WO2004088751A1 - 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法 - Google Patents

磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法 Download PDF

Info

Publication number
WO2004088751A1
WO2004088751A1 PCT/JP2004/004353 JP2004004353W WO2004088751A1 WO 2004088751 A1 WO2004088751 A1 WO 2004088751A1 JP 2004004353 W JP2004004353 W JP 2004004353W WO 2004088751 A1 WO2004088751 A1 WO 2004088751A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic layer
layer
memory device
write
Prior art date
Application number
PCT/JP2004/004353
Other languages
English (en)
French (fr)
Inventor
Joichiro Ezaki
Keiji Koga
Yuji Kakinuma
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/550,519 priority Critical patent/US7295460B2/en
Priority to EP04723817A priority patent/EP1615269B1/en
Publication of WO2004088751A1 publication Critical patent/WO2004088751A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • Magnetic storage cell magnetic memory device, and method of manufacturing magnetic memory device
  • the present invention relates to a magnetic memory cell including a magnetoresistive element, a magnetic memory device including a plurality of magnetic memory cells, and recording and reading information, and a method of manufacturing the same.
  • volatile memories such as DRAM (Dynamic Random Access Memory) and SRAM (Static RAM) have been used as general-purpose memories used in information processing devices such as computers and communication devices.
  • DRAM Dynamic Random Access Memory
  • SRAM Static RAM
  • non-volatile memory as a means for recording information.
  • flash EEPR 0 M or magnetic A hard disk device or the like is used.
  • MRAM magnetic random access memory
  • a magnetic random access memory (hereinafter referred to as MRAM) in which magnetic memory elements that store information according to the magnetization direction along the easy axis of the ferromagnetic layer are arranged in a matrix.
  • MRAM magnetic random access memory
  • information is stored using a combination of the magnetization directions of two ferromagnetic materials.
  • reading of stored information depends on the case where the magnetization direction is parallel to a certain reference direction. It does this by detecting the change in resistance (ie, the change in current or voltage) that occurs with each row. Since it operates on such a principle, it is important that the resistance change rate of the MRAM be as large as possible in order to perform stable writing and reading.
  • GMR giant magneto-resistive
  • the GMR effect means that when two magnetic layers are arranged so that the easy axis directions of the layers are parallel to each other, the resistance value is minimum when the magnetization directions of the layers are parallel along the easy axis. It is the phenomenon that becomes the maximum value when it is antiparallel.
  • GMR-MRAM a technique disclosed in US Pat. No. 5,343,422 is known.
  • GMR-MRAM is classified into a coercive force difference type (pseudo spin valve type; Pseudo spin valve type) and an exchange bias type (spin pulp; spin valve type).
  • a coercive force difference type MRAM a GMR element has two ferromagnetic layers and a non-magnetic layer sandwiched between them, and uses the coercive force difference between the two ferromagnetic layers to write and write information. This is for reading.
  • the GMR element has a configuration of, for example, “nickel-iron alloy (NiFe) / copper (Cu) / cobalt (Co)”, the resistance change rate is a small value of about 6 to 8%. It is.
  • the exchange bias type MRAM consists of a GMR element consisting of a fixed layer whose magnetization direction is fixed by antiferromagnetic coupling with an antiferromagnetic layer, a free layer whose magnetization direction is changed by an external magnetic field, and a It has a non-magnetic layer interposed therebetween, and writes and reads information by utilizing the difference in the magnetization direction between the fixed layer and the free layer.
  • the composition of the GMR element is “platinum manganese (PtMn) / cobalt iron (CoFe) / copper (Cu) ZCoFe”
  • the resistance change rate is about 10%
  • the coercive force is about 10%.
  • TMR—MR AM tunneling magneto-resistive
  • TMR In MRAM, when the TMR element is composed of, for example, “CoFe / aluminum oxide ZCoFej,” the resistance change rate is as high as about 40%, and the resistance value is large. It is easy to achieve matching when combined with semiconductor devices such as GMR- MRAM, so that higher output can be easily obtained, and improvement in storage capacity and access speed is expected.
  • MRAM a method of storing information by changing the magnetization direction of a magnetic film of a TMR element in a predetermined direction by a current magnetic field generated by flowing a current through a conductive wire is known.
  • MRAM using the TMR effect can achieve higher output than MRAM using the GMR effect.
  • the output voltage is on the order of tens of mV, so realizing a higher density magnetic memory device Not enough.
  • FIG. 48 is a plan view illustrating the configuration of a conventional magnetic memory device utilizing the TMR effect
  • FIG. 49 is a cross-sectional configuration of a main part of a conventional magnetic memory device corresponding to FIG. is there.
  • the write bit line 105 is orthogonal to the read word line 112 and the write word line 106 extending parallel to each other, and the first magnetic A TMR element 120 including a layer 102, a tunnel barrier layer 103, and a second magnetic layer 104 is provided.
  • the magnetization directions in the second magnetic layer 104 functioning as a free layer are sufficiently aligned over the entirety. It was difficult to perform sufficiently stable writing.
  • the magnetization direction of the magnetic film is changed by the induced magnetic field caused by the current flowing through the orthogonally arranged conductors, that is, the current magnetic field.
  • the current magnetic field is an open (magnetically not confined to a specific area) magnetic field, and therefore has low efficiency.
  • the present invention has been made in view of such a problem, and a first object of the present invention is to reduce loss of a magnetic field formed by a current flowing through a write line while maintaining a compact structure, and to achieve a stable It is an object of the present invention to provide a written magnetic memory device and a magnetic memory cell mounted thereon.
  • a second object is to provide a magnetic memory device that does not adversely affect adjacent magnetic storage cells and a magnetic storage cell mounted thereon.
  • a third object is to provide a high-speed, large-capacity magnetic memory device and a magnetic storage cell mounted thereon, which can obtain a high signal output by using a pair of magnetoresistive elements. is there.
  • a fourth object is to provide a method for easily manufacturing such a magnetic memory device.
  • the magnetic memory cell of the present invention includes a magneto-sensitive layer whose magnetization direction changes by an external magnetic field, is configured so that current flows in a direction perpendicular to the lamination surface, and is arranged so that the lamination surfaces face each other.
  • the first and second laminates are arranged between the first and second laminates so that the direction along the lamination plane is the axial direction, and the first and the second laminates are along the axial direction.
  • an annular magnetic layer configured to be penetrated by a plurality of conductors.
  • the “external magnetic field” in the present invention means a magnetic field generated by a current flowing through a plurality of conductors or a return magnetic field generated in an annular magnetic layer.
  • annular in the “annular magnetic layer” means that when viewed from a plurality of conductors penetrating the inside, the surroundings of each are completely and magnetically and electrically continuously taken in, and the direction crossing the plurality of conductors. This shows a state where the cross section is closed. Therefore, the ring magnetism
  • the layers allow for the inclusion of an insulator as long as they are magnetically and electrically continuous. In other words, the insulator does not include an insulator through which no current flows, but may include an oxide film generated in a manufacturing process, for example.
  • the “axial direction” refers to the opening direction when focusing on the single annular magnetic layer, that is, the extending direction of a plurality of conductive wires penetrating therethrough.
  • each of the first and second laminates means that an annular magnetic layer is disposed, part of which is constituted by the laminate. It is intended to be done.
  • to be penetrated by a plurality of conductors means a state in which a plurality of conductors penetrate a region or space surrounded by the annular magnetic layer.
  • the above configuration forms a closed magnetic path by passing a current through a plurality of conductors, so that the magnetization reversal of each magnetosensitive layer in the first and second stacked bodies is efficient.
  • a magnetic memory device includes a first write line, a second write line extending to intersect the first write line, and a magnetic storage cell.
  • the first and second layers each include a magneto-sensitive layer whose magnetization direction changes due to an external magnetic field, are configured so that current flows in a direction perpendicular to the lamination plane, and are arranged so that the lamination planes face each other.
  • the laminated body is disposed between the first laminated body and the second laminated body such that the direction along the lamination plane is the axial direction, and the first and second laminated bodies are arranged along the axial direction.
  • a ring-shaped magnetic layer configured to be penetrated by the two write lines.
  • each magnetic sensing element in the first and second stacked bodies is formed.
  • the magnetization reversal of the layer is performed efficiently.
  • the method for manufacturing a magnetic memory device is characterized in that a first write line, a second write line extending so as to intersect the first write line, and a sense that a magnetization direction is changed by an external magnetic field.
  • a magnetic storage cell having first and second stacked bodies including a magnetic layer, and a method for manufacturing a magnetic memory device comprising: Forming a second laminated portion that forms a part of the second laminated body, and electrically connecting the second rectifying element and the second laminated body; covering at least the laminated portion Forming a lower magnetic layer so as to complete the formation of the second laminate, forming a first write line on the lower magnetic layer via a first insulating film, Forming a second write line on the first write line via a second insulating film so as to include a portion where the first and second write lines extend parallel to each other; A step of sequentially etching and patterning the first write line, the second write line, the second insulating film, and the first write line to form a second insulating line.
  • Forming a multilayer pattern including a portion extending parallel to each other with the film interposed therebetween, and providing an upper magnetic layer so as to surround the multilayer pattern with a third insulating film interposed therebetween.
  • the first and second laminates arranged such that the laminate surfaces face each other in the annular magnetic layer provided in common by the above steps is formed.
  • the first and second write lines are parallel to each other across the second insulating film includes a manufacturing error range of ⁇ 10 °.
  • the first laminate forms a first magnetoresistive element together with the annular magnetic layer
  • the second laminate forms the second magnetic layer together with the annular magnetic layer. It is desirable to form a resistance effect element. As a result, a pair of magnetoresistive elements sharing the annular magnetic layer is formed, so that it is possible to save space compared to the case where one annular magnetic layer is provided for one laminated body.
  • both the first and second laminates are electrically connected to the annular magnetic layer. As a result, in the first and second laminates, the current flowing in the direction perpendicular to the lamination surface flows from the free layer to the annular magnetic layer.
  • the plurality of conductive lines are configured to extend in parallel with each other in a region penetrating the annular magnetic layer.
  • a plurality of wires can be formed.
  • the resultant magnetic field generated by passing a current through the write lines can be made larger than when a plurality of write lines (first and second write lines) cross each other. The magnetization reversal is performed more efficiently.
  • the plurality of conductors connect the first laminate and the second laminate in a region penetrating the annular magnetic layer. They may be arranged so as to be adjacent to each other in the direction of a straight line passing therethrough, or they may be arranged in a direction perpendicular to the straight line passing through the first laminate and the second laminate in a region penetrating the annular magnetic layer. They may be arranged side by side.
  • the magnetization directions are antiparallel to each other means that the magnetization directions of each other, that is, the relative angle formed by the average magnetization direction in each magnetic layer is exactly 180 degrees, This also includes cases where the angle deviates from 180 degrees by a predetermined angle due to manufacturing errors or errors that occur because the axis is not completely uniaxial.
  • “Information” is generally expressed as “0”, “1”, or “High”, “Low”, etc., based on the current or voltage value in the input / output signals to the magnetic memory device. Refers to value information.
  • information is stored in the first and second stacked bodies in a state where the magnetization directions of the magnetosensitive layers are antiparallel to each other. More specifically, one of the pair of magnetosensitive layers in the first and second laminates is magnetized in a first direction and the other is magnetized in a second direction that is antiparallel to the first direction. And a second state in which one of the pair of magneto-sensitive layers is magnetized in the second direction and the other is magnetized in the first direction, corresponding to the first and second states. It is desirable that information be stored in the first and second laminates.
  • the magnetization of both magneto-sensitive layers in the first and second laminates can take two states, a state facing each other and a state facing in the opposite direction, and the binary information corresponds to this state.
  • the pair of magneto-sensitive layers may constitute a part of the annular magnetic layer.
  • the pair of magneto-sensitive layers includes first and second magneto-sensitive portions each configured to be magnetically exchange-coupled with each other, and the first magneto-sensitive portion is a part of the annular magnetic layer. May be configured.
  • a pair of first non-magnetic conductive layers may be provided between the pair of first magnetically sensitive portions and the pair of second magnetically sensitive portions to antiferromagnetically couple them. It may be.
  • the pair of second magnetically sensitive portions have a larger coercive force than the pair of first magnetically sensitive portions. This further stabilizes the magnetization directions of the pair of second magnetosensitive portions.
  • the first and second laminates are each formed of a nonmagnetic layer and a first magnetic layer fixed on one side of the nonmagnetic layer and having a fixed magnetization direction.
  • a magnetic layer of the non-magnetic layer, and a magneto-sensitive layer laminated on the side opposite to the first magnetic layer, or the first and second laminates each include a non-magnetic layer, A first magnetic layer laminated on one side of the non-magnetic layer and having a fixed magnetization direction, and a second magnetic layer laminated on the non-magnetic layer on the side opposite to the first magnetic layer and functioning as a second magnetically sensitive portion
  • the information may be detected based on the current flowing through the first and second laminates.
  • the first magnetic layer has a larger coercive force than the second magnetic layer.
  • an antiferromagnetic third magnetic layer exchange-coupled to the first magnetic layer may be provided on the side of the first magnetic layer opposite to the nonmagnetic layer.
  • a second nonmagnetic conductive layer and a fourth magnetic layer antiferromagnetically coupled to the first magnetic layer are arranged between the first magnetic layer and the third magnetic layer in this order from the first magnetic layer. It may be done.
  • the nonmagnetic layer can be made of an insulating layer that can cause a tunnel effect.
  • the magnetic memory device of the present invention further includes a pair of first read lines respectively connected to the first and second magnetoresistive elements and supplying a read current to each of the magnetoresistive elements. The information is read from the magnetic storage cell based on the current flowing through the magnetic storage cell.
  • “connected” refers to at least a state of being electrically connected, and is not physically directly connected. May be in an unattended state.
  • This magnetic memory device utilizes the fact that the current value when current flows in the direction perpendicular to the stacking surface of the stack differs according to the relative magnetization direction of the magneto-sensitive layer of the magnetoresistive element that makes a pair. Then, the information is read.
  • a read current is supplied to each of the first and second stacked bodies from each of the pair of first read lines, and information is read from the magnetic storage cell based on a difference between the pair of read current values. Is desirably read. According to this method, since the read current is differentially output, noise generated in each first read line and offset components included in the output value of each magnetoresistive element are canceled out and removed. is there.
  • each of the read currents supplied to the first and second laminates is provided between a pair of first read lines and the first and second laminates on each current path. It is preferable to include first and second rectifying elements provided and a second read line for guiding a read current flowing through the first and second stacked bodies to ground.
  • the “rectifier element” of the present invention refers to an element that allows a current to pass only in one direction and prevents the current from flowing in the opposite direction.
  • the “current path” refers to the entire path along which the read current follows to flow into the stacked body, passes through the stacked body, and flows out.
  • the rectifying element has a rectifying function of flowing a current on the current path described above only in the direction of the ground (the second read line side). With this rectifier element, it is possible to prevent current from flowing in from each of the magnetic storage cells connected to the common second read line toward each of the magnetic storage cells to be read, and to reduce the current from the magnetic storage cells to be read. It is possible to prevent one stack in the magnetic storage cell from passing through the other stack to the first read line.
  • As the rectifying element a Schottky diode, a PN junction diode, a bipolar transistor, or a MOS transistor is suitable.
  • the second laminated body, the annular magnetic layer, and the first laminated body are sequentially arranged on the base on which the first and second rectifying elements are provided. It is preferable that the first and second rectifying elements and the first and second laminates are electrically connected to each other.
  • a bipolar transistor as the rectifying element and electrically connect the emitter and the magnetoresistive element of the bipolar transistor.
  • An M ⁇ S transistor may be used to electrically connect the source and the magnetoresistive element of this MOS transistor, or the rectifier may be a Schottky diode, and the epitaxy shoulder may be arranged in order from the substrate side.
  • a metal layer may be provided, and a Schottky barrier may be formed between the epitaxial layer and the metal layer.
  • the second insulating film and the first write line are selectively etched using the second write line as a mask, thereby forming the laminated pattern.
  • FIG. 1 is a block diagram showing an overall configuration of a magnetic memory device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a configuration of a write line of the magnetic memory device shown in FIG.
  • FIG. 3 is a partial plan view showing a main configuration of a storage cell group of the magnetic memory device shown in FIG.
  • FIG. 4 is a perspective view of a main part showing a main part configuration of a storage cell group of the magnetic memory device shown in FIG.
  • FIG. 5 is a cross-sectional view showing a configuration of a cross-section taken along line VV of the memory cell shown in FIG.
  • FIG. 6 is another partial plan view showing the main configuration of the storage cell group of the magnetic memory device shown in FIG.
  • FIG. 7 is a cross-sectional view showing a configuration of a cut surface of the memory cell shown in FIG. 6 along a line VII-VII.
  • FIG. 8 is a circuit diagram showing a circuit configuration of the magnetic memory device shown in FIG. 9A and 9B are explanatory diagrams showing the relationship between the write current direction and the return magnetic field direction (magnetization direction) in the cross-sectional configuration of the memory cell shown in FIG. 10A and 10B are partially enlarged views of the circuit configuration shown in FIG.
  • FIG. 11 is an enlarged cross-sectional view showing one step in a method of manufacturing the magnetic memory device shown in FIG.
  • FIG. 12 is an enlarged cross-sectional view illustrating a step following FIG. 11.
  • FIG. 13 is an enlarged cross-sectional view illustrating one step following FIG. ⁇
  • FIG. 14 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 15 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 16 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 17 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 18 is an enlarged cross-sectional view showing a step following FIG.
  • FIG. 19 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 20 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 21 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 22 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 23 is an enlarged cross-sectional view illustrating one step following FIG.
  • FIG. 24 is an enlarged cross-sectional view illustrating one step following FIG.
  • FIG. 25 is an enlarged sectional view showing a step following FIG. 24.
  • FIG. 26 is an enlarged cross-sectional view showing a step following FIG.
  • FIG. 27 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 28 is an enlarged cross-sectional view showing a step following FIG. 27.
  • FIG. 29 is an enlarged cross-sectional view showing a step following FIG.
  • FIG. 30 is an enlarged cross-sectional view illustrating a step following FIG.
  • FIG. 31 is a sectional view of a magnetic memory cell in a magnetic memory device according to a second embodiment of the present invention.
  • FIG. 32 is a perspective view of a main part showing a main part configuration of a storage cell group of the magnetic memory device shown in FIG. 31.
  • FIG. 33 is a partial plan view showing a configuration of a main part in a storage cell group of the magnetic memory device shown in FIG. 31.
  • FIG. 34 is a cross-sectional view showing a configuration of a cut surface of the memory cell shown in FIG. 33 along line XXXIV-XXXIV.
  • FIGS. 35A and 35B are explanatory diagrams showing the relationship between the write current direction and the return magnetic field direction (magnetization direction) in the cross-sectional configuration of the memory cell shown in FIG. 31.
  • FIG. 36A and FIG. 36B are cross-sectional views each showing a main configuration of a magnetic memory device according to the third and fourth embodiments of the present invention.
  • FIG. 37A and FIG. 37B are cross-sectional views each showing a main configuration of a modification (Modifications 1 and 2) in the magnetic memory device according to the first and second embodiments of the present invention. .
  • FIGS. 38A and 38B are cross-sectional views each showing a main configuration of a modification (Modifications 3 and 4) in the magnetic memory device according to the third and fourth embodiments of the present invention. .
  • FIG. 39A and FIG. 39B are cross-sectional views showing the main configuration of another modification (Modifications 5 and 6) of the magnetic memory device according to the third and fourth embodiments of the present invention. It is.
  • FIG. 40A and FIG. 40B are cross-sectional views showing the configuration of main parts of another modified example (modified examples 7 and 8) of the magnetic memory device according to the first and second embodiments of the present invention. It is.
  • FIG. 41 is a partially enlarged view showing a modification of the rectifying element in the circuit configuration shown in FIG.
  • FIG. 42 is a partial cross-sectional view showing a cross-sectional configuration in a modified example of the rectifier shown in FIG.
  • FIG. 43 is a circuit diagram showing an overall circuit configuration in a modified example of the rectifier shown in FIG.
  • FIG. 44 is a partially enlarged view showing another modification of the rectifier in the circuit configuration shown in FIG.
  • FIG. 45 is a circuit diagram showing the overall circuit configuration of another modification of the rectifier shown in FIG. 44.
  • FIG. 46 shows a circuit configuration as a comparative example corresponding to the circuit configuration shown in FIG. FIG.
  • FIG. 47 is a cross-sectional view for explaining a main part configuration of a magnetic memory device corresponding to the circuit configuration shown in FIGS. 38A and 38B.
  • FIG. 48 is a plan view for explaining the configuration of a magnetic memory device as a conventional example.
  • FIG. 49 is a cross-sectional view for explaining the main configuration of a magnetic memory device as a conventional example.
  • FIG. 1 is a conceptual diagram showing the overall configuration of a magnetic memory device according to the present embodiment.
  • the magnetic memory device includes an address buffer 51, a data buffer 52, a control logic section 53, a storage cell group 54, a first drive control circuit section 56, and a second 'drive control circuit section 5. 8, external address input terminals AO to A20, and external data terminals D0 to D7.
  • the storage cell group 54 includes a storage cell 1 having a pair of tunneling magneto-resistance effect elements (hereinafter, referred to as TMR elements).
  • the storage cell 1 includes a pair of mutually perpendicular word line directions (X direction) and bit line directions (Y direction). In the direction).
  • the storage cell 1 is a minimum unit for recording data in a magnetic memory device, and is a specific example corresponding to the “magnetic storage cell” in the present invention. The storage cell 1 will be described later in detail.
  • the first drive control circuit unit 56 includes an address decoder circuit 56 A in the Y direction, a sense amplifier circuit 56 B, and a current drive circuit 56 C, and the second drive control circuit unit 58 It has an address decoder circuit 58 A in the direction, a constant current circuit 58 B, and a current drive circuit 58 C.
  • the address decoder circuits 56 A and 58 A operate according to the input address signal. This selects the output code decode line 72 and the bit decode line 71.
  • the sense amplifier circuit 56B and the constant current circuit 58B are circuits driven when performing a read operation, and the current drive circuits 56C and 58C are circuits driven when performing a write operation. .
  • the sense amplifier circuit 56B and the memory cell group 54 are connected by a plurality of bit decode lines 71 (described later) through which a sense current flows during a read operation.
  • the constant current circuit 58B and the memory cell group 54 are connected by a plurality of word decode lines 72 (described later) through which a sense current flows during a read operation.
  • the current drive circuit 56 C and the memory cell group 54 are connected via a write bit line 5 (described later) which is required for a write operation.
  • the current drive circuit 58 C and the memory cell group 54 are connected via a write mode line 6 (described later) necessary for a write operation.
  • the address buffer 51 has external address input terminals A 0 to A 20, and has a Y-direction address in the first drive control circuit unit 56 via a Y-direction address line 57 and an X-direction address line 55.
  • the decoder circuit 56 A is connected to the X-direction address decoder circuit 58 A in the second drive control circuit section 58.
  • This address buffer 51 receives an external address signal from external address input terminals AO to A20 .
  • a buffer amplifier (not shown) provided inside has a Y-direction address recorder circuit 56A, an X-direction address. The signal is amplified to a voltage level required in the decoder circuit 58B.
  • the 7-address buffer 51 divides the amplified address signal into two, outputs the amplified address signal to a Y-direction address decoder circuit 56 A via a Y-direction address line 57, and outputs the amplified address signal via an X-direction address line 55. Function to output to the X-direction address decoder circuit 58A.
  • the data buffer 52 includes an input buffer 52A and an output buffer 52B, has external data terminals D0 to D7, and is connected to the control logic unit 53. It operates by the output control signal 53 A from 53.
  • the input buffer 52 A is connected to the Y-direction current drive circuit 56 C and the second drive in the first drive control circuit 56 via the Y-direction and X-direction write data buses 61 and 60, respectively.
  • X-direction current drive circuit in control circuit section 58 When the write operation to the memory cell group 54 is performed, the signal voltage of the external data terminals D0 to D7 is taken in and the internal buffer amplifier (not shown) is connected.
  • the X-direction current drive circuit 58 C and the Y-direction current drive circuit via the X-direction write data bus 60 and the Y-direction write data bus 61 Functions to communicate to 5 6 C.
  • the output buffer 52B is connected to the sense amplifier circuit 56B via the Y-direction read data bus 62, and is internally provided when reading the information signal stored in the memory cell group 54.
  • the buffer amplifier (not shown) functions to amplify the information signal input from the sense amplifier circuit 56B, and then output it to the external data terminals D0 to D7 with low impedance.
  • the control logic section 53 includes a chip select terminal CS and a write enable terminal WE, and is connected to the data buffer 52.
  • the control logic section 53 functions to output a signal voltage from a chip select terminal CS for selecting a read / write target from the plurality of memory cell groups 54 and a write enable signal. It functions to take in the signal voltage from the write enable pin WE and output the output control signal 53 A to the data buffer 52.
  • FIG. 2 is a conceptual diagram illustrating a main configuration of a memory cell group 54 related to a write operation.
  • the magnetic memory device according to the present embodiment has a plurality of write bit lines 5 and a plurality of write bit lines 5 extending so as to intersect with the plurality of write bit lines 5, respectively.
  • a parallel portion 10 in which the write bit line 5 and the write word line 6 extend in parallel with each other is provided in each region where the write pit line 5 and the write word line 6 intersect. It is comprised so that it may have.
  • the write word line 6 extends in a rectangular wave shape along the X direction, while the write bit line 5 extends linearly along the Y direction. are doing.
  • the rising and falling portions of the rectangular waveform in the write mode line 6 form a plurality of parallel portions 10 together with the write bit line 5.
  • the memory cell 1 is provided at each intersection of the write bit line 5 and the write pad line 6 so as to surround at least a part of each parallel portion 10. It is provided in.
  • the fact that the storage cell 1 is provided in the intersecting region includes the case where the storage cell 1 is provided next to the intersection.
  • Each storage cell 1 is composed of a TMR element 1a and a TMR element 1b, respectively.
  • the TMR element la and the TMR element lb are one specific example corresponding to the “pair of magnetoresistance effect elements” of the present invention.
  • FIG. 3 more specifically shows a plan configuration of a main part of the memory cell group 54.
  • the write bit line 5, write word line 6, and storage cell 1 shown in FIG. 3 correspond to FIG.
  • the storage cell 1 is arranged at a parallel portion 10 of a write pit line 5 and a write word line 6 along the Y direction.
  • the pair of TMR elements 1 a and 1 b constituting the storage cell 1 each include a laminate S 20 (S 20 a, S 20 b) including a magneto-sensitive layer and an annular magnetic layer 4.
  • the magnetization direction of the magneto-sensitive layer is changed by a magnetic field generated by a current flowing through both the write bit line 5 and the write word line 6 in the parallel portion 10 (ie, an external magnetic field in the annular magnetic layer 4). It has become.
  • the write bit line 5 and the write word line 6 in the parallel portion 10 are provided at positions substantially coincident with each other on the XY plane, but have a certain interval in the Z direction. Are located and are electrically insulated from each other.
  • Write bit line lead-out electrodes 42 are provided at both ends of each write bit line 5. Each of the write bit line lead electrodes 42 is connected such that one is connected to the Y-direction current drive circuit 56 C and the other is finally grounded. Similarly, write word line lead electrodes 41 are provided at both ends of each write word line 6. One of the write word line lead electrodes 41 is connected to the X-direction current drive circuit 58 C, and the other is connected to be finally grounded.
  • FIG. 4 is an enlarged perspective view of the storage cell 1.
  • a write word line 6 as a first write line and a write bit line 5 as a second write line extend in parallel with each other and penetrate through the annular magnetic layer 4.
  • the write word line 6, the write pit line 5, and the annular magnetic layer 4 are electrically insulated from each other via an insulating film 7.
  • the stacked portion 20a and the stacked portion 2Ob are arranged on the surface of the annular magnetic layer 4 such that the stacked surfaces thereof face each other.
  • a pair of laminates S20a and S20b including the pair of laminate portions 20a and 20b are electrically connected to conductive layers 36a and 36b (described later), respectively.
  • the pair of conductive layers 36a and 36b constitute a part of the pair of Schottky diodes 75a and 75b (described later).
  • the ends are connected to read bit lines 33a and 33b (not shown) extending in the Y direction.
  • FIG. 5 shows a cross-sectional configuration of the memory cell 1 shown in FIG. 3 in the direction of the arrow V-V cutting line. Note that, in order to distinguish from a storage cell 1H as a modified example of the present embodiment described later, the storage cell is referred to as a storage cell 1P here.
  • the storage cell 1 P includes a magneto-sensitive layer whose magnetization direction changes by an external magnetic field, and is configured so that current flows in a direction perpendicular to the lamination plane.
  • the stacked bodies S20a and S20b arranged so as to face each other, and the stacked body S20a and the stacked body S20b are shared so that the direction along the stacked surface is the axial direction.
  • a ring magnetic layer 4 configured to be penetrated by a write word line 6 and a write bit line 5 along the axial direction.
  • the laminate S20a forms a TMR element 1a together with the annular magnetic layer 4
  • the laminate S2Ob forms a TMR element 1b together with the annular magnetic layer 4.
  • the write word line 6 and the write bit line 5 are adjacent to each other in the direction of a straight line passing through the stacked body S 20 a and the stacked body S 20 b in a region penetrating the annular magnetic layer 4. It is arranged like this.
  • the laminate S 20a is a specific example corresponding to the “first laminate” in the present invention
  • one laminate S 20b corresponds to the “second laminate” in the present invention. This is one specific example.
  • the magnetic sensing layer is constituted by a pair of connecting portions 14a and 14b constituting a part of the annular magnetic layer 4 and a pair of second magnetic layers 8a and 8b described later.
  • the connecting portions 14a and 14b and the pair of second magnetic layers 8a and 8b are Exchange coupling.
  • the connection portions 14 a and 14 b are one specific example corresponding to the “first magnetically sensitive portion” in the present invention
  • one of the second magnetic layers 8 a and 8 b is the “second magnetic layer” in the present invention. This is a specific example corresponding to the “magnetically sensitive portion”.
  • the laminates S20a and S20b are composed of laminated portions 20a and 20b and connection portions 14a and 14b, respectively. From the side of the annular magnetic layer 4 (connection portions 14a, 14b), in order from the side of the second magnetic layer 8a, 8b, the tunnel barrier layer 3a, 3b, and the first magnetic layer 2 having a fixed magnetization direction. a, 2b, so that the current flows in the direction perpendicular to the stacking surface. As described above, the second magnetic layers 8a and 8b together with the pair of connecting portions 14a and 14b of the annular magnetic layer 4 function as a magneto-sensitive layer.
  • the tunnel barrier layer 3 is one specific example corresponding to the “non-magnetic layer” in the present invention.
  • the dimensions of the laminates S 20 a and S 20 b are exaggerated relatively larger than the surroundings to clarify the configuration of the laminates S 20 a and S 20 b. .
  • the first magnetic layer When a vertical voltage is applied to the laminated surface between the first magnetic layers 2a and 2b and the second magnetic layers 8a and 8b, for example, the first magnetic layer
  • the electrons 2a and 2b pass through the tunnel barrier layers 3a and 3b and move to the second magnetic layers 8a and 8 so that a tunnel current flows.
  • This tunnel current changes depending on the relative angle between the spin of the first magnetic layers 2a and 2b and the spin of the second magnetic layers 8a and 8b at the interface with the tunnel barrier layers 3a and 3b. . That is, when the spins of the first magnetic layers 2a and 2b and the spins of the second magnetic layers 8a and 8b are parallel to each other, the resistance becomes minimum, and when the spins are antiparallel, the resistance becomes maximum.
  • the magnetoresistance ratio MR ratio
  • dR is the difference between the resistance values when the spins are parallel to each other and when they are antiparallel
  • R is the resistance value when the spins are parallel to each other.
  • tunnel resistance Rt The resistance to the tunnel current (hereinafter referred to as tunnel resistance Rt) strongly depends on the thickness T of the tunnel barrier layers 3a and 3b.
  • the tunnel resistance R t In the region, as shown in Equation 2, it increases exponentially with respect to the thickness T of the tunnel barrier layers 3a and 3b.
  • is the barrier height
  • m * J is the effective electron mass
  • E f is the Fermi energy
  • h is Planck's constant.
  • a tunnel resistance R t of about several ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ (u rn) 2 is appropriate for matching with a semiconductor device such as a transistor.
  • the tunnel resistance Rt should be 10 k ⁇ ⁇ (m) 2 or less, more preferably 1 k ⁇ ⁇ (u rn) It is preferably set to 2 or less. Therefore, in order to realize the above-described tunnel resistance R t, it is desirable that the thickness T of the tunnel barrier layers 3 a and 3 b be 2 nm or less, more preferably 1.5 nm or less.
  • the tunnel resistance R t can be reduced, while the first magnetic layers 2 a, 2 b and the second magnetic layers 8 a, 8 b Since the leakage current occurs due to the unevenness of the bonding interface, the MR ratio is reduced.
  • the thickness T of the tunnel barrier layers 3a and 3b must have a thickness that does not allow leakage current to flow, specifically, a thickness of 0.3 nm or more. Is desirable.
  • the laminates S20a and S20b shown in FIG. 5 have a coercive force difference type structure, and the coercive force of the first magnetic layers 2a and 2b is larger than that of the second magnetic layers 8a and 8b. It is desirable that the structure be larger than the coercive force of b.
  • the coercive force of the first magnetic layer 2 a, 2 b are, (50 / 47t) X 1 0 is desirably greater than 3 A / m, in particular (1 00/4 ⁇ ) X 1 0 3 Desirably, it is A / m or more. This can prevent the magnetization directions in the first magnetic layers 2a and 2b from being affected by an unnecessary magnetic field such as an external disturbance magnetic field.
  • the first magnetic layers 2a and 2b are made of, for example, a 5 nm-thick cobalt iron alloy (CoFe).
  • simple cobalt (Co), cobalt platinum alloy (CoPt), nickel-iron-cobalt alloy (NiFeCo), etc. can be applied to the first magnetic layers 2a and 2b.
  • Second magnetic layer 8a, 8b is, for example, simple cobalt (Co), cobalt iron alloy (CoFe), cobalt platinum alloy (C0Pt), nickel iron alloy (NiFe) or nickel iron cobalt alloy (NiFeCo).
  • the easy axes of magnetization of the first magnetic layers 2a and 2b and the second magnetic layers 8a and 8b are the same as those of the first magnetic layers 2a and 2b and the second magnetic layers 8a and 8b. In order to stabilize the magnetization directions of the layers in a state of being parallel or anti-parallel to each other, it is desirable that they are parallel.
  • the annular magnetic layer 4 extends so as to annularly surround at least a part of the parallel portion 10 of the write bit line 5 and the write word line 6. It is configured such that a return magnetic field is generated inside the layer 4. The magnetization direction of the annular magnetic layer 4 is reversed by the above-mentioned return magnetic field.
  • the connection portions 14a, 14b of the annular magnetic layer 4 and the second magnetic layers 8a, 8b adjacent thereto function as storage layers for storing information.
  • Annular magnetic layer 4 for example, a nickel-iron alloy (N i F e), the coercive force of the connection portion 1 4 a, 1 4 b is, (1 0 0/4 TC ) X 1 0 3 A / m It is desirable that the first magnetic layers 2a and 2b are configured to have a coercive force smaller than the coercive force within the following range. In (1 0 0/4 ⁇ ) coercive force exceeding X 1 0 3 Alpha Roh m, the heat generation due to the increase in the write current, TMR film 2 0 'a, 2 0 b deterioration of itself occurs This is because there is a possibility that it will be lost.
  • N i F e nickel-iron alloy
  • the magnetic permeability of the annular magnetic layer 4 is larger. Specifically, it is at least 200, more preferably at least 600.
  • Each of the write bit line 5 and the write word line 6 is composed of 10 nm thick titanium (T i), 10 nm thick titanium nitride (T i N), and 500 nm thick aluminum (A 1) are sequentially laminated, and are electrically insulated from each other by an insulating film 7.
  • the write bit line 5 and the write word line 6 may be made of, for example, at least one of aluminum (A 1), copper (Cu), and tungsten (W). A memory cell using these write bit line 5 and write pad line 6 A more specific write operation for 1 will be described later.
  • FIG. 6 shows a plan view of a main part relating to a read operation in the memory cell group 54, and corresponds to FIG.
  • each storage cell 1 is disposed at each intersection of the plurality of read word lines 32 and the plurality of read bit lines 33 on the XY plane.
  • the read bit line 33 includes a pair of read bit lines 33a and 33b.
  • the read gate line 3 The memory cell 1 is provided in a region intersecting with 2.
  • a pair of read bit lines 33a and 33b are electrically connected to a pair of stacked portions 20a and 20b via a pair of Schottky diodes 75a and 75b (described later). are doing.
  • One read guide line 32 is electrically connected to the annular magnetic layer 4 of the memory cell 1 via a connection layer or the like.
  • a pair of read bit lines 33 a and 33 b supply a read current to each of a pair of TMR elements 1 a and 1 b in each memory cell 1, and one read word line 32 is connected to the TMR element 1
  • the read current flowing in each of a and 1b is led to the ground.
  • read bit line lead electrodes 44a and 44b are provided, respectively.
  • each read word line 32 On the other hand, at both ends of each read word line 32, a read word line lead electrode 43 is provided.
  • the read bit line 33 is a specific example corresponding to the “first read line” of the present invention
  • the read guide line 32 is a specific example corresponding to the “second read line” of the present invention. This is a specific example.
  • FIG. 7 shows a cross-sectional configuration taken along the line VII-VII shown in FIG.
  • the magnetic memory device has a pair of short-circuit diodes 75a and 75b (hereinafter simply referred to as diodes) functioning as rectifying elements in a region including the storage cell 1.
  • diodes functioning as rectifying elements in a region including the storage cell 1.
  • the diode 75a is a specific example corresponding to the “first rectifying element” of the present invention
  • the diode 75b is one specific example corresponding to the “second rectifying element” of the present invention. It is an example.
  • the pair of diodes 75 a and 75 b have conductive layers 36 a and 36 b, an epitaxy layer 37 and a substrate 38 in this order from the memory cell 1 side, and these conductive layers 36 a and 36 A Schottky barrier is formed between b and the epitaxial layer 37.
  • the diode 75 a and the diode 75 b are configured so as to have no electrical connection to each other except for being connected to the annular magnetic layer 4 with the laminated portions 20 a and 20 b interposed therebetween.
  • Substrate 38 is an n-type silicon wafer.
  • an n-type silicon wafer is subjected to impurity diffusion of phosphorus (P), and a substrate 38 which is of an n ′′ type due to high-concentration diffusion of phosphorus is used.
  • the phosphorus is diffused at a low concentration so that it becomes ⁇ -type
  • the epitaxial layer 37 which is the ⁇ -type semiconductor, is brought into contact with the conductive layers 36a and 36b made of metal. As a result, a band gap is generated, and a Schottky barrier is formed, and the pair of diodes 75a and 75b are connected to the read bit lines 33a and 33b via the connection layer 33T, respectively. ing.
  • FIG. 8 is a configuration diagram of a circuit system including the memory cell group 54 and its readout circuit.
  • This readout circuit system is a differential amplification type in which a memory cell 1 is composed of a pair of TMR elements 1a and 1b.
  • the reading of information from each memory cell 1 is performed by reading currents flowing through the stacked bodies S 20 a and S 20 b in the TMR elements la and lb (from the read bit lines 33 a and 33 b to the stacked body S 20 b).
  • a, S 20 b and outputs the difference value of the current flowing out to the common read-out line 32).
  • the memory cell 1 for each pit row of the memory cell group 54 and a part of the read circuit including the sense amplifier circuit 56B are connected to a unit read circuit 80 (..., 8 On, 80 n + 1,...) And are arranged in parallel in the bit string direction.
  • Each of the unit read circuits 80 n is connected to the Y-direction address decoder circuit 56 A via a bit decode line 71 (..., 71 ⁇ , 71 ⁇ + 1,...), And the output buffer 52 ⁇ It is connected to the ⁇ ⁇ direction reading data bus 62.
  • the memory cell group 54 includes a read word line 32 (..., 32 m, 32m + 1,...) Extending in the X direction and a pair of read bit lines 33 a and 33 b extending in the Y direction. Wiring is made.
  • Each storage cell 1 has a pair of read bit lines 33a, It is arranged at the intersection of the read-out line 32 in the region sandwiched between 33b.
  • One end of each of the stacked bodies S20a and S20b in each memory cell 1 is connected to the read bit lines 33a and 33b via a pair of diodes 75a and 75b, respectively. The other end is connected to a common read word line 32.
  • each read-out lead line 32 is connected to each read-out switch 83 (..., 83m, 83m + 1,...) Via the read-out lead line lead electrode 43, respectively.
  • Each of the read switches 83 is connected to the X-direction address decoder circuit 58A via a word decode line 72 (..., 72m, 72m + 1,. It is configured to conduct when the selection signal from 58 A is input.
  • the constant current circuit 58B has a function of making the current flowing through the read source line 32 constant.
  • each read bit line 33a, 33b is connected to a sense amplifier circuit 56B via a read bit line lead electrode 44a, 44b, and the other end is finally grounded.
  • the sense amplifier circuit 56B has a function of taking in the potential difference between a pair of read bit lines 33a and 33b in each unit read circuit 80 and amplifying the potential difference. is there.
  • Each of the sense amplifier circuits 56 B is connected to an output line 82 ( ⁇ , 82 ⁇ , 82 ⁇ + 1, ⁇ ), and finally is connected to an output buffer 52 ⁇ ⁇ ⁇ by a ⁇ direction read data bus 62. To be connected to.
  • FIG. 9A and 9B show the relationship between the write current direction and the return magnetic field direction (magnetization direction) in the cross-sectional configuration of the memory cell 1P shown in FIG.
  • the arrows shown on each magnetic layer in FIGS. 9A and 9B indicate the direction of magnetization in that magnetic layer.
  • the direction of the magnetic field of the annular magnetic layer 4 is also shown.
  • the magnetization of each of the first magnetic layers 2a and 2b is fixed in the X direction.
  • FIG. 9A shows a case where write currents flow in the same direction to write bit line 5 and write lead line 6 passing through storage cell 1 in parallel to each other, as shown in FIG. Corresponds to the write current direction.
  • FIG. 9A shows that in the memory cell 1 P, a write current flows from the back to the front (in the Y direction) in a direction perpendicular to the plane of the drawing, and a return magnetic field flows in the annular magnetic layer 4 in the counterclockwise direction. 4 shows the case where it occurs.
  • the magnetization direction of the connection portion 14a and the second magnetic layer 8a is in the X direction
  • the magnetization direction of the connection portion 14b and the second magnetic layer 8b is in the + X direction.
  • FIG. 9A shows a case where write currents flow in the same direction to write bit line 5 and write lead line 6 passing through storage cell 1 in parallel to each other, as shown in FIG. Corresponds to the write current direction.
  • FIG. 9A shows that in the memory cell 1 P, a write current
  • FIG. 9B corresponds to the case where the current directions flowing through the write bit line 5 and the write word line 6 are completely opposite to the state shown in FIG. 9A. That is, in FIG. 9B, in the memory cell 1 P, a write current flows from the near side to the back side (in the + Y direction) in a direction perpendicular to the plane of the paper, and the inside of the annular magnetic layer 4 is rotated clockwise. This shows a case where a return magnetic field 34 is generated. In this case, the magnetization direction of the connection portion 14a and the second magnetic layer 8a is in the + X direction, and the magnetization direction of the connection portion 14b and the second magnetic layer 8b is in the 1X direction.
  • a pair of return magnetic fields 34 generated by currents flowing through both the write bit line 5 and the write lead line 6 penetrating through the annular magnetic layer 4 are provided. Since the magnetization directions of the second magnetic layers 8a and 8b in the TMR elements 1a and 1b change so that they are opposite to each other, information can be stored in the storage cell 1 by using this. Can be.
  • one X direction is a specific example corresponding to the “first direction” in the present invention
  • + X direction is a specific example corresponding to the “second direction” in the present invention. Therefore, the state in FIG. 9A is a specific example corresponding to the “first state” in the present invention, and the state in FIG. 9B corresponds to the “second state” in the present invention. This is one specific example.
  • the first magnetic layers 2a and 2b and the second If the magnetization directions of the active layers 8a and 8b are parallel, a low resistance state where a large tunnel current flows is provided, and if the magnetization directions are antiparallel, a high resistance state where only a small tunnel current flows is provided.
  • one of the paired TMR element 1a and TMR element 1b always has a low resistance and the other has a high resistance to store information.
  • writing is performed by flowing currents in the same direction to both the write bit line 5 and the write gate line 6.
  • the current magnetic field generated by the write bit line 5 and the current magnetic field generated by the write gate line 6 are in the same direction inside the annular magnetic layer 4, and a combined magnetic field can be formed.
  • a higher magnetic flux density can be obtained as compared to a case where the annular magnetic layer 4 is not provided or a case where the write bit line 5 and the write word line 6 are orthogonal to each other, so that the current magnetic field can be used more efficiently.
  • the current required for inverting the magnetization of the connection portions 14a and 14b of the annular magnetic layer 4 and the magnetizations of the second magnetic layers 8a and 8b can be further reduced. Furthermore, in the storage cell 1, since the pair of stacked bodies S20a and S20b are arranged so that the stacked surfaces thereof face each other, the magnetization direction in the connection portion 14a and the second magnetic layer 8a, The magnetization directions in the connection portion 14 b and the second magnetic layer 8 b are necessarily antiparallel to each other. Therefore, by using this, binary information of “0” or “1” can be stored.
  • annular magnetic layer 4 is provided in common for the pair of laminated bodies S 20 a and S 20 b, the pair of TMR elements la and 1 b can be easily formed, and The formation area of cell 1 can be reduced, and the capacity of stored information can be increased.
  • the second magnetic layer 8 is provided between the tunnel barrier layer 3 and the connection portion 14 of the annular magnetic layer 4, the following advantages can be obtained. That is, it is possible to form exchange coupling between the connection portion 14 and the second magnetic layer 8, and the magnetization direction in the second magnetic layer 8 as the second magnetically sensitive portion is better aligned, More stable writing is possible. Furthermore, since the coercive force of the connection part 14 can be suppressed smaller, the amount of heat generated is reduced by reducing the current value during the write operation. It can fully exhibit the function as a magnetic memory device.
  • one of the plurality of bit decode lines 71 is selected by the address decoder circuit 56 A in the first drive control circuit section 56, and a control signal is transmitted to the corresponding sense amplifier circuit 56 B. You. As a result, a read current flows through the read bit lines 33a and 33b, and a positive potential is applied to the side of the stacked bodies S20a and S20b in the TMR elements la and 1b. Similarly, one of the plurality of word decode lines 72 is selected by the X-direction address decoder circuit 58 A in the second drive control circuit section 58, and the corresponding read switch 83 is driven.
  • the selected read switch 83 is energized, a read current flows through the corresponding read word line 32, and a negative current is applied to the TMR elements la and 1b on the opposite side to the stacked bodies S20a and S20b. Is applied. Therefore, a read current required for reading can flow through one memory cell 1 selected by the Y-direction address decoder circuit 56A and the X-direction address decoder circuit 58A. Based on the read current, the magnetization direction of the pair of second magnetic layers 8a and 8b can be detected, and the stored information can be read. Here, it is important that the read current from the read bit lines 33a and 33b flows into the storage cell 1 after passing through the pair of diodes 75a and 75b. The reason for this will be described later.
  • FIG. 10A and FIG. 10B are circuit diagrams showing the peripheral portion of the storage cell 1.
  • FIG. The magnetization directions of the first magnetic layers 2a and 2b of the laminates S20a and S20b are indicated by white arrows, and the magnetization directions of the second magnetic layers 8a and 8b are indicated by black arrows. ing.
  • the magnetization directions of the first magnetic layers 2a and 2b are both fixed to the left.
  • FIG. 10A is a state corresponding to FIG. 9A, in which the first magnetic layer 2a and the second magnetic layer 8a have a parallel magnetization direction in the laminated body S20a. In the body S20b, the first magnetic layer 2b and the second magnetic layer 8b have antiparallel magnetization directions.
  • the stacked body S 20 a is in the low resistance state
  • the stacked body S 20 b is in the high resistance state, and corresponds to, for example, “0”.
  • FIG. 10B which is a state corresponding to FIG. 9B
  • the laminate S 20a is in a high-resistance state, contrary to the case of FIG. S 20 b is in the low resistance state, and corresponds to, for example, “1”.
  • Such binary information can be read out by using the magnitude of the resistance value of the laminate S20a and the laminate S20b and detecting the difference between the current values flowing through each of them. .
  • FIG. 46 is a configuration diagram of a storage cell group including a storage cell 501 as a comparative example of the present embodiment and a circuit system including a read circuit thereof.
  • FIG. 47 shows a cross-sectional configuration of the memory cell 501.
  • one diode 17 is provided on the opposite side of the sense amplifier circuit 56 B with respect to the pair of stacked bodies S 20 a and S 20 b.
  • the memory cell 501 is formed on a diode 175 buried in a substrate 131, and the upper surface thereof is formed of a pair of read bit lines 33a, 33a. 3b is to be connected.
  • the storage cell 501 includes an annular magnetic layer 4 configured to be electrically connected to the conductive layer 136 of the diode 175 via the connection layer 136 T,
  • the annular magnetic layer 4 has a pair of connecting portions 20a and 2Ob opposed to each other on the surface of the annular magnetic layer 4.
  • the pair of connection portions 20 a and 20 b together with a part of the annular magnetic layer 4 form a pair of laminates S 20 a and S 20 b.
  • 20 0 and S 20 b are connected to a pair of read bit lines 33 a and 33 b, respectively.
  • the read switch 83m when the read switch 83m is selected to read the information stored in the storage cell 50lm, in the comparative example of FIGS. 46 and 47, for example, the storage cell 50lm A wraparound of the read current occurs through the path L passing through +1.
  • the path R indicated by a solid line is a normal current path. More specifically, for example, the read current flowing from the sense amplifier circuit 56B to the read bit line 33a is caused by the stack S S of the memory cells 501 m + 1 that are not originally selected as the read target. 20a, and further passes through the laminated body S20b via the shared annular magnetic layer 4. Thereafter, the read bit line 33b flows backward to the sense amplifier circuit 56B, so that the read bit line 33b merges with the read current flowing to the 501m laminated body S20b.
  • the stacked body S 20 b and the annular magnetic layer 4 are stacked on the base 31 provided with the pair of diodes 75 a and 75 b. And a pair of diodes 75 a and 75 b and an annular magnetic layer 4 via a pair of stacked bodies S 20 a and S 20 b. Are electrically connected.
  • a read current flows from each of the pair of read bit lines 33a and 33b to each of the first and second stacked bodies S20a and S20b. Then, information can be read from the magnetic memory cell based on the difference between the pair of read current values. As a result, the read current is differentially output, so that the noise generated in each read bit line 33 and the offset component included in the output value of each TMR element 1a, 1b are canceled out and removed. Is done.
  • the method of manufacturing the magnetic memory device includes the steps of forming a small layer portion 20b forming a part of the laminated body S20b on the base 31 provided with the diodes 75a and 75. Forming the lower magnetic layer 4B so as to cover at least the laminated portion 20b, and completing the formation of the laminated body S20b; and forming the insulating film 7 on the lower magnetic layer 4B. A step of forming a write lead line 6 through A, and a write bit line 5 on the write lead line 6 through an insulating film 7C, and a write lead line 6 And a step of forming the write bit line 5 so as to include a portion extending in parallel with each other.
  • the write bit line 5, the insulating film 7C, and the write lead line 6 are sequentially etched and patterned.
  • a stacked pattern forming step of forming a stacked pattern 19 including a portion where the write mode line 6 and the write bit line 5 extend in parallel with each other By providing the upper magnetic layer so as to surround the laminated pattern 19 with the insulating films 7D and 7E interposed therebetween, the step of forming the annular magnetic layer 4 and the step of forming the laminated body S2 on the annular magnetic layer 4
  • a laminated portion 20a at a position corresponding to 0b a laminated body S20a is formed, and laminated bodies S20a and S20b are provided.
  • a specific description will be given.
  • FIGS. 11 to 30 are cross-sectional views corresponding to FIG. 7 and show the forming process.
  • a substrate 31 in which a pair of diodes 75a and 75b are embedded is prepared, and a laminated portion 2Ob is formed on the conductive layer 36b of the diode 75b.
  • a resist pattern is selectively formed by an i-line stepper or the like so as to cover a region other than the region where the laminated portion 2Ob is to be formed.
  • a first magnetic layer 2b composed of, for example, a CoFe layer and an aluminum (A 1) layer are sequentially formed over the entire surface by sputtering or the like.
  • the tunnel barrier layer 3b is obtained by oxidizing this aluminum layer.
  • a second magnetic layer 8b made of, for example, a CoFe layer is formed by sputtering or the like.
  • a cap layer (protective layer) made of (Ta) or the like may be provided.
  • the resist pattern is lifted off to expose a laminated portion 20b including the first magnetic layer 2, the tunnel barrier layer 3, and the second magnetic layer 8 having a predetermined pattern shape.
  • TE ⁇ S tetraethyl orthosilicate
  • S i OC 2 H 5
  • CVD Chemical Vapor Deposition
  • An insulating film 17 A made of 2 ) is formed. After that, for example, ⁇ ! /%) In a magnetic field of X 1 0 6 A / m performs Aniru at a temperature of 2 5 0 ° C, to fix the magnetization direction of the first magnetic layer 2 b.
  • the surface of the insulating film 17A is flattened by, for example, a CMP (Chemical Mechanical Polishing) apparatus to expose the upper surface of the stacked portion 20b.
  • the lower magnetic layer 4B is selectively formed so as to cover at least the upper surface of the laminated portion 20b.
  • the resist frame is selectively formed using photolithography.
  • a NiFe layer for example, is formed in an unprotected region by sputtering or the like, and the resist frame is removed.
  • an insulating film 7A made of, for example, SiO 2 is formed so as to cover the whole by using a CVD apparatus.
  • This insulating film 7A is a specific example corresponding to the “first insulating film” of the present invention.
  • a metal layer (not shown) made of, for example, titanium (T i) is formed on the insulating film 7A by sputtering or the like.
  • a write lead line 6 is selectively formed on this metal layer so as to cover at least the formation region of the stacked body S20b.
  • a resist pattern (not shown) having a predetermined shape is formed on the metal layer on the insulating film 7A
  • the metal layer is immersed in the plating layer, and the metal layer is used as an electrode.
  • a write word line 6 made of copper (Cu) is formed.
  • the unnecessary metal layer is removed by ion milling.
  • an insulating film 7B made of, for example, SiO 2 is formed so as to cover the whole by using a CVD device, and finally, a write code is finally formed by a CMP device.
  • the insulating film 7B is polished until the line 6 is exposed, and the surfaces of the write lead line 6 and the insulating film 7B are flattened.
  • the insulating film 7B is a specific example corresponding to the “second insulating film” of the present invention.
  • a metal layer made of, for example, titanium is formed on the insulating film 7C by sputtering or the like.
  • a write bit line 5 is selectively formed so as to cover a region corresponding to the write word line 6 in this metal layer.
  • a resist pattern (not shown) having a predetermined shape is formed on the insulating film 7C, the resist pattern is immersed in a plating layer and a plating process using the metal layer as an electrode is performed.
  • Write bit line 5 is formed. After removing the resist pattern, unnecessary metal layers are removed by ion milling.
  • a self-aligned laminated pattern 19 is formed using the write bit line 5 as a mask. Specifically, RIE (reactive ion etching) using C 4 F 8 as a reactive gas and ion milling are used to write data.
  • a stacked pattern 19 is formed by removing the insulating film 7C, the write word line 6, and the insulating film 7A in a region not protected by the cut line 5. Here, it is important to remove the insulating film 7A until the lower magnetic layer 4B is exposed.
  • the write pad line 6 having the same width as the write bit line 5 is formed with high precision by forming the laminated pattern 19 in a self-aligned manner using the write bit line 5 as a mask. can do. Further, the step of forming a resist pattern and the step of removing the resist pattern can be omitted, and the manufacturing process can be simplified.
  • An insulating film 7D made of 2 or the like is formed.
  • a thin metal layer is formed by sputtering NiFe.
  • a photoresist layer 30A is formed by photolithography or the like on the metal layer corresponding to the region where the lower magnetic layer 4B is not formed.
  • the metal layer is immersed in the plating layer and subjected to plating using the metal layer as an electrode.
  • an intermediate magnetic layer made of, for example, NIF e Form 4 S.
  • an unnecessary metal layer is removed by ion milling.
  • an insulating film 17B made of, for example, SiO 2 is formed so as to cover the whole by a CVD device or the like, and finally, a write bit line is finally formed by using a CMP device. Polish until the 5 is exposed to form a flat surface including the write bit line 5.
  • an insulating film 7E is selectively formed by photolithography or the like so as to cover the flat exposed surface of the write bit line 5. Further, a thin metal layer is formed by, for example, sputtering. Thereafter, as shown in FIG. 23, a photoresist layer 30B is formed on the metal layer in a region corresponding to the insulating film 17B by photolithography or the like. Furthermore, in order to use the metal layer as an electrode by being immersed in the plating layer, a surface treatment is performed to form an upper magnetic layer 4 U made of, for example, NiFe. I do. Thus, the formation of the annular magnetic layer 4 including the lower magnetic layer 4B, the intermediate magnetic layer 4S, and the upper magnetic layer 4U is completed.
  • the intermediate magnetic layer 4S and the upper magnetic layer 4U are one specific example corresponding to the "upper magnetic layer" of the present invention.
  • the laminated body S20a is formed by providing the laminated part 20a at a position on the upper magnetic layer 4U corresponding to the laminated body S20b.
  • a resist pattern is selectively formed by an i-line stepper or the like so as to cover a region other than the region where the stacked portion 20a is formed.
  • a second magnetic layer 8a made of, for example, a CoFe layer and an aluminum (A1) layer are sequentially formed over the entire surface by sputtering or the like.
  • a tunnel barrier layer 3a is obtained. Further, on the tunnel barrier layer 3a, a first magnetic layer 2a made of, for example, a CoFe layer is formed by sputtering or the like. Thereafter, by lifting off the resist pattern, the first magnetic layer 2 a having a predetermined pattern, thereby D exposing the stacked portion 2 0 a consisting of the tunnel barrier layer 3 a and the second magnetic layer 8 a, The formation of the laminated body S20a composed of a part of the upper magnetic layer 4U and the laminated part 20a is temporarily completed.
  • a CVD (chemical vapor deposition) method is used.
  • An insulating film 17 C made of, for example, silicon oxide (Si 2 ) is formed so as to cover the entire surface with the apparatus, and the photoresist layer 30 C is lifted off.
  • connection layer 36T for electrically connecting the conductive layer 36a and the laminated body S20a, as shown in FIG. 26, a region corresponding to the conductive layer 36a is formed.
  • a via hole 30 H 1 is formed in a part of the substrate.
  • the i-line Sutetsupa like after selectively forming a resist pattern to cover a region other than the region for forming the via-hole Le 3 OH 1, by RIE using a reactive gas such as C 4 H 8 Etching is performed in the stacking direction until the conductive layer 36a is reached.
  • connection layer 36T made of copper (Cu) is formed so as to connect the conductive layer 36a and the stacked body S20a.
  • the connection layer 36 T is formed by a CVD apparatus using Cu (1) hexafluoroacetyl acetate natrimethylvinylsilane. Is formed.
  • connection layer 36 T After forming the connection layer 36 T, as shown in FIG. 28, for example, it has use of TEOS, by CVD apparatus, for example, the entire surface Wataruconnection forming S I_ ⁇ of two insulating films 1 7 D. Thereafter, as shown in FIG. 29, in order to form a connection layer 32T for electrically connecting the upper magnetic layer 4U (annular magnetic layer 4) and the read word line 32, the upper magnetic layer 4U is formed. A via hole 30H2 is formed in a part of the region corresponding to.
  • the reaction gas such as C 4 H 8 Etching is performed by the RIE until the upper magnetic layer 4 U is reached in the stacking direction.
  • the upper magnetic layer 4U and the connection layer 32 made of copper were connected so as to connect the read word line 32.
  • Forming a read node line 32 For example, the connection layer 32T and the read word line 32 are formed by a CVD apparatus using Cu (1) hexafluoroacetylacetonatotrimethylvinylsilane. Further, an insulating film 17 E made of, for example, Si 0 2 is formed over the entire surface so as to cover the read line 32.
  • a write lead line lead-out electrode 41 is formed at both ends of the write lead line 6
  • a write bit line lead-out electrode 42 is formed at both ends of the write bit line 5
  • a read lead line is formed.
  • the read-out lead lines 43 are formed on both terminals of the read bit line 32
  • the read-out bit lines lead-out electrodes 44a and 44b are formed on both ends of the read bit lines 33a and 33b.
  • a laminated portion 20 b forming a part of the laminate S 20 b is formed on the diode 75 b embedded in the base 31, and the laminated portion 2 b
  • the laminated body S20a is formed by providing a laminated portion 20a on the annular magnetic layer 4 at a position corresponding to the laminated body S20b. Since the stacked body S20a and the diode 75a are electrically connected to each other, a magnetic memory device corresponding to the circuit configuration shown in FIG. 8 can be obtained. That is, a pair of read bit lines 33 a and 33 b and a pair of stacked bodies S 20 a and S
  • Diodes 75a and 75b can be formed between the first and second diodes, respectively. For this reason, the read current from the sense amplifier circuit 56B passes through the stacked bodies S20a and S2Ob through the diodes 75a and 75b, respectively, and then becomes an integrated ring.
  • the magnetic memory device can be merged into the read-out magnetic layer 4 and flow into the read-out lead line 32, so that unnecessary sneaking around other than a regular current path can be avoided.
  • a method of forming a magnetic memory device by forming a diode (rectifying element) after forming the storage cell 1 is also considered.
  • it is difficult to actually form the diode (rectifier element) because the TMR element stack is destroyed by the heat generated during the formation of the diode (rectifier element) and loses its function.
  • the laminated pattern 19 is formed in a self-aligned manner using the write bit line 5 as a mask.
  • the formation process and the removal process thereof can be omitted, and the manufacturing process can be simplified as a whole.
  • FIGS. 31 to 35A and 35B Next, a magnetic memory device according to a second embodiment of the present invention will be described with reference to FIGS. 31 to 35A and 35B.
  • FIG. 31 shows a sectional configuration of a storage cell 1H in the magnetic memory device of the present embodiment, and corresponds to FIG. 5 in the first embodiment. No.
  • FIG. 32 is an enlarged perspective view of the memory cell 1H, and corresponds to FIG. Figure 33 shows FIG. 13 shows a planar configuration of the magnetic memory device of the present modification, and corresponds to FIG.
  • FIGS. 31 to 33 substantially the same components as those shown in FIGS. 3 to 5 are denoted by the same reference numerals.
  • the configuration of the magnetic memory device according to the present embodiment will be described mainly on the points different from the first embodiment, and other description will be omitted as appropriate.
  • the write word line 6 and the write bit line 5 are connected to the stacked body S 20 a and the stacked body S 20 b in a region penetrating the annular magnetic layer 4. They were arranged so as to be adjacent to each other on a straight line that passes.
  • the write word line 6 and the write bit line 5 are connected to the annular magnetic layer. In a region penetrating through No. 4, they are arranged so as to be adjacent to each other in a direction orthogonal to a straight line passing through the laminate S20a and the laminate S20b.
  • the write pit line 5 and the write code line 6 need to be electrically insulated from each other. Therefore, as shown in FIG. 32, the write lead line 6 is bent not only in the XY plane but also in the Z direction. More specifically, the write guide line 6 includes a lower write guide line 6 B that penetrates the annular magnetic layer 4 along the Y direction together with the write bit line 5, a write bit line 5, and a lower write guide line 6. Connect the upper write lead line 6 U extending in the X direction in the XY plane different from the XY plane including the embedded lead line 6 B, and these upper and lower damage lead lines 6 U and 6 B It consists of a connecting part 6 T and. In this case, not only the write word line 6 may be bent as described above, but also the write bit line 5 may be bent.
  • the storage cell 1 H is the same as the storage cell except that the arrangement positions of the stacked bodies S 20 a and S 20 b in the arrangement direction of the write lead line 6 and the write bit line 5 penetrating the annular magnetic layer 4 are different. It has the same compact structure as 1P. Therefore, in memory cell 1H, the same write and read operations as in memory cell 1P are possible.
  • FIGS. 35A and 35B show the relationship between the write current direction and the return magnetic field direction (magnetization direction) in the cross-sectional configuration of the memory cell 1H shown in FIG. In the above first embodiment This corresponds to Figs. 9A and 9B.
  • FIG. 35A shows a case where write currents flow in the same direction to write bit line 5 and write word line 6 passing through storage cell 1 H in parallel to each other, as shown in FIG. Corresponds to the write current direction.
  • FIG. 25A shows that a write current flows from the back to the front (in the ⁇ Y direction) in a direction perpendicular to the plane of the drawing in the memory cell 1H, and the portion of the annular magnetic layer 4 surrounding the write bit line 5
  • the figure shows a case where a return magnetic field 34 is generated in the counterclockwise direction inside.
  • the magnetization direction of the connection portion 14a and the second magnetic layer 8a is the one X direction
  • the magnetization direction of the connection portion 14b and the second magnetic layer 8b is the + X direction.
  • FIG. 35B a write current flows from the near side to the far side (in the + Y direction) in the direction perpendicular to the paper of the memory cell 1H, and the inside of the annular magnetic layer 4 is rotated clockwise.
  • the magnetization direction of the connection portion 14a and the second magnetic layer 8a is in the + X direction
  • the magnetization direction of the connection portion 14b and the second magnetic layer 8b is in the -X direction.
  • FIG. 36A shows a cross-sectional configuration of a storage cell 121 P in the magnetic memory device of the present embodiment, and corresponds to FIG. 5 in the first embodiment.
  • substantially the same components as those shown in FIG. 5 are denoted by the same reference numerals.
  • the storage cell 1 in the magnetic memory device according to the first embodiment includes a connection part 14a, 14b and a second magnetic layer 8a in which the magneto-sensitive layers are magnetically exchange-coupled to each other. , 8b, and the connection portions 14a, 14b constitute a part of the annular magnetic layer 4.
  • the magneto-sensitive layer forms a part of the annular magnetic layer 4. Things.
  • connection portions 84a and 84b are the magnetically sensitive portions in the annular magnetic layer 4 and also function as the magnetically sensitive portions in the laminates S2la and S21b, so that the second magnetic field is formed.
  • the layers 8a and 8b can be omitted, and the storage cell 122 P having a simpler configuration than the storage cell 1 can be obtained.
  • the connection portions 84a and 84b are one specific example corresponding to the "magnetic layer" in the present invention.
  • the annular magnetic layer 4 is made of, for example, a nickel-iron alloy (NiFe), and has a thickness of, for example, 20 nm in the cross-sectional direction at the connection portions 84a and 84b.
  • the connecting portions 84a and 84b store information for storing information. Functions as a layer. That is, the magnetization directions of the connection portions 84a and 84b are reversed by the return magnetic field generated by the write current flowing through the write bit line 5 and the write word line 6, and information is stored.
  • the write operation in the memory cell 122 will be specifically described.
  • FIG. 36A shows that the write current is applied to the write bit line 5 and the write word line 6 passing through the TMR elements 12a and 12b in the same direction.
  • FIG. 36A shows that the write current flows from the near side to the far side (in the + Y direction) in the direction perpendicular to the plane of the drawing in the TMR elements 121 a and 121 b, and the inside of the annular magnetic layer 4
  • the case where the return magnetic field 34 is generated in the counterclockwise direction is shown.
  • the magnetization direction of the connection portion 84a becomes the -X direction
  • the magnetization direction of the connection portion 84b becomes the + X direction.
  • a write current flows from the back to the front (in the Y direction) in a direction perpendicular to the paper surface, and a return magnetic field 3 flows clockwise in the annular magnetic layer 4.
  • the magnetization direction of the connection portion 84a becomes the + X direction
  • the magnetization direction of the connection portion 84b becomes the 1X direction.
  • connection portions 84a and 84b When a current flows in the write pit line 5 and the write word line 6 in the same direction, the magnetization directions of the connection portions 84a and 84b become antiparallel to each other, and 0 or 1 is recorded. be able to.
  • connection portions 84 a and 84 b are the magneto-sensitive portions in the annular magnetic layer 4 and the laminates S 21 a and S 21 b Function as a magnetically sensitive part. Therefore, the second magnetic layer 8 can be omitted, and the storage cell 121 having a simpler configuration can be configured.
  • FIG. 36B shows a cross-sectional configuration of a storage cell 121 H in the magnetic memory device of the present embodiment.
  • parts that are substantially the same as the constituent elements shown in FIG. 36A described as the third embodiment are given the same reference numerals.
  • the write word line 6 and the write bit line 5 are connected to the stacked body S 21 a and the stacked body S 2 in a region penetrating the annular magnetic layer 4. They are arranged so as to be adjacent to each other on a straight line passing through 1b.
  • the write word line 6 and the write bit line 5 are stacked in a region penetrating the annular magnetic layer 4. They were arranged so as to be adjacent to each other in a direction orthogonal to a straight line passing through S21a and the laminate S21b.
  • a pair of TMR elements 1 2 1 is formed according to the direction of the return magnetic field 34 generated by the current flowing through both the write bit line 5 and the write word line 6 penetrating the annular magnetic layer 4. Since the magnetization directions of the second magnetic layers 8a and 8b in a and 121b change so as to be opposite to each other, by using this, the memory cell 122H can be set to "0" or Binary information of "1" can be stored.
  • FIG. 37A shows a cross-sectional configuration of a storage cell 122P as a modification (Modification 1) of the first embodiment, and corresponds to FIG. 9A.
  • the storage cell 1 (1 P) in the magnetic memory device according to the first embodiment includes connection portions 14 a and 14 b in which the magneto-sensitive layer forms a part of the annular magnetic layer 4, It is composed of layers 8a and 8b, and is configured such that the connection portions 14a and 14b and the second magnetic layers 8a and 8b are magnetically exchange-coupled to each other.
  • connection portions 14 a and 14 b in which the magneto-sensitive layer forms a part of the annular magnetic layer 4
  • It is composed of layers 8a and 8b, and is configured such that the connection portions 14a and 14b and the second magnetic layers 8a and 8b are magnetically exchange-coupled to each other.
  • the storage cell 1 2 2P of the present modified example has, in addition to the configuration of the storage cell 1 (1P), a magnetically sensitive layer and a connection portion 14 4 a, 14 b and the second magnetic layers 8 a, 8 b between the second magnetic layers 8 a, 8 b. And a non-magnetic conductive layer 9 for antiferromagnetic coupling.
  • the storage cell 122P includes a pair of TMR elements 122a and 122b, and the TMR element 122a includes the stacked body S22a.
  • the TMR element 122b includes the stacked body S22b. Each has.
  • the pair of laminated bodies S 22 a and S 22 b are composed of laminated parts 22 a and 22 b and connecting parts 14 a and 14 b, and the laminated parts 22 a and 22 b are nonmagnetic in order from the side of the annular magnetic layer 4. It has conductive layers 9a and 9b, second magnetic layers 8a and 8b, tunnel barrier layers 3a and 3b, and first magnetic layers 2a and 2b.
  • the nonmagnetic conductive layers 9a and 9b are made of, for example, ruthenium (Ru) or copper (Cu).
  • the nonmagnetic conductive layers 9a and 9b are one specific example corresponding to the "first nonmagnetic conductive layer" of the present invention.
  • the coercive force of the connection portions 14a and 14b is increased by the antiferromagnetic coupling between the connection portions 14a and 14b and the second magnetic layers 8a and 8b, respectively.
  • (5 0 / 47 ⁇ ) be X 1 0 less than 3 a / m
  • the annular magnetic layer 4 can be made of iron (Fe), NiFe, CoFe, NiFeCo, cobalt (Co), or the like.
  • the second magnetic layers 8a and 8b serve as portions for holding recording, and are stabilized by an anisotropic magnetic field due to antiferromagnetic coupling.
  • the coercive force of the second magnetic layer 8 a, 8 b are, (1 00/4 ⁇ ) is X 1 0 3 AZM the range, so that small fence than the coercive force of the first magnetic layer 2 a, 2 b It is desirable to be constituted.
  • FIG. 37A corresponds to the case where write currents flow in the same direction on the write pit line 5 and write line 6 passing through the memory cell 122P in parallel with each other. . That is, in the TMR element 122a, a write current flows from the near side to the far side in the direction perpendicular to the paper surface (in the + Y direction), and a return magnetic field 34 is generated inside the annular magnetic layer 4 in a counterclockwise direction. It shows the case to do.
  • the magnetization direction of the second magnetic layer 8a is the + X direction
  • the magnetization direction of the second magnetic layer 8b is the -X direction.
  • the storage cell 122 P as Modification 1 further includes the connection portions 14 a and 14 b of the annular magnetic layer 4 and the second magnetic layer 8 a in addition to the configuration of the first embodiment. , 8b are provided with nonmagnetic conductive layers 9a, 9b, respectively. By doing so, strong antiferromagnetic coupling can be formed between the connection portions 14a, 14b and the second magnetic layers 8a, 8b, and unnecessary magnetic fields due to external disturbance magnetic fields and the like can be formed. Thereby, the magnetization directions of the connection portions 14a and 14b as the magnetosensitive layer and the second magnetic layers 8a and 8b are more stabilized without being disturbed.
  • connection portions 14a and 14b can be further reduced by the above configuration. Therefore, the amount of heat generated can be reduced by reducing the current value during the write operation, and the metal element and the like contained in the connection portions 14a and 14b can be reduced by the second magnetic layer 8a, The diffusion and movement to 8b can be shielded by providing the nonmagnetic conductive layers 9a and 9b, so that thermal stability is improved. As a result, more stable writing can be performed.
  • FIG. 37B shows a cross-sectional configuration of the storage cell 122H.
  • the storage cell 122H is provided with a magnetically sensitive layer, and further, the connection portions 14a and 14b and the second magnetic layer 8 are provided.
  • a non-magnetic conductive layer 9 for antiferromagnetic coupling between the connection portions 14a, 14b and the second magnetic layers 8a, 8b is provided between the non-magnetic conductive layers 9a, 8b. is there.
  • connection portions 14a and 14b and the second magnetic layers 8a and 8b form strong antiferromagnetic coupling as in the first modification, and as a result, are more stable. Writing can be performed.
  • FIG. 38A illustrates a cross-sectional configuration of a storage cell 123P as a modification (modification 3) of the third embodiment, and corresponds to FIG. 36A. Also, the 38th B The figure shows a cross-sectional configuration of a storage cell 123H as a modification (modification 4) of the fourth embodiment, and corresponds to FIG. 36B.
  • the stacked bodies S 2 la and S 21 b included in the storage cells 12 1 P and 12 1 H in the third and fourth embodiments have a larger coercive force than the connection portions 84 a and 84 b.
  • This is a structure called a coercive force difference type including the first magnetic layers 2a and 2b.
  • the stacked bodies S23a and S23b in the storage cells 123P and 123 ⁇ shown in FIGS. 38A and 38B have the first structure due to exchange coupling with the antiferromagnetic layer. It has a structure called an exchange bias type in which the magnetization directions of the magnetic layers 2a and 2b are fixed.
  • the laminates S 23 a and S 23 b include, in order from the side of the annular magnetic layer 4, tunnel barrier layers 3 a and 3 b, first magnetic layers 2 a and 2 b, and third magnetic layer 15 a and 15 b.
  • the third magnetic layers 15a and 15b have antiferromagnetism, and change the magnetization direction of the first magnetic layers 2a and 2b by exchange interaction with the first magnetic layers 2a and 2b. It functions to fix, for example, platinum manganese alloy (PtMn), iridium manganese alloy (IrMn), iron manganese (FeMn), nickel manganese (NiMn) or ruthenium manganese (RuMn) or the like.
  • the laminates S23a and S23b are different from the second or third embodiment in that the first magnetic layers 2a and 2 On the side opposite to the tunnel barrier layer 3 of b, antiferromagnetic third magnetic layers 15a and 15b exchange-coupled to the first magnetic layers 2a and 2b are provided.
  • the magnetization directions of the first magnetic layers 2a and 2b can be fixed more stably, and the coercive force of the first magnetic layers 2a and 2b can be reduced by (50 / 4 ⁇ ) X 10 3 AZm Even if it is less than the above, the magnetization directions in the connection portions 84a and 84b are not disturbed by an unnecessary magnetic field such as an external disturbing magnetic field, and more stable writing can be performed.
  • FIG. 39A shows a cross-sectional configuration of a storage cell 124 P as another modification (modification 5) of the third embodiment, and has a configuration similar to FIG. 38A.
  • FIG. 39B shows a memory as another modification (modification 6) of the fourth embodiment. It represents a cross-sectional configuration of cell 124H, and has a configuration similar to that of FIG. 38B.
  • substantially the same components as those shown in FIGS. 38A and 38B are denoted by the same reference numerals. .
  • the structure is called an exchange bias type in which the magnetization directions of the first magnetic layers 2a and 2b are fixed by exchange coupling between and.
  • the storage cells 124P and 124H are not a single-layer magnetization fixed layer but a synthetic magnetization fixed layer (hereinafter referred to as a SyAP layer) composed of a plurality of layers. It is provided.
  • the laminated bodies S 24 a and S 24 b include, in order from the side of the annular magnetic layer 4, tunnel barrier layers 3 a and 3 b, SyAP layers 35 a and 35 b, and an antiferromagnetic layer.
  • Third magnetic layer Third magnetic layer
  • the SyAP layers 35 a and 35 b are, in order from the side of the annular magnetic layer 4, the first magnetic layers 2 a and 2 b, the nonmagnetic conductive layers 16 a and 16 b, and the fourth magnetic layer 18 a, 18 b are laminated.
  • the nonmagnetic conductive layers 16a and 16b are made of, for example, copper.
  • the fourth magnetic layers 18a and 18b are, for example, iron
  • nonmagnetic conductive layers 16a and 16b are one specific example corresponding to the "second nonmagnetic conductive layer" in the present invention.
  • the stacked bodies S 24 a and S 24 b are respectively formed on the nonmagnetic conductive layer 1 on the side of the first magnetic layers 2 a and 2 b opposite to the tunnel barrier layer 3. 6 a,
  • FIG. 4OA illustrates a cross-sectional configuration of a storage cell 125 P as another modification (modification 7) of the first embodiment
  • FIG. 40B illustrates a cross-sectional configuration of the second embodiment
  • 37 shows a cross-sectional configuration of a storage cell 125H as another modification (modification 8) of the mode.
  • the stacked bodies S 25 a and S 25 b in the storage cells 125 P and 125 H of the modified examples 7 and 8 are called exchange bias type.
  • 38? It has layers 35 &, 35b.
  • each of the magnetic memory devices is provided with a plurality of storage cells 1 having a cross-sectional structure shown in FIG. 5 in a matrix, and these are referred to as samples 1 and 2.
  • the MR ratio, TMR element resistance, switching current, and adjacent cell inversion current of the magnetic memory devices of Sample 1 and Sample 2 were measured.
  • the MR ratio and TMR element resistance the average value of a pair of TMR elements in the memory cell was used as the measured value.
  • the switching current and the adjacent cell inversion current the current values were measured so that write currents of the same magnitude were simultaneously applied to the write bit line 5 and the write word line 6.
  • Table 1 shows the results.
  • Example 1 in Table 1 shows the results corresponding to Sample 1 and Example 2 corresponds to Sample 2.
  • the same measurement was performed for a memory cell having the structure shown in FIG. 44, and the results are also shown in Table 1 as a comparative example.
  • the applied magnetic field during the measurement was (500 4 ⁇ ) X 1 0 3 A / m.
  • the storage cell as a comparative example shown in FIG. 44 includes one TMR element 120, and has no annular magnetic layer surrounding the write bit line 105 and the write pad line 106. It does not have one.
  • Table 1 although there was no significant difference in the MR ratio and the TMR element resistance between Examples 1 and 2 and the comparative example, the switching current and the adjacent cell inversion current were clearly significant. The difference was confirmed. .
  • the switching current is a minimum current value required for inverting the magnetization direction in the storage cell to be written.
  • the results of Examples 1 and 2 were both lower than those of the comparative example. This shows that the magnetization reversal of the magneto-sensitive layer could be performed efficiently, and the writing operation was possible even with a small current. That is, it was confirmed that adjacent TMR elements could form a large return magnetic field even with a small current by sharing a part of the annular magnetic layer with each other.
  • the adjacent cell inversion current indicates a current value at which the magnetization direction of a storage cell to which writing should not be originally performed is inverted by a current applied to a storage cell adjacent to a storage cell to be written.
  • Table 1 it was found that in Examples 1 and 2, the magnetization direction in the adjacent memory cell was not reversed even when a larger write current was applied than in the comparative example. This indicates that a closed magnetic path was formed, and the generation of a magnetic field that adversely affected adjacent storage cells could be suppressed.
  • the present invention has been described with reference to some embodiments and modified examples. However, the present invention is not limited to these embodiments and modified examples, and can be variously modified.
  • the Schottky diode 75 is used as the rectifying element for backflow prevention, but it can be replaced with a bipolar transistor which is also an element having a rectifying action. .
  • FIG. 41 shows the main part of the circuit when bipolar transistors 76a and 76b are provided between the read bit lines 33a and 33b and the stacked bodies S20a and S20b. Represents the configuration.
  • FIG. 42 shows a cross-sectional structure of the bipolar transistors 76a and 76b.
  • the base B of the bipolar transistors 76 a and 76 b is connected to the word decode line 72.
  • Each collector C is connected to a read bit line 33a, 33b via a connection layer 28, and each emitter E is connected to a stack S20a, S20 via a connection layer 27, respectively. Connected to b.
  • Fig. 43 shows the case where the bipolar transistors 76a and 76b are provided. 1 shows the entire readout circuit.
  • the control signal from the Y-direction address decoder circuit 56A is transmitted to, for example, the sense amplifier circuit 56B of the unit read circuit 80n, the sense amplifier circuit 56B is connected to the read pit line 33a. , 33 3b.
  • the control signal from the Y-direction address decoder circuit 56A is transmitted to the read switch 83n at the same time, and the read switch 83n is turned on.
  • the X-direction address decoder circuit 58A selects the memory cell lm and issues a control signal to pass through the word decode line 72m.
  • the bipolar transistor 76 When the control signal from the X-direction address decoder circuit 58A is transmitted to the respective bases B of the bipolar transistors 76a and 76b, the collector C and the emitter E become conductive. As a result, the read current passes through each of the stacked bodies S 20 a and S 20 b of the memory cell 1 m, and finally flows into the constant current circuit 58 B via the read switch 83 n. Like the diode 75, the bipolar transistor 76 also functions to pass the current in one direction, so that it is possible to avoid the sneak of the read current as shown in FIG.
  • MOS transistors 77a and 77b can be used as rectifying elements for preventing backflow.
  • each source S is connected to the read bit line 33a, 33b
  • each drain D is connected to the TMR film 20a, 20b, respectively, and connected to the word decode line 72.
  • FIG. 45 shows the entire readout circuit when the MOS transistors 77a and 77 are provided. The read operation in the read circuit shown in FIG. 45 is the same as that of the circuit using the bipolar transistor 76 (FIG. 43) except that the gate G is turned on by closing the gate G.
  • the write bit line 5 and the write word line 6 form a parallel portion 10 has been described.
  • the present invention is not limited to this. It may be the case.
  • the case where the annular magnetic layer 4 is formed so as to surround the parallel portion 10 is more preferable because the magnetization reversal of the magnetosensitive layer is performed more efficiently.
  • the reading of information from each storage cell 1 is performed by using the TMR elements la and
  • the difference value of the read current flowing through each 1b is output as an output, but is not limited to this.
  • the value of the read current passing through one TMR element may be output as it is to detect whether it is in a high resistance state or a low resistance state.
  • the magnetic storage cell or the magnetic memory device includes the magneto-sensitive layer whose magnetization direction is changed by an external magnetic field, and is configured such that a current flows in a direction perpendicular to the lamination plane.
  • the first and second laminates are arranged such that the lamination surfaces are opposed to each other, and one of the first and second laminates has a surface along one of the first and second laminates.
  • an annular magnetic layer configured to be penetrated by a plurality of conductors (first and second writing lines) along the axial direction.
  • a closed magnetic path can be formed by passing a current through a plurality of conductors (first and second write lines), and the magnetization reversal of each magnetosensitive layer in the first and second laminates is efficiently performed. Can be done.
  • the magnetic memory device of the present invention including a plurality of magnetic storage cells, the magnetic influence on the storage cell adjacent to the storage cell to be written can be reduced.
  • the first laminated body constitutes the first magnetoresistance effect element together with the annular magnetic layer
  • the second laminated body constitutes the second magnetoresistance effect element together with the annular magnetic layer. Since a pair of magnetoresistive elements share a ring-shaped magnetic layer, the structure can be made more compact than a case where one ring-shaped magnetic layer is provided for one laminated body. Becomes possible.
  • the plurality of write lines extend parallel to each other in a region penetrating the annular magnetic layer.
  • the combined magnetic field generated in the magneto-sensitive layer by passing a current through a plurality of conductors can be made larger than when these conductors cross each other.
  • the magnetization reversal in the magneto-sensitive layer can be performed more efficiently. As a result, the write current required for the magnetization reversal can be further reduced. Further, since the magnetization directions of a plurality of magnetic domains in the magneto-sensitive layer can be satisfactorily aligned over the whole, higher reliability can be obtained.
  • the pair of first read lines and the first and second read lines on each current path of the read current supplied to the first and second magnetoresistance effect elements A first and a second rectifying element respectively provided between the first and second magnetoresistive elements; and a second read line for guiding a read current flowing through the first and second magnetoresistive elements to ground.
  • the fluctuation due to the wraparound of the read current that is, the noise for the read signal can be reduced, and the stable reading of the magnetic information becomes possible.
  • a second laminated portion forming a part of a second laminated body is formed on a substrate provided with the first and second rectifying elements. Electrically connecting the second rectifying element and the second laminate, forming a lower magnetic layer so as to cover at least the laminated portion, and completing the formation of the second laminate, Forming a first write line on the magnetic layer via a first insulating film; and forming a second write line on the first write line via a second insulating film Forming the first and second write lines so as to include a portion extending in parallel with each other, a second write line, a second insulating film, and a first write line.
  • Forming an annular magnetic layer by providing an upper magnetic layer so as to surround the multilayer pattern with a third insulating film interposed therebetween, and forming a second magnetic layer on the annular magnetic layer.
  • Forming a first stacked body by providing a first stacked portion at a position corresponding to the stacked body, and forming a magnetic storage cell having the first and second stacked bodies; And a step of electrically connecting the body and the first rectifying element, so that the lamination surface is formed on one side of each of the first and second laminated bodies whose lamination surfaces are opposed to each other.
  • the second insulating line is formed using the second write line as a mask.

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

書込線を流れる電流によって形成される磁界の損失を低減し、安定した書込が可能な磁気メモリデバイスおよびそれに搭載される磁気記憶セルを提供する。さらに、そのような磁気メモリデバイスを容易に製造するための方法を提供する。外部磁界によって磁化方向が変化する感磁層を含み積層面に垂直な方向に電流が流れるように構成された積層体と、第1の積層体と第2の積層体との間に、積層面に沿った方向を軸方向とするように配置されると共に、軸方向に沿って複数の導線によって貫かれるように構成された環状磁性層とを有するようにしたので、還流磁性層に形成される還流磁界の強度低下を抑制することができ、より小さな書込電流によって第1および第2の積層体における感磁層の磁化反転を行うことができる。

Description

- 明細書 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法 技術分野
本発明は、 磁気抵抗効果素子を含む磁気記憶セルならびに複数の磁気記憶セル を備え、 情報の記録 ·読出を行う磁気メモリデバイスおよびその製造方法に関す る。 背景技術
従来より、 コンピュータや通信機器等の情報処理装置に用いられる汎用メモリ として、 D RAM (Dynamic Random Access Memory) や S RAM (StaticR A M) などの揮発性メモリが使用されている。 これらの揮発性メモリにおいては、 記憶を保持するために絶えず電流を供給し、 リフレッシュを行う必要がある。 ま た、 電源を切るとすべての情報が失われるので-. これら揮発性メモリの他に情報 を記録するための手段として不揮発性のメモリを設ける必要があり、 例えば、 フ ラッシュ E E P R 0 Mや磁気ハードディスク装置などが用いられる。
これら不揮発性メモリにおいては、 情報処理の高速化に伴って、 アクセスの高 速化が重要な課題となっている。 さらに、 携帯情報機器の急速な普及および高性 能化に伴い、 いつでもどこでも情報処理が行える、 いわゆる、 ュピキタスコンビ ユーティングを目指した情報機器 m発が急速に進められている。 このような情報 機器開発の中心となるキーデバイスとして、 高速処理に対応した不揮発性メモリ の開発が強く求められている。
不揮発性メモリの高速化に有効な技術としては、 強磁性層の磁化容易軸に沿つ た磁化方向によって情報を記憶する磁気メモリ素子がマトリックス状に配列され た磁気ランダムアクセスメモリ (以下、 M R AM ; Magnetic random access memory という。 ) が知られている。 MR AMでは、 2つの強磁性体における磁 化方向の組み合わせを利用して情報を記憶するようになっている。 一方、 記憶情 報の読み出しは、 ある基準となる方向に対し、 磁化方向が平行である場合と反平 行である場合とによって生じる抵抗変化 (すなわち、 電流あるいは電圧の変化) を検知することによって行う。 このような原理で動作することから'、 MRAMで は、 安定した書き込みおよび読み出しを行うために、.抵抗変化率ができるだけ大 きいことが重要である。
現在実用化されている MR AMは、 巨大磁気抵抗 (GMR ; Giant magneto- resistive ) 効果を利用したものである。 GMR効果とは、 2つの磁性層を各層 の磁化容易軸方向が互いに平行となるように配設したときに、 それら各層の磁化 方向が磁化容易軸に沿つて平行となる場合に抵抗値が最小となり、 反平行の場合 に最大値となる現象である。 このような G M R効果が得られる G M R素子を利用 した MRAM (以下、 GMR— MRAMと記す。 ) としては、 例えば米国特許第 5 343422号明細書に開示された技術が知られている。
GMR—MRAMには、 保磁力差型 (擬似スピンバルブ型 ; Pseudo spin valve 型) と、 交換バイアス型 (スピンパルプ; spin valve 型) とがある。 保 磁力差型の MRAMは、 GMR素子が 2つの強磁性層とそれらの間に挟まれた非 磁性層とを有し、 2つの強磁性層の保磁力差を利用して情報の書込および読出を 行うものである。 ここで、 GMR素子が、 例えば 「ニッケル鉄合金 (N i F e) /銅 (Cu) /コバルト (C o) 」 の構成を有する場合、 その抵抗変化率は、 6 〜 8 %程度の小さな値である。 一方、 交換バイアス型の MR AMは、 GMR素子 が、 反強磁性層との反強磁性結合により磁化方向が固定された固定層と、 外部磁 界により磁化方向が変化するフリー層と、 それらの間に挟まれた非磁性層とを有 し、 固定層とフリー層との磁化方向の違いを利用して情報の書込および読出を行 うものである。 例えば、 GMR素子の構成を 「白金マンガン (P tMn) /コバ ルト鉄 (C o F e) /銅 (Cu) ZC o F e」 とした場合の抵抗変化率は 1 0% 程度であり保磁力差型よりも大きな値を示すが、 さらなる記憶速度向上ゃァクセ ス速度向上を達成するには不十分であった。
これらの点を解決するために、 トンネル磁気抵抗効果 (TMR : Tunneling magneto-resistive) を利用した TMR素子を有する MR AM (以下、 TMR— MR AMと記す。 ) が提案されている。 TMR効果は、 極薄の絶縁層 (トンネル バリァ層) を挟んだ 2つの強磁性層間における磁化方向の相対角度により絶縁層 を通過して流れるトンネル電流が変化するという効果である。 2つの強磁性層に おける磁化方向が、 互いに平行な場合に抵抗値が最小となり、 互いに反平行の場 合に最大となる。 TMR— MRAMでは、 TMR素亍が、 例えば 「C o F e/ァ ルミニゥム酸化物 ZC o F e j という構成の場合、 抵抗変化率が 40 %程度と高 く、 また、 抵抗値も大きいため MOS FET等の半導体デバイスと組み合わせた 場合のマッチングが取りやすい。 このため、 GMR— MRAMと比較して、 より 高い出力が容易に得られ、 記憶容量やアクセス速度の向上が期待されている。 T MR— MRAMでは、 導線に電流を流すことにより発生する電流磁界により、 T MR素子の磁性膜の磁化方向を所定の方向に変化させることにより情報を記憶す る方法が知られている。 記憶情報を読み出す方法としては、 トンネルバリア層に 垂直な方向に電流を流し、 TMR素子の抵抗変化を検出する方法が知られている。 なお、 TMR— MR AMに関しては、 米国特許第 56 29922号明細書あるい は特開平 9— 9 1 949号公報に開示された技術等が知られている。
上記したように、 TMR効果を利用した MR AMでは、 GMR効果を利用した M R A Mよりも高出力化を達成することができる。 しかしながら、 上記のような 40 %程度の抵抗変化率を示す TMR素子を用いた MRAMであっても、 出力電 圧は数十 mV程度であるので、 より高密度な磁気メモリデバイスを実現するには 不十分である。
第 48図は、 従来の T M R効果を利用した磁気メモリデバイスにおける構成を 説明する平面図であり、 第 49図は、 第 48図に対応する従来の磁気メモリデバ イスの要部断面構成を示すものである。 互いに平行に延びる読出ヮ一ド線 1 1 2 および書込ワード線 1 06に対し、 書込ビット線 1 0 5が直交しており、 その直 交部分の Z方向に挟まれる領域に第 1磁性層 1 0 2、 トンネルバリア層 1 0 3お よび第 2磁性層 1 04からなる TMR素子 1 20が配設されている。 このような、 書込ビット線 1 0 5と書込ヮード線 1 06とが直交するタイプの MR AMでは、 フリー層として機能する第 2磁性層 1 04における磁化方向を全体に亘つて十分 に揃えることができず、 十分に安定した書込をおこなうことは困難であった。 また、 TMR効果を利用した MR AMでは、 直交配置された導線を流れる電流 による誘導磁界、 すなわち電流磁界によって磁性膜の磁化方向を変えることによ り、 各々の記憶セルに情報の記憶を行うようになっているが、 この電流磁界はォ 一プンな (磁気的に特定の領域に閉じ込められていない) 磁界であるので、 低効 率であると共 '、 隣接した記憶セルへの悪影響も懸念される。
さらに、 記憶セルをより高集積化して磁気メモリデバイスのさらなる高密度化 を図る場合、 T M R素子の微小化が必須となるが、 次のような問題が懸念される。 すなわち、 T M R素子における各磁性層のアスペクト比 (厚み/積層面内方向の 幅) が大きくなることにより反磁界が増大し、 フリー層の磁化方向を変えるため の磁界強度が増大してしまい、 大きな書込電流を必要とすると考えられる。 発明の開示
本発明はかかる問題点に鑑みてなされたもので、 本発明の第 1の目的は、 コン パク卜な構成でありながら、 書込線を流れる電流によって形成される磁界の損失 を低減し、 安定した書込が可能な磁気メモリデバイスおよびそれに搭載される磁 気記憶セルを提供することにある。 第 2の目的は、 隣接した磁気記憶セルに悪影 響を及ぼすことが少ない磁気メモリデバイスおよびそれに搭載される磁気記憶セ ルを提供することにある。 第 3の目的は、 一対の磁気抵抗効果素子を用いるこど' により、 高い信号出力が得られ、 高速かつ大容量の磁気メモリデバイスおよびそ れに搭載される磁気記億セルを提供することにある。 さらに、 第 4の目的は、 そ のような磁気メモリデバイスを容易に製造するための方法を提供することにある。 本発明の磁気記憶セルは、 外部磁界によって磁化方向が変化する感磁層を含み、 積層面に垂直な方向に電流が流れるようにそれぞれ構成され、 互いの積層面が対 向するように配置された第 1および第 2の積層体と、 これら第 1の積層体と第 2 の積層体との間に、 積層面に沿った方向を軸方向とするように配置されると共に、 軸方向に沿って複数の導線によって貫かれるように構成された環状磁性層とを備 えるようにしたものである。 ここで、 本発明における 「外部磁界」 とは、 複数の 導線に流れる電流によって生ずる磁界、 または、 環状磁性層に生ずる還流磁界を 意味している。 また、 「環状磁性層」 の 「環状」 とは、 内部を貫く複数の導線か らみたときに、 それぞれの周囲を磁気的かつ電気的に連続して完全に取り込み、 複数の導線を横切る方向の断面が閉じている状態を示す。 したがって、 環状磁性 層は、 磁気的かつ電気的に連続である限りにおいて絶縁体が含有されることを許 容する。 すなわち、 電流が流れないような絶縁体は含まないものの、 例えば製造 工程において発生する程度の酸化膜は含んでもよい。 また、 「軸方向」 とは、 こ の環状磁性層単体に注目したときの開口方向、 すなわち内部を貫く複数の導線の 延在方向を指す。 また、 「第 1および第 2の積層体におけるそれぞれの一方の面 側に、 · · ·配設され」 とは、 環状磁性層が、 そのうちの一部分が積層体によつ て構成されて配設されるという趣旨である。 さらに、 「複数の導線によって貫か れるように」 とは、 環状磁性層によって取り囲まれた領域または空間を複数の導 -線が貫通している状態を示す。
本発明の磁気記憶セルでは、 上記構成により、 複数の導線に電流を流すことに よって閉磁路が形成されるので、 第 1および第 2の積層体における各感磁層の磁 化反転が効率的に行われる。
本発明の磁気メモリデバイスは、 第 1の書込線と、 この第 1の書込線と交差す るように延びる第 2の書込線と、 磁気記憶セルとを備え、 磁気記憶セルは、 外部 磁界によって磁化方向が変化する感磁層を含み、 積層面に垂直な方向に電流が流 れるようにそれぞれ構成され、 互いの積層面が対向するように配置された第 1お よび第 2の積層体と、 これら第 1の積層体と第 2の積層体との間に、 積層面に沿 つた方向を軸方向とす.るように配置されると共に、 軸方向に沿って第 1および第 2の書込線によって貫かれるように構成された環状磁性層とを含むようにしたも のである。
本発明の磁気メモリデバイスでは、 上記した構成により、 第 1および第 2の書 込線の双方に電流を流すことによって閉磁路が形成されるので、 第 1および第 2 の積層体における各感磁層の磁化反転が効率的に行われる。
本発明の磁気メモリデバイスの製造方法は、 第 1の書込線と、 この第 1の書込 線と交差するように延びる第 2の書込線と、 外部磁界によって磁化方向が変化す る感磁層を含む第 1および第 2の積層体を有する磁気記憶セルと、 を備えた磁気 メモリデバイスを製造するための方法であり、 第 1および第 2の整流素子が設け られた基体の上に、 第 2の積層体の一部をなす第 2の積層部分を形成し、 第 2の 整流素子と第 2の積層体とを電気的に接続する工程と、 少なくとも積層部分を覆 うように下部磁性層を形成し、 第 2の積層体の形成を完了する工程と、 下部磁性 層の上に、 第 1の絶縁膜を介して第 1の書込線を形成する工程と、 第 1の書込線 の上に、 第 2の絶縁膜を介して第 2の書込線を、 第 1および第 2の書込線が互い に平行に延在する部分を含むように形成する工程と、 第 2の書込線と、 第 2の絶 縁膜と、 第 1の書込線とを順次エッチングしてパターニングすることにより、 第 1および第 2の書込線が第 2の絶縁膜を挟んで互いに平行に延在する部分を含む 積層パターンを形成する積層パターン形成工程と、 積層パターンを第 3の絶縁膜 を介して取り囲むように上部磁性層を設けることにより、 環状磁性層を形成する 工程と、 この環状磁性層の上の、 第 2の積層体に対応する位置に第 1の積層部分 を設けることにより第 1の積層体を形成し、 第 1および第 2の積層体を有する磁 気記憶セルを形成する工程と、 第 1の積層体と第 1の整流素子とを電気的に接続 する工程とを含むようにしたものである。
本発明の磁気メモリデバイスの製造方法では、 上記工程により、 共通に設けら れた環状磁性層に、 互いに積層面が対向するように配置された第 1および第 2の 積層体が形成された構造を得ることができる。 ここで、 「第 1および第 2の書込 線が第 2の絶縁膜を挟んで互いに平行」 とは、 製造上の誤差範囲 ± 1 0 ° を含む ものである。
本発明の磁気記憶セルおよび磁気メモリデバイスでは、 第 1の積層体が、 環状 磁性層と共に第 1の磁気抵抗効果素子を構成し、 第 2の積層体が、 環状磁性層と 共に第 2の磁気抵抗効果素子を構成していることが望ましい。 これにより、 環状 磁性層を共有化した一対の磁気抵抗効果素子が構成されるので、 1つの積層体に 対して 1つの環状磁性層を設ける場合よりも省スペース化を図ることができる。 本発明の磁気記憶セルおよび磁気メモリデバイスでは、 第 1および第 2の積層 体が、 いずれも環状磁性層と電気的に接続されていることが望ましい。 これによ り、 第 1および第 2の積層体において、 それぞれ積層面に垂直な方向に流れる電 流が感磁層から環状磁性層へと流れるようになる。
本発明の磁気記憶セルおよび磁気メモリデバイスでは、 複数の導線 (第 1およ び第 2の書込線) が、 環状磁性層を貫く領域において互いに平行に延びるように 構成されることが望ましい。 こうすることにより、 複数の導線 (第 1および第 2 の書込線) に電流を流すことによって生じる合成磁界を、 複数の書込線 (第 1お よび第 2の書込線) が互いに交差する場合よりも大きくすることができ、 感磁層 における磁化反転がより効率的に行われる。
本発明の磁気記憶セルおよび磁気メモリデバイスでは、 複数の導線 (第 1およ び第 2の書込線) が、 環状磁性層を貫く領域において第 1の積層体と第 2の積層 体とを通る直線の方向において互いに隣り合うように配列されるようにしてもよ いし、 あるいは、 環状磁性層を貫く領域において第 1の積層体と第 2の積層体と を通る直線と直交する方向において互いに隣り合うように配列されるようにして もよい。
本発明の磁気記憶セルおよび磁気メモリデバイスでは、 環状磁性層を貫く複数 の導線 (第 1および第 2の書込線) の双方を流れる電流により生ずる磁界によつ て、 第 1および第 2の積層体における各感磁層の磁化方向が互いに反平行を向く ように変化し、 第 1および第 2の積層体に情報が記憶されるようにすることが望 ましい。 本発明における 「磁化方向が互いに反平行」 とは、 互いの磁化方向、 す なわち、 各磁性層内の平均の磁化方向のなす相対角度が、 厳密に 1 8 0度である 場合のほか、 製造上生ずる誤差や完全に単軸化されなかったが故に生ずる程度の 誤差等に起因して 1 8 0度から所定角度だけ外れている場合も含む。 また、 「情 報」 とは、 一般に磁気メモリデバイスへの入出力信号において 「0」 , 「1」 あ るいは電流値や電圧値による 「H i g h」 , 「L o w」 等で表される 2値情報を いう。
この磁気記憶セルおよび磁気メモリデバイスでは、 第 1および第 2の積層体に おいて、 感磁層の磁化方向が互いに反平行となる状態で情報が記憶される。 より具体的には、 第 1および第 2の積層体における一対の感磁層の一方が第 1 の方向に磁化し他方が第 1の方向と反平行をなす第 2の方向に磁化する第 1の状 態と、 一対の感磁層の一方が第 2の方向に磁化し他方が第 1の方向に磁化する第 2の状態、 のいずれかをとり、 第 1および第 2の状態に対応して第 1および第 2 の積層体に情報が記憶されるようにすることが望ましい。 このとき、 第 1および 第 2の積層体における双方の感磁層の磁化は、 互いに向き合う状態と、 反対向き になる状態との 2つの状態をとることができ、 これに 2値情報が対応する。 本発明の磁気記憶セルおよび磁気メモリデバイスでは、 一対の感磁層が、 環状 磁性層のうちの一部分を構成するようにしてもよい。 さらに、 一対の感磁層が、 それぞれ互いに磁気的に交換結合するように構成された第 1および第 2の感磁部 分を含み、 第 1の感磁部分が、 環状磁性層のうちの一部分を構成するようにして もよい。 加えて、 一対の第 1の感磁部分と一対の第 2の感磁部分との間に、 これ らを互いに反強磁性結合させるための一対の第 1の非磁性導電層を配設するよう にしてもよい。
また、 本発明の磁気記憶セルおよび磁気メモリデバイスでは、 一対の第 2の感 磁部分が一対の第 1の感磁部分よりも大きな保磁力を有することが望ましい。 こ れにより、 一対の第 2の感磁部分の磁化方向がより安定化する。
さらに、 本発明の磁気記憶セルおよび磁気メモリデバイスでは、 第 1および第 2の積層体が、 それぞれ、 非磁性層と、 この非磁性層の一方側に積層され磁化方 向の固定された第 1の磁性層と、 非磁性層の—、 第 1の磁性層と反対側に積層され た感磁層とを含み、 または、 第 1および第 2の積層体が、 それぞれ、 非磁性層と、 この非磁性層の一方側に積層され磁化方向の固定された第 1の磁性層と、 非磁性 層の、 第 1の磁性層と反対側に積層され、 第 2の感磁部分として機能する第 2の 磁性層とを含み、 第 1および第 2の積層体に流れる電流に基づいて情報が検出さ れるようにしてもよい。 この場合、 第 1の磁性層が第 2の磁性層よりも大きな保 磁力を有することが望ましい。 また、 第 1の磁性層の非磁性層とは反対側に、 第 1の磁性層と交換結合した反強磁性の第 3の磁性層が配設されるようにしてもよ レ 第 1の磁性層と第 3の磁性層との間に、 第 1の磁性層の側から順に第 2の非 磁性導電層と、 第 1の磁性層と反強磁性結合した第 4の磁性層とが配設されるよ うにしてもよい。 これらの場合、 非磁性層が、 トンネル効果を生じさせ得る絶縁 層からなるようにすることも可能である。
本発明の磁気メモリデバイスでは、 さらに、 第 1および第 2の磁気抵抗効果素 子にそれぞれ接続され、 各磁気抵抗効果素子に読出電流を供給する一対の第 1の 読出線を備え、 各積層体に流れる電流に基づいて磁気記憶セルから情報が読み出 されるように構成される。 なお、 本発明の磁気記憶セルにおいて 「接続され」 と は、 少なくとも電気的に接続された状態を指し、 物理的に直接に接続されていな い状態であってもよい。
この磁気メモリデバイスでは、 対をなす磁気抵抗効果素子の感磁層の相対的な 磁化方向に応じ、 積層体の積層面に垂直な方向に電 を流した場合の電流値が異 なることを利用して、 情報の読出が行われる。
情報の読出については、 一対の第 1の読出線の各々から第 1および第 2の積層 体の各々に読出電流が供給され、 この一対の読出電流値の差分に基づいて磁気記 憶セルから情報を読み出すようにすることが望ましい。 この方式によれば、 読出 電流は差動出力されるので、 各々の第 1の読出線に生ずる雑音や、 磁気抵抗効果 素子ごとの出力値に含まれるオフセット成分が相殺されて除去されるからである。 本発明の磁気メモリデバイスでは、 第 1および第 2の積層体に供給された読出 電流の各電流経路上における、 一対の第 1の読出線と第 1および第 2の積層体と の間にそれぞれ設けられた第 1および第 2の整流素子と、 第 1および第 2の積層 体を流れた読出電流を接地へと導く第 2の読出線とを備えていることが好ましい。 本発明の 「整流素子」 とは、 電流を一方向のみに通過させ、 逆方向の電流の通 過を阻止する素子をいう。 また、 「電流経路」 とは、 読出電流が積層体に流入す るためにたどり、 積層体を通過し、 流出していく経路全体をいう。 整流素子は、 ' 上記の電流経路上で、 接地方向 (第 2の読出線側) のみに向かうように電流を流 す整流作用を有している。 この整流素子により、 読出対象の各磁気記憶セルに向 かって、 共通の第 2の読出線に接続されている他の磁気記憶セルからの電流の回 り込みを回避できると共に、 電流が読出対象の磁気記憶セル内における一方の積 層体から他方の積層体へ通過して第 1の読出線にまで達することが阻止できる。 整流素子としては、 ショットキーダイオード、 P N接合型ダイオード、 バイポー ラトランジスタ、 または M O Sトランジスタが好適である。
さらに、 本発明の磁気メモリデバイスでは、 第 1および第 2の整流素子が設け られた基体の上に、 第 2の積層体と、 環状磁性層と、 第 1の積層体とが順に配設 され、 第 1および第 2の整流素子と第 1および第 2の積層体とがそれぞれ電気的 に接続されていることが望ましい。 この場合、 整流素子としてバイポーラトラン ジスタを用い、 このバイポーラトランジスタにおけるエミッタと磁気抵抗効果素 子とが電気的に接続するようにすることが可能である。 あるいは、 整流素子とし て M〇Sトランジスタを用い、 この M O Sトランジスタにおけるソースと磁気抵 抗効果素子とが電気的に接続されるようにしてもよいし、 整流素子をショットキ —ダイオードとし、 基板側から順にェピタキシャル肩と金属層とを有し、 これら のェピタキシャル層と金属層との間にショットキ一障壁を形成するようにしても よい。
本発明の磁気メモリデバイスの製造方法では、 積層パターン形成工程において、 第 2の書込線をマスクとして第 2の絶縁膜および第 1の書込線を選択的にエッチ ングすることにより、 積層パターンを自己整合的に形成することが望ましい。 こ れによりァライメント精度の高い加工が可能となり、 さらに、 製造工程全体とし て簡略化を図ることができる。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態に係る磁気メモリデバイスの全体構成を 示すブロック図である。
第 2図は、 第 1図に示した磁気メモリデバイスの書込線の構成を示す平面図で める
第 3図は、 第 1図に示した磁気メモリデバイスの記憶セル群の要部構成を示す 部分平面図である。
第 4図は、 第 1図に示した磁気メモリデバイスの記憶セル群の要部構成を示す 要部斜視図である。
第 5図は、 第 3図に示した記憶セルの V— V線に沿った切断面の構成を示す断 面図である。
第 6図は、 第 1図に示した磁気メモリデバイスの記憶セル群の要部構成を示す 他の部分平面図である。
第 7図は、 第 6図に示した記憶セルの V I I— V I I 線に沿った切断面の構成を 示す断面図である。
第 8図は、 第 1図に示した磁気メモリデバイスの回路構成を示す回路図である。 第 9 A図および第 9 B図は、 第 5図に示した記憶セルの断面構成における書込 電流方向と還流磁界方向 (磁化方向) との関係を表す説明図である。 第 1 0 A図および第 1 0 B図は、 第 8図に示した回路構成における部分拡大図 である。
第 1 1図は、 第 1図に示した磁気メモリデバイスの製造方法における一工程を 表す拡大断面図である。
第 1 2図は、 第 1 1図に続く一工程を表す拡大断面図である。
第 1 3図は、 第 1 2図に続く一工程を表す拡大断面図である。 ·
第 1 4図は、 第 1 3図に続く一工程を表す拡大断面図である。
第 1 5図は、 第 1 4図に続く一工程を表す拡大断面図である。
第 1 6図は、 第 1 5図に続く一工程を表す拡大断面図である。
第 1 7図は、 第 1 6図に続く一工程を表す拡大断面図である。
第 1 8図は、 第 1 7図に続く一工程を表す拡大断面図である。
第 1 9図は、 第 1 8図に続く一工程を表す拡大断面図である。
第 2 0図は、 第 1 9図に続く一工程を表す拡大断面図である。
第 2 1図は、 第 2 0図に続く一工程を表す拡大断面図である。
第 2 2図は、 第 2 1図に続く一工程を表す拡大断面図である。
第 2 3図は、 第 2 2図に続く一工程を表す拡大断面図である。
第 2 4図は、 第 2 3図に続く一工程を表す拡大断面図である。
第 2 5図は、 第 2 4図に続く一工程を表す拡大断面図である。
第 2 6図は、 第 2 5図に続く一工程を表す拡大断面図である。
第 2 7図は、 第 2 6図に続く一工程を表す拡大断面図である。
第 2 8図は、 第 2 7図に続く一工程を表す拡大断面図である。
第 2 9図は、 第 2 8図に続く一工程を表す拡大断面図である。
第 3 0図は、 第 2 9図に続く一工程を表す拡大断面図である。
第 3 1図は、 本発明の第 2の実施の形態に係る磁気メモリデバイスにおける磁 気記憶セルの断面図である。
第 3 2図は、 第 3 1図に示した磁気メモリデバイスの記憶セル群における要部 構成を示す要部斜視図である。
第 3 3図は、 第 3 1図に示した磁気メモリデバイスの記憶セル群における要部 構成を示す部分平面図である。 第 3 4図は、 第 3 3図に示した記憶セルの XXXIV - XXXIV 線に沿った切断面 の構成を示す断面図である。
第 3 5 A図および第 3 5 B図は、 第 3 1図に示した記憶セルの断面構成におけ る書込電流方向と還流磁界方向 (磁化方向) との関係を表す説明図である。
第 3 6 A図および第 3 6 B図は、 本発明の第 3および第 4の実施の形態に係る 磁気メモリデバイスにおける要部構成を表す断面図である。
第 3 7 A図および第 3 7 B図は、 本発明の第 1および第 2の実施の形態に係る 磁気メモリデバイスにおける変形例 (変形例 1, 2 ) の要部構成を表す断面図で ある。
第 3 8 A図および第 3 8 B図は、 本発明の第 3および第 4の実施の形態に係る 磁気メモリデバイスにおける変形例 (変形例 3, 4 ) の要部構成を表す断面図で ある。
第 3 9 A図および第 3 9 B図は、 本発明の第 3および第 4の実施の形態に係る 磁気メモリデバイスにおける他の変形例 (変形例 5, 6 ) の要部構成を表す断面 図である。
第 4 0 A図および第 4 0 B図は、 本発明の第 1および第 2の実施の形態に係る 磁気メモリデバイスにおける他の変形例 (変形例 7, 8 ) の要部構成を表す断面 図である。
第 4 1図は、 第 8図に示した回路構成における整流素子の変形例を表す部分拡 大図である。
第 4 2図は、 第 4 1図に示した整流素子の変形例における断面構成を示す部分 断面図である。
第 4 3図は、 第 4 1図に示した整流素子の変形例における全体の回路構成を示 す回路図である。
第 4 4図は、 第 8図に示した回路構成における整流素子の他の変形例を表す部 分拡大図である。
第 4 5図は、 第 4 4図に示した整流素子の他の変形例における全体の回路構成. を示す回路図である。
第 4 6図は、 第 8図に示した回路構成に対応する比較例としての回路構成を示 す回路図である。
第 4 7図は、 第 3 8 A図および第 3 8 B図に示した回路構成に対応する磁気メ モリデパイスの要部構成を説明するための断面図である。
第 4 8図は、 従来例としての磁気メモリデバイスの構成を説明するための平面 図である。
第 4 9図は、 従来例としての磁気メモリデバイスの要部構成を説明するための 断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照して詳細に説明する。
[第 1の実施の形態]
まず、 第 1図〜第 7図を参照して第 1の実施の形態に係る磁気メモリデバイス の構成について説明する。
第 1図は、 本実施の形態における磁気メモリデバイスの全体構成を表す概念図で ある。 磁気メモリデバイスは、 アドレスバッファ 5 1と、 データバッファ 5 2と 制御ロジック部 5 3と、 記憶セル群 5 4と、 第 1の駆動制御回路部 5 6と、 第 2 ' の駆動制御回路部 5 8と、 外部アドレス入力端子 A O〜A 2 0と、 外部デ一夕端 子 D 0 ~ D 7とを備えている。
記憶セル群 5 4は、 一対のトンネル磁気抵抗効果素子 (以下、 T M R素子とい う。 ) を備えた記惊セル 1が、 互いに直交するワード線方向 ( X方向) およびビ ット線方向 (Y方向) に多数、 配列されたマトリックス構造を有している。 記憶 セル 1は、 磁気メモリデバイスにおいてデ一夕を記惊する最小単位であって、 本 発明における 「磁気記憶セル」 に対応する一具体例である。 記憶セル 1について は後に詳述する。
第 1の駆動制御回路部 5 6は、 Y方向におけるァドレスデコーダ回路 5 6 A、 センスアンプ回路 5 6 Bおよびカレントドライブ回路 5 6 Cを有し、 第 2の駆動 制御回路部 5 8は、 X方向におけるアドレスデコーダ回路 5 8 A、 定電流回路 5 8 Bおよびカレントドライブ回路 5 8 Cを有するものである。
アドレスデコーダ回路 5 6 A, 5 8 Aは、 入力されたアドレス信号に応じた後 出のヮ一ドデコード線 7 2およびビットデコ一ド線 7 1を選択するものである。 センスアンプ回路 5 6 Bおよび定電流回路 5 8 Bは読出動作を行う際に駆動する 回路であり、 カレントドライブ回路 5 6 C , 5 8 Cは書込動作を行う際に駆動す る回路である。
センスアンプ回路 5 6 Bと記憶セル群 5 4とは、 読出動作の際にセンス電流が 流れる複数のビットデコード線 7 1 (後出) によって接続されている。 同様に、 定電流回路 5 8 Bと、 記憶セル群 5 4とは、 読出動作の際にセンス電流が流れる 複数のワードデコード線 7 2 (後出) によって接続されている。
カレントドライブ回路 5 6 Cと記憶セル群 5 4とは、 書込動作の際に必要とな る書込ビッ卜線 5 (後出) を介して接続されている。 同様に、 カレントドライブ 回路 5 8 Cと記憶セル群 5 4とは、 書込動作の際に必要となる書込ヮード線 6 (後出) を介して接続されている。
ァドレスバッファ 5 1は、 外部ァドレス入力端子 A 0 ~ A 2 0を備えると共に、 Y方向ァドレス線 5 7, X方向ァドレス線 5 5を介して第 1の駆動制御回路部 5 6内の Y方向ァドレスデコーダ回路 5 6 A , 第 2の駆動制御回路部 5 8内の X方 向ァドレスデコーダ回路 5 8 Aに接続されている。 このァドレスバッファ 5 1は、 外部からのァドレス信号を外部ァドレス入力端子 A O〜A 2 0から取り込み.. 内 部に備えたバッファ増幅器 (図示せず) により Y方向ァドレステコーダ回路 5 6 A, X方向ァドレスデコーダ回路 5 8 Bにおいて必要となる電圧レベルまで増幅 するものである。 さらに、 7ドレスバッファ 5 1は、 その増幅したアドレス信号 を 2つに分け、 Y方向ァドレス線 5 7を介して Y方向ァドレスデコーダ回路 5 6 Aに出力すると共に、 X方向ァドレス線 5 5を介して X方向ァドレスデコーダ回 路 5 8 Aに出力するように機能する。
データバッファ 5 2は、 入力バッファ 5 2 Aおよび出力バッファ 5 2 Bによつ て構成され、 外部データ端子 D 0〜D 7を備えると共に制御ロジック部 5 3と接 続されており、 制御ロジック部 5 3からの出力制御信号 5 3 Aによって動作する ようになつている。 入力バッファ 5 2 Aは、 Y方向および X方向書込用データバ ス 6 1, 6 0を介してそれぞれ第 1の駆動制御回路部 5 6内の Y方向カレントド ライブ回路 5 6 C , 第 2の駆動制御回路部 5 8内の X方向カレントドライブ回路 5 8 Cに接続されており、 記憶セル群 5 4への書込動作を行う際には、 外部デ一 夕端子 D 0〜D 7の信号電圧を取り込んで、 内部バッファ増幅器 (図示せず) に より必要となる電圧レベルまで増幅したのち、 X方向書込用データバス 6 0およ び Y方向書込用データバス 6 1を介して X方向カレントドライブ回路 5 8 C , Y 方向カレントドライブ回路 5 6 Cに伝達するように機能する。 出力バッファ 5 2 Bは、 Y方向読出用データバス 6 2を介してセンスアンプ回路 5 6 Bに接続され ており、 記憶セル群 5 4に記憶された情報信号を読み出す際には、 内部に備えた バッファ増幅器 (図示せず) によって、 センスアンプ回路 5 6 Bから入力される 情報信号を増幅したのち、 外部データ端子 D 0〜D 7に低インピーダンスで出力 するように機能する。
制御ロジック部 5 3は、 チップセレクト端子 C Sおよびライトイネーブル端子 W Eを備え、 データバッファ 5 2に接続されている。 この制御ロジック部 5 3は、 複数の記憶セル群 5 4のなかから読出および書込対象とするものを選択するチッ プセレクト端子 C Sからの信号電圧と、 書込許可信号を出力するように機能する ライトイネ一プル端子 W Eからの信号電圧とを取り込み、 データバッファ 5 2に 向けて出力制御信号 5 3 Aを出力するように機能する。
次に、 本実施の形態の磁気メモリデバイスにおける情報書込動作に係わる構成 について説明する。
第 2図は、 記憶セル群 5 4における書込動作に係わる要部 面構成を表す概念 図である。 第 2図に示したように、 本実施の形態の磁気メモリデバイスは、 複数 の書込ビット線 5と、 この複数の書込ビット線 5とそれぞれ交差するように延び る複数の書込ヮ一ド線 6とを含んでおり、 書込ピット線 5および書込ヮード線 6 の交差する各領域に、 これら書込ビット線 5および書込ワード線 6が互いに平行 に延在する平行部分 1 0を有するように構成されている。 具体的には、 第 2図に 示したように、 書込ワード線 6が矩形波状に X方向に沿って延在する一方で、 書 込ビット線 5が直線状に Y方向に沿って延在している。 書込ヮード線 6における 矩形波状の立ち上がり部分および立ち下がり部分が、 書込ビット線 5と共に複数 の平行部分 1 0を形成している。 記憶セル 1は、 それぞれの平行部分 1 0の少な くとも一部を囲むように、 書込ビット線 5と書込ヮ一ド線 6との交差する各領域 に設けられている。 ここで、 交差する領域に記憶セル 1が設けられているという ことは、 交差点の隣に記憶セル 1が設けられている場合も含んでいる。 各記憶セ ル 1は、 それぞれ T M R素子 1 aおよび T M R素子 1 bによって構成されている。 ここで、 T M R素子l aぉょびT M R素子l bが、 本発明の 「一対の磁気抵抗効 果素子」 に対応する一具体例である。
書込ビット線 5および書込ヮ一ド線 6には、 それぞれ X方向カレントドライブ 回路 5 8 C , Y方向カレントドライブ回路 5 6 Cからの電流が流れるようになつ ている。 ここで、 書込ビット線 5を流れる電流が、 例えば、 第 2図に矢印で示し たように一 Y方向 (紙面上から下) となるようにした場合には、 書込ワード線 6 を流れる電流の方向を全体として + X方向 (紙面左から右) とすることが望まし い。 こうすることにより、 T M R素子 l a , 1 bを通過する書込ビット線 5およ び書込ワード線 6の電流方向が、 互いに平行 (同一方向) となるからである。 第 3図は、 記憶セル群 5 4の要部平面構成をより具体的に表すものである。 第 3図に示した書込ビット線 5、 書込ワード線 6および記憶セル 1は、 第 2図と対 応するものである。 記憶セル 1は、 Y方向に沿った書込ピット線 5と書込ワード 線 6との平行部分 1 0に配置されている。 記憶セル 1を構成する一対の T M R素' 子 1 a, 1 bは、 それぞれ感磁層を含む積層体 S 2 0 ( S 2 0 a , S 2 0 b ) と 環状磁性層 4とを備えており、 平行部分 1 0における書込ビット線 5および書込 ワード線 6の双方を流れる電流により生ずる磁界 (すなわち、 環状磁性層 4にお いては外部磁界) によって感磁層の磁化方向が変化するようになっている。 この 場合、 平行部分 1 0における書込ビット線 5と書込ワード線 6とは X Y平面にお いてほぼ一致した位置に設けられているが、 Z方向においては一定の間隔を有す るように配置されており、 互いに電気的に絶縁されている。
各書込ビット線 5の両端には、 それぞれ書込ビット線引出電極 4 2が設けられ ている。 各書込ビット線引出電極 4 2は、 それぞれ一方が Y方向カレン卜ドライ ブ回路 5 6 Cに接続され、 他方が最終的に接地されるように接続されている。 同 様に、 各書込ワード線 6の両端には、 それぞれ書込ワード線引出電極 4 1が設け られている。 各書込ワード線引出電極 4 1は、 それぞれ一方が X方向カレントド ライブ回路 5 8 Cに接続され、 他方が最終的に接地されるように接続されている。 第 4図は、 記憶セル 1の拡大斜視図である。 第 1の書込線としての書込ワード 線 6と第 2の書込線としての書込ビット線 5とは、 互いに平行に延びて環状磁性 層 4を貫いている。 書込ワード線 6、 書込ピット線 5および環状磁性層 4は、 絶 縁膜 7を介して互いに電気的に絶縁されている。 積層部分 20 aおよび積層部分 2 O bは、 互いの積層面が対向するように環状磁性層 4の表面に配置されている。 これら一対の積層部分 20 a, 20 bを含む一対の積層体 S 20 a, S 20 bは、 それぞれ導電層 36 a, 36 b (後出) と電気的に接続されている。 一対の導電 層 36 a, 36 bは一対のショットキーダイオード 7 5 a, 7 5 b (後出) の一 部を構成するものであり、 このショットキーダイ^ード 75 a, 75 bの他端は Y方向に延在する読出ビット線 33 a, 33 b (図示せず) と接続されている。 第 5図は、 第 3図に示した記憶セル 1の、 V— V切断線の矢視方向における断 面構成を表すものである。 なお、 後述する本実施の形態の変形例としての記憶セ ル 1 Hと区別するため、 ここでは、 記憶セル 1 Pと表示する。
第 5図に示したように、 記憶セル 1 Pは、 外部磁界によって磁化方向が変化す る感磁層を含み、 積層面に垂直な方向に電流が流れるようにそれぞれ構成され、 互いに積層面が対向するように配置された積層体 S 20 a, S 20 bと、 これら' 積層体 S 20 aと積層体 S 20 bとの間に、 積層面に沿った方向を軸方向とする ように共通に配設されると共に、 軸方向に沿って書込ワード線 6および書込ビッ ト線 5によつて貫かれるように構成された環状磁性層 4とを含んで構成されてい る。 積層体 S 20 aは、 環状磁性層 4と共に TMR素子 1 aを構成し、 積層体 S 2 O bは、 環状磁性層 4と共に TMR素子 1 bを構成している。 記憶セル 1 Pで は、 書込ワード線 6および書込ビット線 5が、 環状磁性層 4を貫く領域において 積層体 S 20 aと積層体 S 20 bとを通る直線の方向において互いに隣り合うよ うに配列されている。 ここで、 積層体 S 2 0 aが本発明における 「第 1の積層 体」 に対応する一具体例であり、 一方の積層体 S 20 bが本発明における 「第 2 の積層体」 に対応する一具体例である。
感磁層は、 環状磁性層 4のうちの一部分を構成している一対の接続部分 14 a, 14 bと、 後述する一対の第 2磁性層 8 a, 8 bとによって構成され、 一対の接 続部分 14 a, 14 bと一対の第 2磁性層 8 a, 8 bとはそれぞれ互いに磁気的 に交換結合するようになっている。 ここで、 接続部分 14 a, 14 bが本発明に おける 「第 1の感磁部分」 に対応する一具体例であり、 一方の第 2磁性層 8 a, 8 bが本発明における 「第 2の感磁部分」 に対応する一具体例である。
積層体 S 20 a, S 20 bは、 それぞれ積層部分 20 a, 20 bと接続部分 1 4 a, 14 bとによって構成されている。 環状磁性層 4 (接続部分 14 a, 14 b) の側から順に、 第 2磁性層 8 a, 8 bと、 トンネルバリア層 3 a, 3 bと、 磁化方向の固定された第 1磁性層 2 a, 2 bとを含み、 積層面に垂直な方向に電 流が流れるように構成されている。 上述したように、 第 2磁性層 8 a, 8 bは環 状磁性層 4の一対の接続部分 14 a, 14 bとともに感磁層として機能する。 こ こで、 トンネルバリア層 3が本発明における 「非磁性層」 に対応する一具体例で ある。 なお、 第 5図では、 積層体 S 2 0 a, S 20 bの構成を明らかにするため、 積層体 S 20 a, S 20 bの寸法を周囲よりも相対的に大きく誇張して表してい る。
積層体 S 20 a, S 20 bは、 第 1磁性層 2 a, 2 bと第 2磁性層 8 a, 8 b との間において積層面に垂直方向の電圧を印加すると、 例えば第 1磁性層 2 a, 2 bの電子がトンネルバリア層 3 a, 3 bを突き抜けて第 2磁性層 8 a, 8 に 移動してトンネル電流が流れるようになつている。 このトンネル電流は、 トンネ ルバリア層 3 a, 3 bとの界面部分における第 1磁性層 2 a, 2 bのスピンと第 2磁性層 8 a, 8 bのスピンとの相対的な角度によって変化する。 すなわち、 第 1磁性層 2 a, 2 bのスピンと第 2磁性層 8 a, 8 bのスピンとが互いに平行な 場合に抵抗値が最小となり、 反平行のときに抵抗値が最大となる。 これらの抵抗 値を用いて、 磁気抵抗変化率 (MR比) が、 式 1のように定義される。
(式 1)
(MR比) =dRZR
ここで、 「dR」 が、 スピンが互いに平行である場合と反平行である場合との 抵抗値の差であり、 「R」 が、 スピンが互いに平行である場合における抵抗値で ある。
トンネル電流に対する抵抗値 (以下、 トンネル抵抗 R tという。 ) は、 トンネ ルバリア層 3 a, 3 bの膜厚 Tに強く依存する。 トンネル抵抗 R tは、 低電圧領 域では、 式 2に示したように、 トンネルバリア層 3 a, 3 bの膜厚 Tに対して指 数関数的に増加する。
(式 2)
R t oc e X p (2 χτ ) , χ = { 8 π2 m* ( · Ε f ) °·5 } / h
ここで、 「φ」 はバリア高さ、 「m* J は電子の有効質量、 「E f 」 はフェル ミエネルギ一、 hはプランク定数を表す。 一般的に、 TMR素子を用いたメモリ 素子では、 トランジスタなどの半導体デバイスとのマッチングを図るため、 トン ネル抵抗 R tは、 数 Ι Ο Ι^Ω · (u rn) 2程度が適当とされる。 しかし、 磁気メ モリデバイスにおける高密度化および動作の高速度化を図るためには、 トンネル 抵抗 R tは、 1 0 k Ω · ( m) 2以下、 さらに好ましくは 1 k Ω · ( u rn) 2 以下とすることが好ましい。 したがって、 上記のトンネル抵抗 R tを実現するた めに、 トンネルバリア層 3 a, 3 bの厚み Tを 2 nm以下、 さらに好ましくは 1. 5 nm以下とすることが望ましい。
トンネルバリア靥 3 a, 3 bの厚み Tを薄くすることにより、 トンネル抵抗 R tを低減することができる一方で、 第 1磁性層 2 a, 2 bおよび第 2磁性層 8 a, 8 bとの接合界面の凹凸に起因するリーク電流が生じるので MR比が低下してし' まう。 これを防止するため、 トンネルバリア層 3 a, 3 bの厚み Tは、 リ一ク電 流が流れない程度の厚みを有する必要があり、 具体的には 0 · 3 nm以上の厚み であることが望ましい。
第 5図に示した積層体 S 20 a, S 20 bは、 保磁力差型構造を有し、 第 1磁 性層 2 a, 2 bの保磁力のほうが、 第 2磁性層 8 a, 8 bの保磁力よりも大きく なるように構成されていることが望ましい。 具体的には、 第 1磁性層 2 a, 2 b の保磁力は、 ( 50 /47t) X 1 03 A/mよりも大きいことが望ましく、 特に ( 1 00/4 ττ) X 1 03 A/m以上であることが望ましい。 こうすることによ り、 第 1磁性層 2 a, 2 bにおける磁化方向が外部憂乱磁界等の不要な磁界の影 響を受けるのを防止することができる。 第 1磁性層 2 a, 2 bは、 例えば、 5 n mの厚みのコバルト鉄合金 (C o F e) からなる。 他に、 単体のコバルト (C o) や、 コバルト白金合金 (C o P t ) 、 ニッケル鉄コバルト合金 (N i F e C o) 等を第 1磁性層 2 a, 2 bに適用することが可能である。 第 2磁性層 8 a, 8 bは、 例えば、 単体のコバルト (C o) 、 コバルト鉄合金 (C o F e) 、 コバ ルト白金合金 (C 0 P t ) 、 ニッケル鉄合金 (N i F e) あるいはニッケル鉄コ バルト合金 (N i F e C o) から構成される。 また、.第 1磁性層 2 a, 2 bおよ び第 2磁性層 8 a, 8 bの磁化容易軸は、 第 1磁性層 2 a, 2 bと第 2磁性層 8 a, 8 bとの磁化方向が互いに平行または反平行となる状態で安定化するように するため、 平行であることが望ましい。
環状磁性層 4は、 書込ビット線 5および書込ワード線 6における平行部分 1 0 の少なくとも一部を環状に取り囲むように延在しており、 この平行部分 1 0を流 れる電流によって環状磁性層 4内部に還流磁界が生ずるように構成されている。 上記還流磁界によって環状磁性層 4の磁化方向が反転される。 環状磁性層 4の接 続部分 1 4 a, 1 4 bおよびこれに隣接する第 2磁性層 8 a, 8 bが、 情報を記 憶する記憶層として機能する。 環状磁性層 4は、 例えば、 ニッケル鉄合金 (N i F e ) からなり、 その接続部分 1 4 a, 1 4 bの保磁力が、 ( 1 0 0 /4 TC) X 1 03 A/m以下の範囲内において第 1磁性層 2 a, 2 bの保磁力よりも小さく なるように構成されていることが望ましい。 ( 1 0 0 / 4 π ) X 1 03 Αノ mを 越えるような保磁力では、 書込電流の増大に起因する発熱により、 TMR膜 2 0 ' a, 2 0 b自体の劣化が生じてしまう可能性があるからである。 さらに、 接続部 分 1 4 a, 1 4 bの保磁力が第 1磁性層 2 a , 2 bの保磁力と同等以上となると、 書込電流が増大して磁化固定層としての第 1磁性層 2 a, 2 bの磁化方向を変化 させてしまい、 記憶素子としての TMR素子 1 a, 1 bを破壊してしまうからで ある。 また、 書込ビット線 5および書込ワード線 6による電流磁界を環状磁性層 4に集中させるために、 環状磁性層 4の透磁率はより大きい方が好ましい。 具体 的には、 2 0 0 0以上であり、 より好ましくは 6 0 0 0以上である。
書込ビット線 5および書込ワード線 6は、 いずれも、 1 0 nm厚のチタン (T i ) と、 1 0 nm厚の窒化チタン (T i N) と 5 0 0 n m厚のアルミニウム (A 1 ) とが順に積層された構造を有し、 絶縁膜 7によって、 互いに電気的に絶縁さ れている。 書込ビット線 5および書込ワード線 6は、 例えば、 アルミニウム (A 1 ) 、 銅 (C u) およびタングステン (W) のうちの少なくとも 1種からなるよ うにしてもよい。 これら書込ビット線 5および書込ヮ一ド線 6を用いた記憶セル 1に対するより具体的な書込動作については後述する。
次に、 情報読出動作に係わる構成について説明する。 第 6図は、 記憶セル群 5 4における読出動作に係わる要部平面構成を表し、 第 3図に対応するものである。 第 6図に示したように、 各記憶セル 1は、 XY平面における複数の読出ワード 線 32と複数の読出ビット線 3 3との各交差点に 1つずっ配設されている。 具体 的には、 読出ビット線 33は一対の読出ビット線 3 3 a, 33 bからなり、 この 読出ビット線 33 aと読出ビット線 33 bとの間の領域のうち、 読出ヮ一ド線 3 2と交差する領域に記憶セル 1が設けられている。 ここで、 一対の読出ビット線 3 3 a, 33 bは、 一対のショットキーダイオード 7 5 a, 7 5 b (後出) を介 して一対の積層部分 20 a, 20 bと電気的に接続している。 一方の読出ヮ一ド 線 32は、 接続層などを介して記憶セル 1の環状磁性層 4と電気的に接続してい る。 一対の読出ビット線 33 a, 33 bは、 各記憶セル 1における一対の TMR 素子 1 a, 1 bの各々に読出電流を供給するものであり、 一方の読出ワード線 3 2は、 TMR素子 1 a, 1 bの各々に流れた読出電流を接地へと導くものである。 各読出ピット線 33 a, 33 bの両端には、 それぞれ読出ビット線引出電極 44 a, 44 bが設けられている。 一方、 各読出ワード線 32の両端には、 それぞれ 読出ワード線引出電極 43が設けられている。 ここで、 読出ビット線 3 3が本発 明の 「第 1の読出線」 に対応する一具体例であり、 読出ヮ一ド線 32が本発明の 「第 2の読出線」 に対応する一具体例である。
第 7図は、 第 6図に示した VII— VII 切断線における矢視方向の断面構成を 表すものである。 第 7図に示したように、 本実施の形態の磁気メモリデバイスは、 記憶セル 1を含む領域において、 整流素子として機能する一対のショッ卜キーダ ィオード 7 5 a, 7 5 b (以下、 単にダイォ一ド 7 5 a, 7 5 bという。 ) が設 けられた基体 3 1の上に、 一対の積層部'分 20 a, 2 O bと、 環状磁性層 4とが 順に形成されるように構成されている。 ここで、 ダイオード 7 5 aが本発明の 「第 1の整流素子」 に対応する一具体例であり、 一方のダイオード 7 5 bが本発 明の 「第 2の整流素子」 に対応する一具体例である。
一対のダイオード 7 5 a , 7 5 bは、 記憶セル 1の側から順に導電層 3 6 a, 36 bとェピタキシャル層 37と基板 38とを有し、 これら導電層 3 6 a, 36 bとェピタキシャル層 37との間にショットキ一障壁を形成している。 ダイォー ド 7 5 aとダイオード 7 5 bとは、 積層部分 20 a, 20 bを挟んで環状磁性層 4と接続しているほかは互いに電気的な接続部分をもたないように構成されてい る。 基板 38は n型シリコンウェハである。 一般に、 n型シリコンウェハには燐 (P) の不純物拡散が施されており、 基板 38としては、 燐の高濃度拡散により n"型となっているものを用いる。 これに対し、 ェピタキシャル層 ·3 7は、 燐が 低濃度拡散されて η 型となるようにする。 この η 型半導体であるェピ夕キシ ャル層 37と金属からなる導電層 36 a, 36 bとを接触させることにより、 バ ンドギャップが生じ、 ショットキー障壁が形成される。 さらに、 一対のダイォ一 ド 7 5 a, 75 bは、 それぞれ接続層 33 Tを介して読出ビット線 33 a, 33 bと接続されている。
次に、 第 8図を参照して、 本実施の形態の磁気メモリデバイスにおける読出動 作に係わる回路構成について説明する。
第 8図は、 記憶セル群 54とその読出回路からなる回路系の構成図である。 こ の読出回路系は、 記憶セル 1がー対の TMR素子 1 a, l bからなる差動増幅型 である。 ここでは、 各記憶セル 1の情報の読み出しを、 TMR素子 l a, l bに おける積層体 S 20 a, S 20 bそれぞれに流す読出電流 (読出ビット線 3 3 a, 3 3 bから積層体 S 20 a, S 20 bのそれぞれに流入し、 共通の読出ヮ一ド線 32に流出する電流) の差分値を出力として行うようになっている。
第 8図において、 記憶セル群 54のピット列ごとの記惊セル 1と、 センスアン プ回路 56 Bを含む読出回路の一部とが、 読出回路の繰り返し単位である単位読 出回路 80 (…, 8 O n, 80 n + 1 , ···) を構成しており、 ビット列方向に並 列に配置されている。 単位読出回路 80 nの各々は、 Y方向アドレスデコーダ回 路 56 Aにビットデコード線 7 1 (…, 7 1 η, 7 1 η + 1 , ···) を介して接続 され、 出力バッファ 52 Βに Υ方向読出用デ一夕バス 62を介して接続されてい る。
記憶セル群 54には、 X方向に延びる読出ワード線 32 (…, 32 m, 32m + 1 , ···) と、 Y方向に延びる一対の読出ビット線 33 a, 33 bとによりマト リクス状の配線がなされている。 各記憶セル 1は、 一対の読出ビット線 3 3 a, 33 bに挟まれた領域のうちの読出ヮード線 32との交差位置に配設されている。 各'記憶セル 1における積層体 S 20 a, S 20 bのそれぞれの一端が、 1対のダ ィオード 7 5 a, 75 bを介して読出ビット線 3 3 a, 33 bに接続され、 それ ぞれの他端が共通の読出ワード線 32に接続される。
各読出ヮ一ド線 32の一端は、 それぞれ読出ヮ一ド線引出電極 43を介して各 読出スィッチ 83 (…, 8 3m, 83m+ 1 , ···) と接続され、 さらに、 共通の 定電流回路 58 Bに接続されている。 各読出スィッチ 83は、 X方向アドレスデ コ一ダ回路 58 Aとそれぞれワードデコード線 72 (···, 72m, 72m+ 1 , ·'·) を介して'接続されており、 X方向アドレスデコーダ回路 58 Aからの選択信 号が入力されると導通するように構成されている。 定電流回路 58 Bは、 読出ヮ 一ド線 32を流れる電流を一定とする機能を有するものである。
各読出ビット線 33 a, 3 3 bの一端は、 読出ビット線引出電極 44 a, 44 bを介してそれぞれセンスアンプ回路 56 Bに接続されており、 他端は最終的に それぞれ接地されている。 センスアンプ回路 56 Bは、 単位読出回路 80にっき 1つ設けられ 各単位読出回路 80において一対の読出ビット線 33 a, 3 3 b の間の電位差を取り込み、 この電位差を増幅する機能を有するものである。 各セ' ンスアンプ回路 56 Bは それぞれ出力線 82 (···, 82 η, 82 η + 1 , ···) に接続され、 最終的には Υ方向読出用データバス 62により、 出力バッファ 52 Βに接続されるようになっている。
次に、 本実施の形態の磁気メモリデバイスにおける動作について説明する。 まず、 第 2図および第 9 Α図, 第 9 B図を参照して、 記憶セル 1 Pにおける書 込動作について説明する。 第 9 A図, 第 9 B図は、 第 5図に示した記憶セル 1 P の断面構成における書込電流方向と還流磁界方向 (磁化方向) との関係を表すも のである。 第 9 A図, 第 9 B図において各磁性層に示した矢印は、 その磁性層に おける磁化方向を示す。 但し、 環状磁性層 4については磁界方向も併せて示すも のである。 ここで、 第 1磁性層 2 a, 2 bは、 いずれも一 X方向に磁化が固定さ れている。
第 9 A図は、 記憶セル 1を通過する互いに平行な書込ビット線 5および書込ヮ ード線 6に、 互いに同一な方向に書込電流が流れる場合を示し、 第 2図に示した 書込電流方向に対応する。 第 9 A図は、 記憶セル 1 Pにおいて紙面に垂直な方向 に奥から手前へ向かって (一 Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を 反時計回り方向に還流磁界 3 4が発生する場合を示している。 この場合は、 接続 部分 1 4 aおよび第 2磁性層 8 aの磁化方向が一 X方向となり、 接続部分 1 4 b および第 2磁性層 8 bの磁化方向が + X方向となる。 一方、 第 9 B図は、 書込ビ ット線 5および書込ワード線 6を流れる電流方向が第 9 A図に示レた状態とは全 く逆の電流方向とした場合に対応する。 すなわち、 第 9 B図は、 記憶セル 1 Pに おいて紙面に垂直な方向に手前から奥へ向かって (+ Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を時計回り方向に還流磁界 3 4が発生する場合を示している。 この場合は、 接続部分 1 4 aおよび第 2磁性層 8 aの磁化方向が + X方向となり、 接続部分 1 4 bおよび第 2磁性層 8 bの磁化方向が一 X方向となる。
第 9 A図, 第 9 B図から明らかなように、 環状磁性層 4を貫く書込ビット線 5 および書込ヮード線 6の双方を流れる電流により生ずる還流磁界 3 4の方向に従 い、 一対の T M R素子 1 a, 1 bにおける第 2磁性層 8 a , 8 bの磁化方向が互 いに反対方向となるように変化するので、 これを利用することにより記憶セル 1 に情報を記憶することができる。
すなわち、 書込ビット線 5および書込ワード線 6に、 同一方向に電流が流れる と、 環状磁性層 4の磁化方向が反転するのに伴って第 2磁性層 8の磁化方向が変 化し、 「0」 または 「1」 の 2値情報を記憶することができるのである。 例えば、 第 9 A図の状態、 すなわち、 一対の第 2磁性層 8の一方である第 2磁性層 8 aが 一 X方向に磁化し、 他方の第 2磁性層 8 bが + X方向に磁化する状態に 「0」 を 対応させた場合には、 第 9 B図の状態、 すなわち、 第 2磁性層 8 aが + X方向に 磁化し、 他方の第 2磁性層 8 bがー X方向に磁化する状態に 「1」 を対応させて 記憶することができる。 ここで、 一 X方向が、 本発明における 「第 1の方向」 に 対応する一具体例であり、 + X方向が、 本発明における 「第 2の方向」 に対応す る一具体例である。 したがって、 第 9 A図の状態が、 本発明における 「第 1の状 態」 に対応する一具体例であり、 第 9 B図の状態が、 本発明における 「第 2の状 態」 に対応する一具体例である。
この場合、 T M R素子 l a, l bにおいては、 第 1磁性層 2 a, 2 bと第 2磁 性層 8 a , 8 bとの磁化方向が平行であれば大きなトンネル電流が流れる低抵抗 状態となり、 反平行であれば小さなトンネル電流しか流れない高抵抗状態となる。 つまり、 対をなす T M R素子 1 aおよび T M R素子 1 bは、 必ず一方が低抵抗で あり、 他方が高抵抗となって情報を記憶するようになっている。 なお、 書込ビッ ト線 5と書込ワード線 6とで互いに逆方向に書込電流が流れた場合、 あるいは、 どちらか一方のみに書込電流が流れた場合には各第 2磁性層 8の磁化方向は反転 せず、 データの書き換えは行われないようになつている。
以上のように、 本実施の形態の磁気メモリデバイスにおける記憶セル 1によれ ば、 書込ビット線 5と書込ヮ一ド線 6との双方に同一方向の電流を流すことによ り、 書込ビット線 5によって生じる電流磁界と書込ヮ一ド線 6によって生じる電 流磁界とが環状磁性層 4の内部において同一方向となり、 合成磁界を形成するこ とができる。 このため、 環状磁性層 4を設けない場合や、 書込ビット線 5と書込 ワード線 6とが直交する場合などと比べて大きな磁束密度が得られるので、 より 効率的に電流磁界を利用することができ、 環状磁性層 4の接続部分 1 4 a, 1 4 bおよび第 2磁性層 8 a , 8 bの磁化を反転させるために必要な電流をより小さ くすることができる。 さらに、 記憶セル 1において、 一対の積層体 S 2 0 a , S 2 0 bを 互いに積層面が対向するように配置したので、 接続部分 1 4 aおよび 第 2磁性層 8 aにおける磁化方向と、 接続部分 1 4 bおよぴ第 2磁性層 8 bにお ける磁化方向とが、 必然的に互いに反平行となる。 よって、 これを利用すること により、 「0」 または 「1」 の 2値情報を記憶することができる。 また、 一対の 積層体 S 2 0 a , S 2 0 bに対して環状磁性層 4を共通に設けるようにしたので、 一対の T M R素子 l a , 1 bを容易に形成することができると共に、 記憶セル 1 の形成領域を縮小でき、 記憶情報の大容量化が可能となる。
さらに、 トンネルバリァ層 3と環状磁性層 4の接続部分 1 4との間に第 2磁性 層 8を設けるようにしたので、 以下のような利点が得られる。 すなわち、 接続部 分 1 4と第 2磁性層 8との交換結合を形成することが可能となり、 第 2の感磁部 分としての第 2磁性層 8における磁化方向がより良好に揃うことにより、 より安 定した書込が可能となる。 さらに、 接続部分 1 4の保磁力をより小さく抑えるこ とができるので、 書込動作時における電流値を低減することにより発熱量を低減 でき、 磁気メモリデバイスとしての機能を十分に発揮できる。
次に、 第 1図, 第 8図および第 1 0 A図および第 1 0 B図を参照して、 磁気メ モリデバイスにおける読出動作について説明する。
まず、 第 1の駆動制御回路部 5 6におけるァドレスデコーダ回路 5 6 Aにより、 複数のビットデコード線 7 1のうちの 1つが選択され、 対応するセンスアンプ回 路 5 6 Bに制御信号が伝達される。 この結果、 読出ビット線 3 3 a , 3 3 bに読 出電流が流れ、 T M R素子 l a , 1 bにおける積層体 S 2 0 a , S 2 0 bの側に 正の電位が与えられる。 同様に第 2の駆動制御回路部 5 8における X方向アドレ スデコーダ回路 5 8 Aにより、 複数のワードデコード線 7 2のうちの 1つが選択 され、 対応する箇所の読出スィッチ 8 3が駆動される。 選択された読出スィッチ 8 3は通電状態となり、 対応する読出ワード線 3 2に読出電流が流れ、 T M R素 子 l a , 1 bにおける積層体 S 2 0 a, S 2 0 bとは反対側に負の電位が与えら れる。 したがって、 Y方向アドレスデコーダ回路 5 6 Aおよび X方向アドレスデ コーダ回路 5 8 Aによって選択された 1つの記憶セル 1に対し、 読出に必要な読 出電流を流すことができる。 この読出電流に基づいて、 一対の第 2磁性層 8 a, 8 bの磁化方向を検出し、 記憶された情報を読み出すことができる。 ここで、 読 出ビット線 3 3 a , 3 3 bからの読出電流が一対のダイオード 7 5 a , 7 5 bを 通過した後、 記憶セル 1に流入するようにすることが重要である。 この理由につ いては、 後述する。
第 1 0 A図, 第 1 0 B図は、 記憶セル 1の周辺部を回路図で表したものである。 積層体 S 2 0 a, S 2 0 bのそれぞれの第 1磁性層 2 a, 2 bの磁化方向を白矢 印で示し、 第 2磁性層 8 a, 8 bの磁化方向を黒矢印で示している。 第 1磁性層 2 a , 2 bの磁化方向は、 いずれも左方向に固定されている。 第 1 0 A図は、 第 9 A図に対応する状態であり、 積層体 S 2 0 aにおいて第 1磁性層 2 aと第 2磁 性層 8 aとが平行な磁化方向となり、 一方の積層体 S 2 0 bにおいて第 1磁性層 2 bと第 2磁性層 8 bとが反平行な磁化方向となっている。 この場合、 積層体 S 2 0 aが低抵抗状態となり、 積層体 S 2 0 bが高抵抗状態となり、 例えば、 「0」 に対応している。 一方、 第 9 B図に対応する状態である第 1 0 B図の場合 には、 第 1 O A図の場合とは反対に積層体 S 2 0 aが高抵抗状態となり、 積層体 S 2 0 bが低抵抗状態となっており、 例えば、 「1」 に対応している。 このよう な 2値情報は、 積層体 S 2 0 aと積層体 S 2 0 bとの抵抗値の大小を利用し、 そ れぞれに流れる電流値の差分を検出することによって読み出すことができる。 ここで、 本実施の形態の磁気メモリデバイスの読出動作時の作用について、 比 較例と対比して説明する。 第 4 6図は、 本実施の形態の比較例としての記憶セル 5 0 1を含む記憶セル群とその読出回路からなる回路系の構成図である。 第 4 7 図は、 記憶セル 5 0 1の断面構成を表すものである。
第 4 6図および第 4 7図に示した比較例は、 一対の積層体 S 2 0 a , S 2 0 b に対して、 センスアンプ回路 5 6 Bとは反対側に 1個のダイオード 1 7 5を設け るようにした構成例である。 第 4 7図に示したように、 記憶セル 5 0 1は、 基体 1 3 1に埋設されたダイォード 1 7 5の上に形成されると共に、 その上面が一対 の読出ビット線 3 3 a , 3 3 bと接続されるようになっている。 より具体的には、 記憶セル 5 0 1は、 接続層 1 3 6 Tを介してダイォード 1 7 5の導電層 1 3 6と 電気的に接続されるように構成された環状磁性層 4と、 この環状磁性層 4の表面 に対向配置された一対の接続部分 2 0 a , 2 O bとを有している。 この一対の接 続部分 2 0 a , 2 0 bが環状磁性層 4のうちの一部と共に、 一対の積層体 S 2 0 a, S 2 0 bを形成しており、 この一対の積層体 S 2 0 , S 2 0 bがー対の読 出ビット線 3 3 a , 3 3 bとそれぞれ接続されるようになっている。
ここで、 読出スィツチ 8 3 mを選択し記憶セル 5 0 l mに記憶された情報を読 み出そうとした場合、 第 4 6図および第 4 7図の比較例では、 例えば記憶セル 5 0 l m + 1を通過する経路 Lを迪るような読出電流の回り込みが生じる。 なお、 実線で示した経路 Rが正規の電流経路である。 具体的には、 例えば、 センスアン プ回路 5 6 Bから読出ビット線 3 3 aへ流入した読出電流が、 本来、 読出対象と して選択されていない記憶セル 5 0 1 m + 1の積層体 S 2 0 aに流入し、 さらに 共有する環状磁性層 4を介して積層体 S 2 0 bを通過する。 こののち、 読出ビッ ト線 3 3 bをセンスアンプ回路 5 6 Bへ向かって逆流することによって 5 0 1 m の積層体 S 2 0 bに向かう読出電流と合流してしまうのである。
これに対し、 本実施の形態の磁気メモリデバイスでは、 一対のダイオード 7 5 a , 7 5 bが設けられた基体 3 1の上に、 積層体 S 2 0 bと環状磁性層 4と積層 体 S 2 0 aとが順に配設されるようにし、 一対の積層体 S 2 0 a, S 2 0 bを介 して一対のダイォ一ド 7 5 a , 7 5 bと環状磁性層 4とを電気的に接続するよう にした。 これにより、 一対の積層体 S 2 0 a , S 2 0 bに供給された読出電流の 各電流経路上における、 一対の読出ビット線 3 3 a , 3 3 bと一対の積層体 S 2 0 a , S 2 0 bとの間に、 一対のダイオード 7 5 a , 7 5 bをそれぞれ配置した 回路構成とすることができる。 よって、 読出対象ではない記憶セルからの不要な 電流の回り込みを遮断することができる。 すなわち、 読出信号に対する雑音を低 減することができ、 安定した磁気情報の読み出しが可能となる。
さらに、 本実施の形態の磁気メモリデバイスでは、 一対の読出ビット線 3 3 a, 3 3 bの各々から第 1および第 2の積層体 S 2 0 a , S 2 0 bの各々に読出電流 が供給し、 この一対の読出電流値の差分に基づいて磁気記憶セルから情報を読み 出すことができる。 これにより、 読出電流が差動出力されるので、 各々の読出ビ V卜線 3 3に生ずる雑音や、 各 T M R素子 1 a , 1 bごとの出力値に含まれるォ フセット成分が相殺されて除去される。
次に、 上記のような構成を有する本実施の形態の磁気メモリデバイスの製造方 法について説明する。
本実施の形態の磁気メモリデバイスの製造方法は、 ダイオード 7 5 a , 7 5 が設けられた基体 3 1の上に、 積層体 S 2 0 bの一部をなす稍層部分 2 0 bを形 成する工程と、 少なくとも積層部分 2 0 bを覆うように下部磁性層 4 Bを形成し、 積層体 S 2 0 bの形成を完了する工程と、 下部磁性層 4 Bの上に、 絶縁膜 7 Aを 介して書込ヮ一ド線 6を形成する工程と、 この書込ヮ一ド線 6の上に、 絶縁膜 7 Cを介して書込ビット線 5を、 書込ヮ一ド線 6と書込ビット線 5とが互いに平行 に延在する部分を含むように形成する工程と、 書込ビット線 5と、 絶縁膜 7 Cと、 書込ヮード線 6とを順次エッチングしてパターニングすることにより、 書込ヮー ド線 6と書込ビット線 5とが互いに平行に延在する部分を含む積層パターン 1 9 を形成する積層パターン形成工程と、 積層パターン 1 9を絶縁膜 7 D , 7 Eを介 して取り囲むように上部磁性層を設けることにより、 環状磁性層 4を形成するェ 程と、 環状磁性層 4の上の、 積層体 S 2 0 bに対応する位置に積層部分 2 0 aを 設けることにより積層体 S 2 0 aを形成し、 積層体 S 2 0 a , S 2 0 bを有する 記憶セル 1を形成する工程と積層体 S 20 aとダイォード 7 5 aとを電気的に接 続する工程とを含むものである。 以下、 具体的に説明する。
第 1 1図〜第 30図を参照して、 磁気メモリデバイスのうちの、 主に、 記憶セ ル 1の製造方法について、 詳細に説明する。 なお、 第 1 1図〜第 30図は、 第 7 図に対応した断面図であり、 その形成過程を表したものである。
まず、 第 1 1図に示したように、 一対のダイオード 75 a, 75 bを埋設した 基板 3 1を用意し、 このダイオード 7 5 bにおける導電層 36 bの上に積層部分 2 O bを形成する。 具体的には、 まず、 i線ステツパ等により、 積層部分 2 O b を形成する領域以外の領域を覆うように、 選択的にレジストパターンを形成する。 次に、 スパッ夕等により全面に亘つて、 例えば C o F e層からなる第 1磁性層 2 bとアルミニウム (A 1 ) 層とを順に形成する。 このアルミニウム層を酸化処理 することによりトンネルバリア層 3 bを得る。 さらに、 このトンネルバリア層 3 bの上に、 例えば C o F e層からなる第 2磁性層 8 bをスパッタ等により形成す る。 さらに積層部分 2 0 bの加工中における劣化を防止するために、 タンタル
(T a) 等よりなるキャップ層 (保護層) を設けるようにしてもよい。 次いで、 レジストパターンをリフトオフすることにより、 所定のパターン形状を有する第 1磁性層 2、 トンネルバリァ層 3および第 2磁性層 8からなる積層部分 20 bを 露出させる。
次に、 例えば TE〇 S (正珪酸四ェチル; S i (OC2 H5 ) ) を用いて、 C VD (Chemical Vapor Deposition ) 装置により全体を覆うように、 例えば、 酸 化シリコン ( S i 02 ) からなる絶縁膜 1 7 Aを形成する。 こののち、 例えば {!/%) X 1 06 A/mの磁界中で 2 5 0 °Cの温度下でァニールを行い、 第 1 磁性層 2 bの磁化方向を固定する。 ァニール後、 例えば CMP (Chemical Mechanical Polishing ) 装置により絶縁膜 1 7 Aの表面の平坦化をおこない、 積層部分 20 bの上面を露出される。 さらに、 逆スパッタリングなどにより積層 部分 20 bの上面の不純物を取り除いたのち、 少なくとも積層部分 20 bの上面 を覆うように下部磁性層 4 Bを選択的に形成する。 これにより、 下部磁性層 4 B の一部と積層部分 20 bとから構成される積層体 S 20 bの形成が一応、 完了す る。 この場合、 フォトリソグラフィ法を用いて選択的にレジストフレーム (図示 せず) を形成したのち、 スパッタ等により、 例えば N i F e層を未保護領域に形 成し、 さらにレジストフレームを除去する。
下部磁性層 4 Bを形成したのち、 第 1 2図に示したように、 C V D装置を用い て全体を覆うように、 例えば、 S i 02からなる絶縁膜 7 Aを形成する。 この絶 縁膜 7 Aが、 本発明の 「第 1の絶縁膜」 に対応する一具体例である。
続いて、 スパッ夕等により絶縁膜 7 Aの上に、 例えばチタン (T i ) からなる 金属層 (図示せず) を形成する。 こののち、 第 1 3図に示したように、 この金属 層上に、 少なくとも積層体 S 2 0 bの形成領域を覆うように選択的に書込ヮ一ド 線 6を形成する。 具体的には、 絶縁膜 7 Aの上の金属層に所定形状のレジス卜パ ターン (図示せず) を形成した後、 めっき層に浸潰して金属層を電極として利用 しためつき処理を行い、 例えば銅 (C u ) からなる書込ワード線 6を形成する。 レジストパターンを除去したのち、 イオンミリングにより不要な金属層を除去す る。
次に、 第 1 4図に示したように、 C V D装置を用いて全体を覆うように、 例え ば S i 02からなる絶縁膜 7 Bを形成したのち C M P装置により、 最終的に書 込ヮード線 6が露出するまで絶縁膜 7 Bを研磨し、 書込ヮ一ド線 6および絶縁膜 7 Bの表面の平坦化をおこなう。 ここで絶綠膜 7 Bが-, 本発明の 「第 2の絶縁 膜」 に対応する一具体例である。
続いて、 全体に亘つて、 例えば S ί〇2からなる絶縁膜 7 Cを形成したのち、 この絶縁膜 7 Cの上にスパッ夕等により、 例えばチタンからなる金属層を形成す る。 こののち、 第 1 5図に示したように、 この金属層の書込ワード線 6に対応す る領域を覆うように選択的に書込ビット線 5を形成する。 具体的には、 絶縁膜 7 Cの上に所定形状のレジストパターン (図示せず) を形成した後、 めっき層に浸 漬して金属層を電極として利用しためっき処理を行い、 例えば銅からなる書込ビ ット線 5を形成する。 レジストパターンを除去したのち、 イオンミリングにより 不要な金属層を除去する。
次に、 第 1 6図に示したように、 この書込ビット線 5をマスクとして、 自己整 合的に積層パターン 1 9を形成する。 具体的には、 反応性ガスとして C 4 F 8を 用いた R I E (反応性イオンエッチング) およびイオンミリングにより、 書込ビ ット線 5によって保護されていない領域の絶縁膜 7 C、 書込ワード線 6および絶 縁膜 7 Aを除去することにより積層パターン 1 9を形成する。 ここで、 下部磁性 層 4 Bが露出するまで絶縁膜 7 Aを除去することが重要である。
このように、 書込ビット線 5をマスクとして、 自己整合的に積層パターン 1 9 を形成することにより、 書込ビット線 5と同じ幅を有する書込ヮ一ド線 6を高精 度に形成することができる。 さらに、 レジストパターンの形成工程およびその除 去工'程等を省略することができ、 製造工程の簡略化を図ることができる。
書込ビット線 5および書込ワード線 6の平行部分 1 0における積層パターン 1 9を形成したのち、 第 1 7図に示したように、 C V D装置等を用いて全体を覆う ように S i 02などからなる絶縁膜 7 Dを形成する。
次いで、 第 1 8図に示したように、 イオンミリング等により、 積層パターン 1 9の側面部分に接するように形成された部分を除く絶縁膜 7 Dを完全に除去した のち、 全面に亘つて、 例えば N i F eをスパッタ等により、 金属層を薄く形成す る。 こののち第 1 9図に示したように、 下部磁性層 4 Bが形成されていない領域 に対応する金属層の上に、 フォトリソグラフィ等により、 フォトレジスト層 3 0 Aを形成する。
フォトレジスト層 3 0 Aを形成したのち-. めっき層に浸漬して金属層を電極と して利用しためっき処理を行い、 第 2 0図に示したように、 例えば N I F eから なる中間磁性層 4 Sを形成する。 次いで、 フォトレジスト層 3 0 Aを除去したの ち、 イオンミリングにより不要な金属層を除去する。 さらに、 第 2 1図に示した ように、 C V D装置等により全体を覆うように例えば S i 02からなる絶縁膜 1 7 Bを形成したのち、 C M P装置を用いて最終的に書込ビット線 5が露出するま で研磨し、 書込ビット線 5を含む平坦な面を形成する。
こののち、 第 2 2図に示したように、 フォトリソグラフィ等により、 書込ビッ ト線 5の平坦な露出面を覆うように選択的に絶縁膜 7 Eを形成する。 さらに、 例 えばスパッ夕等により金属層を薄く形成する。 こののち第 2 3図に示したように、 絶縁膜 1 7 Bに対応する領域の金属層の上に、 フォトリソグラフィ等により、 フ オトレジスト層 3 0 Bを形成する。 さらに、 めっき層に浸潰して金属層を電極と して利用しため.つき処理を行い、 例えば N i F eからなる上側磁性層 4 Uを形成 する。 これにより、 下部磁性層 4 Bと中間磁性層 4 Sと上側磁性層 4 Uとからな る環状磁性層 4の形成が完了する。 ここで、 中間磁性層 4 Sおよび上側磁性層 4 Uが本発明の 「上部磁性層」 に対応する一具体例である。
次いで、 第 2 4図に示したように、 フォトレジスト層 3 0 Bを除去することに より、 環状磁性層 4の一部をなす上側磁性層 4 Uが露出する。 続いて、 上側磁性 層 4 Uの上の、 積層体 S 2 0 bに対応する位置に積層部分 2 0 aを設けることに より積層体 S 2 0 aを形成する。 具体的には、 まず、 i線ステツパ等により、 積 層部分 2 0 aを形成する領域以外の領域を覆うように、 選択的にレジストパ夕一 ンを形成する。 次に、 スパッタ等により全面に亘つて、 例えば C o F e層からな る第 2磁性層 8 aとアルミニウム (A 1 ) 層とを順に形成する。 このアルミニゥ ム層を酸化処理することによりトンネルバリア層 3 aを得る。 さらに、 このトン ネルバリア層 3 aの上に、 例えば C o F e層からなる第 1磁性層 2 aをスパッタ 等により形成する。 こののち、 レジストパターンをリフトオフすることにより、 所定のパターン形状を有する第 1磁性層 2 a、 トンネルバリア層 3 aおよび第 2 磁性層 8 aからなる積層部分 2 0 aを露出させる D これにより、 上側磁性層 4 U の一部と積層部分 2 0 aとから構成される積層体 S 2 0 aの形成が一応、 完了す る。
続いて、 積層部分 2 0 aの上に選択的にフォトレジスト層 3 0 Cを形成したの ち、 第 2 5図に示したように、 例えば T E O Sを用いて、 C V D ( Chemi cal Vapor Depos i t i on ) 装置により全体を覆うように、 例えば、 酸化シリコン (S i〇2 ) からなる絶緣膜 1 7 Cを形成し、 さらに、 フォトレジスト層 3 0 Cをリ フ卜オフする。
次いで、 導電層 3 6 aと積層体 S 2 0 a とを電気的に接続する接続層 3 6 Tを 形成するため、 第 2 6図に示したように、 導電層 3 6 aに対応する領域の一部に ビアホール 3 0 H 1を形成する。 具体的には、 i線ステツパ等により、 ビアホー ル 3 O H 1を形成する領域以外の領域を覆うように選択的にレジストパターンを 形成したのち、 C 4 H8等の反応ガスを用いた R I Eにより、 積層方向に導電層 3 6 aに達するまでエッチングを行う。
ビアホール 3 0 H 1を形成する際のレジストパターンを除去したのち、 第 2 7 図に示したように、 導電層 3 6 aと積層体 S 2 0 aとを接続するように銅 (C u) からなる接続層 36 Tを形成する。 例えば、 絶縁膜 1 7 Cの上に所定形状の フォトレジスト層 30 Dを選択的に形成したのち、 Cu (1) へキサフロロァセ チルァセ卜ナト · トリメチルビニルシランを用いて、 CVD装置により接続層 3 6 Tの形成をおこなう。
接続層 36 Tを形成したのち、 第 28図に示したように、 例えば TEOSを用 いて、 CVD装置により、 例えば S i〇2からなる絶縁膜 1 7 Dを全面に亘つて 形成する。 こののち、 第 2 9図に示したように、 上側磁性層 4U (環状磁性層 4) と読出ワード線 32とを電気的に接続する接続層 32 Tを形成するため、 上 側磁性層 4 Uに対応する領域の一部にビアホール 30H 2を形成する。 具体的に は、 i線ステツパ等により、 ビアホール 30H 2を形成する領域以外の領域を覆 うように選択的にフォトレジスト層 30 Eを形成したのち、 C4 H8等の反応ガ スを用いた R I Eにより、 積層方向に上側磁性層 4 Uに達するまでエッチングを 行う。
ピアホール 30 H 2を形成する際のレジストパターンを除去したのち、 第 30 図に示したように、 上側磁性層 4 Uと読出ワード線 32とを接続するように銅か らなる接続層 32丁と、 読出ヮ一ド線 3 2とを形成する。 例えば., Cu (1) へ キサフロロァセチルァセトナト · トリメチルビニルシランを用いて、 CVD装置 により接続層 32 Tおよび読出ワード線 32の形成をおこなう。 さらに、 読出ヮ 一ド線 3 2を覆うように全面に亘つて、 例えば S i 02からなる絶縁膜 1 7 Eを 形成する
こののち、 書込ヮ一ド線 6の各両端末に書込ヮード線引出電極 41を形成し、 書込ビット線 5の各両端末に書込ビット線引出電極 42を形成し、 読出ヮード線 32の各両端末に読出ヮード線引出電極 43を形成し、 さらに読出ビット線 33 a, 33 bの各両端末に読出ビット線引出電極 44 a, 44 bを形成する。 以上により、 記憶セル 1を含む記憶セル群 54の形成が一応完了する。
こののち、 さらに、 スパッ夕装置や C VD装置等により S i〇2または酸化ァ ルミニゥム (A 1203 ) 等の保護層を形成する工程と、 その保護膜を研磨して 各引出電極 41〜44を露出させる工程とを経ることにより、 磁気メモリデバイ スの製造が完了する。
本実施の形態の製造方法によれば、 基体 3 1に埋設されたダイオード 7 5 bの 上に積層体 S 2 0 bの一部をなす積層部分 2 0 bを^成し、 この積層部分 2 0 b を覆うように環状磁性層 4を形成したのち、 環状磁性層 4の上の、 積層体 S 2 0 bに対応する位置に積層部分 2 0 aを設けることにより積層体 S 2 0 aを形成し、 さらにこの積層体 S 2 0 aとダイォード 7 5 aとを電気的に接続するようにした ので、 第 8図に示した回路構成に対応した磁気メモリデバイスを得ることができ る。 すなわち、 一対の読出ビット線 3 3 a , 3 3 bと一対の積層体 S 2 0 a, S
2 0 bとの間にそれぞれダイオード 7 5 a, 7 5 bを形成することができる。 こ のため、 センスアンプ回路 5 6 Bからの読出電流が、 各ダイオード 7 5 a, 7 5 bを介してそれぞれ積層体 S 2 0 a, S 2 O bを通過したのち、 一体となった環 状磁性層 4において合流して読出ヮ一ド線 3 2に流入することが可能であり、 正 規の電流経路以外への不要な回り込みを回避することができる磁気メモリデバイ スが得られる。
また、 第 8図に示した回路構成に対応させるための方法としては、 記憶セル 1 を形成した上にダイオード (整流素子) を形成することにより磁気メモリデバイ スを形成する方法も考えられるが , この場合にはダイオード (整流素子) を形成 する際の熱などにより T M R素子の積層体が破壊され、 その機能を失ってしまう ため、 実際に形成することは困難である。
加えて、 本実施の形態の製造方法によれば、 書込ビット線 5をマスクとして、 自己整合的に積層パターン 1 9を形成するようにしたので、 高精度な加工ができ ると共に、 レジストパターンの形成工程およびその除去工程等を省略することが でき、 全体として製造工程の簡略化を図ることができる。
[第 2の実施の形態]
次に、 第 3 1図〜第 3 5 A図および第 3 5 B図を参照して、 本発明の第 2の実 施の形態の磁気メモリデバイスについて説明する。
第 3 1図は、 本実施の形態の磁気メモリデバイスにおける記憶セル 1 Hの断面構 成を表すものであり、 上記第 1の実施の形態における第 5図に対応している。 第
3 2図は、 記憶セル 1 Hの拡大斜視図であり、 第 4図に対応する。 第 3 3図は、 本変形例の磁気メモリデバイスにおける平面構成をあらわすものであり、 第 3図 に対応する。 第 3 1図〜第 3 3図では、 第 3図〜第 5図に示した構成要素と実質 的に同一の部分には同一の符号を付している。
なお、 以下の説明では、 本実施の形態の磁気メモリデバイスの構成について、 主に、 上記第 1の実施の形態と異なる点について説明し、 他の説明は適宜省略す る。
上記第 1の実施の形態の記憶セル 1 Pでは、 書込ワード線 6および書込ビット 線 5を、 環状磁性層 4を貫く領域において積層体 S 2 0 aと積層体 S 2 0 bとを 通る直線において互いに隣り合うように配列するようにした。 これに対し、 本変 形例の記憶セル 1 Hでは第 3 1図, 第 3 2図および第 3 4図に示したように、 書 込ワード線 6および書込ビット線 5を、 環状磁性層 4を貫く領域において積層体 S 2 0 aと積層体 S 2 0 bとを通る直線と直交する方向において互いに隣り合う ように配列するようにした。 但し、 書込ピット線 5と書込ヮード線 6とは、 互い に電気的に絶縁する必要がある。 したがって、 第 3 2図に示したように、 書込ヮ ード線 6は、 X Y平面内においてだけでなく Z方向にも屈曲している。 具体的に は、 書込ヮ一ド線 6は、 書込ビット線 5と共に Y方向に沿って環状磁性層 4を貫 く下部書込ヮード線 6 Bと、 書込ビッ卜線 5および下部書込ヮード線 6 Bを含む X Y平面内とは異なる X Y平面内において X方向に延在する上部書込ヮード線 6 Uと、 これら上部および下部害込ヮ一ド線 6 U , 6 Bを接続する接続部分 6 Tと から構成されている。 なお、 この場合、 上述したように書込ワード線 6を屈曲さ せるだけでなく、 書込ビット線 5を屈曲させるようにしてもよい。
記憶セル 1 Hは、 環状磁性層 4を貫く書込ヮード線 6および書込ビット線 5の 配列方向に対する積層体 S 2 0 a , S 2 0 bの配設位置が異なる点を除き、 記憶 セル 1 Pと同様のコンパクトな構成を備えている。 したがって、 記憶セル 1 Hで は、 記憶セル 1 Pと同様の書込および読出動作が可能である。
ここで、 第 2図および第 3 5 A図および第 3 5 B図を参照して、 本実施の形態 の記憶セル 1 Hにおける書込動作について説明する。 第 3 5 A図および第 3 5 B 図は、 第 3 1図に示した記憶セル 1 Hの断面構成における書込電流方向と還流磁 界方向 (磁化方向) との関係を表すものであり、 上記第 1の実施の形態における 第 9 A図, 第 9 B図に対応するものである。
第 3 5 A図は、 記憶セル 1 Hを通過する互いに平行な書込ビット線 5および書 込ワード線 6に、 互いに同一な方向に書込電流が流れる場合を示し、 第 2図に示 した書込電流方向に対応する。 第 2 5 A図は、 記憶セル 1 Hにおいて紙面に垂直 な方向に奥から手前へ向かって (—Y方向へ) 書込電流が流れ、 書込ビット線 5 を取り囲む部分の環状磁性層 4の内部を反時計回り方向に還流磁界 ·3 4が発生す る場合を示している。 この場合は、 接続部分 1 4 aおよび第 2磁性層 8 aの磁化 方向が一 X方向となり、 接続部分 1 4 bおよび第 2磁性層 8 bの磁化方向が + X 方向となる。 一方、 第 3 5 B図は、 記憶セル 1 Hにおいて紙面に垂直な方向に手 前から奥へ向かって (+ Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を時計 回り方向に還流磁界 3 4が発生する場合を示している。 この場合は、 接続部分 1 4 aおよび第 2磁性層 8 aの磁化方向が + X方向となり、 接続部分 1 4 bおよび 第 2磁性層 8 bの磁化方向が— X方向となる。
第 3 5 A図, 第 3 5 B図から明らかなように、 環状磁性層 4を貫く書込ピット 線 5および書込ヮ一ド線 6の双方を流れる電流により生ずる還流磁界 3 4の方向 に従い、 一対の T M R素子 1 a , 1 bにおける第 2磁性層 8 a, 8 bの磁化方向 が互いに反対方向となるように変化するので、 これを利用することにより記憶セ ル 1 Hに 「0」 または 「1」 の 2値情報を記憶することができる。
このように、 本実施の形態においても、 上述した本実施の形態と同様の効果が 得られる。
[第 3の実施の形態]
次に、 第 3 6 A図を参照して、 本発明の第 3の実施の形態の磁気メモリデバイ スについて説明する。
第 3 6 A図は、 本実施の形態の磁気メモリデバイスにおける記憶セル 1 2 1 P の断面構成を表すものであり、 上記第 1の実施の形態における第 5図に対応して いる。 第 3 6 A図では、 第 5図に示した構成要素と実質的に同一の部分には同一 の符号を付している。
なお、 以下の説明では、 本実施の形態の磁気メモリデバイスの構成およびその 製造方法について、 主に、 上記第 1の実施の形態と異なる点について説明し、 他 の説明は適宜省略する。
上記第 1の実施の形態の磁気メモリデバイスにおける記憶セル 1は、 感磁層が、 互いに磁気的に交換結合するように構成された接続部分 1 4 a, 1 4 bおよび第 2磁性層 8 a, 8 bからなり、 接続部分 1 4 a, 1 4 bが環状磁性層 4のうちの 一部分を構成するようにしたものである。 これに対し本実施の形態の磁気メモリ デバイスにおける記憶セル 1 2 1 Pは、 第 3 6 A図に示したように、 感磁層が、 環状磁性層 4のうちの一部分を構成するようにしたものである。
具体的には、 接続部分 84 a, 84 bが環状磁性層 4における感磁部分である と共に、 積層体 S 2 l a, S 2 1 bにおける感磁部分としても機能することによ り第 2磁性層 8 a, 8 bを省くことができ、 記憶セル 1よりも簡素な構成の記憶 セル 1 2 1 Pとすることができる。 ここで、 接続部分 84 a, 84 bが本発明に おける 「感磁層」 に対応する一具体例である。
但し、 この場合には、 第 1磁性層 2 a, 2 bおよび接続部分 84 a, 84 bの 磁化容易軸が、 互いに平行であることが望ましい。 第 1磁性層 2 a, 2 bと接続 部分 8 4 a, 84 bとの磁化方向が.. 互いに平行または反平行の状態で安定とな るようにするためである。 環状磁性層 4は、 例えば、 ニッケル鉄合金 (N i F e ) からなり、 接続部分 84 a, 84 bにおける断面方向の厚みが例えば 2 0 n mである。 さらに接続部分 8 4 a , 8 4 bの保磁力は、 ( 5 0 /' 4 π ) X 1 03 AZm以上 (1 0 0 4 π) X 1 03 A/m以下の範囲であり、 かつ、 第 1磁性 層 2の保磁力よりも小さくなるように構成されていることが望ましい。 ( 5 0/ 4 κ) X 1 03 A/m未満の保磁力では、 接続部分 84 a, 8 4 bにおける磁化 方向が外部 g乱磁界等の不要な磁界により乱されることがあるからである。 一方、 ( 1 0 0/4 π) X 1 03 AZmを越えるような保磁力では、 書込電流の増大に 起因する発熱により、 TMR素子 2 0自体の劣化が生じてしまう可能性があるか らである。 さらに、 接続部分 84 a, 84 bの保磁力が、 第 1磁性層 2 a, 2 b の保磁力と同等以上となると、 書込電流が増大して磁化固定層としての第 1磁性 層 2 a, 2 bの磁化方向を変化させてしまい、 記憶素子としての TMR素子 1 2 l a, 1 2 1 bにおける機能の劣化を招くからである。
また、 記憶セル 1 2 1 Pでは、 接続部分 8 4 a, 8 4 bが情報を記憶する記憶 層として機能する。 すなわち、 書込ビット線 5と書込ワード線 6とを流れる書込 電流によって生ずる還流磁界によって接続部分 8 4 a , 8 4 bの磁化方向が反転 され、 情報の記憶がなされる。 以下、 記憶セル 1 2 1における書込動作について 具体的に説明する。
第 3 6 A図は、 T M R素子 1 2 1 a, 1 2 1 bを通過する互いに平行な書込ビ ット線 5および書込ワード線 6に、 互いに同一な方向に書込電流が^!れる場合を 示す。 第 3 6 A図は、 T M R素子 1 2 1 a, 1 2 1 bにおいて紙面に垂直な方向 に手前から奥へ向かって (+ Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を 反時計回り方向に還流磁界 3 4が発生する場合を示している。 この場合は、 接続 部分 8 4 aの磁化方向が— X方向となり、 接続部分 8 4 bの磁化方向が + X方向 となる。 一方、 図示しないが、 これとは逆に、 紙面に垂直な方向に奥から手前へ 向かって (一 Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を時計回り方向に 還流磁界 3 4が発生する場合には、 接続部分 8 4 aの磁化方向が + X方向となり、 接続部分 8 4 bの磁化方向が一 X方向となる。
このように書込ピット線 5および書込ワード線 6に、 同一方向に電流が流れる と、 接続部分 8 4 a, 8 4 bの磁化方向は互いに反平行となり、 0または 1を記' 録することができる。
以上のように、 本実施の形態の磁気メモリデバイスによれば、 接続部分 8 4 a, 8 4 bが環状磁性層 4における感磁部分であると共に、 積層体 S 2 1 a, S 2 1 bにおける感磁部分としても機能するようにした。 このため、 第 2磁性層 8を省 くことができ、 より簡素な構成の記憶セル 1 2 1を構成することができる。
[第 4の実施の形態]
次に、 第 3 6 B図を参照して、 本発明の第 4の実施の形態の磁気メモリデバイ スについて説明する。
第 3 6 B図は、 本実施の形態の磁気メモリデバイスにおける記憶セル 1 2 1 H の断面構成を表すものである。 第 3 6 B図では、 上記第 3の実施の形態として説 明した第 3 6 A図に示した構成要素と実質的に同一の部分には同一の符号を付し ている。
なお、 以下の説明では、 本実施の形態の磁気メモリデバイスの構成について、 上記第 3の実施の形態と異なる点について説明し、 他の説明は適宜省略する。 上記第 3の実施の形態の記憶セル 1 2 1 Pでは、 書込ワード線 6および書込ビ ット線 5を、 環状磁性層 4を貫く領域において積層体 S 2 1 aと積層体 S 2 1 b とを通る直線において互いに隣り合うように配列するようにした。 これに対し、 本実施の形態の記憶セル 1 2 1 Hでは第 3 6 B図に示したように、 書込ワード線 6および書込ビット線 5を、 環状磁性層 4を貫く領域において積層体 S 2 1 aと 積層体 S 2 1 bとを通る直線と直交する方向において互いに隣り合うように配列 するようにした。
第 3 6 B図から明らかなように、 環状磁性層 4を貫く書込ビット線 5および書 込ワード線 6の双方を流れる電流により生ずる還流磁界 3 4の方向に従い、 一対 の T M R素子 1 2 1 a, 1 2 1 bにおける第 2磁性層 8 a, 8 bの磁化方向が互 いに反対方向となるように変化するので、 これを利用することにより記憶セル 1 2 1 Hに 「0」 または 「1」 の 2値情報を記憶することができる。
このように、 本実施の形態においても、 上記第 3の実施の形態と同様の効果が 得られる。
[第 1〜第 4の実施の形態の変形例]
続いて、 第 3 7 A図〜第 4 0図を参照して、 上記第 1〜第 4の実施の形態の変 形例としての磁気メモリデバイスにおける磁気記憶セルについて以下に説明する。 <変形例 1 >
第 3 7 A図は、 第 1の実施の形態の変形例 (変形例 1 ) としての記憶セル 1 2 2 Pの断面構成を表すものであり、 第 9 A図に対応している。 第 3 7 A図では、 第 9 A図に示した構成要素と実質的に同一の部分には同一の符号を付している。 上記第 1の実施の形態の磁気メモリデバイスにおける記憶セル 1 ( 1 P ) は、 感磁層が環状磁性層 4のうちの一部分を構成する接続部分 1 4 a, 1 4 bと、 第 2磁性層 8 a , 8 bとからなり、 接続部分 1 4 a , 1 4 bと第 2磁性層 8 a, 8 bとがそれぞれ互いに磁気的に交換結合するように構成したものである。 これに 対し、 本変形例の記憶セル 1 2 2 Pは、 第 3 7 A図に示したように、 記憶セル 1 ( 1 P ) の構成に加えて、 感磁層が、 さらに接続部分 1 4 a , 1 4 bと第 2磁性 層 8 a , 8 bとの間に、 これら接続部分 1 4 a , 1 4 bと第 2磁性層 8 a, 8 b とをそれぞれ反強磁性結合させるための非磁性導電層 9を有するようにしたもの である。 具体的には、 記憶セル 1 22 Pは一対の TMR素子 1 22 a, 1 22 b からなり、 TMR素子 1 22 aは積層体 S 22 aを、 . TMR素子 122 bは積層 体 S 22 bをそれぞれ有している。 一対の積層体 S 22 a, S 22 bは積層部分 22 a, 22 bと接続部分 14 a, 14 bとからなり、 積層部分 22 a , 22 b は、 環状磁性層 4の側から順に非磁性導電層 9 a, 9 bと、 第 2磁性層 8 a, 8 bと、 トンネルバリア層 3 a, 3 bと、 第 1磁性層 2 a, 2 bとを有している。 この非磁性導電層 9 a, 9 bは、 例えば、 ルテニウム (Ru) や銅 (Cu) など により構成される。 ここで、 非磁性導電層 9 a, 9 bが、 本発明の 「第 1の非磁 性導電層」 に対応する一具体例である。
本変形例の記憶セル 122 Pでは、 接続部分 14 a, 14 bと第 2磁性層 8 a, 8 bとがそれぞれ反強磁性結合することにより、 接続部分 14 a, 14 bの保磁 力が (5 0 / 47Γ) X 1 03 A/m未満であっても、 接続部分 14 a, 1 4 bに おける磁化方向が外部憂乱磁界等の不要な磁界により乱されるといった問題が生 じなくなり、 例えば、 鉄 (F e ) 、 N i F e、 C o F e、 N i F e C oおよびコ バルト (C o) 等により環状磁性層 4を構成することができる。
第 2磁性層 8 a, 8 bは、 記録を保持する部分となり、 反強磁性結合による異 方性磁界により安定化される。 第 2磁性層 8 a, 8 bの保磁力は、 (1 00/4 π) X 1 03 AZm以下の範囲であり、 第 1磁性層 2 a, 2 bの保磁力よりも小 さくなるように構成されていることが望ましい。
続いて、 記憶セル 1 22 Pにおける書込動作について説明する。
'第 3 7 A図は、 記憶セル 1 22 Pを通過する互いに平行な書込ピット線 5およ び書込ヮード線 6に、 互いに同一な方向に書込電流が流れる場合に対応している。 すなわち、 TMR素子 1 22 aにおいて紙面に垂直な方向に手前から奥へ向かつ て (+ Y方向へ) 書込電流が流れ、 環状磁性層 4の内部を反時計回り方向に還流 磁界 34が発生する場合を示している。 この場合は、 第 2磁性層 8 aの磁化方向 が +X方向となり、 第 2磁性層 8 bの磁化方向が— X方向となる。 一方、 これと は逆に TMR素子 1 2 2 aにおいて紙面に垂直な方向に奥から手前へ向かって (一 Y方向へ) 書込電流が流れ、 時計回り方向に還流磁界 34が発生する場合は、 第 2磁性層 8 aの磁化方向が— X方向となり、 第 2磁性層 8 bの磁化方向が +X 方向となる。 このように書込ビット線 5および書込ワード線 6に、 同一方向に電 流が流れると、 第 2磁性層 8の磁化方向は互いに反平行となり、 0または 1を記 録することができる。
以上のように、 変形例 1としての記憶セル 1 22 Pは、 上記第 1実施の形態の 構成に加え、 さらに、 環状磁性層 4の接続部分 14 a, 14 bと第 ·2磁性層 8 a, 8 bとの間にそれぞれ非磁性導電層 9 a, 9 bを有するようにした。 こうするこ とにより、 接続部分 14 a, 14 bと第 2磁性層 8 a, 8 bとが強力な反強磁性 結合を形成す'ることができるので、 外部憂乱磁界等による不要な磁界により感磁 層としての接続部分 14 a, 14 bおよび第 2磁性層 8 a, 8 bの磁化方向が乱 されることなくより安定する。 これに加え、 上記構成により接続部分 14 a, 1 4 bの保磁力をより小さく抑えることができる。 したがって、 書込動作時におい て電流値を小さくすることによつて発熱量を低減することが可能なうえ、 接続部 分 14 a, 14 bに含まれる金属元素等が第 2磁性層 8 a, 8 bへ拡散して移動 するのを、 非磁性導電層 9 a, 9 bを設けることにより遮蔽することができるの で、 熱的安定性が向土する。 これらの結果、 より安定した書込が可能となる。 ぐ変形例 2 >
上記第 2の実施の形態の磁気メモリデバイスにおける記憶セル 1 ( 1 H) の変 形例 (変形例 2) として、 第 37 B図に記憶セル 1 22 Hの断面構成を示す。 記 憶セル 1 22Hは、 第 3 7 B図に示したように、 記憶セル 1 ( 1 H) の構成に加 えて、 感磁層が、 さらに接続部分 14 a, 14 bと第 2磁性層 8 a, 8 bとの間 に、 これら接続部分 14 a, 14 bと第 2磁性層 8 a, 8 bとをそれぞれ反強磁 性結合させるための非磁性導電層 9を有するようにしたものである。
記憶セル 1 22Hは、 上記変形例 1と同様に接続部分 14 a, 14 bと第 2磁 性層 8 a, 8 bとが強力な反強磁性結合を形成するので、 結果的に、 より安定し た書込が可能となる。
<変形例 3, 4>
第 38 A図は、 第 3の実施の形態の変形例 (変形例 3) としての記憶セル 1 2 3 Pの断面構成を表すものであり、 第 36 A図に対応している。 また、 第 38 B 図は、 第 4の実施の形態の変形例 (変形例 4) としての記憶セル 12 3Hの断面 構成を表すものであり、 第 36 B図に対応している。
上記第 3および第 4の実施の形態における記憶セル 1 2 1 P, 1 2 1Hに含ま れる積層体 S 2 l a, S 2 1 bは、 接続部分 84 a, 84 bよりも大きな保磁力 を有する第 1磁性層 2 a, 2 bを備えた保磁力差型とよばれる構造である。 これ に対し、 第 38 A図, 第 38 B図に示した記憶セル 1 23 P, 1 2·3Ηにおける 積層体 S 2 3 a, S 23 bは、 反強磁性層との交換結合により第 1磁性層 2 a , 2 bの磁化方向を固定する交換バイアス型とよばれる構造を呈している。
具体的にば、 積層体 S 23 a, S 2 3 bは、 環状磁性層 4の側から順にトンネ ルバリア層 3 a, 3 bと、 第 1磁性層 2 a, 2 bと、 第 3磁性層 1 5 a , 1 5 b とを有している。 第 3磁性層 1 5 a, 1 5 bは、 反強磁性を有しており、 第 1磁 性層 2 a, 2 bと交換相互作用により第 1磁性層 2 a, 2 bの磁化方向を固定す るように機能し、 例えば、 白金マンガン合金 (P tMn) 、 ィリジゥムマンガン 合金 ( I r Mn) 、 鉄マンガン (F e Mn) 、 ニッケルマンガン (N i Mn) ま たはルテニウムマンガン (RuMn) 等の反強磁性材料により構成される。
このように、 変形例 3および変形例 4では、 積層体 S 23 a, S 23 bが、 上 記第 2または第 3の実施の形態の構成に加え、 さらに、 第 1磁性層 2 a, 2 bの トンネルバリア層 3とは反対側に、 第 1磁性層 2 a, 2 bと交換結合した反強磁 性の第 3磁性層 1 5 a, 1 5 bを配設するようにした。 こうすることにより、 第 1磁性層 2 a, 2 bの磁化方向をより安定して固定できるので、 第 1磁性層 2 a, 2 bの保磁力を ( 50 / 4 π ) X 1 03 AZm未満にした場合であっても、 接続 部分 84 a, 84 bにおける磁化方向が外部憂乱磁界等の不要な磁界により乱さ れることがなく、 より安定した書込が可能となる。
<変形例 5, 6>
次に、 第 39 A図および第 39 B図を参照して、 上記第 3および第 4の実施の 形態における他の変形例 (変形例 5, 6) について説明する。
第 39 A図は、 第 3の実施の形態の他の変形例 (変形例 5) としての記憶セル 1 24 Pの断面構成を表すものであり、 第 38 A図に類似した構成をなしている。 一方、 第 39 B図は、 第 4の実施の形態の他の変形例 (変形例 6) としての記憶 セル 1 24 Hの断面構成を表すものであり、 第 38 B図に類似した構成をなして いる。 第 39A図, 第 39 B図では、 第 38A図, 第 38 B図に示した構成要素 と実質的に同一の部分には同一の符号を付している。 .
上記変形例 3および変形例 4と同様に、 第 39 A図に示した変形例 5 , 6の記 憶セル 1 24 P, 1 24Hにおける積層体 S 24 a, S 24 bは、 反強磁性層と の交換結合により第 1磁性層 2 a, 2 bの磁化方向を固定する交換バイアス型と よばれる構造を呈している。 但し、 記憶セル 1 24 P, 124Hは、 記憶セル 1 23 P, 1 23Hとは異なり、 単層の磁化固定層ではなく複数層からなるシンセ ティック磁化固定層 (以下、 S yAP層という。 ) を備えるものである。
具体的には、 積層体 S 24 a, S 24 bは、 環状磁性層 4の側から順にトンネ ルバリア層 3 a, 3 bと、 S yAP層 3 5 a, 3 5 bと、 反強磁性の第 3磁性層
1 5 a, 1 5 bとを有している。 S yAP層 3 5 a, 3 5 bは、 環状磁性層 4の 側から順に第 1磁性層 2 a, 2 bと、 非磁性導電層 1 6 a, 1 6 bと、 第 4磁性 層 1 8 a, 1 8 bとが積層された構造となっている。 非磁性導電層 1 6 a, 1 6 bは、 例えば、 銅により構成される。 第 4磁性層 1 8 a, 1 8 bは、 例えば、 鉄
(F e ) 、 N i F e、 C o F e、 N i F e C oまたはコバルト (C o) 等により 構成され、 第 1磁性層 2 a, 2 bと反強磁性結合している。 ここで、 非磁性導電 層 1 6 a, 1 6 bは、 本発明における 「第 2の非磁性導電層」 に対応する一具体 例である。
以上のように、 変形例 5, 6では、 積層体 S 24 a, S 24 bが、 それぞれ、 第 1磁性層 2 a, 2 bのトンネルバリア層 3とは反対側に、 非磁性導電層 1 6 a,
1 6 bと、 第 4磁性層 1 8 a, 1 8 bと、 第 3磁性層 1 5 a, 1 5 bとを順に積 層された構造を有するようにした。 こうすることにより、 互いに反強磁性結合し た第 4磁性層 1 8 a, 1 8 bと第 1磁性層 2 a, 2 bとによって発生する静磁界 が閉磁路を形成するので、 感磁層としての接続部分 14 a, 14 bへの磁界の回 り込みを抑制することができると共に、 磁化固定層としての第 1磁性層 2 a, 2 bの磁化方向がより安定する。 よって、 より安定した書込動作が可能となる。
<変形例 7, 8〉
次に、 第 40 A図および第 40 B図を参照して、 上記第 1および第 2の実施の 形態における他の変形例 (変形例 7, 8) について説明する。
第 4 OA図は、 第 1の実施の形態の他の変形例 (変形例 7) としての記憶セル 1 2 5 Pの断面構成を表すものであり、 第 40 B図は、 第 2の実施の形態の他の 変形例 (変形例 8) としての記憶セル 1 2 5Hの断面構成を表すものである。 第 40 A図, 第 40 B図に示したように、 変形例 7, 8の記憶セル 1 2 5 P, 1 25 Hにおける積層体 S 2 5 a, S 2 5 bは、 交換バイアス型とよばれる構造 を有すると共に、 3 八?層3 5 &, 3 5 bを備えている。 こうすることにより、 互いに反強磁性結合した第 4磁性層 1 8 a, 1 8 bと第 1磁性層 2 a, 2 bとに よって発生する静磁界が閉磁路を形成するので、 第 1の感磁部分としての接続部 分 14 a, 14 bおよび第 2の感磁部分としての第 2磁性層 8 a, 8 bへの磁界 の回り込みを抑制することができると共に、 磁化固定層としての第 1磁性層 2 a, 2 bの磁化方向がより安定する。 よって、 より安定した書込動作が可能となる。 さらに、 本実施の形態における具体的な実施例について説明する。
本実施例では、 上記第 1の実施の形態において説明した製造方法に基づき、 以 下の磁気メモリデバイスのサンプルを 2つ作成した。 具体的には、 いずれも第 5 図に示した断面構造を有する記憶セル 1をマトリクス状に複数個、 設けた磁気メ モリデバイスであり、 これらを試料 1 , 2とする。
上記の試料 1および試料 2の磁気メモリデバイスについて、 MR比、 TMR素 子抵抗、 スイッチング電流および隣接セル反転電流について測定を行った。 MR 比および TMR素子抵抗は、 記憶セルにおける一対の T M R素子の平均値を測定 値とした。 スイッチング電流および隣接セル反転電流については、 書込ビット線 5および書込ワード線 6に、 同一の大きさの書込電流を同時に流すようにして電 流値を測定した。 この結果を、 表 1に示す。 表 1における実施例 1が試料 1に対 応し実施例 2が試料 2に対応する結果である。 なお、 数値の比較のため、 第 44 図に示した構造からなる記憶セルについても同様の測定をおこない、 比較例とし て表 1に併記した。 なお、 測定時の印加磁場は (500 4 ττ) X 1 03 A/m とした。 第 44図に示した比較例としての記憶セルは、 1つの TMR素子 1 20 を備えており、 書込ビット線 1 05および書込ヮ一ド線 1 0 6を囲うような環状 磁性層は全く備えていないものである。 表 1に示したように、 本実施例 1 , 2と比較例とでは、 M R比および T M R素 子抵抗においては大差が見られなかったものの、 スイッチング電流および隣接セ ル反転電流について、 明らかな有意差が確認できた。.
スィツチング電流とは、 書込対象の記憶セルにおける磁化方向の反転をおこな うために必要な最小限の電流値である。 このスイッチング電流については、 実施 例 1 , 2が、 共に比較例を下回る値を示す結果となった。 これは、 効率よく感磁 層の磁化反転を行うことができたので、 小さな電流であっても書き込み操作が可 能となったことを示す。 すなわち、 隣り合う T M R素子が、 環状磁性層の一部を 互いに共有することによって、 小さな電流であっても大きな還流磁界を形成でき ることが確認できた。
隣接セル反転電流とは、 書込対象の記憶セルと隣接した記憶セルに印加された 電流によって、 本来、 書込がなされるべきでない記憶セルの磁化方向が反転して しまう電流値を表す。 表 1に示したように、 実施例 1 , 2では、 比較例よりも大 きな書込電流を印加しても、 隣接する記憶セルにおける磁化方向は反転しないこ とがわかった。 これは、 閉じた磁路を形成し、 隣接する記憶セルに悪影響を及ぼ す磁界の発生を抑制することができたことを示す。
以上、 いくつかの実施の形態および変形例を挙げて本発明を説明したが、 本発 明は これらの実施の形態および変形例に限定されず、 種々変形可能である。 例えば、 本実施の形態および各変形例では、 逆流防止用の整流素子としてショッ トキ一ダイォ一ド 7 5を用いるようにしたが、 同じく整流作用を有する素子であ るバイポーラトランジスタに置き換えることができる。
第 4 1図は、 読出ビット線 3 3 a, 3 3 bと積層体 S 2 0 a , S 2 0 bとの間 にバイポーラトランジスタ 7 6 a, 7 6 bを設けた場合の回路の要部構成を表し ている。 第 4 2図に、 バイポーラトランジスタ 7 6 a, 7 6 bの断面構造を示す。 バイポーラトランジスタ 7 6 a , 7 6 bのべ一ス Bは、 ワードデコード線 7 2に 接続されている。 各コレクタ Cが接続層 2 8を介してそれぞれ読出ビット線 3 3 a , 3 3 bに接続されており、 各ェミッタ Eが接続層 2 7を介してそれぞれ積層 体 S 2 0 a , S 2 0 bに接続されている。
第 4 3図は、 このバイポーラトランジスタ 7 6 a , 7 6 bを設けた場合におけ る読出回路の全体を示したものである。 この場合、 Y方向アドレスデコーダ回路 5 6 Aからの制御信号が例えば単位読出回路 8 0 nのセンスアンプ回路 5 6 Bに 伝達されると、 センスアンプ回路 5 6 Bが読出ピッ卜線 3 3 a , 3 3 bを通るよ うに読出電流を発する。 Y方向アドレスデコーダ回路 5 6 Aからの制御信号は同 時に読出スィツチ 8 3 nにも伝達され、 この読出スィツチ 8 3 nが導通状態とな る。 一方、 X方向アドレスデコーダ回路 5 8 Aが記憶セル l mを選択し、 ワード デコ一ド線 7 2 mを通るように制御信号を発する。 バイポーラトランジスタ 7 6 a , 7 6 bのそれぞれのベース Bに X方向ァドレスデコーダ回路 5 8 Aからの制 御信号が伝達されると、 コレクタ Cとエミッタ Eとの間がそれぞれ導通状態とな る。 この結果、 読出電流が、 記憶セル 1 mの各積層体 S 2 0 a , S 2 0 bを通過 し、 読出スィッチ 8 3 nを経由して最終的に定電流回路 5 8 Bへ流入する。 ダイ オード 7 5と同様にバイポーラトランジスタ 7 6も、 一方向に電流を通過するよ うに機能するので、 第 4 6図に示したような読出電流の回り込みを回避すること が可能である。
また、 逆流防止用の整流素子として、 第 4 4図に示したように、 M O S 卜ラン ジス夕 7 7 a , 7 7 bを用いることができる。 この場合、 各ソース Sがそれぞれ 読出ビット線 3 3 a , 3 3 bに接続し、 各ドレイン Dがそれぞれ T M R膜 2 0 a, 2 0 bに接続しており、 ワードデコード線 7 2に接続されたゲート Gが閉じるこ とにより導通状態とすることができる。 第 4 5図は、 M O S卜ランジス夕 7 7 a , 7 7 を設けた場合における読出回路の全体を示したものである。 ゲート Gを閉 じることによって導通状態とする点を除き、 第 4 5図に示した読出回路における 読出動作は上記バイポーラトランジスタ 7 6を用いた回路 (第 4 3図) と同様で ある。
また、 本実施の形態では、 書込ビット線 5と書込ワード線 6とが互いに平行部 分 1 0をなす場合について説明したが、 これに限定されず、 互いに例えば 9 0 ° をなすような場合であってもよい。 ただし、 平行部分 1 0を取り囲むように環状 磁性層 4を形成する場合のほうが、 感磁層の磁化反転がより効率的に行われるの でより好ましい。
また、 本実施の形態では、 各記憶セル 1の情報の読み出しを、 T M R素子 l a , 1 bそれぞれに流す読出電流の差分値を出力として行うようにしたが、 これに限 定されない。 例えば、 ある 1つの T M R素子を通過する読出電流の値をそのまま 出力させ、 高抵抗状態にあるか低抵抗状態にあるかの検出をおこなうようにして もよい。
以上説明したように、 本発明の磁気記憶セルまたは磁気メモリデバイスによれ ば、 外部磁界によって磁化方向が変化する感磁層を含み、 積層面に垂直な方向に 電流が流れるようにそれぞれ構成され、 互いに積層面が対向するように配置され た第 1および第 2の積層体と、 これら第 1および第 2の積層体におけるそれぞれ の一方の面側-に、 積層面に沿った方向を軸方向とするように共通に配設されると 共に、 軸方向に沿って複数の導線 (第 1および第 2の書込線) によって貫かれる ように構成された環状磁性層とを備えるようにしたので、 複数の導線 (第 1およ び第 2の書込線) に電流を流すことによって閉磁路を形成することができ、 第 1 および第 2の積層体における各感磁層の磁化反転を効率的に行うことができる。 特に、 複数の磁気記憶セルを含む本発明の磁気メモリデバイスにおいては、 書込 対象とする記憶セルに隣接した記憶セルに対して与える磁気的な影響を低減する ことができる。
特に、 第 1の積層体が、 環状磁性層と共に第 1の磁気抵抗効果素子を構成し、 第 2の積層体が、 環状磁性層と共に第 2の磁気抵抗効果素子を構成するようにし た場合には、 環状磁性層を共有化した一対の磁気抵抗効果素子が構成されるので、 1つの積層体に対して 1つの環状磁性層を設ける場合よりもコンパクトな構成と することができ、 高密度化が可能となる。
さらに、 本発明の磁気記憶セルおよび磁気メモリデバイスによれば、 特に、 複 数の書込線 (第 1および第 2の書込線) が、 環状磁性層を貫く領域において互い に平行に延びるようにした場合には、 複数の導線 (第 1および第 2の書込線) に 電流を流すことによって感磁層に生じる合成磁界を、 これらの導線が互いに交差 する場合よりも大きくすることができ、 感磁層における磁化反転をより効率的に 行うことができる。 その結果、 磁化反転に必要とされる書込電流をより小さくす ることができる。 さらに、 感磁層における複数の磁区の磁化方向を全体に亘つて 良好に揃えることができるので、 より高い信頼性が得られる。 また、 本発明の磁気メモリデバイスによれば、 特に、 第 1および第 2の磁気抵 抗効果素子に供給された読出電流の各電流経路上における、 一対の第 1の読出線 と第 1および第 2の磁気抵抗効果素子との間にそれぞれ設けられた第 1および第 2の整流素子と、 第 1および第 2の磁気抵抗効果素子を流れた読出電流を接地へ と導く第 2の読出線とを備えるようにした場合には、 読出電流の回り込みによる 変動、 すなわち読出信号に対する雑音を低減することができ、 安定した磁気情報 の読み出しが可能となる。
本発明の磁気メモリデバイスの製造方法によれば、 第 1および第 2の整流素子 が設けられた基体の上に、 第 2の積層体の一部をなす第 2の積層部分を形成し、 第 2の整流素子と第 2の積層体とを電気的に接続するする工程と、 少なくとも積 層部分を覆うように下部磁性層を形成し、 第 2の積層体の形成を完了する工程と、 下部磁性層の上に、 第 1の絶縁膜を介して第 1の書込線を形成する工程と、 第 1 の書込線の上に、 第 2の絶縁膜を介して第 2の書込線を、 第 1および第 2の書込 線が互いに平行に延在する部分を含むように形成する工程と、 第 2の書込線と、 第 2の絶縁膜と、 第 1の書込線とを順次エッチングしてパターニングすることに より、 第 1および第 2の書込線が第 2の絶縁膜を挟んで互いに平行に延在する部 分を含む積層パターンを形成する積層パターン形成工程と、 積層パターンを第 3 の絶縁膜を介して取り囲むように上部磁性層を設けることにより、 環状磁性層を 形成する工程と、 環状磁性層の上の、 第 2の積層体に対応する位置に第 1の積層 部分を設けることにより第 1の積層体を形成し、 第 1および第 2の積層体を有す る磁気記憶セルを形成する工程と、 第 1の積層体と第 1の整流素子とを電気的に 接続する工程とを含むようにしたので、 互いの積層面が対向した第 1およぴ第 2 の積層体のそれぞれにおける一方の面側に、 積層面に沿った方向を軸方向とする ように共通に環状磁性層を配設した構造を得ることができる。 また、 一対の読出 電流が第 1および第 2の整流素子と第 1および第 2の積層体とをそれぞれ流れた のち、 環状磁性層において合流するような電流経路を構成することができる。 こ のため、 読出電流の不要な回り込みを回避することができ、 安定した磁気情報の 読み出しが可能となる。
特に、 積層パターン形成工程において、 第 2の書込線をマスクとして第 2の絶 縁膜および第 1の書込線を選択的にエッチングすることにより、 積層パターンを 自己整合的に形成するようにした場合には、 ァライメント精度の高い加工が可能 となり、 さらに、 製造工程全体として簡略化を図ることができる。
(表 1 )
MR比 TMR素子抵抗スイッチング電流
% 転電流
Ω · (μια)2 mA 反
mA · 実施例 1 36〜38 430〜510 1.2 20.0以上 実施例 2 37〜38 480〜490 1.1 20.0以上 比較例 40 520 8.2 13

Claims

請求の範囲
1 . 外部磁界によって磁化方向が変化する感磁層を含み、 積層面に垂直な方向に 電流が流れるようにそれぞれ構成され、 互いの前記積層面が対向するように配置 された第 1および第 2の積層体と、
前記第 1の積層体と前記第 2の積層体との間に、 前記積層面に沿った方向を軸 方向とするように配置されると共に、 前記軸方向に沿って複数の導線によって貫 かれるように構成された環状磁性層と
を備えたことを特徴とする磁気記憶セル。
2 . 前記第 1の積層体は、 前記環状磁性層と共に第 1の磁気抵抗効果素子を構成 し、
前記第 2の積層体は、 前記環状磁性層と共に第 2の磁気抵抗効果素子を構成し ている
ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
3 . 前記第 1および第 2の積層体が、 いずれも前記環状磁性層と電気的に接続さ れていることを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
4 . 前記複数の導線は、 前記環状磁性層を貫く領域において互いに平行に延びて いる
ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
5 . 前記複数の導線は、 前記環状磁性層を貫く領域において前記第 1の積層体と 前記第 2の積層体とを通る直線の方向において互いに隣り合うように配列されて いる
ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
6 . 前記複数の導線は、 前記環状磁性層を貫く領域において前記第 1の積層体と 前記第 2の積層体とを通る直線と直交する方向において互いに隣り合うように配 列されている
ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
7 . 前記複数の導線の双方を流れる電流により生ずる磁界によって、 前記第 1お よび第 2の積層体における各感磁層の磁化方向が互いに反平行を向くように変化 し、 前記第 1および第 2の積層体に情報が記憶される
ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
8 . 前記第 1および第 2の積層体における一対の感磁層の一方が第 1の方向に磁 化し他方が前記第 1の方向と反平行をなす第 2の方向に磁化する第 1の状態と、 前記一対の感磁層の一方が前記第 2の方向に磁化し他方が前記第 1の方向に磁化 する第 2の状態の、 いずれかをとり、
前記第 1および第 2の状態に対応して前記第 1および第 2の積層体に情報が記 憶される
ことを特徴とする請求の範囲第 7項に記載の磁気記憶セル。
9 . 前記一対の感磁層は、 それぞれ、 互いに磁気的に交換結合するように構成さ れた第 1および第 2の感磁部分を含み、
前記第 1の感磁部分が、 前記環状磁性層のうちの一部分を構成している ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
1 0 . 前記一対の感磁層は、 それぞれ、 前記第 1の感磁部分と前記第 2の感磁部 分との間に、 前記第 1の感磁部分と前記第 2の感磁部分とをそれぞれ反強磁性結 合させるための第 1の非磁性導電層を有している
ことを特徴とする請求の範囲第 9項に記載の磁気記憶セル。
1 1 . 前記一対の第 2の感磁部分が前記一対の第 1の感磁部分よりも大きな保磁 力を有する
ことを特徴とする請求の範囲第 9項に記載の磁気記憶セル。
1 2 . 前記第 1および第 2の積層体は、 それぞれ、
非磁性層と、
前記非磁性層の一方側に積層され磁化方向の固定された第 1の磁性層と、 前記非磁性層の前記第 1の磁性層と反対側に積層され、 前記第 2の感磁部分と して機能する第 2の磁性層と
を含み、
前記第 1および第 2の積層体に流れる電流に基づいて情報が検出される ことを特徴とする請求の範囲第 9項に記載の磁気記憶セル。
1 3 . 前記第 1の磁性層が前記第 2の磁性層よりも大きな保磁力を有する ことを特徴とする請求の範囲第 1 2項に記載の磁気記憶セル。
1 4 . 前記第 1の磁性層の前記非磁性層とは反対側に、 第 1の磁性層と交換結合 した反強磁性の第 3の磁性層が配設されている
ことを特徴とする請求の範囲第 1 2項に記載の磁気記憶セル。
1 5 . 前記第 1の磁性層と前記第 3の磁性層との間に、 前記第 1の磁性層の側か ら順に第 2の非磁性導電層と、 前記第 1の磁性層と反強磁性結合した第 4の磁性 層とが配設されている
ことを特徴'とする請求の範囲第 1 4項に記載の磁気記憶セル。
1 6 . 前記非磁性層が、 トンネル効果を生じさせ得る絶縁層からなる
ことを特徴とする請求の範囲第 1 2項に記載の磁気記憶セル。
1 7 . 前記一対の感磁層が、 前記環状磁性層のうちの一部分を構成している ことを特徴とする請求の範囲第 1項に記載の磁気記憶セル。
1 8 . 前記第 1および第 2の積層体は、 それぞれ、
非磁性層と、
前記非磁性層の一方側に積層され磁化方向の固定された第 1の磁性層と、 前記非磁性層の前記第 1の磁性層と反対側に積層された前記感磁層と を含み、
前記第 1および第 2の積層体に流れる電流に基づいて情報が検出される ことを特徴とする請求の範囲第 1 7項に記載の磁気記憶セル。
1 9 . 前記第 1の磁性層の前記非磁性層とは反対側に、 第 2の非磁性導電層と、 前記第 1の磁性層と反強磁性結合した第 4の磁性層と、 反強磁性の第 3の磁性層 とが順に配設されている
ことを特徵とする請求の範囲第 1 8項に記載の磁気記憶セル。
2 0 . 前記非磁性層が、 トンネル効果を生じさせ得る絶縁層からなる
ことを特徴とする請求の範囲第 1 8項に記載の磁気記憶セル。
2 1 . 第 1の書込線と、 前記第 1の書込線と交差するように延びる第 2の書込線 と、 磁気記憶セルと
を備え、 前記磁気記憶セルは、
外部磁界によって磁化方向が変化する感磁層を含み、 積層面に垂直な方向に電 流が流れるようにそれぞれ構成され、 互いの前記積層面が対向するように配置さ れた第 1および第 2の積層体と、
これら第 1の積層体と第 2の積層体との間に、 前記積層面に沿った方向を軸方 向とするように配置されると共に、 前記軸方向に沿って前記第 1および第 2の書 込線によって貫かれるように構成された環状磁性層と
を含むことを特徴とする磁気メモリデバイス。
2 2 . 前記第 1の積層体は、 前記環状磁性層と共に第 1の磁気抵抗効果素子を構 成し、
前記第 2の積層体は、 前記環状磁性層と共に第 2の磁気抵抗効果素子を構成し ている
ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
2 3 . 前記第 1および第 2の積層体が、 いずれも前記環状磁性層と電気的に接続 されていることを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
2 4 . 前記第 1の書込線と前記第 2の書込線とは、 前記環状磁性層を貫く領域に おいて互いに平行に延びている
ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
2 5 . 前記第 1および第 2の書込線は、 前記環状磁性層を貫く領域において前記 第 1の積層体と前記第 2の積層体とを通る直線の方向において互いに隣り合うよ うに配列されている
ことを特徴とする請求の範囲第 2 1項に記載の磁気記憶セル。
2 6 . 前記第 1および第 2の書込線は、 前記環状磁性層を貫く領域において前記 第 1の積層体と前記第 2の積層体とを通る直線と直交する方向において互いに隣 り合うように配列されている
ことを特徴とする請求の範囲第 2 1項に記載の磁気記憶セル。
2 7 . 前記第 1および第 2の書込線の双方を流れる電流により生ずる磁界によつ て、 前記第 1および第 2の積層体における各感磁層の磁化方向が互いに反平行を 向くように変化し、 前記磁気記憶セルに情報が記憶される ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
2 8 . 前記第 1および第 2の積層体における一対の感磁層の一方が第 1の方向に 磁化し他方が前記第 1の方向と反平行をなす第 2の方向に磁化する第 1の状態と、 前記一対の感磁層の一方が前記第 2の方向に磁化し他方が前記第 1の方向に磁化 する第 2の状態、 のいずれかをとり、
前記第 1および第 2の状態に対応して前記磁気記憶セルに情報が記憶される ことを特徴とする請求の範囲第 2 7項に記載の磁気メモリデバイス。
2 9 . 前記第 1および第 2の積層体にそれぞれ接続され、 各積層他に読出電流を 供給する一対の第 1の読出線を備え、
前記各積層体に流れる電流に基づいて前記磁気記憶セルから情報が読み出され る
ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
3 0 . 前記一対の第 1の読出線の各々から前記第 1および第 2の積層体の各々に 読出電流が供給され、 この一対の読出電流値の差分に基づいて前記磁気記憶セル から情報が読み出される
ことを特徴とする請求の範囲第 2 9項に記載の磁気メモリデバイス。
3 1 . 前記一対の感磁層は、 それぞれ互いに磁気的に交換結合するように構成さ れた第 1および第 2の感磁部分を含み、
前記第 1の感磁部分が、 前記環状磁性層のうちの一部分を構成している ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
3 2 . 前記一対の感磁層は、 それぞれ、 前記第 1の感磁部分と前記第 2の感磁 部分との間に、 前記第 1の感磁部分と前記第 2の感磁部分とをそれぞれ反強磁性 結合させるための第 1の非磁性導電層を有している
ことを特徴とする請求の範囲第 3 1項に記載の磁気メモリデバイス。
3 3 . 前記一対の第 2の感磁部分が前記第 1の感磁部分よりも大きな保磁力を有 する
ことを特徴とする請求の範囲第 3 1項に記載の磁気メモリデバイス。
3 4 . 前記第 1および第 2の積層体は、 それぞれ、
非磁性層と、 前記非磁性層の一方側に積層され磁化方向の固定された第 1の磁性層と、 前記非磁性層の前記第 1の磁性層と反対側に積層され、 前記第 2の感磁部分と して機能する第 2の磁性層と
を含み、
前記第 1および第 2の積層体に流れる電流に基づいて情報が検出される ことを特徴とする請求の範囲第 3 1項に記載の磁気メモリデバイス。
3 5 . 前記第 1の磁性層が前記第 2の磁性層よりも大きな保磁力を有する ことを特徴とする請求の範囲第 3 4項に記載の磁気メモリデバイス。
3 6 . 前記第 Ίの磁性層の前記非磁性層とは反対側に、 第 1の磁性層と交換結合 した反強磁性の第 3の磁性層が配設されている
ことを特徴とする請求の範囲第 3 4項に記載の磁気メモリデバイス。
3 7 . 前記第 1の磁性層と前記第 3の磁性層との間に、 前記第 1の磁性層の側か ら順に第 2の非磁性導電層と、 前記第 1の磁性層と反強磁性結合した第 4の磁性 層とが配設されている
ことを特徴とする請求の範囲第 3 4項に記載の磁気メモリデバイス。
3 8 . 前記非磁性層が、 トンネル効果を生じさせ得る絶縁層からなる
ことを特徴とする請求の範囲第 3 4項に記載の磁気メモリデバイス。
3 9 . 前記一対の感磁層が、 前記環状磁性層のうちの一部分を構成している ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
4 0 . 前記第 1および第 2の積層体は、 それぞれ、
非磁性層と、
前記非磁性層の一方側に積層され磁化方向の固定された第 1の磁性層と、 前記非磁性層の前記第 1の磁性層と反対側に積層された前記感磁層と を含み、
前記第 1および第 2の積層体に流れる電流に基づいて情報が検出される ことを特徴とする請求の範囲第 3 9項に記載の磁気メモリデバイス。
4 1 . 前記第 1の磁性層の前記非磁性層とは反対側に、 第 2の非磁性導電層と、 前記第 1の磁性層と反強磁性結合した第 4の磁性層と、 反強磁性の第 3の磁性層 とが順に配設されている ことを特徴と'する請求の.範囲第 40項に記載の磁気メモリデバイス。
42. 前記非磁性層が、 トンネル効果を生じさせ得る絶縁層からなる
ことを特徴とする請求の範囲第 40項に記載の磁気メモリデバイス。
43. 前記第 1および第 2の積層体に供給された読出電流の各電流経路上におけ る、 前記一対の第 1の読出線と前記第 1および第 2の積層体との間にそれぞれ設 けられた第 1および第 2の整流素子と、
前記第 1および第 2の積層体を流れた読出電流を接地へと導く第 2の読出線と を備えたことを特徴とする請求の範囲第 29項に記載の磁気メモリデバイス。
44. 前記第' 1および第 2の整流素子は、 ショットキーダイオード、 PN接合型 ダイオー ド、 バイポーラ トランジスタ、 または M〇 S (Metal-Oxide- Semiconductor) トランジス夕のいずれかである
ことを特徴とする請求の範囲第 43項に記載の磁気メモリデバイス。
45. 第 1および第 2の整流素子が設けられた基体の上に、 前記第 2の積層体と、 前記環状磁性層と、 前記第 1の積層体とが順に配設され、 前記第 1および第 2の 整流素子と前記第 1および第 2の積層体とがそれぞれ電気的に接続されている ことを特徴とする請求の範囲第 2 1項に記載の磁気メモリデバイス。
46. 前記第 1および第 2の整流素子は、 バイポーラトランジスタであって、 こ のバイポーラトランジスタにおけるエミッ夕と前記第 1および第 2の積層体とが それぞれ電気的に接続されている
ことを特徴とする請求の範囲第 45項に記載の舉気メモリデバイス。
4 7 . 前記第 1 およ び第 2 の整流素子は、 M O S ( Meta卜 Oxide- Semiconductor) 卜ランジス夕であって、 この MOS トランジスタにおけるソー スと前記第 1および第 2の積層体とがそれぞれ電気的に接続されている
ことを特徴とする請求の範囲第 45項に記載の磁気メモリデバイス。
48. 前記第 1および第 2の整流素子は、 ショットキーダイオードであって、 前 記第 1および第 2の積層体の側から順に導電層とェピタキシャル層とを有し、 こ れら導電層とェピタキシャル層との間にショットキ一障壁を形成している
ことを特徴とする請求の範囲第 45項に記載の磁気メモリデバイス。
49. 第 1の書込線と、 前記第 1の書込線と交差するように延びる第 2の書込線 と、 外部磁界によって磁化方向が変化する感磁層を含む第 1および第 2の積層体 を有する磁気記憶セルと、 を備えた磁気メモリデバイスを製造するための方法で あって、
第 1および第 2の整流素子が設けられた基体の上に、 前記第 2の積層体の一部 をなす第 2の積層部分を形成し、 前記第 2の整流素子と前記第 2の積層体とを電 気的に接続する工程と、
少なくとも前記積層部分を覆うように下部磁性層を形成し、 前記第 2の積層体 の形成を完了する工程と、
前記下部磁性層の上に、 第 1の絶縁膜を介して前記第 1の書込線を形成するェ 程と、
前記第 1の書込線の上に、 第 2の絶縁膜を介して前記第 2の書込線を、 前記第 1および第 2の書込線が互いに平行に延在する部分を含むように形成する工程と、 前記第 2の書込線と、 前記第 2の絶縁膜と、 前記第 1の書込線とを順次エッチ ングしてパターニングすることにより、 前記第 1およぴ第 2の書込線が前記第 2 の絶縁膜を挟んで互いに平行に延在する部分を含む積層パターンを形成する積層 パターン形成工程と、
前記積層パターンを第 3の絶縁膜を介して取り囲むように上部磁性層を設ける ことにより、 環状磁性層を形成する工程と、
前記環状磁性層の上の、 前記第 2の積層体に対応する位置に第 1の積層部分を 設けることにより第 1の積層体を形成し、 前記第 1および第 2の積層体を有する 磁気記憶セルを形成する工程と、
前記第 1の積層体と前記第 1の整流素子とを電気的に接続する工程と
を含むことを特徴とする磁気メモリデバイスの製造方法。
5 0 . 前記積層パターン形成工程において、
前記第 2の書込線をマスクとして前記第 2の絶縁膜および前記第 1の書込線を 選択的にエッチングすることにより、 前記積層パターンを自己整合的に形成する ことを特徴とする請求の範囲第 4 9項に記載の磁気メモリデバイスの製造方法。
PCT/JP2004/004353 2003-03-28 2004-03-26 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法 WO2004088751A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/550,519 US7295460B2 (en) 2003-03-28 2004-03-26 Magnetic memory cell, magnetic memory device, and method of manufacturing magnetic memory device
EP04723817A EP1615269B1 (en) 2003-03-28 2004-03-26 Magnetic memory cell, magnetic memory device, and magnetic memory device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-92924 2003-03-28
JP2003092924A JP4729836B2 (ja) 2003-03-28 2003-03-28 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法

Publications (1)

Publication Number Publication Date
WO2004088751A1 true WO2004088751A1 (ja) 2004-10-14

Family

ID=33127344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004353 WO2004088751A1 (ja) 2003-03-28 2004-03-26 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法

Country Status (5)

Country Link
US (1) US7295460B2 (ja)
EP (1) EP1615269B1 (ja)
JP (1) JP4729836B2 (ja)
TW (1) TWI246182B (ja)
WO (1) WO2004088751A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544396B2 (ja) * 2003-09-05 2010-09-15 Tdk株式会社 磁気記憶セルおよび磁気メモリデバイス
US6972470B2 (en) * 2004-03-30 2005-12-06 Texas Instruments Incorporated Dual metal Schottky diode
FR2889348B1 (fr) * 2005-07-27 2008-09-12 Commissariat Energie Atomique Dispositif magnetoresistif
JP4779608B2 (ja) * 2005-11-30 2011-09-28 Tdk株式会社 磁気メモリ
US7466585B2 (en) * 2006-04-28 2008-12-16 Taiwan Semiconductor Manufacturing Co., Ltd. Magnetic random access memory
JP5092384B2 (ja) * 2006-12-15 2012-12-05 Tdk株式会社 磁気記憶装置、磁気記憶方法
CN101584079B (zh) 2007-01-30 2013-01-16 日立金属株式会社 非可逆电路元件及其中心导体组装体
JP5326173B2 (ja) * 2007-09-10 2013-10-30 栄一 児玉 エプスタイン・バールウイルス関連疾患に対する薬剤およびそのスクリーニング法
US7800941B2 (en) * 2008-11-18 2010-09-21 Seagate Technology Llc Magnetic memory with magnetic tunnel junction cell sets
JP5475819B2 (ja) * 2012-03-20 2014-04-16 株式会社東芝 不揮発性記憶装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818483A1 (de) 1998-04-24 1999-10-28 Forschungszentrum Juelich Gmbh Matrix für einen Magneto-Random-Access Memory (MRAM)
JP2001273759A (ja) 2000-03-27 2001-10-05 Sharp Corp 磁気メモリセルと磁気メモリ装置
JP2002353415A (ja) 2001-05-23 2002-12-06 Internatl Business Mach Corp <Ibm> 記憶素子、メモリセル及び記憶回路ブロック

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293373A (ja) * 1988-09-29 1990-04-04 Nippon Denso Co Ltd 電流検出器
US5343422A (en) 1993-02-23 1994-08-30 International Business Machines Corporation Nonvolatile magnetoresistive storage device using spin valve effect
US5587943A (en) * 1995-02-13 1996-12-24 Integrated Microtransducer Electronics Corporation Nonvolatile magnetoresistive memory with fully closed flux operation
US5629922A (en) 1995-02-22 1997-05-13 Massachusetts Institute Of Technology Electron tunneling device using ferromagnetic thin films
JP3333670B2 (ja) 1995-09-22 2002-10-15 ティーディーケイ株式会社 磁性薄膜メモリ
US5861328A (en) 1996-10-07 1999-01-19 Motorola, Inc. Method of fabricating GMR devices
JP2000090658A (ja) * 1998-09-09 2000-03-31 Sanyo Electric Co Ltd 磁気メモリ素子
JP3625424B2 (ja) 1999-12-10 2005-03-02 シャープ株式会社 磁気トンネル接合素子及びそれを用いた磁気メモリ
JP2001168417A (ja) 1999-12-10 2001-06-22 Sharp Corp 強磁性トンネル接合素子
JP3913971B2 (ja) * 1999-12-16 2007-05-09 株式会社東芝 磁気メモリ装置
JP2001230468A (ja) 2000-02-17 2001-08-24 Sharp Corp 磁気トンネル接合素子及びそれを用いた磁気メモリ
JP3515940B2 (ja) 2000-02-17 2004-04-05 シャープ株式会社 磁気トンネル接合素子及びそれを用いた磁気メモリ
JP2002289807A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 磁気メモリ装置および磁気抵抗効果素子
US6404674B1 (en) * 2001-04-02 2002-06-11 Hewlett Packard Company Intellectual Property Administrator Cladded read-write conductor for a pinned-on-the-fly soft reference layer
US6882563B2 (en) * 2001-11-30 2005-04-19 Kabushiki Kaisha Toshiba Magnetic memory device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19818483A1 (de) 1998-04-24 1999-10-28 Forschungszentrum Juelich Gmbh Matrix für einen Magneto-Random-Access Memory (MRAM)
JP2001273759A (ja) 2000-03-27 2001-10-05 Sharp Corp 磁気メモリセルと磁気メモリ装置
JP2002353415A (ja) 2001-05-23 2002-12-06 Internatl Business Mach Corp <Ibm> 記憶素子、メモリセル及び記憶回路ブロック

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1615269A4

Also Published As

Publication number Publication date
TW200518320A (en) 2005-06-01
EP1615269A4 (en) 2009-07-08
TWI246182B (en) 2005-12-21
JP4729836B2 (ja) 2011-07-20
US7295460B2 (en) 2007-11-13
JP2004303837A (ja) 2004-10-28
EP1615269B1 (en) 2011-08-24
US20070019462A1 (en) 2007-01-25
EP1615269A1 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
US7266011B2 (en) Magneto-resistance effect element and magnetic memory
US7209380B2 (en) Magnetic memory device and method of reading the same
JP4596230B2 (ja) 磁気メモリデバイスおよびその製造方法
JP4729836B2 (ja) 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法
JP3980990B2 (ja) 磁気メモリ
JP2006196687A (ja) 磁気メモリ
JP4438375B2 (ja) 磁気抵抗効果素子、磁気記憶セルおよび磁気メモリデバイス
US6894919B2 (en) Magnetic random access memory
JP4868431B2 (ja) 磁気記憶セルおよび磁気メモリデバイス
JP4720067B2 (ja) 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法
US7470964B2 (en) Magnetic memory and manufacturing method thereof
EP1729339A2 (en) Magnetic memory and method of manufacturing same
JP2006108316A (ja) 記憶素子及びメモリ
JP4556385B2 (ja) 磁気メモリデバイスの製造方法
JP4544396B2 (ja) 磁気記憶セルおよび磁気メモリデバイス
JP2005109266A (ja) 磁気メモリデバイスおよび磁気メモリデバイスの製造方法
JP2007123512A (ja) 磁気記憶装置
JP2006100736A (ja) 磁気メモリ
JP2006080387A (ja) 磁気メモリ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007019462

Country of ref document: US

Ref document number: 10550519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004723817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004723817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10550519

Country of ref document: US