ ツチ部と
を備えること特徴とする差電圧増幅回路。
2 . 前記第 1入力端子に接続される第 1抵抗器と、
前記第 2入力端子に接続される第 2抵抗器と、
前記バイァス電圧端子に接続される第 3抵抗器と、
前記第 1差動増幅器の出力端子に接続される第 4抵抗器とを備え、 前記第 1抵抗器と前記第 3抵抗器との接続点が前記第 1差動増幅器の 非反転入力端子へ接続され、 前記第 2抵抗器と前記第 4抵抗器との接続 点が前記第 1差動増幅器の反転入力端子へ接続され、
前記第 1抵抗器と前記第 2抵抗器との抵抗値および前記第 3抵抗器と 前記第 4抵抗器との抵抗値が等しいこと特徴とする請求項 1に記載の差 電圧増幅回路。
3 . 前記減算回路部は、
第 2差動増幅器と、 前記第 2差動増幅器の出力端子に接続される第 5抵抗器と、
前記電圧保持部に接続される第 6抵抗器とを備え、
前記第 5抵抗器と前記第 6抵抗器との接続点が前記第 2差動増幅器の 反転入力端子へ接続され、 前記第 1基準電圧が前記第 2差動増幅器の非 反転入力端子へ入力され、
前記第 5抵抗器と前記第 6抵抗器との抵抗値が等しいこと特徴とする 請求項 1に記載の差電圧増幅回路。
4 . 前記第 1差動増幅器の入力経路間の短絡は、 規定の周期ごとに行 われることを特徴とする請求項 1乃至請求項 3の少なく とも何れか 1項 に記載の差電圧増幅回路。
5 . 前記電圧保持部はコンデンサを備えて構成されること特徴とする 請求項 1乃至請求項 3の少なくとも何れか 1項に記載の差電圧増幅回路,
6 . 前記第 1入力経路のうち前記第 1入力端子から前記第 1スィッチ 部に至る経路、 または前記第 2入力経路のうち前記第 2入力端子から前 記第 1スィツチ部に至る経路の少なく とも何れか一方に入力スィ ツチ部 を備え、
前記入力スィ ッチ部は、 差電圧増幅時には接続状態とされ、 入力経路 間の短絡時には非接続状態とされること特徴とする請求項 1乃至請求項 3の少なくとも何れか 1項に記載の差電圧増幅回路。
7 . 前記第 3スィツチ部から前記第 3抵抗器への経路に第 1バッファ アンプを備えることを特徴とする請求項 2に記載の差電圧増幅回路。
8 . 前記第 1入力端子から前記第 1抵抗器への経路に第 2バッファァ ンプを備え、 前記第 2入力端子から前記第 2抵抗器への経路に第 3バッ ファアンプを備えることを特徴とする請求項 2に記載の差電圧増幅回路 ( 9 . 前記電圧保持部から前記第 6抵抗器への経路に第 4バッファアン プを備えることを特徴とする請求項 3に記載の差電圧増幅回路。
1 0 . 前記第 1基準電圧が前記第 2差動増幅器の非反転入力端子へ入 力される経路に第 4スィツチ部を備え、
前記第 4スィ ッチ部は、 差電圧増幅時には接続状態とされ、 入力経路 間の短絡時には非接続状態とされること特徴とする請求項 7に記載の差 電圧増幅回路。
1 1 . 充放電電流を検出するセンス部と、
請求項 1乃至 1 0の少なく とも何れか 1項に記載の差電圧増幅回路と を備え、
前記差電圧増幅器は、 充放電電流に応じて前記センス部より出力され る差電圧を増幅することを特徴とする二次電池パック。
1 2 . 充放電電流を検出するセンス部と、
請求項 1乃至 1 0の少なく とも何れか 1項に記載の差電圧増幅回路と を備え、
前記差電圧増幅器は、 充放電電流に応じて前記センス部より出力され る差電圧を増幅することを特徴とする二次電池充電器。
1 3 . 差動増幅器を備える差電圧増幅回路において、
前記差動増幅器への 2つの入力経路間が短絡された場合の、 前記差動 増幅器からの短絡出力電圧を保持する電圧保持部と、
前記差動増幅器の入力電圧のバイァス点を設定するバイァス電圧設定 部とを備え、
前記バイァス電圧設定部は、 入力経路間の短絡時には第 1基準電圧を 設定し、 差電圧増幅時には前記電圧保持部に保持されている短絡出力電 圧と前記第 1基準電圧との差分電圧を設定することを特徴とする差電圧 増幅回路。
PCT/JP2003/004929 2003-04-17 2003-04-17 差電圧増幅回路 WO2004093311A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004570904A JPWO2004093311A1 (ja) 2003-04-17 2003-04-17 差電圧増幅回路
PCT/JP2003/004929 WO2004093311A1 (ja) 2003-04-17 2003-04-17 差電圧増幅回路
TW092108941A TWI241764B (en) 2003-04-17 2003-04-17 Differential voltage amplifier circuit
US11/088,938 US7084700B2 (en) 2003-04-17 2005-03-25 Differential voltage amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004929 WO2004093311A1 (ja) 2003-04-17 2003-04-17 差電圧増幅回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/088,938 Continuation US7084700B2 (en) 2003-04-17 2005-03-25 Differential voltage amplifier circuit

