WO2004089822A1 - ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン - Google Patents

ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン Download PDF

Info

Publication number
WO2004089822A1
WO2004089822A1 PCT/JP2004/005012 JP2004005012W WO2004089822A1 WO 2004089822 A1 WO2004089822 A1 WO 2004089822A1 JP 2004005012 W JP2004005012 W JP 2004005012W WO 2004089822 A1 WO2004089822 A1 WO 2004089822A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
gas
atom
producing
encapsulated
Prior art date
Application number
PCT/JP2004/005012
Other languages
English (en)
French (fr)
Inventor
Rikizo Hatakeyama
Takamichi Hirata
Yasuhiko Kasama
Kenji Omote
Original Assignee
Ideal Star Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ideal Star Inc. filed Critical Ideal Star Inc.
Priority to US10/552,709 priority Critical patent/US20070009405A1/en
Priority to KR1020057018965A priority patent/KR101124178B1/ko
Priority to JP2005505305A priority patent/JP3989507B2/ja
Publication of WO2004089822A1 publication Critical patent/WO2004089822A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils

Definitions

  • the present invention relates to an apparatus and a method for producing a gas atom-containing fullerene and a gas atom-containing fullerene.
  • the gas atoms referred to here include hydrogen, nitrogen, fluorine, and the like which are gases at ordinary temperature, and also include sodium, power lime, etc. which are solid or liquid at ordinary temperature but can be treated as a gas at high temperature. Background art
  • Non-Patent Document 1 Journal of Plasma and Fusion Research, Vol. 75, No. 8, P. 927-933 (August 1999)
  • Fig. 7 As a production technology for endohedral fullerenes, the technology shown in Fig. 7 is proposed in Non-Patent Document 1. Has been done.
  • This technology involves producing fullerenes by injecting fullerenes into the plasma flow of the atoms to be included in a vacuum vessel and depositing the fullerenes on a deposition plate located downstream of the plasma flow.
  • this technique has a problem that the encapsulation rate is not good in the center of the deposition plate.
  • the endohedral fullerene is deposited almost entirely on the radially outer portion of the plasma flow, and there is a problem that the endohedral fullerene is hardly deposited on the radially inner side of the plasma flow.
  • the above technology is a technology relating to metal-encapsulated fullerenes, and at present, no technology relating to gas atom-encapsulated fullerenes is known.
  • An object of the present invention is to provide an apparatus and a method for producing an endohedral fullerene capable of producing gas atom-encapsulated fullerene with higher yield, and to provide a gas atom-enclosed fullerene. aimed to. Disclosure of the invention
  • An apparatus for producing a gas-atom-encapsulated fullerene of the present invention has a plasma generation chamber for generating a plasma having a gas inlet for introducing a gas containing an atom to be included therein, and communicating with the plasma generation chamber.
  • a vacuum vessel capable of forming a plasma flow to introduce fullerene into the plasma flow, and having means for controlling the energy of electrons in the plasma flow on the side of the plasma generation chamber in the vacuum vessel.
  • a gas atom-encapsulating fullerene producing apparatus characterized in that a potential body for forming an encapsulating fullerene by being combined with a fullerene ion by adjusting the velocity of an encapsulating target atomic ion is provided on the downstream side.
  • fullerenes that contain atoms that are ionized to a positive potential such as fullerenes containing hydrogen, nitrogen, and metal atoms
  • a gas containing atoms to be included is introduced from the gas inlet.
  • a plasma is generated in the plasma generation chamber, which is composed of ions of the target atoms and electrons, which are charged to a positive potential.
  • the plasma flow is controlled in one direction to form a plasma flow, and a negative voltage is applied to the electron energy control means to reduce the speed of the electrons.
  • the fullerene takes in electrons and is charged to a negative potential.
  • the speed of the ions of the inclusion target atoms charged to a positive potential is reduced to the moving speed of the fullerene ions, and is combined with the fullerene ions to facilitate formation of the included fullerene.
  • a halogen gas compound for example, CF 4
  • a halogen gas and an inert gas are introduced from a gas inlet.
  • a plasma is generated which is composed of positively charged compound ions (for example, CF 3 +) or inert gas ions and negatively charged charged cations.
  • the plasma flow is formed by controlling the plasma flow in one direction, and the electron energy control means is kept in a floating state.
  • the electrons of the fullerene are beaten out and fullerene ions charged to a positive potential are obtained.
  • Halogen charged to negative potential by applying negative voltage to potential body Of the fullerene ions is reduced to the moving speed of the fullerene ions, and is combined with the fullerene to facilitate the formation of the encapsulated fullerene.
  • the method for producing a gas atom-encapsulated fullerene according to the present invention includes a step of introducing a gas having an atom to be included into a plasma generation chamber, a step of generating plasma in the plasma generation chamber, and a step of flowing the plasma in one direction. Controlling to form a plasma stream; introducing fullerene into the plasma stream to ionize the fullerene; and combining the encapsulation target atomic ion and the fullerene ion to form an encapsulated fullerene.
  • a method for producing a gas atom-encapsulated fullerene characterized by comprising:
  • fullerenes that include atoms that are ionized to a positive potential, such as fullerenes containing hydrogen atoms and nitrogen atoms
  • the speed of the electrons that make up the plasma flow is controlled to adhere to the introduced fullerenes. It forms fullerene ions charged to a negative potential.
  • fullerenes that contain atoms that are ionized to a negative potential, such as halogen-containing fullerenes
  • a negative potential such as halogen-containing fullerenes
  • the fullerenes when they are introduced into the plasma flow, they are charged to a positive potential by knocking out the fullerene electrons with the accelerated plasma flow. Fullerene ions are formed.
  • the gas atom-containing fullerene of the present invention is a gas atom-containing fullerene characterized in that a part of the fullerene contains hydrogen ions, nitrogen ions, alkali metal atom ions, or halogen gas ions.
  • FIG. 1 is a conceptual diagram showing an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of how a coil is wound in a plasma generation chamber.
  • FIG. 3 is a diagram showing an example of another winding method of the coil in the plasma generation chamber.
  • FIG. 4 is a diagram showing an example of a potential body composed of a base.
  • FIG. 5 is a diagram showing an example of a potential body composed of a mesh-like body.
  • FIG. 6 is a diagram showing a storage container for the internal fullerene.
  • FIG. 7 is a conceptual diagram showing a conventional apparatus for producing a metal-encapsulated fullerene. (Explanation of code)
  • FIG. 1 shows an apparatus for producing an endohedral fullerene according to an embodiment of the present invention.
  • the apparatus includes a plasma generation chamber 6 11 for generating a plasma having a gas inlet 6 50 for introducing a gas 6 30 containing an atom to be included therein, and the plasma
  • a vacuum vessel 610 communicating with the generation chamber so that the fullerenes 651 can be introduced into the plasma flow 660, and an energy capable of attaching electrons to the fullerenes 651;
  • a means (energy control means) 604 for controlling the energy of the electrons in the plasma was provided on the side of the plasma generation chamber 611 in the vacuum vessel 610 so that the energy was controlled.
  • a gas generator is installed in front of the gas inlet port 65, and the metal generator is used to produce metal or other metals. What is necessary is just to make it gaseous and to introduce it from the gas inlet 650.
  • the plasma generation chamber 6 11 is made of an insulating material (for example, quartz).
  • a coil 62 is wound around the outer periphery of the plasma generation chamber.
  • the coil 62 is composed of, for example, two coils, and a high-frequency current flows from the high-frequency power supplies 62 1 and 62 2 respectively.
  • both coil element nonaques 6a and 6b are supplied.
  • a larger electric field difference occurs between b. If only one coil is wound, the heat generated by electromagnetic induction radiates outward, and energy is wasted.
  • the non-induction winding as in this example, the divergence of energy due to induction heating can be prevented, and the energy can be used intensively for plasma generation. Therefore, the plasma generated in the plasma generation chamber 6 11 Has a higher density throughout the entire region, thereby further improving the generation efficiency of products such as ions and radicals, and increasing the number of electrons adhering to fullerene in the vacuum vessel 610.
  • a first coil element 16 and a second coil element 17 forming a pair of discharge coils are arranged in parallel and spirally wound, and the first and second coil elements High-frequency powers having mutually different phases may be applied to the coil elements.
  • the high frequency is applied to each of the coil 16 on one side and the coil 17 on the other side.
  • W 200 is applied to each of the coil 16 on one side and the coil 17 on the other side.
  • a high-density plasma flow of 10 17 / cm 3 or more can be obtained.
  • Plasma with an electron temperature of 20 eV or less and even 10 eV or less can be easily generated. Further, plasma having a high aspect ratio can be easily obtained. That is, a plasma flow that continues in the vacuum container is obtained.
  • RF or RF 2 for example, one having a frequency of 1 kHz to 20 MHz may be used. Further, power of 0.1 kW or more may be used.
  • the number of coil elements wound around the plasma generation chamber 4 is not limited to two. Three or more coil elements may be wound, and high-frequency powers having different phases may be applied.
  • a vacuum vessel 6 10 is connected to the plasma generation chamber 6 11.
  • a means (electromagnetic coil) 603 for generating a magnetic field B1 is provided on the plasma generation chamber 611 side of the vacuum vessel 610.
  • the vacuum vessel 610 is provided with a vessel 606 containing fullerenes.
  • fullerenes may be stored in a crucible, and fullerenes 651 may be introduced by sublimation.
  • Means 604 for controlling the electron energy in the plasma is provided between the fullerene inlet and the plasma generation chamber 611.
  • the energy control means 604 may be provided with a grid in which conductive wires are connected in a mesh pattern, and a negative potential may be applied to the dalid 604.
  • the power supply 641 is connected to the dalid 604. This potential may be variable. Alternatively, the energy of electrons on the downstream side (right side in the drawing) of the grid 604 may be measured, and the potential may be automatically or manually controlled based on the energy.
  • the grid 604 is used to contain a gas that emits electrons in plasma to become positively charged ions, for example, atoms such as hydrogen, nitrogen, and alkali metals.
  • a gas that emits electrons in plasma to become positively charged ions for example, atoms such as hydrogen, nitrogen, and alkali metals.
  • the energy of the electrons on the downstream side of the grid 604 is preferably 10 eV or less, more preferably 5 eV or less.
  • the desired electron energy can be obtained by controlling with the potential applied to the grid.
  • the electron energy By setting the electron energy to one, the electrons in the plasma stream easily adhere to the fullerene 651. Therefore, negative fullerene ions can be obtained at a high concentration.
  • the lower limit is preferably 0.5 eV. If it exceeds 20 eV, the electrons in the plasma flow strike out the electrons in the fullerene.
  • a substrate 609 is provided as a potential body. It is preferable to apply a bias voltage having the same polarity as the potential at which the atom ions to be included in the plasma flow are charged to the potential body 609.
  • this bias voltage is applied, the relative velocity between the fullerene ions and the atom ions to be included is reduced. By reducing the relative velocity, a Coulomb interaction acts between the two ions, and the atoms to be included enter the fullerene.
  • a probe for plasma measurement is provided in the vacuum vessel 610, and the inclusion is performed while detecting the velocities of the fullerene ions and the atom ions to be included. It is preferable to control the voltage applied to the potential body 609 so that the relative speed becomes small.
  • the radius of the plasma generation chamber 6 11 is almost equal to the radius of the plasma flow 6 60. Therefore, the radius of the plasma flow 660 can be arbitrarily selected to an appropriate size in accordance with the size of the apparatus by changing the radius of the plasma generation chamber 611. Also, the radius of the plasma flow 660 can be adjusted by changing the magnetic field strength of the uniform magnetic fields B1, B2 formed by the magnetic field generating means 603, 608. W
