JP2009510669A - 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム - Google Patents

最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム Download PDF

Info

Publication number
JP2009510669A
JP2009510669A JP2008519619A JP2008519619A JP2009510669A JP 2009510669 A JP2009510669 A JP 2009510669A JP 2008519619 A JP2008519619 A JP 2008519619A JP 2008519619 A JP2008519619 A JP 2008519619A JP 2009510669 A JP2009510669 A JP 2009510669A
Authority
JP
Japan
Prior art keywords
reflector
focal point
target
radiation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008519619A
Other languages
English (en)
Other versions
JP4987866B2 (ja
Inventor
リ,ケネス,ケイ
Original Assignee
ウェイヴィーン・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/274,241 external-priority patent/US20060061894A1/en
Application filed by ウェイヴィーン・インコーポレイテッド filed Critical ウェイヴィーン・インコーポレイテッド
Priority claimed from PCT/US2006/025608 external-priority patent/WO2007005624A2/en
Publication of JP2009510669A publication Critical patent/JP2009510669A/ja
Application granted granted Critical
Publication of JP4987866B2 publication Critical patent/JP4987866B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
    • G02B17/0605Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
    • G02B17/0615Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors off-axis or unobscured systems in wich all of the mirrors share a common axis of rotational symmetry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Projection Apparatus (AREA)
  • Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

凝集/収集光学システムは、二つの非対称リフレクタを有する。これら第1及び第2リフレクタは、平行な光軸を有する回転楕円面または放物面の一部から構成される。電磁放射線光源が第1リフレクタの一方の焦点に配置されて第2リフレクタによって受け取られる放射線を発生し、第2リフレクタはこの放射線をターゲットに向かわせる。最大の出力結合効率を達成するために、第2リフレクタは、ターゲットに入力される放射線の入射角が小さくなるように第1リフレクタと異なる焦点距離を有する。

