WO2004087294A1 - ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ - Google Patents

ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ Download PDF

Info

Publication number
WO2004087294A1
WO2004087294A1 PCT/JP2004/001464 JP2004001464W WO2004087294A1 WO 2004087294 A1 WO2004087294 A1 WO 2004087294A1 JP 2004001464 W JP2004001464 W JP 2004001464W WO 2004087294 A1 WO2004087294 A1 WO 2004087294A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
honeycomb filter
base material
substrate
aggregate particles
Prior art date
Application number
PCT/JP2004/001464
Other languages
English (en)
French (fr)
Inventor
Tatsuo Baba
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP04710519A priority Critical patent/EP1609519A4/en
Priority to US10/551,435 priority patent/US20070026190A1/en
Publication of WO2004087294A1 publication Critical patent/WO2004087294A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/30Porosity of filtering material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a honeycomb filler substrate and a method for producing the same, and a honeycomb filler substrate.
  • the present invention relates to a honeycomb filter, a substrate for a honeycomb filter, and a method for producing the same. More specifically, the present invention relates to a honeycomb filter having an excellent impurity removal performance and a large fluid permeation amount (that is, a processing ability), and a method for manufacturing such a honeycomb filter.
  • the present invention relates to a base material for a honeycomb filter which can be suitably used for manufacturing a honeycomb filter, and a method for manufacturing the same.
  • ceramic porous materials have been used to remove impurities such as suspended solids, bacteria, and dust mixed in fluids (liquids and gases). Is used.
  • the filter has a plurality of cells 23 which are formed of a ceramic porous body having a large number of pores and are separated by partition walls and serve as fluid flow paths (hereinafter, referred to as a fluid flow path).
  • a fluid flow path Such a shape is referred to as a “honeycomb shape”.
  • a honeycomb filter as described above, when a fluid to be treated (fluid to be treated) is supplied into a plurality of cells, the fluid permeates through the ceramic porous material constituting the honeycomb filter from the inside of the cells, and the outer periphery thereof Suspended substances are removed when flowing out of the surface. Therefore, the purging of the 82-cam filter is built in the casing with the outer peripheral surface and the cell opening end surface liquid-tightly separated by a sealing material (such as a ring). The purified fluid (purified fluid) can be recovered.
  • the honeycomb filter is made of a ceramic porous body having a large number of pores, and is divided by a partition, and has a base material having a plurality of cells serving as a fluid flow path, and a surface of the partition partitioning the plurality of cells.
  • a structure including a formed filtration membrane made of a porous body having an average pore diameter smaller than that of the base material is employed (for example, Japanese Patent Application Laid-Open No. 2001-260117, And Japanese Patent Application Laid-Open No. 2001-340718).
  • the average pore diameter of the filtration membrane by setting the average pore diameter of the filtration membrane to be smaller than the particle diameter of the impurities (about 0.01 to 1.0 mm), the performance of removing the impurities is secured,
  • the average pore diameter of the material By making the average pore diameter of the material larger than that of the filtration membrane (about 1 to several 100 zm), the flow resistance when the fluid permeates the inside of the base material is reduced, and the amount of fluid permeation is increased and the treatment is performed. Capability can be improved. That is, in order to configure a honeycomb filter having a large fluid permeation amount and a high processing capacity, it is sufficient to configure the average pore diameter of the base material as large as possible.
  • the filtration membrane when manufacturing a honeycomb filter, the filtration membrane is obtained by adhering a slurry containing aggregate particles to the surface of the partition wall of the base material (that is, the inner wall of the cell) to obtain a membrane, and the membrane is formed. Generally, it is formed by a method of drying and firing. When a filtration membrane having a small average pore diameter is to be formed, the membrane is formed using a slurry containing aggregate particles having a small average particle diameter.
  • the present invention has been made in view of such problems of the related art, and has an advantageous effect of excellent impurity removing performance, a large fluid permeation rate, and a high processing ability. More specifically, the present invention provides a honeycomb filter base material and a method for manufacturing the same, which can be suitably used for manufacturing such a honeycomb filter.
  • the present inventor has conducted intensive studies to solve the above-mentioned problems.
  • the 50% pore diameter (d 5 ) of the ceramic porous body constituting the base material for the honeycomb filter was set to fall within the range of 8.5 to 13 m.
  • the present invention was conceived to be able to solve the above-mentioned problems by controlling the average surface roughness of the partition walls for dividing a plurality of cells within the range of 3.0 to 5.5 m. Completed. That is, the present invention provides the following honeycomb filter base material, a method for manufacturing the same, and a honeycomb filter.
  • a honeycomb fill substrate comprising a ceramic porous body having a large number of pores and divided by partition walls and having a plurality of cells serving as fluid flow paths, 50% pore diameter (d 5.) with in the range of 8. 5 ⁇ 1 3 (rn), the average surface roughness of partition walls for partitioning the plurality of cells 3. 0 ⁇ 5. 5 (m ).
  • Honeycomb filter base material within the range of).
  • 50% pore diameter (d 5 ) is the pore diameter measured by the mercury intrusion method, and the cumulative volume of mercury injected into the porous body is the total fineness of the porous body. (It means the pore diameter calculated from the pressure when the pore volume reaches 50% of the pore volume.)
  • x% particle size (D x ) refers to the particle size of the powder measured by the sieving method, and uses a plurality of sieves having different nominal mesh sizes. (In the particle size distribution curve created from the relationship with the powder mass above, it means the particle size at the point where the integrated mass of the powder is X% of the total mass.)
  • honeycomb filter substrate according to the above [1], and a ceramic porous material constituting the substrate, formed on a surface of a partition partitioning the plurality of cells of the honeycomb filter substrate.
  • An intermediate membrane made of a porous body having a smaller 50% pore diameter (d 5 ) than the porous body, and a 50% pore diameter (50%) formed from a porous body formed on the surface of the intermediate membrane and constituting the intermediate membrane.
  • honeycomb filter having a filtration membrane is made of a small porous body.
  • FIG. 1 is a front view schematically showing one embodiment of a honeycomb fill substrate, showing a structure viewed from the cell opening end face side.
  • FIG. 2 is a perspective view schematically showing one embodiment of an 82 cam film.
  • the present inventor first forms an intermediate film made of a porous material having an average pore diameter between the substrate and the filtration membrane between the substrate and the filtration membrane.
  • the cause that the total film thickness of the filtration membrane and the intermediate membrane becomes large and the flow resistance of the fluid in this part becomes large was examined.
  • the intermediate film was conventionally formed thick.
  • the surface of the intermediate film which is an underlayer of the filtration membrane, needs to be formed as smooth as possible to prevent occurrence of membrane defects in the filtration membrane.
  • the 50% pore diameter (d 5 ) of the ceramic porous body constituting the honeycomb filler substrate is set to fall within a range of 8.5 to 13 m, and a plurality of pores are formed.
  • the average surface roughness of the partition walls that separate the cells was controlled within the range of 3.0 to 5.5 m.
  • the surface of the partition walls of the base material becomes relatively smooth and the irregularities are reduced, so that it is not necessary to fill the irregularities of the partition walls when forming the intermediate film. Its surface can be smoothed. Therefore, the total thickness of the filtration membrane and the intermediate membrane can be reduced while preventing the occurrence of defects in the filtration membrane, and the flow resistance of the fluid in this portion can be reduced. That is, the fluid permeation amount of the filter can be increased, and the processing capacity can be improved.
  • the honeycomb filter substrate of the present invention is made of a ceramic porous body having a large number of pores, such as a honeycomb filter substrate 1 shown in FIG. It has a plurality of cells 3 serving as flow paths for the above.
  • the shape of the 82-cam filter substrate (hereinafter sometimes simply referred to as “substrate”) is, as described above, as long as it has a honeycomb shape having a plurality of cells (through holes) serving as a fluid flow path.
  • the overall shape include a cylindrical shape as shown in FIG. 1, a square pillar shape, a triangular pillar shape, and the like.
  • the cell shape of the base material (cell shape in a cross section perpendicular to the cell formation direction) include, for example, a square, a circle, a hexagon, and a triangle as shown in FIG. Can be.
  • the substrate is usually composed of ceramic. Compared to organic polymers, it has higher physical strength and durability, so it has higher reliability. This is due to the fact that even if the cleaning is performed, the deterioration is small, and the average pore diameter that determines the filtration ability can be precisely controlled.
  • the type of the ceramic is not particularly limited, and examples thereof include cordierite, mullite, alumina, selven, aluminum titanate, lithium aluminum silicate, silicon carbide, silicon nitride, and mixtures thereof.
  • the substrate is one in which a ceramic porous body having a large number of pores, in this onset Ming, 50% pore diameter (d 5.) Is that there in the range of 8.. 5 to 13 m is necessary. If the 50% pore diameter (d 5Q ) is less than the above range, the flow resistance when the fluid permeates the inside of the base material increases, the fluid permeation amount decreases, and the treatment capacity is unfavorably reduced. . On the other hand, if it exceeds the above range, it is not preferable in that the mechanical strength of the substrate decreases.
  • the “50% pore diameter (d 5 )” in the present invention is a pore diameter measured by a mercury intrusion method, and the cumulative volume of mercury injected into the porous body is the same as that of the porous body. Means the pore diameter calculated from the pressure at which 50% of the total pore volume becomes.
  • the mercury intrusion method is a pore size measuring method based on the following equation (4). Specifically, when mercury is injected into a dry porous body while gradually increasing the pressure, the diameter becomes large. Mercury is injected in order from the pores to increase the cumulative volume of mercury. When all pores are eventually filled with mercury, the cumulative volume reaches a balance (to the total pore volume of the porous body). Equivalent to) .
  • the pore diameter d calculated from the pressure P when the accumulated capacity becomes 50% of the total pore volume of the porous body is defined as “50% pore diameter (d 5 )”.
  • “50% pore diameter (d 5 )” is the so-called average pore diameter.
  • the partition walls dividing the plurality of cells have an average surface roughness in a range of 3.0 to 5.5.
  • the average surface roughness of the partition wall is less than the above range, the partition wall surface becomes unnecessarily smooth, and the intermediate film is easily peeled off from the partition wall surface when the intermediate film is formed on the partition wall surface.
  • the surface of the partition wall is rough and the unevenness becomes large.
  • the thickness of the intermediate film must be increased. That is, since the flow resistance of the fluid in the intermediate membrane portion increases, the amount of fluid permeation of the finally obtained honeycomb filter decreases, and the processing capacity decreases.
  • “surface roughness” means surface roughness measured in accordance with JIS B 0601 “Surface roughness—definition and indication”. Specifically, a reference length is extracted from the roughness curve in the direction of the average line, and the surface roughness curve of the reference length is turned back on the basis of the average line, and the surface roughness curve is obtained by using the surface roughness curve and the average line. The value obtained by dividing the enclosed area by the reference length in micrometer (zm) was defined as surface roughness (R a).
  • the “average surface roughness” refers to the surface roughness (R) at 10 arbitrarily selected locations among the surfaces of the partition walls that partition a plurality of cells of the honeycomb filler substrate. a) was measured and the measured values were averaged.
  • the method for manufacturing a substrate for a honeycomb filter according to the present invention includes, at least, mixing and kneading aggregate particles and water to form a kneaded material, and dividing the kneaded material into a plurality of fluid passages which are separated by partition walls.
  • the honeycomb molded body is obtained by forming into a honeycomb shape having the cells described above, followed by drying, and firing the honeycomb formed body to obtain a base material for a honeycomb filter.
  • Aggregate particles are particles that are the main constituents of the base material (sintered body).
  • the type of the aggregate particles is not particularly limited, and examples thereof include cordierite, mullite, alumina, cerbene, aluminum titanate, lithium aluminum silicate, silicon carbide, silicon nitride, and mixtures thereof.
  • a kneaded material containing aggregate particles is formed into a desired honeycomb structure.
  • the extrusion molding method is used using an extrusion die having a shape complementary to the cell shape, partition wall thickness, cell density, etc., the portion of the extrusion die that corresponds to the partition wall of the base material (the die) At the slit portion), it is not preferable in that the extruded honeycomb formed body often has defects and the yield of the honeycomb formed body is reduced.
  • the 50% particle diameter (D 5 ) is determined by the difference between the partition wall thickness (W) of the 82-cam-fill base material. It is preferable that the following formula (3) be satisfied.
  • the term “partition wall” in the present invention means all of the portions dividing a plurality of cells in the substrate, and is not limited to those having a constant thickness.
  • the thickness of the part dividing the plurality of cells is not constant, but such a part is also included in the “partition wall” in the present invention.
  • the definition of the above “partition wall thickness (W)” is problematic.
  • the plurality of cells are divided. The thickness of the thinnest part of the
  • a feature of the production method of the present invention is that, as the aggregate particles, those having a broader particle size distribution than conventional ones are dared to be used.
  • Such aggregate particles include a relatively large number of particles having a small particle diameter, and can reduce the average surface roughness of the partition walls of the base material.
  • the pore size distribution of the substrate becomes broader. Force The function of reliably removing impurities in the fluid by having a predetermined pore size Unlike filtration membranes, which need to ensure high performance, the substrate is not necessarily required to have a low flow resistance when the fluid passes through the inside of the substrate, a large amount of fluid permeation, and a high processing capacity. The pore size distribution need not be sharp.
  • aggregate particles having a sharp particle size distribution for the purpose of sharpening the pore size distribution of the base material.
  • aggregate particles between 50% particle size (D 5.), 25% particle size (D 25) and 75% particle size (D 75), the following equation (1) and the following Aggregate particles that satisfy the relationship of equation (2) are used.
  • the ratio of the aggregate particles having a small particle diameter becomes too large, and the pore diameter of the manufactured base material may be reduced. That is, in the base material to be manufactured, the flow resistance when the fluid permeates the inside of the base material is increased, the amount of fluid permeation is reduced, and the processing capacity is not preferable.
  • the relationship of the above formula (2) it is not preferable in that the yield of the honeycomb formed body may be reduced due to the clogging at the slit portion of the extrusion die.
  • the “x% particle size (D x )” referred to in the present invention is a particle size of a powder measured by a sieving method, and a plurality of sieves having different nominal mesh sizes are used.
  • the particle size distribution curve created from the relationship between the diameter and the mass of the powder on the sieve it means the particle size at the point where the integrated mass of the powder is x% of the total mass.
  • a plurality of sieves with different nominal opening diameters are stacked in multiple stages so that the opening diameter increases in the upper stage, and the powder sample whose particle size is to be measured is placed on the uppermost stage.
  • a commercially available ceramic raw material can be used as it is, or this can be pulverized.
  • the method include a method of converting the aggregated particles into aggregate particles, and a method of appropriately mixing two or more kinds of such aggregate particles so as to satisfy the above-described conditions.
  • the production method of the present invention can employ the same method as the conventionally known method for producing a honeycomb filter substrate, except that the above-described aggregate particles are used. First, at least the above-mentioned aggregate particles and water are mixed and kneaded to obtain a clay.
  • the kneaded material may contain other additives, for example, an organic binder / dispersant, an inorganic binder, and the like, if necessary, in addition to the aggregate particles and water.
