JP3980990B2 - 磁気メモリ - Google Patents

磁気メモリ Download PDF

Info

Publication number
JP3980990B2
JP3980990B2 JP2002318973A JP2002318973A JP3980990B2 JP 3980990 B2 JP3980990 B2 JP 3980990B2 JP 2002318973 A JP2002318973 A JP 2002318973A JP 2002318973 A JP2002318973 A JP 2002318973A JP 3980990 B2 JP3980990 B2 JP 3980990B2
Authority
JP
Japan
Prior art keywords
bit line
write
tmr element
wiring
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002318973A
Other languages
English (en)
Other versions
JP2004153182A (ja
Inventor
川 純 夫 池
野 実 天
藤 好 昭 斉
田 佳 久 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002318973A priority Critical patent/JP3980990B2/ja
Publication of JP2004153182A publication Critical patent/JP2004153182A/ja
Application granted granted Critical
Publication of JP3980990B2 publication Critical patent/JP3980990B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ランダムアクセスメモリ(MRAM)に関する。
【0002】
【従来の技術】
磁気ランダムアクセスメモリ(以下、MRAMとも云う)とは、情報を記憶するメモリセルに磁気抵抗効果を有する磁気抵抗効果素子を用いたメモリ装置であって、高速動作、大容量、不揮発性を特徴とする次世代メモリ装置として注目されている。磁気抵抗効果とは、強磁性体に磁場を印加すると強磁性体の磁化の向きに応じて電気抵抗が変化する現象である。磁気抵抗効果素子を構成する強磁性体の磁化の向きを情報の記録に用い、磁化の向きに対応する電気抵抗の大小で情報を読み出すことによりメモリ装置として動作させることができる。
【0003】
近年、2つの強磁性層の間にトンネルバリア層と呼ばれる絶縁層を挿入したサンドイッチ構造を含む強磁性トンネル接合において、トンネル磁気抵抗効果(以下、TMR効果とも云う)により20%以上の磁気抵抗変化率(MR比)が得られるようになったことをきっかけとして、トンネル磁気効果を利用した強磁性トンネル接合磁気抵抗効果素子(以下、TMR素子とも云う)を用いたMRAMが期待と注目を集めている。
【0004】
MRAMのメモリセルにTMR素子を用いる場合、トンネルバリア層を挟む二つの強磁性層のうち、一方の強磁性層を磁化の向きが変化しないように固定した磁化固着層(または基準層とも云う)とし、もう一方の強磁性層を外部磁界に応じて磁化の向きが反転する磁化自由層(または記憶層とも云う)とする。基準層と記憶層の磁化の向きが平行な状態と反平行な状態を2進情報の “0”と“1”に対応付けることで情報を記憶することができる。記録情報の書き込みは、TMR素子近傍に設けられた書き込み配線に電流を流して発生する誘導磁場により記憶層の磁化の向きを反転させることにより行う。
【0005】
従来のMRAMでは、書き込みに要する電流が大きいことが、普及を妨げており、書き込み電流低減が重要な課題であった。また、記録情報の読み出しは、TMR効果による抵抗変化分を検出することにより行う。従って記憶層にはTMR効果による抵抗変化率(MR比)が大きく、磁化反転に必要な磁場すなわちスイッチング磁場が小さいほうが好ましい。
【0006】
一方、基準層の磁化は反転しにくくなるように磁化の向きを固定することが必要であり、そのためには、強磁性層に接するように反強磁性層を設けて交換結合力により磁化反転を起こりにくくするという方法が用いられ、このような構造はスピンバルブ型構造と呼ばれている。この構造において基準層の磁化の向きは磁場を印加しながら熱処理すること(磁化固着アニール)により決定される。
【0007】
上述したように、図15(a)に示すように、TMR素子3の記憶層3cの磁化反転は、書き込み配線80に流した電流による誘導磁場を用いるため、記憶層3cのスイッチング磁場が大きいと書き込み配線に流す電流が大きくなり、消費電力が大きくなるという問題がある。これを解決するために、図15(b)に示すように書き込み配線80を軟磁性材料82で被覆し、書き込み配線80から発生した誘導磁場をTMR素子3の近傍で強めるというヨーク付き配線が提案されている。なお、図15(a)、(b)において、TMR素子3は、基準層3a、トンネル絶縁層3b、および記憶層3cから構成されている。
【0008】
書き込み配線の周囲に高透磁率材料からなる薄膜(ヨーク)を設けたMRAMが提案されている(例えば、特許文献1、および特許文献2参照)。
【0009】
【特許文献1】
米国特許第5,659,499号明細書
【特許文献2】
特開2002−110938号公報
【0010】
【発明が解決しようとする課題】
書き込み配線としてヨーク付きを用いた場合の問題点を、書き込みに使うビット線にはTMR素子を構成する基準層および記憶層の磁化容易軸方向に磁場をかける電流を流し、ワード線にはTMR素子を構成する基準層および記憶層の磁化困難軸方向に磁場をかける電流を流す場合を例にとって説明する。
【0011】
一般に、MRAMにおいては、ビット線がひとつのカラムに共通であるため、書き込みビット線BLの周囲に形成したヨーク82には、図16の矢印90に示した方向、すなわち、書き込み電流が流れる方向に一軸磁気異方性を付与するよう、磁場中でアニールすることが行われている。仮に、ヨーク82に図16の矢印92の方向、すなわち書き込み電流が流れる方向と直交する方向に一軸磁気異方性の成分が有り、この方向に残留磁化が残っている場合に、あるメモリセルに情報“1”を記憶させようとして書き込み電流をビット線BLに流すと、同じビット線BL上の、情報“0”を記憶させた他のメモリセルには“1”の方向に磁場が掛り、記憶状態が不安定になってしまう。従って図16の矢印90に示した方向に一軸磁気異方性を付与するよう、磁場中アニールが必要となる。
【0012】
しかしながら、この矢印90に示した方向はTMR素子3に一軸磁気異方性を付与する方向(磁化容易軸方向)と直交するため、両者を両立する作製は非常に困難である。ヨーク82の一軸磁気異方性とTMR素子3の一軸磁気異方性が直交するように製作した場合には、ビット線BLのヨーク82には磁化容易軸の乱れや図16の矢印92の方向に残留磁化が発生し、記憶状態が不安定になるとともに他のメモリセルの記録ビットを反転させるという問題があった。なお、書き込みワード線のヨークには、TMR素子と同じ方向に一軸磁気異方性が付与される。
【0013】
また、従来のMRAMでは、ビット線電流による磁場とワード線電流による磁場との合成磁場で記憶層の磁化を反転させることが行われている。その結果、あるメモリセルに記録する際は、上記メモリセルと同じビット線上の他のメモリセルと同じワード線上の他のメモリセルがhalf selectionの状態になる。half selectionの状態にあるメモリセルに誤書き込みが起きないためには、メモリセル毎のスイッチング磁場のばらつきを非常に抑制することが必要である。