  • cooling means (not shown) is provided on the outer periphery of the vacuum vessel 610.
  • the inner wall inside the vacuum vessel 610 is cooled by the cooling means, and neutral gas molecules are trapped on the inner wall of the vacuum vessel 610.
  • the inner wall temperature of the vacuum vessel 61 is preferably set to room temperature or lower, more preferably 0 ° C or lower. At such a temperature, trapping of neutral molecules is facilitated, and it becomes possible to obtain a higher purity endohedral fullerene in a high yield.
  • a copper cylinder 607 is provided in the middle of the plasma flow 660 so as to cover the plasma flow 660.
  • the cylinder 607 is provided with a hole through which fullerene is introduced into the plasma stream 660.
  • the cylinder 607 is heated to a temperature at which sublimation can be performed. 400-650 ° C is preferred. Fullerene that has not been ionized in the plasma after being introduced into the cylinder 607 and adhered to the inner surface is sublimated again.
  • the temperature of the cylinder 607 is lower than 400 ° C., re-sublimation is not efficiently performed, and when the temperature is higher than 650 ° C., C 6 .
  • the temperature of the cylinder 607 is set to 400 to 65 ° C.
  • the temperature is 480 to 62 ° C.
  • the density of fullerene ions decreases, and the yield of endohedral fullerene decreases. If the temperature exceeds 62 ° C, the amount of neutral fullerene that is not ionized increases, and the encapsulation rate decreases.
  • the inner diameter of the cylinder 607 is preferably set to be 2.5 to 3.0 times the diameter of the plasma flow 660. More preferably, it is 2.7 to 2.8 times.
  • the yield differs for each device.
  • the inventor has found that the inner diameter of the cylinder affects the yield. In particular, it has been found that it depends on the relationship between the diameter of the plasma flow 660 and the diameter of the cylinder 607. Furthermore, they have found that the yield is significantly increased in the limited range of 2.5 to 3.0.
  • a fullerene inlet 652 is provided in the cylinder 607.
  • the divergence angle 0 of the introduction angle at the fullerene introduction port 652 is preferably 90 to 120 °. By setting 0 to this range, the efficiency of introduction of fullerenes 651 into the plasma flow 660 is increased, and the yield of endohedral fullerenes is improved.
  • for example, the ratio between the diameter and the length of the fullerene introduction nozzle may be changed.
  • fullerene is introduced from below in the drawing, but may be introduced from the side in the drawing. Moreover, you may introduce from both.
  • the cylinder 607 does not have to have the same diameter as a whole. For example, by making the diameter at the position of the fullerene inlet 652 3.0 times as large as the plasma flow and making the downstream diameter 2.5 times smaller, the diameter decreases toward the downstream. Spreading can be prevented, and the yield of endohedral fullerenes can be improved.
  • the fullerene introduction speed may be controlled by the temperature rise rate of the fullerene sublimation oven.
  • the rate of temperature rise is preferably 10 ° C./min or more.
  • the upper limit is the temperature rise rate at which bumping does not occur.
  • -An ion measuring probe for measuring ion distribution may be provided in the vacuum vessel 610 before the potential body 609. A signal from the probe is sent to a probe circuit and a computer, and a bias voltage applied to the potential body 609 is controlled based on the signal.
  • the potential body 609 is divided concentrically as shown in FIG. In the example shown in FIG. 4, it is divided into three potential bodies 5a, 5b and 5c.
  • the potential body 5a at the center has a circular shape
  • ring-shaped potential bodies 5b and 5c are arranged on the outer periphery of the potential body 5a while being electrically insulated from the potential body 5a.
  • the number of potential bodies is not limited to three.
  • Bias voltage applying means 7a, 7b, 7 so that the bias voltage can be applied independently to each potential body 5a, 5b, 5c. c is provided.
  • the shape of the potential body is not limited to a circular or circular ring as long as the shape of the vacuum vessel 610 is not limited, and may be a square or rectangular ring or another shape.
  • the radius of the central portion of the potential body 5 a is a radius of the plasma generation chamber R, the Larmor radius of encapsulating target atoms as R L, Shi preferred to design a range of R + 2 R L and R + 3 R L les ,.
  • Fullerene that is introduced from the hole of the cylinder 607 and is not ionized moves along the plasma flow and adheres to the potential body 5a at the center.
  • the ionized inclusion target atom moves while drawing a spiral under the influence of the magnetic field, and collides with the non-ionized fullerene attached to the potential body 5a at the center, thereby converting the included fullerene.
  • the Larmor radius of the entrapping target atomic ion moving in a spiral Then, the radius of the plasma flow increases by 2 with respect to the radius of the plasma generation chamber. .
  • the Larmor radius RL is inversely proportional to the magnetic field strength B.
  • B 0.3 T and a plasma temperature of 2500 ° C
  • RL 0.27 mm for hydrogen atoms
  • RL 1.0 mm for nitrogen atoms
  • the Larmor radius is proportional to the moving velocity V of the atom to be included.
  • V is the standard moving speed of the target atoms derived from the strength of the magnetic field. From the statistical mechanical considerations, the moving speed V is 0.5 v. ⁇ L.5V.
  • the probability in the range is 0.5 or more. That is, when the radius R + 3 of the potential body 5a at the center is set, 50% or more of the included atoms collide with the potential body 5a.
  • the radius of the potential body 5 a of the central portion is preferably designed in the range of R + 2 R L and R + 3 R L.
  • fullerene ions have a distribution having a concentration peak at the center of the plasma flow 660 in the central potential body 5a.
  • the bias voltage may be controlled. The optimum bias voltage varies depending on the atoms to be included, the type of fullerene, and other film forming conditions, but it is better to know it in advance through experiments.
  • a bias voltage of 5 V ⁇ > ap + 20 V to the central potential body 5a.
  • 0 ⁇ ⁇ ⁇ & ⁇ + 18 V is particularly preferred.
  • a halogen gas is used as an atom to be included, it is preferable to apply a negative bias voltage of 120 V or less to the central potential body 5a.
  • the endohedral fullerene can be formed by optimizing the deposition conditions.
  • the outer potential bodies 5b and 5c may be set to a floating potential state or a bias voltage application. Even when both of the outer potential bodies 5b and 5 are in a floating state, the same amount of endohedral fullerene as in the conventional case is deposited on the potential body 5b. Therefore, the yield as a whole increases as the yield increases in the potential body 5a at the center.
  • a bias voltage may be applied to the potential body 5b to increase the density of the fullerene ions.
  • the distribution may be constantly measured during film formation using the ion measurement probe, and the bias voltage applied to the potential elements 5b and 5c may be automatically controlled by a computer. The same applies to the automatic control of the application to the potential body 5a.
  • the vacuum vessel 610 is provided with an exhaust pump 10 so that the inside of the vacuum vessel 610 can be evacuated to a vacuum.
  • the vacuum chamber 6 1 initial vacuum in the 0 preferably less 1 0- 4 P a les.
  • a passivation film made of a chromium oxide film (a passivation film substantially not containing an iron oxide film) on the surfaces of the vacuum vessel 610 to the cylinder 607.
  • a passivation film made of a chromium oxide film (a passivation film substantially not containing an iron oxide film)
  • the concentration of impurities (particularly, moisture and oxygen) in the gas to be introduced be 10 ppb or less. It is more preferably 1 ppb or less, and further preferably 100 ppt or less.
  • n 60, 70, 74, 82, 84,...
  • the concentration of neutral fullerene in the film can be further reduced. That is, the concentration of the endohedral fullerene in the film can be further increased.
  • FIG. 5 shows a second embodiment
  • the potential body is a substrate.
  • a mesh body 680 is used as a potential body. It is the same as in the first embodiment that it is preferable to use it in a divided manner.
  • the endohedral fullerene is deposited on the substrate.
  • the endohedral fullerene passes through the mesh-like potential body 680. If a storage container 690 is provided downstream of the potential body 680 as shown in FIG. 6, the internal fullerene is stored in the storage container 690.
  • the amount deposited on the substrate is limited. Therefore, it was necessary to replace the substrate at that limit, and there was a limit to continuous operation.
  • continuous operation is possible until the storage container 690 becomes full. If the storage container 690 of any size is used, continuous operation is possible until the fullerene in the raw material container 606 shown in FIG. 1 is exhausted. In addition, the fuller You may be able to replenish the fuel.
  • the diameter of the storage container 690 is preferably the diameter of the potential body 5a in the first embodiment. Further, the storage container 690 may have a double structure or a triple structure. Each diameter may be the same as the diameter of the potential bodies 5a, 5b, 5c in the first embodiment.
  • the vacuum vessel 610 was made of stainless steel having a passivation film made of chromium oxide formed on the surface.
  • the dimensions were 10 Onim in diameter and 120 Omm in length.
  • ⁇ 2 Omm quartz was used for the plasma generation chamber 6 11.
  • a coil was wound, and a high frequency of 13.6 MHz was applied with a phase difference of 180 °.
  • a stainless steel cylinder 607 having a hole was provided in the middle of the plasma flow 660.
  • the cylinder 607 having an inner diameter of 55 mm was used.
  • Tube 607 was heated to about 400 ° C.
  • fullerene was introduced through the hole of the cylinder 607.
  • the potential body 609 a three-division type was used.
  • the diameter of the potential body 5a at the center was 14 mm
  • the diameter of the outer potential body 5b was 32 mm
  • the diameter of the outer potential body 5c was 50 mm.
  • the potential bodies 5b and 5c were in a floating potential state.
  • ⁇ ap is the DC voltage and ⁇ s is the plasma space potential.
  • The measured ion distribution that is being formed by the ion measuring probe, C 60 one result to concentrate in the central region were obtained.
  • the thin film containing endohedral fullerene (in this example, H @ C 60 ) deposited on the potential body was analyzed.
  • the endohedral fullerene was formed with a high content on the potential body 5a at the center.
  • a deposited film containing endohedral fullerene was observed on the potential body 5b outside the center.
  • the inner diameter D of the cylinder 607 was 30 mm, 40 mm, 48 mm, 50 mm, 60 mm, 70 mm, 80 mm, and 100 mm, and the same film formation as in Example 1 was performed. The yield of endohedral fullerene was examined.
  • the ratio in parentheses is the ratio to the inner diameter of the plasma generation chamber.
  • a reticulated potential body was used.
  • Example 2 Also in this example, a good yield was obtained as in Example 2. In addition, continuous operation was possible.
  • the degree of vacuum in the vacuum chamber 6 1 in 0 was 1 0- 6 P a.
  • Example 1 When the obtained endohedral fullerene was analyzed without exposing it to the atmosphere, no OH group was attached to the outside of the fullerene. Also, it did not have any other modifying groups. In Example 1, the O H group was attached, but this O H group is considered to be caused by moisture or oxygen in the atmosphere during the manufacturing process.
  • a non-encapsulated fullerene (a fullerene containing no atoms therein), the endohedral fullerene produced in Example 1, and an endohedral fullerene produced in Example 4 were added as dopants in the conductive polymer.
  • an electrode was further formed to manufacture an electronic device.
  • Contact name is that used in Example 4 was manufacturing an electronic device in a vacuum at 1 0- 6 P a.
  • the winding of the coil in the plasma generation chamber was performed by the method shown in FIG. Other points are the same as in the first embodiment. In this example, a higher yield of endohedral fullerene was obtained than in Example 1.
  • nitrogen gas was used instead of hydrogen gas.
  • fullerenes containing nitrogen ions are expected to be applied to spin electronics and quantum computers due to the characteristic electronic structure of nitrogen atoms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 より収率性よくガス内包フラーレンを製造することが可能な内包フラーレンの製造方法及び製造装置を提供すること。 内包対象原子を含むガス630を内部に導入するためのガス導入口650を有してプラズマを発生するためのプラズマ発生室611と、前記プラズマ発生室611と連通してプラズマ流660を形成し該プラズマ流660中へフラーレン651を導入できるようにした真空容器610とを有し、該真空容器610内のプラズマ発生室611側にプラズマ流中の電子のエネルギーを制御するための手段(エネルギー制御手段)604を設けると共に、下流側に内包対象原子イオンの速度を調整することによりフラーレンイオンと結合させて内包フラーレンを形成する電位体609を設けたことを特徴とする。