  • additives for example, an organic binder / dispersant, an inorganic binder, and the like, if necessary, in addition to the aggregate particles and water.
  • the organic binder is an additive that becomes a gel in a molded body (clay) before firing and functions as a reinforcing agent for maintaining the mechanical strength of the molded body.
  • an organic polymer which can be gelled in a molded body (clay) for example, hydroxypropylmethylcellulose, methylcellulose, hydroxyethylcellulose, carboxymethylcellulose, polyvinyl alcohol, or the like is preferably used. Can be.
  • the dispersant is an additive for promoting the dispersion of the aggregate particles in water as a dispersion medium.
  • examples of the dispersant include ethylene glycol, dextrin, fatty acid test, polyalcohol, and the like.
  • the inorganic binder is an additive for strengthening the bonding between the aggregate particles, and is made of a group consisting of alumina, silica, zirconia, titania, glass frit, feldspar, and collage having an average particle diameter of 10 m or less. At least one selected can be used.
  • the inorganic binder is a particle made of ceramic, but is not included in the “aggregate particles” in the present invention.
  • the inorganic binder it is preferable to add 10 to 35 parts by mass of the inorganic binder to 100 parts by mass of the aggregate particles. If the amount is less than 10 parts by mass, the strength of the base material is unfavorably reduced. If the amount is more than 35 parts by mass, the strength is improved, but the inorganic binder stops in the gap between the aggregate particles. This is not preferable in that the pores may be blocked and the amount of fluid permeation may be reduced.
  • the above-mentioned aggregate particles, water, an organic binder, and the like can be prepared into a clay having an appropriate viscosity by, for example, mixing and kneading with a vacuum kneader.
  • the knead The soil is formed into a honeycomb shape and dried to obtain a honeycomb formed body.
  • a conventionally known molding method such as extrusion molding, injection molding, press molding, or the like can be used.
  • the kneaded material prepared as described above is subjected to a desired honeycomb structure (cell shape, partition wall thickness). It is possible to suitably use a method of extrusion molding using an extrusion die having a shape complementary to that of the cell density.
  • conventionally known drying methods such as hot-air drying, microwave drying, dielectric drying, reduced-pressure drying, vacuum drying, and freeze-drying can be used.
  • the entire honeycomb formed body is quickly and uniformly dried. From the viewpoint that the drying can be performed, a drying method in which hot air drying and microphone mouth wave drying or dielectric drying are combined is preferable.
  • Firing is an operation for sintering and densifying the aggregate particles in a molded body to secure a predetermined strength.
  • firing conditions temperature and time
  • appropriate conditions may be selected according to the type of aggregate particles used. For example, when silicon carbide is used as the aggregate particles, it is preferable to bake at a temperature of 130 to 230 ° C. for about 1 to 5 hours.
  • the operation (calcination) of burning and removing (organic binder and the like) is preferable in that the removal of organic substances can be promoted.
  • the combustion temperature of the organic binder is about 160 ° C.
  • the calcination temperature may be set to about 200 to 100 ° C.
  • the calcination time is not particularly limited, but is usually about 1 to 10 hours.
  • the honeycomb filler according to the present invention is a ceramic porous body that constitutes the substrate, formed on the surface of the partition wall that divides the plurality of cells of the honeycomb filter substrate and the substrate for the honeycomb filter described above.
  • a filtration membrane made of a small porous material Such a honeycomb filter prevents the occurrence of defects in the filtration membrane by the above-described special structure of the honeycomb filter base material in which the surface of the partition wall is relatively smooth and the unevenness is small. Therefore, it is not necessary to form the intermediate film thick. Therefore, it is possible to reduce the flow resistance of the fluid in the intermediate membrane portion, increase the fluid permeation amount of the filter, and improve the processing capacity.
  • an intermediate film is formed on the surface of the partition wall of the honeycomb filter base material by using a conventionally known film forming method, and further, a filtration film is formed on the surface of the intermediate film.
  • It can be manufactured by forming. For example, a film-forming slurry containing at least aggregate particles and water (and, if necessary, an organic binder, a pH adjuster, a surfactant, etc.) is adhered to the surface of the partition wall of the honeycomb filter substrate described above. Then, a film-forming body may be obtained, and the film-forming body may be dried and fired to form an intermediate membrane and a filtration membrane.
  • the slurry for film formation may contain an inorganic binder for the same purpose as in the case of manufacturing the base material.
  • an inorganic binder contained in the forming clay clay, kaolin, titania sol, silica sol, glass frit, etc. having an average particle diameter of 1 am or less can be used as the inorganic binder contained in the slurry for film formation. From the viewpoint of ensuring film strength, it is preferable to add 5 to 20 parts by mass to 100 parts by mass of the aggregate particles.
  • the type of the film forming method is not particularly limited, and examples thereof include a dip film forming method and a filtration film forming method described in Japanese Patent Publication No. 63-66656.
  • Aggregate particles, organic binders, and the like can be the same as those used in the production of the base material.
  • substrate, intermediate layer it is necessary to reduce the order 50% pore diameter of the filtration membrane (d 5.), The 50% particle diameter of the aggregate particles (D 5.) Includes a substrate Generally, the size is reduced in the order of the intermediate membrane and the filtration membrane.
  • honeycomb filter substrate of the present invention the method of manufacturing the same, and the honeycomb filter will be described in detail with reference to Examples, but the honeycomb filter substrate of the present invention, the method of manufacturing the same, and the honeycomb filter are described below.
  • the present invention is not limited at all by the embodiments.
  • a particle size distribution curve is created from the relationship between the particle size and the size of the sieve, and the particle size at the point where the integrated mass of the powder is 25% of the total mass is 25% particle size (D 25 ) and 50% particle size particle size of 50% (D 5.), and the particle diameter of the point at which 75% was defined as 75% particle diameter (D 75).
  • the term “average particle diameter” simply means the above 50% particle diameter (D 5Q ).
  • the clogging was caused in the slit portion of the extrusion die with respect to the total 100 manufactured honeycomb formed bodies. It was defined as the ratio (%) of the number of honeycomb formed bodies in which no defects occurred (that is, acceptable products).
  • the molded product yield was evaluated as good when it exceeded 90%, slightly poor when it was 90% or less, and poor when it was 80% or less.
  • the average surface roughness was calculated from the surface roughness (Ra) measured in accordance with JIS B0601 “Definition and Display of Surface Roughness”.
  • a surface length curve is extracted from the roughness curve in the direction of the average line by a reference length, and the surface roughness curve of the reference length is folded back on the basis of the average line, and is surrounded by the surface roughness curve and the average line.
  • the surface area (Ra) was defined as the value obtained by dividing the area obtained by the reference length in micrometer (m).
  • the surface roughness (Ra) was measured at 10 randomly selected locations on the surface of the partition wall that divides the cells of the honeycomb filter substrate, and the average of the measured values was defined as the average surface roughness. did.
  • the 50% pore size (cl 5 ) was measured by the mercury porosimetry.
  • a sample of a predetermined shape is cut out from the honeycomb filter substrate or the honeycomb filter of the example or the comparative example, and mercury is injected into the sample while gradually increasing the pressure, and the press-in is performed.
  • Cumulative volume of mercury that is, the following formula from the pressure P at the time of a 50% of the total pore volume of the sample (4) is calculated on the basis of the pore diameter d of 50% pore diameter (d 5.) Stipulated.
  • the maximum pore size (d max ) of the filtration membrane was measured according to the air flow method described in ASTM F316.
  • the honeycomb filter of Example or Comparative Example was moistened with water at a water temperature of 20 ° C, and pressurized air was sent from a plurality of cells of the honeycomb filter moistened with the water while gradually increasing the pressure.
  • the pore diameter d calculated from the air pressure P when air bubbles were first confirmed from the outer peripheral surface of the cam filter based on the above equation (4) was defined as the maximum pore diameter (d max ).
  • the maximum pore diameter (d MX ) is less than 1.8 xm, there is no membrane defect and the filter has excellent impurity removal performance. When it is 1.8 m or more, there is a membrane defect and the impurity It was evaluated as a fill which does not have sufficient removal performance.
  • the average membrane thickness of the filtration membrane was calculated from the membrane thickness measured with a measuring microscope.
  • the honeycomb filter of Example or Comparative Example was cut along a plane parallel to the end face of the cell opening, and the thickness of one row (44 cells) was measured along the diameter direction of the honeycomb filter, and the measured values were averaged. The defined value was defined as the average film thickness.
  • the differential pressure was 4.8 to 9.8 kP a
  • pure water is injected into a plurality of cells of the honeycomb filter, and then filtered by passing from the inside of the cell to the outer peripheral surface side of the honeycomb filter.
  • the amount of water permeation was measured. If water permeability is 1. 67mVh r ⁇ m 2 or more, a large fluid permeation amount, the processing capability is high filter 1. When it is less than 67 m 3 / hr ⁇ ⁇ 2 is smaller in the fluid permeation amount, Insufficient processing capacity "evaluated.
  • Example 3 // 10 00 1 ⁇ 1 1 no 10 1
  • Example 4 Al 10 1 0 None 11,2 4.5
  • Specific Example 7 Alumina 70 25 0.4 110 1.6 0.11- Yes 84
  • Example 5 Alumina 70 30 0,4 101 1,4 0.11 None 98 12.1 5.0
  • Example 6 Alumina 70 38 0.5 99 1.4 0.11 None 100 12.4 5.1
  • Comparative Example 9 Alumina 75 30 0.4 105 1.4 0.12 None 98 14.2 5.8 Comparative Example 10 Alumina 75 30 0.4 105 1.4 0.12 None 100 14.2 5.8 Comparative Example 11 Alumina 75 36 0.5 97 1.3 0.12 None 98 14.6 5.9 Comparative Example 12 Alumina 75 36 0.5 97 1,3 0.12 None 100 14.6 5.9 Comparative Example 13 Alumina 85 32 0.4 112 L4 0.13 Yes 75
  • the above-mentioned kneaded material is separated by partition walls by a conventionally known extrusion molding machine having an extrusion die having a shape complementary to a desired honeycomb structure (overall shape, cell shape, partition wall thickness).
  • the honeycomb molded body was extruded into a honeycomb shape having a plurality of cells serving as roads, and dried with hot air at 100 at 48 hours to obtain a honeycomb formed body.
  • This / two-piece molded body was fired in an electric furnace at 1300 ° C. for 2 hours to obtain a honeycomb filter substrate (hereinafter simply referred to as “substrate”).
  • the overall shape of the substrate obtained as described above is an end face (cell opening face) having a circular shape with an outer diameter of 18 ⁇ and a cylindrical shape with a length of 100 Omm.
  • the hexagon was 5 mm in diameter
  • the partition wall thickness (W) was 650 m
  • the total number of cells was 2000 cells.
  • Table 1 shows the results of evaluating the 50% pore diameter (d 5 ) and the average surface roughness of the partition walls for these substrates.
  • the 50% particle diameter of the aggregate particles as a raw material of the substrate (D 5.), D 2 5 / D 5. , D 75 for Example 1-7 was within the range of the manufacturing method of the present invention the D 50 is 50% pore diameter (d 5.) Is from 8.5 to 13 ⁇ 111, the average surface roughness of partition walls 3 It was possible to obtain a base material controlled to a thickness of from 0.5 to 5.5 m, showing good results. In addition, the yield of the honeycomb formed body exceeded 90%, and there was no problem at all.
  • Comparative Examples 1 to 3 is less than the range of the manufacturing method of the 50% particle diameter (D 5 ") is the invention of the aggregate particles, 50% pore diameter of the resulting base material (d 50) is 8.5 It is anticipated that the flow resistance when the fluid permeates the inside of the base material will increase, that is, the fluid permeation amount of the finally obtained honeycomb filter will decrease, and the treatment capacity will decrease. Was expected.
  • the 50% particle diameter (D 5.) Is the ratio Comparative Examples 8 to 14 that exceeds the range of the manufacturing method of the present invention of the aggregate particles, 50% pore diameter of the resulting base material (d 5.) 1 3 It was more than ⁇ , and it was expected that when forming an intermediate membrane or a filtration membrane, membrane defects such as membrane defects would increase. Among them, in Comparative Example 8, clogging occurred in the slit portion of the extrusion die during extrusion molding of the base material, so that many extruded honeycomb molded bodies were defective, and the yield of the honeycomb molded body was 90% or less. Has dropped. In addition, 50 % Value particle diameter (D 5 ") Z wall thickness (W) is the comparative example 13, 14 beyond the scope of the production method of the present invention, the yield of the honeycomb formed body is severely degraded 80% or less.
  • the aggregate particles D 75 / D 5 Furthermore, the aggregate particles D 75 / D 5 .
  • An intermediate membrane and a filtration membrane were formed on the above substrate by the following method to obtain a honeycomb filter.
  • alumina particles with an average particle size of 3.2 are used as aggregate particles, glass frit with an average particle size of 0.9 m is used as an inorganic binder, methylcell mouth is used as an organic binder, and polycarboxylic acid is used as a dispersant. Salt was prepared.
  • the aggregate particles, the inorganic binder, water, the organic binder, and the dispersant are mixed in a mass ratio of 100: 20: 400: 0.5: 2.0 to form a slurry for film formation (for an intermediate film).
  • alumina particles having an average particle diameter of 0.4 / m were prepared as aggregate particles, methylcellulose was used as an organic binder, and polycarboxylate was used as a dispersant.
  • the aggregate particles, water, an organic binder, and a dispersant were mixed at a mass ratio of 100: 1000: 4.0: 0.2 to prepare a slurry for membrane formation (for a filtration membrane).
  • the slurry for film formation (for an intermediate film) is adhered to the surface of the partition wall of the base material by a filtration film formation method described in JP-B-63-66566 to obtain a film-formed body.
  • the formed film was dried with hot air at 100 ° C. for 2 hours, and baked in an electric furnace at 1350 ° C. for 2 hours to form an intermediate film.
  • the above-mentioned slurry for membrane formation (for filtration membrane) was applied to the surface of the intermediate membrane formed on the surface of the partition wall of the above substrate.
  • a membrane was obtained by attaching the membrane, the membrane was dried with hot air at 100 ° C for 24 hours, and baked in an electric furnace at 1300 ° C for 2 hours to form a filtration membrane.
  • filter simply referred to as “filter”.
  • the intermediate membrane and the filtration membrane have the average values shown in Table 2. It had a film thickness and a 50% pore size (d 5 ). Table 2 shows the results of evaluating the is maximum pore diameter (d max ) and the water permeability of the filtration membrane for these filters.
  • the filters of Comparative Examples 2 and 3 using a substrate having a 50% pore diameter (d 5Q ) less than the range of the present invention have a large flow resistance when a fluid permeates through the inside of the substrate.
  • water permeability became 1. 67m 3 Zh r * m less than 2. That is, the fluid permeation amount decreased, and the treatment capacity decreased.
  • the filters of Comparative Examples 9 to 12 using the base material having the average surface roughness of the partition walls exceeding the range of the present invention were used because the surface of the partition walls of the base material was rough and the unevenness was large.
  • the intermediate film was formed thin, as in the case of the film, a membrane defect occurred in the filtration film. That is, the maximum pore diameter (d max ) of the filtration membrane was 1.8 m or more, and the performance of removing impurities was insufficient. In order to prevent such a situation, it is necessary to increase the thickness of the intermediate film as in the filters of Comparative Examples 10 and 12. Is big. That is, the filters of Comparative Examples 10 and 12 had a water permeability of less than 1.67 m 3 / r ⁇ m 2 , had a small fluid permeation amount, and had a low treatment capacity. Industrial applicability
  • the honeycomb filter substrate of the present invention since the surface of the partition is relatively smooth and the unevenness is small, it is not necessary to fill the unevenness of the partition when forming the intermediate film. Even if it is thin, its surface can be made smooth. This means that the total thickness of the filtration membrane and the intermediate membrane can be reduced while preventing the occurrence of defects in the filtration membrane, and the flow resistance of the fluid in this portion can be reduced. . That is, the honeycomb filter substrate of the present invention is excellent in impurity removal performance, has a large fluid permeation amount, and can be suitably used for manufacturing a honeycomb filter having a high processing capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明のハニカムフィルタ用基材1は、多数の細孔を有するセラミック多孔質体からなり、隔壁4によって区分された、流体の流路となる複数のセル3を有するものであり、セラミック多孔質体の50%細孔径(d50)を8.5~13μmの範囲内とするとともに、複数のセル3を区分する隔壁4の平均表面粗さを3.0~5.5μmの範囲内としたものである。

Description

明 細 書
ハニカムフィル夕用基材及びその製造方法、 並びにハニカムフィル夕 技術分野
本発明は、 ハニカムフィルタ、 並びにハニカムフィルタ用基材及びその製造方 法に関し、 詳しくは、 不純物の除去性能に優れるとともに、 流体透過量 (即ち処 理能力) が大きいハニカムフィル夕、 並びにそのようなハニカムフィル夕の製造 に好適に用いることができるハニカムフィルタ用基材及びその製造方法に関する
背景技術
近年、 水処理、 或いは医薬 ·食品分野などの広範な分野において、 流体 (液体 、 気体) 中に混在する懸濁物質、 細菌、 粉塵等の不純物を除去するために、 セラ ミック多孔質体を濾材とするフィル夕が用いられている。
上記フィル夕としては、 例えば図 2に示すような、 多数の細孔を有するセラミ ック多孔質体からなり、 隔壁によって区分された、 流体の流路となる複数のセル 2 3を有する (以下、 このような形状を 「ハニカム状」 と記す) 八二カムフィル 夕 2 2が汎用されている。
上記のようなハニカムフィルタは、 処理対象の流体 (被処理流体) を複数のセ ル内に供給すると、 その流体がセル内からハニカムフィルタを構成するセラミツ ク多孔質体を透過して、 その外周面から流出する際に、 懸濁物質等が除去される 。 従って、 八二カムフィル夕を、 その外周面側とセル開口端面側とを、 シール材 (〇一リング等) により液密的に隔離した状態で、 ケーシング内に内蔵する構造 とすることによって、 浄化された流体 (浄化済流体) を回収することができる。 また、 ハニカムフィルタは、 多数の細孔を有するセラミック多孔質体からなり 、 隔壁によって区分された、 流体の流路となる複数のセルを有する基材と、 複数 のセルを区分する隔壁の表面に形成された、 基材より平均細孔径が小さい多孔質 体からなる濾過膜とを備えた構造が採用されることが多い (例えば、 特開 2 0 0 1 - 2 6 0 1 1 7号公報、 及び特開 2 0 0 1— 3 4 0 7 1 8号公報参照) 。 上記のような構造では、 濾過膜の平均細孔径を不純物の粒子径ょり小さく構成 することによって (0 . 0 1〜1 . Ο ΠΙ程度) 、 不純物の除去性能が確保され る一方で、 基材の平均細孔径を濾過膜より大きく構成することによって (1〜数 1 0 0 z m程度) 、 流体が基材内部を透過する際の流動抵抗を低下させ、 流体透 過量を増大させるとともに、 処理能力を向上させることが可能となる。 即ち、 流 体透過量が大きく、 処理能力が高いハニカムフィルタを構成するためには、 基材 の平均細孔径を可能な限り大きく構成すればよいということになる。
しかしながら、 平均細孔径が大きい基材において、 複数のセルを区分する隔壁 の表面に、 基材より平均細孔径が小さい濾過膜を形成しょうとする場合には、 以 下に掲げるような問題があつた。
即ち、 ハニカムフィルタを製造するに際し、 その濾過膜は、 基材の隔壁の表面 (即ち、 セル内壁) に、 骨材粒子を含むスラリーを付着させることによって製膜 体を得、 その製膜体を乾燥し、 焼成する方法により形成することが一般的であり 、 平均細孔径が小さい濾過膜を形成しょうとする場合には、 平均粒子径が小さい 骨材粒子を含むスラリーを用いて製膜が行われる。 しかしながら、 平均細孔径が 大きい基材の隔壁の表面 (即ち、 セル内壁) に、 平均粒子径が小さい骨材粒子を 含むスラリーを付着させようとすると、 基材の隔壁の表面のみならず、 基材の細 孔内部にまで、 スラリ一中の骨材粒子が入り込み、 基材の細孔を閉塞してしまう 。 従って、 期待するほどには、 フィル夕の流体透過量を増大させ、 処理能力を向 上させることができないという問題があった。
上記の問題を回避する方法として、 基材と濾過膜との間に、 基材と濾過膜の中 間の平均細孔径を有する多孔質体からなる中間膜を形成する方法も考えられてい る。 この方法によれば、 スラリー中の骨材粒子は中間膜の表面でトラップされる ため、 基材の細孔内部にスラリ一中の骨材粒子が入り込む事態は防止できるもの の、 濾過膜と中間膜との合計膜厚が大きくなり、 この部分における流体の流動抵 抗が大きくなつてしまう。 従って、 この方法を用いても、 フィル夕の流体透過量 を増大させ、 処理能力を向上させることはできなかった。 発明の開示 本発明は、 このような従来技術の問題点に鑑みてなされたものであって、 不純 物の除去性能に優れるとともに、 流体透過量が大きく、 処理能力が高いという有 利な効果を奏するハニカムフィル夕を提供するものであり、 具体的には、 そのよ うなハニカムフィルタの製造に好適に用いることができるハニカムフィルタ用基 材及びその製造方法を提供するものである。
本発明者は、 上述の課題を解決するべく鋭意研究した結果、 ハニカムフィルタ 用基材を構成するセラミック多孔質体の 5 0 %細孔径 (d5。) を 8. 5〜1 3 mの範囲内とするとともに、 複数のセルを区分する隔壁の平均表面粗さを 3. 0 〜5. 5 mの範囲内に制御することによって、 上記課題を解決可能であること に想到し、 本発明を完成させた。'即ち、 本発明は、 以下のハニカムフィルタ用基 材及びその製造方法、 並びにハニカムフィルタを提供するものである。
[ 1 ] 多数の細孔を有するセラミック多孔質体からなり、 隔壁によって区分さ れた、 流体の流路となる複数のセルを有するハニカムフィル夕用基材であって、 前記セラミック多孔質体の 5 0 %細孔径 (d5。) が 8. 5〜 1 3 ( rn) の範囲 内にあるとともに、 前記複数のセルを区分する隔壁の平均表面粗さが 3. 0〜5 . 5 ( m) の範囲内にあるハニカムフィルタ用基材。
(但し、 「5 0 %細孔径 (d5。) 」 とは. 水銀圧入法により測定された細孔径 であって、 多孔質体に圧入された水銀の累積容量が、 多孔質体の全細孔容積の 5 0 %となった際の圧力から算出された細孔径を意味する)
[2] 少なくとも、 骨材粒子及び水を混合し、 混練することによって坏土とし 、 前記坏土を、 隔壁によって区分された、 流体の流路となる複数のセルを有する 八二カム状に成形し、 乾燥することによってハニカム成形体を得、 前記ハニカム 成形体を焼成することによってハニカムフィルタ用基材を得るハニカムフィルタ 用基材の製造方法であって、 前記骨材粒子として、 5 0 %粒子径 (D5。) が 5 0 〜7 0 (urn) の範囲内にあるとともに、 前記 5 0 %粒子径 (D5。) 力 2 5 % 粒子径 (D„) 及び 7 5 %粒子径 (D75) との間で、 下記式 (1) 及び下記式 ( 2) の関係を満たす骨材粒子を用いるハニカムフィルタ用基材の製造方法。
0. 4≤D25/D50 … ( 1)
D75/D50≤ l . 4 … (2) (但し、 「x%粒子径 (Dx) 」 とは、 篩分け法により測定された粉末の粒子 径であって、 公称目開き径の異なる複数の篩を用い、 篩の目開き径と篩上にある 粉末質量との関係から作成した粒度分布曲線において、 粉末の積算質量がその全 質量の X %となる点の粒子径を意味する)
[3] 前記骨材粒子として、 前記 50%粒子径 (D5Q) が、 前記ハニカムフィ ル夕用基材の隔壁厚さ (W) との間で、 下記式 (3) の関係を満たす骨材粒子を 用いる請求項 2に記載のハニカムフィルタ用基材の製造方法。
D50//W≤O. 12 ··· (3)
[4] 上記 [1] に記載のハニカムフィル夕用基材と、 前記ハニカムフィルタ 用基材の前記複数のセルを区分する隔壁の表面に形成された、 前記基材を構成す るセラミック多孔質体より、 50%細孔径 (d5。) が小さい多孔質体からなる中 間膜と、 前記中間膜の表面に形成された、 前記中間膜を構成する多孔質体より、 50%細孔径 (d5。) が小さい多孔質体からなる濾過膜とを有するハニカムフィ ルタ。 図面の簡単な説明
図 1は、 ハニカムフィル夕用基材の一の実施の形態を模式的に示す正面図であ り、 セル開口端面側から見た構造を示すものである。
図 2は、 八二カムフィル夕の一の実施の形態を模式的に示す斜視図である。 発明を実施するための最良の形態
本発明者は、 本発明のハニカムフィルタを開発するに際し、 まず、 基材と濾過 膜との間に、 基材と濾過膜の中間の平均細孔径を有する多孔質体からなる中間膜 を形成する方法において、 濾過膜と中間膜との合計膜厚が大きくなり、 この部分 における流体の流動抵抗が大きくなつてしまう原因について検討した。 その結果 、 従来は、 中間膜の表面を可能な限り平滑に形成するために、 中間膜を厚く形成 していたという事実が判明した。
濾過膜の下地層となる中間膜の表面については、 濾過膜における膜欠陥の発生 を防止するべく、 可能な限り平滑に形成する必要がある。 しかしながら、 従来の 基材の隔壁の表面が粗く凹凸が大きかったことに起因して、 中間膜を形成するに 際しては、 まず隔壁の凹凸を埋める必要があった。 その上で中間膜の表面を可能 な限り平滑に形成するために、 中間膜の膜厚は厚くならざるを得なかったのであ る。
そこで、 本発明においては、 ハニカムフィル夕用基材を構成するセラミック多 孔質体の 5 0 %細孔径 (d 5。) を 8 . 5〜1 3 mの範囲内とするとともに、 複 数のセルを区分する隔壁の平均表面粗さを 3 . 0〜5 . 5 mの範囲内に制御す ることとした。
こうすることにより、 基材の隔壁の表面が比較的平滑になり、 凹凸が小さくな るために、 中間膜を形成するに際して、 隔壁の凹凸を埋める必要がなくなり、 中 間膜が薄くても、 その表面を平滑にすることができる。 従って、 濾過膜の欠陥の 発生を防止しつつ、 濾過膜と中間膜との合計膜厚を小さくすることができ、 この 部分における流体の流動抵抗を小さくすることが可能である。 即ち、 フィルタの 流体透過量を増大させ、 処理能力を向上させることができる。
以下、 本発明のハニカムフィル夕用基材及びその製造方法、 並びに八二カムフ イルクの実施の形態を具体的に説明する。
( 1 ) ハニカムフィルタ用基材
本発明のハニカムフィル夕用基材は、 例えば図 1に示すハニカムフィルタ用基 材 1のように、 多数の細孔を有するセラミック多孔質体からなり、 隔壁 4によつ て区分された、 流体の流路となる複数のセル 3を有するものである。
八二カムフィルタ用基材 (以下、 単に 「基材」 と記す場合がある) の形状は、 上述の如く、 流体の流路となる複数のセル (貫通孔) を有するハニカム状である 限りにおいて、 特に限定されるものではない。 全体的な形状としては、 例えば、 図 1に示すような円筒状の他、 四角柱状、 三角柱状等の形状を挙げることができ る。 また、 基材のセル形状 (セルの形成方向に対して垂直な断面におけるセル形 状) としては、 例えば、 図 1に示すような四角形の他、 円形、 六角形、 三角形等 の形状を挙げることができる。
基材は、 通常、 セラミックによって構成される。 有機高分子と比較して、 物理 的強度、 耐久性に優れるため信頼性が高く、 耐食性が高いため酸アルカリ等によ る洗浄を行っても劣化が少なく、 更には、 濾過能力を決定する平均細孔径の精密 な制御が可能であることによる。 セラミックの種類は特に限定されないが、 例え ば、 コージエライト、 ムライト、 アルミナ、 セルベン、 アルミニウムチタネート 、 リチウムアルミニウムシリケ一ト、 炭化珪素、 窒化珪素、 或いはこれらの混合 物等が挙げられる。
基材は、 多数の細孔を有するセラミック多孔質体からなるものであるが、 本発 明においては、 その 50%細孔径 (d5。) が 8. 5〜 13 mの範囲内にあるこ とが必要である。 50%細孔径 (d5Q) が上記範囲未満である場合には、 流体が 基材内部を透過する際の流動抵抗が大きくなり、 流体透過量が減少し、 処理能力 が低下する点において好ましくない。 一方、 上記範囲を超える場合には、 基材の 機械的強度が低下する点において好ましくない。
なお、 本発明にいう 「50%細孔径 (d5。) 」 とは、 水銀圧入法により測定さ れた細孔径であって、 多孔質体に圧入された水銀の累積容量が、 多孔質体の全細 孔容積の 50%となった際の圧力から算出された細孔径を意味する。 水銀圧入法 は、 下記式 (4) を原理式とする細孔径測定方法であり、 具体的には、 乾燥した 多孔質体に対して徐々に圧力を上昇させながら水銀を圧入すると、 径の大きい細 孔から順に水銀が圧入されて水銀の累積容量が増加していき、 最終的に全ての細 孔が水銀で満たされると、 累積容量は衡量に達する (その多孔質体の全細孔容積 に相当する) 。 本発明においては、 累積容量が多孔質体の全細孔容積の 50 %と なった際の圧力 Pから算出された細孔径 dを 「50 %細孔径 (d5。) 」 と規定し た。 この測定方法においては、 「50%細孔径 (d5。) 」 が、 いわゆる平均細孔 径ということになる。
cl = _rX c o s 0/P ··· (4)
(但し、 d :細孔径、 ァ :液体一空気界面の表面張力、 0 :接触角、 P :圧力
)
本発明のハニカムフィルタ用基材は、 複数のセルを区分する隔壁の平均表面粗 さが 3. 0〜5. 5 の範囲内にあることが必要である。 隔壁の平均表面粗さ が上記範囲未満である場合には、 隔壁表面が必要以上に平滑になり、 隔壁の表面 に中間膜を形成する際に、 隔壁表面から中間膜が剥離し易くなる。 一方、 上記範 囲を超える場合には、 隔壁の表面が粗く凹凸が大きくなるために、 中間膜を形成 するに際して、 まず隔壁の凹凸を埋める必要が生じ、 その上で中間膜の表面を平 滑にするためには、 中間膜の膜厚を厚く形成せざるを得ない。 即ち、 中間膜部分 における流体の流動抵抗が大きくなつてしまうため、 最終的に得られるハニカム フィルタの流体透過量が減少し、 処理能力が低下する。
なお、 本発明にいう 「表面粗さ」 とは、 J I S B 0 6 0 1 「表面粗さ—定義 及び表示」 に準拠して測定した表面粗さを意味する。 具体的には、 粗さ曲線から その平均線の方向に基準長さだけ抜き取り、 この基準長さの表面粗さ曲線を前記 平均線を基準として折り返し、 その表面粗さ曲線と前記平均線とによって囲まれ た面積を前記基準長さで割った値をマイクロメートル ( z m) で表したものを表 面粗さ (R a ) と規定した。 また、 本発明にいう 「平均表面粗さ」 とは、 ハニカ ムフィル夕用基材の複数のセルを区分する隔壁の表面のうち、 任意に選択した 1 0箇所において、 上記の表面粗さ (R a ) を測定し、 その測定値を平均した値と した。
( 2 ) 八二カムフィル夕用基材の製造方法
本発明のハニカムフィルタ用基材の製造方法は、 少なくとも、 骨材粒子及び水 を混合し、 混練することによって坏土とし、 その坏土を、 隔壁によって区分され た、 流体の流路となる複数のセルを有するハニカム状に成形し、 乾燥することに よって八二カム成形体を得、 そのハニカム成形体を焼成することによってハニカ ムフィルタ用基材を得るものである。
骨材粒子は、 基材 (焼結体) の主たる構成成分となる粒子である。 骨材粒子の 種類は、 特に限定されないが、 コージエライト、 ムライト、 アルミナ、 セルベン 、 アルミニウムチタネート、 リチウムアルミニウムシリゲート、 炭化珪素、 窒化 珪素、 或いはこれらの混合物等が挙げられる。
本発明の製造方法においては、 骨材粒子として、 5 0 %粒子径 (D5。)'が 5 0 〜 7 0 mの範囲内にあるものを用いることが必要である。 5 0 %粒子径 (D 5。 ) が上記範囲未満である場合には、 製造される基材の細孔径が小さくなることに より、 流体が基材内部を透過する際の流動抵抗が大きくなり、 流体透過量が減少 し、 処理能力が低下する点において好ましくない。 一方、 上記範囲を超える場合には、 製造される基材の細孔径が大きくなること により、 中間膜や濾過膜を製膜する際に、 製膜用スラリー中の骨材粒子が基材の 細孔内に入り込んでしまったり、 或いは、 基材の細孔を透過してしまうため、 膜 欠陥を生じる等の製膜不良が増加する原因となる点において好ましくない。 また 、 ハニカム成形体の成形方法として、 骨材粒子を含む坏土を所望のハニカム構造
(セル形状、 隔壁厚さ、 セル密度等) と相補的な形状を有する押出用口金を用い て押出成形する方法を採用した場合に、 押出用口金における基材の隔壁に相当す る部分 (口金のスリット部分) において目詰まりが生じ易くなるため、 押し出さ れたハ二カム成形体に欠陥が多発し、 ハニカム成形体の歩留まりが低下する点に おいても好ましくない。
本発明の製造方法においては、 骨材粒子が、 上記の条件を満たすことに加え、 5 0 %粒子径 (D 5。) が、 八二カムフィル夕用基材の隔壁厚さ (W) との間で、 下記式 ( 3 ) の関係を満たすものであることが好ましい。
D50/W≤0 . 1 2 … (3 )
上記式 (3 ) の関係を満たすことによって、 上述した押出用口金のスリット部 分における目詰まりに起因する、 ハニカム成形体の歩留まり低下をより効果的に 防止することが可能となる。 なお-. 本発明において 「隔壁」 というときは、 基材 において複数のセルを区分している部分の全てを意味し、 一定の厚さを有してい るものには限られない。 例えば、 基材のセル形状が円形である場合には、 複数の セルを区分している部分の厚さが一定にはならないが、 このような部分も本発明 にいう 「隔壁」 に含まれる。 なお、 複数のセルを区分している部分の厚さが一定 でない場合には、 上記 「隔壁厚さ (W) 」 の定義が問題となるが、 本発明におい ては、 複数のセルを区分している部分のうち、 最も薄い部分の厚さを 「隔壁厚さ
(W) 」 と定義するものとする。
本発明の製造方法の特徴は、 骨材粒子として、 その粒度分布が従来と比較して ブロードなものを敢えて使用する点にある。 このような骨材粒子には、 粒子径が 小さいものが比較的多く含まれており、 基材の隔壁の平均表面粗さを小さくする ことができる。 このような方法では、 基材の細孔径分布もブロードなものになる 力 所定の細孔径を有することによって、 流体中の不純物を確実に除去する機能 を担保する必要がある濾過膜とは異なり、 基材の場合には、 流体が基材内部を透 過する際の流動抵抗が小さく、 流体透過量が大きく、 処理能力が高い限りにおい て、 必ずしも細孔径分布がシャープである必要はない。 従って、 従来の製造方法 のように、 基材の細孔径分布をシャープにすることを目的として、 骨材粒子とし て、 その粒度分布がシャープなものを使用する必要はないものと考えられる。 具体的には、 骨材粒子として、 50%粒子径 (D5。) が、 25%粒子径 (D25 ) 及び 75%粒子径 (D75) との間で、 下記式 (1) 及び下記式 (2) の関係を 満たす骨材粒子を用いる。
0. 4≤D25/D50 … (1)
D75/D50≤ l . 4 … (2)
' 上記式 (1) の関係を満たさない場合には、 粒子径の小さい骨材粒子の比率が 多くなり過ぎて、 製造される基材の細孔径が小さくなるおそれがある。 即ち、 製 造される基材において、 流体が基材内部を透過する際の流動抵抗が大きくなり, 流体透過量が減少し、 処理能力が低下する点において好ましくない。 一方、 上記 式 (2) の関係を満たさない場合には、 上述した押出用口金のスリット部分にお ける目詰まりに起因して、 ハニカム成形体の歩留まりが低下するおそれがある点 において好ましくない。
なお、 本発明に言う 「x%粒子径 (Dx) 」 とは、 篩分け法により測定された 粉末の粒子径であって、 公称目開き径の異なる複数の篩を用い、 篩の目開き径と 篩上にある粉末質量との関係から作成した粒度分布曲線において、 粉末の積算質 量がその全質量の x%となる点の粒子径を意味する。 具体的には、 公称目開き径 の異なる複数の篩を、 上段ほど目開き径が大きくなるように多段に積重したもの を用意し、 最上段の篩に粒子径の測定対象である粉末試料を投入し、 振とう機で 15分間振とうした後、 各段の篩上にある粉末質量とその篩の目開き径との関係 から粒度分布曲線を作成し、 粉末の積算質量がその全質量の x%となる点の粒子 径を x%粒子径 (Dx) と規定した。 この測定方法においては、 「50%粒子径 (D5。) 」 が、 いわゆる平均粒子径ということになる。
上記のような 50 %粒子径 (D5Q) 、 粒度分布を有する骨材粒子を調製する方 法としては、 例えば、 市販のセラミック原料をそのまま、 或いはこれを粉碎 -分 級したものを骨材粒子とする方法、 又はそのような骨材粒子を 2種以上、 既述の 条件を満たすように適宜混合する方法等が挙げられる。
本発明の製造方法は、 上述のような骨材粒子を使用することを除いては、 従来 公知のハニカムフィルタ用基材の製造方法と同様の方法を採用することができる 。 まず、 少なくとも、 上述のような骨材粒子及び水を混合し、 混練することによ つて坏土とする。
なお、 上記坏土には、 骨材粒子及び水の他、 必要に応じて、 この他の添加剤、 例えば、 有機バインダゃ分散剤、 無機結合材等を含有させてもよい。
有機バインダは、 焼成前の成形体 (坏土) においてゲル状となり、 成形体の機 械的強度を維持する補強剤としての機能を果たす添加剤である。 従って、 有機バ インダとしては、 成形体 (坏土) においてゲル化し得る有機高分子、 例えば、 ヒ ドロキシプロピルメチルセルロース、 メチルセルロース、 ヒドロキシェチルセル ロース、 カルボキシルメチルセルロース、 ポリビニルアルコール等を好適に用い ることができる。
分散剤は、 骨材粒子の分散媒である水への分散を促進するための添加剤である 分散剤としては、 例えば、 エチレングリコール、 デキストリン、 脂肪酸石験、 ポリアルコール等を用いることができる。
無機結合材は、 骨材粒子同士の結合を強化するための添加材であり、 平均粒子 径 1 0 m以下のアルミナ、 シリカ、 ジルコニァ、 チタニア、 ガラスフリット、 長石、 コ一ジェライ卜からなる群より選択される少なくとも 1種を使用すること ができる。 なお、 無機結合材はセラミックからなる粒子ではあるが本発明にいう 「骨材粒子」 には包含されないものとする。
無機結合材は、 骨材粒子 1 0 0質量部に対して、 1 0〜3 5 量部を添加する ことが好ましい。 1 0質量部未満であると基材の強度が低下する点において好ま しくなく、 3 5質量部を超えると強度は向上するものの骨材粒子の間隙に無機結 合材が止まるため、 基材内部の細孔を閉塞し流体透過量を低下させるおそれがあ る点において好ましくない。
上記骨材粒子、 水、 及び有機バインダ等は、 例えば、 真空土練機等により混合 し、 混練することによって、 適当な粘度の坏土に調製することができる。 その坏 土をハニカム状に成形し、 乾燥することによってハニカム成形体を得る。
成形の方法は、 押出成形、 射出成形、 プレス成形等の従来公知の成形法を用い ることができるが、 中でも、 上述のように調製した坏土を、 所望のハニカム構造 (セル形状、 隔壁厚さ、 セル密度等) と相補的な形状を有する押出用口金を用い て押出成形する方法等を好適に用いることができる。 乾燥の方法も、 熱風乾燥、 マイクロ波乾燥、 誘電乾燥、 減圧乾燥、 真空乾燥、 凍結乾燥等の従来公知の乾燥 方法を用いることができるが、 中でも、 ハニカム成形体全体を迅速かつ均一に乾 燥することができる点で、 熱風乾燥とマイク口波乾燥又は誘電乾燥とを組み合わ せた乾燥方法が好ましい。
最後に、 上述のようにして得られたハニカム成形体を焼成することによってハ 二カムフィルタ用基材を得る。 焼成とは、 八二力ム成形体中の骨材粒子を焼結さ せて緻密化し、 所定の強度を確保するための操作である。 焼成条件 (温度 ·時間 ) は、 使用する骨材粒子の種類に応じて適当な条件を選択すればよい。 例えば、 炭化珪素を骨材粒子として用いる場合には、 1 3 0 0〜2 3 0 0 °Cの温度で、 1 〜 5時間程度焼成することが好ましい。
なお、 焼成の前、 或いは焼成の昇温過程において、 ハニカム成形体中の有機物
(有機バインダ等) を燃焼させて除去する操作 (仮焼) を行うと、 有機物の除去 を促進させることができる点において好ましい。 例えば、 有機バインダの燃焼温 度は 1 6 0 °C程度であるので、 これを除去したい場合には、 仮焼温度は 2 0 0〜 1 0 0 0 °C程度とすればよい。 仮焼時間は特に限定されないが、 通常は、 1〜1 0時間程度である。
( 3 ) ハニカムフィルタ
本発明のハニカムフィル夕は、 上述のハニカムフィル夕用基材と、 その八二力 ムフィルタ用基材の複数のセルを区分する隔壁の表面に形成された、 基材を構成 するセラミック多孔質体より、 5 0 %細孔径 (d 5。) が小さい多孔質体からなる 中間膜と、 その中間膜の表面に形成された、 中間膜を構成する多孔質体より 5 0 %細孔径 (d 5e) が小さい多孔質体からなる濾過膜とを有するものである。 この ようなハニカムフィルタは、 隔壁の表面が比較的平滑で凹凸が小さいという上述 のハニカムフィルタ用基材の特殊な構造によって、 濾過膜の欠陥の発生を防止す るために、 中間膜を厚く形成する必要がない。 従って、 中間膜の部分における流 体の流動抵抗を小さくすることができ、 フィルタの流体透過量を増大させ、 処理 能力を向上させることが可能である。
本発明のハニカムフィル夕は、 上述のハニカムフィルタ用基材の隔壁の表面に 、 従来公知の製膜法を用いて、 中間膜を形成し、 更には、 その中間膜の表面に濾 過膜を形成することによって製造することができる。 例えば、 上述のハニカムフ ィル夕用基材の隔壁の表面に、 少なくとも骨材粒子及び水 (必要に応じ、 更に、 有機バインダ、 P H調整剤、 界面活性剤等) を含む製膜用スラリーを付着せしめ て製膜体を得、 その製膜体を乾燥し、 焼成する方法により中間膜及び濾過膜を形 成すればよい。
また、 製膜用スラリーには、 基材を製造する場合と同様の目的で無機結合材を 含有させてもよい。 但し、 製膜用スラリーに含有させる無機結合材は、 成形用坏 土に含有させるものとは異なり、 平均粒子径 1 a m以下の粘土、 カオリン、 チタ ニァゾル、 シリカゾル、 ガラスフリット等を用いることができ、 膜強度を確保す る観点から、 骨材粒子 1 0 0質量部に対して、 5〜2 0質量部を添加することが 好ましい。
製膜法の種類は特に限定されないが、 例えば、 ディップ製膜法、 特公昭 6 3— 6 6 5 6 6号公報に記載の濾過製膜法等が挙げられる。 骨材粒子、 有機バインダ 等は基材の製造に使用したものと同様のものを使用することができる。 伹し、 基 材、 中間膜、 濾過膜の順に 5 0 %細孔径 (d 5。) を小さくする必要があるため、 骨材粒子の 5 0 %粒子径 (D 5。) については、 基材、 中間膜、 濾過膜の順で小さ くすることが一般的である。 実施例
以下、 本発明のハニカムフィルタ用基材及びその製造方法、 並びにハニカムフ ィル夕を、 実施例により具体的に説明するが、 本発明のハニカムフィルタ用基材 及びその製造方法、 並びにハニカムフィルタはこれらの実施例によつて何ら限定 されるものではない。
(各種物性値の測定方法、 各種評価方法) [25%$立子径 (D25) 、 50%粒子径 (D5。) 、 75%粒子径 (D75) ] : 公称目開き径の異なる複数の篩を、 上段ほど目開き径が大きくなるように多段 に積重したものを用意し、 最上段の篩に粒子径の測定対象である粉末試料を投入 し、 振とう機で 15分間振とうした後、 各段の篩上にある粉末質量とその篩の目 開き径との関係から粒度分布曲線を作成し、 粉末の積算質量がその全質量の 25 %となる点の粒子径を 25 %粒子径 (D25) 、 50 %となる点の粒子径を 50 % 粒子径 (D5。) 、 75%となる点の粒子径を 75%粒子径 (D75) と規定した。 なお、 以下の実施例、 比較例において、 単に 「平均粒子径」 という場合は、 上記 50%粒子径 (D5Q) を意味するものとする。
[成形体歩留まり] :
実施例又は比較例の条件で、 坏土を押出成形してハニカム成形体を製造した場 合において、 ハニカム成形体の全製造数 100個に対する、 押出用口金のスリツ 卜部分における目詰まりに起因する欠陥が発生しなかったハニカム成形体 (即ち 、 合格品) の個数の比率 (%) として規定した。 成形体歩留まりが 90%を超え る場合は良好、 90 %以下である場合はやや不良、 80 %以下である場合には不 良として評価した。
[平均表面粗さ] :
平均表面粗さについては、 J I S B 0601 「表面粗さ一定義及び表示」 に 準拠して測定した表面粗さ (Ra) から算出した。 粗さ曲線からその平均線の方 向に基準長さだけ抜き取り、 この基準長さの表面粗さ曲線を前記平均線を基準と して折り返し、 その表面粗さ曲線と前記平均線とによって囲まれた面積を前記基 準長さで割った値をマイクロメートル ( m) で表したものを表面耝さ (Ra) と規定した。 この表面粗さ (Ra) をハニカムフィルタ用基材の複数のセルを区 分する隔壁の表面のうち、 任意に選択した 10箇所において測定し、 その測定値 を平均した値を平均表面粗さと規定した。
[50%細孔径 (d5。) ] :
50%細孔径 (cl5。) については、 水銀圧入法により測定した。 実施例又は比 較例のハニカムフィルタ用基材又はハニカムフィル夕から所定形状の試料を切り 出し、 その試料に対して徐々に圧力を上昇させながら水銀を圧入し、 その圧入さ れた水銀の累積容量が、 試料の全細孔容積の 50%となった際の圧力 Pから下記 式 (4) に基づいて算出された細孔径 dを 50%細孔径 (d5。) と規定した。
d = - r c o s Θ/Ρ … (4)
(但し、 d :気孔径、 ァ :液体一空気界面の表面張力、 Θ :接触角、 P :圧力
)
[最大細孔径 (d„,ax) 、 不純物の除去性能] :
濾過膜の最大細孔径 (dmax) については、 ASTM F 316に記載のエアフ ロー法に準拠して測定した。 実施例又は比較例のハニカムフィル夕を水温 20°C の水で湿潤し、 その水で湿潤されたハニカムフィルタの複数のセル内から、 徐々 に圧力を上昇させながら加圧エアを送り込み、 八二カムフィルタの外周面から最 初に気泡が確認された際のエア圧力 Pから上記式 (4) に基づいて算出された細 孔径 dを最大細孔径 (dmax) と規定した。 最大細孔径 (dMX) が 1. 8 xm未満 の場合には、 膜欠陥がなく、 不純物の除去性能に優れたフィルタ、 1. 8 m以 上の場合には、 膜欠陥が存在し、 不純物の除去性能が十分ではないフィル夕とし て評価した。
[平均膜厚] :
中間膜 濾過膜の平均膜厚については、 メジャ一リングマイクロスコープによ り測定した膜厚から算出した。 実施例又は比較例のハニカムフィル夕をセル開口 端面と平行な面で切断し、 そのハニカムフィル夕の直径方向に沿って 1列 (44 セル) の膜厚をそれぞれ測定し、 その測定値を平均した値を平均膜厚と規定した
[透水量、 流体透過量 (処理能力) ] :
実施例又は比較例のハニカムフィルタを、 水中、 6. 7 kP a以下の減圧下で 2時間放匱して、 ハニカムフィルタ内の気泡を脱気した後、 差圧 4. 8〜9. 8 kP a、 温度 25°Cの条件で、 純水をハニカムフィル夕の複数のセル内に注入し 、 セル内からハニカムフィルタの外周面側へ透過させることにより濾過し、 単位 濾過面積、 単位時間当たりの透水量を測定した。 透水量が 1. 67mVh r · m2以上の場合には、 流体透過量が大きく、 処理能力が高いフィルタ、 1. 67 m3/h r · πι2未満の場合には、 流体透過量が小さく、 処理能力が不十分なフィ 「評価した。
(実施例、 比較例)
[八二力ムフィル夕用基材及びその製造方法]
まず、 骨材粒子として表 1に記載のものを、 無機結合材として平均粒子径 3. 5 mのガラスフリットを、 有機バインダとしてメチルセルロースを、 分散剤と してポリエチレングリコールを用意した。 次いで、 骨材粒子、 無機結合材、 水、 有機バインダ、 分散剤を、 100 : 1 1. 1 : 13. 1 : 3. 6 : 0. 9の質量 比で調合し、 真空土練機により混合し、 混練することによって、 適当な粘度の坏 土に調製した。
骨材粒子 (基材原料) 成形体 基材
D50 D25 D75 d50
D25 D50 D75/D50 歩留まり 平均表面粗さ
D50/W 成形時
材質
( πι) ( ja m) m) 目詰まり (%) ( μ πι)
齢例 1 0 000 1 U. ΠU7 /
1 DO 1 U.U ί ί 9
1:卜輕例 1 3 厶厶 U.D DU 1 U.U ί 7 1
比較例 4 OU 1 07 1 7 (0 09
拿 ¾"例 1 1 7 ί 0 1
実施例 2 99 00.0
比較例 5 ァ / 1 りリ
比較例 00
J 6 ァ/ 十 DU のりリ OO
実施例 3 ァ/ 十 00 1 Π か 1 1 no 10 1 例 4 アル 十 1 0 なし 11,2 4.5 比 例 7 アルミナ 70 25 0.4 110 1.6 0.11- あり 84
実施例 5 アルミナ 70 30 0,4 101 1,4 0.11 なし 98 12.1 5.0 実施例 6 アルミナ 70 38 0.5 99 1.4 0.11 なし 100 12.4 5.1 実施例 7 アルミナ 70 43 0.6 95 1.4 0.11 なし 99 12.6 5.1 比較例 8 アルミナ 75 25 0,3 113 1.5 0.12 あり 81
比較例 9 アルミナ 75 30 0.4 105 1.4 0.12 なし 98 14.2 5.8 比較例 10 アルミナ 75 30 0.4 105 1.4 0.12 なし 100 14.2 5.8 比較例 11 アルミナ 75 36 0.5 97 1.3 0.12 なし 98 14.6 5.9 比較例 12 アルミナ 75 36 0.5 97 1 ,3 0.12 なし 100 14.6 5.9 比較例 13 アルミナ 85 32 0.4 112 L4 0.13 あり 75
比較例 14 アルミナ 90 36 0.4 126 1.4 0.14 あり 70
上記の坏土を所望のハニカム構造 (全体形状、 セル形状、 隔壁厚さ) と相補的 な形状の押出用口金を有する、 従来公知の押出成形機によって、 隔壁によって区 分された、 流体の流路となる複数のセルを有するハニカム状に押出成形し、 10 0 で48時間、 熱風乾燥することによってハニカム成形体を得た。 この/、二力 ム成形体を電気炉にて 1300°Cで 2時間、 焼成することによってハニカムフィ ルタ用基材 (以下、 単に 「基材」 と記す) を得た。
上記のようにして得られた基材は、 全体的な形状が、 端面 (セル開口面) 外径 18 Οππηφの円形、 長さ 100 Ommの円筒状であり、 セル形状は内接円径 2 . 5 mm φの六角形、 隔壁厚さ (W) が 650 m、 総セル数が 2000セルの ものであった。 これらの基材について、 50%細孔径 (d5。) 、 隔壁の平均表面 粗さを評価した結果を表 1に示す。
[結果]
表 1に示したように、 基材の原料である骨材粒子の 50 %粒子径 (D5。) 、 D2 5/D5。、 D75 D50を本発明の製造方法の範囲内とした実施例 1〜 7については 、 50%細孔径 (d5。) が 8. 5〜13 ^111、 隔壁の平均表面粗さが 3. 0〜5 . 5 mに制御された基材を得ることができ、 良好な結果を示した。 また、 ハニ カム成形体の歩留まりについても、 90 %を大きく超えており全く問題がなかつ た。
また、 骨材粒子の 50%粒子径 (D5„) が本発明の製造方法の範囲未満である 比較例 1〜3は、 得られる基材の 50 %細孔径 (d50) が 8. 5 未満となつ ており、 流体が基材内部を透過する際の流動抵抗が大きくなることが予想された 。 即ち、 最終的に得られるハニカムフィルタの流体透過量が減少し、 処理能力が 低下することが予想された。
一方、 骨材粒子の 50 %粒子径 (D5。) が本発明の製造方法の範囲を超える比 較例 8〜14は、 得られる基材の 50 %細孔径 (d5。) が 1 3 μηιを超えており 、 中間膜や濾過膜を製膜する際に、 膜欠陥を生じる等の製膜不良が増加すること が予想された。 中でも、 比較例 8については、 基材の押出成形時に、 押出用口金 のスリツ卜部分において目詰まりを生じたため、 押し出されたハニカム成形体に 欠陥が多発し、 ハニカム成形体の歩留まりが 90 %以下に低下した。 更に、 50 %粒子径 (D5„) Z隔壁厚さ (W) の値が本発明の製造方法の範囲を超える比較 例 13, 14については、 ハニカム成形体の歩留まりが 80%以下と著しく低下 した。
更にまた、 骨材粒子の D75/D5。の値が本発明の製造方法の範囲を超える比較 例 1, 4〜7は、 基材の押出成形時に、 押出用口金のスリット部分において目詰 まりを生じたため、 押し出されたハニカム成形体に欠陥が多発し、 ハニカム成形 体の歩留まりが 90%以下に低下した。
[ハニカムフィル夕]
上記の基材には、 以下の方法により中間膜及び濾過膜を形成してハニカムフィ ル夕を得た。
まず、 骨材粒子として平均粒子径 3. 2 のアルミナ粒子を、 無機結合材と して平均粒子径 0. 9 mのガラスフリットを、 有機バインダとしてメチルセル 口一スを、 分散剤としてポリカルボン酸塩を用意した。 次いで、 骨材粒子、 無機 結合材、 水、 有機バインダ、 分散剤を、 100 : 20 : 400 : 0. 5 : 2. 0 の質量比で混合することによって、 製膜用スラリー (中間膜用) を調製した。 また、 骨材粒子として平均粒子径 0. 4/ mのアルミナ粒子を、 有機バインダ としてメチルセルロースを、 分散剤としてポリカルボン酸塩を用意した。 次いで 、 骨材粒子、 水、 有機バインダ、 分散剤を、 100 : 1000 : 4. 0 : 0. 2 の質量比で混合することによって、 製膜用スラリー (濾過膜用) を調製した。 次いで、 特公昭 63 - 66566号公報に記載の濾過製膜法を用いて、 上記の 基材の隔壁の表面に、 上記の製膜用スラリー (中間膜用) を付着せしめて製膜体 を得、 その製膜体を 100°Cで 2時間、 熱風乾燥し、 電気炉にて 1350°Cで 2 時間、 焼成する方法により中間膜を形成した。
更に、 特公昭 63 - 66566号公報に記載の濾過製膜法を用いて、 上記の基 材の隔壁の表面に形成された中間膜の表面に、 上記の製膜用スラリー (濾過膜用 ) を付着せしめて製膜体を得、 その製膜体を 100°Cで 24時間、 熱風乾燥し、 電気炉にて 1300°Cで 2時間、 焼成する方法により濾過膜を形成し、 ハニカム フィル夕 (以下、 単に 「フィルタ」 と記す) を得た。
上記のようにして得られたフィル夕は、 中間膜及び濾過膜が表 2に記載の平均 膜厚、 50%細孔径 (d5。) を有するものであった。 これらのフィル夕について 、 濾過膜の is最大細孔径 (dmax) 、 透水量を評価した結果を表 2に示す。
(表 2) 0 ^
() ( ( ) ( (umn日l T¾u!m ¾ ¾.
V V V V v V V V V V
o
3
寸 寸 in CD 05 寸 it it i (結果)
表 2に示したように、 50 %細孔径 (d5。) 、 隔壁の平均表面粗さが本発明の 範囲内である基材を用いた実施例 1〜7のフィルタについては、 透水量が 1. 6 7m3/h r · m2以上、 濾過膜の最大細孔径が 1. 8 xm未満であり、 不純物の 除去性能、 流体透過量 (即ち処理能力) とも良好な結果を示した。
また、 50%細孔径 (d5Q) が本発明の範囲未満である基材を用いた比較例 2 , 3のフィルタは、 流体が基材内部を透過する際の流動抵抗が大きくなるために 、 透水量が 1. 67m3Zh r * m2未満となった。 即ち、 流体透過量が減少し、 処理能力が低下した。
更に、 隔壁の平均表面粗さが本発明の範囲を超える基材を用いた比較例 9〜 1 2のフィルタは、 基材の隔壁の表面が粗く凹凸が大きいために、 比較例 9, 1 1 のフィル夕のように、 中間膜を薄く形成すると、 濾過膜において膜欠陥が発生し た。 即ち、 濾過膜の最大細孔径 (dmax) が 1. 8 m以上となってしまい、 不純 物の除去性能が不十分なものであった。 このような事態を防止するためには、 比 較例 10, 12のフィルタのように、 中間膜の膜厚を厚く形成する必要があるが 、 そのようなフィルタは中間膜部分における流体の流動抵抗が大きい。 即ち、 比 較例 10, 12のフィルタは、 透水量が 1. 67m3/ r · m2未満となってし まい、 流体透過量が小さく、 処理能力も低いものであった。 産業上の利用可能性
以上説明したように、 本発明のハニカムフィルタ用基材は、 隔壁の表面が比較 的平滑で、 凹凸が小さいために、 中間膜を形成するに際して、 隔壁の凹凸を埋め る必要がなく、 中間膜が薄くても、 その表面を平滑にすることができる。 これは 、 濾過膜の欠陥の発生を防止しつつ、 濾過膜と中間膜との合計膜厚を小さくする ことができ、 この部分における流体の流動抵抗を小さくすることが可能であるこ とを意味する。 即ち、 本発明のハニカムフィルタ用基材は、 不純物の除去性能に 優れるとともに、 流体透過量が大きく、 処理能力が高いハニカムフィル夕の製造 に好適に用いることができる。

Claims

請 求 の 範 囲
1. 多数の細孔を有するセラミック多孔質体からなり、 隔壁によって区分され た、 流体の流路となる複数のセルを有するハニカムフィルタ用基材であって、 前記セラミック多孔質体の 50%細孔径 (d5fl) が 8. 5〜13 (nm) の範 囲内にあるとともに、 前記複数のセルを区分する隔壁の平均表面粗さが 3. 0〜 5. 5 (/xm) の範囲内にあるハニカムフィルタ用基材。
(但し、 「50%細孔径 (d5。) 」 とは、 水銀圧入法により測定された細孔径 であって、 多孔質体に圧入された水銀の累積容量が、 多孔質体の全細孔容積の 5 0%となった際の圧力から算出された細孔径を意味する)
2. 少なくとも、 骨材粒子及び水を混合し、 混練することによって坏土とし、 前記坏土を、 隔壁によって区分された、 流体の流路となる複数のセルを有するハ 二カム状に成形し、 乾燥することによってハニカム成形体を得、 前記ハニカム成 形体を焼成することによってハニカムフィルタ用基材を得るハニカムフィルタ用 基材の製造方法であって、
前記骨材粒子として、 50%粒子径 (D5。) が 50〜 70 (urn) の範囲内に あるとともに、 前記 50%粒子径 (D50) が、 25 %粒子径 (D25) 及び 75% 粒子径 (D75) との間で、 下記式 (1) 及び下記式 (2) の関係を満たす骨材粒 子を用いるハニカムフィル夕用基材の製造方法。
0. 4≤D25/D50 … (1)
D75/D50≤l. 4 … (2)
(但し、 「x%粒子径 (Dx) 」 とは、 篩分け法により測定された粉末の粒子 径であって、 公称目開き径の異なる複数の篩を用い、 篩の目開き径と篩上にある 粉末質量との関係から作成した粒度分布曲線において、 粉末の積算質量がその全 質量の X %となる点の粒子径を意味する)
3. 前記骨材粒子として、 前記 50%粒子径 (D5。) カ^ 前記ハニカムフィル 夕用基材の隔壁厚さ (W) との間で、 下記式 (3) の関係を満たす骨材粒子を用 いる請求項 2に記載のハニカムフィルタ用基材の製造方法。
D50/'W≤0. 12 ··· (3)
4. 請求項 1に記載のハニカムフィルタ用基材と、 前記 Λ二カムフィルタ用基 材の前記複数のセルを区分する隔壁の表面に形成された、 前記基材を構成するセ ラミック多孔質体より、 5 0 %細孔径 (d 5Q) が小さい多孔質体からなる中間膜 と、 前記中間膜の表面に形成された、 前記中間膜を構成する多孔質体より、 5 0 %細孔径 (d 5。) が小さい多孔質体からなる濾過膜とを有するハニカムフィルタ
PCT/JP2004/001464 2003-03-31 2004-02-12 ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ WO2004087294A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04710519A EP1609519A4 (en) 2003-03-31 2004-02-12 BASE FOR HONEYCOMB FILTER, METHOD OF MANUFACTURE AND HONEYCOMB FILTER
US10/551,435 US20070026190A1 (en) 2003-03-31 2004-02-12 Base for honeycomb filter, method for producing same and honeycomb filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003094860A JP2004299966A (ja) 2003-03-31 2003-03-31 ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ
JP2003-094860 2003-03-31

Publications (1)

Publication Number Publication Date
WO2004087294A1 true WO2004087294A1 (ja) 2004-10-14

Family

ID=33127411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001464 WO2004087294A1 (ja) 2003-03-31 2004-02-12 ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ

Country Status (6)

Country Link
US (1) US20070026190A1 (ja)
EP (1) EP1609519A4 (ja)
JP (1) JP2004299966A (ja)
KR (1) KR100707227B1 (ja)
CN (1) CN100438947C (ja)
WO (1) WO2004087294A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406412C (zh) * 2005-07-20 2008-07-30 淄博博纳科技发展有限公司 在制备净化、抗菌和活化水中应用的微孔陶瓷球及其制法
CN104475307A (zh) * 2014-11-10 2015-04-01 华玉叶 一种机械法喷膜工艺

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800646B2 (ja) * 2005-03-22 2011-10-26 日本碍子株式会社 セラミックフィルタ及びその製造方法
JP5229847B2 (ja) * 2006-03-31 2013-07-03 国立大学法人東北大学 多孔質部材とその製造方法とその製造方法を用いたセラミックス部材の製造方法
KR100727182B1 (ko) * 2006-07-18 2007-06-13 현대자동차주식회사 초기배압 개선을 위한 채널볼륨 가변형디젤매연촉매여과필터
CN101351263B (zh) * 2006-07-20 2012-09-05 日本碍子株式会社 陶瓷过滤器
US7677399B2 (en) * 2006-12-25 2010-03-16 Ngk Insulators, Ltd. Separation membrane and manufacturing process thereof
US20100044300A1 (en) * 2007-01-30 2010-02-25 Kyocera Corporation Honeycomb Structure and Purifying Apparatus
US7789929B2 (en) * 2007-04-04 2010-09-07 Ford Global Technologies Llc Diesel particulate filter and method for forming such filter
WO2009032622A1 (en) * 2007-09-04 2009-03-12 Dow Global Technologies Inc. Polymeric compositions and articles prepared therefrom
WO2009073082A1 (en) * 2007-11-29 2009-06-11 Corning Incorporated System and method for forming ceramic precursor material for thin-walled ceramic honeycomb structures
JP5175777B2 (ja) * 2009-03-04 2013-04-03 東京窯業株式会社 ハニカム構造体
MY180523A (en) 2011-03-22 2020-12-01 Ngk Insulators Ltd Porous body and honeycomb-shaped ceramic separation-membrane structure
MY163931A (en) 2011-03-22 2017-11-15 Ngk Insulators Ltd Honeycomb-shaped ceramic separation-membrane structure
JP5829840B2 (ja) * 2011-06-17 2015-12-09 日本碍子株式会社 排ガス浄化フィルタ
EP2832430B1 (en) * 2012-03-30 2018-08-08 NGK Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
MY174038A (en) * 2012-03-30 2020-03-05 Ngk Insulators Ltd Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
ES2466571B1 (es) * 2014-03-12 2015-03-16 Likuid Nanotek, S.L. Membrana cerámica de filtración
JP6577866B2 (ja) * 2014-03-28 2019-09-18 日本碍子株式会社 モノリス型分離膜構造体及びその製造方法
JP6291392B2 (ja) * 2014-09-30 2018-03-14 日本碍子株式会社 熱・音波変換部品および熱・音波変換ユニット
FR3036626B1 (fr) * 2015-05-29 2019-12-20 Technologies Avancees Et Membranes Industrielles Element de separation avec un reseau tridimensionnel de circulation pour le milieu fluide a traiter
US20180112578A1 (en) * 2016-10-24 2018-04-26 Ngk Insulators, Ltd. Porous material, honeycomb structure, and manufacturing method of porous material
US10557393B2 (en) * 2016-10-24 2020-02-11 Ngk Insulators, Ltd. Porous material, honeycomb structure, and method of producing porous material
US11428138B2 (en) 2016-10-24 2022-08-30 Ngk Insulators, Ltd. Porous material, honeycomb structure, and method of producing porous material
US11365665B2 (en) 2016-10-24 2022-06-21 Ngk Insulators, Ltd. Porous material, honeycomb structure, and method of producing porous material
JP6788515B2 (ja) * 2017-02-02 2020-11-25 日本碍子株式会社 目封止ハニカム構造体
JP2020081953A (ja) * 2018-11-22 2020-06-04 イビデン株式会社 ハニカム構造体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08931A (ja) * 1994-06-21 1996-01-09 Ngk Insulators Ltd 排ガスフィルタおよびそれを使用した排ガス処理装置
JPH1052618A (ja) * 1995-08-22 1998-02-24 Denki Kagaku Kogyo Kk ハニカム構造体とその製造方法及び用途、並びに加熱装置
JP2000279729A (ja) * 1999-03-30 2000-10-10 Ibiden Co Ltd セラミックフィルタユニット及びその製造方法、セラミックフィルタ
JP2001079321A (ja) * 1999-09-14 2001-03-27 Ngk Insulators Ltd 集塵用ハニカムフィルタ及びその製造方法
JP2001340718A (ja) * 2000-06-02 2001-12-11 Ngk Insulators Ltd ハニカムフィルタ用基材及びその製造方法
JP2002326034A (ja) * 2001-05-01 2002-11-12 Ngk Insulators Ltd 多孔質ハニカム構造体及びその製造方法
JP2003001029A (ja) * 2001-06-18 2003-01-07 Hitachi Metals Ltd 多孔質セラミックハニカムフィルタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578129A (en) * 1993-03-17 1996-11-26 Tokyo Electron Limited Gas supplying head and load lock chamber of semiconductor processing system
JP2726616B2 (ja) * 1993-12-15 1998-03-11 日本碍子株式会社 多孔質セラミックハニカムフィルタ
KR100389126B1 (ko) * 1994-05-30 2003-11-01 에스케이 주식회사 디젤차량입자상물질제거용촉매조성물
US5773103A (en) * 1995-07-31 1998-06-30 Media And Process Technology Inc. Inorganic membranes using porous cordierite support
JP3712785B2 (ja) * 1996-06-03 2005-11-02 松下電器産業株式会社 排ガスフィルタ及び排ガス浄化装置
US6536604B1 (en) * 1999-06-25 2003-03-25 C. Jeffrey Brinker Inorganic dual-layer microporous supported membranes
KR100446205B1 (ko) * 1999-09-29 2004-08-31 이비덴 가부시키가이샤 하니콤 필터 및 세라믹 필터 집합체, 그리고 이를 갖는 배기가스 정화장치
JP3756721B2 (ja) * 2000-03-24 2006-03-15 日本碍子株式会社 排ガス浄化用フィルター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08931A (ja) * 1994-06-21 1996-01-09 Ngk Insulators Ltd 排ガスフィルタおよびそれを使用した排ガス処理装置
JPH1052618A (ja) * 1995-08-22 1998-02-24 Denki Kagaku Kogyo Kk ハニカム構造体とその製造方法及び用途、並びに加熱装置
JP2000279729A (ja) * 1999-03-30 2000-10-10 Ibiden Co Ltd セラミックフィルタユニット及びその製造方法、セラミックフィルタ
JP2001079321A (ja) * 1999-09-14 2001-03-27 Ngk Insulators Ltd 集塵用ハニカムフィルタ及びその製造方法
JP2001340718A (ja) * 2000-06-02 2001-12-11 Ngk Insulators Ltd ハニカムフィルタ用基材及びその製造方法
JP2002326034A (ja) * 2001-05-01 2002-11-12 Ngk Insulators Ltd 多孔質ハニカム構造体及びその製造方法
JP2003001029A (ja) * 2001-06-18 2003-01-07 Hitachi Metals Ltd 多孔質セラミックハニカムフィルタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1609519A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100406412C (zh) * 2005-07-20 2008-07-30 淄博博纳科技发展有限公司 在制备净化、抗菌和活化水中应用的微孔陶瓷球及其制法
CN104475307A (zh) * 2014-11-10 2015-04-01 华玉叶 一种机械法喷膜工艺
CN104475307B (zh) * 2014-11-10 2016-09-14 华玉叶 一种机械法喷膜工艺

Also Published As

Publication number Publication date
EP1609519A1 (en) 2005-12-28
EP1609519A4 (en) 2007-10-17
KR20050123132A (ko) 2005-12-29
KR100707227B1 (ko) 2007-04-17
US20070026190A1 (en) 2007-02-01
CN100438947C (zh) 2008-12-03
CN1767884A (zh) 2006-05-03
JP2004299966A (ja) 2004-10-28

Similar Documents

Publication Publication Date Title
WO2004087294A1 (ja) ハニカムフィルタ用基材及びその製造方法、並びにハニカムフィルタ
JP6023792B2 (ja) ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体
US9101865B2 (en) Honeycomb structure and manufacturing method of the same
JP2007296512A (ja) ハニカムフィルタ
JP5997025B2 (ja) ハニカム触媒体
JP5518518B2 (ja) ハニカムフィルタの製造方法
JP5875997B2 (ja) ハニカム構造体及びハニカム構造体の製造方法
JP4800646B2 (ja) セラミックフィルタ及びその製造方法
JP2019150737A (ja) ハニカム構造体
US20070214964A1 (en) Method for removing bubbles from slurry and device therefor
JP2001340718A (ja) ハニカムフィルタ用基材及びその製造方法
JP6581926B2 (ja) ハニカム構造体
US11085342B2 (en) Honeycomb filter
BR112016027032B1 (pt) Filtro tangencial com um elemento de apoio incluindo um conjunto de canais
JP5409035B2 (ja) ハニカム構造体
JP2005118771A (ja) 筒状セラミック多孔質体及びその製造方法ならびにこれを用いたセラミックフィルター
JP2001260117A (ja) ハニカムフィルタ用基材及びその製造方法
EP4011479A1 (en) Ceramic honeycomb filter
JP2004306020A (ja) セラミックフィルタ
CN113332807A (zh) 蜂窝过滤器
JP4933740B2 (ja) セラミックフィルタの製造方法
JP6577866B2 (ja) モノリス型分離膜構造体及びその製造方法
WO2016132912A1 (ja) ハニカム構造体の製造方法
JPS61227813A (ja) 複層セラミツクフイルタ−の製造法
WO2020075605A1 (ja) ハニカム構造体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004710519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007026190

Country of ref document: US

Ref document number: 10551435

Country of ref document: US

Ref document number: 20048087584

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057018580

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004710519

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057018580

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10551435

Country of ref document: US