【0014】
本発明は、上記事情を考慮してなされたものであって、書き込みの際に誤書き込みを防止することができ、メモリセルの記憶状態が安定化することのできる磁気メモリを提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の一態様による磁気メモリは、磁気抵抗効果素子と、ビット線から枝分かれし前記磁気抵抗効果素子に書き込み電流を流すセルビット線と、このセルビット線に設けられ、前記磁気抵抗効果素子と同じ磁化容易軸方向を有するヨークと、前記セルビット線にソース・ドレインの一方が接続する書き込み選択トランジスタとを、それぞれ有するメモリセルを備えたことを特徴とする。
【0016】
なお、前記磁気抵抗効果素子と同じ磁化容易軸方向を有するとは、ヨークの少なくとも一部分が磁気抵抗効果素子と同じ磁化容易軸方向を有していることを意味する。
【0017】
なお、前記セルビット線は、前記磁気抵抗効果素子の一端と電気的に接続される第1配線部と、絶縁膜を介して前記磁気抵抗効果素子の側部に沿って設けられ前記書き込み選択トランジスタのソース・ドレインの一方に接続される第2配線部とを有しており、前記第1および第2配線部に前記ヨークが設けられていることが好ましい。
【0018】
なお、前記磁気抵抗効果素子の他端には書き込み電流が流れるワード線が電気的に接続されていても良い。
【0019】
なお、前記磁気抵抗効果素子の一端には読み出し用のワード線が電気的に接続され、前記セルビット線は、前記ビット線から枝分かれした第1配線部と、絶縁膜を介して前記磁気抵抗効果素子の側部に沿って設けられ一端が前記第1配線部に接続される第2配線部と、一端が前記第2配線部の他端に接続され、他端が前記書き込み選択トランジスタのソース・ドレインの一方に接続され、前記磁気抵抗効果素子を挟んで前記第1配線部と略平行に設けられる部分を有する第3配線部とを有し、前記磁気抵抗効果素子の他端は前記第1配線部または第3配線部の一方に電気的に接続され、前記第1および第2配線部に前記ヨークが設けられ、前記第3配線部には前記磁気抵抗効果素子と同じ磁化容易軸方向を有する第2ヨークが設けられていても良い。
【0020】
なお、前記メモリセルは、前記磁気抵抗効果素子の他端に引き出し電極を介してソース・ドレインの一方が接続される読み出し選択トランジスタを備えていても良い。
【0021】
なお、前記引き出し電極の前記磁気抵抗効果素子と反対側に絶縁膜を介して書き込み電流が流れるワード線が形成されていても良い。
【0022】
【発明の実施の形態】
本発明の実施形態について図面を参照して説明する。
【0023】
(第1実施形態)
本発明の第1実施形態による磁気メモリのメモリセルの構成を図1に示し、メモリセルアレイの構成を図2に示す。この実施形態による磁気メモリのメモリセル2は、TMR素子3と、セルビット線6と、ヨーク8と、読み出し選択トランジスタ17と、書き込み選択トランジスタ19とを備えている。
【0024】
TMR素子3は、下部電極層、下地層、反強磁性層、強磁性層(基準層)、トンネル絶縁層、強磁性層(記憶層)、上部電極を備えている。セルビット線6は、共用ビット線BLから枝分かれしてTMR素子3の上部電極と電気的に接続される第1配線部6aと、この第1配線部6aに接続され接続プラグ7を介して書き込み選択トランジスタ19のソースおよびドレインの一方に接続される第2配線部6bとを有している。第1配線部6aは、共用ビット線BLとほぼ平行な部分を有し、TMR素子3の磁化容易軸方向と所定の角度をなす方向に電流が流れるように設けられる。第2配線部6bは図示しない絶縁膜を介してTMR素子3の側部に沿って設けられる。
【0025】
ヨーク8は、TMR素子3が設けられた側とは反対側の第1配線部6a上に形成されている。そして、このヨーク8は磁化容易軸方向が、図1に示すように、TMR素子3の磁化容易軸方向と同じ方向を少なくとも一部分が有するように形成されている。
【0026】
また、TMR素子3の下部電極は引き出し電極14および接続プラグ15を介して読み出し選択トランジスタ17のソースおよびドレインの一方に接続される。なお、TMR素子3の下部電極は引き出し電極14を兼用していても良い。
【0027】
読み出し選択トランジスタ17は、ソースおよびドレインの他方が接続プラグ18を介して接地電源に接続され、ゲートが読み出し選択ワード線RWLを兼ねている。また、書き込み選択トランジスタ19は、ソースおよびドレインの他方が、書き込み電流を流す際に用いられるコモン線20に接続され、ゲートが書き込み選択ワード線WWLを兼ねている。
【0028】
次に、本実施形態による磁気メモリの書き込み動作および読み出し動作を、図2を参照して説明する。ロウがi(i=1,・・・)番目で書き込み選択ワード線WWLおよび読み出し選択ワード線RWLに接続され、カラムがj(j=1,・・・)番目で共用ビット線BLに接続されたメモリセル2が選択された場合を考える。上記選択されたメモリセル2にビットデータを書き込む場合を説明する。ロウがi番目でカラムがj番目のメモリセル2を選択するアドレスがロウデコーダ41およびカラムデコーダ45に入力される。すると、ロウデコーダ41によってロウ選択トランジスタ31がONされて書き込み選択ワード線WWLが選択されるとともにカラムデコーダ45によってカラム選択トランジスタ35がONされて共用ビット線BLが選択される。このとき、カラム選択トランジスタ37はONされずOFF状態となっている。またロウ選択トランジスタ32もOFF状態となっている。カラム選択トランジスタ35がONすることにより共用ビット線BLに書き込み電流が流れる。そして、ロウ選択トランジスタ31がONすることにより電位Vbが書き込み選択トランジスタ19のゲートに印加され、書き込み選択トランジスタ19がONする。このとき、カラム選択トランジスタ35もONしているので、書き込み電流は共用ビット線BLから、選択されたメモリセル2のセルビット線6に流れる。このとき、共用ビット線BLに接続されているが選択されない他のメモリセルのセルビット線6には書き込み電流は流れない。選択されたメモリセル2のセルビット線6に流れる書き込み電流によって誘導された電流磁場はヨーク8によって強められ、選択されたメモリセル2を構成するTMR素子3の記憶層の磁化を反転させる。
【0029】
書き込み電流の流し方について説明する。通常のMRAMにおいては、図10に示すように、書き込み配線、例えば書き込みビット線BLの一端にドライバと呼ばれるトランジスタ72を設け、もう一端にシンカーと呼ばれるトランジスタ74を設けて、電流を流す。書き込みビット線BLには、“0”を記録する場合と“1”を記録する場合で2方向に電流を流す。したがってドライバ72とシンカー74を2組設ける必要がある。本実施形態では、共用ビット線BLからセルビット線6に分岐して書き込み電流を流す。この書き込み電流を流すための書き込み電流駆動回路の概略の構成を図11に示す。図11では2組のドライバ72a、72bとシンカー74a、74bが設けられている。各メモリセルの書き込み選択トランジスタ19には、2方向の電流が流れる。コモン線20の電位を「L」レベル(例えば0V)にするか「H」レベル(例えば1.5V)にするかによって電流方向が変わる。例えば、カラムがj(=1,・・・)番目のメモリセル2にデータ“1”を書き込む場合には、カラム選択信号CSL1の電位を「H」レベルにし、カラム選択信号CSL0の電位を「L」レベルにする。すると、ドライバ72aとシンカー74bがONし、ドライバ72bとシンカー74aがOFF状態となるため、書き込み電流は電流源Vwb1からドライバ72a、共用ビット線BL、セルビット線6、書き込み選択トランジスタ19、コモン線20、およびシンカー74bを流れる。カラムがj(=1,・・・)番目のメモリセル2にデータ“0”を書き込む場合には、カラム選択信号CSL0の電位を「H」レベルにし、カラム選択信号CSL1の電位を「L」レベルにする。すると、ドライバ72bとシンカー74aがONし、ドライバ72aとシンカー74bがOFF状態となるため、書き込み電流は電流源Vwb0からドライバ72b、コモン線20、書き込み選択トランジスタ19、セルビット線6、共用ビット線BL、およびシンカー74aを流れる。したがって、データ“1”とデータ“0”を書き込む場合とでは、セルビット線6に流れる電流の向きが反対となる。