Description

明細書 ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン 技術分野
本発明は、ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包 フラーレンに係る。 ここでいうガス原子は、 常温で気体である水素、 窒素、 フッ素 などの他に、常温では固体又は液体であるが、高温で気体にして処理できるナトリ ゥム、 力リゥムなども含まれる。 背景技術
(非特許文献 1 ) プラズマ ·核融合学会誌 第 75卷 第 8号 P. 927- 933 (1999年 8月) 内包フラーレンの製造技術としては、非特許文献 1に第 7図に示す技術が提案さ れている。
この技術は、 真空容器内において、 内包対象原子のプラズマ流に、 フラーレンを 噴射し、プラズマ流の下流に配置した堆積プレートに内包フラーレンを堆積させる ことにより内包フラーレンを製造する技術である。
この技術によれば、低温において、収率よく内包フラーレンを製造することが可 能となる。
し力、し、 この技術においては、堆積プレートの中心部においては内包率が良くな いという問題点を有している。すなわち、 内包フラーレンはほとんどプラズマ流の 半径方向外側の部分に堆積しており、プラズマ流の半径方向内側には内包フラーレ ンはほとんど堆積しないという問題点を有している。
また、 近時、 内包フラーレンの各種有用性が着目され、 より収率性良く内包フラ 一レンを製造することが可能な技術が望まれている。
また、 上記技術は、 金属内包フラーレンに関する技術であり、 現在、 ガス原子内 包フラーレンに関する技術は知られていない。
本発明は、より収率性よくガス原子内包フラーレンを製造することが可能な内包 フラーレンの製造装置及び製造方法並びにガス原子内包フラーレンを提供するこ とを目的とする。 発明の開示
本発明のガス原子内包フラーレンの製造装置は、内包対象原子を含むガスを内部 に導入するためのガス導入口を有してプラズマを発生するためのブラズマ発生室 と、前記プラズマ発生室と連通してプラズマ流を形成し該プラズマ流中へフラーレ ンを導入できるようにした真空容器とを有し、該真空容器内のプラズマ発生室側に プラズマ流中の電子のエネルギーを制御するための手段を設けると共に、下流側に 内包対象原子イオンの速度を調整することによりフラーレンイオンと結合させて 内包フラーレンを形成する電位体を設けたことを特徴とするガス原子内包フラー レンの製造装置である。
水素内包フラーレン、窒素内包フラーレン、 アル力リ金属原子内包フラーレンな ど正電位にイオン化する原子を内包するフラーレンを製造する場合は、内包対象原 子を含むガスをガス導入口から導入する。 このとき、プラズマ発生室では正電位に 帯電した内包対象原子のイオンと、電子からなるプラズマが発生する。 このプラズ マの流れを一方向に制御してプラズマ流を形成すると共に、電子エネルギー制御手 段に負の電圧を印加して電子の速度を落としておく。このプラズマ流中にフラーレ ンを導入したときにフラーレンが電子を取り込んで負の電位に帯電するようにす る。電位体に正の電圧を印加することにより正電位に帯電している内包対象原子の イオンの速度をフラーレンイオンの移動速度まで落として、フラーレンイオンと結 合して内包フラーレンが形成されやすくする。
ハロゲンガス内包フラーレンを製造する場合は.、ハロゲンガスの化合物(例えば C F 4 )、或いはハロゲンガスと不活性ガスをガス導入口から導入する。このとき、 プラズマ発生室では正電位に帯電した化合物のイオン (例えば C F 3 + ) 或いは不 活性ガスのィオンと、負電位に帯電したハ口ゲンイオンからなるプラズマが発生す る。 このプラズマの流れを一方向に制御してプラズマ流を形成し、電子エネルギー 制御手段は浮遊状態にしておく。このプラズマ流にフラーレンを導入することによ り、フラーレンの電子はたたき出されて正電位に帯電したフラーレンイオンが得ら れる。電位体に負の電圧を印加することにより負電位に帯電しているハロゲンィォ ンの速度をフラーレンイオンの移動速度まで落として、フラーレンと結合して内包 フラーレンが形成されやすくする。
本発明のガス原子内包フラーレンの製造方法は、内包対象原子を有するガスをプ ラズマ発生室に導入する工程と、該プラズマ発生室においてプラズマを発生するェ 程と、 このプラズマの流れを一方向に制御してプラズマ流を形成する工程と、 ブラ ズマ流中にフラーレンを導入して該フラーレンをイオン化する工程と、内包対象原 子イオンとフラーレンイオンとを結合して内包フラーレンを形成する工程とによ り構成されることを特徴とするガス原子内包フラーレンの製造方法である。
水素原子内包フラーレン、窒素原子内包フラーレンなど正電位にイオン化する原 子を内包するフラーレンを製造する場合は、プラズマ流を構成している電子の速度 を制御して導入されたフラーレンに付着させることにより負電位に帯電したフラ 一レンイオンを形成する。
ハロゲン原子内包フラーレンなど負電位にイオン化する原子を内包するフラー レンを製造する場合は、プラズマ流中にフラーレンを導入するときに高速化された プラズマ流でフラーレンの電子をたたき出すことにより正電位に帯電したフラー レンイオンを形成する。
本発明のガス原子内包フラーレンは、 フラーレンの內部に水素イオン、窒素ィォ ン、アルカリ金属原子イオン、又はハロゲンガスイオンを内包することを特徴とす るガス原子内包フラーレンである。 図面の簡単な説明
第 1図は、本発明の実施の形態による内包フラーレンの製造装置を示す概念図で ある。
第 2図は、 プラズマ発生室におけるコイルの巻き方の例を示す図である。
第 3図は、 プラズマ発生室におけるコイルの他の卷き方の例を示す図である。 第 4図は、 基体からなる電位体の例を示す図である。
第 5図は、 網目状体からなる電位体の例を示す図である。
第 6図は、 内包フラーレンの収納容器を示す図である。
第 7図は、 従来の金属内包フラーレンの製造装置を示す概念図である。 (符号の説明)
4 プラズマ発生室
6 、 6 a、 6 b、 1 6、 1 7 コイル
5 a 、 5 b、 5 c 分割電位体
7 aヽ 7 b、 7 c バイアス電圧印加手段
1 0 排気ポンプ
6 0 2 コィノレ
6 0 3 , 6 0 8 磁界発生手段
6 0 4 エネルギー制御手段
6 0 6 原料容器
6 0 7 筒
6 0 9 電位体 (基体)
6 1 0 真空容器
6 1 1 プラズマ発生室
6 2 1 、 6 2 2 高周波電源
6 3 0 内包対象原子含有ガス
6 4 1 電源
6 5 0 ガス導入口
6 5 1 フラーレン
6 5 2 フラーレン導入口
6 6 0 プラズマ流
6 8 0 電位体 (網目状体)
6 9 0 収納容器 発明を実施するための最良の形態
(実施の形態 1 )
第 1図に本発明の実施の形態による内包フラーレンの製造装置を示す。
この装置は、内包対象原子を含むガス 6 3 0を内部に導入するためのガス導入口 6 5 0を有するプラズマを発生するためのプラズマ発生室 6 1 1と、前記プラズマ 発生室と連通してプラズマ流 6 6 0中へフラーレン 6 5 1を内部に導入できるよ うにした真空容器 6 1 0とを有し、前記フラーレン 6 5 1に電子が付着可能なエネ ルギ一となるように前記プラズマ中の電子のエネルギーを制御するための手段(ェ ネルギー制御手段) 6 0 4を該真空容器 6 1 0内のプラズマ発生室 6 1 1側に設け た。また常温では固体又は液体であるアル力リ金属原子などの内包フラーレンを製 造する場合は、 ガス導入口 6 5 0の前段にガス発生装置を設け、 このガス発生装置 でアル力リ金属などを気体にしてガス導入口 6 5 0から導入すればよい。
以下により詳細に説明する。
本例においては、 プラズマ発生室 6 1 1は絶縁材料 (例えば石英) から構成して いる。 そして、 プラズマ発生室の外周には、 コイル 6 0 2が卷回してある。 このコ ィル 6 0 2は例えば 2本で構成され、それぞれに高周波電源 6 2 1、 6 2 2から高 周波電流を流す。
コイルの巻回方法としては、 第 2図に示すように、 一対のコイル 6 a、 6 bを螺 旋状に巻き、 該一対のコイル 6 a、 6 bに位相が異なる R Fい R F 2電流を流す ようにすることが好ましい。