Description

本発明は、電磁放射線を収集(collecting)−凝集(condensing)するためのシステム、特に、放射線光源から放出された放射線を収集し、収集された放射線をターゲットに合焦するための非対称放物面状リフレクタを内蔵するシステムに関する。
〔関連出願〕
本出願は、2005年6月30日出願の米国仮出願No.60/695,934の優先権を主張するものであり、2000年3月27日出願の米国仮特許出願No.60/192,321の優先権を主張する2000年9月27日出願の出願No.09/669,841(現在、米国特許No.6,634,759)の継続である、2003年9月12日出願の出願No.10/660,492号の継続である2005年11月14日出願の出願No.11/274,241号の一部継続である。これらのそれぞれの全部をここに参考文献として合体させる。
電磁放射線を単体ファイバ、またはファイバ束等の導波路に向けて収集−凝集−結合させる、または、プロジェクタのホモジナイザへ出力するシステムの機能的目的は、ターゲットにおける電磁放射線の輝度を最大化(即ち、その束強度(flux intensity)を最大化)することにある。従来技術は、球面状と楕円面状と放物面状の各リフレクタに関連する所謂、光軸上(on-axis)型リフレクタシステム、及び、球面状とトロイダル面状と楕円面状の各リフレクタに関連する光軸外(off-axis)型リフレクタシステムの使用を教示している。ターゲットのサイズが電磁放射線光源のアークギャップのサイズに近似している場合、光軸外型リフレクタシステムは、光軸上型リフレクタシステムよりも、ターゲットにおいて高い効率と高い輝度を達成し、それによって光ファイバターゲットによって収集可能な光の量を最大化する。電磁放射線光源のアークギャップの寸法よりもはるかに大きなサイズのターゲットの場合、光軸上型リフレクタシステムと光軸外型リフレクタシステムの双方ともに放射線光源からの放射線を導波路に収集、凝集、結合させるために有効である。
光収集、光凝集システムは、電球などの光源から光エネルギーを受け取り、この光エネルギーをターゲットに向かわせるリフレクタやレンズ等の種々の光学部材を有する。特に、この光学システムは、電磁放射線を収集−凝集し、その光エネルギーを、単一ファイバや光ファイバ束などの標準的な導波路に結合し、或いは、同光エネルギーをプロジェクタのホモジナイザへ出力する。前記光学システムの機能上の目的はターゲットにおける電磁放射線の輝度(即ち、束強度)を最大化することにある。
光源からの光を収集、凝集するための光学システムは、一般に、光軸上型及び光軸外型のいずれかに分類される。光軸上型システムでは、リフレクタが光源とターゲットとの間の光軸上に位置する。図1は、撮像レンズを備える放物面状リフレクタを使用する公知の光軸上型システムを例示している。この放物面状リフレクタは、焦点から出る光エネルギーが実質的にコリメート(平行光線化)されて光軸と平行に進行するという特徴を有している。図1の光学システムは、光源からの光をコリメートするために光源を焦点に配置することによって放物面状リフレクタの同特徴を利用している。光の流れに位置する凝集レンズがこのコリメートされた光エネルギーを受け取り、その光エネルギーをターゲットに向かわせる。このようにして、光エネルギーがターゲットに収集され凝集される。放物面状リフレクタを使用しているので、更に、光学システムの耐久性を改善するために種々の光学フィルタを使用することが可能となる。しかし、光の発散(divergence)がリフレクタに沿って連続的に変化し、特に光軸近くを進行する光線は最も大きな発散を示す。その結果、システムの倍率は、光源から放出された光が辿る種々の光路によって変化するため、システムの輝度の劣化が生じる。更に、合焦レンズは、たとえ完璧な条件下でも歪んだ画像を作り出すが、実際の作動下では通常、著しい収差を伴った(aberrated)画像を形成し、そのため画像サイズが実効的に増大し、ターゲットにおける束密度を減少させる。
図2は別の公知の光学システムを図示している。このシステムは、楕円面状リフレクタを使用しており、1つの焦点から発する光の全部が第2の焦点に向けられるという特徴を有する。図2の光学システムは、光源が第1焦点に配置されターゲットが第2焦点に配置された楕円面状リフレクタを使用している。先のシステムと同様、この光軸上型楕円面状システムでも、光の発散がリフレクタに沿って連続的に変化し、特に光軸近くを進行する光線が最も大きな発散を示すことによる輝度劣化の問題がある。
全体として、光軸上型システムは、一般に、結合において輝度が損失するという基本的限界があり、そのため光照明及び投影システムの全体的効率が低下する。特に、公知の光軸上型システムの反射光の発散は、不本意ながら放射光源からの放射線の角度に依存する。更に、光軸上型システムの出力は、実質的に円形で且つ対称であり、従って、投影に使用される矩形のホモジナイザなどの非円形のターゲットには不向きであるかも知れない。
光軸外型集光システムでは、リフレクタが光源とターゲットとの間の光軸から外れて配置されている。例えば、図3は、光源がレトロリフレクタの焦点に位置し、ターゲットが主リフレクタの焦点に位置しているが、これらリフレクタは光源と焦点との間の光軸から外れて配置された光学システムを示している。ここに示された光学システムでは、光源からの光エネルギーは、レトロリフレクタから反射して主リフレクタへと進行する。次に光エネルギーは主リフレクタから反射されてターゲットに収束する。
図3の光軸外型システムでは、システムの開口率が小さい場合には、全ての角度の光について倍率は1対1に非常に近い。システムがより高い開口率を有するミラーを使用する場合(例えば、同じ光源からより多くの光エネルギーを収集しようと試みて)、比較的角度の大きい光線が大きな発散角度で反射されるため、倍率が1対1から偏移する。そこで、やはり、拡大によってターゲットにおける輝度が低下し、全体として光学システムの性能が低下する。倍率の偏移量は、ミラーのサイズ、曲率半径、アークランプとターゲットの分離間隔、等によって異なる。従って、図3の光軸外型システムは、比較的小さな開口率を使用する用途により適している。
別のタイプの光軸外型光学システムも知られている。例えば、米国特許No.4,757,431(特許文献1)は、小さなターゲットを照射する最大束密度と、前記小さなターゲットによって収集可能な束密度の量とを増強させる光軸外型球状凹面リフレクタを使用した凝集、収集システムを提供している。この特許文献1の光学システムに対する増強は、光軸外型凹面リフレクタが楕円形の米国特許No.5,144,600(特許文献2)と、光軸外型凹面リフレクタがトロイド形の米国特許No.5,430,634(特許文献3)とによって提供されている。特許文献3に記載されているトロイダルシステムは非点収差を補正し、特許文献2の楕円形システムは特許文献1の球状リフレクタよりも正確な結合を提供するものではあるが、これらのシステムはそれぞれ、高度に湾曲した反射面に対する光学コーティングの塗布を必要とし、このような光学コーティングは比較的高価であり、均一な厚みで塗布することが困難である。
全体として、前記公知の光軸外型光学システムは、ターゲットでの光源の略1対1に近い(即ち、拡大の無い)画像を提供し、輝度を保持する。しかし、これらの公知の光軸外型光学システムでは、リフレクタの集光角度の増加によって、集められる光の量が増大するにつれて、倍率が1対1から偏移する。従って、光強度を増加させるために、光源からの光エネルギーのより大きな部分が収集されるに連れて、光学システムの全体性能が劣化する。
