WO2004088703A1 - 冷極電子源と、これを用いたマイクロ波管及びその製造方法 - Google Patents

冷極電子源と、これを用いたマイクロ波管及びその製造方法 Download PDF

Info

Publication number
WO2004088703A1
WO2004088703A1 PCT/JP2004/004245 JP2004004245W WO2004088703A1 WO 2004088703 A1 WO2004088703 A1 WO 2004088703A1 JP 2004004245 W JP2004004245 W JP 2004004245W WO 2004088703 A1 WO2004088703 A1 WO 2004088703A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
electron source
cold cathode
electrode
cathode electron
Prior art date
Application number
PCT/JP2004/004245
Other languages
English (en)
French (fr)
Inventor
Natsuo Tatsumi
Takahiro Imai
Original Assignee
Sumitomo Electric Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd. filed Critical Sumitomo Electric Industries Ltd.
Priority to JP2005504304A priority Critical patent/JPWO2004088703A1/ja
Priority to EP04723735A priority patent/EP1594150B1/en
Publication of WO2004088703A1 publication Critical patent/WO2004088703A1/ja
Priority to US11/211,665 priority patent/US7391145B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/04Cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/06Electron or ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • H01J3/022Electron guns using a field emission, photo emission, or secondary emission electron source with microengineered cathode, e.g. Spindt-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond

Definitions

  • the present invention relates to a cold cathode electron source, a microphone mouth tube using the same, and a method of manufacturing the same.
  • the present invention relates to a cold cathode electron source that emits an electron beam, a microphone mouthpiece using the same, and a method for manufacturing the same.
  • microwave tubes such as traveling wave tubes (TWTs) and klystrons use a focused hot cathode electron source or a cold cathode electron source having a conical microemitter.
  • the cold cathode is disclosed in, for example, the following Non-Patent Document 1.
  • the cold cathode (force source electrode and emitter (electron emission electrode)) is generally made of a heat-resistant metal material such as tungsten or molybdenum, or a semiconductor material such as silicon.
  • a method of reducing the capacitance between the gate electrode that adjusts the amount of electrons emitted from the emitter and the capacitance between the emitter and the cathode electrode is generally used.
  • the insulating layer 52 is thickened to separate the gate electrode 54 and the cathode electrode 56 so that the gate electrode 54 and the cathode The capacitance between the electrodes 56 is reduced (see FIG. 9).
  • the cold cathode electron source 50 employs an emitter shape in which only a part of the upper end of the emitter 58 is sharpened and the remaining most remains a thick cylinder, so that the current flowing through the emitter 58 is reduced. The density is reduced to prevent the emitter 58 from melting.
  • Patent Document 1 Another example of reducing the capacitance between the gut electrode and the cathode electrode is a cold cathode electron source disclosed in Patent Document 1 below.
  • the cathode electron source 60 the capacitance between the gate electrode 66, the emitter 62 and the force source electrode 68 is increased by gradually increasing the thickness of the insulating layer 64 as the distance from the emitter 62 increases. Reduction has been achieved (see Figure 10).
  • Patent Document 1 Japanese Patent Publication No. JP-A-9-182248
  • Patent Document 2 Japanese Patent Publication No. JP-A-2001-202871
  • Patent Document 3 Japanese Patent Publication No. JP-A-8-255558
  • Non-patent Document l Nicol E. McGruer, A Th in—1 l mrie ⁇ d—Em ission C athode, '"J ornal of Applied Ph ysics", 39 (1968), p. 3504 -35
  • Non-Patent Document 2 Nicole E. McGrue r, Prospec ts sfo r a 1— THz Va c uum Mic r o e l e c t r on
  • the above-mentioned conventional cold cathode electron source has the following problems. That is, in the cold cathode electron source 50 shown in FIG. 9, although the capacitance between the force source electrode 56 and the gate electrode 54 is reduced, the capacitance between the emitter 58 and the gate electrode 54 is reduced.
  • the cold cathode electron source 50 was not able to cope with a high-frequency microwave tube, because no consideration was given. It is also known that increasing the current density of the current flowing through the emitter is effective for increasing the output of the microwave tube. (4) Since the heat conductivity of the emitter is low and reaches the heat dissipation limit (melting limit) at a current density of about 10 to 10 OA / cm 2 , it has been difficult to increase the current density further.
  • the present invention has been made in order to solve the above-mentioned problems, and has been made of a cold cathode electron source that achieves both high frequency and high output, a microwave tube using the same, and a microwave tube using the same. It is intended to provide a manufacturing method.
  • the cold cathode electron source comprises a flat force source electrode made of diamond and having a plurality of finely projecting emitters on the surface thereof, and an emitter surrounding the cathode electrode surface.
  • the amount of electrons emitted from the emitter of the force source electrode is controlled by controlling the voltage applied to the gate electrode.
  • the emitter is a cold cathode electron source to be adjusted.
  • the emitter has a sharpened tip with a substantially conical shape. When the height of the sharpened portion is H and the diameter of the bottom surface of the sharpened portion is L.
  • the aspect ratio R represented by is 4 or more.
  • the tip of the emitter is sharpened so that the aspect ratio R is 4 or more.
  • the aspect ratio R is a ratio of the height H of the sharpened portion of the emitter to the diameter L of the bottom surface, and indicates the sharpness of the emitter. That is, in the emitters having the same length, the emitter having an aspect ratio of 4 or more has the bottom surface of the sharpened portion lower than the emitter having an aspect ratio of less than 4. Therefore, an emitter having an aspect ratio of 4 or more has a smaller capacitance between the emitter and the gate electrode as far away from the gate electrode. Therefore, the cold cathode electron source according to the present invention can support high frequencies.
  • the cathode material of the cold cathode electron source diamond having a high melting point and thermal conductivity is used instead of a conventional cathode material such as tungsten-silicon.
  • the insulating layer is made of diamond. In this case, since the thermal expansion coefficients of the insulating layer and the force electrode are the same or equivalent, the occurrence of peeling at the interface between the insulating layer and the cathode electrode due to a temperature change is suppressed. Further, by rubbing diamond having a high thermal conductivity into the insulating layer, heat emitted from the emitter can be absorbed and cooling of the emitter can be promoted.
  • the gate electrode is formed of diamond.
  • the thermal expansion coefficients of the gate electrode and the insulating layer are the same or equal, the occurrence of peeling at the interface between the gate electrode and the insulating layer due to a temperature change is suppressed.
  • diamond having high thermal conductivity for the gate electrode deformation of the gate electrode due to heat is suppressed.
  • diamond has a high melting point, the occurrence of melting of the gate electrode is suppressed.
  • the density of the Emitta on force Sword surface is preferably 1 0 7 cm 2 or more. In this case, the amount of electrons emitted from the cathode electrode can be increased by increasing the density of the emitter.
  • the radius of curvature at the tip of the emitter is 100 nm or less. In this case, the emission efficiency of the electrons emitted from the emitter is improved.
  • the insulating layer and the gate electrode have an electron emission hole having a diameter larger than the diameter of the emitter.
  • Each emitter emits the electron emission hole so as not to contact the insulation layer and the gate electrode. It is preferable to be arranged inside the device in order to reduce the capacitance. In this case, the short-circuit of the emitter is greatly suppressed.
  • a microwave tube according to the present invention is characterized by using the cold cathode electron source described above. Since the above-mentioned cold cathode electron source can cope with high frequency and high output, when this cold cathode electron source is used for a microwave tube, the frequency and output can be improved.
  • a method for manufacturing a cold cathode electron source according to the present invention comprises: a flat force source electrode made of diamond, having a plurality of fine projection emitters on its surface; An insulating layer laminated around the emitter and a gate electrode laminated on the insulating layer. The amount of electrons emitted from the emitter of the force source electrode to the outside is determined by the applied voltage of the good electrode.
  • a method for manufacturing a cold cathode electron source comprising: a step of stacking; and a step of etching and removing a film covering an emitter.
  • this method of manufacturing a cold cathode electron source an emitter having an aspect ratio of 4 or more is covered with a coating film, and then an insulating layer and a gate electrode are stacked therearound. There is no need to precisely position the emitter as in the manufacturing method used. Therefore, the insulating layer and the gate electrode can be laminated around the emitter by a simple method. '' Brief description of the drawings
  • FIG. 1 is a schematic perspective view of a cold cathode electron source according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a main part (X) of the cold cathode electron source of FIG.
  • FIG. 3A is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 3B is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 3C is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 3D is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 7A is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 4A is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 4B is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 4C is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 4D is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 4E is a diagram showing a manufacturing procedure of the cold cathode electron source of FIG.
  • FIG. 5 is a diagram showing an example of an emitter shape.
  • FIG. 6 is a diagram showing an example of the arrangement of electron emission holes.
  • FIG. 7 is a schematic sectional view showing a microphone mouthpiece according to an embodiment of the present invention.
  • FIG. 8A is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8B is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8C is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8D is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8E is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8F is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 8G is a diagram showing a different manufacturing procedure of the cold cathode electron source.
  • FIG. 9 is a diagram showing an example of a conventional cold cathode electron source.
  • FIG. 10 is a diagram illustrating an example of a conventional cold cathode electron source.
  • FIG. 1 is a schematic configuration diagram of the cold cathode electron source 10 according to the embodiment of the present invention.
  • the cold cathode electron source, 10 has a circular flat force source electrode 12, a circular flat insulating layer 14 formed on the force source electrode 12, and a And a circular plate-shaped gate electrode 16, which emits electrons toward an annular focusing electrode 18 facing the device at a predetermined distance.
  • Electron emission holes 20 arranged in a matrix are formed in the insulating layer 14 and the gate electrode 16. An emitter described later is formed on the surface of the cathode electrode 12 corresponding to the position of the electron emission hole 20.
  • the force source electrode 12 is electrically connected to the negative pole of the external power supply V1.
  • Gate electrode 16 is electrically connected to external power supply V2.
  • the focusing electrode 18 is formed by an emitter formed on the surface of the force source electrode 12. Electrons are emitted toward. At this time, the voltage applied to the gate electrode 16 is changed by the external power supply V 2 to change the electric field around each electron emission hole 20, thereby blocking or emitting electrons emitted from the electron emission hole 20. Adjustment of volume is performed.
  • the cathode electrode 12 and the gate electrode 16 are made of conductive diamond, and the insulating layer 14 is made of insulating diamond. As described above, since the cathode electrode 12, the gate electrode 16 and the insulating layer 14 are made of the same diamond material, the coefficients of thermal expansion of the elements 12, 14, and 16 are substantially the same. . Therefore, even if the temperature environment of the cold cathode electron source 10 changes over a wide range, the occurrence of separation at the boundary between the elements 12, 14, and 16 is suppressed.
  • breakdown field of S i 0 2 is used for the material of the conventional insulating layer is about 1 0 5 cm / at most 1 from V 0 7 cm / V
  • the insulating Yabu ⁇ voltage diamond 1 0 7 c Since it is as high as mZV or more, the insulating layer 14 made of diamond is not easily destroyed even if the voltage between the gate voltage and the cathode voltage is high.
  • diamond is doped with boron, phosphorus, sulfur, lithium, or the like.
  • a polycrystalline diamond having a graphite component at a crystal grain boundary may be used.
  • a surface conductive layer may be formed by performing a hydrogen termination treatment on the diamond surface.
  • a graphite component may be formed in the diamond by ion implantation or the like to form a current passage region. It should be noted that “diamond” in the present specification includes single-crystal diamond and polycrystalline diamond.
  • Figure 2 shows the main part of Figure 1 (X)
  • the emitter 2 4 formed on the force source electrode 12 Is composed of a conical sharpened portion 24 A on the distal end side and a cylindrical non-sharpened portion 24 B on the fixed end side.
  • the emitter 24 is formed by etching the force electrode 12 by a method described later, and is made of a conductive diamond like the cathode electrode.
  • the length H of the sharpened portion 24 A is 4 ⁇ m
  • This aspect ratio R is a value indicating the sharpness of the emitter 24. The larger this value is, the sharper the emitter 24 is.
  • the conical slope of the emitter 24 is smaller than that of the conventional emitter (see reference numeral 25 in the figure). ⁇ "Because it is farther from the electrode 16, the capacitance between the emitter 24 and the gate electrode 16 is reduced by that much.
  • tungsten-silicon which is the conventional emitter material (cathode material) in, since the current density of the current flowing in the emitter melts at 1 0 ⁇ 1 0 0 AZ cm 2 or so, it is been made very difficult to ⁇ scan Bae transfected ratio of the emitter 4 or more,
  • diamond having excellent thermal conductivity and chemical stability is used as a material of the emitter, even if the current density of the current flowing through the emitter 24 of the force source electrode 12 is increased, the diamond is hardly damaged.
  • the emitter 24 and the cathode electrode 12 are made of diamond, electron emission occurs at a low applied voltage. This is due to the low work function of diamond. In this case, the heat generated by the emitter 24 is small, and the power consumption for electron emission is small.
  • the emitter 24 composed of a diamond having high spatter damage resistance can achieve a long life.
  • an emitter that combines the sharpened portion 24 A and the non-sharpened portion 24 B The height D of the heater 24 and the thickness of the insulating layer 14 are both about 8 ⁇ . As described above, since the thickness of the insulating layer 14 is large, the capacitance between the force source electrode 12 and the gate electrode 16 is further reduced. Furthermore, since the thickness of the non-sharpened portion 24 ⁇ is sufficiently large and the current density of the current flowing in the emitter 24 is reduced, the dissolution of the emitter 24 is further suppressed.
  • the radius of curvature of the tip of the emitter 24 is 20 nm or less. As described above, since the radius of curvature of the tip of the emitter 24 is 100 nm or less, the electric field is concentrated, and the emission efficiency of the electrons emitted from the emitter is improved. Further, the distance between the emitters 24 was 3 ⁇ , and the density of the emitters 24 on the surface of the cathode electrode 12 was approximately 11 11 thousand / cm 2 . As described above, since the density of the emitter 24 is high in the cold cathode electron source 10, many electrons are emitted from the cathode electrode 12. Further, since the emitter 24 is arranged so as not to be in contact with the insulating layer 14 and the gate electrode 16 inside the electron emission hole 20, the short circuit of the emitter is largely suppressed.
  • a diamond plate 30 as a base of a force sword substrate is manufactured by using a vapor phase synthesis method using a hot filament CVD method, a microwave CVD method, or a high-pressure synthesis method. Then, the diamond plates 3 0, by etching with RI beta method using a mixed-gas of ⁇ 4 and oxygen to form Emitta 2 4 having the above-described configuration (see FIG. 3 Alpha).
  • the method of forming the emitter is not limited to the RIE method, and may be, for example, an ion beam etching method.
  • the Sio 2 film (film) 32 is coated on the surface of the emitter 24 by sputtering (see FIG. 3B).
  • insulating diamond is laminated on the surface of the force source electrode 12 using a hot filament CVD method, and an insulating layer 14 lower than the height of the emitter 24 covered with the SiO 2 film 32 is formed.
  • a conductive diamond using hot Fuiramen bets CVD method Emitta coated with S i 0 2 film 3 2 2 2
  • the gate electrodes 16 are formed by laminating the layers 4 so that they will not be buried (see Fig. 3D).
  • the insulating layer 14 and the gate electrode 16 can be formed with relatively poor positional accuracy as compared with the conventional manufacturing method using photolithography. it can.
  • a method for manufacturing a cold cathode electron source using photolithography will be described.
  • 4A to 4E are diagrams showing a method of manufacturing a cold cathode electron source using photolithography. In this method, first, an insulating layer 14 is laminated on the entire cathode electrode 12 so that the emitter 24 is buried (see FIG. 4A). Then, a metal film 16 A to be the gate electrode 16 is laminated on the insulating layer 14, and a photoresist 33 is further laminated thereon (see FIG. 4B).
  • the portions other than the emitter region 33a are exposed and developed to remove the photoresist 33 in the emitter region 33a (see FIG. 4C).
  • the metal film 16A and the insulating layer 14 in the emitter region 33a are removed by etching using an appropriate etching solution or etching gas (see FIG. 4D).
  • the photoresist 33 is removed to complete the manufacture of the cold cathode electron source 10 (see FIG. 4E).
  • force Sword electrode 12 It is difficult to manufacture unless the material is different from that of diamond. In particular, when diamond is used for the insulating layer 14, it is difficult to obtain a sharp emitter 24 because the etching selectivity between the diamond insulating layer 14 and the diamond emitter 24, which differ only in the dopant, is low. It is. Further, in the method of manufacturing the cold cathode electron source 10 using photolithography, the position of the emitter region 33a is determined. This requires advanced positioning technology on the order of sub ⁇ or less. Such high-precision positioning requires an expensive exposure apparatus and extremely low productivity. - How, according to the manufacturing method shown in FIG.
  • the insulating layer 14 and the gate electrode 16 can be stacked around the emitter 24 by a relatively simple method.
  • the structure becomes denser than that of an insulating layer made of a conventional material, and the insulating layer is broken due to high voltage. The rupture strength of the soil is improved.
  • the film covering the Emitta 2 4 is not limited to S I_ ⁇ 2 film, for example, it may be an oxide film such as A 1 2 ⁇ 3 film.
  • the cold cathode electron source 10 since the cold cathode electron source 10 has the emitter 24 made of diamond having an aspect ratio R of 4, high output can be achieved. In addition, the frequency is increased by reducing the capacitance between the force source electrode 12 and the gate electrode 16.
  • the shape of the emitter 24 is not limited to the shape described above. If the thickness of the insulating layer 14 is not increased, as shown in FIG. It may have a tta shape.
  • the positional relationship between the electron emission holes is not limited to the matrix arrangement as described above, but may be a point-symmetric arrangement as shown in FIG. That is, the emitter 24 away from a specific point (center of the emitter 24 C) on the force source electrode is shifted from the corresponding electron emission hole 20 by an amount corresponding to the distance from the specific point. I have. The deviation is such that as the emitter 24 moves away from the specific point, the relative position of the corresponding electron emission hole 20 to the emitter 24 moves away from the specific point.
  • the electron emission holes 20 of the gate electrode 16 are arranged as described above and a positive voltage is applied to the gate electrode 16, the electrons emitted from the emitter 24 are reduced by the gate electrode 16 near the emitter 24. Greatly affected by the electric field at the edge The direction is curved. Therefore, the electrons emitted from the electron emission holes 20 are focused in the above-described specific point direction (electrostatic lens effect), and the current density of the current obtained from the cold cathode electron source 10 is improved.
  • the manufacturing method using photolithography is used instead of the manufacturing method using the above-described coating (see FIGS. 3A to 3E). Use the method (see Fig. 4A to Fig. 4E).
  • FIG. 7 is a schematic configuration diagram showing a microwave tube 34 using the cold cathode electron source 10.
  • the microwave tube 34 electrons emitted from the surface 12 a of the cathode electrode 12 of the cold cathode electron source 10 are converted into a Wehnelt electrode 36, an anode 38, and a cold cathode.
  • the light is focused by the electric field formed by the electron source 10, the diameter decreases as the distance from the cold cathode electron source 10 increases, and passes through the center hole of the anode 38.
  • the electron flow (electron beam) is affected by the magnetic lines of force created by the magnet 40, passes through the inside of the spiral 42 while being focused to a constant beam diameter, and reaches the collector 44.
  • the input electromagnetic wave and the electron beam traveling along the spiral 42 interact with each other to convert DC energy in the electron beam into electromagnetic wave energy and amplify it.
  • the electron beam is modulated at a high frequency, an amplified signal having an excellent SZN ratio can be obtained.
  • the cold cathode electron source 10 When the cold cathode electron source 10 is used for the microwave tube 34, the cold cathode electron source 10 can cope with high frequency and high output as described above. Frequency and output can be improved.
  • the maximum frequency at which a kW-class output can be output is about 100 GHz, and the gyrotron can output kW at about 300 GHz.
  • the capacitance of the cold-cathode electron source 10 emitter is reduced to about 1/4 by making the emitter's aspect ratio 4 or more, even if the modulation frequency of the electron beam is four times that of the conventional one, However, power loss can be suppressed to the same extent as before. Therefore, 400 GHz, which is difficult to realize even with the conventional gyrotron
  • the frequency and output of the microwave tube 34 can be improved up to the high frequency and the high output region corresponding to the high frequency.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the aspect ratio R of the emitter 24 is not limited to 4, and may be a value larger than 4.
  • the frequency of the cold cathode electrode can be further increased.
  • the cold cathode electron source 10 can be used not only for the microwave tube 34 but also for any electron emission device requiring high frequency and high output, such as a CRT and an electron source for electron beam exposure.
  • Example 1 As an example, a cathode electrode and an emitter were made of conductive diamond. The method is described below.
  • a boron-doped diamond thin film was homoepitaxially grown on a (100) -oriented Ib single-crystal diamond using a microwave plasma CVD method.
  • the conditions for the film formation are as follows.
  • the flow rate of hydrogen gas (H 2 ) is 100 sccm, and the ratio of CH 4 to H 2 is 6: 100.
  • Diborane gas (B 2 H 6 ) was used as the boron (element symbol: B) doping gas.
  • the flow ratio between this diborane gas and CH 4 gas is 167 ppm.
  • the combined pressure at this time is 40 Torr.
  • the frequency of the microwave used in this example was 2.45 GHz, the output was 300 W, and the sample temperature during the diamond synthesis was 830.
  • the thin film after synthesis had a thickness of 3 ⁇ .
  • the diamond was etched to form an emitter.
  • 0.5 ⁇ of Al was formed by sputtering, and dots of 1.5 pm in diameter were formed by photolithography.
  • the resulting emitter had a width (L) of 0.9 ⁇ at the bottom of the sharpened portion, a height (D) of about 8 ⁇ , and a height ( ⁇ ) of the inclined portion of 4 ⁇ . That is, the aspect ratio R was 4.4.
  • the distance between the emitters was 3 ⁇ , and the density was about 11 million / cm 2 .
  • Example 2 As an example, a cold cathode electron source used for a microwave tube was manufactured. The method is described below.
  • a phosphorus (element symbol: P) -doped diamond thin film was formed on a (111) -oriented Ib single-crystal diamond substrate by microwave plasma CVD.
  • the synthesis conditions were as follows: a flow rate of hydrogen gas was 400 sccm, and the ratio of CH 4 to H 2 was 0.075: 100. PH 3 (phosphine) was used as the doping gas. Name you, the flow rate ratio of PH 3 and CH 4 was l OOO p pm.
  • the synthesis pressure was 80 Torr, the microphone mouth wave output was 500 W, and the sample temperature during the synthesis was 900 ° C.
  • the thickness of the synthesized thin film was 1 ⁇ .
  • the diamond was etched to form an emitter.
  • A1 was formed into a film having a thickness of 0.5 ⁇ by sputtering, and dots having a diameter of 2.5 ⁇ were formed by photolithography.
  • the shape of the formed emitter was such that the base width (L) was 1.2 ⁇ , the height of the emitter (D) and the height of the inclined part ( ⁇ ) were about 5 ⁇ . That is, the side surface of this emitter is almost inclined from the top to the bottom of the emitter, and the aspect ratio R is about 4.2.
  • a Si ⁇ 2 film was formed only on the emitter surface using a sputtering method.
  • the film forming procedure will be described in detail with reference to FIGS. 8A to 8G.
  • the surface of the emitter 24 is coated with a SiO 2 film (coating) 32 a (see FIG. 8A).
  • the resist 32 b in an oxygen plasma etched to out dew top part of S i 0 2 32 a (see FIG. 8 C).
  • a Mo resist 32c is formed thereon by sputtering (see FIG. 8E).
  • a boron-doped diamond film was formed to a thickness of 0.2 ⁇ to form a gate electrode.
  • the diameter (G) of the electron emission hole in the gate electrode was about ⁇ .
  • a control electrode was formed by forming a film of Ti / Pt / Au on the conductive diamond formed as described above, and attached as an electron source 10 to the microwave tube 34 shown in Fig. 7. .
  • An electron beam of 150 AZcm 2 was obtained stably from the electron source 10 in continuous operation. The electron beam interacted with the input signal while passing through the spiral (slow-wave circuit) 42 and output an amplified signal.
  • a cold cathode electron source that achieves both high frequency and high output, a microphone mouthpiece using the same, and a method of manufacturing the same are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

糸田 »
冷極電子源と、 これを用いたマイク口波管及びその製造方法 技術分野
【0 0 0 1〗 本発明は、 電子ビームを放出する冷陰極電子源と、 これを用いた マイク口波管及びその製造方法に関するものである。
背景技術
【0 0 0 2】 従来、 進行波管 ( TWT ) やクライストロンなどのマイクロ波管 には、 集束型の熱陰極電子源や円錐状の微小ェミッタを有する冷陰極電子源が用 いられており、 冷陰極は例えば下記非特許文献 1等に開示されている。 この冷陰 極 (力ソード電極及ぴェミッタ (電子放出電極)) は、 一般に、 タングステン、 モ リブデン等の耐熱金属材料や、 シリ.コン等の半導体材料といった材料で構成され る。
【0 0 0 3】 このマイクロ波管を高周波化する方法としては、 ェミッタから放 出される電子の量を調整するゲート電極と、 ェミッタ及びカソード電極との間の 静電容量を小さくする方法が一般に知られている。 そこで、 下記非特許文献 2に 開示された冷陰極電子源 5 0においては、 絶縁層 5 2を厚くしてゲート電極 5 4 とカソード電極 5 6とを離間させることで、 ゲート電極 5 4とカソード電極 5 6 との間の静電容量の低減が図られている (図 9参照)。 また、 この冷陰極電子源 5 0では、 ェミッタ 5 8上端の一部分のみを先鋭化し、 残りの大部分を太い円柱の ままにしたェミッタ形状が採用することで、 ェミッタ 5 8内を流れる電流の電流 密度を下げて、 ェミッタ 5 8の溶融防止が図られている。
【0 0 0 4】 なお、 グート電極とカソード電極等との間の静電容量を低減する 他の例としては、 下記特許文献 1に開示されている冷陰極電子源などがあり、 こ の冷陰極電子源 6 0では、 ェミッタ 6 2から離れるに従って絶縁層 6 4を段階的 に厚くすることにより、 ゲート電極 6 6とェミッタ 6 2及び力ソ一ド電極 6 8と の間の静電容量の低減が図られている (図 1 0参照)。 【0005】 特許文献 1 : 日本国特許公開公報 特開平 9一 82248号公報 【0006】 特許文献 2 : 日本国特許公開公報 特開 2001— 202871 号公報
【0007〗 特許文献 3 : 日本国特許公開公報 特開平 8— 255558号公 報
【0008】 非特許文献 l : N i c o l E. Mc Gr u e r, A Th i n —ト l 1 m r i e 丄 d— Em i s s i o n C a t h o d e, '"J o r n a l o f Ap p l i e d Ph y s i c s", 39 (1968), p. 3504-35
05.
【0009】 非特許文献 2 : N i c o l E. Mc G r u e r, P r o s p e c t s f o r a 1— THz Va c uum Mi c r o e l e c t r o n
1 c Mi c r o s t r i p Am p l i f i e r,"I EEE T r a n s a c t i o n s o n E l e c t r o n D e v i c e s", 38 (1 991), p. 666― 6 71.
発明の開示
【001 0】 しかしながら、 前述した従来の冷陰極電子源には次のような問題 があった。 すなわち、 図 9に示した冷陰極電子源 50では、 力ソード電極 56と ゲート電極 54との間の静電容量は低減されているが、 エミッタ 58とゲート電 極 54との間の静電容量に関しては何ら考慮されていないため、 この冷陰極電子 源 50は高周波のマイクロ波管に十分対応できるものではなかった。 また、 マイ クロ波管の高出力化にはエミッタ内を流れる電流の電流密度を高くすることが有 効であることが知られているが、 従来の陰極材料のタングステンゃシリコンで構 成されたヱミッタは熱伝導率が低く、 10〜10 OA/ cm2程度の電流密度で放 熱限界 (溶融限界) に達するため、 それ以上に電流密度を上げることは困難であ つた。
【001 1〗 なお、 ダイヤモンドを用いた冷陰極は、 例えば上記特許文献 2に 開示されており、 ダイヤモンドを用いたマイクロ波管の冷陰極は、 例えば上記特 許文献 3に開示されている。
【0 0 1 2〗 本発明は、 上述の課題を解決するためになされたもので、 高周波 化と高出力化の両立が図られた冷陰極電子源と、 これを用いたマイクロ波管及び その製造方法を提供することを目的とする。
【0 0 1 3〗 本発明に係る冷陰極電子源は、 ダイヤモンドで構成され、 表面に 複数の微細な突起状ェミッタを有する平板状の力ソ一ド電極と、 カソード電極表 面上のエミッタ周囲に積層された絶縁層と、 絶縁層上に積層されたゲ一ト電極と を有し、 力ソード電極のェミッタから外部に放出される電子の量を、 ゲート電極 の印加電圧を制御することにより調整する冷陰極電子源であって、 ェミッタは、 その先端が略円錐形状に先鋭化されており、 この先鋭化部分の高さを H、 その先 鋭化部分の底面の径を Lとしたときに、
R = H/ L
であらわされるァスぺクト比 Rが 4以上であることを特徴とする。
【0 0 1 4】 この冷陰極電子源においては、 アスペクト比 Rが 4以上となるよ うにェミッタの先端が先鋭化されている。 このアスペク ト比 Rは、 ェミッタの先 鋭化部分の高さ Hの、 その底面の径 Lに対する比率であり、 そのェミッタの鋭さ を表している。 すなわち、 同一の長さを有するェミッタでは、 アスペクト比 4未 満のエミッタよりァスぺクト比 4以上のェミッタの方が先鋭化部分の底面が下方 にあることになる。 したがって、 アスペクト比 4以上のェミッタは、 ゲート電極 から遠ざかった分だけ、 ェミッタとゲート電極と間の静電容量が小さくなる。 そ のため、本発明に係る冷陰極電子源は高周波に対応することが可能である。なお、 この冷陰極電子源の陰極材料には、 タングステンゃシリコン等の従来の陰極材料 ではなく、 融点と熱伝導率の高いダイヤモンドが用いられている。 そのため、 ェ ミッタ内を流れる電流の電流密度が高く、 発熱が激しい場合であってもェミッタ が溶融しにくいので、 この冷陰極電子源は高出力に対応することが可能である。 【0 0 1 5】 また、絶縁層が、ダイヤモンドで構成されていることが好ましい。 この場合、 絶縁層と力ソード電極との熱膨張係数が同一又は同等であるため、 温 度変化による絶縁層とカソード電極との界面における剥離の発生が抑制される。 また、 絶縁層に高い熱伝導率を有するダイヤモンドを揉用することにより、 エミ ッタから放出される熱を吸収してェミッタの冷却を促進させることができる。
【0 0 1 6〗 また、 ゲート電極が、 ダイヤモンドで構成されていることが好ま しい。この場合、ゲート電極と絶縁層との熱膨張係数が同一又は同等であるため、 温度変化による、ゲート電極と絶縁層との界面における剥離の発生が抑制される。 また、 ゲート電極に高い熱伝導率を有するダイヤモンドを採用することにより、 ゲート電極の熱による変形が抑制される。 さらに、 ダイヤモンドは高い融点を有 しているため、 ゲート電極の溶解の発生が抑制される。
【0 0 1 7】 また、 力ソード表面上におけるェミッタの密度が、 1 0 7個 c m 2以上であることが好ましい。 この場合、 ェミッタの密度を高くすることで、 カソ 一ド電極からの電子放出量を増加させることができる。
【0 0 1 8】 また、 ェミッタの先端の曲率半径が 1 0 0 n m以下であることが 好ましい。この場合、エミッタから放出される電子の放出効率の向上が図られる。
【0 0 1 9】 また、 絶縁層及びゲート電極は、 エミッタの径より大きい径の電 子放出孔を有しており、 各ェミッタは、 絶縁層及びゲート電極と接しないように この電子放出孔の内部に配置されていることが静電容量を小さくする上で好まし い。 この場合、 ェミッタのショートが大幅に抑制される。
【0 0 2 0】 また、 ェミッタはカソード電極上に複数形成されており、 ェミツ タがカソード電極上のある特定の点から離れるに従い、 各エミッタの対応する電 子放出孔に対する相対位置の、 特定の点方向へのズレ量が大きくなることが好ま しい。 この場合、 いわゆる静電レンズ効果により、 電子放出孔から放出される電 子が特定の点上に集束するため、 冷陰極電子源から得られる電流の電流密度が向 上する。 【0 0 2 1】 本発明に係るマイクロ波管は、 上記冷陰極電子源を用いたことを 特徴とする。上記冷陰極電子源は高周波及び高出力に対応することが可能なため、 マイクロ波管にこの冷陰極電子源を用いた場合、 周波数及び出力の向上を図るこ とができる。
〖0 0 2 2〗 本発明に係る冷陰極電子源の製造方法は、 ダイャモンドで構成さ れ、 表面に複数の微細な突起状ェミッタを有する平板状の力ソード電極と、 カソ 一ド電極表面上のェミッタ周囲に積層された絶縁層と、 絶縁層上に積層されたゲ 一ト電極とを有し、 力ソ一ド電極のエミッタから外部に放出される電子の量を、 グート電極の印加電圧を制御することにより調整する冷陰極電子源の製造方法で あって、冷陰極電子源のェミッタは、その先端が略円錐形状に先鋭化されており、 この先鋭化部分の高さを H、 その先鋭化部分の底面の径を Lとしたときに、 R = H/ L
であらわされるァスぺクト比 Rが 4以上であり、 ェミッタ表面の全体を被膜で覆 うステップと、 カソード電極表面上のエミッタ周囲に絶縁層を積層するステップ と、 絶縁層上にゲート電極を積層するステップと、 ェミッタを覆う被膜をエッチ ング除去するステップとを有することを特徴とする冷陰極電子源の製造方法。 【0 0 2 3】 この冷陰極電子源の製造方法においては、 ァスぺクト比が 4以上 のェミッタを被膜で覆った後、その周囲に絶縁層及びゲート電極を積層するので、 フォトリソグラフィを用いた製造方法のように精度よくエミッタの位置だしをお こなう必要がない。 そのため、 簡便な方法でェミッタの周囲に絶縁層及ぴゲート 電極を積層することができる。 ' 図面の簡単な説明
【0 0 2 4】 図 1は、 本発明の実施形態に係る冷陰極電子源の概略斜視図であ る。
【0 0 2 5】 図 2は、 図 1の冷陰極電子源の要部 ( X) 拡大図である。
【0 0 2 6〗 図 3 Aは、 図 1の冷陰極電子源の製造手順を示した図である。 【0 0 2 7】 図 3 Bは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 2 8】 図 3 Cは、 図 1の冷陰極電子源の製造手順を示した図である。
[ 0 0 2 9】 図 3 Dは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 3 0】 図 ά Εは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 3 1 3 図 4 Αは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 3 2】 図 4 Bは、 図 1の冷陰極電子源の製造手順を示した図である。
[ 0 0 3 3】 図 4 Cは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 3 4】 図 4 Dは、 図 1の冷陰極電子源の製造手順を示した図である。
[ 0 0 3 5】 図 4 Eは、 図 1の冷陰極電子源の製造手順を示した図である。
【0 0 3 6】 図 5は、 ェミッタ形状の一例を示した図である。
[ o 0 3 7】 図 6は、 電子放出孔の配置の一例を示した図である。
[ 0 0 3 8】 図 7は、 本発明の実施形態に係るマイク口波管を示した概略断面 図である ο
【 0 0 3 9】 図 8 Aは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 0】 図 8 Bは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 1 ] 図 8 Cは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 2】 図 8 Dは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 3】 図 8 Eは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 4】 図 8 Fは、 冷陰極電子源の異なる製造手順を示した図である。
【0 0 4 5】 図 8 Gは、 冷陰極電子源の異なる製造手順を示した図である。
【 0 0 4 6】 図 9は、 従来の冷陰極電子源の一例を示した図である。
【 0 0 4 7】 図 1 0は、 従来の冷陰極電子源の一例を示した図である。
発明を実施するための最良の形態
【0 0 4 8〗 以下、 添付図面を参照して本発明に係る冷陰極電子源と、 これを 用いたマイクロ波管及びその製造方法の好適な実施の形態について詳細に説明す る。 なお、 同一又は同等の要素については同一の符号を付し、 説明が重複する場 合にはその説明を省略する。 。
【0 0 4 9】 図 1は、 本発明の実施形態に係る冷陰極電子源 1 0の概略構成図 である。 この冷陰極電子源、 1 0は、 円形平板状の力ソード電極 1 2と、 力ソード 電極 1 2上に形成された円形平板状の絶縁層 1 4と、 この絶縁層 1 4上に形成さ れた円形平板状のゲート電極 1 6とを備えており、 所定距離だけ離間して対面す る環状の集束電極 1 8に向けて電子を放出する。 絶縁層 1 4及ぴゲート電極 1 6 には、 マトリクス状に並ぶ電子放出孔 2 0が形成されている。 この電子放出孔 2 0の位置に対応するカソ一ド電極 1 2表面には、 後述のェミッタが形成されてい る。
【0 0 5 0】 また、 力ソード電極 1 2は、 外部電源 V 1のマイナス極と電気的 に接続されている。 また、 ゲート電極 1 6は外部電源 V 2と電気的に接続されて いる。
【0 0 5 1】 この冷陰極電子源 1 0においては、 外部電源 V 1からカソード電 極 1 2に電子が供給されると、 力ソード電極 1 2表面に形成されたェミッタから 集束電極 1 8に向けて電子が放出される。 その際、 ゲート電極 1 6への印加電圧 を外部電源 V 2で変えて、 各電子放出孔 2 0周辺の電界を変化させることで、 電 子放出孔 2 0から放出される電子の遮断や放出量の調整がおこなわれる。
【0 0 5 2】 カソード電極 1 2及びゲート電極 1 6は導電性のダイャモンドで 構成されており、 絶縁層 1 4は絶縁性のダイヤモンドで構成されている。 このよ うに、 カソード電極 1 2、 ゲート電極 1 6及ぴ絶縁層 1 4が同じダイャモンド材 料で構成されているため、各要素 1 2, 1 4 , 1 6の熱膨張係数は略同一である。 したがって、冷陰極電子源 1 0の温度環境が広い範囲で変化した場合であっても、 各要素 1 2, 1 4 , 1 6の互いの境界面における剥離の発生が抑制される。
【0 0 5 3】 また、 絶縁層 1 4及びゲート電極 1 6に高い熱伝導率と融点とを 有するダイヤモンドを採用することにより、 ゲート電極 1 6の熱による変形が抑 制されると共に、 絶縁層 1 4及びゲート電極 1 6各々がエミッタ 2 4から放出さ れる熱を吸収してェミッタ 2 4の冷却を促進させることができる。 なお、 従来の 絶縁層は、 二酸化ケイ素ゃ窒化ケィ素などで構成されていたため、 熱伝導率が低 く、 ェミッタを効率よく冷却することができなかった。 さらに、 従来の絶縁層の 材料に用いられる S i 02の絶縁破壊電界は 1 0 5 c m/Vからせいぜい 1 0 7 c m /V程度であるが、 ダイヤモンドの絶縁破壌電圧は 1 0 7 c mZV超と高いため、 ダイャモンドで構成された絶縁層 1 4は、 ゲート電圧とカソード電圧との間の電 圧が高レ、場合であっても破壊されにくい。
【0 0 5 4〗 また、 ゲート電極 1 6の材料として金属材料を用いた場合には、 アーク放電などの異常動作が起きた場合、 溶解したゲート電極 1 6の金属が広く 飛散すると共に周囲の部材に付着し、 ゲート電極 1 6と力ソード電極 1 2とが短 絡してしまうことがあつたが、 ゲート電極 1 6を融点の高いダイヤモンドで構成 することにより、 ゲート電極 1 6の溶融が起こりにくく、 ゲート電極 1 6とカソ ード電極 1 2との間の短絡の発生が抑制される。 さらに、 ダイヤモンドは高い融 点を有しているため、 ゲート電極の溶解の発生が抑制される。
【0 0 5 5】 ダイヤモンドに導電性を与えるため、 ダイヤモンドにはホウ素、 リン、 硫黄、 リチウム等をドーピングしている。 導電性を有するダイヤモンドを 得る別の方法としては、 結晶粒界にグラフアイト成分を有する多結晶ダイヤモン ドを用いてもよい。 また、 ダイヤモンド表面に水素終端処理を施すことにより、 表面導電層を形成してもよい。 さらに、 ダイヤモンド内にイオン打ち込みなどで グラフアイト成分を形成し、 電流通過領域を形成してもよい。 なお、 本明細書中 における 「ダイヤモンド」 には、 単結晶ダイヤモンド、 多結晶ダイヤモンドが含 まれるものとする。
【0 0 5 6】 次に、 力ソード電極 1 2のェミッタについて説明する。 図 2は、 図 1の要部 (X)
拡大図である。
[ 0 0 5 7 1 図 2に示すように、 力ソード電極 1 2に形成されたェミッタ 2 4 は、 先端側の円錐形状の先鋭化部分 2 4 Aと、 固定端側の円筒形状の非先鋭化部 分 2 4 Bとで構成されている。 このェミッタ 2 4は、 後述する方法で力ソード電 極 1 2をエッチングすることで形成されており、 カソード電極同様、 導電性ダイ ャモンドで構成されている。 そして、 例えば、 先鋭化部分 2 4 Aの長さ Hは 4 μ m、 先鋭化部分 2 4 Aの底面 (先鋭化部分 2 4 Aと非先鋭化部分 2 4 Bとの境界 面) の径 Lは Ι μπιであり、長さ Ηを径 Lで割って求められるァスぺクト比 R (= H/ L ) は 4とすることが好ましい。 このァスぺクト比 Rは、 ェミッタ 2 4の鋭 さを表す値であり、 この値が大きいほどエミッタ 2 4は鋭いことを示す。
【0 0 5 8】 そして、 ァスぺクト比 Rが 4であるエミッタ 2 4においては、 従 来のェミッタ形状 (図の符号 2 5参照) に比べて、 ェミッタ 2 4の円錐斜面部分 がゲ^"ト電極 1 6から遠くなるため、 その分だけ、 ェミッタ 2 4とゲート電極 1 6と間の静電容量が低減されている。 なお、 従来のェミッタ材料 (陰極材料) で あるタングステンゃシリコンでは、 エミッタ内を流れる電流の電流密度が 1 0〜 1 0 0 AZ c m2程度で溶融してしまうため、エミッタのァスぺクト比を 4以上に することは非常に困難であつたが、 ェミッタの材料として、 熱伝導率、 化学的安 定性に優れたダイヤモンドを用いた場合には、 力ソード電極 1 2のェミッタ 2 4 内を流れる電流の電流密度を高くしても損傷しにくい。
【0 0 5 9】 また、 ェミッタ 2 4及ぴカソード電極 1 2がダイャモンドで構成 されている場合、 低い印加電圧で電子放出が起こる。 これは、 ダイヤモンドの仕 事関数が低いことによるものであり、 この場合、 ェミッタ 2 4の発熱が少なく、 また電子放出のための消費電力量が少ない。
【0 0 6 0】 一般に、 冷陰極電子源 1 0が形成する電界により、 冷陰極電子源 1 0周囲の正に帯電した荷電子がエミッタ 2 4をスパッタして、 ェミッタ 2 4の 寿命を短くしてしまうことが知られているが、 耐スパッタ損傷性が高いダイヤモ ンドで構成されたエミッタ 2 4によれば長寿命を実現することができる。
【0 0 6 1〗 また、 先鋭化部分 2 4 Aと非先鋭化部分 2 4 Bとを合わせたェミ ッタ 2 4の高さ D及ぴ絶縁層 1 4の厚さは、 ともに約 8 μπιである。このように、 絶縁層 1 4の厚さが厚いため、 力ソード電極 1 2とゲート電極 1 6との間の静電 容量のさらなる低減が図られている。 さらに、 非先鋭化部分 2 4 Βの太さが十分 に太く、 ェミッタ 2 4内を流れる電流の電流密度が低減されているため、 ェミツ タ 2 4の溶解がさらに抑制されることとなる。
【0 0 6 2】 また、 ェミッタ 2 4の先端の曲率半径は、 2 0 n m以下となって いる。このように、エミッタ 2 4の先端の曲率半径が 1 0 0 n m以下であるため、 電界集中して、 ェミッタから放出される電子の放出効率が向上する。 さらに、 ェ ミッタ 2 4の間隔は 3 μηιであり、 カソード電極 1 2表面におけるエミッタ 2 4 その密度はおよそ 1 1 1 1万個/ c m2であった。 このように、冷陰極電子源 1 0 はエミッタ 2 4の密度が高いため、 カソード電極 1 2から多くの電子が放出され る。 また、 ェミッタ 2 4は、 電子放出孔 2 0の内部で絶縁層 1 4及ぴゲート電極 1 6と接しないように配置されているため、 エミッタのショートが大幅に抑制さ れている。
【0 0 6 3】 以上の冷陰極電子源の製造方法について、 図 3 A〜図 3 Eを参照 しつつ説明する。
【0 0 6 4】 まず、 熱フィラメント C V D法、 マイクロ波 C V Dを用いた気相 合成法や、 高圧合成法を用いて、 力ソード基板の基となるダイヤモンドプレート 3 0を作製する。 そして、 このダイヤモンドプレート 3 0を、 〇 4と酸素との混 合ガスを用いた R I β法でエッチングして、 上述した形状を有するェミッタ 2 4 を形成する(図 3 Α参照)。なお、ェミッタの形成方法は、 R I E法に限定されず、 例えば、 イオンビームエツチング法などでもよい。
【0 0 6 5】 次に、 スパッタ法を用いて、 ェミッタ 2 4の表面に S i 02膜 (被 膜) 3 2を被覆する (図 3 B参照)。 この状態で、 力ソード電極 1 2の表面に、 熱 フィラメント C V D法を用いて絶縁性ダイヤモンドを積層し、 S i 02膜 3 2で被 覆されたエミッタ 2 4の高さより低い絶縁層 1 4を形成する (図 3 C参照)。カソ 一ド電極 1 2に絶縁層 1 4を積層した後、 この絶縁層 1 4の上に、 熱フイラメン ト C V D法を用いて導電性ダイヤモンドを、 S i 02膜 3 2で被覆されたェミッタ 2 4が埋没してしまわない厚さだけ積層し、 ゲート電極 1 6を形成する (図 3 D 参照)。 そして、 最後にェミッタ 2 4を覆う S i 02膜 3 2をフッ酸でエッチング 除去することにより、 冷陰極電子源 1 0の製造が完了する (図 3 E参照)。 なお、 絶縁層 1 4及ぴゲート電極 1 6の厚さは、 適宜変更してもよい。
【0 0 6 6】 このような製造方法を採用することで、 フォトリソグラフィを用 いた従来の製造方法に比べて比較的悪い位置精度でも絶縁層 1 4及ぴゲート電極 1 6を形成することができる。 ここで、 参考のために、 フォトリソグラフィを用 いた冷陰極電子源の製造方法を示す。 図 4 A〜図 4 Eは、 フォトリソグラフィを 用いた冷陰極電子源の製造方法を示した図である。 この方法では、 まず、 カソー ド電極 1 2の全体に、 ェミッタ 2 4が埋没する程度に絶縁層 1 4を積層する (図 4 A参照)。そして、その絶縁層 1 4上にゲート電極 1 6となる金属膜 1 6 Aを積 層し、 さらにその上にフォトレジスト 3 3を積層する (図 4 B参照)。 このフォト レジスト 3 3を積層した後、 ェミッタ領域 3 3 a以外の部分を露光し現像するこ とにより、 ェミッタ領域 3 3 aのフォトレジスト 3 3を除去する (図 4 C参照)。 そして、 このエミッタ領域 3 3 aの金属膜 1 6 A及ぴ絶縁層 1 4を適当なエッチ ング液又はエッチングガスを用いてエッチング除去する (図 4 D参照)。 最後に、 フォトレジスト 3 3を除去して、 冷陰極電子源 1 0の製造が完了する (図 4 E参 照)。
【0 0 6 7】 しかし、 この方法では、 上記のようにゲート電極 1 6と絶縁層 1
4と力 S、力ソード電極 1 2のダイヤモンドと異なる材料でなければ作製は難しい。 特に、 絶縁層 1 4にダイヤモンドを用いた場合には、 ドーパントが異なるだけの ダイヤモンド製絶縁層 1 4とダイヤモンド製ェミッタ 2 4のエツチング選択比が 低いため、 尖鋭なェミッタ 2 4を得るのが困難である。 また、 フォトリソグラフ ィを用いた冷陰極電子源 1 0の製造方法では、 ェミツタ領域 3 3 aの位置だしを おこなう必要があり、 サブ μπι以下オーダの高度な位置出し技術が要求される。 このような高精度の位置出しにおいては、 高価な露光装置が必要となる上に、 生 産性が非常に低い。 —方、 図 3 Α〜図 3 Eに示した製造方法によれば、 S i 02 膜が略均一の厚さでェミッタ 2 4を覆うので、 高精度の位置だし及び位置合わせ をする必要がない。そのため、 S i 02膜を用いる製造方法によれば比較的簡便な 方法でェミッタ 2 4の周囲に絶縁層 1 4及ぴゲート電極 1 6を積層することがで きる。 また、 ダイヤモンドからなる力ソード電極 1 2上に、 ダイヤモンドの絶縁 層 1 4をホモェピタキシャル成長させることで、 従来材料からなる絶縁層よりも 構造が緻密になり、 高電圧に起因する絶縁層破壌の破壌強度が向上する。 なお、 ェミッタ 2 4を覆う被膜は、 S i〇2膜に限定されず、 例えば、 A 1 23膜のよう な酸化膜でもよい。
【0 0 6 8】 以上、 詳細に説明したように、 冷陰極電子源 1 0は、 ァスぺクト 比 Rが 4であるダイヤモンドからなエミッタ 2 4を有しているため、 高出力化が 図られていると共に、 力ソード電極 1 2とゲート電極 1 6と間の静電容量の低減 による高周波化が図られている。
【 0 0 6 9】 なお、 ェミッタ 2 4の形状は上述した形状に限らず、 絶縁層 1 4 の厚さを厚くしない場合には、 図 5に示すように、 非先鋭化部分を有しないエミ ッタ形状であってもよい。 また、 電子放出孔の位置関係は、 上述したようなマト リクス配列に限らず、 図 6に示すような点対称配列であってもよい。 すなわち、 力ソード電極上のある特定の点 (ェミッタ 2 4 Cの中心) から離れたェミッタ 2 4は、 特定の点からの距離に応じた分だけ、 対応する電子放出孔 2 0に対してズ レている。 そして、 このズレは、 ェミッタ 2 4が特定の点から離れるに従い、 対 応電子放出孔 2 0のェミッタ 2 4に対する相対位置が特定の点から離れる方向で ある。 このようにゲート電極 1 6の電子放出孔 2 0を配置し、 ゲート電極 1 6に プラスの電圧を印加した場合、 エミッタ 2 4から放出される電子は、 ェミッタ 2 4に近いゲート電極 1 6の縁の電界の影響を大きく受け、 その縁の方向に放出方 向が湾曲する。 そのため、 電子放出孔 2 0から放出される電子は上述の特定の点 方向に集束し(静電レンズ効果)、冷陰極電子源 1 0から得られる電流の電流密度 が向上する。 なお、 このようにェミッタ 2 4が電子放出孔 2 0の中心位置にない 場合には、 上述した被膜を用いる製造方法 (図 3 A〜図 3 E参照) ではなく、 フ ォトリソグラフィを用いる製造方法 (図 4 A〜図 4 E参照) を利用する。
【0 0 7 0〗 続いて、 上述した冷陰極電子源 1 0を利用したマイクロ波管 (進 行波管) について、 図 7を参照しつつ説明する。 図 7は、 冷陰極電子源 1 0を利 用したマイクロ波管 3 4を示した概略構成図である。
【0 0 7 1】 このマイクロ波管 3 4においては、 冷陰極電子源 1 0のカソード 電極 1 2の面 1 2 aから放出された電子は、 ウェーネルト電極 3 6、 陽極 3 8並 びに冷陰極電子源 1 0で形成された電界によって集束され、 冷陰極電子源 1 0か ら離れるに従って径が縮小し、 陽極 3 8の中心孔を通り抜ける。 このようにして 電子流 (電子ビーム) は、 磁石 4 0で作られる磁力線の影響を受け、 一定ビーム 径に集束されながら螺旋 4 2の内側を通り、 コレクタ 4 4に達する。 なお、 螺旋 4 2を通り抜ける途中で、 螺旋 4 2に沿って進む入力電磁波と電子ビームとが相 互に作用し、 電子ビーム中の直流エネルギを電磁波のエネルギに変換してこれを 増幅する。 このとき、 電子線を高周波で変調すれば、 S ZN比の優れた増幅信号 が得られる。
【0 0 7 2】 このようなマイクロ波管 3 4に冷陰極電子源 1 0を用いた場合、 上述したように冷陰極電子源 1 0は高周波及び高出力に対応できるため、 マイク 口波管の周波数及び出力の向上を図ることができる。 例えば、 従来の進行波管で は、 k W級の出力を出せる最高周波数は 1 0 0 G H z程度であり、 ジャイロトロ ンでも k Wが出せるのは 3 0 0 G H z程度であった。 ここで、 冷陰極電子源 1 0 のエミッタのァスぺクト比を 4以上にして静電容量を 1 / 4程度に低下させた場 合、 電子ビームの変調周波数を従来の 4倍にしても、 電力損失を従来程度に抑制 することができる。 従って、 従来ジャイロ トロンでも実現が困難な 4 0 0 G H z という高周波数及びその周波数に対応する高出力領域まで、 マイクロ波管 34の 周波数及ぴ出力を向上させることができる。
【0073〗 本発明は上記実施形態に限定されるものではなく、 様々な変形が 可能である。 例えば、 ェミッタ 24のアスペク ト比 Rは 4に限定されず、 4より 大きい値でもよい。 このようなアスペクト比を有するェミッタを形成することに より、 冷陰極電極のさらなる高周波化が図られる。 また、 冷陰極電子源 1 0は、 マイクロ波管 34だけでなく、 CRTや電子線露光用電子源など、 高周波、 高出 力を必要とするあらゆる電子放出装置に用いることができる。
[0074] 次に、 上述した冷陰極電子源及ぴマイク口波管の実施例を示す。 【0075】 (実施例 1 ) 実施例として、 カソード電極及びェミッタを導電 性ダイヤモンドで作製した。 その方法を以下に示す。
【0076】 まず、マイクロ波プラズマ CVD法を用いて、 (100)配向の I b単結晶ダイヤモンドの上に、 ホウ素をドープしたダイヤモンド薄膜をホモェピ タキシャル成長させた。 成膜の条件は以下のとおりである。
【0077】 ダイヤモンドの合成に用いるガスの流量と組成は、水素ガス (H2) 流量を l O O s c cmとし、 CH4と H2との比は 6 : 100である。 また、 ホウ 素 (元素記号: B) ドーピングガスには、 ジボランガス (B2H6) を用いた。 こ のジボランガスと CH4ガスとの流量比は 1 67 p pmである。 また、 このときの 合成圧力は 40T o r rである。 本実施例に用いたマイクロ波の周波数は 2. 4 5 GHz、 出力は 300Wであり、 ダイヤヰンド合成中の試料温度は 830でで あった。 また、 合成後の薄膜は 3 Ομηιであった。
[0078] 次に、 このダイヤモンドをエッチングしてエミッタを形成した。 その形成方法は、 まず、 スパッタ法で A 1を 0. 5μηι成膜し、 フォトリソグラ フィで直径 1. 5 pmのドットを作製した。 次に、 容量結合型 R Fプラズマエッ チング装置を用いて、 CF4と 02ガスとの流量比 1 : 100、 ガス圧力 2 P a、 高周波電力 200Wの条件下でエッチングをおこない、 エミッタを形成した。 形 成されたエミッタの形状は、先鋭化部部の底辺の幅(L) が 0. 9μπι、高さ (D) が約 8μπι、 傾斜部分の高さ (Η) が 4μπιであった。 すなわち、 ァスぺクト比 R は 4. 4であった。 また、 このェミッタの間隔は 3μπιであり、 その密度はおよ そ 1 1 1 1万個/ cm2であった。
〖0079〗 (実施例 2) 実施例として、 マイクロ波管に用いる冷陰極電子 源を作製した。 以下にその方法を示す。
【0080〗 まず、 (1 1 1)配向の I b単結晶ダイヤモンド基板に、マイクロ 波プラズマ CVD法を用いてリン (元素記号: P) ドープダイヤモンド薄膜を形 成した。 合成条件は、 水素ガスを流量 400 s c c m、 CH4と H2との比 0. 0 75 : 100である。 また、 ドーピングガスは PH3 (ホスフィン) を用いた。 な お、 PH3と CH4との流量比を l O O O p pmとした。合成圧力は 80 T o r r、 マイク口波出力は 500Wであり、合成中の試料温度は 900°Cであった。また、 合成した薄膜の膜厚は 1 Ομηιであった。
[008 1 ] 次に、 このダイヤモンドをエッチングしてェミッタを形成した。 その形成方法は、 まず、 A 1をスパッタ法で 0. 5μπι成膜し、 フォトリソグラ フィで直径 2. 5μιηのドットを形成した。 そして、 容量結合型 RFプラズマェ ツチング装置を用いて、 CF4と 02との流量比を 1 : 100、 ガス圧力を 25 Ρ a、 高周波電力 200Wとしてエッチングをおこない、 ェミッタを形成した。 形 成されたェミッタの形状は、 底辺の幅 (L) が 1. 2μπι、 ェミッタの高さ (D) 及び傾斜部分め高さ (Η) が約 5μιηであった。 すなわち、 このェミッタの側面 は、 ェミッタの先端から底辺までほぼ傾斜しており、 アスペク ト比 Rは約 4. 2 である。
【0082】 次に、 絶縁層の形成に先立ち、 スパッタ法を用いて、 ェミッタ表 面にのみ S i〇2膜を成膜した。 以下、 この成膜の手順について、 図 8A〜図 8G を参照しつつ詳細に説明する。 まず、 ェミッタ 24の表面に S i 02膜 (被膜) 3 2 aを被覆する(図 8 A参照)。これにレジスト 32 bを塗布した後(図 8 B参照)、 酸素プラズマでレジスト 32 bをエッチングして、 S i 0232 aの頭頂部分を露 出させる (図 8 C参照)。 この上にスパッタで Moレジスト 32 cを成膜する (図 8 E参照)。 これをァセトンで超音波洗浄すると、 Moレジスト 32 cが除去され て突起周辺のみ Moレジスト 32 cが残留する (図 8 F参照)。 これをフッ酸でェ ツチングすると、フッ酸に不溶な Moがマスクとなって突起周辺のみ S i 0232 aが残留する。 これを王水でェッチングすると、 ェミッタ 24は S i 0232 aの みで被覆された状態となる (図 3G参照)。 この状態で、マイクロ波プラズマ CV D装置に絶縁層用ダイヤモンドを成膜すると、 S i 02膜がマスクとなり、ェミツ タ以外の部分に絶縁性ダイャモンドが形成される。 成膜条件は、 ジボランガスを 用いない点でのみ、 上述した実施例 1と異なる。 また、 絶縁性ダイヤモンド (絶 縁層) の膜厚は 4. 8 つであった。
【0083】 さらに、 ボロンドープダイヤモンドを 0. 2μπι成膜してゲート 電極を形成した。 ゲート電極の電子放出孔の直径 (G) は、 約 Ιμπιであった。 【0084】 このように形成した導電性ダイヤモンドに、 T i /P t/Auを 成膜して制御用の電極を形成し、 図 7に示すマイクロ波管 34に電子源 1 0とし て取り付けた。電子源 1 0からは、連続動作で 1 50 AZ c m2の電子線が安定し て得られた。 電子線は、 螺旋 (低速波回路) 42を通過中に入力信号と相互作用 を起こし、 増幅された信号を出力した。
産業上の利用可能性
【0085】 本発明によれば、 高周波化と高出力化の両立が図られた冷陰極電 子源と、 これを用いたマイク口波管及びその製造方法が提供される。

Claims

請求の範囲
1 . ダイャモンドで構成され、 表面に複数の微細な突起状ェミッタを有する 平板状のカソード電極と、
前記力ソード電極表面上の前記ェミッタ周囲に積層された絶縁層と、 前記絶縁層上に積層されたゲート電極とを有し、
前記力ソード電極のェミッタから外部に放出される電子の量を、 前記ゲート電 極の印加電圧を制御することにより調整する冷陰極電子源であって、
前記ェミッタは、 その先端が略円錐形状に先鋭化されており、 この先鋭化部分 の高さを H、 その先鋭化部分の底面の径を Lとしたときに、
R = H/ L
であらわされるアスペクト比 Rが 4以上であることを特徴とする冷陰極電子源。
2 . 前記絶縁層が、 ダイヤモンドで構成されていることを特徴とする請求項 1に記載の冷陰極電子源。
3 . 前記ゲート電極が、 ダイヤモンドで構成されていることを特徴とする請 求項 1又は 2に記載の冷陰極電子源。
4 . 前記力ソード電極表面上における前記ェミッタの密度が、 1 0 7個ノ c m 2以上であることを特徴とする請求項 1〜 3のいずれか一項に記載の冷陰極電子 源。
5 . 前記ェミッタの先端の曲率半径が 1 0 0 n m以下であることを特徴とす る請求項 1〜 4のいずれか一項に記載の冷陰極電子源。
6 . 前記絶縁層及び前記ゲート電極は、 前記ェミッタの径より大きい径の電 子放出孔を有しており、
前記各ヱミッタは、 前記絶縁層及び前記ゲート電極と接しないようにこの電子 放出孔の内部に配置されていることを特徴とする請求項 1〜 5のいずれか一項に 記載の冷陰極電子源。
7 . 前記ェミッタは前記力ソ一ド電極上に複数形成されており、 前記エミッタが前記力ソード電極上のある特定の点から離れるに従い、 前記各 エミッタの対応する前記電子放出孔に対する相対位置の、 前記特定の点方向への ズレ量が大きくなることを特徴とする請求項 6に記載の冷陰極電子源。
8 . 請求項 1〜 7のいずれか一項に記載の冷陰極電子源を用いたことを特徴 とするマイクロ波管。
9 . ダイヤモンドで構成され、 表面に複数の微細な突起状エミッタを有する 平板状の力ソード電極と、 前記力ソード電極表面上の前記ェミッタ周囲に積層さ れた絶縁層と、 前記絶縁層上に積層されたゲート電極とを有し、 前記力ソード電 極のェミッタから外部に放出される電子の量を、 前記ゲート電極の印加電圧を制 御することにより調整する冷陰極電子源の製造方法であって、
前記冷陰極電子源の前記エミッタは、 その先端が略円錐形状に先鋭化されてお り、 この先鋭化部分の高さを H、 その先鋭化部分の底面の径を Lとしたときに、 R = H/ L
であらわされるァスぺクト比 Rが 4以上であり、
前記ェミッタ表面の全体を被膜で覆うステップと、
前記カソード電極表面上の前記エミッタ周囲に前記絶縁層を積層するステップ と、
前記絶縁層上にゲート電極を積層するステップと、
前記ェミッタを覆う前記被膜をェツチング除去するステップとを有することを特 徴とする冷陰極電子源の製造方法。
PCT/JP2004/004245 2003-03-28 2004-03-26 冷極電子源と、これを用いたマイクロ波管及びその製造方法 WO2004088703A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005504304A JPWO2004088703A1 (ja) 2003-03-28 2004-03-26 冷極電子源と、これを用いたマイクロ波管及びその製造方法
EP04723735A EP1594150B1 (en) 2003-03-28 2004-03-26 Cold-cathode electron source, microwave tube using this, and its manufacturing method
US11/211,665 US7391145B2 (en) 2003-03-28 2005-08-26 Cold-cathode electron source, microwave tube using it, and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003091804 2003-03-28
JP2003-091804 2003-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/211,665 Continuation US7391145B2 (en) 2003-03-28 2005-08-26 Cold-cathode electron source, microwave tube using it, and production method thereof

Publications (1)

Publication Number Publication Date
WO2004088703A1 true WO2004088703A1 (ja) 2004-10-14

Family

ID=33127297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004245 WO2004088703A1 (ja) 2003-03-28 2004-03-26 冷極電子源と、これを用いたマイクロ波管及びその製造方法

Country Status (4)

Country Link
US (1) US7391145B2 (ja)
EP (1) EP1594150B1 (ja)
JP (1) JPWO2004088703A1 (ja)
WO (1) WO2004088703A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037087A1 (ja) * 2005-09-28 2007-04-05 National Institute Of Advanced Industrial Science And Technology 電子放出電圧を著しく低減したリン添加ダイヤモンド膜、その製造方法及びそれを用いた電子源

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912254B1 (fr) * 2007-02-06 2009-10-16 Commissariat Energie Atomique Structure emettrice d'electrons par effet de champ, a focalisation de l'emission
US8227985B2 (en) * 2010-08-06 2012-07-24 Los Alamos National Security, Llc Photo-stimulated low electron temperature high current diamond film field emission cathode
EP2714190B1 (en) * 2011-06-03 2017-08-09 The University of Melbourne An electrode for medical device applications
FR3000290B1 (fr) * 2012-12-26 2015-01-30 Thales Sa Source d'emission d'electrons
US10051720B1 (en) 2015-07-08 2018-08-14 Los Alamos National Security, Llc Radio frequency field immersed ultra-low temperature electron source
EP3435400A1 (en) * 2017-07-28 2019-01-30 Evince Technology Ltd Device for controlling electron flow and method for manufacturing said device
US10943760B2 (en) 2018-10-12 2021-03-09 Kla Corporation Electron gun and electron microscope
US11417492B2 (en) 2019-09-26 2022-08-16 Kla Corporation Light modulated electron source

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255558A (ja) * 1995-03-20 1996-10-01 Nec Corp 冷陰極およびこれを用いた電子銃とマイクロ波管
JPH08315721A (ja) * 1995-05-19 1996-11-29 Nec Kansai Ltd 電界放出冷陰極
JPH1092296A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 電子放出素子及びその製造方法
JPH10208618A (ja) * 1997-01-23 1998-08-07 Matsushita Electric Ind Co Ltd 電子放出素子
JP2000188388A (ja) * 1998-10-16 2000-07-04 Toyota Central Res & Dev Lab Inc 半導体装置の製造方法及び半導体装置
JP2000215788A (ja) * 1998-11-19 2000-08-04 Nec Corp カ―ボン材料とその製造方法、及びそれを用いた電界放出型冷陰極
JP2001023505A (ja) * 1999-07-06 2001-01-26 Sony Corp 冷陰極電界電子放出表示装置用のカソード・パネルの検査方法
JP2003109493A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 電子放出素子及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342633A (ja) 1993-06-02 1994-12-13 Fujitsu Ltd 真空封止電界放出陰極装置
JPH0817330A (ja) 1993-07-16 1996-01-19 Matsushita Electric Ind Co Ltd 電界放出型電子源およびその製造方法
US5495143A (en) * 1993-08-12 1996-02-27 Science Applications International Corporation Gas discharge device having a field emitter array with microscopic emitter elements
US5844252A (en) * 1993-09-24 1998-12-01 Sumitomo Electric Industries, Ltd. Field emission devices having diamond field emitter, methods for making same, and methods for fabricating porous diamond
JP2900855B2 (ja) 1995-09-14 1999-06-02 日本電気株式会社 冷陰極およびこれを用いた電子銃ならびに電子ビーム装置
WO1998044529A1 (en) * 1996-06-25 1998-10-08 Vanderbilt University Microtip vacuum field emitter structures, arrays, and devices, and methods of fabrication
JP2939943B2 (ja) * 1996-11-01 1999-08-25 日本電気株式会社 冷陰極電子銃およびこれを備えたマイクロ波管装置
US6201342B1 (en) * 1997-06-30 2001-03-13 The United States Of America As Represented By The Secretary Of The Navy Automatically sharp field emission cathodes
JP3460618B2 (ja) * 1999-03-31 2003-10-27 株式会社豊田中央研究所 半導体装置及び半導体装置の製造方法
JP3436228B2 (ja) 2000-01-20 2003-08-11 日本電気株式会社 電界放出型冷陰極

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08255558A (ja) * 1995-03-20 1996-10-01 Nec Corp 冷陰極およびこれを用いた電子銃とマイクロ波管
JPH08315721A (ja) * 1995-05-19 1996-11-29 Nec Kansai Ltd 電界放出冷陰極
JPH1092296A (ja) * 1996-09-12 1998-04-10 Toshiba Corp 電子放出素子及びその製造方法
JPH10208618A (ja) * 1997-01-23 1998-08-07 Matsushita Electric Ind Co Ltd 電子放出素子
JP2000188388A (ja) * 1998-10-16 2000-07-04 Toyota Central Res & Dev Lab Inc 半導体装置の製造方法及び半導体装置
JP2000215788A (ja) * 1998-11-19 2000-08-04 Nec Corp カ―ボン材料とその製造方法、及びそれを用いた電界放出型冷陰極
JP2001023505A (ja) * 1999-07-06 2001-01-26 Sony Corp 冷陰極電界電子放出表示装置用のカソード・パネルの検査方法
JP2003109493A (ja) * 2001-09-28 2003-04-11 Toshiba Corp 電子放出素子及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037087A1 (ja) * 2005-09-28 2007-04-05 National Institute Of Advanced Industrial Science And Technology 電子放出電圧を著しく低減したリン添加ダイヤモンド膜、その製造方法及びそれを用いた電子源
US8075359B2 (en) 2005-09-28 2011-12-13 National Institute Of Advanced Industrial Science And Technology Phosphorus-doped diamond film allowing significantly reduced electron emission voltage, method for producing the same, and electron source using the same

Also Published As

Publication number Publication date
EP1594150A1 (en) 2005-11-09
US20060001360A1 (en) 2006-01-05
JPWO2004088703A1 (ja) 2006-07-06
EP1594150A4 (en) 2007-07-25
EP1594150B1 (en) 2011-07-13
US7391145B2 (en) 2008-06-24

Similar Documents

Publication Publication Date Title
US6297592B1 (en) Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters
US7391145B2 (en) Cold-cathode electron source, microwave tube using it, and production method thereof
JP3070469B2 (ja) 電界放射冷陰極およびその製造方法
US20010006869A1 (en) Method of fabricating nano-tube, method of manufacturing field-emission type cold cathode, and method of manufacturing display device
JPH05152640A (ja) 冷陰極エミツタ素子
JP3250719B2 (ja) 真空管用陰極及び電界放出型表示装置
JP2006294387A (ja) ナノカーボンエミッタ及びその製造方法
JP2008027781A (ja) ダイヤモンド電子放出素子およびその製造方法
JP2005310724A (ja) 電界放射型電子源およびその製造方法
JPH09129123A (ja) 電子放出素子及びその製造方法
CN113675057B (zh) 一种自对准石墨烯场发射栅极结构及其制备方法
KR100371161B1 (ko) 전계방출소자의 제조방법
JP3502883B2 (ja) 冷電子放出素子及びその製造方法
CN112701021B (zh) 一种调控冷阴极电子源侧向发射的结构及方法
JP3158400B2 (ja) 電界放射冷陰極の製造方法
JP4693980B2 (ja) 電界電子放出素子の製造方法
JP3595821B2 (ja) 冷電子放出素子及びその製造方法
JP3832070B2 (ja) 冷電子放出素子の製造方法
JP3826539B2 (ja) 冷電子放出素子の製造方法
Davidson et al. Forms and behaviour of vacuum emission electronic devices comprising diamond or other carbon cold cathode emitters
JP4241766B2 (ja) 照明ランプ用冷電子放出素子
JP3945049B2 (ja) 冷電子放出素子の製造方法
JP2009059680A (ja) 電子エミッタ構造製造方法、電子エミッタ構造製造方法により製造される電子エミッタ構造、電子エミッタ構造を内蔵する電界電子放出表示装置および電界電子放出バックライト
JP2003346640A (ja) 微小冷陰極電子エミッタ及びその製造方法
JPH11167858A (ja) 冷電子放出素子及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005504304

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11211665

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004723735

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11211665

Country of ref document: US