Publications (1)

Publication Number Publication Date
WO2004093311A1 true WO2004093311A1 (ja) 2004-10-28

Family

ID=33193255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004929 WO2004093311A1 (ja) 2003-04-17 2003-04-17 差電圧増幅回路

Country Status (3)

Country Link
JP (1) JPWO2004093311A1 (ja)
TW (1) TWI241764B (ja)
WO (1) WO2004093311A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820029B2 (en) * 2006-09-19 2010-10-26 National Yunlin University Of Science And Technology pH measurement system and method for reducing time-drift effects thereof
JP2012239166A (ja) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法
JP2015122750A (ja) * 2013-03-15 2015-07-02 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021145315A (ja) * 2020-03-13 2021-09-24 株式会社豊田中央研究所 演算増幅器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203008A (ja) * 1984-03-28 1985-10-14 Hitachi Ltd 増幅回路
JPH0497608A (ja) * 1990-08-15 1992-03-30 Nec Corp 演算増幅回路
JPH0818353A (ja) * 1994-07-05 1996-01-19 Fuji Electric Co Ltd 演算増幅回路
JP2000004129A (ja) * 1998-06-17 2000-01-07 Toshiba Ave Co Ltd Cmosアナログ回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60203008A (ja) * 1984-03-28 1985-10-14 Hitachi Ltd 増幅回路
JPH0497608A (ja) * 1990-08-15 1992-03-30 Nec Corp 演算増幅回路
JPH0818353A (ja) * 1994-07-05 1996-01-19 Fuji Electric Co Ltd 演算増幅回路
JP2000004129A (ja) * 1998-06-17 2000-01-07 Toshiba Ave Co Ltd Cmosアナログ回路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7820029B2 (en) * 2006-09-19 2010-10-26 National Yunlin University Of Science And Technology pH measurement system and method for reducing time-drift effects thereof
JP2012239166A (ja) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd 半導体装置及びその駆動方法
US9614094B2 (en) 2011-04-29 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer and method for driving the same
JP2015122750A (ja) * 2013-03-15 2015-07-02 株式会社半導体エネルギー研究所 半導体装置
US9245650B2 (en) 2013-03-15 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9391598B2 (en) 2013-03-15 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TW200423534A (en) 2004-11-01
JPWO2004093311A1 (ja) 2006-07-06
TWI241764B (en) 2005-10-11

Similar Documents

Publication Publication Date Title
US7084700B2 (en) Differential voltage amplifier circuit
US8305035B2 (en) Energy storage device
US9217777B2 (en) Current sense circuit for measuring a charge level of a battery
WO2007007765A1 (ja) 電流電圧変換回路、それを用いた消費電力検出回路および電子機器
JP5407684B2 (ja) 充電制御装置
KR20100027370A (ko) 안정도 보상 회로 및 이를 포함하는 dc-dc 컨버터
JP4642413B2 (ja) 電流検出装置
WO2004093311A1 (ja) 差電圧増幅回路
JP2001305166A (ja) 電流検出回路
JP3204091B2 (ja) 充放電電流測定装置
WO2022209797A1 (ja) センサー出力補償回路
JP2013085382A (ja) スイッチングレギュレータとその制御方法
JP2013167546A (ja) 電流測定回路
JP2660889B2 (ja) 電源電流測定装置
JPH07260859A (ja) 出力抵抗可変の電源装置
JP2005134245A (ja) 電流検出回路
WO2023189429A1 (ja) 温度センサ、およびセンサ装置
JP2002374131A (ja) 演算増幅器オフセット電圧自動校正回路
US11353483B2 (en) Sensor with compensation circuit
US20240097632A1 (en) Integrated circuit and semiconductor device
JP7051529B2 (ja) 充放電制御回路及びこれを備えたバッテリ装置
US10371723B2 (en) Current sensor for biomedical measurements
JP3343853B2 (ja) 電池残量測定装置
JP2014044111A (ja) 二次電池装置及び充電状態計測方法
JP3310864B2 (ja) 直流安定化電源の出力電流測定回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 2004570904

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11088938

Country of ref document: US