前記公知の光収集、凝集システムの問題点に対応するべく、米国特許No.6,672,740(特許文献4)は、前記公知のシステムに対して、小サイズの光源の場合における1対1に近い倍率達成を含む多くの点において有利な光軸上型デュアル放物面状リフレクタを提供している。この光収集、凝集システムは、図4に示すように、二つの略対称に配置された放物面状リフレクタを使用し、これらリフレクタは、第1リフレクタから反射された光が第2リフレクタの対応する部分に受け取られるように配置されている。詳しくは、光源から発せられた光は、第1放物面状リフレクタによって収集され、光軸に沿って第2リフレクタに向けてコリメートされる。第2リフレクタは、このコリメート光線を受け取り、この光を焦点に位置するターゲットに合焦させる。
この光学システムの説明を容易にするために、図4は、光源から発せられた三つの異なる光線の光路(a,b及びc)を示している。光線aは、第1放物面状リフレクタと交差する前に比較的短い距離進むが、この第1放物面状リフレクタでの光線aの発散は比較的大きい。これに対して、光線cは、光源と第1放物面状リフレクタとの間を更に進行するが、第1放物面状リフレクタでの相対的発散はもっと小さい。光線aとcとの間に位置する光線bは、第1放物面状リフレクタに交差する前に中間の距離だけ進み、中間の発散を有する。この光学システムでは、前記二つの放物面状リフレクタの対称性により、光線a,b及びcは、第2放物面状リフレクタとターゲットとの間の距離が等しく、かつ、第2放物面状リフレクタとターゲットとの間の距離が光源と第1放物面状リフレクタとの間の距離に等しいように、第2放物面状リフレクタの対応の位置において反射される。このようにして、第2リフレクタは発散を相殺する。その結果、前記光学システムは、光源からの光エネルギーを略1対1の倍率で収集凝集し、光源の輝度を保持する。
図4の光学システムは、更に、光源から発する放射線を第1放物面状リフレクタから離間する方向において捕捉し、この捕捉された放射線を、光源を介して戻し反射するために第1放物面状リフレクタと組み合わせてレトロリフレクタを使用することができる。具体的には、レトロリフレクタは、略球状であり、その焦点は第1放物面状リフレクタに向けて光源の略近くに位置し(即ち、第1放物面状リフレクタの焦点)、それによってそれら反射されるコリメート光線の強度を増大させている。
光軸上型のデュアル放物面状光学システムが出現して以来、上述した光軸上型デュアル放物面状光学システムにおいて光源がリフレクタの頂点側に非常に近いので、該システムは、光源の近く(即ち、光線aに類似の経路に沿って)において大きな発散角度を作り出す。具体的には、大きな発散角度によって光線aに類似の経路に沿って進む光エネルギーは、第2放物面状リフレクタ上の比較的大きな領域を囲み、それによって不本意な収差と輝度損失をもたらす。しかし、これらの文献のいずれも、ターゲットにおいて最小の歪で最大の束強度を得るために、大きな発散角度を扱い、光源と合焦画像との間の倍率を最適化したシステムについては記載していない。
米国特許第4,757,431号公報 米国特許第5,144,600号公報 米国特許第5,430,634号公報 米国特許第6,672,740号公報
従って、非対称の放物面状リフレクタを使用して、ターゲットに於ける合焦放射線の束強度を最大化する、電磁放射線の収集−凝集方法を提供することが求められている。
本発明の一実施例によれば、電磁放射線を収集、凝集するための改良されたシステムは、互いに対向した非対称のリフレクタを用い、且つ、ターゲットに於ける光源と合焦画像との間の倍率を最適化することによって、ターゲットにおける最大の合焦強度を作り出す。具体的には、本発明は、電磁放射線の光源からの電磁放射線を収集し、この収集した放射線を、前記光源によって発生された電磁放射線の少なくとも一部によって照射されるターゲットに合焦させる光学装置に関する。前記装置は、第1及び第2リフレクタを有し、これらリフレクタはそれぞれ回転楕円面または放物面の一部から構成されるとともに、光軸Aと該光軸A上の焦点とを有する。前記第1リフレクタの焦点の近傍に位置する光源は、光軸Aに対して平行な方向に前記第1リフレクタから反射された放射線のコリメート放射線を作り出す。第2リフレクタは、回転楕円面または回転放物面の一部から構成されるとともに、光軸Bと該光軸B上の焦点とを有する。第2リフレクタは、第1リフレクタに対して、第1リフレクタから反射された放射線が第2リフレクタによって反射されて第2リフレクタの焦点の近傍に位置するターゲットに向けられるように位置と向きを設定されている。第1及び第2リフレクタは、僅かに異なる形状とサイズを有する。或いは、第2リフレクタは、第1リフレクタから反射された放射線が第2リフレクタの焦点において収束するように、第1リフレクタに対して位置と向きを設定されている。その後、放射線は、第2リフレクタによって反射されて第2リフレクタの第2焦点の近傍に位置するターゲットに向けて合焦されるまで進行する。或いは、第1及び第2リフレクタは、倍率を最適化するべく、互いに光学的に略非対称に配向することも可能である。
光源によって発せられた放射線を第1放物面状リフレクタから離間する方向において捕捉し、この捕捉された放射線を、光源を経るように(即ち、第1リフレクタの焦点を介して)戻し反射させることで、反射された光線の強度を増大させるために、第1放物面状リフレクタと組み合わせてレトロリフレクタを使用することができる。
第1及び第2リフレクタは、各光軸が互いに平行に位置する対向関係に配置することができ、或いは、各光軸が互いに角度をなして位置するように配置することができ、その場合、第1リフレクタによって反射された光線を第2リフレクタに向かわせるために方向転換(redirecting)リフレクタが使用される。
本発明の一実施例に拠れば、第1及び第2リフレクタは、非対称の楕円面状および双曲線面状の一対で構成され、これら第1及び第2リフレクタの一方は実質的に楕円面形状を有し、これら第1及び第2リフレクタの他方は対応の実質的に双曲線面形状を有し、これら楕円面/双曲線面状対の各リフレクタは、第1リフレクタの表面部分によって反射された放射線の各光線が第2リフレクタの対応する表面部分によってターゲットに向けて反射されることで、好ましくは、光源とターゲット上の合焦画像との間の倍率を最適化するように、互いに対応するサイズと光学的配向とを有する。
本発明の一実施例によれば、電磁放射線によってターゲットを照射するための光学装置は、第1リフレクタと第2リフレクタとを有する。第1リフレクタは、第1焦点距離と、第1焦点と、第1光軸とを有し、電磁放射線は第1リフレクタの第1焦点の略近傍に向けられる。第2リフレクタは、第2焦点距離と、第2焦点と、第1光軸と一致しない第2光軸とを有する。第2リフレクタは、第1リフレクタに対して、該第1リフレクタから反射された放射線の少なくとも一部を受け取り、この放射線部分を、第2リフレクタの第2焦点の略近傍に位置するターゲットに向かわせるように、位置および向きが設定されている。第2リフレクタは第1リフレクタに対して非対称である。
本発明の一実施例に拠れば、第2リフレクタの焦点距離は第1リフレクタの焦点距離よりも長く、これによって、ターゲットに入力される放射線の入射角を減少させ、それによってフレネル反射損失を減少させる。
本発明の一実施例に拠れば、第1及び第2リフレクタの非対称特性は、正味(net)の出力結合効率が最大になるように選択される。
本発明の一実施例に拠れば、二つのリフレクタの焦点距離間の焦点距離差は、フレネル反射損失と画像収差との間のトレードオフを最適化し、それによって正味の出力結合効率が最大となるように選択される。
本発明の一実施例に拠れば、電磁放射線によってターゲットを照射するための光学装置は、第1リフレクタと第2リフレクタとを有する。第1リフレクタは、第1焦点距離と第1焦点と第2焦点と第1光軸とを有する。電磁放射線は第1リフレクタの第1焦点の略近傍に向けられて第1リフレクタから反射し、実質的に第2焦点で収束する。第2リフレクタは、第2焦点距離と、第1焦点と、第2焦点と第1光軸と一致しない第2光軸とを有する。ターゲットが、第2リフレクタの第2焦点を通過して第2リフレクタによって反射されて第2リフレクタの第1焦点において実質的に収束する放射線の少なくとも一部を受けとるように、第2リフレクタの第1焦点の略近傍に配置されている。第2リフレクタは第1リフレクタに対して、第1リフレクタの第2焦点と第2リフレクタの第2焦点とが略近傍に位置するように、配置、配向されている。第2リフレクタは第1リフレクタに対して非対称であり、これによって正味の出力結合効率が最適化される。