【0030】
書き込み電流がそれほど大きくなく、共用ビット線BLの両端の電圧差がそれほど大きくなければ、各メモリセル2の書き込み選択トランジスタ19はNチャネルMOSFETが一つで済む。電流が大きい場合は、各メモリセルにPチャンネルMOSFETとNチャネルMOSFETを設ける方法もあるが、高密度メモリを実現するには各セルに書き込み選択トランジスタ19は一つが望ましい。
【0031】
次に、再び図2に戻り、選択されたメモリセルからビットデータを読み出す場合を説明する。ロウがi番目でカラムがj番目のメモリセル2を選択するアドレスがロウデコーダ41およびカラムデコーダ45に入力される。すると、ロウデコーダ41によってロウ選択トランジスタ32がONされて読み出し選択ワード線RWLが選択されるとともにカラムデコーダ45によってカラム選択トランジスタ35、37がONされて共用ビット線BLが選択される。このとき、ロウ選択トランジスタ31はOFF状態である。カラム選択トランジスタ35がON状態となると共用ビット線BLjに電流が流れる。このとき、ロウ選択トランジスタ32がON状態となっているので、選択されたメモリセル2の読み出し選択トランジスタ17もON状態となり、上記電流は共用ビット線BLからセルビット線6、TMR素子3、および読み出し選択トランジスタ17を流れる。これにより、共用ビット線BLの電位はTMR素子3の抵抗に応じた値となる。この電位がカラム選択トランジスタ37を介してセンスアンプ62に送られ、基準電位VREFと比較されることにより、TMR素子3に記憶されたデータが読み出される。
【0032】
以上説明したように、本実施形態においては、共用ビット線BLから枝分かれしたセルビット線6を各メモリセル2に設けるとともにセルビット線6上に設けられたヨーク8の磁化容易軸方向をTMR素子3の磁化容易軸方向とほぼ同じとなるようにしたので、ヨーク8に残留磁化が発生した場合や、ヨーク8の磁化容易軸方向に磁化の乱れが発生した場合でも、これらの残留磁化や磁化の乱れは、TMR素子3に書き込んだ情報と同じ方向に磁場を発生することになり、これにより、TMR素子3の記憶状態が安定する。また、各メモリセル2にセルビット線6と書き込み選択トランジスタ17が設けられているので、選択されたメモリセルに書き込み電流を流すときに、同じカラム上の他のメモリセルには書き込み電流が流れない。この結果およびTMR素子3の記憶状態が安定であることにより、他のメモリセルの記録ビットを反転させることがなく、誤書き込みを防止することができる。
【0033】
また、ヨーク8に付与する一軸磁気異方性とTMR素子3に付与する一軸磁気異方性が同じ方向であるので、TMR素子3に一軸磁気異方性を付与する工程と、ヨーク8に一軸磁気異方性を付与する工程とを、同じ磁界の方向で、一括して行うことができる。その結果、従来に比べて製造工程が簡略化され、コストが下がる。
【0034】
なお、第1実施形態においては、セルビット線6は第1配線部6aと第2配線部6bからなっており、第1配線部6aに流れる電流による電流磁場ばかりでなく、TMR素子3の側部に配置された第2配線部6bに流れる電流による電流磁場もTMR素子3の書き込みに用いることができる。このため、従来よりも少ない電流で書き込みを行うことができる。
【0035】
また、第1実施形態においては、書き込みはセルビット線6から発生する電流磁場によって行うので、TMR素子3の磁化容易軸方向とセルビット線6に流れる電流の方向とが直交するのではなく、ある傾き角をなしている方が、書き込み電流を低減することができ、好ましい。この傾き角は典型的には45度が選ばれる。例えば、第1の実施形態において、セルビット線6の向きを変えずにTMR素子3の磁化容易軸方向がセルビット線6に流れる電流の方向とある角度(例えば45度)をなすようにTMR素子3の位置を変えるか、または、TMR素子3の位置を変えずにTMR素子3の近傍のセルビット線6の向きを変えることにより可能となる。
【0036】
(第2実施形態)
次に、本発明の第2実施形態による磁気メモリのメモリセルの構成を図3に示し、メモリセルアレイの構成を図4に示す。この実施形態による磁気メモリのメモリセル2は、TMR素子2と、セルビット線6と、ヨーク8、9と、読み出し選択トランジスタ17と、書き込み選択トランジスタ19とを備えている。
【0037】
TMR素子3は、下部電極層、下地層、反強磁性層、強磁性層(基準層)、トンネル絶縁層、強磁性層(記憶層)、上部電極を備えている。セルビット線6は、共用ビット線BLから枝分かれしてTMR素子3の上部電極と電気的に接続される第1配線部6aと、この第1配線部6aに接続され接続プラグ7を介して書き込み選択トランジスタ19のソースおよびドレインの一方に接続される第2配線部6bとを有している。第1配線部6aは、共用ビット線BLとほぼ平行な部分を有し、TMR素子3の磁化容易軸方向と直交する方向に電流が流れるように設けられる。第2配線部6bは図示しない絶縁膜を介してTMR素子3の側部に沿って設けられる。
【0038】
ヨーク8は、TMR素子3が設けられた側とは反対側の第1配線部6a上に形成されている。そして、このヨーク8の磁化容易軸方向は、図3に示すように、TMR素子3の磁化容易軸方向と同じ方向となるように形成されている。また、ヨーク9は、TMR素子3の下部電極に接続する引き出し電極14の下側に図示しない絶縁膜を介して設けられた書き込みワード線WLの引き出し電極14に対向する面を除いて書き込みワード線WLを被覆するように形成されている。そして、このヨーク9もヨーク8と同様に、磁化容易軸方向が、図3に示すように、TMR素子3の磁化容易軸方向と同じ方向となるように形成されている。なお、セルビット線6は書き込みワード線WLとほぼ直交するように形成される。
【0039】
また、TMR素子3の下部電極は引き出し電極14および接続プラグ15を介して読み出し選択トランジスタ17のソースおよびドレインの一方に接続される。なお、TMR素子3の下部電極は引き出し電極14を兼用していても良い。
【0040】
読み出し選択トランジスタ17は、ソースおよびドレインの他方が接続プラグ18を介して接地電源に接続され、ゲートが読み出し選択ワード線RWLを兼ねている。また、書き込み選択トランジスタ19は、ソースおよびドレインの他方が、書き込み電流を流す際に用いられるコモン線20に接続され、ゲートが書き込み選択ワード線WWLを兼ねている。
【0041】
次に、本実施形態による磁気メモリの書き込み動作および読み出し動作を、図4を参照して説明する。ロウがi(i=1,・・・)番目で書き込み選択ワード線WWLおよび読み出し選択ワード線RWLに接続され、カラムがj(j=1,・・・)番目で共用ビット線BLに接続されたメモリセル2が選択された場合を考える。上記選択されたメモリセル2にビットデータを書き込む場合を説明する。ロウがi番目でカラムがj番目のメモリセル2を選択するアドレスがロウデコーダ41およびカラムデコーダ45に入力される。すると、ロウデコーダ41によってロウ選択トランジスタ31およびロウ選択トランジスタ33がONされて書き込み選択ワード線WWLおよび書き込みワード線WLが選択されるとともにカラムデコーダ45によってカラム選択トランジスタ35がONされて共用ビット線BLが選択される。このとき、カラム選択トランジスタ37はONされずOFF状態となっている。またロウ選択トランジスタ32もOFF状態となっている。カラム選択トランジスタ35がONすることにより共用ビット線BLに書き込み電流が流れる。そして、ロウ選択トランジスタ31がONすることにより電位Vbが書き込み選択トランジスタ19のゲートに印加され、書き込み選択トランジスタ19がONする。このとき、カラム選択トランジスタ35もONしているので、書き込み電流は共用ビット線BLから、選択されたメモリセル2のセルビット線6に流れる。なお、このとき、共用ビット線BLに接続されているが選択されない他のメモリセルのセルビット線6には書き込み電流は流れない。一方、ロウ選択トランジスタ33もONしているので選択された書き込みワード線WLに書き込み電流が流れる。選択されたメモリセル2のセルビット線6に流れる書き込み電流によって誘導される電流磁場はヨーク8によって強められ、書き込みワード線WLに流れる書き込み電流によって誘導される電流磁場はヨーク9によって強められる。これらの強められた電流磁場によって、選択されたメモリセル2を構成するTMR素子3の記憶層の磁化が反転させられる。なお、書き込み電流の流し方は、第1実施形態の場合と同様にして行う。
【0042】
また、選択されたメモリセルからビットデータを読み出す場合も第1実施形態の場合と同様にして行う。
【0043】
従来のMRAMにおいては、一般に、ビット線による電流磁場と書き込みワード線WLによる電流磁場との合成磁場でTMR素子3の記憶層の磁化を反転させることが行われている。その結果、あるメモリセルにデータを記録する際は、同じビット線上のメモリセルと同じワード線上のセルがhalf selectionの状態になる。half selectionの状態にあるメモリセル2に誤書き込みが起きない為には、メモリセル毎のスイッチング磁場のばらつきを非常に抑制することが必要である。
【0044】
このスイッチング磁場のばらつきの抑制について、図12を参照して説明する。図12での仮定は、アステロイド曲線を
Hx 2/3+(Hy/a)2/3=Hc 2/3
と表し、磁化困難軸方向に反磁界が大きいためにアステロイドが伸びていることを、パラメータaで表している。その伸張の上限レベルをa、下限レベルをa、その比r(=a/a) とする。磁場のヒステリシス幅の1/2を保磁力Hc(>0)、そのバラツキをdHcとする。平均オフセット磁界Hoff (>0)、バラツキをdHoffとする。誤書き込みが起きないためには以下の3つの不等式を満たす必要がある。図12中の矢印A1の条件は以下の不等式となる。
【0045】
【数1】
Figure 0003980990
図12中の矢印A2の条件は以下の不等式になる。
【0046】
【数2】
Figure 0003980990
図12中の矢印A3の条件は以下の不等式になる。
【0047】
【数3】
Figure 0003980990
以上の3つの不等式を連立すると、以下の式が得られる。
【0048】
【数4】
Figure 0003980990
誤書き込みが起きないためには、Hoff, dHoff, r, dHc, が上式を満たすように小さいことが必要である。実際にメモリとして実用になるには、標準偏差をσとすると±6σの範囲内で誤書き込みが無い必要がある。その場合は、例えば、
Hc=36[Oe]、かつa/a≦1.7
を仮定すると
6σ(Hc)≦3.5[Oe]、 Hoff≦3.5[Oe]、 6σ(Hoff)≦3.5[Oe]
の条件を満たす必要がある。
【0049】
MRAMの製造上、多数のメモリセルに渡って上記条件ほど高精度にスイッチング磁場のばらつきを抑制することは従来困難であった。しかし、本実施形態のように、各メモリセルに設けられたトランジスタを書き込み選択用に用い、1メモリセル毎に書込電流を流す方式の場合は、原理的にいくらばらつきがあろうとも、磁化容易軸方向に十分大きな磁場をかければ書き込める。
【0050】
その理由を、以下説明する。ビット線から枝分かれしたセルビット線毎に電流を流すため、ビット線方向の他のメモリセルはhalf sectionの状態にならない。したがって、図12の矢印A2の条件は、不要になり、制約が無くなる。その結果、x方向(磁化容易軸方向)に十分大きな磁場をかければ誤書き込みが無くなる。
【0051】
したがって、本実施形態は、スイッチング磁場のメモリセル毎のばらつきに非常に強い磁気メモリ、すなわち誤書き込みの起きにくい磁気メモリを得ることができる。
【0052】
以上説明したように、本実施形態においては、共用ビット線BLから枝分かれしたセルビット線6を各メモリセル2に設けるとともにセルビット線6上に設けられたヨーク8の磁化容易軸方向をTMR素子3の磁化容易軸方向とほぼ同じとなるようにしたので、ヨーク8に残留磁化が発生した場合や、ヨーク8の磁化容易軸方向に磁化の乱れが発生した場合でも、これらの残留磁化や磁化の乱れは、TMR素子3に書き込んだ情報と同じ方向に磁場を発生することになり、これにより、TMR素子3の記憶状態が安定する。また、各メモリセル2にセルビット線6と書き込み選択トランジスタ17が設けられているので、選択されたメモリセルに書き込み電流を流すときに、同じカラム上の他のメモリセルには書き込み電流が流れない。この結果およびTMR素子3の記憶状態が安定であることにより、他のメモリセルの記録ビットを反転させることがなく、誤書き込みを防止することができる。
【0053】
また、ヨーク8、9に付与する一軸磁気異方性とTMR素子3に付与する一軸磁気異方性がほぼ同じ方向であるので、TMR素子3に一軸磁気異方性を付与する工程と、ヨーク8、9に一軸磁気異方性を付与する工程とを、同じ磁界の方向で、一括して行うことができる。その結果、従来に比べて製造工程が簡略化され、コストが下がる。
【0054】
なお、第2実施形態においては、セルビット線6は第1配線部6aと第2配線部6bからなっており、第1配線部6aに流れる電流による電流磁場ばかりでなく、TMR素子3の側部に配置された第2配線部6bに流れる電流による電流磁場もTMR素子3の書き込みに用いることができる。このため、従来よりも少ない電流で書き込みを行うことができる。
【0055】
(第3実施形態)
次に、本発明の第3実施形態による磁気メモリのメモリセルの構成を図5に示し、メモリセルアレイの構成を図6に示す。この実施形態による磁気メモリは第2実施形態の磁気メモリの読み出し選択トランジスタ17を削除するとともに書き込みワード線WLが読み出しワード線を兼ねた構成となっている。したがって、TMR素子3の下部電極は書き込みワード線WLに電気的に接続された構成となっている。また、セルビット線6の第1配線部6a上には第2実施形態と同様にヨーク8aが設けられているが、第2配線部6b上にもヨーク8bが設けられている。なお、図5に示すように、TMR素子3、セルビット線6のヨーク8a,8b、およびワード線WLのヨーク9の磁化容易軸方向はほぼ同じ方向となるように形成される。
【0056】
この第3実施形態による磁気メモリの選択されたメモリセル2へのデータの書き込みは、第2実施形態の場合と同様にして行う。この第3実施形態による磁気メモリの選択されたメモリセル2からのデータ読み出し動作はクロスポイント型と呼ばれる方法で行われる。ロウがi番目でカラムがj番目のメモリセル2からデータを読み出す場合は、ロウデコーダ41によってロウ選択トランジスタ33をON、カラムデコーダ45によってカラムトランジスタ37をONさせる。このとき、ロウ選択トランジスタ34およびカラムトランジスタ35はOFF状態とする。これにより、書き込みワード線WLからTMR素子3、セルビット線6を介して共用ビット線BLに電流が流れる。このとき、共用ビット線BLの電位はTMR素子3に記憶されたデータに応じた値となる。この共用ビット線BLの電位をセンスアンプ61,62において基準電位VREFと比較することにより、TMR素子3に記憶されたデータが読み出される。