本例によれば、第 1 コイルエレメント 6 aと第 2コイルエレメント 6 bとに、例 えば位相が 1 8 0 ° ずらされて高周波電力が供給されているので、双方のコイルェ レノント 6 a、 6 b間にはより大きな電界差が生じることになる。 1本のコイルを 巻いただけでは電磁誘導によって発生する熱が外側に発散して、エネルギーが無駄 に消費される。本例のように無誘導卷きとすることにより誘導加熱によるエネルギ 一の発散を防ぎ、そのエネルギーをプラズマ発生に集中して利用することができる 従って、プラズマ発生室 6 1 1内で発生するプラズマはその全域においてより高密 度なものになり、これによりイオンやラジカルなどの発生物の発生効率が一層向上 して、 真空容器 6 1 0内のフラーレンに付着する電子の数が多くなる。
あるいは、第 3図に示すように、一対の放電コイルをなす第 1 コイルエレメント 1 6と第 2コイルエレメン ト 1 7とが並列状態にされて螺旋状に卷き付けられ、第 1及び第 2コイルエレメントに位相が相互に異なる高周波電力がそれぞれ印加す るようにしてもよい。
本例によれば、一方側のコイル 1 6と他方側のコイル 1 7とのそれぞれに高周波 W 200
6
電力が供給されるので、 双方の放電コイル 1 6、 1 7間に大きな電界差が生じ、 プ ラズマ発生室 4内の中央部において発生するプラズマがより高密度なものになる。 更に誘導加熱による無駄なエネルギーの消費を防ぐことができる。
かかる構成により 1 0 1 7 / c m 3以上の高密度のプラズマ流が得られる。電子温 度は 2 0 e V以下、さらには 1 0 e V以下のプラズマを容易に発生することが可能 となる。 また、 ァスぺク ト比が高いプラズマが容易に得られる。 すなわち、 真空容 器内に続くプラズマ流が得られる。
R Fい R F 2としては、 例えば、 1 k H z〜 2 0 O MH zのものを使用すれば よい。 また、 0 . 1 k W以上の電力を用いればよい。
第 2図、第 3図において、プラズマ発生室 4の回りに巻き付けるコイルエレメン トの数は 2本に限定されない。 3本以上のコイルエレメントを卷き付け、互いに位 相の異なる高周波電力を印加するようにしてもよい。
プラズマ発生室 6 1 1には真空容器 6 1 0が接続されている。
真空容器 6 1 0のプラズマ発生室 6 1 1側には磁界 B 1を発生させるための手 段 (電磁コイル) 6 0 3が設けてある。 発生したプラズマは電磁コイル 6 0 3によ り形成された均一磁場(B = 2〜7 k G ) に沿って真空容器 6 1 0内の軸方向に閉 じ込められる。 このために高密度のプラズマ流 6 6 0が形成される。
真空容器 6 1 0にはフラーレンを収納した容器 6 0 6が設けられている。例えば、 るつぼ内にフラーレンを収納しておき、昇華によりフラーレン 6 5 1を導入すれば よい。
フラーレンの導入口と、プラズマ発生室 6 1 1との間にはプラズマ中の電子エネ ルギーを制御するための手段 6 0 4が設けられている。エネルギー制御手段 6 0 4 に導電線が網目状に接続されたグリットを設けておき、そのダリッド 6 0 4に負の 電位を与えればよい。 ダリッド 6 0 4には電源 6 4 1が接続されている。 この電位 は可変としてもよい。 また、 グリッド 6 0 4の下流側 (図面上右側) における電子 のエネルギーを測定し、そのエネルギーに基づき電位を自動あるいは手動制御して もよい。
グリッド 6 0 4は、プラズマ中で電子を放出して正電位に帯電したイオンになる ガス、 例えば水素、 窒素、 アルカリ金属などの原子を内包させるときに利用する。 ダリッ ド 6 0 4に負の電位を与えてプラズマ流中の電子の速度を、プラズマ流に導 入されるフラーレンの速度まで落とすことにより、電子がフラーレンに付着して負 電位に帯電したフラーレンィオンが形成される。
グリ ッド 6 0 4の下流側における電子のエネルギーは 1 0 e V以下とすること が好ましく、 5 e V以下とすることがより好ましい。 グリ ッ ドに印加する電位によ り制御することにより所望する電子のエネルギーが得られる。かかる電子エネルギ 一とすることによりプラズマ流中の電子はフラーレン 6 5 1に容易に付着する。従 つて、 マイナスのフラーレンイオンを高濃度に得ることができる。 なお、 制御の困 難性の観点から下限としては 0 . 5 e Vが好ましい。 また 2 0 e Vを超えると、 プ ラズマ流中の電子はフラーレン中の電子を逆にたたき出してしまう。
プラズマ中で不活性ガスなどに電子を供給して負電位に帯電したイオンになる ハロゲンガスなどの場合は、 ダリ ッ ド 6 0 4を浮遊状態にしておけばよレ、。 プラズ マ流を高エネルギーに保っておくことにより、導入されたフラーレンから電子をた たき出して正電位に帯電したフラーレンィオンが形成される。
プラズマ流 6 6 0の下流側には電位体として基板 6 0 9が設けられている。この 電位体 6 0 9には、プラズマ流中で内包対象原子イオンが帯電している電位と同極 性のバイアス電圧を印加することが好ましい。 このバイアス電圧を印加すると、 フ ラーレンイオンと、被内包対象原子イオンとの相対速度が小さくなる。相対速度を 小さくすることにより、両イオンの間にはクーロン相互作用が働き被内包対象原子 はフラーレンの内部に入る。 '
真空容器 6 1 0内にプラズマ測定用のプローブを設けておき、フラーレンイオン と被内包対象原子イオンとの速度を検出しながら内包化を図ることが好ましい。相 対速度が小さくなるように電位体 6 0 9に印加する電圧を制御することが好まし レ、。
プラズマ発生室 6 1 1の半径がほぼプラズマ流 6 6 0の半径となる。従ってプラ ズマ流 6 6 0の半径は、 プラズマ発生室 6 1 1の半径を変えることにより、装置の 大きさなどに対応させて適宜の大きさに任意に選択することができる。 また、磁界 発生手段 6 0 3、 6 0 8によって形成されている均一磁場 B 1、. B 2の磁界強度を 変えることによつてもプラズマ流 6 6 0の半径を調整することができる。 W
8
なお、 真空容器 6 1 0の外周には冷却手段 (図示せず) を設けてある。 冷却手段 により真空容器 6 1 0内の内壁は冷却され、真空容器 6 1 0の内壁において中性ガ ス分子をトラップするようにしてある。中性ガス分子を内壁にトラップすることに より不純物を含まないプラズマ流が形成可能となり、電位体 6 0 9上に純度の高い 内包フラーレンを得ることが可能となる。 特に筒 6 0 7を設けた場合は、 その筒 6 0 7の下流側端から電位体 6 0 9までの間の真空容器 6 1 0の内壁を少なく とも 冷却するようにすることが好ましレ、。真空容器 6 1 0の内壁温度としては、室温以 下とすることが好ましく、 0 °C以下とすることがより好ましい。 かかる温度とする ことにより中性分子のトラップが行なわれやすくなり、より高純度の内包フラーレ ンを高い収率で得ることが可能となる。
本例では、 プラズマ流 6 6 0の途中にプラズマ流 6 6 0を覆うように、銅製の筒 6 0 7を設けてある。 この筒 6 0 7には孔が設けてあり、 この孔からフラーレンを プラズマ流 6 6 0中に導入する。 その際、筒 6 0 7は再昇華可能な温度に加熱して おくことが好ましい。 4 0 0〜6 5 0 °Cが好ましい。筒 6 0 7に導入された後にプ ラズマ中でイオン化されずに内面に付着したフラーレンは再昇華される。筒 6 0 7 の温度が 4 0 0 °Cより低い場合には効率よく再昇華が行なわれず、 6 5 0 °Cより高 い場合には C 6。が余分に再昇華されるため、 ガス原子との反応による内包フラー レンの形成に寄与しない C 6 0が増えることになり、 C 6 0が効率的に利用されない という問題がある。 従って、 筒 6 0 7の温度としては、 4 0 0〜 6 5 0 °Cとするこ とが好ましい。
より好ましくは 4 8 0〜 6 2 0 °Cが好ましい。 4 8 0 °Cより低い場合はフラーレ ンイオンの密度が低くなり、 内包フラーレンの収率が低下する。 6 2 0 °Cを超える とイオン化されない中性のフラーレンの量が多くなり、 内包化率が低下する。 筒 6 0 7の内直径としては、 プラズマ流 6 6 0の直径の 2 . 5〜3 . 0倍とする ことが好ましい。 より好ましくは 2 . 7〜2 . 8倍である。
2 . 5未満ではプラズマ流 6 6 0と筒 6 0 7との相互作用が大きくなり、 プラズ マ保持が低下する。 ひいては内包フラーレンの収率が減少してしまう。
3 . 0を超えるとプラズマの持続時間が短くなる。 ひいては内包フラーレンの収 率が低下してしまう。 非特許文献 1に開示された装置においては、装置ごとに収率が異なっていた。本 発明者は、 筒の内直径が収率に影響することを見出した。 特に、 プラズマ流 6 6 0 の直径と筒 6 0 7の直径との間の関係に依存することを見出したのである。さらに、 2 . 5〜3 . 0という限られた範囲において収率が著しく高くまることを見出した のである。
筒 6 0 7にフラーレン導入口 6 5 2が設けられている。フラーレン導入口 6 5 2 での導入角度の拡がり角度 0としては 9 0〜 1 2 0 ° が好ましい。 0をこの範囲と することによりプラズマ流 6 6 0へのフラーレン 6 5 1の導入が高効率化し、内包 フラーレンの収率が向上する。 なお、 Θを変化させるためには、 例えばフラーレン の導入ノズルの径と長さとの比を変えればよい。
なお、 第 1図に示す例では、 フラーレンは図面上下方から導入しているが、 図面 上の側面から導入してもよい。 また両方から導入してもよい。
また、筒 6 0 7は全体が同じ直径でなくともよレ、。例えばフラーレン導入口 6 5 2の位置における直径をプラズマ流の 3 . 0倍、 下流側の直径を 2 . 5倍にして下 流に向かって直径が減少するように構成することにより、プラズマ流の拡がりを防 いで、 内包フラーレンの収率を向上させることができる。
フラーレンの導入速度は、フラーレン昇華用オーブンの温度上昇率により制御す ればよい。 温度上昇率としては、 1 0 o °c/分以上が好ましい。 上限としては、 突 沸が生じない温度上昇率である。 - 真空容器 6 1 0内において、電位体 6 0 9の手前にイオン分布を測定するための イオン測定用プローブを設けてもよい。プローブからの信号はプローブ回路及ぴコ ンピュータに送られ、その信号に基づいて電位体 6 0 9に印加するバイアス電圧を 制御するように構成する。
本例では電位体 6 0 9は、第 4図に示すように同心円状に分割されている。第 4 図に示す例では、 3つの電位体 5 a、 5 b、 5 cに分割されている。 すなわち中心 部の電位体 5 aは円形をなし、 この電位体 5 aの外周には、電位体 5 aとは電気的 に絶縁されてリング状の電位体 5 b、 5 cが配置されている。 なお、 電位体の数は 3つに限定するものではない。 それぞれの電位体 5 a、 5 b、 5 cには、 バイアス 電圧を独立に印加することができるように、 バイアス電圧印加手段 7 a、 7 b、 7 cが設けられている。 なお電位体の形状は、真空容器 6 1 0の形状に制限がなけれ ば円形乃至円状リングに限らず、四角形乃至四角形状リングあるいはその他の形状 でもよい。
中心部の電位体 5 aの半径は、 プラズマ発生室の半径を R、 内包対象原子のラー モア半径を RLとして、 R+ 2 RLと R+ 3 RLの範囲で設計することが好ましレ、。 筒 607の穴から導入してイオン化されないフラーレンはプラズマ流に沿って 移動して、 中心部の電位体 5 aに付着する。 またイオン化されている内包対象原子 は、磁界の影響を受けて螺旋を描きながら移動して、 中心部の電位体 5 aに付着し ているイオン化されないフラーレンに衝突することにより、内包フラ一レンを生成 する。 螺旋を描きながら移動している内包対象原子イオンのラーモア半径を
Figure imgf000012_0001
と したとき、 プラズマ流の半径はプラズマ発生室の半径に対して 2 だけ大きくな る。 .
ラーモア半径 RLは磁場強度 Bに反比例し、 例えば B= 0. 3 T、 プラズマ温度 2500°Cの条件では、 水素原子は RL= 0. 27 mm、 窒素原子は RL= 1. 0 mm、 ナトリウム原子は RL= 1. 1 mmと見積もることができる。
またラーモア半径 は内包対象原子の移動速度 Vに比例する。 磁界の強さなど から導きだされる内包対象原子の標準的な移動速度を V。としたとき、 統計力学的 考察から移動速度 Vが 0. 5 v。〜l . 5 V。の範囲にある確率は 0. 5以上であ る。 すなわち、 中心部の電位体 5 aの半径 R+ 3 をとしたとき、 5割以上の内 包対象原子が電位体 5 aに衝突する。従って中心部の電位体 5 aの半径は、 R + 2 RLと R + 3 RLの範囲で設計することが好ましい。
中心部の電位体 5 aにはフラーレンイオンがプラズマ流 660の中心にその濃 度のピークを有する分布となるようにすることが好ましい。それにより内包率を高 くすることができる。 そのためにはバイアス電圧を制御すればよい。最適バイアス 電圧は内包対象原子、フラーレンの種類その他の成膜条件によって変化するが予め 実験によつて把握しておけばよレ、。
例えば、 内包対象原子として水素或いは窒素を用い、 フラーレンとして C6。を 用いる場合には、 中心部の電位体 5 aには、 一 5V< <> a pく + 20 Vのバイアス 電圧を印加することが好ましい。 0ν^φ & ρ≤+ 18 Vが特に好ましい。 内包対象原子としてハロゲンガスを用いる場合は、 中心部の電位体 5 aには、 一 2 0 V以下の負のバイアス電圧を印加することが好ましい。
内包対象原子としてナトリゥムガス又は力リゥムガスを用いる場合は、中心部の 電位体 5 aには、それぞれ + 7 0 V以上、 + 8 0 V以上のバイアス電圧を印加する ことが好ましい。
なお、電位体 6 0 9を分割せずに、電位体全面を同一のバイアス電圧にする場合 でも、堆積条件を最適化することにより内包フラーレンを形成することは可能であ る。
さらに中心部の電位体 5 aにバイアス電圧を印加せずに、浮遊状態にする場合で あっても、堆積条件を最適化することにより内包フラーレンを形成することは可能 である。
中心部の電位体 5 aと同様に、外側の電位体 5 b、 5 cも浮遊電位状態あるいは バイアス電圧印加のどちらに設定してもよい。外側の電位体 5 b、 5の両方とも浮 遊状態した場合であっても電位体 5 bには、従来におけると同様の量の内包フラー レンが堆積する。従って、 中心部の電位体 5 aにおいて収率が高くなつた分全体と しての収率が高くなる。
もちろん、成膜条件の変動により、電位体 5 bに対応する部分のフラーレンの密 度が低くなる場合は、電位体 5 bにもバイアス電圧を印加してフラーレンイオンの 密度を高くしてもよい。イオン測定用プローブを用いて成膜中に絶えず分布を測定 し、 コンピュータで電位体 5 b、 5 cへ印加するバイアス電圧を自動的に制御すれ ばよい。 電位体 5 aへの印加の自動制御も同様である。
真空容器 6 1 0には、排気ポンプ 1 0が設けられ、真空容器 6 1 0内を真空に排 気可能となっている。 真空容器 6 1 0内の初期真空度は 1 0— 4 P a以下が好まし レ、。
1 0— 6 P a以下がより好ましい。 1 0—6 P aより低真空の場合には、 内包フラ 一レンの外部に O H—基が一つ付着する。 O H—基が付着した内包フラーレンは化 学的に安定である。 従って、 保存性が良好である。 一方、 1 0— Θ Ρ aより高真空 の場合は、 O H—基が付着しない内包フラーレンが得られる。 この内包フラーレン における内包原子はイオン原子である。 その理由は明らかではない。 なお、真空容器 6 1 0乃至筒 6 0 7の表面にクロム酸化膜からなる不動態膜(鉄 酸化膜を実質的に含まない不動態膜) を形成しておくことが好ましい。特にクロム 酸化膜だけを用いることが好ましい。そのことにより水分の付着が少なくなる。付 着してもそのふき取りが容易になる。
その他に、 酸素、 あるいは水分の付着が少なく、 また、 付着しても脱着が容易な 膜を形成することが好ましい。
また、 導入するガス中における不純物 (特に、 水分、 酸素) の濃度を 1 0 p p b 以下とすることが好ましい。 より好ましくは 1 p p b以下、 さらに好ましくは 1 0 0 p p t以下である。
本発明におけるフラーレンとしては、 例えば、 C nにおいて、 n == 6 0、 7 0、 7 4、 8 2、 8 4、 . . . があげられる。
前記筒 6 0 7の下流側端から前記電位体 6 0 9までの距離 I dと筒の長さ I c との関係を、 I d≥ 2 I cとした場合は、電位体上に堆積する膜中における中性フ ラーレンの濃度を一層低くすることができる。すなわち、膜中における内包フラー レンの濃度をより一層高くすることが可能となる。
(実施の形態 2 )
第 5図に第 2の実施の形態を示す。
第 1の実施の形態においては、 電位体は、 基板であった。 本例では、 電位体とし て網目状体 6 8 0を用いている。分割して用いることが好ましい点等は第 1の実施 の形態と同様である。
第 1の実施の形態においては、 内包フラーレンは基板上に堆積する。 それに対し て、 本例では、 内包フラーレンは網目状の電位体 6 8 0を通過する。 電位体 6 8 0 の下流側に第 6図に示すように収納容器 6 9 0を設けておけば、内包フラーレンは 収納容器 6 9 0内に収納される。
第 1の実施の形態では、 基板上に堆積する量には限度があった。 従って、 その限 度で基板を交換する必要があり、 連続操業には限界があった。 それに対して、 本形 態においては、収納容器 6 9 0がー杯になるまで連続操業が可能となる。収納容器 6 9 0として任意の大きさのものを用いれば、第 1図に示す原料容器 6 0 6内のフ ラーレンがなくなるまで連続操業が可能となる。 また、原料容器 6 0 6にフラーレ ンを補給できるようにしておいてもよい。
なお、収納容器 6 90の直径としては、第 1の実施の形態における電位体 5 aの 直径とすることが好ましい。 また、収納容器 6 90を二重構造あるいは三重構造と してもよい。 それぞれの直径は、 第 1の実施の形態における電位体 5 a、 5 b、 5 cの直径と同様としてもよい。
得られた内包フラーレンに O H基などの化学修飾基を付着させることにより、 様々な効果が得られる。例えば電気的に不安定になって期待する効果の得られない 内包フラーレンに修飾基を付けることにより安定に動作させたり、複数個の内包フ ラーレン分子を結合しポリマー化して利用できるなどの効果がある。
(実施例)
(実施例 1 )
第 1図に示す装置を用いての水素内包 C6。フラーレン ( 「H@C60」 と表記) の形成を行なった。
本例では、真空容器 6 1 0は表面にクロム酸化物からなる不動態膜が形成された ステンレスにより構成した。 寸法は、 直径 1 0 Onim、長さ 1 20 Ommのものを 用いた。
また、 プラズマ発生室 6 1 1として、 φ 2 Ommの石英を用いた。 第 2図に示す ようにコイルを卷き、位相差 1 80° として 1 3. 5 6MH zの高周波を印加した。 ガスは不純物濃度が 1 0 p p b以下の水素ガスを用いた。 なお、真空容器 6 1 0 内は、 1 X 1 0— 4P aとし、 磁場強度 Bは B = 0. 3 Tとした。
プラズマ流 6 6 0の途中には、孔を有するステンレス製の筒 6 0 7を設けた。筒 607は、その内径が 5 5 mmのものを用いた。筒 6 0 7は約 400°Cに加熱した。 次いで、 筒 60 7の孔からフラーレンを導入した。
一方、 電位体 6 0 9として、 3分割タイプのものを用いた。 中心部の電位体 5 a の直径は 1 4mm、その外側の電位体 5 bの直径は 3 2 mm, さらに外側の電位体 5 cの直径は 50 mmとした。
中心部の電位体 5 aにはバイアス電圧 Δ φ a p (= 0 a p— φ ε ) として Δ φ & ρ = 5 Vを印加した。 電位体 5 b、 5 cは浮遊電位の状態とした。 なお、 φ a pは 直流電圧、 φ sほプラズマ空間電位である。 · イオン測定用プローブにより成膜途中におけるイオン分布を測定したところ、 C 60一は中心領域に集中する結果が得られた。
成膜を 30分行なった後、電位体上に堆積した内包フラーレン(本例では H@C 60) 含有薄膜を分析した。 中心部における電位体 5 a上には内包フラーレンが高 い含有率で形成されていた。 また、 中心部の外側における電位体 5 b上には内包フ ラーレン含有の堆積膜が認められた。
得られた内包フラーレンを大気にさらすことなく分析したところ、フラーレンの 外側には OH基が一つ付着していた。 OH基が一つだけ付着しているということは、 内包フラーレンは一価の正イオンの状態にあると考えられ、正イオン状態にしてい るものは、 内包された H原子が H +であることを示すものである。 ただ、 OH基が 付着しているため内包フラーレン全体としては中性であった。
(実施例 2)
本例では、 筒 60 7の径の影響を調べた。
筒 6 0 7の内直径 Dを 3 0 mm、 40 mm, 48 mm, 5 0 mm, 6 0 mm, 7 0 mm, 8 0 mm, 1 00mmとし、 実施例 1と同様の成膜を行ない、 内包フラー レンの収率を調べた。
実施例 1の場合(D c = 5 5 mmの場合) における中心部の電位体上での収率を 1とすると次のような収率が得られた。 なお、 括弧内は、 プラズマ発生室の内直径 との比である。
30 mm (1. 5) 0 6
40 mm (2. 0) 0 7
48 mm (2. 4) 0 8
50 mm (2. 5) 0 9 5
5 5 mm (2. 8)
6 0 mm (3. 0) 0 9 5
70 mm (3. 5) 0 7
80 mm (4. 0) 0 5
1 0 0 mm ( 5. 0) 0 5
プラズマ発生室内直径との比が 2. 5〜3. 0の範囲においては、他の範囲のも のに比べると収率が非常に優れていることがわかる。
(実施例 3 )
本例では、 網状電位体を用いた。
本例においても、 実施例 2と同様に良好な収率が得られた。 また、 連続操業が可 能であった。
(実施例 4 )
本例では、 真空容器 6 1 0内の真空度を 1 0— 6 P aとした。
得られた内包フラーレンを大気にさらすことなく分析したところ、フラーレンの 外側には O H基は付着していなかった。 また、 他の修飾基も有していなかった。 実 施例 1においては O H基が付着していたが、この O H基は製造プロセス中において 雰囲気中の水分あるいは酸素に起因するものと考えられる。
(実施例 5 )
非内包フラーレン (内部に原子を含まないフラーレン) と、 実施例 1で製造した 内包フラーレンと、実施例 4で製造した内包フラーレンとをそれぞれ導電性高分子 中のドーパントとして添加した。
該導電性高分子を層状として、 さらに、 電極を形成して電子素子を製造した。 な お、 実施例 4で用いたものは、 1 0—6 P aにおける真空中において電子素子を製 造した。
この電子素子の特性を調べた。特性としては、 (光電流) / (暗電流)を調べた。 ①非内包フラーレン添加
②実施例 1の内包フラーレン添加
③実施例 4の内包フラーレン添加
②の場合は、 ①の場合に比べ約 1 . 5倍の (光電流) / (暗電流) 値が得られた。
③の場合は、 ①の場合に比べ約 2倍の (光電流) / (暗電流) 値がえられた。 従って、 ②、 ③の場合における電子素子は、 太陽電池、 光センサとして有効に用 いることができる。
(実施例 6 )
プラズマ発生室におけるコイルの巻き方を第 3図に示す方法により行なった。 他の点は、 実施例 1と同様である。 本例では、 実施例 1の場合よりも高い内包フラーレンの収率が得られた。
(実施例 7 )
本例では、 水素ガスに代えて窒素ガスを用いた。
実施例 1とほぼ同様の結果が得られた。 産業上の利用可能性
ガス原子内包フラーレンを収率性よく得ることが可能となる。これらガス原子内 包フラーレンの中で特に窒素イオンを内包するフラーレンは、窒素原子の持つ特徴 的な電子構造により、 スピンエレク トロ-タス、量子コンピュータへの応用が期待 される。

Claims

請求の範囲
1 .内包対象原子を含むガスを内部に導入するためのガス導入口を有してプラズマ を発生するためのブラズマ発生室と、該プラズマ発生室と連通してブラズマ流を形 成し該プラズマ流にフラーレンを導入して少なくとも一部のフラーレンをイオン 化する真空容器と、イオン化された内包対象原子とフラーレンとを結合してガス原 子内包フラーレンを形成する手段とを有することを特徴とするガス原子内包フラ 一レンの製造装置。
2 .前記ガスはプラズマ中で電子と正電位に帯電した内包対象原子イオンに電離す る内包対象原子を含むことを特徴とする請求項 1記載のガス原子内包フラーレン の製造装置。
3 .前記プラズマ流中の電子のエネルギー制御するための手段を前記真空容器内の 前記プラズマ発生室側に設け、真空容器に導入した前記フラーレンにエネルギー制 御された電子が付着することにより負電位に帯電したフラーレンイオンが形成さ れることを特徴とする請求項 2記載のガス原子内包フラーレンの製造装置。
4 .前記電子のエネルギーを 1 0 e V以下に制御することを特徴とする請求項 3記 載のガス原子内包フラーレンの製造装置。
5 .前記電子のエネルギーを 5 e V以下に制御することを特徴とする請求項 3記載 のガス原子内包フラーレンの製造装置。
6 .前記内包対象原子は水素原子又は窒素原子であることを特徴とする請求項 2乃 至 5のいずれか 1項記載のガス原子内包フラーレンの製造装置。
7 .前記ガスはプラズマ中で負電位に帯電した内包対象原子イオンに電離する内包 対象原子を含むことを特徴とする請求項 1記載のガス原子内包フラーレンの製造 装置。
8 . 前記プラズマ流中に前記フラーレンを導入することにより、 フラーレン中の電 子がたたき出されて正電位に帯電したフラーレンイオンが形成されることを特徴 とする請求項 7記載のガス原子内包フラーレンの製造装置。
9 .前記内包対象原子はハロゲンガスの原子であることを特徴とする請求項 7又は 8記載のガス原子内包ブラ一レンの製造装置。
1 0 .イオン化された内包対象原子とフラーレンとを結合してガス原子内包フラー レンを形成する手段は、内包対象原子イオンが帯電している電位と同極性のバイァ ス電圧が印加された電位体であることを特徴とする請求項 1乃至 9のいずれか 1 項記載のガス原子内包フラ一レンの製造装置。
1 1 . 前記電位体は、半径方向に分割されていることを特徴とする請求項 1。記載 のガス原子内包フラーレンの製造装置。
1 2 .前記分割された電位体のそれぞれに異なる電圧が印加されるようにしたこと を特徴とする請求項 1 1記載のガス原子内包フラーレンの製造装置。
1 3 .前記電位体は基体であることを特徴とする請求項 1 0乃至 1 2のいずれか 1 項記載のガス原子内包フラーレンの製造装置。
1 4 .前記電位体は網目状体であることを特徴とする請求項 1 0乃至 1 2のいずれ か 1項記載のガス原子内包フラーレンの製造装置。
1 5 . 前記網目状体の下流側に、形成したガス内包フラーレンを収納する収納容器 を設けたことを特徴とする請求項 1 4記載のガス原子内包フラーレンの製造装置。
1 6 . 前記収納容器は、着脱自在であることを特徴とする請求項 1 5記載のガス原 子内包フラーレンの製造装置。
1 7 . 前記プラズマ発生室は絶縁性材料からなり、 その外周部にコイルが巻かれ、 該コイルに高周波電流を流すようにしたことを特徴とする請求項 1乃至 1 6のい ずれか 1項記載のガス原子内包フラーレンの製造装置。
1 8 .複数のコイルに互いに位相が異なる R F電流を流すようにしたことを特徴と する請求項 1 7記載のガス原子内包フラーレンの製造装置。
1 9 . 前記プラズマ発生室の外周部の一部分に第 1のコイルを螺旋状に巻き、他の 部分に第 2のコイルを螺旋状に卷いて、 これら第 1、第 2のコイルに位相が異なる R F電流を流すようにしたことを特徴とする請求項 1 7記載のガス原子内包フラ 一レンの製造装置。
2 0 .前記バイァス電圧は可変であることを特徴とする請求項 1 0乃至 1 9のいず れか 1項記載のガス原子内包フラーレンの製造装置。
2 1 .分割された電位体の中心部に配置された部分へ一 1 0 0 ν < Δ φ & ρ < + 1 0 0 Vのバイアス電圧 Δ φ a pを印加するようにしたことを特徴とする請求項 1 1乃至 2 0のいずれか 1項記載のガス原子内包フラーレンの製造装置。
2 2 .前記プラズマ発生室の半径を R、内包対象原子のラーモア半径を R Lとして、 中心部に配置された電位体の半径が R + 2 R L〜R + 3 R Lの範囲にあることを特 徴とする請求項 1 1乃至 2 1のいずれか 1項記載のガス原子内包フラーレンの製 造装置。
2 3 .前記電位体の手前にプラズマ流中におけるフラーレンイオンと内包対象原子 イオンの分布を測定するための手段を設けておき、該手段からの信号に基づき、印 加するバイアス電圧を制御するようにしたことを特徴とする請求項 1 0乃至 2 2 記載のガス原子内包フラーレンの製造装置。
2 4 . 前記真空容器内において、 該プラズマ流中の途中に、 該プラズマ流の直径の 2 . 5〜3 . 0倍の内直径を有する筒を設けたことを特徴とする請求項 1乃至 2 3 のいずれか 1項記載のガス原子内包フラーレンの製造装置。
2 5 . 前記筒の下流側端から前記電位体までの距離 I dと、前記筒の長さ I c との 関係を I d 2 I cとしたことを特徴とする請求項 2 4記載のガス原子内包フラ 一レンの製造装置。
2 6ノ少なくとも前記筒の下流側端から下流側における前記真空容器の壁を冷却す るための手段を設けたことを特徴とする請求項 2 4又は 2 5記載のガス原子内包 フラーレンの製造装置。
2 7 . 前記プラズマ発生室乃至真空容器の内面を、 クロム酸化物を主成分とする不 動態膜で構成することを特徴とする請求項 1乃至 2 6のいずれか 1項記載のガス 原子内包フラーレンの製造装置。
2 8 .請求項 1乃至 2 7のいずれか 1項記載の製造装置を用いることを特徴とする ガス原子内包フラーレンの製造方法。
2 9 . 内包対象原子を含むガスをプラズマ発生室に導入する工程と、該プラズマ発 生室においてプラズマを発生する工程と、発生したプラズマからプラズマ流を形成 する工程と、プラズマ流中にフラーレンを導入して該フラーレンをイオン化するェ 程と、内包対象原子イオンとフラーレンイオンとを結合して内包フラーレンを形成 する工程とを有することを特徴とするガス原子内包フラーレンの製造方法。
3 0 .前記ガスはプラズマ中で電子と正電位に帯電した内包対象原子イオンに電離 する内包対象原子を含むことを特徴とする請求項 2 9記載のガス原子内包フラー レンの製造方法。
3 1 .前記プラズマ流中の電子のエネルギーを制御して該電子を前記フラーレンに 付着して負電位に帯電したフラーレンィォンを形成する工程を有することを特徴 とする請求項 3 0記載のガス原子内包フラーレンの製造方法。
3 2 .前記電子のエネルギーを 1 0 e V以下に制御することを特徴とする請求項 3 1記載のガス原子内包フラーレンの製造方法。
3 3 .前記電子のエネルギーを 5 e V以下に制御することを特徴とする請求項 3 1 記載のガス原子内包フラーレンの製造方法。
3 4 .前記ガスはプラズマ中で負電位に帯電した内包対象原子イオンに電離する内 包対象原子を含むことを特徴とする請求項 2 9記載のガス原子内包フラーレンの 製造方法。
3 5 . 前記プラズマ流中に前記フラーレンを導入することにより、 フラーレン中の 電子をたたき出して正電位に帯電したフラーレンイオンを形成する工程を有する ことを特徴とする請求項 3 4記載のガス原子内包フラーレンの製造方法。
3 6 . 前記プラズマ発生室は絶縁性材料から構成し、 その外周部にコイルを巻き、 該コイルに高周波電流を流すことを特徴とする請求項 2 9乃至 3 5のいずれか 1 項記載のガス原子内包フラーレンの製造方法。
3 7 . 一対のコイルを螺旋状に巻き、該一対のコイルに位相が異なる R F電流を流 すことを特徴とする請求項 3 6記載のガス原子内包フラーレンの製造方法。
3 8 . 前記プラズマ発生室の外周部の一部分に第 1のコイルを螺旋状に卷き、他の 部分に第 2のコイルを螺旋状に巻いて、 これら第 1、第 2のコイルに位相が異なる R F電流を流すことを特徴とする請求項 3 6記載のガス原子内包フラーレンの製 造方法。
3 9 . 前記真空容器内のプラズマ流の下流側において、 フラーレンイオンと内包対- 象原子ィオンとの相対速度を小さくすることを特徴とする請求項 2 9乃至 3 8の いずれか 1項記載のガス原子内包フラーレンの製造方法。
4 0 . 前記真空容器内のプラズマ流の下流側に電位体を設け、該電位体にプラズマ 流中で内包対象原子イオンが帯電している電位と同極性のバイアス電圧を印加す ることにより内包対象原子イオンの速度を落とすことを特徴とする請求項 3 9項 記載のガス原子内包フラーレンの製造方法。
4 1 . フラーレンイオンの濃度が、プラズマ流の中心にそのピークを有する分布と なるようにすることを特徴とする請求項 2 9乃至 4 0のいずれか 1項記載のガス 原子内包フラーレンの製造方法。
4 2 . 前記電位体は半径方向に分割されており、分割された電位体のそれぞれに異 なる電圧が印加されるようにしたことを特徴とする請求項 4 0記載のガス原子内 包フラーレンの製造方法。
4 3 .前記電位体は基体であることを特徴とする請求項 4 0乃至 4 2のいずれか 1 項記載のガス原子内包フラーレンの製造方法。
4 4 .前記電位体は網目状体であることを特徴とする請求項 4 0乃至 4 2のいずれ か 1項記載のガス原子内包フラーレンの製造方法。
4 5 . 前記網目状体の下流側に、形成したガス原子内包フラーレンを収納する収納 容器を設けることを特徴とする請求項 4 4記載のガス原子内包フラーレンの製造 方法。
4 6 . 前記真空容器の初期真空度を 1 0 _ 4 P a以下とすることを特徴とする請求 項 2 9乃至 4 5のいずれか 1項記載のガス原子内包フラーレンの製造方法。
4 7 .請求項 2 9乃至 4 6のいずれか 1項記載の方法により製造されたことを特徴 とするガス原子内包フラーレン。
4 8 . フラーレンの内部に水素イオン、 窒素イオン、 又はハロゲンガスイオンを内 包することを特徴とするガス原子内包フラーレン。
4 9 .外部に修飾基が付着していないことを特徴とする請求項 4 8記載のガス原子 内包フラーレン。
5 0 .外部に修飾基が付着していることを特徴とする請求項 4 8記載のガス原子内 包フラーレン。
5 1 .請求項 4 7乃至 5 0のいずれか 1項記載のガス原子内包フラーレンを導電性 高分子に含むことを特徴とする電子素子。
5 2 . 前記電子素子は、太陽電池又は光センサであることを特徴とする請求項 5 1 記載の電子素子。
PCT/JP2004/005012 2003-04-07 2004-04-07 ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン WO2004089822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/552,709 US20070009405A1 (en) 2003-04-07 2004-04-07 Method and apparatus for producing gas atom containing fullerene, and gas atom containing fullerene
KR1020057018965A KR101124178B1 (ko) 2003-04-07 2004-04-07 가스 원자 내포 플러렌의 제조 장치 및 제조 방법 그리고가스 원자 내포 플러렌
JP2005505305A JP3989507B2 (ja) 2003-04-07 2004-04-07 ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003103506 2003-04-07
JP2003-103506 2003-04-07

Publications (1)

Publication Number Publication Date
WO2004089822A1 true WO2004089822A1 (ja) 2004-10-21

Family

ID=33156825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005012 WO2004089822A1 (ja) 2003-04-07 2004-04-07 ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン

Country Status (5)

Country Link
US (1) US20070009405A1 (ja)
JP (1) JP3989507B2 (ja)
KR (1) KR101124178B1 (ja)
CN (1) CN100564252C (ja)
WO (1) WO2004089822A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054127A1 (ja) * 2003-12-03 2005-06-16 Ideal Star Inc. 誘導フラーレンの製造装置及び製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013936A1 (ja) * 2004-08-04 2006-02-09 Ideal Star Inc. 誘導フラーレン製造装置及び製造方法並びに誘導フラーレン
EP1748030B1 (en) * 2005-07-07 2016-04-20 Fei Company Method and apparatus for statistical characterization of nano-particles
US20080247930A1 (en) * 2006-03-18 2008-10-09 Robert Hotto Nano-fusion reaction
JP6244139B2 (ja) * 2013-08-28 2017-12-06 ヤンマー株式会社 遠隔サーバ
RU2607403C2 (ru) * 2014-05-27 2017-01-10 Юрий Владимирович Горюнов Способ получения эндоэдральных наноструктур на основе каналирования имплантируемых ионов
US9839109B1 (en) * 2016-05-30 2017-12-05 Applied Materials, Inc. Dynamic control band for RF plasma current ratio control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982495A (ja) * 1995-09-18 1997-03-28 Toshiba Corp プラズマ生成装置およびプラズマ生成方法
JPH11345772A (ja) * 1998-06-01 1999-12-14 Sony Corp 化学気相蒸着装置および半導体装置の汚染防止方法
JP2002335004A (ja) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd 光電変換材料および光電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982495A (ja) * 1995-09-18 1997-03-28 Toshiba Corp プラズマ生成装置およびプラズマ生成方法
JPH11345772A (ja) * 1998-06-01 1999-12-14 Sony Corp 化学気相蒸着装置および半導体装置の汚染防止方法
JP2002335004A (ja) * 2001-02-08 2002-11-22 Osaka Gas Co Ltd 光電変換材料および光電池

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
HATAKEYAMA R. ET AL.: "Arc hoden ni yoru tanso cluster no gosei to oyo, 6. fullerene plasma no seishitsu to oyo", JOURNAL OF PLASMA AN FUSION RESEARCH, vol. 75, no. 8, 1999, pages 927 - 933, XP002976400 *
HATAKEYAMA R. ET AL.: "Formation of alkali- and Si-endohedralfullerenes based on plasma technology", ELECTROCHEMICAL SOCIETY PROCEEDINGS, vol. 2001-11, 2001, pages 341 - 348, XP002976399 *
HATAKEYAMA R.: "Teijoteki hoden plasma no gensho o oyo", THE JOURNAL OF THE JAPAN RESEARCH GROUP OF ELECTRICAL DISCHARGES, vol. 45, no. 4, 2002, pages 73 - 82, XP002983024 *
HIRATA T. ET AL.: "The K+-C60 plasma for material processing", PLASMA SOURCES SCI. TECHNOL., vol. 5, 1996, pages 288 - 292, XP002904722 *
HOUJIN HUANG ET AL.: "14N@C60 formation in a nitrogen rf-plasma", CHEM. COMMUN., no. 18, 2002, pages 2076 - 2077, XP002904723 *
KOMATSU KOICHI ET AL.: "Naiho fullerene no yuki gosei ni idomu", CHEMISTRY, vol. 59, no. 2, 1 February 2004 (2004-02-01), pages 23 - 28, XP002983025 *
PIETZAK B. ET AL.: "Properties of endohedral N@C60", CARBON, vol. 36, no. 5-6, 1998, pages 613 - 615, XP004124238 *
WATANABE S. ET AL.: "Synthesis of endohedral 133Xe-fullerene by ion implantation", JAERI-REVIEW, no. 2001-039, 2001, pages 228 - 229, XP008040726 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005054127A1 (ja) * 2003-12-03 2005-06-16 Ideal Star Inc. 誘導フラーレンの製造装置及び製造方法
CN1890175B (zh) * 2003-12-03 2010-04-07 理想星株式会社 衍生富勒烯的制造装置及制造方法

Also Published As

Publication number Publication date
JPWO2004089822A1 (ja) 2006-07-06
CN1771194A (zh) 2006-05-10
KR101124178B1 (ko) 2012-03-28
KR20060008318A (ko) 2006-01-26
JP3989507B2 (ja) 2007-10-10
US20070009405A1 (en) 2007-01-11
CN100564252C (zh) 2009-12-02

Similar Documents

Publication Publication Date Title
JP5698652B2 (ja) 同軸マイクロ波支援堆積及びエッチングシステム
WO2004089822A1 (ja) ガス原子内包フラーレンの製造装置及び製造方法並びにガス原子内包フラーレン
US7462334B2 (en) Negatively-charged oxygen atom producing method and producing apparatus
JP5373903B2 (ja) 成膜装置
JP6656656B2 (ja) 触媒の製造装置
JP2010277871A (ja) 電子サイクロトロン共鳴イオン源装置
CN2310077Y (zh) 用于大面积辅助镀膜的无栅离子源
JPS5832417A (ja) プラズマエツチング装置及びプラズマエツチング方法
JP2007521614A (ja) 膨張熱プラズマを誘導結合するシステム及び方法
RU2483501C2 (ru) Плазменный реактор с магнитной системой
CN1209947C (zh) 等离子体发生装置
JP2007005021A (ja) プラズマ源、フラーレンベース材料の製造方法及び製造装置
RU2797472C1 (ru) Плазмохимический реактор низкого давления, обеспечивающий плазму высокой плотности для осуществления процесса в виде травления и осаждения
US20070110644A1 (en) System for manufacturing a fullerene derivative and method for manufacturing
Borisenko et al. Nonself-sustained arc discharge in anode material vapors
JPH0222500B2 (ja)
JPH0578849A (ja) 有磁場マイクロ波プラズマ処理装置
WO2004026763A1 (ja) 内包フラーレンの製造方法及び製造装置
JP2848590B1 (ja) 電子ビーム励起プラズマ発生装置
JP4711614B2 (ja) 内包フラーレンの製造方法及び製造装置
WO2004060799A1 (ja) ハロゲン原子内包フラーレンの製造方法及び製造装置
Upadhyay Plasma processing of superconducting radio frequency cavities
JP6656655B2 (ja) 触媒及びそれを用いた固体高分子形燃料電池、並びに触媒の製造方法及びカソード電極の製造方法
JP3095565B2 (ja) プラズマ化学蒸着装置
JP2005206408A (ja) 内包フラーレンの製造装置、及び、内包フラーレンの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505305

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057018965

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048093299

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057018965

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2007009405

Country of ref document: US

Ref document number: 10552709

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10552709

Country of ref document: US