本発明の一実施例に拠れば、電磁放射線を収集し、この収集された放射線をターゲット上に合焦する方法が提供される。この方法は、電磁放射線を第1リフレクタの第1軸芯上の第1焦点の略近傍に向かわせる工程、第2リフレクタを第1リフレクタから反射された放射線の少なくとも一部を受け取るように第1リフレクタに対して配置、配向する工程、及び、ターゲットを第2リフレクタから反射された放射線の少なくとも一部を受け取るように第2リフレクタの焦点の近傍に配置する工程を有し、ここで、フレネル反射損失を効果的に減少させるべく、第2リフレクタは第1リフレクタに対して非対称である。
本発明の一実施例に拠れば、電磁放射線を収集し、この収集された放射線をターゲット上に合焦する方法が提供される。この方法は、第1リフレクタが第1リフレクタから反射された放射線を第1光軸上の第2焦点に収束させるように、電磁放射線を第1リフレクタの第1光軸上の第1焦点の略近傍に向けさせる工程、第2リフレクタの第2光軸上の第1焦点が第1リフレクタの第2焦点の略近傍に位置するように第2リフレクタを配置し、それによって、第1リフレクタから反射された収束する放射線が第1リフレクタの第1焦点を通過し、第2リフレクタによって第2光軸上の第2焦点に向けて方向転換される工程、及び、ターゲットを第2リフレクタの第2焦点の近傍に配置する工程を有し、ここで、フレネル反射損失を有効に減少させるために第2リフレクタは第1リフレクタに対して非対称である。
コリメートリフレクタと合焦リフレクタとの間にはフィルタやその他の光学素子を設けることができる。
第1及び第2リフレクタの形状は、システムの要請に応じて楕円面または放物面から逸脱してもよい。同様に、第1及び第2リフレクタは、楕円に近いトロイド状や楕円に近い球面形状にしてもよい。
本発明の実施例を、貼付の図面を参照して説明するが、これらの異なる図面において類似の構成要素または特徴構成は類似の参照番号によって示されている。
図面を参照して、本発明の実施例について説明する。これらの実施例は、本発明の原理を例示するものであって、本発明の範囲を限定するものと解釈されるべきではない。
本発明の代表的な実施例を図示している図5−6及び8−10を参照すると、本発明には下記の4つの主要コンポーネント、即ち、電磁光源10、第1リフレクタ20、第2リフレクタ30、及び、ターゲットまたはテーパ付き光パイプ(TLP)50が関連する。
電磁光源10は、好ましくは、エンベロープ12を有する光源である。最も好ましくは、電磁光源10は、キセノンランプ、メタルハライドランプ、HIDランプ、水銀ランプなどのアークランプである。一部の用途では、下記に詳述するように、システムをランプの不伝導性でないフィラメント(non-opaque filaments)に適合するべく改造すれば、ハロゲンランプなどのフィラメントランプを使用することができる。但し、光源のサイズがターゲットに近似するか若しくは小さければ、任意の電磁放射線光源(例えば、ファイバ、フィラメントランプ、ガス放電ランプ、レーザ、LED、半導体等)を使用することができる。
ここで電磁光源のサイズは、この光源の輝度(角度範囲に渡る束密度)を特徴付ける強度等高線マップのl/e倍強度によってより良く定義される。輝度はアークギャップのサイズに関連し、結合効率の理論的限度を決定する。アークランプの具体例では、等高線(contour)は、軸芯方向の対称性を近似するものであり、電気定格、電極設計、組成、ガス圧、アークギャップサイズ、ガス組成の複合関数である。非球面エンベロープを有するアークランプの具体例では、リフレクタによって撮像される電磁光源の有効相対位置及び強度分布は収差を受ける。これは実質的にレンズとして作用するエンベロープの形状によって引き起こされ、相殺するための光学素子が必要となる。エンベロープによって引き起こされる非点収差を相殺するようにリフレクタの設計を変更すること、または、電磁光源とターゲットとの間に修正用光学素子を挿入することによって光学的相殺は達成できる。更に、フレネル反射を最小限にするためにエンベロープに光学コーティングを塗布することができ、これによって、ターゲットにおいて収集可能な放射を最大化する、或いは、放射束を制御および/または濾過することができる。
第1リフレクタ20は、光軸22と焦点24,26とを有する回転楕円または回転放物面の一部から構成される。この第1リフレクタ20は、好ましくは、反射コーティング28(例えばアルミニウムまたは銀)を有し、その表面は良好に研磨されている。用途によって、第1リフレクタ20は波長選択性多層誘電コーティングによってコーティングされたガラスから形成することができる。例えば、反射コーティング28は可視光に適用するための、可視波長域でのみ高い反射率を示すコールドコーティングとすることができる。光源10を第1リフレクタ20の第1焦点24に配置すると、第1リフレクタ20に当たる電磁放射線は、第1リフレクタ20の第2焦点26に収束するエネルギービームとして反射される。光源20がアークランプである場合、アークギャップが第1リフレクタ20の焦点距離よりも小さいことが好ましい。
第2リフレクタ30は、光軸32と焦点34,36とを有する回転楕円または回転放物面の一部から構成される。この第2リフレクタ30も、上述したように、光エネルギーを選択反射するコーティング38を備えることができる。第2リフレクタ30は形状またはサイズが第1リフレクタ20と異なるものであっても良い。この場合、これら第1と第2リフレクタとは互いに非対称である。
第2リフレクタ30の位置と向きは、第1楕円リフレクタ20によって反射された電磁放射線が第2リフレクタ30の第2焦点36に収束するように設定されている。放射線は、第2リフレクタ30の表面に当たるまで進み、その後、第2リフレクタ30の第1焦点34に向けて合焦される。第1リフレクタ20と第2リフレクタ30との間の倍率を最適化する(即ち、光源と実質的に同じサイズの像が合焦される)ためには、可能な範囲で最大の輝度を有する第1焦点34における合焦を達成するために、第1リフレクタ20の表面部分によって反射され合焦される電磁放射線のそれぞれの線が、第2リフレクタ30の実質的に対応する表面部分によって反射され合焦されることが重要である。可能な範囲で最大の輝度を有する第1焦点34における合焦を達成するためには、第1リフレクタ20と第2リフレクタ30との間の倍率を最適化する(即ち、光源と実質的に同じサイズの像が合焦される)ために、第1リフレクタ20の表面部分によって反射され合焦される電磁放射線のそれぞれの線が、第2リフレクタ30の実質的に対応する表面部分によって反射され合焦されることが重要である。本開示の文脈では、第1リフレクタ20と第2リフレクタ30との互いの位置及び向きは、第1リフレクタ20の表面部分によってコリメートされる電磁放射線の各線が第2楕円面状リフレクタ30の実質的に対応する表面部分によって合焦されるように設定されている。
ターゲット50は、可能な限り最大の強度の照明を必要とする小さな物体である。本発明の一実施例では、ターゲット50は、図6に示されているように、光パイプ、テーパ付き光パイプ、単一コア光ファイバ、複数の光ファイバの融合された束、ファイバ束、等の導波管である。ターゲットの入力端部(例えば、光ファイバの基端部)は、第2リフレクタ30によって反射された電磁放射線の合焦された放射線を受け取るべく、第2リフレクタ30の第1焦点34に配置されている。
本発明の光収集、凝集システムが照明または画像の投影の用途に適当される場合、出力がより均一になるように、ターゲットにおける出力強度プロファイルを均質化する必要がある。例えば、内視鏡検査等の医療処置中の照明では、医師が照明の中心領域と周辺領域とを同等の明瞭度で観察できるように、均一な照明を得ることが望ましい。光ファイバを使用した照明の場合、均一な強度が得られれば、ホットスポットによる損傷無しに、特定の光ファイバ構造により高い出力を結合させることが可能になる。投影の場合には、スクリーンに均一な強度プロファイルを作り出すためには、均一な強度が必要であろう。特に、視覚的美観のためには、表示画像の中心と周辺部とが同じレベルの照明となることが望ましい。
したがって、図5に示すように、ターゲットは出力輝度プロファイルを調節するホモジナイザでも良い。導波管は、図7a−7fに示すような多角形断面(正方形、矩形、三角形、等)、或いは、図7g−7hに示すように、丸みを帯びた断面(円形、楕円形、等)のものとすることができる。
開口率とサイズに関する出力要求次第で、ホモジナイザを、サイズが小から大に、または、その逆になるテーパ状にしても良い。この場合、ターゲット50は、図7iに示すように次第に大きくなるテーパ状導波管、または、図7jに示すように次第に小さくなるテーパ状導波管となり得る。このようにして、ホモジナイザは照明の出力形状を変化させることができる。例えば、光源60がコンデンサレンズ80と投影レンズ90とを介してターゲット50の出力流の中に配置されることで投影画像70を作り出す投影ディスプレイでは、ホモジナイザの理想的な出力は、ディスプレイの形式に応じて、幅対高さの比率が4対3または16対9またはその他の矩形形状となるであろう。しかしながら、両方向における照明放射角は近似すべきであり、従って、この光学システムでは円形投影レンズ90を効率的に使用できる筈である。
ターゲットと光源とは本発明の収集、凝集システムと密接に関連するものの、本発明の一実施例によるシステムでは、単一の焦点を共有する(即ち、第1リフレクタ20の第2焦点26と第2リフレクタ30の第2焦点36とが実質的に同一位置に配置される)ようにサイズおよび/または形状が僅かに異なる二つのリフレクタが使用されている。
収集、凝集システムの説明を続けると、図5及び6に示す構成では、第1リフレクタ20と第2リフレクタ30とは、互いに凹状となるように、互いに対向した対面関係で配置されている。図5及び6の構成では、第1リフレクタ20と第2リフレクタ30とを、各光軸22,32どうしが同一直線上にあり、且つ、倍率を最適化するべく第1リフレクタ30の反射面が第2リフレクタ30の実質的に対応する反射面に対して対向−対面関係となるように配置することで光学対称性が達成されている。
図5−6では、光源10によって作り出される電磁放射線の種々の可能な光路という観点から両リフレクタの作用を示すために3本の光線a,b及びcが記されている。図5−6では、収差を減らすという本発明の光学システムの有効性を示すために、光線a,b及びcは図4の場合と略同じ位置にある。光源10から放射された各光線a,b及びcは、第1リフレクタ20の異なる点に衝突し、各点は光源10から異なる距離にある。しかし、各光線a,b及びcはまた、第2リフレクタ30の対応した位置からターゲット50上に合焦されるので、これら三つの光線において実質的に1:1の倍率、或いは僅かな増加倍率を作り出している。
前と同様に、光線aは光源10と第1リフレクタ20からの距離が最も短いため、光線b及びcと比較して、より大きな発散を作り出す。本発明の光学システムでは、光源からの放射線は、第1リフレクタ20の第1焦点24から第2焦点26へと合焦される。その結果、光源10からの放射線の進行距離は、たとえ光線a等の大きな角度で放出されるものでも、放物面状リフレクタを使用する図4のシステムにおける対応の距離よりも大きい。光線a,b及びcの距離が今や比較的に均一であるため、この大きな距離によって収差の量が減少する。
収差を更に減少させるために、図6は、第1リフレクタ20’と第2リフレクタ30’がより大きな偏心度を有した(即ち、これら第1及び第2リフレクタ20’及び30’はより円形に近い)本発明の実施例を図示している。この実施例では第1及び第2リフレクタ20’及び30’の曲率半径が大きい結果、第1リフレクタ20’の第1焦点24’と第2リフレクタ30’の第1焦点34’との間の距離は減少している。同時に、これらリフレクタ20’及び30’の曲率半径の増加によって、第1リフレクタ20’とその第1焦点24’との間の光線aに沿った距離が増大している。同様に、第2リフレクタ30’とその第1焦点34’との間の光線aに沿った距離が増大している。その結果、図6における光線a,b及びcの放射線光源10’と第1リフレクタ20’との間の移動距離は、図5の実施例と比較してより均一である。この特徴構成によって、システムは、たとえ光線aに類似のエネルギー進行路のように光軸22’の近傍を移動する電磁エネルギーの場合でも、光源とターゲットとの間の収差を低減することができる。
同じ光線cの経路を図5と図6とで比較することによって、光源10からの同じ角度の出力放射線を収集するのに、図6の実施例で使用しているリフレクタ20’及び30’の方が楕円のより大きな部分をカバーすることが理解出来る。しかし、図6のリフレクタ20’、30’は、図5のリフレクタ20’及び30’と略同じ直径を有することがわかる。
図5及び6に示すように、本発明の収集−凝集システムはレトロリフレクタ40の使用を受け入れ可能であり、これは実施例では球状のレトロリフレクタ(retro-reflector)として示されている。このレトロリフレクタ40は、光源10によって放出される電磁放射線のうち、もしレトロリフレクタ40が無ければ第1楕円面状リフレクタ20に衝突することはない電磁放射線を捕捉するように配置されている。具体的には、球状レトロリフレクタ40は、光源10から第1リフレクタ20と離間する方向に放出された放射線が、レトロリフレクタ40によって反射されて、第1リフレクタ20の第1焦点を通るように戻り、その後、第1リフレクタ20へと向かうように構成、配置されている。この第1リフレクタ20によって追加的に反射される放射線が、光源20から直接に第1リフレクタ20に衝突する放射線に加えられ、それによって、第2リフレクタ30に向けて反射される放射線の強度を増大させる。その結果、第2リフレクタ30の第1焦点34での放射線の強度も増大する。
もしもフィラメントランプが光源10として使用される場合は、再帰反射された放射線は第1焦点24に位置する不透明フィラメントによって阻止されるので、レトロリフレクタを、放射線が第1リフレクタ20の第1焦点24を通って戻り合焦させるように配向することはできない。この場合、レトロリフレクタ40の位置は、再帰反射された放射線が厳密には第1焦点24を通過せず、その近傍を通過するように調整されるべきである。
尚、幾つかの種類のレトロリフレクタ40が公知であり、いずれも本発明に使用することが可能である。例えば、球状レトロリフレクタ40に代えて、光源10のアークサイズと同じまたは小さなサイズの単位素子を備える二次元コーナーキューブアレイ(図示せず)によって再帰反射(retro-reflecting)機能を実行することが可能である。二次元コーナーキューブアレイの使用によって、レトロリフレクタを正確に配置する必要が無くなり、光源10のアークにおいてよりタイトな焦点が作り出される。