【0057】
この第3実施形態のように読み出し選択トランジスタを用いないでクロスポイント型で読み出す場合には、読み出しに選択性を持たせることが必要である。すなわち、選択したメモリセル以外の他のメモリセルからの回り込み電流をセンスしないようにすることが必要になる。その第1の方式は、図6に示したように、読出しワード線WLの上下にロウ選択トランジスタ33、34と、ロウデコーダ41、44を設ける方式である。読み出すべきメモリセルへの読み出しワード線WLをロウ選択信号RSL(i)で選択して読出し用電流を流す場合、他のワード線WL(m≠i)はRSL(m)で選択されて下のロウデコーダ44に接続される。その結果、選択したメモリセル以外の他のメモリセルを通った電流は下のロウデコーダ44に吸い込まれてセンスアンプ61、62には流れない。
【0058】
第2の方式を、図9を参照して説明する。この方式ではビット線BL(j=1,・・・)毎にセンスアンプ61を設け、3組のセンスアンプの61j−1、61、61j+1の出力をセレクタ65によって選択し、この選択した出力がセンスアンプ62を介して外部に出力される。その結果、選択したセル以外の他のセルを通った電流は他のセンスアンプに入り、選択したセンスアンプには入らない。
【0059】
これらの方式により、読出し選択トランジスタを使わずとも、選択性を持たせた読出しができる。各メモリセル2に読出し用に設けられたトランジスタやダイオードがある場合は、これらの特性のばらつき、例えばトランジスタのON抵抗のばらつきが、読出し信号のばらつきになり、問題となっていた。ここで説明した読出し選択トランジスタを使わない方法の場合は、トランジスタやダイオードのばらつきに左右されない利点がある。
【0060】
以上説明したように、第3実施形態においては、セルビット線6はL字型に曲がってTMR素子3の周囲を取り巻いており、セルビット線6の周囲に被覆したヨーク8a、8bの効果と相俟って、TMR素子3において大きな磁場を発生できる。このセル構造では特に、書き込みワード線WLがTMR素子3に最も近くなるため、TMR素子3において最も強い磁場を発生できる。書き込みワード線WLには断面がコの字型のヨーク9を設けることで磁場を強くする。したがって、書き込みに要する電流を小さくするができる。また、図5に示したように、セルビット線6のヨーク8a,8bと、ワード線WLのヨーク9と、TMR素子3の磁化容易軸は同じ方向に形成されるので、TMR素子3の記憶状態は安定となる。またTMR素子3の記憶状態が安定であること、およびメモリセル毎に、セルビット線6と書き込み選択トランジスタ19が設けられていることにより、選択されたメモリセル以外のメモリセルの記録ビットが反転するのを防止することができる。この結果およびTMR素子3の記憶状態が安定であることにより、他のメモリセルの記録ビットを反転させることがなく、誤書き込みを防止することができる。
【0061】
また、ヨーク8a、8bおよびTMR素子3の磁化容易軸方向がほぼ一致しているので、ヨーク8a、8bおよびTMR素子3に一軸磁気異方性を付与する工程を一括して行うことが可能となり、製造工程が簡略化され、製造コストを下げることができる。
【0062】
(第4実施形態)
次に、本発明の第4実施形態による磁気メモリのメモリセルの構成を図7に示す。この第4実施形態による磁気メモリは、図5に示す第3実施形態の磁気メモリの書き込みおよび読み出し兼用のワード線WLを読み出し専用のワード線RWLに置き換えるとともにセルビット線6が第1配線部6aおよび第2配線部6bだけでなく、読み出しワード線RWLの下側に図示しない絶縁膜を介して配置された第3配線部6cを備えるように構成されている。そして、第1乃至第3配線部6a、6b、6cには、それぞれヨーク8a、8b、8cが設けられている。これらのヨーク8a、8b、8cは、磁化容易軸方向がTMR素子3の磁化容易軸方向とほぼ一致するように形成される。
【0063】
この第4実施形態による磁気メモリの読み出し動作は、第3実施形態の磁気メモリの場合と同様にして行う。しかし、書き込み動作は、第1実施形態の場合と同様に、セルビット線6からの電流磁場によって行う。したがって、第1実施形態の場合と同様に、書き込み電流を低減するためには、セルビット線6の第1および第3配線部6a、6cは、TMR素子3の磁化容易軸方向と所定の角度(例えば、45度)をなすように形成することが望ましい。
【0064】
この第4実施形態によれば、セルビット線6には、磁化容易軸方向がTMR素子3の磁化容易軸方向にほぼ一致するヨーク8a、8b、8cが設けられているとともに各メモリセルに書き込み選択トランジスタが設けられているため、TMR素子3の記憶状態は安定となり、さらに選択されたメモリセル以外のメモリセルの記録ビットが反転するのを防止することができる。
【0065】
また、セルビット線6は、第1乃至第3配線部6a、6b、6cがTMR素子3を取り囲むように形成されているとともに、第1乃至第3配線部6a、6b、6cには、ヨーク8a、8b、8cがそれぞれ設けられているので、小さな書き込み電流で大きな磁場を発生することが可能となる。
【0066】
また、ヨーク8a、8b、8cおよびTMR素子3の磁化容易軸方向がほぼ一致しているので、ヨーク8a、8b、8cおよびTMR素子3に一軸磁気異方性を付与する工程を一括して行うことが可能となり、製造工程が簡略化され、製造コストを下げることができる。
【0067】
なお、第4実施形態においては、ワード線RWLは読み出し専用であるため、第3実施形態の書き込みと読み出しを兼ねたワード線WLに比べて薄くすることができ、また、ワード線RWLを覆うヨークが不要となる。
【0068】
なお、この第4の実施形態においては、TMR素子3は第1配線部6aに電気的に接続されるように設けたが、第1配線部6aに接続されず、第3配線部6cに電気的に接続されるように設けても良い。
【0069】
(第5実施形態)
第1および第2実施形態による磁気メモリでは、一つのTMR素子3に二つのトランジスタ17、19が必要であり、その分、各メモリセル2の必要面積が大きくなり、高密度に配置したメモリを作ることが困難である欠点がある。しかし、読出しの選択性をきちんと取れる利点がある。
【0070】
これに対して、第3および第4実施形態による磁気メモリでは、読出し選択トランジスタ17を用いないため、メモリセル2の必要面積はそれほど大きくならない利点がある。しかし、読み出しをクロスポイント型と呼ばれる方法で行うため、回り込み電流があって読出しの選択性をあまり取れない欠点がある。
【0071】
これら両者の利点を併せ持つ磁気メモリを、本発明の第5実施形態として説明する。この第5実施形態による磁気メモリのメモリセルアレイを図8に示す。図8に示すように、本実施形態の磁気メモリにおいては、一つのTMR素子3に一つの書き込み選択トランジスタ19が設けられているが、読み出し選択トランジスタは2個から16個のTMR素子3に一つだけ設けた構成となっている。この結果、読み出しの選択性をある程度確保しつつ、高密度に配置したメモリを作ることができる。図8では、4個のTMR素子3に一つの読み出し選択トランジスタ17を配置している。読み出し時に4個のTMR素子3が同時に選択されるが、それぞれを独立の4個のセンスアンプ60〜60で読み出すため、回り込み電流の影響を受けずに独立して読み出せる。
【0072】
(第6実施形態)
次に、本発明の第6実施形態による磁気メモリの製造方法を説明する。この第6実施形態による製造方法は、図7に示す第4実施形態による磁気メモリを製造するものであり、以下、図7を参照して説明する。
【0073】
まず、p型シリコン基板を用意する。次に、書き込み選択トランジスタ19としてNチャンネルMOSFETを通常のCMOSプロセスで形成する。このとき、ゲート電極はそのまま書き込み選択ワード線WWLとして働くよう形成する。ドレインとソース上に電極7を形成し、コモン線20を配線する。
【0074】
次に、絶縁層(図示せず)を形成する。その後、第3配線部6cを形成する。第3配線部6cに用いる材料は、Al、Al−Cu、Cu、Ag等が考えられるが、ここではダマシン法で形成したCuが用いられている。第3配線部6cには強磁性体であるNiFeからなるヨーク8cが被覆された配線となっている。なお、ヨーク8cにはバリアメタルとしてNiFeの外側にTiN、NiFeとCuの間にはCoFeが挿入されている。
【0075】
次に、図示しない絶縁膜を形成し、その上に読み出しワード線RWLを形成し、更に図示しない絶縁膜を被覆し、この絶縁膜を、読み出しワード線RWLが露出するように平坦化する。次に、TMR積層膜3を堆積する。このTMR積層膜3は、ワード線WL上に、膜厚20nmのTaからなる下部配線接続層、膜厚5nmのRuからなるバッファ層、膜厚6nmのIrMnからなる反強磁性層、膜厚2nmのCo90Fe10からなる磁化固着層、膜厚1nmのAlからなるトンネルバリア層、膜厚3nmのNi79Fe21からなる磁化自由層、膜厚2nmのCuからなる表面保護層、膜厚20nmのRuからなるエッチングストップ層兼表面保護層、Taからなる上部接続層を順次積層することによって得られる。
【0076】
次に、TiNまたはTaをハードマスクとして用いて、TMR積層膜3を所定の形状にエッチング、例えば0.24×0.48μmの長方形にし、TMR素子3を形成する。その後、層間絶縁膜(図示せず)を堆積する。TMR素子3の横に、垂直方向のセルビット線6bを形成するための直方体のビアホールを上記層間絶縁膜に形成する。このビアホールを形成している垂直面4面の内、3面を強磁性体であるNiFeで被覆する。これが垂直方向のセルビット線6bのヨーク8bとして働く。NiFeからなるヨーク8bの外側にバリアメタルとして、TiNが挿入されている。続いて上記ビアホールをダマシン法を用いてCuで埋める。NiFeとCu層との間にはCoFeが挿入されている。
【0077】
次に、TMR素子3の上部接続層とコンタクトが取れるよう上記層間絶縁膜をエッチングする。共用ビット線BLおよびセルビット線6aを形成するためにCuからなる金属膜を、TMR素子3の上部接続層と接続するように、また垂直方向のセルビット線6bと接続するように堆積する。続いて、共用ビット線BLおよびセルビット線を形成するようにCuからなる金属膜をエッチングする。平面配置で見ると、各TMR素子3の間に共用ビット線BLを配置し、そこから分岐したセルビット線6が各TMR素子3の直上を通るよう配置する。
【0078】
次に、セルビット線6aの最上層と側面を強磁性体であるNiFe膜で被覆し、ヨーク8aが形成された配線とする。なお、NiFeからなるヨーク8aとセルビット線6aとの間にはバリアメタルとしてCoFe膜が挿入されている。また、バリアメタルとしては、CoFeの代わりにTa、TiN、TaN、W、WNなども使い得る。なお、ヨーク8aの上にTiNからなるバリアメタルを形成しても良い。
【0079】
ヨーク8aを形成した後、図示しない保護層を堆積する。続いて、磁場中でアニールし、TMR素子3と、ビット線ヨーク8a、8b、8cに一括して同じ方向に一軸磁気異方性を付与する。磁場の方向は、図7で示した方向であり、アニール条件は、例えば、285℃で1時間、6.5kOeの磁場中で行う。この磁場中でのアニール直後は、磁化自由層の磁化方向とヨークの残留磁化から磁化自由層にかかる磁界とは反平行になっている。すなわち、磁化自由層の磁化は不安定な状態に置かれている。そこで、メモリとして出荷する前に、書き込み配線に電流を流して“0”の状態に初期化することが望ましい。この工程によって、磁化自由層の磁化とヨークの残留磁化から磁化自由層にかかる磁場とが平行になる。
【0080】
TMR素子3は重要不可欠な要素としてトンネルバリア層がある。これは1〜2nmと薄い絶縁層であり、静電放電破壊に弱い。従来の磁気メモリの製造プロセスにおいては、典型的にはTMR素子3の上部接続層を露出させるために層間絶縁膜をドライエッチング、例えばリアクティブイオンエッチング(RIE)する際に、図14の矢印に示すように、表面に溜まった電荷がTMR素子3を通って放電し、トンネルバリア層を静電放電破壊する問題があった。これは、TMR素子3から読出し選択トランジスタ17、或いはワード線を通って基板への電流パスがあるためである。しかし、第1乃至第6実施形態による磁気メモリのメモリセル構造では、図13に示すように、TMR素子3毎に、TMR素子3の脇にセルビット線6bが基板に向けて通っており、このセルビット線6bの方がTMR素子3に比べて抵抗が低い。このため、表面に溜まった電荷はTMR素子3を通らずにセルビット線6bを通って放電される。その結果、作製プロセス中のトンネルバリア層の破壊が起きにくい。
【0081】
なお、上記実施形態で説明した以外の構造のTMR素子を用いても良い。例えば、この構造のTMR素子は、ワード線WL上に、膜厚5nmのTaからなる下部配線接続層、膜厚5nmのNiFeCrからなるシード層、膜厚12nmのPtMnからなる反強磁性層、膜厚2nmのCo90Fe10からなる磁化固着層、膜厚0.8nmのRuからなる中間層、膜厚2nmのCo90Fe10からなる磁化固着層、膜厚1nmのAlからなるトンネルバリア層、膜厚3nmのNi81Fe19からなる磁化自由層、膜厚10nmのTaからなる保護層、Alからなる上部配線接続層を順次積層することによって得られる。この構造は、磁化固着層として交換結合膜、すなわちシンセティック・反強磁性層を用いた場合である。
【0082】
【発明の効果】
以上述べたように、本発明によれば、書き込みの際に誤書き込みを防止することができ、メモリセルの記憶状態を安定化することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による磁気メモリのメモリセルの構成を示す断面図。
【図2】第1実施形態による磁気メモリのメモリセルアレイを示す配線図。
【図3】本発明の第2実施形態による磁気メモリのメモリセルの構成を示す断面図。
【図4】第2実施形態による磁気メモリのメモリセルアレイを示す配線図。
【図5】本発明の第3実施形態による磁気メモリのメモリセルの構成を示す断面図。
【図6】第3実施形態による磁気メモリのメモリセルアレイを示す配線図。
【図7】本発明の第4実施形態による磁気メモリのメモリセルの構成を示す断面図。
【図8】本発明の第5実施形態による磁気メモリのメモリセルアレイを示す配線図。
【図9】第3実施形態において、選択したメモリセル以外の他のメモリセルからの回り込み電流をセンスしないようにする他の方式を説明する図。
【図10】書き込み電流の流し方を説明する図。
【図11】書き込み電流の流し方を説明する図。
【図12】誤書き込みが起きないことを説明する図。
【図13】製造工程中にTMR素子に静電絶縁破壊が生じるのを防止することができることを説明する図。
【図14】製造工程中にTMR素子に静電絶縁破壊が生じるのを説明する図。
【図15】従来の磁気メモリの書き込み配線を示す図。
【図16】従来の磁気メモリの問題点を説明する図。
【符号の説明】
2 メモリセル
3 TMR素子
6 セルビット線
6a 第1配線部
6b 第2配線部
7 接続プラグ
8 ヨーク
8a ヨーク
8b ヨーク
9 ヨーク
14 引き出し電極
15 接続プラグ
17 読み出し選択トランジスタ
18 接続プラグ
19 書き込み選択トランジスタ
20 コモン線
BL 共用ビット線
WL 書き込みワード線
RWL 読み出し選択ワード線
WWL 書き込み選択ワード線

Claims (6)

  1. 磁気抵抗効果素子と、ビット線から枝分かれし前記磁気抵抗効果素子に書き込み電流を流すセルビット線と、このセルビット線に設けられ、前記磁気抵抗効果素子と同じ磁化容易軸方向を有するヨークと、前記セルビット線にソース・ドレインの一方が接続する書き込み選択トランジスタとを、それぞれ有するメモリセルを備えたことを特徴とする磁気メモリ。
  2. 前記セルビット線は、前記磁気抵抗効果素子の一端と電気的に接続される第1配線部と、絶縁膜を介して前記磁気抵抗効果素子の側部に沿って設けられ前記書き込み選択トランジスタのソース・ドレインの一方に接続される第2配線部とを有しており、前記第1および第2配線部に前記ヨークが設けられていることを特徴とする請求項1記載の磁気メモリ。
  3. 前記磁気抵抗効果素子の他端には書き込み電流が流れるワード線が電気的に接続されていることを特徴とする請求項2記載の磁気メモリ。
  4. 前記磁気抵抗効果素子の一端には読み出し用のワード線が電気的に接続され、前記セルビット線は、前記ビット線から枝分かれした第1配線部と、絶縁膜を介して前記磁気抵抗効果素子の側部に沿って設けられ一端が前記第1配線部に接続される第2配線部と、一端が前記第2配線部の他端に接続され、他端が前記書き込み選択トランジスタのソース・ドレインの一方に接続され、前記磁気抵抗効果素子を挟んで前記第1配線部と略平行に設けられる部分を有する第3配線部とを有し、前記磁気抵抗効果素子の他端は前記第1配線部または第3配線部の一方に電気的に接続され、前記第1および第2配線部に前記ヨークが設けられ、前記第3配線部には前記磁気抵抗効果素子と同じ磁化容易軸方向を有する第2ヨークが設けられていることを特徴とする請求項1記載の磁気メモリ。
  5. 前記メモリセルは、前記磁気抵抗効果素子の他端に引き出し電極を介してソース・ドレインの一方が接続される読み出し選択トランジスタを備えていることを特徴とする請求項2記載の磁気メモリ。
  6. 前記引き出し電極の前記磁気抵抗効果素子と反対側に絶縁膜を介して書き込み電流が流れるワード線が形成されていることを特徴とする請求項5記載の磁気メモリ。
JP2002318973A 2002-10-31 2002-10-31 磁気メモリ Expired - Fee Related JP3980990B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318973A JP3980990B2 (ja) 2002-10-31 2002-10-31 磁気メモリ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318973A JP3980990B2 (ja) 2002-10-31 2002-10-31 磁気メモリ

Publications (2)

Publication Number Publication Date
JP2004153182A JP2004153182A (ja) 2004-05-27
JP3980990B2 true JP3980990B2 (ja) 2007-09-26

Family

ID=32461968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318973A Expired - Fee Related JP3980990B2 (ja) 2002-10-31 2002-10-31 磁気メモリ

Country Status (1)

Country Link
JP (1) JP3980990B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122259A1 (ja) * 2004-06-10 2005-12-22 Nec Corporation 磁気メモリ
JP4569231B2 (ja) 2004-09-07 2010-10-27 Tdk株式会社 磁気メモリ及びその製造方法
JP2006196687A (ja) 2005-01-13 2006-07-27 Tdk Corp 磁気メモリ
KR100684893B1 (ko) * 2005-03-28 2007-02-20 삼성전자주식회사 자기 메모리 장치 및 그 제조방법
JP5050318B2 (ja) * 2005-05-31 2012-10-17 Tdk株式会社 磁気メモリ
KR100785008B1 (ko) * 2006-02-22 2007-12-11 삼성전자주식회사 자기 메모리 장치와 데이터 기록 방법
JP5553917B2 (ja) * 2012-01-30 2014-07-23 株式会社QuantuMag Consultancy Mtj素子及びその製法、並びにmramデバイス
JP6712804B2 (ja) * 2016-11-18 2020-06-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
WO2019087371A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ装置、及び制御情報送信方法
JP6499798B1 (ja) 2018-09-28 2019-04-10 Tdk株式会社 磁気記録アレイ
US10923169B2 (en) 2018-09-28 2021-02-16 Tdk Corporation Magnetic recording array and magnetic recording device

Also Published As

Publication number Publication date
JP2004153182A (ja) 2004-05-27

Similar Documents

Publication Publication Date Title
US7266011B2 (en) Magneto-resistance effect element and magnetic memory
JP5193419B2 (ja) スピン注入磁気ランダムアクセスメモリとその書き込み方法
US6404674B1 (en) Cladded read-write conductor for a pinned-on-the-fly soft reference layer
US7164599B2 (en) Data read method of magnetic random access memory
US6538920B2 (en) Cladded read conductor for a pinned-on-the-fly soft reference layer
US6473336B2 (en) Magnetic memory device
US8796793B2 (en) Magnetoresistive element, magnetic random access memory and method of manufacturing the same
JP2017112351A (ja) 磁気メモリ
JP5677347B2 (ja) 磁気抵抗素子及び磁気メモリの書き込み方法
JP2002110933A (ja) 半導体記憶装置及びその製造方法
US8355272B2 (en) Memory array having local source lines
US20170110653A1 (en) Magnetic memory devices
KR20030074469A (ko) 자기 메모리 디바이스와 정보 저장 디바이스
US6794695B2 (en) Magneto resistive storage device having a magnetic field sink layer
JP3980990B2 (ja) 磁気メモリ
JP2006278645A (ja) 磁気メモリ装置
JP2004111887A (ja) 磁気抵抗効果素子および磁気メモリデバイスならびにそれらの製造方法
JP4729836B2 (ja) 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法
JP3898556B2 (ja) 磁気ランダムアクセスメモリ
US6894919B2 (en) Magnetic random access memory
JP2006196687A (ja) 磁気メモリ
JP2006134363A (ja) 磁気ランダムアクセスメモリ
JP2006344653A (ja) 磁気ランダムアクセスメモリ
JP4720067B2 (ja) 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法
JP4000000B2 (ja) 磁気ランダムアクセスメモリ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees