WO2004092823A1 - 光源装置、照明装置および投写型表示装置 - Google Patents

光源装置、照明装置および投写型表示装置 Download PDF

Info

Publication number
WO2004092823A1
WO2004092823A1 PCT/JP2004/005422 JP2004005422W WO2004092823A1 WO 2004092823 A1 WO2004092823 A1 WO 2004092823A1 JP 2004005422 W JP2004005422 W JP 2004005422W WO 2004092823 A1 WO2004092823 A1 WO 2004092823A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
concave mirror
mirror
light source
source device
Prior art date
Application number
PCT/JP2004/005422
Other languages
English (en)
French (fr)
Inventor
Yusaku Shimaoka
Shu Namba
Kazunori Tanabe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005505456A priority Critical patent/JP4251499B2/ja
Priority to US10/553,489 priority patent/US7213944B2/en
Priority to CN2004800103233A priority patent/CN1809785B/zh
Publication of WO2004092823A1 publication Critical patent/WO2004092823A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs

Definitions

  • the present invention relates to a light source device having a light generating means and a concave mirror, a lighting device, and a projection display device.
  • a multi-lamp illumination system using a plurality of lamps capable of improving the light output as a projection display device has been receiving attention.
  • FIG. 11 shows a conventional multi-lamp type optical system provided with two light source devices including a lamp and a concave mirror.
  • the light emitted from the light source device 1 is incident on the hollow aperture dintegrator 2 with a glass column or mirror attached.In the case of a glass column, total internal reflection inside the glass, and in the case of the mirror-attached type, Repeat the reflection. Due to the reflection inside the rod integrator 2, a light beam having a uniform in-plane brightness can be formed on the exit aperture surface of the rod integrator 2.
  • the relay The light beam with high in-plane uniformity is formed on the light modulation element 4 for displaying images in the method 3 so that the image formed on the screen by the projection lens is an image with high brightness uniformity in the screen.
  • FIG. 12 a basic configuration of a light source device as a first conventional example is shown in FIG. 12 (for example, see Japanese Patent No. 2543332). Japanese Patent Publication No. 60, Patent No. 3115134).
  • the light emitted from the light transmitting surfaces 5a and 5b of the light emitting portion 5 of the lamp is focused on a focal point X by a first surface mirror 6 having an elliptical or parabolic reflecting surface shape.
  • the light emitted from the light transmitting surfaces 5a and 5b of the light emitting portion 5 of the lamp, which cannot be condensed by the first concave mirror 6, is directed toward the reflecting surface of the first concave mirror 6. Further, after being reflected by the second concave mirror 7 composed of, for example, a spherical mirror, the light is returned to the vicinity of the lamp light-emitting unit 5 again, and is focused on the focal point X by the first concave mirror 6.
  • the first concave mirror 6 and the optical axis of the first concave mirror 6, that is, the maximum diameter larger than the outermost diameter in the direction perpendicular to the straight line connecting the light emission center 5c of the light emitting portion 5 of the lamp and the focal point X are shown.
  • a second concave mirror 7 having an outer diameter is used with its reflecting surfaces facing each other, and as much light as possible is radiated from the light emitting section 5 of the lamp and collected by the first concave mirror 6.
  • FIG. 15 shows the basic configuration of a light source device as a second conventional example (see, for example, Japanese Patent No. 2730782 and Japanese Patent No. 335003).
  • a light source 10 of a lamp is arranged at a focal point Y of an ellipsoidal mirror or a parabolic reflector as a first turning mirror 8, and the first concave mirror 8 is a light source of the lamp 10. The angle is set so that all the light emitted from the transmission surface 10a can be reflected.
  • Such a light source device has a light transmitting surface 1 of the light source 10.
  • the light radiated from 0a and reflected by the spherical mirror as the second concave mirror 9 is returned near the focal point of the first concave mirror 8, radiated from the light transmitting surface 10b, and collected directly by the first concave mirror 8.
  • This is the same as the first conventional example in that the light emitted from the light emitting portion 10 of the lamp is taken in as much as possible together with the emitted light.
  • the opening of the second concave mirror 7 is in the vertical plane with respect to the optical axis direction of the first concave mirror 6, whereas in the second conventional example, the second concave mirror 9 Is different in that the arrangement is horizontal to the optical axis of the first concave mirror 8, that is, the linear direction connecting the light emission center 10c of the light emitting portion 10 of the lamp and the focal point Y.
  • a conventional multi-lamp optical system has a configuration in which light emitted from a plurality of light source devices is incident on a rod integrator 2, which is a uniform illumination means, as shown in FIG.
  • a rod integrator 2 which is a uniform illumination means, as shown in FIG.
  • transmissive / reflective liquid crystal or DMD Digital Micromirror Device
  • DMD Digital Micromirror Device
  • the relay lens 3 also has an aperture Dintegrator 2 that has an imaging relationship with the relay lens 3 according to the size of the exit side aperture 2b.
  • the light emission angle range is uniquely determined.
  • the rod integrator 2 has the same emission angle range and incident angle range C when the size of the emission side opening and the size of the incidence side opening are equal, and the size of the emission side opening and the size of the incidence side opening. If the size is different, the angle of incidence will be in accordance with the size of the entrance aperture derived from the Hertzholm-Lagrange relationship.
  • the image is not projected on the screen via the grater 2, the relay lens 3, the light modulator 4, and the projection lens.
  • the incidence angle range of the aperture dit- integrator 2 is limited, so that the incidence of the concave mirror 1 and the rod integrator 2 Since the distance from the side opening 2a is increased and the size of the light spot formed by the concave mirror 1 is increased, the amount of light that can be captured by the opening of the mouth integrator 2 is reduced.
  • the light source device of the first conventional example shown in FIG. 12 also has the optical axis of the first concave mirror, that is, the light emitting portion 5 of the lamp, similarly to the light source device in the conventional multi-lamp optical system shown in FIG. It has a shape that is rotationally symmetric with respect to the straight line connecting the light emission center 5c and the focal point X, and when a similar multi-lamp optical system is constructed, the amount of light that can be captured through the aperture of the rod integrator 2 is small. There was a problem that it would decrease. In addition, there is a problem that the outer shape becomes large.
  • the light source device of the second conventional example shown in FIG. 15 is rotationally asymmetric with respect to the optical axis of the first concave mirror, that is, a straight line connecting the light emitting center 10 c of the light emitting portion 10 of the lamp and the focal point Y. It has a shape and the outer shape can be made smaller than in the first conventional example.
  • the light beam formed by the condensing can also be rotationally asymmetric.
  • the first concave mirror 8 corresponding to the first concave mirror 6 and the rod integrator 2 are also used. The distance from the entrance side opening 2a can be made shorter.
  • the second conventional light source device shown in FIG. 15 has the following problems.
  • the reflecting surface on which the second concave mirror 9 is formed reflects all light emitted from the light transmitting surface 10a as shown in FIG. Not all of the reflected light is condensed by the first concave mirror 8, but a part of the reflected light is radiated to the outside, hindering the light collection efficiency.
  • the second concave mirror 9 in order to collect all the reflected light from the second concave mirror 9 to the focal point Y, it is necessary to extend the reflection surface of the first concave mirror 8 by the area 150, Therefore, there is a trade-off between the light collection efficiency and the size of the light source device.
  • the light emitted from the lamp 5 and directly reaching the first concave mirror 6 in the upper half is converted into the second conventional light source device of FIG. 15. Then, the second concave mirror 9 captures. At this time, the light reflected by the second concave mirror 9 passes again near the light emitting portion 10 of the lamp and reaches the first concave mirror 8.
  • a metal-halide lamp or a mercury lamp is used as a lamp, a large amount of light that tries to pass through the light-emitting part again is lost due to light absorption and light scattering by the light-emitting substance and the material that constitutes the lamp. Has the problem that the amount of luminous flux emitted to the focal point Y decreases as a whole of the light source device, and the light use efficiency decreases.
  • the present invention has been made in order to solve the problems of these conventional examples.
  • a light source device that does not reduce the light use efficiency even if the light source device is downsized, and a light source device having the light source device is more improved. It is an object of the present invention to provide an illumination device and a projection display device which can be reduced in size with efficiency. Disclosure of the invention
  • a first aspect of the present invention provides a light generating unit, and a first concave mirror that collects a part of light emitted from the light generating unit.
  • a second concave mirror that collects another part of the light emitted from the light generating means and that is not collected by the first concave mirror, and reflects the other light to the first concave mirror,
  • the reflecting surface of the first concave mirror and the reflecting surface of the second concave mirror are a reference axis formed by connecting the light emitting source of the light generating means and the focal point of the light condensed by the first concave mirror.
  • each has a non-rotationally symmetric shape, and the distance between the reflection surface of the second concave mirror and the light emitting source is determined by the distance between the light emitting source and the focal point of the light collected by the first concave mirror.
  • a light source device, which is shorter than the distance and a part of the reflection surface of the first concave mirror is formed around the reference axis.
  • a second invention is the light source device according to the first invention, wherein the first concave mirror has one or a plurality of quadratic surfaces as the reflection surface.
  • the quadratic curved surface of the first concave mirror is a part of an elliptical curved surface
  • a fourth invention is the light source device according to the first invention, wherein the second concave mirror has one or more quadratic curved surfaces as the reflection surface.
  • the quadratic curved surface of the second concave mirror is a part of a spherical surface
  • a fourth light source device wherein the center of the spherical surface substantially coincides with the light emitting source of the light generating means.
  • the reflecting surface of the first concave mirror is located closer to the light emitting source than the reflecting surface of the second concave mirror,
  • the light-condensing angle of the first concave mirror is bisected by a plane including the reference axis, and the larger angle is G; the smaller angle is] 3; Assuming that the maximum angle of light emitted to the second concave mirror is ⁇ and the converging angle of the second concave mirror is ⁇ ,
  • the first light source device of the present invention that satisfies the following relationship.
  • the reflecting surface of the second concave mirror is located closer to the light emitting source than the reflecting surface of the first concave mirror
  • the converging angle of the first concave mirror is bisected by a plane including the reference axis, the larger angle is Q; the smaller angle is / 3, from the light generating means, the first concave mirror and the second
  • be the maximum angle of light radiated to the concave mirror, and 0 be the converging angle of the second concave mirror.
  • the first light source device of the present invention that satisfies the following relationship.
  • the second concave mirror is the first concave mirror.
  • the light generating means includes:
  • a lamp having a tube housing the light emitting source
  • the tube has a tube portion that transmits radiation light from the light emitting source, and a pair of end portions protruding from the tube portion,
  • the light source device according to the first aspect of the present invention, wherein the pair of ends is provided around the reference axis.
  • the tube portion may include a first facing surface facing the reflecting surface of the first concave mirror, a reflecting surface of the first concave mirror, and a reflecting surface of the second concave mirror. And a second facing surface facing the surface,
  • a ninth aspect of the light source device according to the present invention wherein the part of the reflection surface of the first concave mirror faces at least the second facing surface.
  • the eleventh invention is a light source device according to the first invention
  • a lens unit that is disposed at a position optically coupled to a focal point of light condensed by the first concave mirror of the light source device, and that converts light emitted from the light source device into substantially parallel light. , Lighting equipment.
  • a twelfth aspect of the present invention is the lighting device according to the eleventh aspect, wherein the lens means is a rod integrator.
  • a thirteenth aspect of the present invention is the lighting device according to the eleventh aspect, wherein said lens means is a lens array.
  • the light source device includes a plurality of light source devices, each of which is arranged such that each of the reference axes coincides in the same plane.
  • An illumination device further comprising a light guide unit for guiding light emitted from the plurality of light source devices to the lens unit.
  • the plurality of light source devices are each It is arranged so that the reference axis intersects at one point in space
  • the lens means is provided at a position corresponding to the one point.
  • 11 is a lighting device of the present invention.
  • a sixteenth aspect of the present invention is the lighting device according to the fifteenth aspect of the present invention, wherein the plurality of light source devices are arranged so that the second concave mirrors face each other.
  • a seventeenth aspect of the present invention is the lighting device according to the fifteenth aspect of the present invention, wherein the plurality of light source devices are arranged so that the first concave mirrors face each other.
  • an eighteenth aspect of the present invention provides an illumination device according to the eleventh aspect, and a light modulation element disposed at a position optically coupled to the illumination device and modulating light to form an optical image.
  • FIG. 1 is a cross-sectional view schematically illustrating the light source device according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration of the light source device according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of the lighting device according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of the lighting device according to the first embodiment of the present invention.
  • FIG. 5 is a schematic configuration of a projection display according to the first embodiment of the present invention.
  • FIG. 1 A first figure.
  • FIG. 6 is a cross-sectional view illustrating a schematic configuration and an operation of the light source device according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration and an operation of the light source device according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a schematic configuration of a lighting device according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of a lighting device according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of a projection display according to the second embodiment of the present invention. '
  • FIG. 11 is a cross-sectional view of an optical system using a plurality of conventional light source devices.
  • C FIG. 12 is a cross-sectional view of a light source device using a plurality of concave mirrors shown as a first conventional example. .
  • FIG. 13 is an explanatory diagram of an effect of an optical system using a mirror in a combining section of a plurality of conventional light source devices.
  • FIG. 14 is an explanatory view of the effect of the optical system using the mirror in the combining section of the conventional plurality of light source devices in the first conventional example.
  • FIG. 15 is a cross-sectional view of a light source device using a plurality of concave mirrors shown as a second conventional example.
  • FIG. 16 is a cross-sectional view of an optical system using a plurality of conventional light source devices.
  • C FIG. 17 is a cross-sectional view illustrating a schematic configuration of a lighting device according to a second embodiment of the present invention. .
  • FIG. 18 is a cross-sectional view illustrating a schematic configuration of a lighting device according to the third embodiment of the present invention.
  • FIG. 19 is a cross-sectional view illustrating a schematic configuration of a lighting device according to the third embodiment of the present invention.
  • FIG. 1 shows a schematic configuration of the light source device according to the first embodiment.
  • This light source device includes a lamp (an example of a lamp and light generating means of the present invention) 11, an elliptical mirror (an example of a first polygonal mirror of the present invention) 12, and a spherical mirror (a second example of the present invention).
  • a lamp an example of a lamp and light generating means of the present invention
  • an elliptical mirror an example of a first polygonal mirror of the present invention
  • a spherical mirror a second example of the present invention.
  • Example of concave mirror Example of concave mirror
  • the lamp 11 is positioned corresponding to a focal position, which will be described later, and emits light, and a light-transmitting surface 11 1 a and 1 11 1 which has a built-in light source and transmits light therefrom to the outside.
  • b having a substantially spherical tube portion 5422
  • a lamp light emitting portion 111 and a pair of end portions 111c and 111d including a light emitting source electrode and having a shape protruding from the lamp light emitting portion 111.
  • the lamp bulb and the end portions 111c and 111d of the lamp light emitting portion 111 are integrally formed of the same tube.
  • a xenon lamp whose light emitting portion shape as a light emitting source is very close to a point light source and capable of outputting a large light
  • a metal hallow lamp ⁇ which has excellent luminous efficiency, and a lamp light emitting portion when lit
  • Mercury lamps and halogen lamps with an ultra-high pressure inside the arc tube can be used.
  • One of the two focal points of the reflecting surface of the ellipsoidal mirror 1 2 is arranged so as to coincide with the light source of the lamp emitting section 1 1 1 1, and thus is emitted from the light transmitting surface 1 1 1 b and the ellipse
  • the light condensed by the plane mirror 12 is condensed on the exit aperture side of the ellipsoidal mirror 12 and forms a light spot at the other focal point.
  • the elliptical mirror 12 is It has a shape that is non-rotationally symmetric with respect to the optical axis 14, that is, the reference axis connecting the focal positions F1 and F2.
  • a part of the reflecting surface of the elliptical mirror 12 extends around the optical axis 14 shown in FIG. 1, and a part of the reflecting surface extends to the rear of the lamp 111 so that the light transmitting surface 1 It is formed to face 11a.
  • the spherical mirror 13 also has a non-rotationally symmetric shape with respect to the optical axis 14, and its reflecting surface faces the light transmitting surface 111 a of the lamp light emitting part 111, and radiates therefrom. It covers the area where the light can reach and does not have the elliptical mirror 12. In the figure, the center of the reflecting surface formed by the spherical mirror 13 coincides with the focal position F1. In short, the elliptical mirror 1 2 can collect the light radiated from the light transmitting surface 1 1 1b and the light transmitting surface 1 1 1a.
  • Reference numeral 13 has a configuration capable of reflecting light emitted from the light transmitting surface 11a.
  • the distance from the focal position F 1 of the ellipsoidal mirror 1 2 to the reflection surface of the spherical mirror 13, that is, the radius of curvature R of the spherical mirror 13 is determined by the focal point of the ellipsoidal mirror 12 with the lamp light emitting portion 1 1 1. From the distance, the distance to the focal position F2 of the elliptical mirror 12 which is a condensing position where the light flux emitted from the lamp light emitting unit 111 is condensed by the elliptical mirror 12 and forms a spot, that is, It is shorter than the distance L between the focal points of the ellipsoidal mirrors 12. Further, the optical axis 14 is arranged so as to penetrate the lamp 11, and the ends 11 c and 11 d are formed around the optical axis 14.
  • Fig. 2 shows the three-dimensional schematic shape of the light source device.
  • the cross-sectional view in FIG. 1 is based on the A- straight line in FIG.
  • the ⁇ - ⁇ 'straight line is located in the same plane as the optical axis 14 and bisects the light source device from directly above.
  • the operation of the light source device shown in FIG. 1 will be described.
  • the light reflected by the ellipsoidal mirror 1 2 is condensed to the exit aperture side of the ellipsoidal mirror 1 2, and emitted by the ellipsoidal mirror 1 2
  • a light spot is formed at a focal position F2 existing on the opening side.
  • the luminous flux emitted from the light emitting source of the lamp light emitting portion 111 is formed from the light emitted from the light transmitting surface 111b and the light transmitting surface 111a.
  • the light radiated from the light transmitting surface 1 1 1 a and reflected by the spherical mirror 13 returns to the vicinity of the light emitting portion 1 1 1 of the lamp 11 again. Returned, after passing near the lamp light emitting part 1 1 1, it is reflected by the ellipsoidal mirror 1 2 and condensed with the direct light from the lamp light emitting part 1 1 1 to the second focal point F 2 of the elliptical mirror 1 2 .
  • the elliptical mirror 12 is 5422
  • It is configured to be rotationally asymmetrical with respect to the optical axis 14 to reflect the light directly radiated from the lamp 11 to form a rotationally asymmetrical luminous flux.
  • the light not reflected by the mirror 12 is reflected back to the ellipsoidal mirror 12 by the spherical mirror 13 so that even a rotationally asymmetric light flux has a light flux close to a rotationally symmetric light flux.
  • the elliptical mirror 12 is formed so as to be rotationally asymmetrical with respect to the optical axis 14, and the reflecting surface is formed so as to extend behind the lamp light emitting unit 11 1, so that the light reflected by the spherical mirror 13 is reflected.
  • the spherical mirror 13 is moved to the light transmission surface 1 as in the second conventional light source device in FIG. Since it is not necessary to reflect all the emitted light from 1a, it is necessary to prevent the generation of reflected light that is not collected and emitted to the outside, and to change the substantial size of the ellipsoidal mirror 12. And a sufficient luminous flux can be obtained.
  • the radius of curvature R of the spherical mirror 13 is shorter than the focal length of the ellipsoidal mirror 12 so that the maximum luminous flux can be obtained. This has the effect that the size of the light source device can be kept to a minimum. This is for the following reason.
  • the spherical mirror 13 is retracted until its reflection surface substantially coincides with the focal position F2, which is the convergence point of the light beam emitted from the elliptical mirror 12.
  • the focal position F2 is the focal position of the light beam emitted from the elliptical mirror 12.
  • Figures 6 and 7 show cross-sectional views on the vertical plane where the angle at which the spherical mirror 13 takes in the radiated light from the lamp 111 is maximized. That is, this cross-sectional view is a cross-section in which the desired angle of the spherical mirror 13 from the light source 111 is maximized.
  • the maximum angle of the reflected light is ⁇ and the range of the converging angle of the spherical mirror is 0, as shown in FIG.
  • the spherical mirror 13 does not substantially block the light reflected by the elliptical mirror 12,
  • the reflection surface of the ellipsoidal mirror 13 is outside the reflection light of the ellipsoidal mirror 12, that is, when the reflection surface of the ellipsoidal mirror 13 is located closer to the light source 111 than the reflection surface of the spherical mirror 13,
  • the reflection surface defined by the angle is the radiation from the light transmission surface 1 1 1b.
  • the reflecting surface which reflects the emitted light and which is defined by the angle i3 reflects the light from the light transmitting surface 11a.
  • the spherical mirror 13 is formed on or near the surface of the bulb of the lamp light emitting unit 11 1 to the extent that the light reflected by the ellipsoidal mirror 12 is hardly blocked.
  • Equation 1 when the reflecting surface of the spherical mirror 13 is located closer to the light source 1 1 1 than the reflecting surface of the elliptical mirror 12, (Equation 1)
  • the spherical mirror 13 only needs to collect a small amount of light that cannot be covered by the ellipsoidal mirror 12 out of the light from the light transmitting surface 1 1 1 a, and therefore requires only a small size. Therefore, the light emitted from the light source 1 1 1 is directed to the ellipsoidal mirror 1 2 without loss.
  • the light focused on the second focal point F 2 is in the maximum state, directly goes to the spherical mirror 13, is reflected, passes near the light source 1 11, goes to the elliptical mirror 12, The amount of light that causes a large loss before being reflected by the elliptical mirror 12 focused on the two focal points can be relatively small.
  • the above equation (1) indicates a condition in which the reflecting surface of the ellipsoidal mirror 12 has non-rotational symmetry with respect to the optical axis 14.
  • Equation (3) is based on the assumption that the spherical mirror 13 is outside the reflecting surface of the elliptical mirror 12 as shown in FIG. This shows the range in which the angle of 13 can be kept small.
  • the size of the light source device is larger than that in the example of FIG.
  • the luminous flux density emitted from the lamp light emitting portion 111 incident on the reflecting surface is reduced, and the heat resistance and the like required for the reflecting surface can be reduced.
  • Equation (5) shows that, as shown in FIG. 7, the spherical mirror 13 is located at or near the lamp tube spherical surface substantially coincident with the light transmitting surface 111a, and is disposed in the light beam formed by the elliptical mirror 12.
  • the angle range of the spherical mirror 13 Since the size of the light source device does not substantially change, it is desirable to provide an angle range that emphasizes higher efficiency.
  • the light emitted from the lamp which is radiated almost rotationally symmetrically with respect to the optical axis 14, can be efficiently emitted from the elliptical mirror 12 as a light flux that is non-rotationally symmetrical with respect to the optical axis 14. Becomes possible.
  • Fig. 1 shows the case where one spherical mirror 13 is used.
  • an ellipsoidal mirror having a shape cut out from the ellipsoidal mirror that is rotationally symmetric with respect to the optical axis 14 by several points In the case of an ellipsoidal mirror having a shape cut out from the ellipsoidal mirror that is rotationally symmetric with respect to the optical axis 14 by several points, however, by using a plurality of spherical mirrors, it becomes possible to collect the radiated light from the lamp 11 reaching an area that cannot be covered by the elliptical mirror, even if the elliptical mirror has a complicated aperture shape. The light use efficiency of the light source device can be improved.
  • the light source device 100 of the present embodiment a mirror 1, a glass dent or a mirror 101 bonded to a glass column or a mirror, and optical means 102 such as a lens are provided.
  • a mirror 1 a glass dent or a mirror 101 bonded to a glass column or a mirror
  • optical means 102 such as a lens
  • a lighting device using an integrator with glass pillars or mirrors attached instead of a lighting device using an integrator with glass pillars or mirrors attached, a lighting device using a lens array 103 in which a plurality of lenses are arranged two-dimensionally is used. Further, as shown in FIG. 5, if a field lens 104, a light modulating element 105, and a projection lens 106 are additionally provided in the above-described lighting device 100, The projection display device according to the embodiment can be obtained.
  • the light modulation element 105 may be a reflection type light valve, a transmission type light valve, a mirror panel whose reflection direction can be changed by a micromirror arranged in an array, or a light modulation element such as an optical writing method. Can be used it can.
  • a lens is illustrated as an optical means for converting the light emitted from the light source device into illumination light, but not only a lens but also a mirror or a prism, or a plurality of lenses.
  • the optical system may include an optical element obtained by combining a plurality of lenses.
  • FIG. 5 illustrates a configuration including only one transmission light valve as a light modulation element, but a configuration including a plurality of light modulation elements may be used.
  • the light that cannot be condensed by the elliptical mirror having the non-rotationally symmetric shape with respect to the optical axis is provided with the lamp 11, the elliptical mirror 12, and the spherical mirror 13.
  • the spherical mirror By arranging the spherical mirror at a position where light can be collected, a highly efficient and compact light source device can be obtained.
  • the use of a lamp having the same output makes it brighter, and the same brightness can be made by using a lamp with a lower output, thereby reducing power consumption.
  • An illumination device and a projection display device that can be held down can be provided.
  • the elliptical mirror 12 is used as the first concave mirror.
  • a reflecting mirror having a quadratic curved surface may be used, and a parabolic mirror or a combination of a plurality of elliptical mirrors may be used. May be used.
  • the first concave mirror is not limited to a quadratic curved surface, and may be a plurality of flat or curved surfaces such as a Fresnel mirror.
  • a spherical mirror is used as the second concave mirror.
  • any reflective mirror with a quadratic surface that can efficiently reflect the lamp radiation to the vicinity of the lamp light emitting part For example, an elliptical mirror or a reflecting mirror having a shape obtained by combining a plurality of spherical mirrors may be used.
  • the present invention is not limited to a quadratic curved surface, but may be a Fresnel mirror or the like formed from a plurality of flat or curved surfaces.
  • FIG. 8 and 10 show schematic configurations of the illumination device and the projection display device according to the present embodiment, respectively.
  • the light source device 100 is the same as in the first embodiment, and a description thereof will not be repeated.
  • the multi-lamp type optical system as shown in FIG. 11 uses a plurality of light source devices and emits light beams from the plurality of light source devices so as to perform brighter illumination. The light was synthesized and incident on one rod integrator / lens optical system for illumination.
  • the angle of collection of the ellipsoidal mirror is made as large as possible so that more lamp radiation can be collected by the ellipsoidal mirror, and the focal point F 1 of the ellipsoidal mirror 12 (substantially one with the light source of the lamp) It is necessary to minimize the distance between the focal position F 2 (which becomes the convergence point of the light beam) and the focal position F 2 to make the light spot formed on the entrance side aperture 2 a of the rod integrator 2 small.
  • a pair of light source devices are arranged so that their reflection surfaces face each other, and a plurality of light sources
  • a mirror 200 provided at an angle such that the light flux emitted from the device 1 is guided to the entrance opening side opening 2a of the aperture dilator 2 is arranged.
  • the mirror 200 Due to the physical interference of 200, a light beam which is not reflected to the entrance side aperture 2a is generated, so that a region (indicated by a dotted line in the figure) substantially not used by the mirror 1 is generated.
  • the ellipsoidal mirror since the ellipsoidal mirror has no interference part, it is possible to arrange an ellipsoidal mirror rotationally symmetric with respect to the optical axis, but the light incident on the mirror interference part is not used. .
  • FIG. 14 is a diagram showing a configuration of a multi-lamp optical system using a light source device having a conventional configuration as shown in FIG. 12 as a light source device of the optical system of FIG.
  • a light source device having a conventional configuration as shown in FIG. 12 as a light source device of the optical system of FIG.
  • an area indicated by a dotted line in the drawing
  • the first concave mirror 6 is not substantially used.
  • the luminous flux further passes through the vicinity of the light emitting portion after being reflected by the second concave mirror 7 and is incident on an area of the first concave mirror 6 which is substantially unused. Therefore, there is a problem that the light use efficiency is further reduced. 2004/005422
  • a spherical mirror 9 that generates light loss up to a light beam that can be directly captured by the ellipsoidal mirror 8 is used. After being reflected by the light source, the light passes through the vicinity of the light emitting portion and is reflected by the elliptical mirror 8, so that the light beam emitted from the light source device could not be used with the maximum efficiency.
  • FIG. 1 shows a lighting device of a multi-lamp optical system using the light source device according to Embodiment 1 of the present invention.
  • the light source devices 100 are arranged such that their optical axes 14 coincide in the same plane, and are aligned on the same line in the drawing.
  • the smaller one of the reflecting surfaces of the elliptical mirror 12 is directed to a portion of the mirror 200 which causes interference and is not used, and the spherical mirror 1 is located at the unused portion.
  • the mirror 200 corresponds to the light guide means of the present invention.
  • the radiated light from the lamp 11 incident on the spherical mirror 13 is returned so as to pass near the lamp light emitting unit 11 1, and then the mirror 2 10 ⁇ rod integrator 10 10 Since the light is emitted toward the mirror 200 through the reflecting surface of the ellipsoidal mirror 12 that can be used in 1, it becomes a luminous flux without loss even after the rod integrator 101, and is emitted from the light source device. It is possible to improve the light use efficiency of the emitted light flux.
  • the spherical mirror 13 includes a light emitting center at which the desired angle from the light emitting center (corresponding to the focal position F 1) is substantially maximum.
  • the position where the reflecting surface having the smallest angle (corresponding to the angle shown in Figs. 6 and 7) among the converging angles of the ellipsoidal mirror 12 corresponding to the optical axis 14 is located at two positions.
  • the lamp 11 when a metal halide lamp, a mercury lamp, or the like is used as the lamp 11, loss due to light absorption and light scattering by the luminescent material and the material constituting the lamp 11 occurs. Although not all of the light flux reflected by the spherical mirror 13, the light that has passed near the light emitter without being absorbed or scattered reaches the elliptical mirror 12. Furthermore, since the elliptical mirror 12 has a reflection surface formed non-rotationally symmetric with respect to the optical axis 14 and extending over the optical axis 14, the light-collecting efficiency as a light source device is improved. However, by using the radiation light from the lamp 11, which has not been available until now, the light use efficiency as a lighting device can be improved.
  • the light beams emitted from the lamp light emitting unit 111 more light beams can be obtained by direct focusing by the elliptical mirror 12 which is the shortest path, and the remaining light beams are also spherical mirrors 13 Since the light is condensed through the light, the light condensing efficiency can be extremely increased.
  • the radius of curvature R of the spherical mirror 13 is set to be shorter than the focal length of the elliptical mirror 12 to reduce the size of the light source device 100 itself.
  • the size of the lighting device can be reduced.
  • the focal length of the ellipsoidal mirror 13 can be shortened, so that a smaller light spot is formed with respect to the entrance side opening end 101 a of the aperture denterator 101. As a result, the light collection efficiency of the rod integrator 101 and later can be increased.
  • the light source device 100 is oriented such that the smaller reflecting surface of the ellipsoidal mirror 12 is used for a portion that does not use the mirror 200 where interference occurs.
  • the spherical mirror 1 is arranged so as to be positioned is shown, as shown in FIG. 17, the respective light source devices 100 are arranged so that the positional relationship between the elliptical mirror 12 and the spherical mirror 13 is reversed.
  • FIG. 8 shows an example of an illuminating device using a rod integrator 101 in which glass columns or mirrors are adhered. As shown in FIG. 9, a lens array in which a plurality of lenses are two-dimensionally arranged is shown. A lighting device using 103 may be used.
  • the projection according to the present embodiment A type display device can be obtained.
  • the reflection type light pulp, transmission la Itobarubu, c which can be used as the light modulation element of optical writing type
  • a lens is illustrated as an optical means for converting into illumination light, but not only a lens but also a mirror or a prism or a plurality of lenses may be used.
  • An optical system including the combined optical elements may be used.
  • FIGS. 5 and 8 to 10 illustrate a configuration including only one transmission type light valve as a light modulation element, but a configuration including a plurality of light modulation elements may be used. Further, although not shown, a configuration using a prism, a filter, a mirror, or the like that can perform color separation and color synthesis may be used.
  • an elliptical surface having a non-rotationally symmetric shape with respect to an optical axis.
  • FIG. 18 shows a configuration of a lighting device according to Embodiment 3 of the present invention.
  • a rod integrator 101, a relay lens 102, and an optical modulator 105 are the same as those in the second embodiment. That is, in the conventional illumination device shown in FIG. 11, the light source device has a configuration using the light source device of the first embodiment.
  • the pair of light source devices 100 is arranged such that the spherical mirrors 13 face each other, and each light source device 100 An optical axis 14 of 0 crosses at one point in the space, and a rod integrator 101 is arranged at the crossing point.
  • the lighting device of the present embodiment has the same optical operation as the conventional example of FIG. 11, uses the light source device of Embodiment 1 as a pair of light source devices 100, and emits light from the light source device 100.
  • the luminous flux reaches the incident side open end 1 Ola of the rod integrator 101 directly.
  • the optical axis 14 of each light source device is oblique as in the conventional example, there remains a problem that it is difficult to adjust the optical axis alignment and the like.
  • the rod integrator 101 it is possible to cause the rod integrator 101 to emit all light beams that are rotationally asymmetric with respect to the optical axis 14.
  • the rod integrator 101 similarly to the conventional example shown in FIG. 16, by using a light source device having a small inter-focal distance, the light spot formed in the aperture denterator 101 is reduced while the lamp 11 The converging angle of the radiated light from the light source is close to that of the conventional rotationally symmetric light source device shown in FIG. 11, so that high light utilization efficiency can be obtained as a whole optical system.
  • FIG. 18 shows a configuration in which the pair of light source devices 100 is arranged so that the spherical mirrors 13 face each other.
  • FIG. It is good also as a structure arrange
  • those that are substantially parallel to the optical axis of the rod integrator 101 should be concentrated and incident on the entrance side open end 101a.
  • the substantial amount of luminous flux after the rod integrator 101 can be increased.
  • the holding of the spherical mirror 13 and the arrangement of members such as an adjusting jig become easy.
  • the elliptical mirror is used as the first concave mirror.
  • Any reflecting mirror having a quadratic curved surface may be used, and a parabolic mirror or a reflecting mirror having a shape obtained by combining a plurality of elliptical mirrors may be used.
  • a spherical mirror was used as the second concave mirror
  • a reflective mirror having a quadratic curved surface capable of efficiently reflecting the lamp radiation to the vicinity of the lamp light-emitting portion may be used.
  • An elliptical mirror or a plurality of spherical mirrors may be used.
  • a reflecting mirror having a combined shape may be used.
  • the lamp 11 is an example of the lamp and the light generating means of the present invention, and the lamp of the lamp light-emitting section 111 is omitted.
  • the end is an example of a tube portion of the present invention.
  • the end portions 111b and 111d are an example of a pair of end portions of the present invention, and the light transmitting surface 111 of the lamp light emitting portion 111.
  • 1a is an example of the first opposing surface of the present invention
  • the light transmitting surface 111b is an example of the second opposing surface of the present invention.
  • the light generating means of the present invention does not need to be realized as a lamp having a tube as in each embodiment, and may be realized by another light source such as a light emitting diode. Also, in the case of a lamp, the lamp does not need to be constituted by a tube portion and an end portion. It may have a shape. In short, the light generating means of the present invention is not limited by its specific configuration and shape as long as its light emitting source can form the focal point of the first concave mirror and the reference axis of the present invention. ,. Industrial applicability
  • the present invention it is possible to realize high light use efficiency. It is possible to provide a light source device in which light use efficiency does not decrease even if the light source device is downsized, and by providing this light source device, a lighting device and a projection display device with high light use efficiency can be provided. It is possible to provide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

光発生手段と集光手段である凹面鏡に対して、小型化と高い光利用効率の両立が可能であり、さらに光発生手段と凹面鏡の光軸に対して非対称性を有する光束を高効率で射出可能な光源装置を提供する。 ランプ11と、ランプ11の光透過面111bから放射される一部の光を集光する楕円面鏡12と、光透過面111aから放射される、楕円面鏡12に集光されない他の一部の光を集光し、楕円面鏡12へ反射する球面鏡13とを備え、楕円面鏡12の反射面および球面鏡13の反射面は、ランプ11の発光源に対応する焦点位置F1と楕円面鏡12により集光される光の焦点位置F2とを結んでなる光軸14に対して、それぞれ非回転対称な形状を有し、球面鏡13の反射面とランプ11の発光源との距離は、発光源と楕円面鏡12により集光される光の焦点との距離より短く、楕円面鏡12の反射面の一部は、光軸14の周囲に形成されている、光源装置。

Description

明 細 書 光源装置、 照明装置およぴ投写型表示装置 技術分野
本発明は、 光発生手段および凹面鏡を有する光源装置と、 照明装置 と、 投写型表示装置とに関する。 背景技術
近年、 大画面投写型映像機器として各種光変調素子を用いた投写型 表示装置が注目されている。 これら大画面表示を行う場合、 表示され た映像の明るさが最も重要な項目として挙げられる。
そこで、 投写型表示装置としての光出力を向上させることが可能な 複数個のランプを用いた多灯式照明系が注目されている。 また、 明る さは、 ランプから放射される光束をできる限り損失を少なく、 つまり 効率よく映像表示デバイスである光変調素子を照明することが重要で あり、 そのためランプ放射光を集光する光源装置の高効率化が望まれ る。
ここで、 ランプおよび凹面鏡で構成される光源装置を 2個設けた従 来の多灯式光学系を図 1 1に示す。 光源装置 1から放射された光は、 ガラス柱またはミラーを張り合わせた中空の口ッドィンテグレータ 2 に入射され、 ガラス柱の場合はガラス内部での全反射、 ミラー張り合 わせタイプの場合は反射を繰り返す。 このロッドィンテグレータ 2の 内部での反射によりロッドインテグレータ 2の出射開口面に面内の明 るさが均一な光束を作ることができる。 さらに、 この後のリレーレン ズ 3で面内均一性の高い光束を、 映像表示させる光変調素子 4上に結 像させることによって、 投写レンズでスクリーン上に結像させた映像 が、 画面内の明るさ均一性の高い映像として表示することができる。 次に、 従来のランプ放射光を集光する光源装置の高効率化に関して 、 第 1の従来例である光源装置の基本的な構成を図 1 2に示す (例え ば、 特許 2 5 4 3 2 6 0号公報、 特許 3 1 5 1 7 3 4号公報参照) 。 これらの光源装置では、 ランプの発光部 5の光透過面 5 aおよび 5 b から放射された光を、 楕円面または放物面の反射面形状を持つ第 1の 面鏡 6で焦点 Xに集光し、 第 1の凹面鏡 6で集光できなかったラン プの発光部 5の光透過面 5 a、 5 bからの放射光を、 その反射面を第 1の凹面鏡 6の反射面側に向けた、 例えば球面鏡からなる第 2の凹面 鏡 7で反射後、 再びランプ発光部 5付近に戻し、 第 1の凹面鏡 6で焦 点 Xに集光させる。
このように、 第 1の凹面鏡 6と、 第 1の凹面鏡 6の光軸、 すなわち ランプの発光部 5の発光中心 5 cと焦点 Xとを結ぶ直線に対して垂直 方向の最外径より大きな最外径を持つ第 2の凹面鏡 7とを互いに反射 面を向き合わせた状態で使用し、 ランプの発光部 5から放射される光 をできるだけ多く取り込み第 1の凹面鏡 6で集光することを行ってい る。 '
また、 第 2の従来例である光源装置の基本的な構成を図 1 5に示す (例えば、 特許 2 7 3 0 7 8 2号公報、 特許 3 3 5 0 0 0 3号公報参 照) 。 この光源装置も、 第 1の回面鏡 8としての楕円面鏡または放物 面反射鏡の焦点 Yにランプの光源 1 0を配置し、 第 1の凹面鏡 8は、 ランプの光源 1 0の光透過面 1 0 aからの放射光を全て反射できる角 度で設けられている。 このような光源装置は、 光源 1 0の光透過面 1 0 aから放射され、 第 2の凹面鏡 9としての球面鏡で反射された光が 第 1の凹面鏡 8の焦点付近に戻され、 光透過面 1 0 bから放射され、 第 1の凹面鏡 8により直接集光される光とともに、 ランプの発光部 1 0から放射される光をできるだけ多く取り込もうとする点では第 1の 従来例と一致している。
しかしながら、 第 1の従来例では第 1の凹面鏡 6の光軸方向に対し て第 2の凹面鏡 7の開口が垂直面内であるのに対して、 第 2の従来例 では、 第 2の凹面鏡 9の配置が第 1の凹面鏡 8の光軸、 すなわちラン プの発光部 1 0の発光中心 1 0 cと焦点 Yとを結ぶ直線方向に対して 水平方向である点で異なっている。
従来の多灯式光学系は、 図 1 1に示すように複数個の光源装置から 放射された光を均一照明手段であるロッ ドインテグレータ 2に入射す る構成である。 しかしながら、 映像を表示させる透過 ·反射型の液晶 や D M D (デジタルマイクロミラーデバイス) といわれる光変調素子 には、 光を実質的に変調できる光束の入射角度範囲と映像を表示させ ることが可能な映像表示有効領域とがある。 このため、 結像光学基本 式であるヘルツホルム一ラグランジュの関係から、 リ レーレンズ 3に よって、 これと結像関係を有する口ッドィンテグレータ 2もその出射 側開口 2 bの大きさに応じた光の出射角度範囲が一意的に決められて しまう。
このとき、 ロッドィンテグレータ 2は出射側開口の大きさと入射側 開口の大きさが等しい場合は出射角度範囲と入射角度範囲は同等 Cあ り、 また、 出射側開口の大きさと入射側開口の大きさが異なる場合は ヘルツホルム一ラグランジュの関係から導かれる入射開口の大きさに 応じた入射角度範囲となり、 この角度範囲内の光束しかロッドインテ グレータ 2、 リ レーレンズ 3、 光変調素子 4、 投写レンズを介してス クリーン上に投写されない。
これより、 ランプ放射光をより多く集光できる単一の凹面鏡 1を有 する光源装置の場合、 口ッドィンテグレータ 2の入射角度範囲の制限 があるため、 凹面鏡 1とロッドインテグレータ 2の入射側開口 2 aと の距離が遠くなり凹面鏡 1で形成される光スポットサイズが大きくな るので、 口ッドインテグレータ 2の開口で取り込める光量が減少する という問題があった。
図 1 2に示す第 1の従来例の光源装置もまた、 図 1 1に示す従来の 多灯式光学系における光源装置と同様、 第 1の凹面鏡の光軸、 すなわ ちランプの発光部 5の発光中心 5 cと焦点 Xとを結ぶ直線に対して回 転対称となる形状を有しており、 同様の多灯式光学系を構成した場合 に、 ロッ ドインテグレータ 2の開口で取り込める光量が減少するとい う問題があった。 また、 その外形が大きくなつてしまうという問題が あった。
一方、 図 1 5に示す第 2の従来例の光源装置は、 第 1の凹面鏡の光 軸、 すなわちランプの発光部 1 0の発光中心 1 0 cと焦点 Yとを結ぶ 直線において回転非対称となる形状を有しており、 外形を第 1の従来 例よりも小さくすることができる。 また、 集光により形成される光束 も回転非対称とすることができ、 図 1 1の多灯式光学系においても、 第 1の凹面鏡 6に対応する第 1の凹面鏡 8とロッドィンテグレータ 2 の入射側開口 2 aとの距離をより短くとることができる。
しかしながら、 図 1 5に示す第 2の従来例の光源装置には、 以下の ような課題があった。 第 2の凹面鏡 9が形成される反射面は、 図 1 5 に示すように、 光透過面 1 0 aから放射される光を全て反射するが、 この反射光は全てが第 1の凹面鏡 8によって集光されるわけではなく 、 その一部が外部へ放射されており、 集光効率の妨げとなっていた。 一方、 第 2の凹面鏡 9による全ての反射光を焦点 Yへ集光させるに は、 第 1の凹面鏡 8の反射面を、 領域 1 5 0の分だけ拡張する必要が あるが、 これは光源装置の大型化を招くこととなっており、 集光効率 と光源装置の大型化とがトレードオフの関係となってしまう。
また、 図 1 2の第 1の従来例の光源装置ではランプ 5から放射され 、 上半分の第 1の凹面鏡 6へ直接届いていた光を、 図 1 5の第 2の従 来例の光源装置では、 第 2の凹面鏡 9が取り込むこととなる。 このと き、 第 2の凹面鏡 9で反射された光は再度ランプの発光部 1 0付近を 通過し第 1の凹面鏡 8に到達する。 ランプとしてメタルハラィ ドラン プゃ水銀灯等を用いている場合、 発光物質およびランプを構成してい る材料による光吸収、 光散乱等で、 再度発光部を通過しょうとする光 が、 多く損失するため、 結局は光源装置全体として、 焦点 Yへ出射さ れる光束量が低下し、 光利用効率が低下するという問題点を有してい た。
本発明は、 これらの従来例の問題点を解決するためになされたもの で、 光源装置の小型化を行っても光利用効率が低下しない光源装置と 、 この光源装置を備えることにより、 より高効率で、 小型化が可能な 照明装置およぴ投写型表示装置とを提供することを目的とする。 発明の開示
上記の目的を達成するために、 第 1の本発明は、 光発生手段と、 前記光発生手段から放射される一部の光を集光する第 1の凹面鏡と 前記光発生手段から放射される、 前記第 1の凹面鏡に集光されない 他の一部の光を集光し、 前記第 1の凹面鏡へ反射する第 2の凹面鏡と を備え、
前記第 1の凹面鏡の反射面おょぴ前記第 2の凹面鏡の反射面は、 前 記光発生手段の発光源と前記第 1の凹面鏡により集光される光の焦点 とを結んでなる基準軸に対して、 それぞれ非回転対称な形状を有し、 前記第 2の凹面鏡の反射面と前記発光源との距離は、 前記発光源と 前記第 1の凹面鏡により集光される光の焦点との距離より短く、 前記第 1の凹面鏡の反射面の一部は、 前記基準軸の周囲に形成され ている、 光源装置である。
また、 第 2の本発明は、 前記第 1の凹面鏡は、 一個又は複数個の二 次曲面を前記反射面として有する、 第 1の本発明の光源装置である。
また、 第 3の本発明は、 前記第 1の凹面鏡の二次曲面は楕円曲面の 一部であって、
前記楕円曲面の焦点のひとつが前記光発生手段の前記発光源に実質 上一致し、 もうひとつが、 前記第 1の凹面鏡により集光される光の焦 点と一致している、 第 2の本発明の光源装置である。
また、 第 4の本発明は、 前記第 2の凹面鏡は、 一個又は複数個の二 次曲面を前記反射面として有する、 第 1の本発明の光源装置である。
また、 第 5の本発明は、 前記第 2の凹面鏡の二次曲面は球面の一部 であって、
前記球面の中心が前記光発生手段の前記発光源に実質上一致してい る、 第 4の本発明の光源装置.である。
また、 第 6の本発明は、 前記第 1の凹面鏡の反射面は、 前記第 2の 凹面鏡の反射面よりも前記発光源寄りに位置しており、 前記第 1の凹面鏡の集光角度を前記基準軸を含む平面により二分し 、 大きいほうの角度を G;、 小さい方の角度を ]3、 前記光発生手段から 前記第 1の凹面鏡およぴ前記第 2の凹面鏡に放射される光の最大角度 を γ、 前記第 2の凹面鏡の集光角度を Θとすると、
(数 1 )
α > β > 0
(数 2 )
α + /3 ≥ 1 8 0 °
(数 3 )
0 < θ ≤ γ— β
の関係を満たす、 第 1の本発明の光源装置である。
また、 第 7の本発明は、 前記第 2の凹面鏡の反射面は、 前記第 1の 凹面鏡の反射面よりも前記発光源寄りに位置しており、
前記第 1の凹面鏡の集光角度を前記基準軸を含む平面により二分し 、 大きいほうの角度を Q;、 小さい方の角度を /3、 前記光発生手段から 前記第 1の凹面鏡および前記第 2の凹面鏡に放射される光の最大角度 を γ、 前記第 2の凹面鏡の集光角度を 0 とすると、
(数 1 )
α > β > 0
(数 2 )
α + ]3 ≥ 1 8 0 °
(数 4 )
0 < Θ ≤ 1 8 0 °
の関係を満たす、 第 1の本発明の光源装置である。
また、 第 8の本発明は、 前記第 2の凹面鏡は、 前記第 1の凹面鏡の 形成する光束内に配置されている、 第 7の本発明の光源装置である。 また、 第 9の本発明は、 前記光発生手段は、
前記発光源を収納する管体を有するランプであって、
前記管体は、 前記発光源からの放射光を透過する管球部と、 前記管 球部から突出した一対の端部とを有し、
前記一対の端部は、 前記基準軸の周囲に設けられている、 第 1の本 発明の光源装置である。
また、 第 1 0の本発明は、 前記管球部は、 前記第 1の凹面鏡の反射 面と対向する第 1の対向面と、 前記第 1の凹面鏡の反射面および前記 第 2の凹面鏡の反射面と対向する第 2の対向面とを有し、
前記第 1の凹面鏡の反射面の前記一部は、 少なくとも前記第 2の対 向面と対向するものである、 第 9の本発明の光源装置である。
また、 第 1 1の本発明は、 第 1の本発明の光源装置と、
前記光源装置の前記第 1の凹面鏡により集光される光の焦点と光学 的に結合する位置に配置され、 前記光源装置から出射される光を実質 上平行光に変換するレンズ手段とを備えた、 照明装置である。
また、 第 1 2の本発明は、 前記レンズ手段はロッドインテグレータ である、 第 1 1の本発明の照明装置である。
また、 第 1 3の本発明は、 前記レンズ手段はレンズアレイである、 第 1 1の本発明の照明装置である。
また、 第 1 4の本発明は、 前記光源装置は複数であって、 それぞれ の前記基準軸が同一平面内で一致するよう配置されており、
前記複数の光源装置から射出された光を前記レンズ手段へ導く導光 手段をさらに備えた、 第 1 1の本発明の照明装置である。
また、 第 1 5の本発明は、 前記複数の光源装置は、 それぞれの前記 基準軸が空間内の一点で交差するように配置されており、
前記レンズ手段は、 前記一点に対応する位置に設けられている、 第
1 1の本発明の照明装置である。
また、 第 1 6の本発明は、 前記複数の光源装置は、 前記第 2の凹面 鏡同士が対向するように配置されている、 第 1 5の本発明の照明装置 である。
また、 第 1 7の本発明は、 前記複数の光源装置は、 前記第 1の凹面 鏡同士が対向するように配置されている、 第 1 5の本発明の照明装置 である。
また、 第 1 8の本発明は、 第 1 1の本発明の照明装置と、 前記照明装置と光学的に結合する位置に配置され、 光を変調して光 学像を形成する光変調素子と、
前記光学像を投写する投写レンズとを備えた、 投写型表示装置であ る。 図面の簡単な説明
図 1は、 本発明の実施の形態 1にかかる光源装置の概略を説明する 断面図である。
図 2は、 本発明の実施の形態 1にかかる光源装置の概略構成を示す 斜視図である。
図 3は、 本発明の実施の形態 1にかかる照明装置の概略構成を示す 断面図である。
図 4は、 本発明の実施の形態 1にかかる照明装置の概略構成を示す 断面図である。
図 5は、 本発明の実施の形態 1にかかる投写型表示装置の概略構成 2
10
を示す断面図である。
図 6は、 本発明の実施の形態 1にかかる光源装置の概略構成と作用 を説明する断面図である。
図 7は、 本発明の実施の形態 1にかかる光源装置の概略構成と作用 を説明する断面図である。
図 8は、 本発明の実施の形態 2にかかる照明装置の概略構成を説明 する断面図である。
図 9は、 本発明の実施の形態 2にかかる照明装置の概略構成を説明 する断面図である。
図 1 0は、 本発明の実施の形態 2にかかる投写型表示装置の概略構 成を示す断面図である。 '
図 1 1は、 従来の複数個の光源装置を用いた光学系の断面図である c 図 1 2は、 第 1の従来例として示した複数個の凹面鏡を用いた光源 装置の断面図である。
図 1 3は、 従来の複数個の光源装置の合成部にミラーを用いた光学 系の効果説明図である。
図 1 4は、 第 1の従来例を従来の複数個の光源装置の合成部にミラ 一を用いた光学系の効果説明図である。
図 1 5は、 第 2の従来例として示した複数個の凹面鏡を用いた光源 装置の断面図である。
図 1 6は、 従来の複数個の光源装置を用いた光学系の断面図である c 図 1 7は、 本発明の実施の形態 2にかかる照明装置の概略構成を説 明する断面図である。
図 1 8は、 本発明の実施の形態 3にかかる照明装置の概略構成を説 明する断面図である。 図 1 9は、 本発明の実施の形態 3にかかる照明装置の概略構成を説 明する断面図である。
(符号の説明)
1 1 ランプ
1 2 楕円面鏡
1 3 球面鏡
14 光軸
1 1 1 ランプ発光部
100 光源装置
101 ロッ ドインテグレータ
F 1 第 1焦点位置
F 2 第 2焦点位置 発明を実施するための最良の形態
以下、 本発明の実施の形態を、 図面を参照して説明する。
(実施の形態 1)
以下、 本発明の実施の形態 1について、 図面を参照しながら説明す る。 図 1に本実施の形態 1にかかる光源装置の概略構成を示す。
この光源装置は、 ランプ (本発明のランプ、 光発生手段の一例) 1 1と、 楕円面鏡 (本発明の第 1の囬面鏡の一例) 1 2と、 球面鏡 (本 発明の第 2の凹面鏡の一例) 1 3で構成される。
ランプ 1 1は、 後述する焦点位置に対応して位置し、 光を発生する 発光源と、 発光源を内蔵し、 そこからの光を外部へ透過させる光透過 面 1 1 1 aおよび 1 1 1 bを有する、 実質上球状の管球部とを有する 5422
12
ランプ発光部 1 1 1 と、 発光源の電極等を含み、 ランプ発光部 1 1 1 から突出した形状を有する一対の端部 1 1 1 cおよび 1 1 1 dとから 構成される。 なお、 ランプ発光部 1 1 1の管球部と端部 1 1 1 cおよ び 1 1 1 dは同一の管体から一体的に構成される。 また、 ランプ 1 1 としては、 発光源となる発光部形状が非常に点光源に近く大光出力が 可能なキセノンランプや、 発光効率が優れているメタルハラィ ドラン プゃ、 点灯時のランプ発光部 (発光管) 内を超高圧にした水銀灯、 お よびハロゲンランプなどを用いることができる。
楕円面鏡 1 2の有する反射面の二つの焦点のうち、 一方はランプ発 光部 1 1 1の発光源と一致するように配置されており、 したがって光 透過面 1 1 1 bから放射され楕円面鏡 1 2により集光された光は楕円 面鏡 1 2の出射開口側へ集光され、 他方の焦点に光のスポッ トを形成 する。 ここでランプ発光部 1 1 1の発光源と一致する焦点の位置を焦 点位置 F 1, 光のスポッ トが形成される焦点の位置を焦点位置 F 2と すると、 楕円面鏡 1 2は、 その光軸 1 4、 すなわち焦点位置 F 1 と F 2とを結ぶ基準軸に対して非回転対称な形状を有している。 さらに楕 円鏡 1 2の反射面の一部は、 図 1に示す光軸 1 4の周囲にわたって存 在し、 さらにその一部は、 ランプ 1 1 1の後方までまわりこんで、 光 透過面 1 1 1 aと対向するように形成されている。
また、 球面鏡 1 3も光軸 1 4に対して非回転対称な形状を有し、 そ の反射面はランプ発光部 1 1 1の光透過面 1 1 1 aと対向し、 そこか らの放射光が到達できる範囲であって、 楕円面鏡 1 2が無い部分を覆 つている。 また図において球面鏡 1 3のなす反射面の中心は、 焦点位 置 F 1 と一致している。 要するに、 楕円面鏡 1 2は光透過面 1 1 1 b およぴ光透過面 1 1 1 aから放射される光を集光可能であり、 球面鏡 1 3は、 光透過面 1 1 1 aから放射される光を反射可能な構成を有し ている。
さらに、 楕円面鏡 1 2の焦点位置 F 1から、 球面鏡 1 3の反射面ま での距離、 すなわち球面鏡 1 3の曲率半径 Rは、 ランプ発光部 1 1 1 のある楕円面鏡 1 2の焦点距離から、 ランプ発光部 1 1 1から出射さ れた光束が楕円面鏡 1 2によって集光されスポットを形成する集光位 置である楕円面鏡 1 2の焦点位置 F 2までの距離、 つまり楕円面鏡 1 2の焦点間距離 Lよりも短くなつている。 また、 光軸 1 4はランプ 1 1を貫くような配置となっており、 端部 1 1 1 cおよび 1 1 1 dは、 この光軸 1 4の周囲に形成される格好となっている。
なお、 光源装置の立体的な概略形状を図 2に示す。 図 1の断面図は 、 図 2の A— 直線によるものである。 この Α— Α' 直線は光軸 1 4と同一平面内に位置し、 光源装置を真上から二分している。
図 1に示す光源装置の作用について説明する。 まず、 ランプ発光部 1 1 1から放射される光束の内、 楕円面鏡 1 2で反射された光は、 楕 円面鏡 1 2の出射開口側へ集光され、 楕円面鏡 1 2の出射開口側に存 在する焦点位置 F 2に光のスポッ トを形成する。 このとき、 ランプ発 光部 1 1 1の,発光源から放射される光束は、 光透過面 1 1 1 bおよび 光透過面 1 1 1 aから放射される光から形成される。
—方、 ランプ発光部 1 1 1から放射された光束の内、 光透過面 1 1 1 aから放射され、 球面鏡 1 3で反射された光は、 再びランプ 1 1の 発光部 1 1 1付近へ戻され、 ランプ発光部 1 1 1付近を通過後、 楕円 面鏡 1 2で反射され、 ランプ発光部 1 1 1からの直接光とともに楕円 面鏡 1 2の第 2焦点 F 2に集光される。
このように、 本実施の形態の光源装置においては、 楕円面鏡 1 2を 5422
14
、 光軸 1 4に対して回転非対称な構成とし、 ランプ 1 1から直接放射 される光を反射して、 回転非対称な光束を形成するようにするととも に、 ランプ 1 1から放射され、 楕円面鏡 1 2で反射されない光を、 球 面鏡 1 3により楕円面鏡 1 2へ再度反射させるようにしており、 回転 非対称な光束においても、 回転対称の光束に近い光束量を確保してい る
さらに、 楕円面鏡 1 2を、 光軸 1 4に対して回転非対称に形成する とともに、 反射面をランプ発光部 1 1 1の背後まで回り込むように形 成して、 球面鏡 1 3が反射する光が放射されるのと同一の透過面から の光をも直接集光するようにしたことにより、 図 1 5の第 2の従来例 の光源装置のように、 球面鏡 1 3が、 光透過面 1 1 1 aからの全ての 放射光を反射する必要がないため、 集光されず外部へ放射される反射 光が生ずることを防ぎ、 楕円面鏡 1 2の実質的な大きさを変更するこ となく、 光束量を十分得られることができる。
さらに、 本実施の形態の光源装置においては、 球面鏡 1 3の曲率半 径 Rを、 楕円面鏡 1 2の焦点間距離 よりも短い構成としたことによ り、 光束量を最大限確保しつつ、 光源装置のサイズを最小に保つこと でできるという効果を与える。 これは以下の理由による。 すなわち、 単に集光効率を高めるためだけであれば、 球面鏡 1 3を、 その反射面 が楕円面鏡 1 2からの出射光束の収束点である焦点位置 F 2と実質上 一致するまで後退させた位置に設け、 さらに球面鏡 1 3の反射面上の 、 焦点位置 F 2に対応する位置に、 集光スポッ トとほぼ実質同一大の 開口を設ければよい。 この場合、 ランプ発光部 1 1 1から出射される ほぼ全ての光を、 球面鏡 1 3と楕円面鏡 1 2とによって集光すること が可能となり、 最大限の集光効率が得られるが、 楕円面鏡 1 2の集光 角度を変化させても、 球面鏡 1 3の曲率半径が一定であるため、 光源 装置全体のサイズが大きくなってしまう。
そのため、 本実施の形態では、 上記のように、 球面鏡 1 3の曲率半 径 Rを、 楕円面鏡の焦点間距離 Lより短くすることにより、 集光効率 の向上と装置の小型化とを両立させることができる。
次に、 この光軸 1 4に対して非回転対称な光源装置において、 光利 用効率が向上し、 かつ球面鏡 1 3のサイズが大きくならない形状を示 した光源装置を実現するための条件を説明する。
図 6, 図 7に、 球面鏡 1 3がランプ 1 1 1からの放射光を取り込む 角度が最大となる垂直面での断面図を示す。 つまり、 この断面図は、 球面鏡 1 3を光源 1 1 1から望む角度が最大となる断面である。 光軸 1 4を含み、 図 2の A— 直線と直交する平面にて二分した 楕円面鏡 1 2の集光角度のうち、 大きい方を角度 α、 小さい方を角度 とし、 ランプ 1 1から放射される光の最大角度を γ、 球面鏡の集光 角度の範囲を 0とするとき、 図 6に示すように、 球面鏡 1 3が楕円面 鏡 1 2で反射される光線をほぼ遮光しない範囲で、 楕円面鏡 1 2の反 射光線の外側にある場合、 すなわち楕円面鏡 1 3の反射面は、 球面鏡 1 3の反射面より光源 1 1 1よりに配置されている場合、
(数 1 )
α > /3 > 0 ( 1 )
(数 2 )
Figure imgf000017_0001
(数 3 )
0 < θ≤ γ— J3 ( 3 )
なお、 角度 により定義される反射面は光透過面 1 1 1 bからの放 射光を反射し、 角度 i3により定義される反射面は光透過面 1 1 1 aか らの光を反射する。
図 7に示すように、 球面鏡 1 3が楕円面鏡 1 2で反射される光線を ほぼ遮光しない範囲で、 ランプ発光部 1 1 1の管球部の表面に、 また は、 その近傍に形成されている場合、 すなわち球面鏡 1 3の反射面が 、 楕円面鏡 1 2の反射面より光源 1 1 1よりに配置されている場合、 (数 1 )
α > β > 0 ( 1 )
(数 2 )
a + i3 ≥ 1 8 0 ° ( 4 )
(数 4 ) ·
0 < 0 ≤ 1 8 0 ° ( 5 )
を満たすことが望ましい。 なお、 上記図 6の条件において、 球面鏡 1 3の曲率半径 R <楕円面鏡 1 2の焦点距離 Lである。
ここで重要な点は が正であることである。 これが、 楕円面鏡 1 2 の反射面がこの断面図 6, 7において、 光軸 1 4の上下両側にまたが つている構成を与える。 さらに、 ランプ 1 1の端部 1 1 1 cをまたい で、 反射面が光透過面 1 1 1 bのみならず光透過面 1 1 1 a とも対向 する構成を与える。 このように楕円面鏡 1 2が光軸 1 4の上下両側に またがり、 反射面が光透過面 1 1 1 bのみならず光透過面 1 1 1 a と も対向することによって、 楕円面鏡 1 2が大きな角度で光源 1 1 1か らの光を直接集光することが可能となる。 球面鏡 1 3は、 光透過面 1 1 1 aからの光のうち、 楕円面鏡 1 2がカバーしきれない、 すこし残 つている光を集めればよいだけとなるので、 小さなサイズで済む。 よ つて、 光源 1 1 1から放射され、 損失することなく楕円面鏡 1 2へ向 かい第 2焦点 F 2に集光される光が最大となる状態であり、 直接球面 鏡 1 3へ向かい、 反射され、 光源 1 1 1近傍を通過して、 楕円面鏡 1 2へ向かい、 第 2焦点に集光される楕円面鏡 1 2で反射されるまでに 多くの損失が発生する光量が比較的少なくて済むことになる。 よって 、 実質的に楕円面鏡 1 2の大きさを変更することなく、 光源装置全体 から出射される光の集光効率が従来例に比べて向上することになる。 上記式 (1 ) は、 楕円面鏡 1 2の反射面が光軸 1 4に対して非回転 対称性を有する条件を示す。
上記式 (2 ) 、 (4 ) の関係が満たされない場合、 球面鏡 1 3で反 射された光は楕円面鏡 1 2の反射面が存在しない領域に到達するため 、 光利用効率を向上することができない。
上記式 (3 ) 、 ( 5 ) は、 球面鏡 1 3が集光できる範囲を示してい る。
また式 (3 ) は、 図 6に示すように、 球面鏡 1 3が楕円面鏡 1 2の 反射面の外側にある場合なので、 ランプ 1 1からの放射光を最大限取 り込める範囲で、 球面鏡 1 3の角度を小さく納めることができる範囲 を示す。
球面鏡 1 3が、 楕円面鏡 1 2の反射面の外側にある場合は、 図 7の 例の、 ランプ 1 1の管球面近傍にある場合よりも光源装置のサイズは 大きくなるが、 球面鏡 1 3の反射面へ入射するランプ発光部 1 1 1か ら出射される光束密度が低下し、 反射面に要求される耐熱性等が軽減 できるという利点がある。
式 (5 ) は、 図 7に示すように、 球面鏡 1 3が光透過面 1 1 1 aと 実質一致するランプ管球面または、 その近傍にあり、 楕円面鏡 1 2の 形成する光束内に配置される場合なので、 球面鏡 1 3の角度範囲によ つて光源装置としての大きさがほぼ変化することがないため、 より高 効率化を重視した角度範囲を設けることが望ましい。
これらの構成であれば、 光軸 1 4に対してほぼ回転対称に放射され るランプ出射光束を、 光軸 1 4に対して非回転対称な光束として効率 良く楕円面鏡 1 2から出射させることが可能となる。
また、 図 1では球面鏡 1 3を 1個用いた場合を示しているが、 光軸 1 4に対して回転対称な形状の楕円面鏡から数力所切り取られた形状 を持つ楕円面鏡の場合、 球面鏡を複数個用いることで、 複雑な開口形 状を有する楕円面鏡であっても、 楕円面鏡で覆えない領域に到達する ランプ 1 1からの放射光を集光することが可能となり、 光源装置の光 利用効率を向上させることができる。
また、 図 3に示すように、 本実施の形態の光源装置 1 0 0と、 ミラ 一や、 ガラス柱またはミラーを張り合わせてなる口ッドィンテグレー タ 1 0 1や、 レンズ等の光学手段 1 0 2を所定の位置に配置すること で、 光源装置 1 0 0から出射された光を所定の略平行光に変換する本 実施の形態にかかる照明装置を得ることができる。
また、 図 4に示すように、 ガラス柱またはミラーを張り合わせた口 ッドインテグレータを用いた照明装置ではなく、 複数のレンズを 2次 元的に配置したレンズアレイ 1 0 3を用いた照明装置であっても良い c さらに、 図 5に示すように、 上記の照明装置 1 0 0に、 フィールド レンズ 1 0 4、 光変調素子 1 0 5、 投写レンズ 1 0 6を追加して設け れば、 本実施の形態にかかる投写型表示装置を得ることができる。
なお、 光変調素子 1 0 5として反射型ライ トバルブ、 透過型ライ ト バルブ、 ァレイ状に配置された微小ミラーによつて反射方向を変化で きるミラーパネルや、 光書き込み方式等の光変調素子を用いることが できる。
さらに、 図 3、 図 4、 図 5では、 光源装置からの放射光を照明光に 変換する光学手段としてレンズを図示したが、 レンズだけでなく、 ミ ラーやプリズムを用いたものや、 または複数個のレンズを組み合わせ た光学要素が含まれた光学系であっても良い。
さらに、 図 5では光変調素子として透過型ライ トバルブを 1つだけ 備えた構成を例示しているが、 複数個の光変調素子を備えた構成であ つても良い。
さらに、 図示していないが、 色分解おょぴ色合成を行うことができ るプリズムやフィルタ、 ミラーなどを用いた構成であっても良い。 以上のように、 本実施の形態 1によれば、 ランプ 1 1と楕円面鏡 1 2と球面鏡 1 3を備え、 光軸に対して非回転対称な形状を有する楕円 面鏡で集光できない光を集光することが可能な位置に球面鏡を配置す ることによって、 高効率で小型な光源装置を得ることができる。
さらに、 このように、 高効率で小型な光源装置を備えることにより 、 同じ出力のランプを用いればより明るく、 また、 同じ明るさをより 低出力なランプを用いて可能とするので消費電力を低く押さえること ができる照明装置および投写型表示装置を提供することができる。 なお、 以上の説明では、 第 1の凹面鏡として楕円面鏡 1 2を用いた が、 2次曲面を持つ反射面鏡であればよく、 放物面鏡や複数個の楕円 面鏡を組み合わせた形状の反射面鏡等を用いてもよい。 さらに、 第 1 の凹面鏡としては、 二次曲面に限定されるものではなく、 フレネルミ ラー等の、 複数の平面または曲面から形成されたものであってもよい さらに、 第 2の凹面鏡として球面鏡を用いたが、 ランプ放射光をラ ンプ発光部近傍へ効率よく反射可能な 2次曲面を持つ反射面鏡であれ ばよく、 楕円面鏡や複数個の球面鏡を組み合わせた形状の反射面鏡等 を用いてもよい。 また、 第 1の凹面鏡と同様、 二次曲面に限定される ものではなく、 フレネルミラー等の、 複数の平面または曲面から形成 されたものであってもよレ、。
(実施の形態 2 )
以下、 本発明の実施の形態 2について、 図面を参照しながら説明す る。 図 8、 図 1 0に、 本実施の形態にかかる照明装置、 投写型表示装 置の概略構成をそれぞれ示す。
光源装置 1 0 0については、 実施の形態 1と同様であるため、 説明 を省略する。 従来の説明で述べたように、 図 1 1に示すような多灯式 光学系は、 より明るい照明を行えるように、 複数個の光源装置を用い 、 複数の光源装置からそれぞれ出射される光束を合成し、 1個のロッ ドインテグレータゃレンズ光学系に入射させ照明を行つてきた。
図 1 1に示すようなロッドィンテグレータ 2を用いた光学系の場合 、 ロッドインテグレータ 2以降の光学系で損失を少なくし光源装置か らの出射された光束の光利用効率を高めるためには、 ランプ放射光を より多く楕円面鏡で集光できるように楕円面鏡の集光角度をできるだ け大きくし、 さらに楕円面鏡 1 2の焦点位置 F 1 (ランプの発光源と 実質上一致している) と焦点位置 F 2 (光束の収束点になる) との距 離をできるだけ小さくして、 ロッドインテグレータ 2の入射側開口 2 a上に形成される光スポットを小さくする必要があった。
しかしながら、 集光角を大きくしながら、 焦点間距離を短くした楕 円面鏡を複数個配置する場合は、 楕円面鏡の一部分が物理的に干渉し た状態の配置が最も効率が高いことがわかっている。 このような構成 として、 図 1 6に示すように、 複数の光源装置における凹面鏡 1同士 が物理的に干渉することを防ぐため、 それぞれの光源装置について、 凹面鏡 1の一部分を切り取った構成がすでに知られていた。 しかしな がらこの場合、 凹面鏡 1の切り取られた一部分のだけ集光効率が劣つ てしまうという問題がある。
この問題を回避するため、 図 1 3に示すように、 一対の光源装置を 、 互いの反射面が対向するように配置し、 ロッドインテグレータ 2の 入射側開口 2 aの直前に、 複数個の光源装置 1から出射された光束を 口ッドィンテグレータ 2の入射開口側開口 2 aへ導くような角度で設 けられたミラー 2 0 0を配置した構成もある。
この構成とした場合、 凹面鏡 1自体の物理的干渉は無いものの、 凹 面鏡 1から出射された全ての光束をロッドィンテグレータ 2側へ反射 するようにミラー 2 0 0を配置させると、 ミラー 2 0 0の物理干渉に より、 入射側開口 2 aへ反射されない光束が発生するため、 実質上回 面鏡 1の利用されない領域 (図中点線にて示す) が発生する。 この場 合、 楕円面鏡は干渉部分がないため、 光軸に対して回転対称な楕円面 鏡を配置することはできてもミラー干渉部分に入射した光が利用され ないという結果とな.る。
次に、 図 1 4は、 図 1 3の光学系の光源装置として、 図 1 2のよう な従来構成の光源装置を用いた多灯式光学系の構成を示す図である。 この場合、 図 1 3の凹面鏡と同様、 第 1の凹面鏡 6には実質上利用さ れない領域 (図中点線にて示す) が生じてしまい、 この第 1の凹面鏡 6の実質上の利用されない領域に直接ランプから入射する光束に加え て、 さらに第 2の凹面鏡 7で反射された後発光部近傍を通過して、 そ の第 1の凹面鏡 6の実質上利用されない領域に入射する光束が発生す るため、 光利用効率がさらに低くなるという問題を有している。 2004/005422
22
さらに、 図 1 3の光学系の光源装置部として、 図 1 5のような従来 の光源装置を用いた場合、 直接楕円面鏡 8で取り込むことができる光 束まで、 光損失が発生する球面鏡 9で反射された後、 発光部近傍を通 過し楕円面鏡 8で反射するため、 光源装置から出射される光束が最大 の効率で利用できていなかった。
本発明の実施の形態 2の照明装置は、 実施の形態 1の光源装置を照 明装置に用いることにより、 上記のような問題を解决するものである 図 8に、 本発明の実施の形態 2による、 本発明の実施の形態 1の光 源装置を用いた多灯式光学系の照明装置を示す。
照明装置において、 各光源装置 1 0 0は、 それぞれの光軸 1 4が同 一平面内で一致するよう配置されており、 図中では同一線上となって レ、る。
光源装置 1 0 0は、 楕円面鏡 1 2の反射面の小さい方を、 ミラー 2 0 0の干渉を生ずる部分で利用されない部分に向け、 その利用されな い部分には球面鏡 1が位置するように配置されている。 なお、 ミラー 2 0 0は本発明の導光手段に相当する。
このような照明装置においては、 球面鏡 1 3に入射したランプ 1 1 からの放射光は、 ランプ発光部 1 1 1の付近を通過するように戻され た後、 ミラー 2 0 0ゃロッドインテグレータ 1 0 1で利用されること ができる楕円面鏡 1 2の反射面を介してミラー 2 0 0側へ出射される ため、 ロッドインテグレータ 1 0 1後も損失を受けることがない光束 となり、 光源装置から出射される光束の光利用効率を向上させること ができる。
つまり、 光源装置 1 0 0における、 球面鏡 1 3を発光中心 (焦点位 置 F 1に相当) から望む角度が実質上最大となる、 発光中心を含む特 定断面において、 光軸 1 4に对する楕円面鏡 1 2の集光角度のうち最 も小さい角度 (図 6, 7に示す角度 に対応する) を有する反射面が 設けられる位置は、 二つの光源装置 1 0 0から出射される光束が、 口 ッドィンテグレ一タ 1 0 1に入射する手前で、 近接する際に、 一方の 光源装置から出射された隣り合う光束に最も近い光束内の位置と、 ほ ぼ一致するように配置される。 これにより、 ランプ発光部 1 1 1から 直接楕円面鏡 1 2で集光できる有効な光束が最も多くなる。 一方、 楕 円面鏡 1 2で集光できないランプ発光部 1 1 1からの光束も球面鏡 1 3で集光できる。
なお、 この構成においても、 ランプ 1 1としてメタルハライドラン プゃ水銀灯等を用いている場合、 発光物質およびランプ 1 1を構成し ている材料による光吸収、 光散乱等による損失は生じるじるが、 球面 鏡 1 3で反射された光束の全部とはいかないが吸収 ·散乱されること なく発光体近傍を通過した光は楕円面鏡 1 2に到達することとなる。 さらに、 光軸 1 4に対して非回転対称かつ光軸 1 4にまたがって形成 された反射面を有する楕円面鏡 1 2のため、 光源装置としての集光効' 率は向上しているので、 これまで利用できなかったランプ 1 1からの 放射光が利用されることで、 照明装置としての光利用効率を向上させ ることができる。
また、 ランプ発光部 1 1 1から出射された光束のうち、 より多くの 光束を、 最短経路となる楕円面鏡 1 2による直接集光によって得るこ とができ、 残りの光束も、 球面鏡 1 3を介して集光させるので、 集光 効率を極めて高めることができる。
また、 実施の形態 1と同様、 球面鏡 1 3の曲率半径 Rを楕円面鏡 1 2の焦点距離 ょり短くとることで、 光源装置 1 0 0自体のサイズを P 聰麵 05422
24
小さくでき、 照明装置全体を小型化することが可能となる。
また、 球面鏡 1 3を小型化すると、 楕円面鏡 1 3の焦点距離も短く できるため、 口ッドィンテグレータ 1 0 1の入射側開口端 1 0 1 aに 対し、 より小さな光スポットを形成できるため、 ロッ ドインテグレー タ 1 0 1以降の集光効率も高めることができる。
このように、 本実施の形態によれば、 高い光利用効率と、 小型化を 共に実現できる照明装置が得られる。
なお、 図 8には、 光源装置 1 0 0を、 楕円面鏡 1 2の反射面の小さ い方が、 ミラー 2 0 0の干渉を生ずる部分で利用されない部分に向け 、 その利用されない部分には球面鏡 1が位置するように配置した例を 示したが、 図 1 7に示すように、 楕円面鏡 1 2と球面鏡 1 3 との位置 関係が逆転するように各光源装置 1 0 0を配置するようにしてもよい c この場合、 ミラー 2 0 0の干渉を防ぐため、 光源装置 1 0 0とロッド ィンテグレータ 1 0 1との距離をより大きく取る必要があるが、 球面 鏡 1 3の保持や、 調整治具等の部材の配置が容易になるという利点が ある。
また、 図 8にはガラス柱またはミラーを張り合わせたロッドインテ グレータ 1 0 1を用いた照明装置を例に示したが、 図 9に示すように 、 複数のレンズを 2次元的に配置したレンズアレイ 1 0 3を用いた照 明装置であっても良い。
さらに、 図 1 0に示すように、 上記の照明装置に、 フィールドレン ズ 1 0 4、 光変調素子 1 0 5、 投写レンズ 1 0 6を追加して設ければ 、 本実施の形態にかかる投写型表示装置を得ることができる。
なお、 光変調素子 1 0 5としては、 反射型ライトパルプ、 透過型ラ ィトバルブ、 光書き込み方式の光変調素子などを用いることができる c さらに、 図 8、 図 9、 図 1 0では、 照明光に変換する光学手段とし てレンズを図示したが、 レンズだけでなく、 ミラーやプリズムを用レ、 たものや、 または複数個のレンズを組み合わせた光学要素が含まれた 光学系であっても良い。
さらに、 図 5、 8〜1 0では光変調素子として透過型ライ トバルブ を 1つだけ備えた構成を例示しているが、 複数個の光変調素子を備え た構成であっても良い。 さらに、 図示していないが、 色分解および色 合成を行うことができるプリズムやフィルタ、 ミラーなどを用いた構 成であっても良い。
以上のように、 本実施の形態 2によれば、 ランプと楕円面鏡と球面 鏡を備えた光源装置を複数個用いた照明装置において、 光軸に対して 非回転対称な形状を有する楕円面鏡で集光できない光を集光すること が可能な位置に球面鏡を配置することによって、 高効率な照明装置を 得ることができる。
さらに、 このように、 高効率な照明装置を備えることにより、 同じ 出力のランプを用いればより明るく、 また、 同じ明るさをより低出力 なランプを用いて可能とするので消費電力を低く押さえることができ る投写型表示装置を提供することができる。
(実施の形態 3 )
図 1 8に、 本発明の実施の形態 3の照明装置の構成を示す。 図にお いて、 ロッ ドインテグレータ 1 0 1、 リ レーレンズ 1 0 2, 光変調素 子 1 0 5は従来例おょぴ実施の形態 2と同様である。 すなわち、 図 1 1に示す従来例の照明装置において、 光源装置を本実施の形態 1の光 源装置を用いた構成を有する。 このとき、 一対の光源装置 1 0 0は、 互いに球面鏡 1 3同士が向かい合うように配置され、 各光源装置 1 0 0の光軸 1 4が空間内の一点で交差する、 その交差点にロッドインテ グレータ 1 0 1が配置されている。
本実施の形態の照明装置は、 光学的な動作は図 1 1の従来例と同様 で、 一対の光源装置 1 0 0として実施の形態 1の光源装置を用い、 光 源装置 1 0 0から出射された光束は、 直接ロッドインテグレータ 1 0 1の入射側開口端 1 O l aに到達する。
本実施の形態は、 実施の形態 2の構成と比較した場合、 従来例と同 様に、 各光源装置の光軸 1 4が斜めになるため、 光軸合わせ等の調整 の困難といった問題は残るが、 光軸 1 4に対して回転非対称な光束を 全てロッドインテグレータ 1 0 1に対し放射させることができる。 こ れにより、 図 1 6に示す従来例と同様、 焦点間距離の小さい光源装置 を用いることで、 口ッドィンテグレータ 1 0 1に形成される光スポッ トを小さくしながら、 ランプ 1 1からの放射光の集光角は、 図 1 1に 示す従来例の回転対称型の光源装置に近い角度となるので、 光学系全 体として、 高い光利用効率を得ることができる。
また、 部品点数の簡素化、 低コスト化を図ることが出来る。
なお、 図 1 8には、 一対の光源装置 1 0 0を、 球面鏡 1 3同士が向 かい合うように配置する構成を示したが、 図 1 9に示すように、 楕円 面鏡 1 2同士が向かい合うように配置する構成としてもよい。 この場 合、 ロッドインテグレータ 1 0 1へ入射する光束のうち、 実質的に口 ッドインテグレータ 1 0 1の光軸と平行に近いものを集中して入射側 開口端 1 0 1 aへ入射させることができ、 照明装置においてロッドィ ンテグレータ 1 0 1以降の実質的な光束量を増加させることができる さらに、 球面鏡 1 3の保持や、 調整治具等の部材の配置が容易になる という利点もある。 なお、 以上の説明では、 第 1の凹面鏡として楕円面鏡を用いたが、
2次曲面を持つ反射面鏡であればよく、 放物面鏡や複数個の楕円面鏡 を組み合わせた形状の反射面鏡等を用いてもよい。
さらに、 第 2の凹面鏡として球面鏡を用いたが、 ランプ放射光をラ ンプ発光部近傍へ効率よく反射可能な 2次曲面を持つ反射面鏡であれ ばよく、 楕円面鏡や複数個の球面鏡を組み合わせた形状の反射面鏡等 を用いてもよい。
なお、 すでに述べてもい.るが、 上記の各実施の形態において、 ラン プ 1 1は本発明のランプ、 光発生手段の一例であり、 発光源を省いた ランプ発光部 1 1 1の管球部は本発明の管球部の一例であり、 端部 1 1 1 bおよび 1 1 1 dは本発明の一対の端部の一例であり、 ランプ発 光部 1 1 1の光透過面 1 1 1 aは本発明の第 1の対向面の一例であり 、 光透過面 1 1 1 bは本発明の第 2の対向面の一例である。
しかしながら本発明の光発生手段は各実施の形態のような管体を有 するランプとして実現する必要はなく、 発光ダイオード等、 他の光源 により実現されるものであってもよい。 また、 ランプである場合も、 管球部おょぴ端部から構成されるものでなくともよく、 たとえば、 光 透過面を有する管球部のみからなる実質的に球形、 回転楕円体等の形 状を有するものであってもよい。 要するに、 本発明の光発生手段は、 その発光源が、 第 1の凹面鏡の焦点と本発明の基準軸を形成できるも のであれば、 その具体的な構成、 形状によって限定されるものではな レ、。 産業上の利用可能性
以上のように、 本発明によれば、 高い光利用効率を実現することが でき、 光源装置の小型化を行っても光利用効率が低下しない光源装置 を提供することができると共に、 この光源装置を備えることにより、 光の利用効率が高い照明装置およぴ投写型表示装置を提供することが 可能である。

Claims

請 求 の 範 囲
1 . 光発生手段と、
前記光発生手段から放射される一部の光を集光する第 1の凹面鏡と 前記光発生手段から放射される、 前記第 1の凹面鏡に集光されない 他の一部の光を集光し、 前記第 1の凹面鏡へ反射する第 2の凹面鏡と を備え、
前記第 1の凹面鏡の反射面おょぴ前記第 2の凹面鏡の反射面は、 前 記光発生手段の発光源と前記第 1の凹面鏡により集光される光の焦点 とを結んでなる基準軸に対して、 それぞれ非回転対称な形状を有し、 前記第 2の凹面鏡の反射面と前記発光源との距離は、 前記発光源と 前記第 1の凹面鏡により集光される光の焦点との距離より短く、 前記第 1の凹面鏡の反射面の一部は、 前記基準軸の周囲に形成され ている、 光源装置。
2 . 前記第 1の凹面鏡は、 一個又は複数個の二次曲面を前記反射 面として有する、 請求の範囲第 1項に記載の光源装置。 '
3 . 前記第 1の凹面鏡の二次曲面は楕円曲面の一部であって、 前記楕円曲面の焦点のひとつが前記光発生手段の前記発光源に実質 上一致し、 もうひとつが、 前記第 1の凹面鏡により集光される光の焦 点と一致している、 請求の範囲第 2項に記載の光源装置。
4 . 前記第 2の凹面鏡は、 一個又は複数個の二次曲面を前記反射 面として有する、 請求の範囲第 1項に記載の光源装置。
5 . 前記第 2の凹面鏡の二次曲面は球面の一部であって、 前記球面の中心が前記光発生手段の前記発光源に実質上一致してい る、 請求の範囲第 4項に記載の光源装置。
6. 前記第 1の凹面鏡の反射面は、 前記第 2の凹面鏡の反射面よ りも前記発光源寄りに位置しており、
前記第 1の凹面鏡の集光角度を前記基準軸を含む平面により二分し 、 大きいほうの角度を α、 小さい方の角度を 、 前記光発生手段から 前記第 1の凹面鏡および前記第 2の凹面鏡に放射される光の最大角度 を γ、 前記第 2の凹面鏡の集光角度を 0とすると、
(数 1 )
α > ]3 > 0
(数 2)
+ β ≥ 1 8 0 °
(数 3)
0 < θ ≤ y— β
の関係を満たす、 請求の範囲第 1項に記載の光源装置。
7. 前記第 2の囬面鏡の反射面は、 前記第 1の凹面鏡の反射面よ りも前記発光源寄りに位置しており、
前記第 1の凹面鏡の集光角度を前記基準軸を含む平面により二分し 、 大きいほうの角度を α、 小さい方の角度を 3、 前記光発生手段から 前記第 1の凹面鏡および前記第 2の囬面鏡に放射される光の最大角度 を γ、 前記第 2の凹面鏡の集光角度を 0とすると、
(数 1 )
α > β > 0
(数 2)
α + ]3 ≥ 1 8 0°
(数 4) 0 < θ≤ 1 8 0 °
の関係を満たす、 請求の範囲第 1項に記載の光源装置。
8 . 前記第 2の凹面鏡は、 前記第 1の凹面鏡の形成する光束内に 配置されている、 請求の範囲第 7項に記載の光源装置。
9 . 前記光発生手段は、
前記発光源を収納する管体を有するランプであって、
前記管体は、 前記発光源からの放射光を透過する管球部と、 前記管 球部から突出した一対の端部とを有し、
前記一対の端部は、 前記基準軸の周囲に設けられている、 請求の範 囲第 1項に記載の光源装置。
1 0 . 前記管球部は、 前記第 1の凹面鏡の反射面と対向する第 1の 対向面と、 前記第 1の凹面鏡の反射面および前記第 2の凹面鏡の反射 面と対向する第 2の対向面とを有し、
前記第 1の凹面鏡の反射面の前記一部は、 少なくとも前記第 2の対 向面と対向するものである、 請求の範囲第 9項に記載の光源装置。
1 1 . 請求の範囲第 1項に記載の光源装置と、
前記光源装置の前記第 1の凹面鏡により集光される光の焦点と光学 的に結合する位置に配置され、 前記光源装置から出射される光を実質 上平行光に変換するレンズ手段とを備えた、 照明装置。
1 2 . 前記レンズ手段はロッドインテグレータである、 請求の範囲 第 1 1項に記載の照明装置。
1 3 . 前記レンズ手段はレンズアレイである、 請求の範囲第 1 1項 に記載の照明装置。
1 4 . 前記光源装置は複数であって、 それぞれの前記基準軸が同一 平面内で一致するよう配置されており、 前記複数の光源装置から射出された光を前記レンズ手段へ導く導光 手段をさらに備えた、 請求の範囲第 1 1項に記載の照明装置。
1 5 . 前記複数の光源装置は、 それぞれの前記基準軸が空間内の一 点で交差するように配置されており、
前記レンズ手段は、 前記一点に対応する位置に設けられている、 請 求の範囲第 1 1項に記載の照明装置。
1 6 . 前記複数の光源装置は、 前記第 2の凹面鏡同士が対向するよ うに配置されている、 請求の範囲第 1 5項に記載の照明装置。
1 7 . 前記複数の光源装置は、 前記第 1の凹面鏡同士が対向するよ うに配置されている、 請求の範囲第 1 5項に記載の照明装置。
1 8 . 請求の範囲第 1 1項に記載の照明装置と、
前記照明装置と光学的に結合する位置に配置され、 光を変調して光 学像を形成する光変調素子と、
前記光学像を投写する投写レンズとを備えた、 投写型表示装置。
PCT/JP2004/005422 2003-04-18 2004-04-15 光源装置、照明装置および投写型表示装置 WO2004092823A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005505456A JP4251499B2 (ja) 2003-04-18 2004-04-15 光源装置、照明装置および投写型表示装置
US10/553,489 US7213944B2 (en) 2003-04-18 2004-04-15 Light source apparatus, lighting apparatus and projection display apparatus
CN2004800103233A CN1809785B (zh) 2003-04-18 2004-04-15 光源装置、照明装置及投影式显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-114162 2003-04-18
JP2003114162 2003-04-18

Publications (1)

Publication Number Publication Date
WO2004092823A1 true WO2004092823A1 (ja) 2004-10-28

Family

ID=33296143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005422 WO2004092823A1 (ja) 2003-04-18 2004-04-15 光源装置、照明装置および投写型表示装置

Country Status (4)

Country Link
US (1) US7213944B2 (ja)
JP (2) JP4251499B2 (ja)
CN (1) CN1809785B (ja)
WO (1) WO2004092823A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208471A (ja) * 2005-01-25 2006-08-10 Casio Comput Co Ltd 光源装置及びそれを用いたプロジェクタ
JP2006301620A (ja) * 2005-03-30 2006-11-02 Samsung Electronics Co Ltd 照明ユニット及びそれを採用した画像投射装置
JP2007507754A (ja) * 2003-10-01 2007-03-29 インフォーカス コーポレイション etendueを小さく抑えたカラービデオ投写装置の効率のよい照明装置
EP1828675A1 (en) * 2004-12-06 2007-09-05 Texas Instruments Incorporated Multiple light source illumination for image display systems
JP2007329102A (ja) * 2006-06-09 2007-12-20 Victor Co Of Japan Ltd 光源装置及び画像表示装置
JP2007329103A (ja) * 2006-06-09 2007-12-20 Victor Co Of Japan Ltd 光源装置及び画像表示装置
JP2009510669A (ja) * 2005-06-30 2009-03-12 ウェイヴィーン・インコーポレイテッド 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム
WO2013147019A1 (ja) * 2012-03-29 2013-10-03 株式会社オーク製作所 光源装置
WO2015170490A1 (ja) * 2014-05-09 2015-11-12 岩崎電気株式会社 導光部品、及び光源装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4972883B2 (ja) * 2005-06-17 2012-07-11 株式会社日立製作所 光学ユニットおよび投射型映像表示装置
US20090066920A1 (en) * 2005-09-12 2009-03-12 Matsushita Electric Industrial Co., Ltd. Projection type image display device
KR100826193B1 (ko) * 2006-07-26 2008-04-30 엘지전자 주식회사 조명 장치
US8172431B2 (en) * 2007-04-24 2012-05-08 Koninklijke Philips Electronics N.V. Luminaire and reflector
WO2009092451A1 (de) * 2008-01-25 2009-07-30 Osram Gesellschaft mit beschränkter Haftung Wechselspannungsreflektorlampe
US8439525B2 (en) * 2008-08-29 2013-05-14 Abl Ip Holding Llc Luminaires having enhanced light distribution and applications thereof
US20100053971A1 (en) * 2008-08-29 2010-03-04 Abl Ip Holding Llc Asymmetric Lighting Systems and Applications Thereof
JP2010062019A (ja) * 2008-09-04 2010-03-18 Seiko Epson Corp 照明装置およびプロジェクタ
JP4678441B2 (ja) * 2009-02-18 2011-04-27 セイコーエプソン株式会社 光源装置およびプロジェクター
JP5381348B2 (ja) * 2009-06-02 2014-01-08 セイコーエプソン株式会社 光源装置、照明系、プロジェクター
JP2011082057A (ja) * 2009-10-08 2011-04-21 Seiko Epson Corp 光源装置、プロジェクター
IL209227A0 (en) 2010-11-10 2011-01-31 Uri Neta Common focus energy sources multiplexer
US8545072B2 (en) * 2011-05-03 2013-10-01 Osram Sylvania Inc. Optic emitting a simulated floating band of light
JP2016514885A (ja) * 2013-03-26 2016-05-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 照明デバイス及び照明器具
CN105102886A (zh) * 2013-03-26 2015-11-25 皇家飞利浦有限公司 照明装置、调节套件和照明器
CN105102887A (zh) * 2013-03-26 2015-11-25 皇家飞利浦有限公司 照明装置和照明器
EP2979023B1 (en) 2013-03-26 2017-02-22 Philips Lighting Holding B.V. Lighting device and luminaire
CN103363353B (zh) * 2013-06-20 2015-06-03 中微光电子(潍坊)有限公司 一种led光源
WO2015019824A1 (ja) * 2013-08-06 2015-02-12 オリンパス株式会社 光源光学系、ファイバ光源、顕微鏡および自動車用前照灯
CN105020650B (zh) * 2014-04-30 2017-11-10 王正 车灯模块
TWI598633B (zh) 2014-08-05 2017-09-11 佳能股份有限公司 光源設備,照明裝置,曝光設備,及裝置製造方法
CN104566033B (zh) * 2014-12-30 2016-09-28 东莞市沃德普自动化科技有限公司 一种检测用聚焦灯具
CN107063115A (zh) * 2017-01-17 2017-08-18 天津众科创谱科技有限公司 一种开尔文探针的光路系统
JP2018199096A (ja) * 2017-05-25 2018-12-20 岩崎電気株式会社 紫外線照射器
CN108919479B (zh) * 2018-06-22 2024-06-04 深圳市润沃自动化工程有限公司 激光反射成像装置
CN112034620A (zh) * 2019-06-04 2020-12-04 怡利电子工业股份有限公司 标靶反射式扩散片抬头显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122501A (ja) * 1987-11-06 1989-05-15 Honda Motor Co Ltd 車両用下向きヘツドライト
JPH0540223A (ja) * 1991-08-07 1993-02-19 Canon Inc 照明装置
JP2000171901A (ja) * 1998-09-28 2000-06-23 Matsushita Electric Ind Co Ltd 照明光学装置および投写型表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956759A (en) 1988-12-30 1990-09-11 North American Philips Corporation Illumination system for non-imaging reflective collector
US5075827A (en) * 1990-10-31 1991-12-24 Smith David H Indirect light fixture amplification reflector system
JP2543260B2 (ja) 1991-03-11 1996-10-16 松下電器産業株式会社 照明装置
JP3151734B2 (ja) 1992-05-26 2001-04-03 株式会社日立製作所 光源ユニット及びこれを用いた表示装置
US5526237A (en) * 1993-12-10 1996-06-11 General Electric Company Lighting system for increasing brightness to a light guide
JP3350003B2 (ja) 1999-10-01 2002-11-25 エヌイーシービューテクノロジー株式会社 プロジェクタ用光源装置
JP2002258212A (ja) 2001-03-02 2002-09-11 Ricoh Co Ltd プロジェクター用照明装置
US6547422B2 (en) * 2001-08-08 2003-04-15 Prokia Technology Co., Ltd. Illuminating module for a display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01122501A (ja) * 1987-11-06 1989-05-15 Honda Motor Co Ltd 車両用下向きヘツドライト
JPH0540223A (ja) * 1991-08-07 1993-02-19 Canon Inc 照明装置
JP2000171901A (ja) * 1998-09-28 2000-06-23 Matsushita Electric Ind Co Ltd 照明光学装置および投写型表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507754A (ja) * 2003-10-01 2007-03-29 インフォーカス コーポレイション etendueを小さく抑えたカラービデオ投写装置の効率のよい照明装置
JP4644201B2 (ja) * 2003-10-01 2011-03-02 ストレート シグナルズ,エルエルシー etendueを小さく抑えたカラービデオ投写装置の効率のよい照明装置
EP1828675A4 (en) * 2004-12-06 2013-03-27 Texas Instruments Inc MULTI-LIGHT SOURCE LIGHTING FOR IMAGE DISPLAY SYSTEM
EP1828675A1 (en) * 2004-12-06 2007-09-05 Texas Instruments Incorporated Multiple light source illumination for image display systems
JP2006208471A (ja) * 2005-01-25 2006-08-10 Casio Comput Co Ltd 光源装置及びそれを用いたプロジェクタ
JP4524265B2 (ja) * 2005-03-30 2010-08-11 三星電子株式会社 照明ユニット及びそれを採用した画像投射装置
JP2006301620A (ja) * 2005-03-30 2006-11-02 Samsung Electronics Co Ltd 照明ユニット及びそれを採用した画像投射装置
JP2009510669A (ja) * 2005-06-30 2009-03-12 ウェイヴィーン・インコーポレイテッド 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム
KR101324807B1 (ko) 2005-06-30 2013-11-01 웨이비엔, 인코포레이티드 최적화된 배율을 갖는 이중 포물면 반사기 및 이중 타원면반사기 시스템
JP2007329102A (ja) * 2006-06-09 2007-12-20 Victor Co Of Japan Ltd 光源装置及び画像表示装置
JP2007329103A (ja) * 2006-06-09 2007-12-20 Victor Co Of Japan Ltd 光源装置及び画像表示装置
WO2013147019A1 (ja) * 2012-03-29 2013-10-03 株式会社オーク製作所 光源装置
WO2015170490A1 (ja) * 2014-05-09 2015-11-12 岩崎電気株式会社 導光部品、及び光源装置

Also Published As

Publication number Publication date
JP2009020537A (ja) 2009-01-29
JP4914419B2 (ja) 2012-04-11
US20060203497A1 (en) 2006-09-14
US7213944B2 (en) 2007-05-08
JPWO2004092823A1 (ja) 2006-07-06
CN1809785B (zh) 2010-10-27
CN1809785A (zh) 2006-07-26
JP4251499B2 (ja) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4914419B2 (ja) 光源装置、照明装置および投写型表示装置
JP4355381B2 (ja) 照明装置およびそれを用いた投射型表示装置
JP2005512150A (ja) レンズおよびテーパを設けた光導波管
US6246170B1 (en) Light source apparatus with a spherical optical member
JP2007294337A (ja) 照明装置及びプロジェクタ
JP4972883B2 (ja) 光学ユニットおよび投射型映像表示装置
JP2011248327A (ja) 照明装置及びそれを備えた投写型表示装置
EP1672421B1 (en) Illumination unit and projector comprising it
US7736028B2 (en) Light source apparatus, lighting apparatus and projection display apparatus
JP4478239B2 (ja) 照明装置及びそれを用いた投影装置
JP5036102B2 (ja) 照明装置
JP2010026260A (ja) 照明光学装置及びそれを用いた投写型表示装置
JP5097042B2 (ja) 照明光学装置及びそれを用いた投写型表示装置
WO2013118272A1 (ja) 照明光学系および投写型表示装置
JP5505064B2 (ja) 照明装置及びそれを備えた投写型表示装置
JP2008204643A (ja) ランプユニット、投写型表示装置及び投写型表示装置の製造方法
JPH0950082A (ja) 投写型表示装置
JPH11119149A (ja) 液晶プロジェクション装置
JP3791103B2 (ja) 光源装置および投写型表示装置
JP2010026261A (ja) 照明光学装置及びそれを用いた投写型表示装置
JP2012164639A (ja) 照明装置及び照明システム
JP2008234897A (ja) 光源装置及びプロジェクタ
TWI375110B (en) Light source device and projector using same
JP5398299B2 (ja) 照明光学系およびそれを用いた画像投射装置
JP2001110217A (ja) 照明装置及び投影装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005505456

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048103233

Country of ref document: CN

Ref document number: 10553489

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10553489

Country of ref document: US