さらに、上記実施例では第1及び第2リフレクタが楕円面または放物面形状を備える構成について記載したが、本発明では、これら第1及び第2リフレクタ20,30は、理想の楕円面または放物面の幾何学形状から僅かに異なる形状を使用しても同様である(approximated)ことが判明しており、また、そのように予期されている。例えば、第1及び第2リフレクタ20,30は、バルブエンベロープ(bulb envelopes)、フィルタといった種々のパラメータを補償するように改変された楕円面または放物面形状としても良い。この場合、略楕円面または放物面形状のリフレクタ20及び30の形状に於ける逸脱(deviation)は小さくて良く、最終出力は最適値と僅かに異なるかも知れない。リフレクタ20及び30のコストを削減するために、または、特殊なランプタイプ及びアーク形状における性能を改善するためにも、リフレクタの形状の改変を導入することができる。例えば、本発明では、リフレクタ20及び30を、より低いコストで製造可能な、トロイダル状リフレクタ(二つの垂直で異なる曲率半径を有する)または球状リフレクタとしても同様であることが判明しており、また、そのように予期されている。もしも非楕円面リフレクタが使用される場合には、出力結合は最適ではないかもしれないが、第1及び第2リフレクタ20,30によるコスト減は、非効率的な結合による損失を十分に正当化する。
標準的なDPRシステムでは、二つのリフレクタは互いに対称である。アークの画像は、楕円または放物面状リフレクタシステムの場合のように概して歪んだり、ぼやけたりしない。結合効率は特に放射領域(entendue)が小さい用途の場合により高い。標準DPRシステムの特徴は、テーパ状光パイプまたはターゲット50に入射する光が、図8bに示すように、フレネル反射損失が高いグレイジング角度である±90°にも達し得ることにある。次に図8aを参照すると、本発明の一実施例に拠れば、デュアル放物面状リフレクタ(DPR)システム100は、互いに非対称な第1リフレクタ20と第2リフレクタ30とを含む。或いは、第1及び第2リフレクタ20,30を、形状および/またはサイズの異なる二つの部分を備える単一リフレクタによって置き換えることができる。これら二つのリフレクタ20,30の非対称関係によって僅かな倍率が生じ、それが画像の歪みを招く。しかし、TPL50に入力される光または放射線は、標準SDRシステムよりも小さな入射角を有しているので、それによって正味の出力結合効率が最大化される。
本発明の一実施例に拠れば、図9aのDPRシステム200は、電磁光源10と、第1リフレクタ20と第2リフレクタ30とTLP50とを有し、ここで、2つのリフレクタ20,30は僅かな拡大が行われるように非対称である。或いは、第1及び第2リフレクタ20,30を、形状および/またはサイズの異なる二つの部分を備える単一リフレクタによって置き換えることができる。本発明の1態様に拠れば、第2リフレクタ30は第1リフレクタ20よりも大きく、第2リフレクタ30よりも長い焦点距離を有する。僅かな拡大によって少量の画像歪みが生じるが、TPL50に入力される光または放射線は標準SDRシステムよりも小さな入射角を有しているのでフレネル損失は低減される。
第1リフレクタ20は、光軸22(または焦点の軸芯22)を有する放物面状リフレクタであることが好ましく、第2リフレクタ30は、光軸32(または焦点の軸芯32)を有する放物面状リフレクタであることが好ましい。二つの光軸22,32は一致しない。その結果として第2リフレクタ30からTLP50上へ入射した光が図9bに示されている。出力部または第2リフレクタ30が入力部または第1リフレクタ20と同じ合焦面22に調整される時、図9bに示すように、出力または第2リフレクタ30の焦点軸芯32はDPRシステム200の外側に位置する。これによって、入射角が±90°よりも小さくなるのでフレネル反射の作用が減少する。
DPR200またはデュアル楕円面状リフレクタ(DER)システム300を、光線追跡(ray tracing)を使用して設計することができる。本発明に於けるフレネル反射の減少によって得られる利点は、DPRまたはDERシステム200の非対称性による画像の僅かな歪みによって部分的に失われる。その結果、本システムは、正味の出力結合効率を最大化するフレネル反射損失と画像収差または歪みとの間のトレードオフを最適化する。
本発明の一実施例に拠れば、図10のDERシステム200は、電磁光源10と第1リフレクタ20と第2リフレクタ30とTLP50とを有し、ここで、二つのリフレクタ20,30は、僅かな拡大が行われるように非対称である。本発明の1態様に拠れば、第2リフレクタ30は第1リフレクタ20よりも大きく、第2リフレクタ30よりも長い焦点距離を有する。僅かな拡大によって少量の画像歪みが生じるが、TPL50への入力光の入射角は小さいので、それによってフレネル損失が減少する。
第1リフレクタ20は、好ましくは、光軸22(または焦点の軸芯22)を有する楕円面状リフレクタであり、第2リフレクタ30は、好ましくは、光軸32(または焦点の軸芯32)を有する楕円面状リフレクタである。二つの光軸22,32は一致しない。その結果として第2リフレクタ30からTLP50上へ入射する光はDPRシステム200の場合の図9bに示すものと類似したものとなる。出力部または第2リフレクタ30が入力部または第1リフレクタ20と同じ合焦面22にトリミングされる時、出力または第2リフレクタ30の焦点軸芯32は、図9bに示すように、DPRシステム300の外側に位置する(DPRシステム200の場合の図9bに図示したものに類似)。これによって、入射角が±90°よりも小さくなって、それによってフレネル反射の作用が減少する。
以下、本発明のいくつかの具体例を提供する。これらの具体例は、本発明のいくつかの可能な実施を例示するためのものであって、本発明の範囲を限定することを意図するものではない。
実施例
本発明による第1対の実施例光学システムは、その光源として約100ワットの低ワット型ランプを使用する。図5の実施例による反射システムでは、第1及び第2リフレクタのそれぞれは2.5インチの直径を有し、光源とターゲットとの間の分離間隔(即ち、焦点間の距離)は約5インチである。これと対照的に、図6に示す実施例による偏心度の大きな低ワット型反射システムは、それぞれが約2.5インチの直径を有する類似のサイズの第1リフレクタと第2リフレクタを使用するが、光源とターゲットとの間の距離は約2インチである。
高ワット用途では、光学システムは、より高い電磁エネルギーレベルの所望の収集と、潜在的により大きなランプと適合すべく比較的大型とされる。例えば、図5の構成で約5,000ワットの高ワット型ランプを使用する場合、主リフレクタのそれぞれは20インチの直径を有し、光源とターゲットとの間隔は約40インチである。前と同様、図6の実施例は、類似のサイズの主リフレクタを使用しているが、光源とターゲットとの間の距離は減少している。例えば、図6の実施例による高ワット型光学システムの実施例も、約20インチの直径の第1及び第2リフレクタを有するが、光源とターゲットとの間の距離は16インチである。
以上、本発明について説明したが、当業者においては、本発明の主旨及び範囲から逸脱することのない種々の改造構成が自明であろう。これらのすべての改造構成も請求項の範囲内に含まれるものと理解される。
放物面状リフレクタと合焦レンズとを使用する公知の光軸上型凝集−収集光学システムを断面で示す略図 楕円面状リフレクタを使用する公知の光軸上型凝集−収集光学システムを断面で示す略図 公知の光軸外型凝集−収集光学システムを断面で示す略図 二つの放物面状リフレクタを使用する公知の光軸上型凝集−収集光学システムを断面で示す略図 本発明の実施例に依る、より大きな二つの放物面状リフレクタを使用する公知の光軸外型凝集−収集光学システムを断面で示す略図 本発明の実施例によるより大きな偏心度を有する二つのリフレクタを使用する凝集−収集光学システムの断面図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例に使用可能な複数の導波管ターゲットの断面の略図 本発明の実施例によるデュアル放物面状リフレクタシステムの略図 標準放物面状リフレクタシステムでの入射角の略図 本発明の実施例によるデュアル放物面状または楕円面状リフレクタシステムの略図 本発明の実施例によるデュアル放物面状または楕円面状リフレクタシステムの略図 本発明の実施例によるデュアル放物面状または楕円面状リフレクタシステムの略図

Claims (36)

  1. ターゲットを電磁放射線によって照明するための光学装置であって、以下を有する、
    第1焦点と第1光軸とを有する第1リフレクタ、前記電磁放射線は、前記第1リフレクタの前記第1焦点の近傍に向けられる、
    第2焦点と第2光軸とを有する第2リフレクタ、前記第2リフレクタは、前記第1リフレクタに対して、前記第1リフレクタから反射された放射線の少なくとも一部を受け、この放射線の前記一部を前記第2リフレクタの前記第2焦点の近傍に位置するターゲットに対して反射するように、配置、配向されており、前記第2リフレクタは前記第1リフレクタに対して非対称である。
  2. 前記第1リフレクタは第1焦点距離を有し、前記第2リフレクタは前記第1焦点距離と異なる第2焦点距離を有することを特徴とする請求項1の光学装置。
  3. 前記第2リフレクタの前記第2焦点距離は、前記第1リフレクタの前記第1焦点距離よりも長く、これによって前記ターゲットに入力される前記放射線の入射角を減少させることを特徴とする請求項2の光学装置。
  4. 前記第1及び第2リフレクタの非対称性は、出力結合効率を最大化するように選択されることを特徴とする請求項1の光学装置。
  5. 前記第1焦点距離と前記第2焦点距離との間の焦点距離差は、フレネル反射損失と画像収差との間のトレードオフを最適化するように選択されることを特徴とする請求項2の光学装置。
  6. 前記第1及び第2リフレクタのそれぞれは、回転楕円面または回転放物面の少なくとも一部を含むことを特徴とする請求項1の光学装置。
  7. 前記第1及び第2リフレクタのそれぞれは、回転楕円面または回転トロイド面の少なくとも一部を含むことを特徴とする請求項1の光学装置。
  8. 前記第2光軸は前記第1光軸と一致しないことを特徴とする請求項1の光学装置。
  9. 前記電磁放射線の一部は前記第1リフレクタに直接当たり、前記電磁放射線の一部は前記第1リフレクタに直接当たらないこと、及び、前記装置は、更に、前記収束線の束強度を増大させるために、前記第1リフレクタに直接当たらない前記電磁放射線の部分の少なくとも一部を、前記第1リフレクタの前記第1焦点を通して前記第1リフレクタに向けて反射するように構成−配置された追加リフレクタを有することを特徴とする請求項1の光学装置。
  10. 前記追加リフレクタは、前記第1リフレクタから離間して放出された電磁放射線を、前記第1リフレクタの前記第1焦点を経て前記第1リフレクタに反射するために、前記第1リフレクタの前記第1焦点に対して第1リフレクタと反対側に配置された球面状レトロリフレクタを含むことを特徴とする請求項9の光学装置。
  11. 前記第1光軸及び第2光軸は互いに平行であること、及び、前記第1及び第2リフレクタは、互いに対向−対面する関係に配置されていることを特徴とする請求項2の光学装置。
  12. 更に、前記ターゲットにおいて収集、凝集された前記放射線によって照明される画像光源を有し、前記画像光源は記憶された画像を含み、この記憶画像が前記放射線によって投影されることを特徴とする請求項1の光学装置。
  13. 前記第1及び第2リフレクタのそれぞれは、前記第1リフレクタの前記第1焦点と前記ターゲットとの間の距離よりも大きな直径を有することを特徴とする請求項1の光学装置。
  14. 前記ターゲットはテーパ状導光体であることを特徴とする請求項1の光学装置。
  15. ターゲットを電磁放射線によって照明するための光学装置であって、以下を有する、
    第1焦点と第2焦点と第1光軸とを有する第1リフレクタ、前記電磁放射線は、前記第1リフレクタの前記第1焦点の近傍に向けられて、前記第1リフレクタから反射し、前記第2焦点に収束する、及び
    第1焦点と第2焦点と第2光軸とを有する第2リフレクタ、前記第2リフレクタの前記第2焦点を通って前記第2リフレクタによって反射されて前記第2リフレクタの前記第1焦点に収束する放射線の少なくとも一部を受けるターゲットが、前記第2リフレクタの前記第1焦点の近傍に位置しており、前記第2リフレクタは、前記第1リフレクタに対して、前記第1リフレクタの前記第2焦点と前記第2リフレクタの前記第2焦点とが近傍に位置するように配置、配向されており、前記第2リフレクタは前記第1リフレクタに対して非対称である。
  16. 前記第1リフレクタは第1焦点距離を有し、前記第2リフレクタは前記第1焦点距離と異なる第2焦点距離を有することを特徴とする請求項15の装置。
  17. 前記第2リフレクタの前記第2焦点距離は前記第1リフレクタの前記第1焦点距離よりも長く、これによって前記ターゲットに入力される放射線の入射角が減少されることを特徴とする請求項16の光学装置。
  18. 前記第1及び第2リフレクタの非対称性は、出力結合効率を最大化するように選択されることを特徴とする請求項15の光学装置。
  19. 前記第1焦点距離と前記第2焦点距離との間の焦点距離差は、フレネル反射損失と画像収差との間のトレードオフを最適化するように選択されることを特徴とする請求項16の光学装置。
  20. 前記第1及び第2リフレクタのそれぞれは、回転楕円面の少なくとも一部を含むことを特徴とする請求項15の光学装置。
  21. 前記第1及び第2リフレクタのそれぞれは、回転楕円面または回転トロイド面の少なくとも一部を含むことを特徴とする請求項15の光学装置。
  22. 前記第2光軸は前記第1光軸と一致しないことを特徴とする請求項15の光学装置。
  23. 前記電磁放射線の一部は前記第1リフレクタに直接当たり、前記電磁放射線の一部は前記第1リフレクタに直接当たらないこと、及び、前記装置は、更に、前記収束線の束強度を増大させるために、前記第1リフレクタに直接当たらない前記電磁波の部分の少なくとも一部を前記第1リフレクタの前記第1焦点を通して前記第1リフレクタに向かわせるように構成、配置された追加リフレクタを有することを特徴とする請求項15の光学装置。
  24. 前記追加リフレクタは、第1リフレクタから離間して放出された電磁放射線を第1リフレクタの前記第1焦点を通って前記第1リフレクタに向けて反射するために、第1リフレクタの前記第1焦点に関して前記第1リフレクタと反対側に配置された球面状レトロリフレクタを含むことを特徴とする請求項23の光学装置。
  25. 前記第1及び第2光軸は互いに平行であり、前記第1及び第2リフレクタは、互いに、対向、対面する関係となるように配置されていることを特徴とする請求項16の光学装置。
  26. 更に、前記ターゲットにおいて収集、凝集された前記放射線によって照明される画像光源を有し、前記画像光源は記憶された画像を含み、この記憶された画像が前記放射によって投影されることを特徴とする請求項15の光学装置。
  27. 前記第1及び第2リフレクタのそれぞれは、前記第1リフレクタの前記第1焦点と前記ターゲットとの間の距離よりも大きな直径を有することを特徴とする請求項15の光学装置。
  28. 前記ターゲットはテーパ状導光体であることを特徴とする請求項15の光学装置。
  29. 電磁放射線を収集し、この収集された放射線をターゲット上に合焦する方法であって、該方法は以下の工程を含む、
    前記電磁放射線を第1リフレクタの第1光軸上の第1焦点の近傍に向かわせる工程、
    前記第1リフレクタから反射された前記放射線の少なくとも一部を受け取るように第2リフレクタを前記第1リフレクタに対して配置、配向する工程、及び
    前記第2リフレクタから反射された前記放射線の少なくとも一部を受け取るように前記ターゲットを前記第2リフレクタの焦点の近傍に配置する工程、ここで、出力結合効率を最適化するために前記第2リフレクタは前記第1リフレクタに対して非対称である。
  30. 更に、前記ターゲットに入力される前記放射線の入射角を減少させる工程を有することを特徴とする請求項29の方法。
  31. 更に、出力結合効率を最大化するために前記第1及び第2リフレクタの非対称特性を選択する工程を有することを特徴とする請求項29の方法。
  32. 更に、出力結合効率が最大となるように、フレネル反射損失と画像収差との間のトレードオフを最適化する工程を有することを特徴とする請求項29の方法。
  33. 電磁放射線を収集し、この収集された放射線をターゲット上に合焦する方法であって、該方法は以下の工程を有する、
    第1リフレクタが第1リフレクタから反射された放射線を前記第1光軸上の第2焦点に収束させるように、前記電磁放射線を第1リフレクタの第1光軸上の第1焦点の近傍に向けさせる工程、
    第2リフレクタの第2光軸上の第1焦点が前記第1リフレクタの第2焦点の近傍に位置するように第2リフレクタを配置する工程、これによって、前記第1リフレクタから反射された収束する放射線が前記第1リフレクタの前記第1焦点を通過し、前記第2リフレクタによって前記第2光軸上の第2焦点に向けて方向転換される、及び
    前記ターゲットを前記第2リフレクタの前記第2焦点の近傍に配置する工程、ここで、フレネル反射損失を有効に減少させるために、前記第2リフレクタは前記第1リフレクタに対して非対称である。
  34. 更に、前記ターゲットに入力される前記放射線の入射角を減少させる工程を有することを特徴とする請求項33の方法。
  35. 更に、出力結合効率が最大となるように、前記第1及び第2リフレクタの非対称特性を選択する工程を有することを特徴とする請求項33の方法。
  36. 更に、出力結合効率が最大となるように、フレネル反射損失と画像収差との間のトレードオフを最適化する工程を有することを特徴とする請求項33の方法。
JP2008519619A 2005-06-30 2006-06-29 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム Expired - Fee Related JP4987866B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US69593405P 2005-06-30 2005-06-30
US60/695,934 2005-06-30
US11/274,241 US20060061894A1 (en) 2000-03-27 2005-11-14 Coupling of light from a light source to a target using dual ellipsoidal reflectors
US11/274,241 2005-11-14
PCT/US2006/025608 WO2007005624A2 (en) 2005-06-30 2006-06-29 Dual paraboloid reflector and dual ellipsoid reflector systems with optimized magnification

Publications (2)

Publication Number Publication Date
JP2009510669A true JP2009510669A (ja) 2009-03-12
JP4987866B2 JP4987866B2 (ja) 2012-07-25

Family

ID=39481125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008519619A Expired - Fee Related JP4987866B2 (ja) 2005-06-30 2006-06-29 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム

Country Status (5)

Country Link
JP (1) JP4987866B2 (ja)
KR (1) KR101324807B1 (ja)
CN (1) CN101189472B (ja)
HK (1) HK1120853A1 (ja)
TW (1) TW200700784A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170596A (ja) * 2014-03-10 2015-09-28 ザ・ボーイング・カンパニーTheBoeing Company 光ホモジナイザを有するライトアセンブリ
CN115494050A (zh) * 2022-11-15 2022-12-20 四川碧朗科技有限公司 一种微光收集方法、微光收集装置及发光菌微光检测模组

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243366A (zh) * 2010-05-13 2011-11-16 富士迈半导体精密工业(上海)有限公司 聚光元件及太阳能发电装置
CN102330949A (zh) * 2011-07-05 2012-01-25 武汉全真光电科技有限公司 投影用新型光学装置及其制造方法
KR101340605B1 (ko) * 2011-09-17 2013-12-10 박찬식 광섬유를 이용한 광전송 장치
TW201326778A (zh) * 2011-12-30 2013-07-01 Metal Ind Res & Dev Ct 具有橢圓曲面構造之光學量測輔助器及光學量測系統
KR20160008673A (ko) 2014-07-14 2016-01-25 서강대학교산학협력단 광섬유 전달 링크를 이용한 집광 장치
CN105376557B (zh) * 2014-08-29 2019-12-17 陈雁北 成像补偿装置和成像补偿方法
TWI601910B (zh) 2016-09-13 2017-10-11 錼創科技股份有限公司 光源模組
CN111323376B (zh) * 2020-04-16 2023-03-28 中国科学院电工研究所 一种平行入射的红外热辐射光声光谱气体传感装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819649A (en) * 1956-02-01 1958-01-14 Eastman Kodak Co Reflecting condenser system for projectors
JPH0398126U (ja) * 1990-01-30 1991-10-11
JP2003059303A (ja) * 2001-08-01 2003-02-28 Prokia Technology Co Ltd 照明光学系統及びそれを用いた投写型表示装置
JP2004519010A (ja) * 2001-02-05 2004-06-24 ウェイビエン・インコーポレイテッド テーパ光パイプを用いた投影ディスプレイ用の照明エンジン
WO2004092823A1 (ja) * 2003-04-18 2004-10-28 Matsushita Electric Industrial Co., Ltd. 光源装置、照明装置および投写型表示装置
JP2005512150A (ja) * 2001-05-25 2005-04-28 ウェイビエン・インコーポレイテッド レンズおよびテーパを設けた光導波管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2018829A (en) * 1933-12-22 1935-10-29 Philip J Berry Headlight
DE2822579C3 (de) * 1978-05-24 1982-02-04 Fa. Carl Zeiss, 7920 Heidenheim Optisches Abbildungssystem
US4357075A (en) * 1979-07-02 1982-11-02 Hunter Thomas M Confocal reflector system
JP2786796B2 (ja) * 1993-06-23 1998-08-13 シャープ株式会社 プロジェクター
US5707131A (en) * 1996-01-24 1998-01-13 Cogent Light Technologies, Inc. Collections and condensing optical system using cascaded concave reflectors
EP1196717B1 (en) * 1999-07-01 2007-01-10 Wavien, Inc. Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors
US6634759B1 (en) * 2000-03-27 2003-10-21 Cogent Light Technologies, Inc. Coupling of light from a light source to a target using dual ellipsoidal reflectors
EP1368681A4 (en) * 2001-02-21 2005-08-03 Wavien Inc FILAMENT LAMPS LIGHTING SYSTEM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2819649A (en) * 1956-02-01 1958-01-14 Eastman Kodak Co Reflecting condenser system for projectors
JPH0398126U (ja) * 1990-01-30 1991-10-11
JP2004519010A (ja) * 2001-02-05 2004-06-24 ウェイビエン・インコーポレイテッド テーパ光パイプを用いた投影ディスプレイ用の照明エンジン
JP2005512150A (ja) * 2001-05-25 2005-04-28 ウェイビエン・インコーポレイテッド レンズおよびテーパを設けた光導波管
JP2003059303A (ja) * 2001-08-01 2003-02-28 Prokia Technology Co Ltd 照明光学系統及びそれを用いた投写型表示装置
WO2004092823A1 (ja) * 2003-04-18 2004-10-28 Matsushita Electric Industrial Co., Ltd. 光源装置、照明装置および投写型表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170596A (ja) * 2014-03-10 2015-09-28 ザ・ボーイング・カンパニーTheBoeing Company 光ホモジナイザを有するライトアセンブリ
US10151445B2 (en) 2014-03-10 2018-12-11 The Boeing Company Light assembly having light homogenizer
CN115494050A (zh) * 2022-11-15 2022-12-20 四川碧朗科技有限公司 一种微光收集方法、微光收集装置及发光菌微光检测模组
CN115494050B (zh) * 2022-11-15 2023-03-10 四川碧朗科技有限公司 一种微光收集方法、微光收集装置及发光菌微光检测模组

Also Published As

Publication number Publication date
TW200700784A (en) 2007-01-01
CN101189472A (zh) 2008-05-28
KR20080043303A (ko) 2008-05-16
CN101189472B (zh) 2010-05-26
JP4987866B2 (ja) 2012-07-25
HK1120853A1 (en) 2009-04-09
KR101324807B1 (ko) 2013-11-01

Similar Documents

Publication Publication Date Title
CA2402560C (en) Coupling of light from a light source to a target using dual ellipsoidal reflectors
JP4987866B2 (ja) 最適化された倍率を有するデュアル放物面状リフレクタおよびデュアル楕円面状リフレクタシステム
US6856727B2 (en) Coupling of light from a non-circular light source
US7513630B2 (en) Compact dual ellipsoidal reflector (DER) system having two molded ellipsoidal modules such that a radiation receiving module reflects a portion of rays to an opening in the other module
JP2009122686A (ja) 光学装置
JP2003528348A (ja) 放物面反射体を用いた投影システム用の小型光源からの光の結合
US6619820B2 (en) Light condensing and collecting systems using lensed light pipes
US7631989B2 (en) Dual paraboloid reflector and dual ellipsoid reflector systems with optimized magnification
US6672740B1 (en) Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors
WO2007005624A2 (en) Dual paraboloid reflector and dual ellipsoid reflector systems with optimized magnification
EP1914573A2 (en) Coupling of light from a light source to a target using dual ellipsoidal reflectors
JP4311826B2 (ja) ライトガイド照明装置
EP1798579B1 (en) Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors
JPH06102439A (ja) 集光照明装置
JPH03216901A (ja) スポットライト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110804

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4987866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees