WO2004086062A1 - 電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法 - Google Patents

電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法 Download PDF

Info

Publication number
WO2004086062A1
WO2004086062A1 PCT/JP2004/003936 JP2004003936W WO2004086062A1 WO 2004086062 A1 WO2004086062 A1 WO 2004086062A1 JP 2004003936 W JP2004003936 W JP 2004003936W WO 2004086062 A1 WO2004086062 A1 WO 2004086062A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrical resistance
circuit board
inspected
electrodes
Prior art date
Application number
PCT/JP2004/003936
Other languages
English (en)
French (fr)
Inventor
Kiyoshi Kimura
Sugiro Shimoda
Fujio Hara
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Priority to US10/548,586 priority Critical patent/US20060176064A1/en
Priority to EP04722682A priority patent/EP1607751A1/en
Publication of WO2004086062A1 publication Critical patent/WO2004086062A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates

Definitions

  • Electrical resistance measuring connector electrical resistance measuring connector, electrical resistance measuring connector, device and method of manufacturing the same, and circuit board electrical resistance measuring device and measuring method
  • the present invention relates to an electrical resistance measuring connector, an electrical resistance measuring connector device, a method of manufacturing the same, a circuit board electrical resistance measuring device, and an electrical resistance measuring method of a circuit device.
  • an elastomer is used.
  • An electric resistance measuring device in which an elastic connection member made of conductive rubber to which conductive particles are bonded is individually arranged for a current supply electrode and a voltage measurement electrode (see the following prior art document 1).
  • an electric resistance measuring device for measuring electric resistance using one of the electrodes as a current supply electrode and the other as a voltage measuring electrode (refer to the following prior art document 3).
  • each of the electrodes to be inspected on the circuit board to be inspected for which the electrical resistance is to be measured is connected to each of the electrodes via the elastic connection member. It is necessary to electrically connect both the current supply electrode and the voltage measurement electrode at the same time. Therefore, in an electric resistance measuring apparatus for measuring electric resistance of a circuit board to be inspected on which small-sized electrodes to be inspected are arranged at high density, corresponding to each of the small-sized electrodes to be inspected.
  • the electrode for current supply and the electrode for voltage measurement are formed in a region having an area equal to or less than the area occupied by the electrode to be inspected while being separated from each other, that is, furthermore, compared with the electrode to be inspected.
  • the current supply electrode and the voltage measurement electrode of a small size can be formed at a very small distance from each other.
  • one substrate material is used in order to improve productivity.
  • the electrode T to be inspected when measuring the electric resistance of the electrode T to be inspected having a diameter L of 300 m, the electrode T to be inspected is electrically connected to the electrode T to be inspected.
  • the distance D between the connected current supply electrode A and voltage measurement electrode V is about 150 1m, but as shown in Fig. 39 (a) and (b), the position of the circuit board to be inspected is In the alignment, the position of the electrode under test T with respect to the current supply electrode A and the voltage measurement electrode V is shifted from the expected position shown in Fig.
  • the present invention has been made in view of the above circumstances, and a first object of the present invention is to provide a circuit board to be measured whose electric resistance is to be measured in a large area and a large number of small test boards. Even if it has electrodes, required electrical connection to the circuit board to be inspected can be reliably achieved, and expected electrical resistance can be measured with high accuracy.
  • An object of the present invention is to provide a connector for measuring electric resistance.
  • a second object of the present invention is to provide a circuit board for which electrical resistance is to be measured, even if the circuit board has a large area and a large number of small electrodes to be tested. Air connection can be reliably achieved, and the expected electrical resistance can be measured with high accuracy and also good against environmental changes such as heat history due to temperature changes.
  • An object of the present invention is to provide an electrical resistance measuring connector device in which electrical connection is stably maintained.
  • a third object of the present invention is to provide a method that can advantageously manufacture the above-described connector device for measuring electric resistance.
  • a fourth object of the present invention is to provide a circuit board for which electric resistance is to be measured, having a large area and a large number of small-sized electrodes to be tested. It is an object of the present invention to provide a circuit board electrical resistance measuring device that can reliably achieve a pneumatic connection and that can reliably perform intended electrical resistance measurement with high accuracy.
  • a fifth object of the present invention is to provide a circuit board for which electrical resistance is to be measured, even if the circuit board has a large area and a large number of small electrodes to be tested. It is an object of the present invention to provide a method for measuring the electrical resistance of a circuit board, which can reliably achieve a pneumatic connection, and moreover, can reliably perform an intended electrical resistance measurement with high accuracy.
  • An electrical resistance measuring connector is arranged on an insulating substrate according to a pattern corresponding to a pattern of a plurality of electrodes to be inspected on a circuit board to be inspected on which electric resistance is to be measured. Comprising a plurality of connection electrode sets,
  • connection electrode sets three or more of any one of a current supply electrode and a voltage measurement electrode are arranged apart from each other, and at least one of these electrodes is a current supply electrode and a voltage measurement electrode.
  • the electrical resistance measuring connector of the present invention includes an edge substrate, and a pattern corresponding to a pattern of a plurality of electrodes to be inspected on a circuit board to be inspected on which electric resistance is to be measured. And a plurality of connection electrode sets arranged according to
  • connection electrode set two current supply electrodes located at diagonally opposite top positions in a rectangle and two voltage measurement electrodes located at other diagonal top points in the rectangle are separated from each other. It is characterized by being arranged in a position.
  • the electrical resistance measuring connector includes a substrate having a long-lasting substrate and a plurality of electrodes to be inspected on a circuit substrate to be inspected, the electrical resistance of which is to be measured on the surface of the flexible substrate.
  • a plurality of connection electrode sets arranged in accordance with the pattern corresponding to the turn,
  • connection electrode sets is characterized in that three electrodes of a voltage measurement electrode, a current supply electrode, and a voltage measurement electrode are arranged apart from each other so as to be arranged in this order.
  • the electrical resistance measuring connector of the present invention corresponds to an insulating substrate and a pattern of a plurality of electrodes to be inspected on a circuit board to be inspected, the electrical resistance of which is to be measured on the surface of the insulating substrate.
  • connection electrode sets is characterized in that three electrodes of a current supply electrode, a voltage measurement electrode, and a current supply electrode are arranged apart from each other so as to be arranged in this order.
  • each of the current supply electrode and the voltage measurement electrode in the connection electrode set is arranged with these electrodes. It is preferable to have an elongated shape in a direction perpendicular to the direction.
  • a plurality of relay electrodes electrically connected to one of the current supply electrode and the voltage measurement electrode may be arranged on the back surface of the insulating substrate. preferable.
  • Such a connector for measuring electric resistance preferably has a relay electrode electrically connected to the current supply electrode.
  • the conductive path forming portion preferably contains conductive particles exhibiting magnetism in a state of being aligned in the thickness direction.
  • the method for manufacturing the electrical resistance measuring connector device of the present invention is a method for manufacturing the electrical resistance measuring connector device having the above-described configuration
  • An elastomer material layer is formed on the surface of the electrical resistance measurement connector 1 above, in which a liquid high molecular material forming material which is cured to become an elastic polymer material contains conductive particles exhibiting magnetism.
  • a magnetic field having a greater intensity in the thickness direction is applied to the elastomer material layer in a portion located on the surface of the region where the connection electrode set of the electrical resistance measurement connector 1 is formed in the thickness direction.
  • a conductive material exhibiting magnetism is formed on the surface of the electrical resistance measurement connector on the surface of the region where the connection electrode set is formed.
  • the portion located on the surface of the region between the electrodes in the connection electrode ⁇ is removed to form a hole, and then the hole is formed.
  • the method is characterized by including a step of filling a liquid polymer material forming material which is cured to become an elastic polymer material, and curing the polymer material forming material.
  • An electric resistance measuring device for a circuit board according to the present invention is an electric resistance measuring device for a circuit board for measuring electric resistance of a circuit board having an electrode on at least one surface,
  • An electrical resistance measurement connector having a relay electrode on the back surface, which is disposed on one surface side of the circuit board to be measured for which electrical resistance is to be measured;
  • the relay electrode in the connector for measuring electrical resistance was arranged on the front surface, with the anisotropic conductive sheet interposed on the back surface of the connector for measuring electrical resistance. According to the pattern corresponding to the turn And a circuit board for one-side inspection having the arranged inspection electrodes.
  • the circuit board to be measured for which the electrical resistance is to be measured has an electrode on the other side, the circuit board to be measured for the electrical resistance is provided on the other side of the circuit board to be measured. It is equipped with a circuit board for the other side inspection to be arranged,
  • the tirf self-tested circuit board is separated from each other on the surface in correspondence with the ri self-tested circuit board's other test-side electrodes, respectively, and the same other-face test target
  • a current supply inspection electrode and a voltage measurement inspection electrode electrically connected to the electrode may be formed.
  • circuit board electric resistance measuring device of the present invention is a circuit board electric resistance measuring device for measuring electric resistance of a circuit board having electrodes on both surfaces,
  • a connector for electrical resistance measurement having the above-mentioned configuration, which is arranged on the other surface side of the circuit board to be inspected.
  • the electric resistance measuring apparatus for a circuit board is an electric resistance measuring apparatus for a circuit board for measuring electric resistance of a circuit board having electrodes on both surfaces,
  • An electrical resistance measurement connector having the above configuration, which is arranged on one surface side of the circuit board to be inspected to be measured;
  • One side having an inspection electrode arranged on the back surface of the electrical resistance measurement connector via an anisotropic conductive sheet and arranged on the front surface in accordance with a pattern corresponding to a relay electrode pattern of the electrical resistance measurement connector.
  • the electrical resistance measurement connector 1 having the above-described configuration, which is disposed on the other surface of the circuit board to be inspected, and the electrical resistance measurement connector, which is disposed on the rear surface of the electrical resistance measurement connector via an anisotropic conductive sheet, A circuit board for inspection on the other side having inspection electrodes arranged according to a pattern corresponding to the pattern of the relay electrode in the connector for measuring electrical resistance;
  • the above-described connector for measuring electric resistance is arranged on one surface of a circuit board to be inspected to be measured for electric resistance, At least one current supply electrode and at least one voltage measurement electrode in the connection electrode set of the connector for measuring electrical resistance are simultaneously electrically connected to each of the electrodes to be inspected on one side of the circuit board to be inspected.
  • a current is supplied to the circuit board to be inspected through the current supply electrode in the electrical resistance measuring connector, and the voltage measuring electrode electrically connected to the one side electrode to be inspected.
  • One of the electrodes for voltage measurement is designated, and the measurement of the electrical resistance of the electrode to be inspected on one side electrically connected to the one specified electrode for voltage measurement is performed.
  • the pattern corresponds to the pattern of the electrode to be inspected on the circuit board to be inspected. Since the connection electrode set arranged according to the evening has two or more current supply electrodes and / or voltage measurement electrodes, the electrodes to be inspected can be arranged by arranging these electrodes in an appropriate positional relationship. Has a higher tolerance for the positional deviation.
  • connection electrode set two current supply electrodes in the connection electrode set are located at diagonally opposite top positions in a rectangle, and two voltage measurement electrodes are located at other diagonally opposite apexes in the rectangle.
  • the electrode to be inspected is displaced in the side direction of the rectangle; Even in the case of ⁇ , the electrode to be inspected is simultaneously electrically connected to at least one current supply electrode and at least one voltage measurement electrode at the same time.
  • the electrode to be inspected is electrically connected to both the current supply electrode and the voltage measurement electrode at the same time, even if the electrode is misaligned in the direction perpendicular to the direction in which the electrodes are arranged in the connection electrode set. Will be done. Therefore, according to the electrical resistance measuring connector of the present invention, even if the circuit to be measured for which electrical resistance is to be measured has a large area and a large number of small electrodes to be tested, the circuit to be tested can be tested. The required electrical connection to the circuit board can be reliably achieved, and the desired electrical resistance can be measured with high accuracy.
  • the electrical resistance measuring connector of the present invention since the electrical resistance measuring connector is provided, the circuit board to be measured for electrical resistance has a large area and a large number of small boards. Even with an inspection electrode, the required electrical connection to the circuit board to be inspected can be reliably achieved, and the desired electrical resistance can be measured with high accuracy. Further, good electrical connection can be stably maintained even in the case of environmental changes such as heat history due to temperature changes.
  • connection device for measuring electric resistance According to the method for manufacturing a connection device for measuring electric resistance of the present invention, the above-described connection device for measuring electric resistance can be advantageously manufactured.
  • the electrical resistance measuring device for a circuit device of the present invention since the electrical resistance measuring connector is provided, the circuit board to be measured for the electrical resistance has a large area and a large number of small-sized circuit boards. Even with an inspection electrode, the required electrical connection to the circuit board to be inspected can be reliably achieved, and the expected electrical resistance can be measured with high accuracy. it can.
  • the circuit board to be measured for electric resistance has a large area and a large number of small-sized test boards. Even with the electrodes, the required electrical connection to the circuit board to be inspected can be reliably achieved, and the desired electrical resistance can be measured with high accuracy. Wear. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a plan view showing a first example of an electrical resistance measuring connector according to the present invention.
  • FIG. 2 is an explanatory cross-sectional view showing the configuration of the electrical resistance measuring connector of the first example.
  • FIG. 3 is an explanatory cross-sectional view showing a state where the electrical resistance measuring connector 1 shown in FIG. 1 is arranged on one surface of the circuit board to be inspected via an anisotropic conductive sheet.
  • FIG. 4 shows the relationship between the connection electrode set and the electrode to be inspected in the electrical resistance measurement connector of the first example.
  • FIG. 4 is an explanatory diagram showing a state in which a positional displacement has occurred.
  • FIG. 5 is an explanatory cross-sectional view showing the configuration of the circuit board to be inspected.
  • FIG. 6 is a plan view showing a second example of the electrical resistance measuring connector according to the present invention.
  • FIG. 7 is an explanatory cross-sectional view showing a configuration of a second example of a connector for measuring electric resistance.
  • FIG. 8 is an explanatory diagram showing a state in which a displacement has occurred between the connection electrode set and the electrode to be inspected in the second example of the electrical resistance measurement connector.
  • FIG. 9 is a plan view showing a third example of the electrical resistance measuring connector according to the present invention.
  • FIG. 10 is an explanatory cross-sectional view showing a configuration of the electrical resistance measuring connector 1 of the third example.
  • FIG. 11 is an explanatory sectional view showing the configuration of a fourth example of the electrical resistance measuring connector according to the present invention.
  • FIG. 12 is an explanatory cross-sectional view showing the configuration of the first example of the electrical resistance measuring connector device according to the present invention.
  • FIG. 13 is a plan view showing the electrical resistance measuring connector device shown in FIG. 12 with a part of an anisotropic conductive elastomer layer cut away.
  • FIG. 14 is an explanatory cross-sectional view showing a configuration of an example of a mold for obtaining a layer of an anisotropic conductive elastomer.
  • FIG. 15 is an explanatory cross-sectional view showing a state in which an elastomer material layer is formed on the surface of the electrical resistance measurement connector 1.
  • FIG. 16 is an explanatory cross-sectional view showing a state where a magnetic field having an intensity distribution in the thickness direction of the elastomer material layer is applied.
  • FIG. 17 is an explanatory cross-sectional view showing a state where an elastomer layer is formed on the surface of the electrical resistance measurement connector.
  • FIG. 18 is an explanatory cross-sectional view showing a state in which a hole is formed in one layer of the elastomer.
  • FIG. 19 is an explanatory cross-sectional view showing a state in which a hole formed in one layer of the elastomer is filled with a polymer substance forming material.
  • FIG. 20 is an explanatory cross-sectional view showing the configuration of the electrical resistance measuring connector according to a second embodiment of the present invention.
  • FIG. 21 is a plan view showing the connector device for measuring electric resistance shown in FIG. 20 with a part of an anisotropic conductive elastomer layer cut away.
  • FIG. 22 is an explanatory cross-sectional view showing a state in which a layer of conductive elastomer is formed on the ⁇ I support;
  • FIG. 23 is an explanatory cross-sectional view showing a state where a thin metal layer is formed on one layer of a conductive elastomer.
  • FIG. 24 is an explanatory cross-sectional view showing a state where a resist layer having an opening is formed on the thin metal layer.
  • FIG. 25 is an explanatory cross-sectional view showing a state where a metal mask is formed in the opening of the resist layer.
  • FIG. 26 is an explanatory cross-sectional view showing a state in which a plurality of conductive path forming portions are formed in the sexual support K ⁇ .
  • FIG. 27 is an explanatory cross-sectional view showing a state in which an insulating portion material layer is formed on the surface of the electrical resistance measurement connector.
  • FIG. 28 is an explanatory cross-sectional view showing a state in which a flexible support plate on which a conductive path forming portion is formed is superimposed on an electrical resistance measurement connector on which an insulating portion material layer is formed.
  • FIG. 30 is an explanatory sectional view showing the configuration of another example of the electrical resistance measuring connector device according to the present invention.
  • FIG. 31 is an explanatory cross-sectional view showing a schematic configuration of a first example of a circuit board electrical resistance measuring apparatus according to the present invention together with a circuit board to be inspected.
  • FIG. 33 is an explanatory diagram schematically showing a voltage measuring circuit formed by the electric resistance measuring device for a circuit board of the first example.
  • FIG. 34 is an explanatory cross-sectional view schematically showing the configuration of a second example of the circuit board electrical resistance measuring apparatus according to the present invention, together with the circuit board to be inspected.
  • FIG. 35 is an enlarged cross-sectional view illustrating a main part of the electrical resistance measuring apparatus for a circuit board according to the second example.
  • Fig. 36 shows the voltage measurement circuit formed by the circuit of the second example. It is explanatory drawing which shows typically.
  • FIG. 37 is a schematic diagram of an apparatus for measuring an electric resistance between electrodes on a circuit board using a current supply probe and a voltage measurement probe.
  • FIG. 38 is an explanatory view showing a state in which a current supply electrode and a voltage measurement electrode are appropriately arranged on an electrode to be inspected in a conventional circuit board electric resistance measuring apparatus.
  • FIG. 39 is an explanatory view showing a state in which a current supply electrode and a voltage measurement electrode are arranged on the electrode to be inspected in a state of being displaced from each other in a conventional circuit board electric resistance measuring apparatus.
  • the thickness of the insulating substrate 11 is preferably, for example, 50 to 100 m, and more preferably 100 to 500 m.
  • a constant current is supplied between the electrodes to be inspected of the circuit board 1 to be inspected via the current supply electrodes 13 and the electrode 2 to be inspected on one side of the circuit board 10 is electrically connected.
  • One of the connected voltage measuring electrodes 14 is designated as one of the voltage measuring electrodes 14, and the electric potential of the one-side electrode 2 to be inspected electrically connected to the designated voltage measuring electrode 14 is designated. The resistance is measured. Then, by sequentially changing the designated voltage measurement electrodes 14, the electric resistances of all the front-surface-side inspected electrodes 2 are measured.
  • the center position of the electrode 2 to be inspected on the one side is shifted from the center position of the connection electrode set 12 to the right in the figure. If you do However, the current supply electrode 13 and the voltage measurement electrode 14 located on the right side in the figure are simultaneously electrically connected to the rainy side.
  • the electrical resistance measuring connector 10 of the first example in the electrical connection work with the circuit board 1 to be inspected, the tolerance of the positional deviation with respect to the one-side electrode 2 to be inspected is large. Even if the circuit board 1 has a large number of small electrodes 1 to be inspected on the one surface side, both the current supply electrodes 13 and the voltage measurement electrodes 14 for the single electrode 1 to be inspected are required. An electrical connection can be reliably achieved. Also, since the current supply electrode 13 and the voltage measurement electrode 14 are electrically insulated from each other, the electrical resistance of the circuit board 1 to be inspected can be measured with high accuracy.
  • each of the connection electrode sets 1 and 2 is composed of one rectangular current supply electrode 13 and two rectangular voltage measurement electrodes 14 for a total of three electrodes. The two electrodes are spaced apart from each other so as to be arranged in the order of the electrode 14 for voltage measurement, the electrode 13 for current supply, and the electrode 14 for voltage measurement.
  • a plurality of relay electrodes 15 are arranged on the back surface of the insulating substrate 11 in accordance with a shielding pattern.
  • Each of the relay electrodes 15 is provided on the insulating substrate 11.
  • Either the current supply electrode 13 or the voltage measurement electrode 14 is electrically connected by the wiring portion 16 formed in the above.
  • the connection electrode set 12 includes three electrodes, a voltage measurement electrode 14, a current supply electrode 13, and a voltage measurement electrode 14.
  • the electrodes 2 to be inspected on one side are displaced in the direction in which the electrodes of the connection electrode set 12 are arranged (the left-right direction in FIG. 6). Even so, the one-surface-side test electrode 2 is electrically connected to both the current supply electrode 13 and at least one voltage measurement electrode 14 at the same time.
  • the electrical resistance measuring connector 10 of the second example in the electrical connection work with the circuit board 1 to be inspected, the tolerance of the positional deviation with respect to the surface-side electrode 2 to be inspected is large. Even if the circuit board 1 has a large number of small electrodes 1 to be inspected on the one surface side, both the current supply electrodes 13 and the voltage measurement electrodes 14 for the single electrode 1 to be inspected are required. An electrical connection can be reliably achieved. Moreover, since the current supply electrode 13 and the voltage measurement electrode 14 are electrically insulated from each other, the electrical resistance of the circuit board 1 to be inspected can be measured with high accuracy.
  • FIG. 9 is a plan view showing a third example of the electrical resistance measuring connector according to the present invention
  • FIG. 10 is an explanatory sectional view showing the configuration of the electrical resistance measuring connector 1 of the third example. .
  • a plurality of relay electrodes 15 are arranged according to an appropriate pattern, and each of these relay electrodes 15 is provided on the insulating substrate 11. Either the current supply electrode 13 or the voltage measurement electrode 14 is electrically connected to the wiring portion 16 formed in the first portion.
  • the material of the insulating substrate 11 and the material of each electrode in the connection electrode set 12 are the same as those of the electrical resistance measurement connector of the first example described above. _
  • the connection electrode set 12 includes the current supply electrode 13, the voltage measurement electrode 14, and the current supply electrode 13 3. Since the two electrodes are arranged in this order, the electrode 2 to be inspected on one side is displaced in the direction in which the electrodes of the connection electrode set 12 are arranged (in the horizontal direction in FIG. 9). Even so, the one-side electrode 2 to be inspected is simultaneously electrically connected to at least one of the current supply electrode 13 and the voltage measurement electrode 14 on the rainy side.
  • the electrical resistance measuring connector 10 of the third example in the electrical connection work with the circuit board 1 to be inspected, the tolerance of the positional deviation with respect to the surface-side electrode 2 to be inspected is large. Even if the circuit board 1 has a large number of small electrodes 1 to be inspected on the one surface side, both the current supply electrodes 13 and the voltage measurement electrodes 14 for the single electrode 1 to be inspected are required. An electrical connection can be reliably achieved. Moreover, since the current supply electrode 13 and the voltage measurement electrode 14 are electrically insulated from each other, the electrical resistance of the circuit board 1 to be inspected can be measured with high accuracy.
  • FIG. 11 is an explanatory sectional view showing the configuration of a fourth example of the electrical resistance measuring connector according to the present invention.
  • the circuit board to be inspected has a large area because the positional tolerance with respect to the electrode to be inspected is large in the electrical connection work with the circuit board to be inspected. Even if the electrode has many small electrodes to be inspected, the electrical connection of both the current supply electrode 13 and the voltage measurement electrode 14 to the inspected electrode can be reliably achieved. Since the current supply electrode 13 and the voltage measurement electrode 14 are electrically insulated from each other, the electric resistance of the circuit board to be inspected can be measured with high accuracy. Further, since there is a relay electrode 15 electrically connected to the plurality of current supply electrodes 13, the inspection circuit 10 electrically connected to the electrical resistance measuring connector 10. In this case, the number of test electrodes can be reduced, thereby facilitating the manufacture of the test circuit board and reducing the manufacturing cost of the test circuit board.
  • the electrical resistance measuring connector 1 of the present invention is not limited to the above example, and various modifications can be made.
  • connection electrode set has at least one or more current supply electrodes and at least one voltage measurement electrode
  • the total number of electrodes may be five or more.
  • the shapes of the current supply electrode and the voltage measurement electrode are not limited to a rectangle, but may be a circle or any other shape.
  • connection electrode set can be set according to the number and shape of the electrodes, the shape of the electrode to be inspected, and the like.
  • a plurality of voltage measuring electrodes may be electrically connected to one relay electrode. ⁇ One connector for electrical resistance measurement>
  • the anisotropic conductive elastomer layer 20 is arranged according to the pattern corresponding to the pattern of the current supply electrode 13 and the voltage measurement electrode 14 in each connection electrode set 12 as shown in FIG.
  • the conductive path forming portion 21 extends in the thickness direction and the insulating portion 22 is interposed between the conductive path forming portions 21 and interconnects them. Illustrated In the example, on the surface of the anisotropic conductive elastomer layer 20, the surface of the four conductive path forming portions 21 corresponding to each electrode of one connection electrode set 12 was interposed between them.
  • the protruding portion 23 is formed such that the surface of the insulating portion 22 protrudes from the surface of the other insulating portion 22.
  • the conductive path forming portion 21 is densely contained in the elastic polymer material constituting the base material of the anisotropic conductive elastomer layer 20 in a state where the conductive particles P exhibiting magnetism are oriented so as to be aligned in the thickness direction.
  • the conductive path is formed by the chain of the conductive particles F.
  • the insulating part 22 contains no or almost no conductive particles P.
  • the particle size of the conductive particles P facilitates the deformation of the obtained conductive path forming portion 21 by the calo-pressure, and sufficient electrical contact between the conductive particles F in the conductive path forming portion 21 is obtained.
  • the thickness is preferably 3 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • the ratio of the conductive particles P in the conductive path forming portion 21 is preferably 5 to 60% by volume fraction, more preferably 7 to 50 o / o, and particularly preferably 10 to 40%. It is. If this ratio is less than 5%, it may be difficult to form a conductive path having a sufficiently small electric resistance value. On the other hand, when this ratio exceeds 60%, the obtained conductive path forming portion 21 becomes brittle, and i3 ⁇ 4 elasticity as the conductive path forming portion may not be obtained.
  • a material having a bridge structure is preferable. What is used to obtain a polymer substance having a crosslinked structure Various materials can be used as the material for the polymer substance that can be used. Specific examples thereof include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, and acrylonitrile-butadiene copolymer.
  • Conjugated rubbers such as rubber and their hydrogenated products, block copolymer rubbers such as styrene-butene block copolymer rubber and hydrogenated carohydrates thereof, silicone rubber, fluoro rubber, silicone modified fluoro rubber, Examples include ethylene-propylene copolymer rubber, urethane rubber, polyester rubber, black rubber, and epichlorohydrin rubber.
  • anisotropic conductive elastomer layer 20 is integrally formed on the surface of the electrical resistance measuring connector 10, it has good electrical resistance even to environmental changes such as heat history due to temperature change. Stable connection can be maintained.
  • the electrical connection measuring device of the first example can be manufactured, for example, as follows.
  • FIG. 14 is an explanatory cross-sectional view showing a configuration of an example of a mold for obtaining an anisotropic conductive elastomer layer 20.
  • This mold is configured such that an upper mold 30 and a lower mold 35 corresponding thereto are arranged so as to face each other.
  • the surface (the lower surface in the figure) of the ferromagnetic substrate 31 is formed in accordance with the pattern of the region where the connection electrode set 12 of the electrical resistance measurement connector 110 is formed and the pattern opposite to the pattern.
  • a ferromagnetic layer 32 is formed, and a non-magnetic layer 33 is formed in a region other than the region where the ferromagnetic layer 32 is formed.
  • a nonmagnetic metal such as copper, a heat-resistant polymer material, or the like is used.
  • a polymer material cured by a line because the nonmagnetic layers 33 and 38 can be easily formed by a photolithography technique.
  • acryl dry resist, epoxy liquid resist, polyimide Do liquid ⁇ ! A photoresist such as a dog resist can be used.
  • a connector device for measuring electric resistance is manufactured, for example, as follows.
  • an elastomer material is applied to the surface of the electrical resistance measurement connector 10 to form an elastomer material layer 2 OA having a required thickness, and the elastomer material is used.
  • the ⁇ 30 and the lower mold 35 described above are arranged on the front surface (upper surface in the figure) of the material layer 2 OA and the rear surface of the electrical resistance measuring connector 10.
  • connection In the part located on the surface of the electrode a magnetic field having a greater intensity than the other part is applied in the thickness direction.
  • the conductive particles dispersed in the elastomer material layer 2OA gather at the portion located on the surface of the connection electrode assembly region and are arranged in the thickness direction. It is oriented like a bulge. Then, in this state, a curing treatment of the elastomer material layer 2 OA is performed, so that the surface of the electrical resistance measuring connector 10 is placed on the surface of the connection electrode electrode region as shown in FIG. An elastomer layer 20B containing magnetically conductive particles oriented in the thickness direction is formed in the upper portion.
  • the viscosity of the elastomer material is preferably in the range of 1000 to 1000 at a temperature of 25 ° C.
  • the method for applying the material for the elastomer is not particularly limited.
  • a printing method such as a roll coating method, a blade coating method, and screen printing can be used.
  • the strength of the applied magnetic field is preferably such that it averages 20 to 200 OmT.
  • a permanent magnet can be used instead of an electromagnet.
  • the permanent magnet is preferably made of Alnico (Fe-A1-Ni-Co-based alloy), a fiber, or the like from the viewpoint that the strength of the magnetic field in the above range can be obtained.
  • the elastomer layer 20B formed on the surface of the electrical resistance measurement connector 110 in this way is applied to the connection electrode set in the portion containing the conductive particles P as shown in FIG.
  • a cross-shaped hole K is formed by removing a portion located on the surface of a region between the electrodes (current supply electrode 13 and voltage measurement electrode 14) in 12.
  • the hole is filled with a liquid polymer material forming material 23 A that is cured to become an elastic polymer material, and then the polymer material forming material 23 A is filled.
  • an anisotropic conductive elastomer layer 20 having an insulating portion 22 formed between adjacent conductive path forming portions 21 is formed, as shown in FIGS. 12 and 13.
  • a connector device 25 for electrical resistance measurement is manufactured.
  • a method of forming the hole K in the elastomer layer 20B it is preferable to use a laser-caro method using a carbon dioxide laser or the like.
  • the polymer substance forming material filled in the hole K may be of the same type as or different from the high molecular substance forming material used in the above-mentioned elastomer material.
  • an elastomer layer 20 B having a portion containing the conductive particles P is formed on the surface of the connection electrode assembly region of the electrical resistance measurement connector 10, and this elastomer layer 2 is formed.
  • a hole is formed between the portion containing conductive particles P and the portion to be the conductive path forming portion located on the surface of current supply electrode 13 or voltage measurement electrode 14.
  • the insulating portion 22 is formed in the hole portion K, so that an anisotropic conductive elastomer layer 10 having a required edge is secured between the adjacent conductive path forming portions 21. Can be formed reliably You.
  • the anisotropic conductive elastomer layer 20 is arranged according to the pattern corresponding to the pattern of the current supply electrode 13 and the voltage measurement electrode 14 in each connection electrode set 12.
  • the protruding portion 23 is formed on the anisotropic conductive elastomer layer 20 such that the surface of the conductive path forming portion 21 protrudes from the surface of the edge portion 22.
  • the conductive path forming portion 21 is densely contained in the elastic polymer material constituting the base material of the anisotropic conductive elastomer layer 20 in a state where the conductive particles P exhibiting magnetism are oriented so as to be aligned in the thickness direction.
  • a conductive path is formed by the chain of the conductive particles P.
  • the insulating portion 22 contains no conductive particles P at all.
  • the elastic polymer material forming the base material of the anisotropic conductive elastomer layer 20 and the conductive particles forming the conductive path forming portion 21 are the same as those of the first example of the electrical resistance measuring connector of the first example. The same thing as the anisotropic conductive elastomer layer 20 in this can be used.
  • the electrical resistance measuring connector device 25 of the second example since the electrical resistance measuring connector of the first example is provided, the electrical resistance between the circuit board under test whose electrical resistance is to be measured and the electrical resistance is measured.
  • the circuit to be inspected has a large tolerance in positional deviation with respect to the electrode to be inspected in the connection work, so that even if the circuit to be inspected has a large area and a small size and has a large number of electrodes to be inspected on one side, The electrical connection of both the current supply electrode 13 and the voltage measurement electrode 14 can be reliably achieved.
  • the current supply electrode 13 and the voltage measurement electrode 14 are electrically insulated from each other, the electrical resistance of the circuit board 1 to be inspected can be measured with high accuracy.
  • the anisotropic conductive elastomer layer 0 is formed physically on the surface of the electrical resistance measuring connector 10, it is also good for environmental changes such as heat history due to temperature changes. Stable electrical connection can be maintained.
  • the conductive path forming portion 21 is formed on the anisotropic conductive elastomer layer 10 in correspondence with the current supply electrode 13 and the voltage measurement electrode 14 in the electrical resistance measurement connector 10. Therefore, insulation between the current supply electrode 13 and the voltage measurement electrode 14 is ensured, and as a result, the electrical resistance of the circuit board to be inspected can be measured with higher accuracy.
  • the electrical resistance measuring connector device of the second example can be manufactured, for example, as follows.
  • an appropriate releasable support plate 26 is prepared, and conductive particles P are arranged in the thickness direction on the surface of the releasable support plate 26 in an elastic polymer material.
  • the conductive elastomer layer 21 A contained in such an oriented state is formed in a state in which the conductive elastomer layer 21 A is detachably supported by the releasable support plate 26.
  • This conductive elastomer layer 21A has a thickness equivalent to the thickness of the conductive path forming portion to be formed.
  • the material constituting the releasable support plate 26 metals, ceramics, resins, composite materials thereof, and the like can be used.
  • the method for forming the conductive elastomer layer 21A includes: (1) a method in which the conductive particles P are contained in an elastic polymer material, which is manufactured by an appropriate method in advance, in a state where the conductive particles P are aligned in the thickness direction. A method in which the conductive elastomer sheet thus formed is peelably adhered to the surface of the smoke supporting plate 26. (2) A magnetic material is formed in a liquid polymer material forming material which is cured to become an elastic polymer material. A conductive elastomer material is prepared by dispersing conductive particles showing the following, and this conductive elastomer material is applied on the ⁇ If raw support plate 15 to obtain a conductive elastomer material.
  • the conductive particles P in the conductive elastomer material layer are oriented in the thickness direction.
  • the conductive Method of performing a curing process of stoma one material layer such as can you to utilize.
  • the conductive elastomer sheet is releasably bonded to the surface of the releasable support plate 26 by using the adhesiveness of the conductive elastomer sheet itself. Or a method of bonding with an adhesive.
  • the strength of the magnetic field applied to the conductive elastomer material layer is preferably from 0.1 to 1.5 Tesla.
  • the curing treatment of the conductive elastomer material layer is usually performed by a calo heat treatment.
  • Specific force D The heat temperature and the heating time are appropriately set in consideration of, for example, the time required for the transfer of the conductive particles and the thickness of the polymer forming material constituting the conductive elastomer material layer.
  • a thin metal layer 27 for a plating electrode is formed on the surface of the conductive elastomer layer 21A thus formed on the releasable support plate 26. Then, as shown in FIG. 24, the pattern of the conductive path forming portion to be formed, that is, the current supply electrode and the current supply electrode in the electrical resistance measurement connector, is formed on the thin metal layer 27 by photolithography. A resist layer 28 having a plurality of openings 28a is formed according to a pattern corresponding to the voltage measurement electrode. Thereafter, as shown in FIG. 25, using the thin metal layer 27 as a plating electrode, a portion of the thin metal layer 27 exposed through the opening 28a of the resist layer 28 is subjected to electrolytic plating.
  • a metal mask 29 is formed in the opening 28a of the resist layer 28.
  • the resist layer 28, the thin metal layer 27, and the conductive layer 21A, the thin metal layer 27, and the thin resist As a result, as shown in Fig. 26, the conductive elastomer layer 21A was arranged according to the pattern corresponding to the current supply electrode and the voltage measurement electrode in the electrical resistance measurement connector.
  • the plurality of conductive path forming portions 21 are formed in a state of being supported on the wakeful support plate 26. Thereafter, the thin metal layer 27 and the metal mask 29 remaining from the surface of the conductive path forming portion 21 are peeled off.
  • an electroless plating method, a sputtering method, or the like can be used as a method of forming the thin metal layer 27 on the surface of the conductive elastomer layer 21A.
  • the thin metal layer 27 As a material constituting the thin metal layer 27, copper, gold, aluminum, rhodium, or the like can be used.
  • the thickness of the thin metal layer 27 is preferably 0.05 to 2 and more preferably 0.1 to 1 ⁇ m. If the thickness is too small, a uniform thin layer is not formed, which may be unsuitable as a plating electrode. On the other hand, this thickness is too large: Removal may be difficult due to processing.
  • the thickness of the resist layer 28 is set according to the thickness of the metal mask 29 to be formed.
  • a material constituting the metal mask 29 copper, iron, aluminum, gold, rhodium, or the like can be used.
  • the thickness of the metal mask 19 is preferably 2 m or more, more preferably 5 to 20 m. If the thickness is too small, it may be unsuitable as a mask for a laser.
  • the laser power is preferably a carbon dioxide gas laser, whereby the conductive path forming portion 21 in the desired form can be formed reliably.
  • the surface of the electrical resistance measuring connector 110 is coated with a liquid polymer material forming material which is cured to become an insulating elastic polymer material, thereby forming an insulating portion.
  • a material layer 22 A is formed.
  • the resilient support plate 26 on which the plurality of conductive path forming portions 21 are formed is separated from the releasable support plate 2 on which the insulating portion material layer 22 A is formed. 6 so that each of the current supply electrode 13 and the voltage measurement electrode 14 in the electrical resistance measurement connector 10 is brought into contact with the corresponding conductive path forming portion 21. .
  • the insulating layer material layer 22A is formed between the adjacent conductive path forming sections 21.
  • the insulating layer material layer 22 A is subjected to a hardening treatment to thereby insulate them from each other between the adjacent conductive path forming sections 21 as shown in FIG. 1 and 2 are formed integrally with the conductive path forming section 11 and the electrical resistance measuring connector 110.
  • an anisotropic conductive elastomer layer 20 is formed on the surface of the electrical resistance measuring connector 10-10 in a physical manner, as shown in FIG. An adapter device of the configuration is obtained.
  • a printing method such as screen printing, a roll coating method, a blade coating method, or the like can be used as a means for applying the polymer substance forming material.
  • the thickness of the insulating portion material layer 22 A is set according to the thickness of the insulating portion 22 to be formed.
  • the curing treatment of the insulating layer material layer 22A is usually performed by a heat treatment.
  • the specific heating temperature and heating time are set in consideration of the type of the elastomer material constituting the insulating portion material layer 22A, and the like.
  • the conductive particles P are dispersed in a state of being aligned in the thickness direction.
  • a required amount of conductive particles P is formed by forming a conductive path forming portion 21 of a desired form by laser processing the conductive elastomer layer 21 A thus formed to remove the 3 ⁇ 4.
  • anisotropic conductive elastomer 20 having conductive path forming portion 21 having the desired conductivity and filled therein can be reliably obtained.
  • conductive path forming portions 21 are formed on the permanent support plate 26 according to the pattern of the current supply electrode 13 and the voltage measuring electrode 14, these conductive path forming portions are formed.
  • the insulating material 22 is formed by forming the edge material layer 22 A between the two and hardening to form the insulating material 22. Conductive elastomer—layer 0 can be reliably obtained.
  • the step of forming the conductive path forming portion 21 by laser processing is performed on the releasable support plate 26, the formation of the anisotropic conductive elastomer layer 20 is used for measuring the electrical resistance. The surface of the connector 10 will not be damaged.
  • the electrical resistance measuring connector device of the present invention is not limited to the above example, and various changes can be made.
  • the electrical resistance measuring connector 10 may be of the second example shown in FIGS. 6 and 7, and as shown in FIGS. 9 and 10. It may be the third example, the fourth example shown in FIG. 11, or another connector for measuring electric resistance according to the present invention.
  • the anisotropic conductive elastomer layer 20 may be one in which the conductive path forming portion is formed so as to cover all the electrodes in the connection electrode set, and the conductive particles are contained in the elastic polymer material. It may be of a so-called dispersion type in which the conductive particles are aligned in the thickness direction and the chains of the conductive particles are contained in a dispersed state in the plane direction.
  • FIG. 31 is an explanatory diagram showing a configuration of a first example of a circuit board electrical resistance measuring apparatus according to the present invention
  • FIG. 32 is a diagram showing an essential part of the circuit board electrical resistance measuring apparatus shown in FIG. It is explanatory drawing which expands and shows a part.
  • the circuit board electric resistance measuring device of the first example is a circuit to be tested whose electric resistance is to be measured.
  • the upper adapter 40 arranged on one side (upper surface in FIG. 31) of the circuit board 1 and the lower adapter 50 arranged on the other surface (T in FIG. 31) of the circuit board 1 to be inspected. Are arranged so as to face each other vertically.
  • the upper adapter 40 is provided with a connector device 25 for electric resistance measurement, for example, having a configuration shown in FIG. 12 which is arranged on one surface side (upper side in FIG. 31) of the circuit under test 1.
  • Connector for electrical resistance measurement 25 is provided with a connector device 25 for electric resistance measurement, for example, having a configuration shown in FIG. 12 which is arranged on one surface side (upper side in FIG. 31) of the circuit under test 1.
  • a circuit board 41 for one-side inspection is disposed via a first upper-side anisotropic conductive sheet 44.
  • the surface of the one-side inspection circuit board 41 T in FIG.
  • Electrodes 42 are arranged, and on the back surface (the upper surface in FIG. 31) of the one-side inspection circuit board 41, a pattern corresponding to an array pattern of standard array electrodes 49 of an electrode plate 48 described later is formed.
  • Terminal electrodes 43 are arranged, and each of the terminal electrodes 43 is electrically connected to a corresponding test electrode 42.
  • An electrode plate 48 is provided on the back surface of the one-side inspection circuit board 41 via a second upper-side anisotropic conductive sheet 45.
  • the electrode plate 48 has a plurality of standard array electrodes arranged on its surface (the lower surface in FIG. 31), for example, at a standard grid point Ji having a pitch of 2.54 mm. 1.8 mm or 27 mm.
  • Each of these standard array electrodes 49 is electrically connected to the terminal electrode 43 of the one-side inspection circuit board 41 via the second upper side anisotropic conductive sheet 45. At the same time, it is electrically connected to the tester 59 via the internal wiring (not shown) of the electrode plate 48.
  • the first upper-side anisotropic conductive sheet 44 in this example is a so-called unevenly distributed anisotropic conductive sheet, and follows a pattern corresponding to the pattern of the relay electrode 15 of the connector 10 for measuring electrical resistance. It is composed of a plurality of conductive path forming portions (not shown) extending in the thickness direction and a paper edge (not shown) interposed between these conductive path forming portions to mutually insulate them.
  • the conductive path forming portion is made of an insulating elastic polymer material in which conductive particles are arranged in a state of being aligned in the thickness direction, and the yarn edge portion has no or almost no conductive particles. It consists of an elastic high molecular substance.
  • the second upper side anisotropic conductive sheet 45 is a so-called anisotropic conductive sheet of a solitary state, in which conductive particles are oriented in the elastic polymer material so as to be arranged in the thickness direction to form a chain. Formed And the chains of the conductive particles are dispersed in the plane direction.
  • the elastic polymer material and the conductive particles constituting the first upper-side anisotropic conductive sheet 44 and the second upper-side anisotropic conductive sheet 45 include an electrical resistance measuring connector device 5.
  • the elastic polymer substance and the conductive particles constituting the anisotropic conductive elastomer layer 10 in the above can be selected and used from among those exemplified as the conductive particles.
  • the lower-side adapter 50 is provided with the other-side inspection circuit board 51, and the other-side inspection circuit board 51 has a surface (the upper surface in FIG. 31) other than the circuit board 1 to be inspected.
  • Arrangement of the surface-side inspection electrode 3. In accordance with the pattern corresponding to the turn, a test electrode pair consisting of a current supply test electrode 52 a and a voltage measurement test electrode 52 b arranged apart from each other on one other surface side test target electrode 3 is formed. It is arranged so as to be located within a region having the same area as the region occupied by the other surface side inspected electrode 3.
  • a current supply terminal electrode 53a and a voltage measurement terminal electrode are formed in accordance with a pattern corresponding to the arrangement pattern of the standard arrangement electrodes 61 of the electrode plate 60 described later.
  • Each of the current supply terminal electrode 5 3a and the voltage measurement terminal electrode 5 3b is a corresponding current supply test electrode 5 2a and a voltage measurement test electrode 5 2 b. It is electrically connected to b.
  • an anisotropic conductive elastomer layer 55 is integrally formed on the surface of the other side inspection circuit board 51.
  • the anisotropic conductive elastomer layer 55 is provided on both surfaces (upper surface in FIG. 31) of the current supply inspection electrode 52 a and the voltage measurement inspection electrode 52 b constituting each of the inspection electrode pairs.
  • a contacting common conductive path forming portion 56 is formed, and an insulating portion 57 is formed between adjacent conductive path forming portions 56 to insulate them from each other.
  • the conductive path forming portion 56 contains conductive particles oriented in a thickness direction in an insulating elastic polymer material, and the insulating portion 57 contains no or almost no conductive particles. It is made of an insulating elastic polymer material that is not used.
  • the surface of the conductive path forming portion 56 (the upper surface in FIG. 31) is formed in a state of protruding from the surface of the insulating portion 57.
  • An electrode plate 60 is provided on the back surface (T® in FIG. 31) of the other-side inspection circuit circuit 51 via a lower-side anisotropic conductive sheet 62.
  • the electrode plate 60 and the lower anisotropic conductive sheet 62 correspond to the electrode plate 48 and the second upper anisotropic conductive sheet 45 in the upper adapter 140, respectively.
  • the plate 60 has, for example, a pitch of 2.54 mm, 1.8 mm or 1 mm on its surface (upper surface in FIG. 31).
  • the lower side anisotropic conductive sheet 62 is a so-called spectroscopic anisotropic conductive sheet, and is a state in which conductive particles are arranged in an elastic polymer material so as to be aligned in the thickness direction to form a chain. And the chains of the conductive 1 "raw particles are contained in a state dispersed in the plane direction.
  • the upper limit of the separation distance is determined by the size of each inspection electrode and the size and pitch of the associated other-surface-side inspected electrode 3, and is usually 500 m or less. This separation distance is too large In some cases, it may be difficult to properly arrange both test electrodes with respect to one of the other-surface-side tested electrodes 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

被検査回路基板が大面積でサイズの小さい多数の被検査電極を有するものでも、所要の電気的接続が確実に達成され、所期の電気抵抗の測定が高い精度で確実に行われる電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法が開示されている。 本発明の電気抵抗測定用コネクターは、絶縁性基板と、この絶縁性基板の表面に電気抵抗を測定すべき被検査回路基板における複数の被検査電極のパターンに対応するパターンに従って配置された複数の接続用電極組とを具え、前記接続用電極組の各々は、電流供給用電極および電圧測定用電極のいずれかの電極の3つ以上が互いに離間して配置されてなり、これらの電極のうち、少なくとも1つは電流供給用電極であり、少なくとも1つが電圧測定用電極である。

Description

明 細 書 ―
電気抵抗測定用コネクタ一、電気抵抗測定用コネクタ一装置およびその製造方法並びに回 路基板の電気抵抗測定装置および測定方法 技 術 分 野
本発明は、電気抵抗測定用コネクタ一、電気抵抗測定用コネクタ一装置およびその製造 方法並びに回路基板の電気抵抗測定装置および回路装置の電気抵抗測定方法に関する。 背 景 技 術
近年、電子部品やこれを内蔵した電子機器における信号伝送の高速ィ匕の要請に伴って、
B GAや C S Pなどの L S Iパッケージを構成する回路基板やこれらの半導体装置が搭載 される回路基板として、電極間における配線の電気抵抗が低いものが要求されている。 そ のため、 このような回路基板の電気的検査においては、 その電極間における配線の電気抵 杭の測定を高い精度で行うことが極めて重要である。
従来、 回路基板の電気抵抗の測定においては、 例えば、 図 3 7に示すように、被検査回 路基板 9 0の互いに電気的に接続された 2つの被検査電極 9 1, 9 2の各々に対し、 電流 供給用プローブ P A, P Dおよび電圧測定用プローブ P B, P Cを押圧して接触させ、 こ の状態で、電流供給用プローブ P A, P Dの間に電源装置 9 3から電流を供給し、 このと きに電圧測定用プロ一ブ P B, P Cによって検出される電圧信号を電気信号処理装置 9 4 において処理することにより、当該被検査電極 9 1 , 9 2間の電気抵抗の大きさを求める 四端子法が採用されている。
しかしながら、上記の方法においては、電流供給用プローブ P A, P Dおよび電圧測定 用プローブ F B, P Cを被検査電極 9 1, 9 2に対して相当に大きい押圧力で接触させる ことが必要であり、 しかも、 当該プローブは金属製であってその先端は尖頭状とされてい るため、 プローブが押圧されることによって被検査電極 9 1 , 9 2の表面が損傷してしま い、 当該回路基板は使用することが不可能なものとなってしまう。 このような事情から、 電気抵抗の測定は、製品とされるすべての回路基板について行うことができず、 いわゆる 抜き取り検査とならざるを得ないため、結局、製品の歩留りを大きくすることはできない このような問題を解決するため、従来、被検査電極に接触する接続用部材が導電性エラ ストマ一により構成された電気抵抗測定装置が提案されており、具体的には、 ( i ) エラ ストマ一により導電性粒子が結着された導電ゴムよりなる弾性接続用部材を、電流供給用 電極および電圧測定用電極の個々に配置してなる電気抵抗測定装置(下記先行文献 1参照
。 ) 、 ( i i ) 同一の被検査電極に電気的に接続される電流供給用電極および電圧測定用電 極の両方の表面に接するよう設けられた、異方導電性エラストマ一よりなる共通の弾性接 続用部材を有する電気抵抗測定装置(下記先行文献 2参照。 ) 、 (i i i )表面に複数の検 査電極が形成された検査用回路基板と、 この検査用回路基板の表面に設けられた導電性ェ ラストマ一よりなる弾性接続用部材とを有し、被検査電極が接続部材を介して複数の検査 電極に電気的に接続された状態で、 それらの検査電極のうち 2つを選択し、 その一方を電 流供給用電極とし、他方を電圧測定用電極として電気抵抗を測定する電気抵抗測定装置 ( 下言己先行文献 3参照。 ) などが知られている。
このような電気抵抗測定装置によれば、被検査回路基板の被検査電極に対し、弾性接続 用部材を介して、電流供給用電極および電圧測定用電極が対接されることによつて電気的 接続が達成されるため、 当該被検査電極を損傷させることなく電気抵抗の測定を行うこと ができる。
しかしながら、上記( i ) および上記 (i i ) の構成の電気抵抗測定装置によって、 電極 間における電気抵抗の測定を行う場合には、以下のような問題がある。
近年、 回路基板においては、高い集積度を得るために電極のサイズおよびピッチもしく は電極間距離が小さくなる傾向がある。 而して、上記 (i ) および上記 ( i i ) の構成の電 気抵抗測定装置においては、 電気抵抗を測定すベき被検査回路基板における被検査電極の 各々に、弾性接続用部材を介して電流供給用電極および電圧測定用電極の両方を同時に電 気的に接続させる必要がある。 従って、 小さいサイズの被検査電極が高密度で配置された 被検査回路基板についての電気抵抗の測定を行うための電気抵抗測定装置においては、小 さなサイズの被検査電極の各々に対応して、 当該被検査電極が占有する領域と同等若しく はそれ以下の面積の領域内に、互いに離間した状態で電流供給用電極および電圧測定用電 極を形成すること、 すなわち被検査電極よりも更に小さいサイズの電流供給用電極および 電圧測定用電極を極めて小さい距離で離間した状態で形成することが である。
また、 回路基板の製造方法としては、 生産性を向上させるために、一つの基板材料によ —
3 つて、複数の回路基板が連結されてなる回路基板連結体を製造し、 その状態で、 当該回路 基板 結体における各回路基板についての電気的検査を一括して行い、 その後、 回路 ¾f反 連結体を切断することにより、分離された複数の回路基板を製造する方法が採用されてい る。
然るに、検査対象である回路基板連結体は、その面積が相当に大きく、 また、被検査電 極の数も極めて多いものであり、特に多層回路基板を製造する場合には、 その製造プロセ スにおける工程数が多く、力 理による熱履歴を受ける回数が多いため、被検査電極が 所期の配置位置から位置ずれした状態で形成されることが少なくない。 このように、大面 積で、多数の被検査電極を有し、 当該被検査電極が所期の配置位置から位置ずれした状態 で形成された被検査回路基板について、上記 ( i ) および上記 (i i) の構成の電気抵抗測 定装置によって電気抵抗の測定を行う場合には、被検査電極の各々に、電流供給用電極お よび電圧測定用電極の両方を同時に電気的に接続させることは極めて困難である。
具体的な一例を挙げて説明すると、 図 3 8に示すように、 直径 Lが 3 0 0 mの被検査 電極 Tに係る電気抵抗を測定する場合には、 当該被検査電極 Tに電気的に接続される電流 供給用電極 Aおよび電圧測定用電極 Vの離間距離 Dは 1 5 0〃m程度であるが、 図 3 9 ( a ) および (b ) に示すように、被検査回路基板の位置合わせにおいて、電流供給用電極 Aおよび電圧測定用電極 Vに対する被検査電極 Tの位置が、 図 3 8に示す所期の位置から 電流供給用電極 Aおよび電圧測定用電極 Vが並ぶ方向 (図において左右方向) に 7 5〃m ずれたときには、電流供給用電極 Aおよび電圧測定用電極 Vのいずれか一方と被検査電極 Tとの電気的接続が達成されず、所要の電気抵抗測定を行うことができない。
一方、上記 (i i i ) の電気抵抗測定装置によれば、被検査電極の各々に対応して、電流 供給用電極および電圧測定用電極を形成することが不要であるため、電気抵抗を測定すベ き被検査回路基板が、大面積で、 多数の被検査電極を有し、 かつ、 小さいサイズの被検査 電極が高密度で配置されてなるものであつても、 当該被検査電極に対する位置ずれの許容 度が大きく、 また、 当該電気抵抗測定装置の作製が容易である。
しかしながら、 このような電気抵抗測定装置は、 いわば擬似四端子法による測定装置で あるため、測定誤差範囲が大きいものであり、従って、電極間における電気抵抗の低い回 路基板について、 その電気抵抗の測定を高い精度で行うことは困難である。
先行文献 1 :特開平 9— 2 6 4 4 6号公報 _
4 先行文献 2 :特開 2 0 0 0— 7 4 9 6 5号
先行文献 3 :特開 2 0 0 0 - 2 4 1 4 8 5号公報 発 明 の 開 示
本発明は、以上のような事情に基づいてなされたものであって、 その第 1の目的は、電 気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの小さい多数の被検査電極を有 するものであっても、当該被検査回路基板に対する所要の電気的接続を確実に達成するこ とができ、 しかも、所期の電気抵抗の測定を高い精度で確実に行うことができる電気抵抗 測定用コネクターを提供することにある。
本発明の第 2の目的は、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの 小さい多数の被検査電極を有するものであつても、 当該被検査回路基板に対する所要の電 気的接続を確実に達成することができ、 しかも、所期の電気抵抗の測定を高い精度で確実 に行うことができ、更に、温度変化による熱履歴などの環境の変化に対しても良好な電気 的接続が安定に維持される電気抵抗測定用コネクタ一装置を提供することにある。
本発明の第 3の目的は、上記の電気抵抗測定用コネクター装置を有利に製造することが できる方法を提供することにある。
本発明の第 4の目的は、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの 小さい多数の被検査電極を有するものであっても、 当該被検査回路基板に対する所要の電 気的接続を確実に達成することができ、 しかも、所期の電気抵抗の測定を高い精度で確実 に行うことができる回路基板の電気抵抗測定装置を提供することにある。
本発明の第 5の目的は、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの 小さい多数の被検査電極を有するものであつても、 当該被検査回路基板に対する所要の電 気的接続を確実に達成することができ、 しかも、所期の電気抵抗の測定を高い精度で確実 に行うことができる回路基板の電気抵抗測定方法を提供することにある。
本発明の電気抵抗測定用コネクタ一は、絶縁性基板と、 この絶縁性基板の表面に電気抵 抗を測定すべき被検査回路基板における複数の被検査電極のパターンに対応するパターン に従って配置された複数の接続用電極組とを具えてなり、
前記接続用電極組の各々は、電流供給用電極および電圧測定用電極のいずれかの電極の 3つ以上が互いに離間して配置されてなり、 これらの電極のうち、少なくとも 1つは電流 供給用電極であり、 少なくとも 1つが電圧測定用電極であることを特徴とする。
また、本発明の電気抵抗測定用コネクタ一は、 縁性基板と、 この 縁性基板の表面に 電気抵抗を測定すべき被検査回路基板における複数の被検査電極のパターンに対応するパ タ一ンに従つて配置された複数の接続用電極組とを具えてなり、
前記接続用電極組は、矩形における互いに対角する頂 位置に位置する 2つの電流供給 用電極および当該矩形における互いに対角する他の頂点位置に位置する 2つの電圧測定用 電極が、互いに離間して配置されてなることを特徴とする。
また、本発明の電気抵抗測定用コネクタ一は、終椽性基板と、 この 緣性基板の表面に 電気抵抗を測定すベき被検査回路基板における複数の被検査電極のノ、。ターンに対応するパ 夕一ンに従つて配置された複数の接続用電極組とを具えてなり、
前記接続用電極組の各々は、電圧測定用電極、電流供給用電極および電圧測定用電極の 3つの電極がこの順で並ぶよう互いに離間して配置されてなることを特徴とする。
また、本発明の電気抵抗測定用コネクタ一は、 絶縁性基板と、 この絶縁性基板の表面に 電気抵抗を測定すベき被検査回路基板における複数の被検査電極のパ夕一ンに対応するパ ターンに従って配置された複数の接続用電極組とを具えてなり、
前記接続用電極組の各々は、電流供給用電極、 電圧測定用電極および電流供給用電極の 3つの電極がこの順で並ぶよう互いに離間して配置されてなることを特徴とする。
上記の 3つの電極が配置されてなる接続用電極組を有する電気抵抗測定用コネクタ一に おいては、接続用電極組における電流供給用電極および電圧測定用電極の各々は、 これら の電極が並ぶ方向に対して垂直な方向に長尺な形状を有することが好ましい。
本発明の電気抵抗測定用コネクタ一においては、絶縁性基板の裏面に、電流供給用電極 および電圧測定用電極のいずれか一方に電気的に接続された複数の中継電極が配置されて いることが好ましい。
このような電気抵抗測定用コネクターにおいては、ネ の電流供給用電極に電気的に接 続された中継電極を有することが好ましい。
本発明の電気抵抗測定用コネクタ一装置は、上記の構成の電気抵抗測定用コネクターと 、 この電気抵抗測定用コネクターの表面に一体的に積層された異方導電性エラストマ一層 とを具えてなることを特徴とする。
本発明の電気抵抗測定用コネクタ一装置においては、異方導電性エラストマ一層は、電 流供給用電極および電圧測定用電極の各々の表面上に配置された、 それぞれ厚み方向に伸 びる複数の導電路形成部と、 これらの導電路形成部を相互に絶縁する糸樣部とよりなるこ とが好ましい。
また、導電路形成部は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含 有されてなることが好ましい。
本発明の電気抵抗測定用コネク夕一装置の製造方法は、上記の構成の電気抵抗測定用コ ネクター装置を製造する方法であって、
上記の電気抵抗測定用コネクタ一の表面に、硬化されて弾性高分子物質となる液状の高 分子物質形成材料中に磁性を示す導電性粒子が含有されてなるエラストマ一用材料層を形 成し、 このエラストマ一用材料層に対して、電気抵抗測定用コネクタ一の接続用電極組が 形成された領域の表面上に位置する部分においてそれ以外の部分より大きい強度の磁場を 厚み方向に作用させると共に、 当該エラストマ一用材料層を硬化処理することにより、 当 該電気抵抗測定用コネクターの表面に、 その接続用電極組が形成された領域の表面上に位 置する部分に磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含有されたエラ ストマ一層を形成し、
このエラストマ一層における導電性粒子が含有された部分において、接続用電極袓にお ける各電極の間の領域の表面上に位置する部分を除去して穴部を形成し、 その後、 この穴 部に硬化されて弾性高分子物質となる液状の高分子物質形成材料を充填し、 当該高分子物 質形成材料を硬化処理する工程を有することを特徴とする。
本発明の回路基板の電気抵抗測定装置は、少なくとも一面に電極を有する回路基板の電 気抵抗を測定する回路基板の電気抵抗測定装置であつて、
電気抵抗を測定すベき被検査回路基板の一面側に配置される、上記の構成の電気抵抗測 定用コネクターを具えてなることを特徴とする。
また、本発明の回路基板の電気抵抗測定装置は、少なくとも一面に電極を有する回路基 板の電気抵抗を測定する回路基板の電気抵抗測定装置であつて、
電気抵抗を測定すべき被検査回路基板の一面側に配置される、上記の裏面に中継電極を 有する電気抵抗測定用コネクターと、
この電気抵抗測定用コネク夕一の裏面に異方導電性シートを介して配置された、表面に il己電気抵抗測定用コネク夕一における中継電極の 、。ターンに対応するパターンに従って 配置された検査電極を有する一面側検査用回路基板とを具えてなることを特徴とする。 上記の回路基板の電気抵抗測定装置において、電気抵抗を測定すベき被検査回路基板が ®に電極を有するものである場合には、電気抵抗を測定すべき被検査回路基板の他面側 に配置される、他面側検査用回路基板を具えてなり、
tirf己他面側検査用回路基板は、 その表面にそれぞれ ri己被検査回路基板の他面側被検査 電極の各々に対応して互いに離間して配置された、 それぞれ同一の他面側被検査電極に電 気的に接続される電流供給用検査電極およぴ電圧測定用検 電極が形成されているもので あってもよい。
また、本発明の回路基板の電気抵抗測定装置は、両面に電極を有する回路基板の電気抵 抗を測定する回路基板の電気抵抗測定装置であつて、
電気抵抗を測定すベき被検査回路基板の一面側に配置される、上記の構成の電気抵抗測 定用コネクターと、
当該被検査回路基板の他面側に配置される、上記の構成の電気抵抗測定用コネクタ一と を具えてなることを特徴とする。
また、本発明の回路基板の電気抵抗測 置は、両面に電極を有する回路基板の電気抵 抗を測定する回路基板の電気抵抗測定装置であつて、
電気抵抗を測定すベき被検査回路基板の一面側に配置される、上記の構成の電気抵抗測 定用コネクタ一と、
この電気抵抗測定用コネク夕一の裏面に異方導電性シートを介して配置された、表面に 当該電気抵抗測定用コネクターにおける中継電極のパターンに対応するパターンに従って 配置された検査電極を有する一面側検査用回路基板と、
前記被検査回路基板の他面側に配置される、上記の構成の電気抵抗測定用コネクタ一と この電気抵抗測定用コネクターの裏面に異方導電性シ一トを介して配置された、表面に 当該電気抵抗測定用コネクターにおける中継電極のパターンに対応するパターンに従って 配置された検査電極を有する他面側検査用回路基板と
を具えてなることを特徴とする。
本発明の回路基板の電気抵抗測定方法は、電気抵抗を測定すベき被検査回路基板の一面 に、上記の電気抵抗測定用コネクターを配置し、 当該被検査回路基板の一面側被検査電極の各々に、編己電気抵抗測定用コネクターの接 続用電極組における少なくとも 1つの電流供給用電極および少なくとも 1つの電圧測定用 電極を同時に電気的に接続して測定状態とし、
この測定状態において、前記電気抵抗測定用コネク夕一における電流供給用電極を介し て被検査回路基板に電流を供給すると共に、編己一面側被検査電極に電気的に接続された 電圧測定用電極のうち 1つの電圧測定用電極を指定し、当該指定された 1つの電圧測定用 電極に電気的に接続された一面側被検査電極に係る電気抵抗の測定を feすることを特徴 とする。 発 明 の 効 果
本発明の電気抵抗測定用コネクターによれば、被検査回路基板における被検査電極のパ ターンに対応する 、。夕一ンに従つて配置された接続用電極組は、電流供給用電極および/ または電圧測定用電極を 2つ以上有するため、 これらの電極を適宜の位置関係で配置する ことにより、被検査電極の位置ずれに対する許容度が高くなる。
例えば、接続用電極組における 2つの電流供給用電極が、矩形における互いに対角する 頂 位置に位置され、 かつ、 2つの電圧測定用電極が、 当該矩形における互いに対角する 他の頂点位置に位置されることにより、 当該矩形における辺方向に被検査電極が位置ずれ した;!^であっても、 当該被検査電極は、少なくとも 1つの電流供給用電極および少なく とも 1つの電圧測定用電極の雨方に同時に電気的に接続されるようになる。
また、接続用電極組における電圧測定用電極、電流供給用電極および電圧測定用電極の 3つの電極がこの順で並ぶよう配置されることにより、或いは、電流供給用電極、電圧測 定用電極および電流供給用電極の 3つの電極がこの順で並ぶよう配置されることにより、 被検査電極が、接続用電極組における各電極が並ぶ方向に位置ずれした場合であつても、 当該被検査電極は、少なくとも 1つの電流供給用電極および少なくとも 1つの電圧測定用 電極の両方に同時に電気的に接続されるようになる。 更に、 このような構成において、電 流供給用電極および電圧測定用電極の各々が、 これらの電極が並ぶ方向に対して垂直な方 向に長尺な形状とされることにより、被検査電極が、接続用電極組における各電極が並ぶ 方向と垂直な方向に位置ずれした: 1½であっても、 当該被検査電極は、電流供給用電極お よび電圧測定用電極の両方に同時に電気的に接続されるようになる。 従って、本発明の電気抵抗測定用コネクターによれば、電気抵抗を測定すべき被検査回 路基板が、大面積で、 サイズの小さい多数の被検査電極を有するものであっても、 当該被 検査回路基板に対する所要の電気的接続を確実に達成することができ、 しかも、所期の電 気抵抗の測定を高い精度で確実に行うことができる。
本発明の電気抵抗測定用コネク夕一装置によれば、上記の電気抵抗測定用コネク夕一を 有するため、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの小さい多数の 被検査電極を有するものであっても、 当該被検査回路基板に対する所要の電気的接続を確 実に達成することができ、 しかも、所期の電気抵抗の測定を高い精度で確実に行うことが でき、更に、温度変ィ匕による熱履歴などの環境の変ィ匕に対しても良好な電気的接続を安定 に維持することができる。
本発明の電気抵抗測定用コネク夕一装置の製造方法によれば、上記の電気抵抗測定用コ ネク夕一装置を有利に製造することができる。
本発明の回路装置の電気抵抗測定装置によれば、上記の電気抵抗測定用コネク夕一を有 するため、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの小さい多数の被 検査電極を有するものであっても、 当該被検査回路基板に対する所要の電気的接続を確実 に達成することができ、 しカヽも、所期の電気抵抗の測定を高い精度で確実に行うことがで きる。
本発明の回路装置の電気抵抗測定方法によれば、上記の電気抵抗測定用コネクタ一を用 いるため、電気抵抗を測定すべき被検査回路基板が、大面積で、 サイズの小さい多数の被 検査電極を有するものであっても、 当該被検査回路基板に対する所要の電気的接続を確実 に達成することができ、 しカヽも、 所期の電気抵抗の測定を高い精度で確実に行うことがで きる。 図面の簡単な説明
図 1は、本発明に係る電気抵抗測定用コネクターの第 1の例を示す平面図である。 図 2は、第 1の例の電気抵抗測定用コネクターの構成を示す説明用断面図である。 図 3は、被検査回路基板の一面上に、異方導電性シートを介して図 1に示す電気抵抗測 定用コネクタ一が配置された状態を示す説明用断面図である。
図 4は、第 1の例の電気抵抗測定用コネクターにおける接続用電極組と被検査電極との 間に位置ずれが生じた状態を示す説明図である。
図 5は、被検査回路基板の構成を示す説明用断面図である。
図 6は、本発明に係る電気抵抗測定用コネクタ一の第 2の例を示す平面図である。 図 7は、第 2の例の電気抵抗測定用コネク夕一の構成を示す説明用断面図である。 図 8は、第 2の例の電気抵抗測定用コネク夕一における接続用電極組と被検査電極との 間に位置ずれが生じた状態を示す説明図である。
図 9は、本発明に係る電気抵抗測定用コネクターの第 3の例を示す平面図である。 図 1 0は、 第 3の例の電気抵抗測定用コネクタ一の構成を示す説明用断面図である。 図 1 1は、本発明に係る電気抵抗測定用コネクタ一の第 4の例における構成を示す説明 用断面図である。
図 1 2は、本発明に係る電気抵抗測定用コネクター装置の第 1の例における構成を示す 説明用断面図である。
図 1 3は、 図 1 2に示す電気抵抗測定用コネクター装置を、 その異方導電性エラストマ 一層の一部を破断して示す平面図である。
図 1 4は、異方導電性エラストマ一層を得るための金型の一例における構成を示す説明 用断面図である。
図 1 5は、電気抵抗測定用コネクタ一の表面にエラストマ一用材料層が形成された状態 を示す説明用断面図である。
図 1 6は、 エラストマ一用材料層の厚み方向に強度分布を有する磁場が作用された状態 を示す説明用断面図である。
図 1 7は、電気抵抗測定用コネクターの表面にエラストマ一層が形成された状態を示す 説明用断面図である。
図 1 8は、 エラストマ一層に穴部が形成された状態を示す説明用断面図である。
図 1 9は、 エラストマ一層に形成された穴部に高分子物質形成材料が充填された状態を 示す説明用断面図である。
図 2 0は、本発明に係る電気抵抗測定用コネク夕一装置の第 の例における構成を示す 説明用断面図である。
図 2 1は、 図 2 0に示す電気抵抗測定用コネクター装置を、 その異方導電性エラストマ 一層の一部を破断して示す平面図である。 図 2 2は、离 I 性支持; Κ±に導電性エラストマ一層が形成された状態を示す説明用断面 図である。
図 2 3は、導電性エラストマ一層上に金属薄層が形成された状態を示す説明用断面図で ある。
図 2 4は、金属薄層上に開口を有するレジスト層が形成された状態を示す説明用断面図 である。
図 2 5は、 レジスト層の開口内に金属マスクが形成された状態を示す説明用断面図であ る。
図 2 6は、 ,性支持; K±に複数の導電路形成部が形成された状態を示す説明用断面図 である。
図 2 7は、電気抵抗測定用コネクターの表面に絶縁部用材料層が形成された状態を示す 説明用断面図である。
図 2 8は、絶縁部用材料層が形成された電気抵抗測定用コネクター上に、導電路形成部 が形成された离 性支持板が重ね合わされた状態を示す説明用断面図である。
2 9は、 隣接する導電路形成部間に絶縁部が形成された状態を示す説明用断面図であ る。
図 3 0は、本発明に係る電気抵抗測定用コネクター装置の他の例における構成を示す説 明用断面図である。
図 3 1は、本発明に係る回路基板の電気抵抗測定装置の第 1の例における構成の概略を 、被検査回路基板と共に示す説明用断面図である。
図 3 2は、第 1の例の回路基板の電気抵抗測定装置の要部を拡大して示す説明用断面図 である。
図 3 3は、 第 1の例の回路基板の電気抵抗測定装置によって形成される電圧測定用回路 を模式的に示す説明図である。
図 3 4は、本発明に係る回路基板の電気抵抗測定装置の第 2の例における構成の概略を 、被検査回路基板と共に示す説明用断面図である。
図 3 5は、第 2の例の回路基板の電気抵抗測定装置の要部を拡大して示す説明用断面図 である。
図 3 6は、第 2の例の回路 反の電気抵抗測定装置によって形成される電圧測定用回路 を模式的に示す説明図である。
図 3 7は、電流供給用プローブおよび電圧測定用プローブにより、 回路基板における電 極間の電気抵抗を測定する装置の模式図である。
図 3 8は、従来の回路基板の電気抵抗測定装置において、被検査電極上に電流供給用電 極および電圧測定用電極が適正に配置された状態を示す説明図である。
図 3 9は、従来の回路基板の電気抵抗測定装置において、被検査電極上に電流供給用電 極および電圧測定用電極が位置ずれした状態で配置された状態を示す説明図である。 〔符号の説明〕
1 被検査回路基板 2 一面側被検査電極
3 他面側被検査電極 4 a , 4 b 回路
5 異方導電性シート
1 0 電気抵抗測定用コネクタ一
1 1 絶緣隱反 1 2 接続用電極組
1 3 電流供給用電極 1 4 電圧測定用電極
1 5 中継電極 1 6 配線部
2 0 異方導電性ェラストマー層
2 O A エラストマ一用材料層
2 0 B エラストマ一層
2 1 導電路形成部
2 1 A 導電性エラストマ一層
2 2 絶縁部 2 2 A 絶縁部用材料層
2 3 突出部
2 3 A 高分子物質形成材料
2 5 電気抵抗測定用コネクタ一装置
2 6 離型性支持板 2 7 金属薄層
2 8 レジスト層 2 8 a 開口
2 9 金属マスク
3 0 上型 3 1 強磁性体基板
3 2 強磁性体層 3 3 非磁性体層 3 5 下型 36 強磁性体基板
3 7 強磁性体層 38 非磁性体層
4 0 上部側アダプター 4 1 一面側検査用回路基板 4 2 検査電極 4 3 端子電極
44 第 1の上部側異方導電性シート
4 5 第 2の上部側異方導電性シート
4 8 電極板 4 9 標準配列電極
50 下部側アダプター 5 1 他面側検査用回路基板
5 2 検査電極 5 3 端子電極
5 2 a 電流供給用検査電極
5 b 電圧測定用検査電極
5 3 a 電流供給用端子電極
5 3 b 電圧測定用端子電極
5 5 異方導電性エラストマ一層
56 導電路形成部 57 '鶴部
5 9 テスター 60 電極板
6 1 標準配列電極
6 2 下部側異方導電性シート
64 第 1の下部側異方導電性シ一ト
6 5 第 2の下部側異方導電性シ―ト
90 被検査回路基板
9 1 , 9 2 被検査電極 9 3 電源装置
94 電気信号処理装置
PA, PD 電流供給用プロ一ブ
PB, PC 電圧測定用プロ一ブ
A 電流供給用電極 V 電圧測定用電極
T 被検査電極 P 導電性粒子
K 穴部
C 1, C 2, C 3, C 4 電圧測定用回路 発明を実施するための最良の形態
以下、本発明の実施の形態について詳細に説明する。
〈電気抵抗測定用コネクター〉
図 1は、本発明に係る電気抵抗測定用コネク夕一の第 1の例を示す平面図、 図 2は、第 1の例の電気抵抗測定用コネクターの構成を示す説明用断面図である。
この第 1の例の電気抵抗測定用コネク夕一 1 0は、絶縁性基板 1 1を有し、 この絶縁性 基板 1 1の表面には、複数の接続用電極組 1 2が、電気抵抗を測定すべき回路基板の一面 に形成された一面側被検査電極 2 (—点鎖:!泉で示す) のパターンに対応するパターンに従 つて配置されている。 この接続用電極組 1 2の各々は、 図 1に示すように、 2つの矩形の 電流供給用電極 1 3および 2つの矩形の電圧測定用電極 1 4の合計 4つの電極よりなり、 これらの 4つの電極は、電流供給用電極 1 3の各々が、矩形における互いに対角する] 位置に位置され、 かつ、電圧測定用電極 1 4の各々が、 当該矩形における互いに対角する 他の頂点位置に位置されるよう、互いに離間して配置されている。
また、絶縁性基板 1 1の裏面には、 図 2に示すように、複数の中継電極 1 5が適宜のパ ターンに従って配置され、 これらの中継電極 1 5の各々には、絶縁性謝反 1 1に形成され た配線部 1 6によって、電流供給用電極 1 3および電圧測定用電極 1 4のいずれか一方が 電気的に接続されている。
絶縁性基板 1 1を構成する材料としては、 ポリィミド樹脂、 ガラス繊維補強型ポリィミ ド樹脂、 ガラス繊維補強型エポキシ樹脂、 ガラス繊維補強型ビスマレイミドトリアジン樹 脂などを用いることができる。 また、絶縁性 ®f反 1 1は、単層構成のものであっても多層 構成のものであってもよい。
絶縁性基板 1 1の厚みは、例えば 5 0〜1 0 0 0 mであることが好ましく、 より好ま しくは 1 0 0〜 5 0 0 mである。
電流供給用電極 1 3、電圧測定用電極 1 4、 中継電極 1 5および ¾線部 1 6を構成する 材料としては、銅、 ニッケル、金またはこれらの金属の積層体などを用いることができる また、電流供給用電極 1 3、電圧測定用電極 1 4、 中継電極 1 5および配線部 1 6は、 プリント配線板を製造するために一般に用いられる方法によって、形成することができる 接続用電極組 1 2における電流供給用電極 1 3と電圧測定用電極 1 4との間の離間距離 は、 2 0〜1 0 0〃mであることが好ましく、 より好ましくは 3 0〜8 0 mである。 こ の離間距離が過小である場合には、電流供給用電極 1 3と電圧測定用電極 1 4との間に必 要な絶縁性を確保することが困難となることがあり、 また、 当該電気抵抗測定用コネクタ — 1 0の製造が困難となることがある。 一方、 この離間距離が過大である場合には、被検 查電極に対する位置ずれの許容度が小さくなり、電流供給用電極 1 3および電圧測定用電 極 1 4の両方を被検査電極に確実に電気的に接続することが困難となることがある。 上記の電気抵抗測定用コネクタ一 1 0においては、 図 3に示すように、電気抵抗を測定 すべき被検査回路基板 1の一面に、例えば異方導電性シート 5を介して当該電気抵抗測定 用コネクタ一 1 0における各接続用電極組 1 2が当該被検査回路基板 1の各一面側被検査 電極 2上に位置するよう配置され、適宜の手段によって押圧されることにより、被検査回 路基板 1 0の一面側被検査電極 2が、異方導電性シ一ト 5を介して、電気抵抗測定用コネ クタ一 1 0における接続用電ネ¾袓 1 2における電極に電気的に接続される。
このような状態において、電流供給用電極 1 3を介して被検査回路基板 1の被検査電極 間に定電流を供給すると共に、被 ¾回路基板 1 0における一面側被検査電極 2に電気的 に接続された電圧測定用電極 1 4のうち 1つの電圧測定用電極 1 4を指定し、 この指定さ れた電圧測定用電極 1 4に電気的に接続された一面側被検査電極 2に係る電気抵抗の測定 が行われる。 そして、指定する電圧測定用電極 1 4を順次変更することにより、全ての一 面側被検査電極 2に係る電気抵抗の測定が行われる。
第 1の例の電気抵抗測定用コネクタ一 1 0によれば、各接続用電極組 1 2には、 2つの 電流供給用電極 1 3が、矩形における互いに対角する]!^位置に位置され、 かつ、 2つの 電圧測定用電極 1 4が、 当該矩形における互いに対角する他の頂点位置に位置されている ため、 当該矩形における辺方向 (図 1において左右方向および上下方向) に、 一面側被検 查電極 が位置ずれした; であつても、 当該一面側被検查電極 2は、少なくとも 1つの 電流供給用電極 1 3および少なくとも 1つの電圧測定用電極 1 4の両方に同時に電気的に 接続されるようになる。
具体的な例を挙げて説明すると、 図 4 ( a ) に示すように、一面側被検査電極 2の中心 位置が、 接続用電極組 1 2の中心位置から、 当該図において右方に位置ずれした場合には 、 それぞれ図において右側に位置された電流供給用電極 1 3および電圧測定用電極 1 4の 雨方に同時に電気的に接続されるようになる。
また、 図 4 ( b ) に示すように、一面側被検査電極 2の中心位置が、接続用電極組 1 2 の中心位置から、 当該図において左方に位置ずれした場合には、 それぞれ図において左側 に位置された電流供給用電極 1 3および電圧測定用電極 1 4の両方に同時に電気的に接続 されるようになる。
また、 図 4 ( c ) に示すように、一面側被検査電極 2の中心位置が、接続用電極組 1 2 の中心位置から、 当該図において上方に位置ずれした場合には、 それぞれ図において上側 に位置された電流供給用電極 1 3および電圧測定用電極 1 4の両方に同時に電気的に接続 されるようになる。
また、 図 4 ( d ) に示すように、一面側被検査電極 2の中心位置が、接続用電極組 1 2 の中心位置から、 当該図において下方に位置ずれした場合には、 それぞれ図において下側 に位置された電流供給用電極 1 3および電圧測定用電極 1 4の両方に同時に電気的に接続 されるようになる。
従って、第 1の例の電気抵抗測定用コネクター 1 0によれば、被検査回路基板 1との電 気的接続作業において、一面側被検査電極 2に対する位置ずれの許容度が大きいため、被 検査回路基板 1が大面積でサイズの小さい多数の一面側被検査電極 2を有するものであつ ても、 当該一面側被検査電極 2に対する電流供給用電極 1 3および電圧測定用電極 1 4の 両方の電気接続を確実に達成することができる。 しカヽも、電流供給用電極 1 3および電圧 測定用電極 1 4は互いに電気的に絶縁されているので、被検査回路基板 1についての電気 抵抗を高い精度で測定することができる。
本発明において、電気抵抗を測定すべき被検査回路基板 1としては、 図 5 ( a ) に示す ように、一面に形成された一面側被検査電極 2のみを有し、 当該一面側被検査電極 2間に 形成された回路 4 aのみを有するもの、 図 5 ( b ) に示すように、一面に形成された一面 側被検査電極 および他面に形成された他面側被検査電極 3を有し、一面側被検査電極 2 と他面側被検査電極 3との間に形成された回路 4 bのみを有するもの、 図 5 ( c ) に示す ように、 一面に形成された一面側被検査電極 2および他面に形成された他面側被検査電極 3を有し、一面側被検査電極 2間に形成された回路 4 aおよび一面側被検査電極 2と他面 側被検査電極 3との間に形成された回路 4 bの両方を有するもののいずれであってもよい 図 6は、本発明に係る電気抵抗測定用コネクタ一の第 2の例を示す平面図、 図 7は、第 2の例の電気抵抗測定用コネクタ一の構成を示す説明用断面図である。
この第 2の例の電気抵抗測定用コネクター 1 0においては、絶縁性基板 1 1の表面には 、複数の接続用電極組 1 2が、電気抵抗を測定すべき回路基板の一面に形成された一面側 被検査電極 2 (—点鎖線で示す) のパターンに対応するパターンに従って配置されている 。 この接続用電極組 1 2の各々は、 図 6に示すように、 1つの矩形の電流供給用電極 1 3 および 2つの矩形の電圧測定用電極 1 4の合計 3つの電極よりなり、 これらの 3つの電極 は、 電圧測定用電極 1 4、電流供給用電極 1 3、電圧測定用電極 1 4の順で並ぶよう、互 いに離間して配置されている。
また、絶縁性基板 1 1の裏面には、 図 7に示すように、複数の中継電極 1 5が遮 のパ ターンに従って配置され、 これらの中継電極 1 5の各々には、絶縁性基板 1 1に形成され た配線部 1 6によって、電流供給用電極 1 3および電圧測定用電極 1 4のいずれか一方が 電気的に接続されている。
以上において、絶縁性基板 1 1の材質および接続用電極組 1 2における各電極の材質は 、前述の第 1の例の電気抵抗測定^コネクタ一と同様である。
第 1の例の電気抵抗測定用コネクター 1 0によれば、接続用電極組 1 2には、電圧測定 用電極 1 4、電流供給用電極 1 3および電圧測定用電極 1 4の 3つの電極が、 この)頃で並 ぶよう配置されているため、 一面側被検査電極 2が、 当該接続用電極組.1 2における各電 極が並ぶ方向 (図 6において左右方向) に位置ずれした場合であっても、 当該一面側被検 査電極 2は、電流供給用電極 1 3および少なくとも 1つの電圧測定用電極 1 4の両方に同 時に電気的に接続されるようになる。
具体的に説明すると、 図 8 ( a ) に示すように、一面側被検査電極 2の中心位置が、接 続用電極組 1 2の中心位置から、当該図において右方に位置ずれした場合には、 中央に位 置された電流供給用電極 1 3および図において右側に位置された電圧測定用電極 1 4の両 方に同時に電気的に接続されるようになる。
また、 図 8 ( b ) に示すように、一面側被検査電極 2の中心位置が、接続用電極糸且 1 2 の中心位置から、 当該図において左方に位置ずれした場合には、 中央に位置された電流供 給用電極 1 3および図において左側に位置された電圧測定用電極 1 4の両方に同時に電気 的に接続されるようになる。
また、電流供給用電極 1 3および電圧測定用電極 1 4の各々は、 それらが並ぶ方向に対 して垂直な方向に長尺な矩形の形状を有するため、一面側被検査電極 2の中心位置が、接 続用電極組 1 2の中心位置から、 当該接続用電極組 1 2における各電極が並ぶ方向と垂直 な方向 (図 6において上下方向) に位置ずれした場合であっても、 当該一面側被検査電極 2は、電流供給用電極 1 3および電圧測定用電極 1 4の両方に同時に電気的に接続される ようになる。
従って、第 2の例の電気抵抗測定用コネクター 1 0によれば、被検査回路基板 1との電 気的接続作業において、一面側被検査電極 2に対する位置ずれの許容度が大きいため、被 検査回路基板 1が大面積でサイズの小さい多数の一面側被検査電極 2を有するものであつ ても、 当該一面側被検査電極 2に対する電流供給用電極 1 3および電圧測定用電極 1 4の 両方の電気接続を確実に達成することができる。 しかも、電流供給用電極 1 3および電圧 測定用電極 1 4は互いに電気的に絶縁されているので、被検査回路基板 1についての電気 抵抗を高い精度で測定することができる。
図 9は、本発明に係る電気抵抗測定用コネクタ一の第 3の例を示す平面図、 図 1 0は、 第 3の例の電気抵抗測定用コネクタ一の構成を示す説明用断面図である。
この第 3の例の電気抵抗測定用コネクター 1 0においては、絶縁性基板 1 1の表面には 、複数の接続用電極組 1 2が、電気抵抗を測定すべき回路基板の一面に形成された一面側 被検査電極 2 (—点鎖線で示す) のパターンに対応するパターンに従って配置されている 。 この接続用電極組 1 2の各々は、 図 9に示すように、 2つの矩形の電流供給用電極 1 3 および 1つの矩形の電圧測定用電極 1 4の合計 3つの電極よりなり、 これらの 3つの電極 は、電流供給用電極 1 3、電圧測定用電極 1 4、電流供給用電極 1 3の順で並ぶよう、互 いに離間して配置されている。
また、絶縁性基板 1 1の裏面には、 図 1 0に示すように、複数の中継電極 1 5が適宜の パターンに従って配置され、 これらの中継電極 1 5の各々には、絶縁性基板 1 1に形成さ れた配線部 1 6によって、電流供給用電極 1 3および電圧測定用電極 1 4のいずれか一方 が電気的に接続されている。
以上において、絶縁性基板 1 1の材質および接続用電極組 1 2における各電極の材質は 、前述の第 1の例の電気抵抗測定用コネクターと同様である。 _
1 9 第 3の例の電気抵抗測定用コネクタ一 1 0によれば、接続用電極組 1 2には、電流供給 用電極 1 3、電圧測定用電極 1 4および電流供給用電極 1 3の 3つの電極が、 この順で並 ぶよう配置されているため、 一面側被検査電極 2が、 接続用電極組 1 2における各電極が 並ぶ方向 (図 9において左右方向) に位置ずれした場合であっても、 当該一面側被検査電 極 2は、少なくとも 1つの電流供給用電極 1 3および電圧測定用電極 1 4の雨方に同時に 電気的に接続されるようになる。
また、電流供給用電極 1 3および電圧測定用電極 1 4の各々は、 それらが並ぶ方向に対 して垂直な方向に長尺な矩形の形状を有するため、一面側被検査電極 2の中心位置が、接 続用電極組 1 2の中心位置から、 当該接続用電極組 1 2における各電極が並ぶ方向と垂直 な方向 (図 9において上下方向) に位置ずれした場合であっても、 当該一面側被検査電極 2は、電流供給用電極 1 3および電圧測定用電極 1 4の両方に同時に電気的に接続される ようになる。
従って、第 3の例の電気抵抗測定用コネクター 1 0によれば、被検査回路基板 1との電 気的接続作業において、一面側被検査電極 2に対する位置ずれの許容度が大きいため、被 検査回路基板 1が大面積でサイズの小さい多数の一面側被検査電極 2を有するものであつ ても、 当該一面側被検査電極 2に対する電流供給用電極 1 3および電圧測定用電極 1 4の 両方の電気接続を確実に達成することができる。 しかも、電流供給用電極 1 3および電圧 測定用電極 1 4は互いに電気的に絶縁されているので、被検査回路基板 1についての電気 抵抗を高い精度で測定することができる。
図 1 1は、本発明に係る電気抵抗測定用コネクターの第 4の例における構成を示す説明 用断面図である。
この第 4の例の電気抵抗測定用コネクター 1 0においては、第 1の例の電気抵抗測定用 コネクターと同様の構成の接続用電極組 1 2が絶縁' f生基板 1 1の表面に形成されている ( 図 1参照) 。 絶縁性基板 1 1の裏面には、複数の中継電極 1 5が のパターンに従って 配置され、 これらの中継電極 1 5の各々には、絶縁性基板 1 1に形成された配線部 1 6に よって、電流供給用電極 1 3および電圧測定用電極 1 4のいずれか一方が電気的に接続さ れており、 これらの中継電極 1 5のうち の中継電極 1 5には、複数の電流供給用電極 1 3が電気的に接続されている。
以上において、絶縁性基板 1 1の材質および接続用電極組 1 2における各電極の材質は 、前述の第 1の例の電気抵抗測定用コネクターと同様である。
第 4の例の電気抵抗測定用コネクター 1 0によれば、被検査回路基板との電気的接続作 業において、被検査電極に対する位置ずれの許容度が大きいため、被検査回路基板が大面 積でサイズの小さい多数の被検査電極を有するものであつても、 当該被検査電極に対する 電流供給用電極 1 3および電圧測定用電極 1 4の両方の電気接続を確実に達成することが できる。 し力、も、電流供給用電極 1 3および電圧測定用電極 1 4は互いに電気的に絶縁さ れているので、被検査回路基板についての電気抵抗を高い精度で測定することができる。 更に、複数の電流供給用電極 1 3に電気的に接続された中継電極 1 5を有するため、 当 該電気抵抗測定用コネク夕一 1 0が電気的に接続される検査用回 J^S板における検査電極 の数を少なくすることができ、 これにより、検査用回路基板の製造が容易となり、 また、 用回路基板の製造コストの低減ィ匕を図ることができる。
本発明の電気抵抗測定用コネクタ一は、上記の例に限定されず、種々の変更を加えるこ とが可能である。
例えば、接続用電極組は、電流供給用電極および電圧測定用電極の各々を少なくと 1つ 以上有するものであれば、全電極の数は 5個以上であつてもよい。
また、電流供給用電極および電圧測定用電極の形状は、 矩形に限られず、 円形、 その他 の形状であってもよい。
また、接続用電極組における電極の配置パターンは、当該電極の数および形状並びに被 検査電極の形状などに応じて ¾ [設定することができる。
また、一つの中継電極に複数の電圧測定用電極が電気的に接続されていてもよい。 〈電気抵抗測定用コネクタ一装置〉
図 1 2は、本発明に係る電気抵抗測定用コネクター装置の第 1の例における構成を示す 説明用断面図である。 この電気抵抗測定用コネクタ一装置 2 5は、第 1の例の電気抵抗測 定用コネクター 1 0と、 この電気抵抗測定用コネクター 1 0の表面(図において T )上 に一体的に形成された異方導電性エラストマ一層 2 0とにより構成されている。
異方導電性エラストマ一層 2 0は、 図 1 3にも示すように、各接続用電極組 1 2におけ る電流供給用電極 1 3および電圧測定用電極 1 4のパターンに対応するパターンに従って 配置された厚み方向に伸びる » (の導電路形成部 2 1と、 これらの導電路形成部 2 1の間 に介在されてこれらを相互に 緣する絶縁部 2 2とにより構成されている。 また、 図示の 例では、異方導電性エラストマー層 2 0の表面には、 1つの接続用電極組 1 2の各電極に 対応する 4つの導電路形成部 2 1の表面おょぴそれらの間に介在された絶縁部 2 2の表面 がその他の絶縁部 2 2の表面から突出するよう、突出部 2 3が形成されている。
導電路形成部 2 1は、 当該異方導電性エラストマ一層 2 0の基材を構成する弾性高分子 物質中に磁性を示す導電性粒子 Pが厚み方向に並ぶよう配向した状態で密に含有されて構 成されており、 この導電性粒子 Fの連鎖によって導電路が形成される。 これに対して、絶 縁部 2 2は、導電性粒子 Pが全く或いは殆ど含有されていないものである。
導電路形成部 2 1を構成する導電性粒子 Fとしては、例えばニッケル、鉄、 コバルトな どの磁性を示す金属粒子もしくはこれらの合金の粒子またはこれらの金属を含有する粒子 、 またはこれらの粒子を芯粒子とし、 当 l¾S粒子の表面に金、銀、パラジウム、 ロジウム などの導電性の良好な金属のメツキを施したもの、 あるいは非磁性金属粒子もしくはガラ スビーズなどの無機質粒子またはポリマー粒子を芯粒子とし、 当 I ^粒子の表面に、 ニッ ゲル、 コバルトなどの導電性磁性体のメツキを施したものなどが挙げられる。
これらの中では、 ニッケル粒子を芯粒子とし、 その表面に金や銀などの導電性の良好な 金属のメツキを施したものを用いることが好ましい。
また、導電性粒子 Pの粒径は、得られる導電路形成部 2 1のカロ圧変形を容易にし、 当該 導電路形成部 2 1における導電性粒子 F間に十分な電気的な接触が得られるよう、 3〜2 0 0〃mであることが好ましく、特に 1 0〜 1 0 0〃mであることが好ましい。
また、導電性粒子 Pの含水率は、 5 %以下であることが好ましく、 より好ましくは 3 % 以下、 さらに好ましくは 2 %以下、特に好ましくは 1 %以下である。 このような条件を満 足することにより、第 1の上部側異方導電性シート 0を形成する際に、 当該第 1の異方 導電性シート 2 0に気泡が生ずることが防止または抑制される。
導電路形成部 2 1における導電性粒子 Pの割合は、体積分率で 5〜6 0 %であることが 好ましく、 より好ましくは 7〜 5 0 o/o、特に好ましくは 1 0〜 4 0 %である。 この割合が 5 %未満である場合には、十分に電気抵抗値の小さい導電路を形成することが困難となる ことがある。 一方、 この割合が 6 0 %を超える場合には、得られる導電路形成部 2 1は脆 弱なものとなり、導電路形成部としての i¾な弾性が得られないことがある。
異方導電性エラストマ一層 2 0の基材を構成する絶縁性の弾性高分子物質としては、架 橋構造を有するものが好ましい。 架橋構造を有する高分子物質を得るために用いることの できる高分子物質用材料としては、 種々のものを用いることができ、 その具体例としては 、 ポリブタジエンゴム、天然ゴム、 ポリイソプレンゴム、 スチレン一ブタジエン共重合体 ゴム、 ァクリロ二トリルーブタジエン共重合体ゴムなどの共役ジェン系ゴムおよびこれら の水素添加物、 スチレンーブ夕ジェンブロック共重合体ゴムなどのブロック共重合体ゴム およびこれらの水素添カロ物、 シリコーンゴム、 フッ素ゴム、 シリコーン変 f生フッ素ゴム、 エチレン一プロピレン共重合体ゴム、 ウレタンゴム、 ポリエステル系ゴム、 クロ口" °レン ゴム、 ェピクロルヒドリンゴムなどが挙げられる。
以上において、成形加工性および電気絶縁特性が高いことから、 シリコーンゴム、 シリ コ一ン変†生フッ素ゴムを用いることが好まし 、。
このような第 1の例の電気抵抗測定用コネクタ一装置 2 5によれば、第 1の例の電気抵 抗測定用コネク夕一を有するため、電気抵抗を測定すべき被検査回路謝反との電気的接続 作業において、被検査電極に対する位置ずれの許容度が大きいため、被検査回路基板が大 面積でサイズの小さい多数の一面側被検査電極を有するものであっても、 当該被検査電極 に対する電流供給用電極 1 3および電圧測定用電極 1 4の雨方の電気接続を確実に達成す ることができる。 しかも、電流供給用電極 1 3および電圧測定用電極 1 4は互いに電気的 に絶縁されているので、被検査回路基板 1についての電気抵抗を高い精度で測定すること ができる。
また、電気抵抗測定用コネクター 1 0の表面に、異方導電性エラストマ一層 2 0が一体 的に形成されているため、温度変化による熱履歴などの環境の変ィ匕に対しても良好な電気 的接続を安定に維持することができる。
また、異方導電性エラストマ一層 1 0には、電気抵抗測定用コネク夕一 1 0における電 流供給用電極 1 3および電圧測定用電極 1 4に対応して導電路形成部 2 1が形成されてい るため、電流供給用電極 1 3および電圧測定用電極 1 4の間の絶縁性が確保され、 その 果、被検査回路基板についての電気抵抗を一層高い精度で測定することができる。
第 1の例の電気抵抗測定用コネク夕一装置は、例えば以下のようにして製造することが できる。
図 1 4は、異方導電性エラストマ一層 2 0を得るための金型の一例における構成を示す 説明用断面図である。 この金型は、上型 3 0およびこれと対となる下型 3 5が互いに対向 するよう配置されて構成されている。 上型 3 0においては、強磁性体基板 3 1の表面(図において下面) に、電気抵抗測定用 コネクタ一 1 0における接続用電極組 1 2が形成された領域のパターンと対掌なパターン に従って強磁性体層 3 2が形成され、 この強磁性体層 3 2が形成された領域以外の領域に は、非磁性体層 3 3が形成されている。 非磁性体層 3 3は強磁性体層 3 2の厚みより大き い厚みを有し、強磁'【生体層 3 2と非磁性体層 3 3との間に段差が形成されることにより、 当該 ± 3 0の成形面には、異方導電性エラストマ一層 2 0における突出部 2 3を形成す るための凹所が形成されている。
下型 3 5においては、強磁性体基板 3 6の表面(図において上面) に、電気抵抗測定用 コネクター 1 0における接続用電極組 1 2が形成された領域のパターンと同一のパターン に従って強磁性体層 3 7が形成され、 この強磁性体層 3 7が形成された領域以外の領域に は、 当該強磁性体層 3 7と実質的に同一の厚みを有する非磁性体層 3 8が形成されている 上型 3 0および下型 3 5の各々における強磁性体基板 3 1 , 3 6を構成する材料として は、鉄、鉄一ニッケル合金、鉄一コバルト合金、 ニッケル、 コバルトなどの強磁性体金属 を用いることができる。 この強磁性体基板 3 1, 3 6は、 その厚みが 0 . 1〜 5 0 mmで あることが好ましく、表面が平滑で、ィ匕学的に脱脂処理され、 また、機械的に研磨処理さ れたものであることが好ましい。
また、 JL 3 0および下型 3 5の各々における強磁性体層 3 2 , 3 7を構成する材料と しては、鉄、 鉄—ニッケル合金、鉄一コバルト合金、 ニッケル、 コバルトなどの強磁性体 金属を用いることができる。 この強磁性体層 3 2 , 3 7は、 その厚みが 1 0〃m以上であ ることが好ましい。 この厚みが 1 0〃m未満である場合には、後述するエラストマ一用材 料層に対して、十分な強度分布を有する磁場を作用させることが困難となり、 当該エラス トマ一用材料層における導電路形成部となるべき部分に導電性粒子を高い密度で集合させ ることが困難となり、高い導電性を有する導電路形成部が得られないことがある。
また、 ± 3 0および下型 3 5の各々における非磁性体層 3 3 , 3 8を構成する材料と しては、銅などの非磁性体金属、耐熱性を有する高分子物質などを用いることができるが 、 フォトリソグラフィ一の手法により容易に非磁性体層 3 3, 3 8を形成することができ る点で、 線によって硬化された高分子物質を用いることが好ましく、 その材料として は、例えばァクリル系のドライフィルムレジスト、 エポキシ系の液状レジスト、 ポリイミ ド系の液^!犬レジストなどのフォトレジストを用いることができる。
上記の金型を用い、例えば以下のようにして電気抵抗測定用コネクター装置が製造され る。
先ず、 図 1に示す第 1の例の電気抵抗測定用コネク夕一 1 0を作製すると共に、硬化さ れて弾性高分子物質となる液状の高分子物質形成材料中に、磁性を示す導電性粒子が含有 されてなるエラストマ一用材料を調製する。
次いで、 図 1 5に示すように、電気抵抗測定用コネクター 1 0の表面にエラストマ一用 材料を塗布することにより、所要の厚みのエラストマ一用材料層 2 O Aを形成すると共に 、 このエラストマ一用材料層 2 O Aの表面(図において上面) および電気抵抗測定用コネ クタ一 1 0の裏面に、上記の ± 3 0および下型 3 5を配置する。
そして、上型 3 0の下面および下型 3 5の下面に、 例えば電磁石を配置してこれを作動 させることにより、 エラストマ一用材料層 2 O Aに対し、上型 3 0の強磁性体層 3 2と下 型 3 5の強磁性体層 3 7との間に位置する咅 β分、 すなわち電気抵抗測定用コネクタ一 1 0 の接続用電極組 1 2が形成された領域 (以下、 「接続用電極組領域」 ともいう。 ) の表面 上に位置する部分においてそれ以外の部分より大きい強度の磁場を厚み方向に作用させる 。 その結果、 エラストマ一用材料層 2 O A中に分散されていた導電性粒子 が、 図 1 6に 示すように、接続用電極組領域の表面上に位置する部分に集合すると共に、厚み方向に並 ぶよう配向する。 そして、 この状態で、 エラストマ一用材料層 2 O Aの硬化処理を行うこ とにより、 図 1 7に示すように、電気抵抗測定用コネクター 1 0の表面に、 その接続用電 極袓領域の表面上に位置する部分に磁性を示す導電性粒子が厚み方向に並ぶよう配向した 状態で含有されたエラストマ一層 2 0 Bが形成される。
以上において、 エラストマ一用材料の粘度は、温度 2 5 °Cにおいて 1 0 0 0 0 0〜 1 0 0 0 0 0 0 c の範囲内であることが好ましい。
エラストマ一用材料を塗布する方法としては、特に限定されるものではないが、例えば 、 ロール塗布法、 ブレード塗布法、 スクリーン印刷などの印刷法を利用することができる エラストマ一用材料層 2 O Aに作用される磁場の強度は、平均で 2 0〜2 0 0 O mTと なる大きさが好ましい。
磁場を作用させる手段としては、電磁石の代わりに永久磁石を用いることができる。 こ のような永久磁石としては、上記の範囲の磁場の強度が得られる点で、 アルニコ (F e— A 1 - N i—C o系合金) 、 フヱライ卜などよりなるものが好ましい。
エラストマ一用材料層 2 0 Aの硬ィ匕処理は、磁場を作用させたままの状態で行うことも できるが、磁場の作用を停止した後に行うこともできる。
エラストマ一用材料層 2 O Aの硬化処理の条件は、使用される材料によって適宜選定さ れるが、通常、熱処理によって行われる。 具体的な力 D熱温度および加熱時間は、 エラスト マ一用材料層 2 0 Aの高分子物質形成材料の種類、 導電性粒子の移動に要する時間などを 考慮して適宜選定される。 例えば高分子物質形成材料が室温硬化型シリコーンゴムである 場合には、 当該エラストマ一用材料層の硬化処理は、室温で 2 4時間程度、 4 0 °Cで 2時 間程度、 8 0 °Cで 3 0分間程度で行われる。
このようにして電気抵抗測定用コネクタ一 1 0の表面に形成されたエラストマ一層 2 0 Bに対して、 図 1 8に示すように、導電性粒子 Pが含有された部分において、接続用電極 組 1 2における各電極(電流供給用電極 1 3および電圧測定用電極 1 4 ) の間の領域の表 面上に位置する部分を除去することにより、十字状の穴部 Kを形成する。 次いで、 この穴 部 に、 図 1 9に示すように、硬化されて弾性高分子物質となる液状の高分子物質形成材 料 2 3 Aを充填し、その後、 当該高分子物質形成材料 2 3 Aの硬化処理を行うことにより 、 隣接する導電路形成部 2 1間に絶縁部 2 2が形成された異方導電性エラストマ一層 2 0 が形成され、以て、 図 1 2および図 1 3に示す電気抵抗測定用コネクター装置 2 5が製造 される。
以上において、 エラストマ一層 2 0 Bに穴部 Kを形成する方法としては、炭酸ガスレー ザ一などによるレ一ザ一カロ工法を利用することが好ましい。
穴部 Kに充填される高分子物質形成材料は、前述のエラストマ一用材料に用いられる高 分子物質形成材料と同一の種類のものであっても異なる種類のものであってもよい。 このような方法によれば、電気抵抗測定用コネクター 1 0の接続用電極組領域の表面上 に導電性粒子 Pが含有された部分を有するエラストマ一層 2 0 Bを形成し、 このエラスト マー層 2 0 Bに対して、導電性粒子 Pが含有された部分において電流供給用電極 1 3若し くは電圧測定用電極 1 4の表面上に位置する導電路形成部となるべき部分の間に穴部 Kを 形成したうえで、 当該穴部 Kに絶縁部 2 2を形成するため、 隣接する導電路形成部 2 1間 に所要の終縁性が確保された異方導電性エラストマ一層 1 0を確実に形成することができ る。
図 2 0は、本発明に係る電気抵抗測定用コネクター装置の第 2の例における構成を示す 説明用断面図である。 この電気抵抗測定用コネクタ一装置 2 5は、第 1の例の電気抵抗測 定用コネクタ一 1 0と、 この電気抵抗測定用コネクター 1 0の表面(図において T )上 に一体的に形成された異方導電性エラストマ一層 2 0とにより構成されている。
異方導電性エラストマ一層 2 0は、 図 2 1にも示すように、各接続用電極組 1 2におけ る電流供給用電極 1 3および電圧測定用電極 1 4のパターンに対応するパターンに従って 配置された厚み方向に伸びる複数の導電路形成部 2 1と、 これらの導電路形成部 2 1の間 に介在されてこれらを相互に絶縁する絶縁部 2 2とにより構成されている。 また、 図示の 例では、異方導電性エラストマ一層 2 0には、導電路形成部 2 1の表面が 縁部 2 2の表 面から突出するよう、突出部 2 3が形成されている。
導電路形成部 2 1は、 当該異方導電性エラストマ一層 2 0の基材を構成する弾性高分子 物質中に磁性を示す導電性粒子 Pが厚み方向に並ぶよう配向した状態で密に含有されて構 成されており、 この導電性粒子 Pの連鎖によって導電路が形成される。 これに対して、絶 縁部 2 2は、導電性粒子 Pが全く含有されていないものである。
異方導電性エラストマ一層 2 0の基材を構成する弾性高分子物質および導電路形成部 2 1を構成する導電性粒子としては、前述の第 1の例の電気抵抗測定用コネク夕一装置にお ける異方導電性エラストマ一層 2 0と同様のものを用いることができる。
このような第 2の例の電気抵抗測定用コネクター装置 2 5によれば、第 1の例の電気抵 抗測定用コネク夕一を有するため、電気抵抗を測定すべき被検査回路基板との電気的接続 作業において、被検査電極に対する位置ずれの許容度が大きいため、被検査回路縦反が大 面積でサイズの小さ 、多数の一面側被検査電極を有するものであっても、 当該被検査電極 に対する電流供給用電極 1 3および電圧測定用電極 1 4の両方の電気接続を確実に達成す ることができる。 しかも、電流供給用電極 1 3および電圧測定用電極 1 4は互いに電気的 に絶縁されているので、被検査回路基板 1についての電気抵抗を高い精度で測定すること ができる。
また、電気抵抗測定用コネクター 1 0の表面に、異方導電性エラストマ一層 0がー体 的に形成されているため、温度変ィ匕による熱履歴などの環境の変ィ匕に対しても良好な電気 的接続を安定に維持することができる。 また、異方導電性エラストマ一層 1 0には、電気抵抗測定用コネク夕一 1 0における電 流供給用電極 1 3および電圧測定用電極 1 4に対応して導電路形成部 2 1が形成されてい るため、電流供給用電極 1 3および電圧測定用電極 1 4の間の絶縁性が確保され、 その結 果、被検査回路基板についての電気抵抗を一層高い精度で測定することができる。
第 2の例の電気抵抗測定用コネクター装置は、例えば以下のようにして製造することが できる。
先ず、 図 2 2に示すように、適宜の離型性支持板 2 6を用意し、 この離型性支持板 2 6 の表面に、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配向した状態で含有さ れてなる導電性エラストマ一層 2 1 Aを、 当該離型性支持板 2 6に剥離可能に支持された 状態で形成する。 この導電性エラストマ一層 2 1 Aは、形成すべき導電路形成部の厚みと 同等の厚みを有するものとされる。
以上において、離型性支持板 2 6を構成する材料としては、金属、 セラミックス、樹脂 およびこれらの複合材などを用いることができる。
また、導電性エラストマ一層 2 1 Aを形成する方法としては、 ( 1 )予め適宜の方法に よって製造された、弾性高分子物質中に導電性粒子 Pが厚み方向に並ぶよう配向した状態 で含有されてなる導電性エラストマ一シートを、离煙性支持板 2 6の表面に剥離可能に接 着する方法、 ( 2 )硬化されて弾性高分子物質となる液状の高分子物質形成材料中に磁性 を示す導電性粒子が分散されてなる導電性エラストマ一用材料を調製し、 この導電性エラ ストマー用材料を、离 I f生支持板 1 5上に塗布することによって、導電性エラストマ一用 材料層を形成し、 この導電性エラストマ一用材料層に対してその厚み方向に磁場を作用さ せることにより、導電性エラストマ一用材料層中の導電性粒子 Pを厚み方向に並ぶよう配 向させ、 この状態で、導電性エラストマ一用材料層の硬化処理を行う方法、 などを利用す ることができる。
上記( 1 ) の方法において、導電性エラストマ一シ一トを、離型性支持板 2 6の表面に 剥離可能に接着する手段としては、導電性エラストマーシート自体が有する粘着性を利用 して接着する方法、粘着剤によつて接着する方法などを用いることができる。
上記(2 ) の方法において、導電性エラストマ一用材料を塗布する具体的な手段として は、 スクリーン印刷などの印刷法、 ロール塗布法、 ブレード塗布法などを利用することが できる。 導電性エラストマ一用材料層に磁場を作用させる手段としては、電磁石、永久磁石など を用いることができる。
導電性エラストマ一用材料層に作用させる磁場の強度は、 0 . 1〜1 . 5テスラとなる 大きさが好ましい。
導電性エラストマ一用材料層の硬化処理は、通常、カロ熱処理によって行われる。 具体的 な力 D熱温度および加熱時間は、導電性エラストマ一用材料層を構成する高分子物質形成材 料の @®、導電性粒子の移動に要する時間などを考慮して適宜設定される。
このようにして離型性支持板 2 6上に形成された導電性エラストマ一層 2 1 Aの表面に 、 図 2 3に示すように、 メツキ電極用の金属薄層 2 7を形成する。 次いで、 図 2 4に示す ように、 この金属薄層 2 7上に、 フォトリソグラフィ一の手法により、形成すべき導電路 形成部のパターン、 すなわち電気抵抗測定用コネク夕一における電流供給用電極および電 圧測定用電極に対応するパターンに従って複数の開口 2 8 aが形成されたレジスト層 2 8 を形成する。 その後、 図 2 5に示すように、金属薄層 2 7をメツキ電極として、 当該金属 薄層 2 7におけるレジスト層 2 8の開口 2 8 aを介して露出した部分に、電解メツキ処理 を施すことにより、当該レジスト層 2 8の開口 2 8 a内に金属マスク 2 9を形成する。 そ して、 この状態で、導電性エラストマ一層 2 1 A、金属薄層 2 7およびレジスト層 2 8に 対してレーザ一カロ工を施すことにより、 レジスト層 2 8、金属薄層 2 7および導電性エラ ストマー層 2 1 Aの^ ¾が除去され、 その結果、 図 2 6に示すように、電気抵抗測定用コ ネクタ一における電流供給用電極および電圧測定用電極に対応するパターンに従って配置 された複数の導電路形成部 2 1が离醒性支持板 2 6上に支持された状態で形成される。 そ の後、導電路形成部 2 1の表面から残存する金属薄層 2 7および金属マスク 2 9を剥離す る。
以上において、導電性エラストマ一層 2 1 Aの表面に金属薄層 2 7を形成する方法とし ては、無電解メツキ法、 スパッタ法などを利用することができる。
金属薄層 2 7を構成する材料としては、銅、金、 アルミニウム、 ロジウムなどを用いる ことができる。
金属薄層 2 7の厚みは、 0 . 0 5〜2 であることが好ましく、 より好ましくは 0 . 1〜 1〃mである。 この厚みが過小である場合には、均一な薄層が形成されず、 メツキ電 極として不適なものとなることがある。 一方、 この厚みが過大である: には、 レーザ一 加工によつて除去することが困難となることがある。
レジスト層 2 8の厚みは、形成すべき金属マスク 2 9の厚みに応じて設定される。 金属マスク 2 9を構成する材料としては、銅、 鉄、 アルミゥニム、金、 ロジウムなどを 用いることができる。
金属マスク 1 9の厚みは、 2 m以上であることが好ましく、 より好ましくは 5〜 2 0 mである。 この厚みが過小である場合には、 レ一ザ一に対するマスクとして不適なもの となることがある。
レーザー力 0ェは、炭酸ガスレーザ一によるものが好ましく、 これにより、 目的とする形 態の導電路形成部 2 1を確実に形成することができる。
一方、 図 2 7に示すように、電気抵抗測定用コネク夕一 1 0の表面に、硬化されて絶縁 性の弾性高分子物質となる液状の高分子物質形成材料を塗布することにより、絶縁部用材 料層 2 2 Aを形成する。 次いで、 図 2 8に示すように、複数の導電路形成部 2 1が形成さ れた离醒性支持板 2 6を、絶縁部用材料層 2 2 Aが形成された離型性支持板 2 6上に重ね 合わせることにより、当該電気抵抗測定用コネクタ一 1 0における電流供給用電極 1 3お よび電圧測定用電極 1 4の各々とこれに対応する導電路形成部 2 1とを対接させる。 これ により、 隣接する導電路形成部 2 1の間に絶縁部用材料層 2 2 Aが形成された状態となる 。 その後、 この状態で、絶縁部用材料層 2 2 Aの硬化処理を行うことにより、 図 2 9に示 すように、 隣接する導電路形成部 2 1の間にこれらを相互に絶縁する 緣部 1 2が、導電 路形成部 1 1および電気抵抗測定用コネクタ一 1 0に一体的に形成される。
そして、離型性支持板 2 6から离醒させることにより、電気抵抗測定用コネクタ一 1 0 の表面に異方導電性エラストマ一層 2 0がー体的に形成されてなる、 図 2 0に示す構成の アダプター装置が得られる。
以上において、高分子物質形成材料を塗布する手段としては、 スクリーン印刷などの印 刷法、 ロール塗布法、 ブレード塗布法などを利用することができる。
絶縁部用材料層 2 2 Aの厚みは、形成すべき絶縁部 2 2の厚みに応じて設定される。 絶縁部用材料層 2 2 Aの硬化処理は、通常、加熱処理によって行われる。 具体的な加熱 温度および加熱時間は、 絶縁部用材料層 2 2 Aを構成するエラストマ一材料の種類などを 考慮して 設定される。
このような製造方法によれば、 導電性粒子 Pが厚み方向に並ぶよう配向した状態で分散 されてなる導電性エラストマ一層 2 1 Aをレーザー加工してその ~¾を除去することによ り、 目的とする形態の導電路形成部 2 1を形成するため、所要の量の導電性粒子 Pが充填 された所期の導電性を有する導電路形成部 2 1が形成された異方導電性エラストマ一 2 0 を確実に得ることができる。
また、离涯性支持板 2 6上に電流供給用電極 1 3および電圧測定用電極 1 4のパターン に従って配置された複数の導電路形成部 2 1を形成したうえで、 これらの導電路形成部 2 1の間に 縁部用材料層 2 2 Aを形成して硬化処理することによって、絶縁部 2 2を形成 するため、導電性粒子 Pが全く存在しない絶縁部 2 2が形成された異方導電性エラストマ —層 0を確実に得ることができる。
しかも、異方導電性エラストマ一層を形成するために、多数の強磁性体部が配列されて なる高価な金型を用いることが不要となる。
また、 レ一ザ一加工による導電路形成部 2 1の形成工程は、離型性支持板 2 6上におい て ί亍われるため、異方導電性エラストマ一層 2 0の形成において、電気抵抗測定用コネク ター 1 0の表面に損傷を与えることがなレ、。
本発明の電気抵抗測定用コネクター装置は、上記の例に限定されず、種々の変更を加え ることが可能である。
例えば、 図 3 0に示すように、電気抵抗測定用コネクタ一 1 0は、 図 6および図 7に示 す第 2の例のものであってもよく、 また、 図 9および図 1 0に示す第 3の例のものまたは 図 1 1に示す第 4の例のもの、或いは、 その他の本発明に係る電気抵抗測定用コネクター であってもよい。
また、異方導電性エラストマ一層 2 0は、導電路形成部が接続用電極組における全ての 電極を覆うよう形成されてなるものであってもよく、弾性高分子物質中に、導電性粒子が 、厚み方向に並ぶよう配向し、かつ、 当該導電性粒子の連鎖が面方向に分散した状態で含 有されてなる、 いわゆる分散型のものであってもよい。
<回路基板の電気抵抗測定装置〉
図 3 1は、本発明に係る回路基板の電気抵抗測定装置の第 1の例における構成を示す説 明図であり、 図 3 2は、 図 3 1に示す回路基板の電気抵抗測定装置の要部を拡大して示す 説明図である。
この第 1の例の回路基板の電気抵抗測定装置は、電気抵抗を測定すべき被検査回路 ¾ί反 1の一面 (図 3 1において上面)側に配置される上部側アダプター 4 0と、被検査回路基 板 1の他面(図 3 1において T ) 側に配置される下部側アダプター 5 0とが、上下に互 レヽに対向するよう配置されて構成されている。
上部側アダプター 4 0においては、被検査回路 反 1の一面側 (図 3 1において上側) に配置される、例えば図 1 2に示す構成の電気抵抗測定用コネクター装置 2 5が設けられ 、 この電気抵抗測定用コネクタ一装置 2 5における電気抵抗測定用コネクター 1 0の裏面
(図 3 1において上面) には、第 1の上部側異方導電性シート 4 4を介して一面側検査用 回路基板 4 1が配置されている。 この一面側検査用回路基板 4 1の表面(図 3 1において T ) には、電気抵抗測定用コネクタ一装置 2 5における中継電極 1 5のパ夕一ンに対応 するパターンに従って、ネ鐵の検査電極 4 2が配置され、 当該一面側検査用回路基板 4 1 の裏面(図 3 1において上面) には、後述する電極板 4 8の標準配列電極 4 9の配列バタ ーンに対応するパターンに従って端子電極 4 3が配置されおり、 この端子電極 4 3の各々 は対応する検査電極 4 2に、電気的に接続されている。
一面側検査用回路基板 4 1の裏面上には、 第 2の上部側異方導電性シート 4 5を介して 電極板 4 8が設けられている。 この電極板 4 8は、 その表面(図 3 1において下面) に、 例えばピッチが 2 . 5 4 mm. 1 . 8 mmまたはし 2 7 mmの標準格子点 Jiに配置され た複数の標準配列電極 4 9を有し、 これらの標準配列電極 4 9の各々は、第 2の上部側異 方導電性シート 4 5を介して一面側検査用回路基板 4 1の端子電極 4 3に電気的に接続さ れると共に、電極板 4 8の内部配線 (図示せず) を介してテスター 5 9に電気的に接続さ れている。
この例における第 1の上部側異方導電性シート 4 4は、 いわゆる偏在型異方導電性シー 卜であって、電気抵抗測定用コネクター 1 0の中継電極 1 5のパターンに対応するパター ンに従って配置された厚み方向に伸びる複数の導電路形成部 (図示省略) と、 これらの導 電路形成部の間に介在されてこれらを相互に絶縁する紙縁部 (図示省略) とにより構成さ れ、導電路形成部は、絶縁性の弾性高分子物質中に導電性粒子が厚み方向に並ぶよう配向 した状態で含有されてなり、糸縁部は、導電性粒子が全くあるいは殆ど含有されていない 縁性の弾性高分子物質よりなる。
また、第 2の上部側異方導電性シート 4 5は、 いわゆる分醒の異方導電性シートであ つて、弾性高分子物質中に、導電性粒子が厚み方向に並ぶよう配向して連鎖を形成した状 態で、かつ、当該導電性粒子による連鎖が面方向に分散した状態で含有されてなる。 これらの第 1の上部側異方導電性シート 4 4および第 2の上部側異方導電性シート 4 5 を構成する弾性高分子物質および導電'性粒子としては、電気抵抗測定用コネクタ一装置 5における異方導電性エラストマ一層 1 0を構成する弾性高分子物質および導電性粒子と して例示したものの中から、 谪官選択して用いることができる。
下部側アダプター 5 0においては、他面側検査用回路基板 5 1が設けられ、 この他面側 検査用回路基板 5 1の表面(図 3 1において上面) には、被検査回路基板 1の他面側被検 査電極 3の配置ノ、。ターンに対応するパターンに従って、 1つの他面側被検査電極 3に対し て、互いに離間して配置された電流供給用検査電極 5 2 aおよび電圧測定用検査電極 5 2 bよりなる検査電極対が、他面側被検査電極 3が占有する領域と同等の面積の領域内に位 置するよう配置されている。 他面側検査用回路基板 5 1の裏面には、後述する電極板 6 0 の標準配列電極 6 1の配列パターンに対応するパターンに従って電流供給用端子電極 5 3 aおよぴ電圧測定用端子電極 5 3 bが配置されており、 これらの電流供給用端子電極 5 3 aおよび電圧測定用端子電極 5 3 bの各々は、対応する電流供給用検査電極 5 2 aおよび 電圧測定用検査電極 5 2 bに電気的に接続されている。
他面側検査用回路基板 5 1の表面上には、異方導電性エラストマ一層 5 5がー体的に形 成されている。 この異方導電性エラストマ一層 5 5には、検査電極対の各々を構成する電 流供給用検査電極 5 2 aおよび電圧測定用検査電極 5 2 bの両方の表面(図 3 1において 上面) に接する共通の導電路形成部 5 6が形成され、 隣接する導電路形成部 5 6の間には 、 これらを相互に絶縁する絶縁部 5 7が形成されている。 導電路形成部 5 6は、絶縁性の 弾性高分子物質中に導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなり、絶 縁部 5 7は、導電性粒子が全くあるいは殆ど含有されていない絶縁性の弾性高分子物質よ りなる。 また、 この例の異方導電性エラストマ一層 5 5においては、導電路形成部 5 6の 表面(図 3 1において上面) が絶縁部 5 7の表面から突出した状態で形成されている。 他面側検査用回路謝反 5 1の裏面(図 3 1において T®) には、下部側異方導電'性シー ト 6 2を介して電極板 6 0が設けられている。
電極板 6 0および下咅側異方導電'性シート 6 2は、上部側アダプタ一 4 0における電極 板 4 8および第 2の上部側異方導電性シート 4 5に対応するものであり、電極板 6 0は、 その表面 (図 3 1において上面) に、例えばピッチが 2 . 5 4 mm、 1 . 8 mmまたは 1 . 2 7 mmの標準格子点上に配置されたネ鐵の標準配列電極 6 1を有し、 これらの標準配 列電極 6 1の各々は、下部側異方導電性シート 6 2を介して他面側検査用回路基板 5 1の 電流供給用端子電極 5 3 aまたは電圧測定用端子電極 5 3 bに電気的に接続されると共に 、電極板 6 0の内部配線(図示せず) を介してテスター 5 9に電気的に接続されている。 下部側異方導電性シート 6 2は、 いわゆる分觀の異方導電性シートであって、 弾性高分 子物質中に、導電性粒子が厚み方向に並ぶよう配向して連鎖を形成した状態で、 かつ、 当 該導電 1"生粒子による連鎖が面方向に分散した状態で含有されてなる。
異方導電性エラストマ一層 5 5における導電路形成部 5 6は、 その厚み方向における導 電性が、厚み方向と直角な面方向における導電性より高いことが好ましく、具体的には、 面方向の電気抵抗値に対する厚み方向の電気抵抗値の比が 1以下、特に 0 . 5以下である ような電気的特性を有するものであることが好ましい。
この比が 1を超える場合には、導電路形成部 5 6を介して電流供給用検査電極 5 2 aと 電圧測定用検査電極 5 2 bとの間に流れる電流が大きくなるため、高い精度で電気抵抗を 測定することが困難となることがある。
このような観点から、導電路形成部 5 6における導電性粒子の充填率が 5〜 5 0体積0 /0 であることが好ましい。
このような異方導電性エラス卜マー層 5 5は、直直の方法例えば特開 2 0 0 0 - 7 4 9 6 5号公報に記載された方法によつて形成することができる。
また、異方導電性エラス卜マー層 5 5および下部側異方導電性シ一ト 6 2を構成する弾 性高分子物質および導電性粒子としては、電気抵抗測定用コネクタ一装置 2 5における異 方導電性エラストマ一層 2 0を構成する弾性高分子物質および導電性粒子として例示した ものの中から、適宜選択して用いることができる。
他面側検査用回路基板 5 1における電流供給用検査電極 5 2 aと電圧測定用検査電極 5 2 bとの間の離間距離は 1 0 / m以上であることが好ましい。 この離間距離が 1 0〃m未 満である場合には、導電路形成部 5 6を介して電流供給用検査電極 5 2 aと電圧測定用検 査電極 5 2 bとの間に流れる電流が大きくなるため、高い精度で電気抵抗を測定すること が困難となることがある。
一方、 この離間距離の上限は、各検査電極のサイズと、 関連する他面側被検査電極 3の 寸法およびピッチによって定まり、通常は 5 0 0 m以下である。 この離間距離が過大で ある場合には、他面側被検査電極 3の 1つに対して両検査電極を適切に配置することが困 難となることがある。
以上のような回路基板の電気抵抗測定装置においては、次のようにして被検査回路基板 1における任意の一面側被検査電極 2とこれに対応する他面側被検査電極 3との間の電気 抵抗が測定される。
被検査回路基板 1を、上部側アダプタ一 4 0および下部側アダプター 5 0の間における 所要の位置に配置し、 この状態で、上部側アダプター 4 0を下降させると共に、下部側ァ ダブ夕一 5 0を上昇させることにより、被検査回路基板 1の一面に、電気抵抗測定用コネ クタ一装置 2 5における異方導電性エラストマ一層 2 0が圧接されると共に、被検査回路 基板 1の他面に、他面側検査用回路基板 5 1の表面上に形成された異方導電性エラストマ —層 5 5が圧接された状態となる。 この状態が測定状態である。
この測定状態において、電気抵抗測定用コネク夕一 1 0における電流供給用電極 1 2と 他面側検査用回路基板 5 1における電流供給用検査電極 5 2 aとの間に一定の値の電流を 供給すると共に、一面側被検査電極 2に電気的に接続された電圧測定用電極 1 4のうち 1 つの電圧測定用電極 1 4を指定し、 当該指定された 1つの電圧測定用電極 1 4と、 当該電 圧測定用電極 1 4に電気的に接続された一面側被検査電極 2に対応する他面側被検査電極 3に電気的に接続された検査電極対における電圧測定用検査電極 5 bとの間の電圧を測 定し、得られた電圧値に基づいて、 当該指定された電圧測定用電極 1 4に電気的に接続さ れた一面側被検査電極 2とこれに対応する他面側被検査電極 3との間の電気抵抗値が取得 される。
そして、指定する電圧測定用電極 1 4を順次変更することにより、 全ての一面側被検査 電極 2とこれに対応する他面側被検査電極 3との間の電気抵抗の測定を行うことができる 以上において、被検査回路基板 1における 1つの一面側被検査電極 2に、電気抵抗測定 用コネクター 1 0の接続用電 @且 1 2における 2つの電圧測定用電極 1 4が電気的に接続 された場合には、 図 3 3に示すように、 当該一面側被検査電極 2とこれに対応する他面側 被検査電極 3との間には、 2つの電圧測定用回路 C 1 , C 2が形成されることになる。 こ のような場合には、電圧測定用回路 C 1による電気抵抗値および電圧測定用回路 C によ る電圧値のうちその値が高いものが採用され、 当該電圧値に基づいて一面側被検査電極 2 とこれに対応する他面側被検査電極3との間の電気抵抗値が取得される。
以上のような構成の回路基板の電気抵抗測錢置によれば、 その上部側アダプター 4 0 に図 1および図 2に示す構成の電気抵抗測定用コネク夕一 1 0が設けられていることによ り、被検査回路基板 1との電気的接続作業において、一面側被検査電極 2に対する位置ず れの許容度が大きいため、被検査回路基板 1が大面積でサイズの小さい多数の一面側被検 查電極 2を有するものであつても、 当該一面側被検査電極 2に対する電流供給用電極 1 3 および電圧測定用電極 1 4の両方の電気接続を確実に達成することができる。 しかも、電 流供給用電極 1 3および電圧測定用電極 1 4は互いに電気的に絶縁されているので、被検 査回路基板 1についての電気抵抗を高い精度で測定することができる。
図 3 4は、本発明に係る回路基板の電気抵抗測定装置の第 2の例における構成を示す説 明図であり、 図 3 5は、 図 3 4に示す回路基板の電気抵抗測定装置の要部を拡大して示す 説明図である。
この第 1の例の回路基板の電気抵抗測定装置は、電気抵抗を測定すべき被検査回路基板
1の一面(図 3 4において上面)側に配置される上部側アダプタ一 4 0と、被検査回路基 板 1の他面(図 3 4において下面) 側に配置される下部側アダプター 5 0とが、上下に互 いに対向するよう配置されて構成されており、上部側アダプタ一 4 0は、 第 1の例の電気 抵抗測定装置における上部側ァダブ夕一と同様の構成である。
下部側アダプター 5 0においては、被検査回路基板 1の他面側 (図 3 4において下側) に配置される、例えば図 1 2に示す構成の電気抵抗測定用コネクター装置 2 5が設けられ 、 この電気抵抗測定用コネクタ一装置 2 5における電気抵抗孭 I淀用コネクタ一 1 0の裏面
(図 3 4において下面) には、第 1の下部側異方導電性シート 6 を介して他面側検査用 回路基板 5 1が配置されており、 この他面側検査用回路基板 5 1の裏面上には、 第 2の下 部側異方導電性シート 6 5を介して電極板 6 0が設けられている。 この電極板 6 0は、第
1の例の電気抵抗測^ ¾置の下部側アダプターにおける電極板と同様の構成である。 他面側検査用回路謝反 5 1の表面(図 3 4において上面) には、電気抵抗測定用コネク 夕一装置 2 5における中継電極 1 5のパターンに対応するノ、"ターンに従つて、複数の検査 電極 5 2が配置され、 当該他面側検査用回路基板 5 1の裏面(図 3 4において下面) には 、電極板 6 0の標準配列電極 6 1の配列パターンに対応するパターンに従って端子電極 5
3が配置されおり、 この端子電極 5 3の各々は対応する検査電極 5 2に、電気的に接続さ れている。
この伊 こおける第 1の下部側異方導電性シート 6 4は、 いわゆる偏在型異方導電性シー 卜であつて、 電気抵抗測定用コネクター 1 0の中継電極 1 5のパターンに対応するパ夕一 ンに従って配置された厚み方向に伸びる複数の導電路形成部 (図示省略) と、 これらの導 電路形成部の間に介在されてこれらを相互に絶縁する 緣部(図示省略) とにより構成さ れ、導電路形成部は、絶縁性の弾性高分子物質中に導電性粒子が厚み方向に並ぶよう配向 した状態で含有されてなり、絶縁部は、導電性粒子が全くあるいは殆ど含有されていない 糸 生の弾'性高分子物質よりなる。
また、第 2の下部側異方導電性シート 6 5は、 いわゆる分 ¾ の異方導電性シートであ つて、弾性高分子物質中に、導電性粒子が厚み方向に並ぶよう配向して連鎖を形成した状 態で、 かつ、 当該導電性粒子による連鎖が面方向に分散した状態で含有されてなる。 これらの第 1の下部側異方導電性シート 6 4および第 2の下部側異方導電性シ一ト 6 5 を構成する弾性高分子物質および導電性粒子としては、電気抵抗測定用コネクタ一装置 2 5における異方導電性エラストマ一層 2 0を構成する弾性高分子物質および導電性粒子と して例示したものの中から、 ¾ 選択して用いることができる。
以上のような回路基板の電気抵抗測定装置においては、次のようにして被検査回路基板 1における任意の一面側被検査電極 2とこれに対応する他面側被検査電極 3との間の電気 抵抗が測定される。
被検査回路基板 1を、上部側アダプター 4 0および下部側アダプタ一 5 0の間における 所要の位置に配置し、 この状態で、上部側アダプター 4 0を下降させると共に、下部側ァ ダブ夕一 5 0を上昇させることにより、被検査回路基板 1の一面に、上部側アダプタ一 4 0の電気抵抗測定用コネクタ一装置 2 5における異方導電性エラストマ一層 2 0が圧接さ れると共に、被検査回路基板 1の他面に、下部側アダプター 5 0の電気抵抗測定用コネク 夕一装置 2 5における異方導電性エラストマ一層 2 0が圧接された状態となる。 この状態 が測定状態である。
この測定状態において、上部側アダプタ一 4 0の電気抵抗測定用コネクター 1 0におけ る電流供給用電極 1 2と下部側アダプター 5 0の電気抵抗測定用コネクター 1 0における 電流供給用電極 1 2との間に一定の値の電流を供給すると共に、 一面側被検査電極に電気 的に接続された電圧測定用電極 1 4のうち 1つの電圧測定用電極 1 4を指定し、 当該指定 された 1つの電圧測定用電極 1 4と、当該電圧測定用電極 1 4に電気的に接続された一面 側被検査電極 2に対応する他面側被検査電極 3に電気的に接続された電圧測定用電極 1 4 との間の電圧を測定し、得られた電圧値に基づいて、 当該指定された電圧測定用電極 1 4 に電気的に接続された一面側被検査電極2とこれに対応する他面側被検査電極3との間の 電気抵抗値が取得される。
そして、 指定する電圧測定用電極 1 4を順次変更することにより、 全ての一面側被検査 電極 2とこれに対応する他面側被検査電極 3との間の電気抵抗の測定を行うことができる 以上において、被検査回路基板 1における 1つの一面側被検査電極 2に、電気抵抗測定 用コネクタ一 1 0の接続用電極袓 1 2における 2つの電圧測定用電極 1 4が電気的に接続 され、 当! ¾皮検査回路基板 1における 1つの他面側被検査電極 3に、電気抵抗測定用コネ クタ一 1 0の接続用電極組 1 2における 2つの電圧測定用電極 1 4が電気的に接続された 場合には、 図 3 6に示すように、 当該一面側被検査電極 2とこれに対応する他面側被検査 電極 3との間には、 4つの電圧測定用回路 C 1, C 2 , C 3 , C 4が形成されることにな る。 このような場合には、電圧測定用回路 C K電圧測定用回路 C 2、電圧測定用回路 C 3および電圧測定用回路 C 4の各々による電圧値のうちその値が最も高いものが採用され 、当該電圧値に基づいて、一面側被検査電極 2とこれに対応する他面側被検査電極 3との 間の電気抵抗値が取得される。
以上のような構成の回路基板の電気抵抗測定装置によれば、 その上部側アダプタ一 4 0 および下部側アダプター 5 0の各々に図 1および図 2に示す構成の電気抵抗測定用コネク 夕一 1◦が設けられていることにより、被検査回路基板 1との電気的接続作業において、 一面側被検査電極 2および他面側被検査電極 3に対する位置ずれの許容度が大きいため、 被検査回路基板 1が大面積でサイズの小さい多数の一面側被検査電極 2および他面側被検 査電極 3を有するものであっても、 当該一面側被検査電極 2および他面側被検査電極 3の 各々に対する電流供給用電極 1 3および電圧測定用電極 1 4の両方の電気接続を確実に達 成することができる。 しかも、電流供給用電極 1 3および電圧測定用電極 1 4は互いに電 気的に絶縁されているので、被検査回路基板 1についての電気抵抗を高い精度で測定する ことができる。
本発明の回路装置の電気抵抗測定装置は、上記の例に限定されず、以下のような種々の 変更を加えることが可能である。
例えば、 第 1の例において、下部側アダプター 5 0の他面側検査用回路基板 5 1は、 1 つの他面側被検査電極 3に対して、検査電極対を構成する電流供給用検査電極 5 2および 電圧測定用検査電極 5 3が電気的に接続された状態を達成することのできるものであれば 、 種々のものを用いることができる。
また、異方導電性エラストマ一層 5 5としては、電流供給用検査電極 5 2および電圧測 定用検査電極 5 3の各々に対応して導電路形成部が形成されてなるものを用いることがで きる。
また、個々の先端に導電性エラストマ一が設けられた検査電極や、更に、許容される場 合にはプローブピンを検査電極として用いることも可能である。
また、被検査回路基板が片面プリント回路基板である場合には、下部側アダプターを設 けることは不要である。
以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるもの ではない。
また、以下の実施例において、被検査回路基板として、下記の仕様の片面プリント回路 基板を使用した。
縦横の寸法が 3 c mx 3 c mで、一面に直径 1 0 0 mの被検査電極の 6 0 0個が 0 . 2 mmのピッチで配置されてなる電極群が合計で 4つ形成されてなり (被検査電極の合計 の数が 2 4 0 0個) 、各電極群における 6 0 0個の被検査電極のうち 2個ずつが内部配線 を介して互いに電気的に接続されて回路が形成された (各電極群における回路数が 3 0 0 個, 全体の回路数が 1 2 0 0個) 片面プリント回路基板。
〈実施例 1 >
〔電気抵抗測定用コネクター〕
図 1および図 2に示す構成に従い、下記の仕様により、 電気抵抗測定用コネクターを作 製した。
絶縁隨反 ( 1 1 ) :
材質;ガラス繊維補強型ェポシキ樹脂, 絶縁性基板 ( 1 1 ) の寸法; 1 0 O mm X 1 0 0 mm X 0 . 5 mm,
接続用電極組 ( 1 ) : 電流供給用電極 ( 1 3) および電圧測定用電極 (1 4) の^去; 5 0 mx 5 0 , 電流供給用電極 ( 1 3) および電圧測定用電極( 1 4) の間の離間距離; 30〃m, 接続 用電 il且 ( 1 2 ) のピッチ; 20 0〃m, 接続用電極 '組( 1 2 ) の数; 600 ,
中継電極 ( 1 5) :
中継電極 ( 1 5) の寸法;直径 1 20〃m (円形) , 中継電極( 1 5 ) のピッチ; 3 5 0 nm, 中継電極 ( 1 5) の数; 1 200
〔電気抵抗測定用コネクタ一装置〕
上記の電気抵抗測定用コネクタ一の表面に、以下のようにして異方導電性エラストマ一 層を形成して電気抵抗測定用コネクタ一装置を作製した。
( 1 )金型:
図 14に示す構成に従レヽ、下記の仕様により、異方導電性エラストマ一層を得るための 金型を作製した。
すなわち、 ± ( 30 ) および下型 (3 5) の各々において、強磁性体基板 (3 1 , 3 6) の材質は鉄であり、 その厚みは 1 Ommである。 強磁性体層 ( 32, 37 ) の材質は ニッケルであり、 その平面形状は円形で、その寸法は直径が 300〃m、厚みが 1 0 0 mである。 上型 (30) の非磁性体層 (33) の材質はドライフィルムレジストを硬化処 理したものであり、 その厚みは 1 50〃mである。 下型(3 5) の非磁性体層 (38) の 材質はドライフィルムレジストを硬化処理したものであり、 その厚みは 1 00 mである
(2) エラストマ一用材料:
付加型液状シリコーンゴム 1 00重量部に、平均粒子径が 1 0 mの導電性粒子 1 5重 量部を添加して混合し、 その後、減圧による脱泡処理を施すことにより、 エラストマ一用 材料を調製した。 以上において、導電性粒子としては、 ニッケルよりなる芯粒子に金メッ キが施されてなるもの (平均被覆量:芯粒子の重量の 4重量%) を用いた。 また、 エラス トマ一用材料の粘度は、温度 25 °Cにおいて 4800 Fであった。
( 3 )異方導電性エラストマ一層:
上記の電気抵抗測定用コネクター(1 0) の表面に、調製したエラストマ一用材料をス クリーン印刷法によって塗布することにより、エラストマ一用材料層 (2 OA) を形成し 、 このエラストマ一用材料層 (2 OA) の表面および電気抵抗測定用コネクタ一 1 0の裏 面に、上記の ± (30)および下型 (35) を配置した。 そして、 ± ( 30 ) の および下型 (35) の下面に、電磁石を配置してこれを作動させることにより、 エラスト マ一用材料層 (2 OA) に対し、 ± ( 30 )の強磁性体層 (32) と下型 ( 35 ) の強 磁性体層 (37) との間に位置する部分に、 その厚み方向に 2 Tの磁場を作用させながら 、 125°C、 2時間の条件で、エラストマ一用材料層 (2 OA) の硬化処理を行うことに より、電気抵抗測定用コネクター (10)の表面に、 その接続用電極組領域の表面上に位 置する部分に磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で含有されたエラ ストマー層 (20B) を形成した。
得られたエラストマ一層 (20 B) に対して、炭酸ガスレ一ザ一によるレーザー^]ェを 施すことにより、導電性粒子が含有された部分において、接続用電極組 (12) における 各電極の間の領域の表面上に位置する部分を除去することにより、十字状の穴部 (K) を 形成した。 次いで、 この穴部 (K) に、 付加型液状シリコーンゴムを充填し、 125°C、 2時間の条件で、 当該付加型液状シリコ一ンゴムの硬化処理を行うことにより、異方導電 性エラストマ一層 (20) を形成し、以て、電気抵抗測定用コネクタ一装置 (25) を製 した。
( 4 ) 回路装置の電気抵抗測定装置:
上記の電気抵抗測定用コネクタ一装置を用い、 図 31に示す上部側アダプタ一と、 テス ターとからなる電気抵抗測定装置を作製した。
ぐ比較例 1 >
特開 2000— 74965号公報に開示されている構成に従い、被検査電極に対応して 電流供給用電極および電圧測定用電極が表面に形成された検査用回路基板と、 この検査用 回路基板の表面に設けられた導電性エラストマ一よりなる接続部材および保持部材と有す る電気抵抗測定装置を作製した。
上記の検査用回路基板における電流供給用電極および電圧測定用電極の縦横の寸法は、 それぞれ 120 mx 40〃mで、電流供給用電極および電圧測定用電極の離間距離は 4 0 で、接 ΐ^材の厚みは 0. 06 mmで、接続部材を構成する弾性高分子物質として シリコーンゴムを用いると共に、導電性粒子として、金メッキされた平均粒径 10〃mの ニッケル粒子を用いた。 前述の仕様の被検査回路基板を合計で 2 0 0枚用意し、 これらの被検査回路基板におけ る各回路の電気抵抗の測定を、実施例 1および比較例 1に係る電気抵抗測定装置によって 行い、 回路の電気抵抗の測定値が 1 Ω以上である を、接続不良と判断し、 その数を測
¾1し/こ。
その結果、実施例 1に係る電気抵抗測定装置においては、 1 0 0個の回路基板 ( 1 2 0 0回路 X 1 0 0 ) 中、電気抵抗の測定値が 1 Ω以上である回路を有する回路基板の数は 0 個であり、比較例 1に係る電気抵抗装置においては、 1 0 0個の回路基板( 1 2 0 0回路 X 1 0 0 ) 中、電気抵抗の測定値が 1 Ω以上である回路を有する回路基板の数は 2 5個で あつに。

Claims

請 求 の 範 囲
1 . 絶縁性基板と、 この絶縁性基板の表面に電気抵抗を測定すべき被検査回路基板におけ る複数の被検査電極のノ、。ターンに対応するパターンに従つて配置された複数の接続用電極 組とを具えてなり、
前記接続用電極組の各々は、電流供給用電極および電圧測定用電極のいずれかの電極の
3つ以上が互いに離間して配置されてなり、 これらの電極のうち、少なくとも 1つは電流 供給用電極であり、少なくとも 1つが電圧測定用電極であることを特徴とする電気抵抗測 定用コネクタ一。
2 . 絶縁性基板と、 この絶椽性基板の表面に電気抵抗を測定すべき被検査回路基板におけ る複数の被検査電極のパタ―ンに対応するパ夕―ンに従つて配置された複数の接続用電極 組とを具えてなり、
編己接続用電極組は、矩形における互いに対角する頂 ϋ置に位置する 2つの電流供給 用電極および当該矩形における互いに対角する他の頂点位置に位置する 1つの電圧測定用 電極が、互いに離間して配置されてなることを特徴とする電気抵抗測定用コネク夕一。
3 . 絶縁性基板と、 この紙縁性基板の表面に電気抵抗を測定すべき被検査回路基板におけ る複数の被検査電極のノ、。ターンに対応する 、"ターンに従つて配置された複数の接続用電極 組とを具えてなり、
編己接続用電極組の各々は、電圧測定用電極、電流供給用電極および電圧測定用電極の 3つの電極がこの順で並ぶよう互いに離間して配置されてなることを特徴とする電気抵抗 測定用コネクター。
4 . 絶縁性基板と、 この絶縁性基板の表面に電気抵抗を測定すべき被検査回路基板におけ る複数の被検査電極の、。夕一ンに対応するパターンに従つて配置された複数の接続用電極 組とを具えてなり、
前記接続用電極組の各々は、電流供給用電極、電圧測定用電極および電流供給用電極の 3つの電極がこの順で並ぶよう互いに離間して配置されてなることを特徴とする電気抵抗 測定用コネクター。
5 . 接続用電極袓における電流供給用電極および電圧測定用電極の各々は、 これらの電極 が並ぶ方向に対して垂直な方向に長尺な形状を有することを特徴とする請求の範囲第 3項 または第 4項に記載の電気抵抗測定用コネクタ一。
6 . 縁性基板の裏面に、電流供給用電極および電圧測定用電極のいずれか一方に電気的 に接続された複数の中継電極が配置されていることを特徴とする請求の範囲第 1項乃至第 5項のいずれかに記載の電気抵抗測定用コネクター。
7 . 複数の電流供給用電極に電気的に接続された中継電極を有することを特徴とする請求 の範囲第 6項に記載の電気抵抗測定用コネクター。
8 . 請求の範囲第 1項乃至第 7項のいずれかに記載の電気抵抗測定用コネクターと、 この 電気抵抗測定用コネクタ一の表面に一体的に積層された異方導電性エラストマー層とを具 えてなることを特徴とする電気抵抗測定用コネク夕一装置。
9 . 異方導電性エラストマ一層は、電流供給用電極および電圧測定用電極の各々の表面上 に配置された、 それぞれ厚み方向に伸びる複数の導電路形成部と、 これらの導電路形成部 を相互に終緣する絶縁部とよりなることを特徴とする請求の範囲第 8項に記載の電気抵抗 測定用コネクター装置。
1 0 . 異方導電性エラストマ一層における導電路形成部は、磁性を示す導電性粒子が厚み 方向に並ぶよう配向した状態で含有されてなることを特徴とする請求の範囲第 9項に記載 の電気抵抗測定用コネクタ一装置。
1 1 . 請求の範囲第 1 0項に記載の電気抵抗測定用コネクター装置を製造する方法であつ て、
請求の範囲第 1項乃至第 7項のいずれかに記載の電気抵抗測定用コネク夕一の表面に、 硬ィ匕されて弾性高分子物質となる液状の高分子物質形成材料中に磁性を示す導電性粒子が 含有されてなるエラストマ一用材料層を形成し、 このエラストマ一用材料層に対して、電 気抵抗測定用コネク夕一の接続用電極組が形成された領域の表面上に位置する部分におい てそれ以外の部分より大きい弓 ¾ の磁場を厚み方向に作用させると共に、 当該エラストマ 一用材料層を硬化処理することにより、 当該電気抵抗測定用コネクターの表面に、 その接 続用電極組が形成された領域の表面上に位置する部分に磁性を示す導電性粒子が厚み方向 に並ぶよう配向した状態で含有されたエラストマ一層を形成し、
このエラストマ一層における導電性粒子が含有された部分において、接続用電極組にお ける各電極の間の領域の表面上に位置する部分を除去して穴部を形成し、 その後、 この穴 部に硬化されて弾性高分子物質となる液状の高分子物質形成材料を充填し、当該高分子物 質形成材料を硬化処理する工程を有することを特徴とする電気抵抗測定用コネク夕一装置 の製造方法。 ^
1 2 . 少なくとも一面に電極を有する回路基板の電気抵抗を測定する回路基板の電気抵抗 測定装置であって、
電気抵抗を測定すべき被検査回路基板の一面側に配置される、請求の範囲第 1項乃至第 7項のいずれかに記載の電気抵抗測定用コネクターを具えてなることを特徴とする回路基
1 3 . 少なくとも一面に電極を有する回路基板の電気抵抗を測定する回路基板の電気抵抗 測定装置であって、
電気抵抗を測定すベき被検査回路基板の一面側に配置される、請求の範囲第 6項または 第 7項に記載の電気抵抗測定用コネクターと、
この電気抵抗測定用コネク夕一の裏面に異方導電性シ一トを介して配置された、表面に 当該電気抵抗測定用コネクタ一における中継電極のパターンに対応するパターンに従って 配置された検査電極を有する一面側検査用回路基板とを具えてなることを特徴とする回路
1 4 . 両面に電極を有する回路基板の電気抵抗を測定する回路基板の電気抵抗測定装置で あって、
電気抵抗を測定すベき被検査回路基板の他面側に配置される、他面側検査用回路基板を 具えてなり、
前記他面側検査用回路基板は、 その表面にそれぞれ前記被検査回路基板の他面側被検査 電極の各々に対応して互いに離間して配置された、 それぞれ同一の他面側被検査電極に電 気的に接続される電流供給用検査電極および電圧測定用検査電極が形成されていることを 特徴とする請求の範囲第 1 2項または第 1 3項に記載の回路基板の電気抵抗測定装置。
1 5 . 両面に電極を有する回路基板の電気抵抗を測定する回路基板の電気抵抗測 置で ってヽ
電気抵抗を測定すべき被検査回路基板の一面側に配置される、請求の範囲第 1項乃至第 7項のいずれかに記載の電気抵抗測定用コネク夕一と、
当該被検査回路基板の他面側に配置される、請求の範囲第 1項乃至第 7項のいずれかに 記載の電気抵抗測定用コネクターと を具えてなることを特徴とする回路基板の電気抵抗測定装置。 '
1 6 . 両面に電極を有する回路基板の電気抵抗を測定する回路基板の電気抵抗測定装置で あっし、
電気抵抗を測定すベき被検査回路基板の一面側に配置される、請求の範囲第 6項または 第 7項に記載の電気抵抗測定用コネクタ一と、
この電気抵抗測定用コネクタ一の裏面に異方導電性シートを介して配置された、表面に 当該電気抵抗測定用コネク夕一における中継電極のパターンに対応するパターンに従って 配置された検査電極を有する一面側検査用回路基板と、
前記被検査回路基板の他面側に配置される、請求の範囲第 6項または第 7項に記載の電 気抵抗測定用コネクタ一と、
この電気抵抗測定用コネクターの裏面に異方導電性シ一トを介して配置された、表面に 当該電気抵抗測定用コネクタ一における中継電極のパターンに対応するパターンに従って 配置された検査電極を有する他面側検査用回路基板と
を具えてなることを特徴とする回路基板の電気抵抗測定装置。
1 7 . 電気抵抗を測定すべき被検査回路基板の一面に、請求の範囲第 1項乃至第 7項のい ずれかに記載の電気抵抗測定用コネクタ一を配置し、
当該被検査回路基板の一面側被検査電極の各々に、編己電気抵抗測定用コネクタ一の接 続用電極組における少なくとも 1つの電流供給用電極および少なくとも 1つの電圧測定用 電極を同時に電気的に接続して測定状態とし、
この測定状態において、前記電気抵抗測定用コネク夕一における電流供給用電極を介し て被検査回路基板に電流を供給すると共に、編己一面側被検査電極に電気的に接続された 電圧測定用電極のうち 1つの電圧測定用電極を指定し、当該指定された 1つの電圧測定用 電極に電気的に接続された一面側被検査電極に係る電気抵抗の測定を実施することを特徴 とする回路基板の電気抵抗測定方法。
PCT/JP2004/003936 2003-03-26 2004-03-23 電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法 WO2004086062A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/548,586 US20060176064A1 (en) 2003-03-26 2004-03-23 Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board
EP04722682A EP1607751A1 (en) 2003-03-26 2004-03-23 Connector for measurement of electric resistance, connector device for measurement of electric resistance and production process thereof, and measuring apparatus and measuring method of electric resistance for circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003085173 2003-03-26
JP2003-085173 2003-03-26

Publications (1)

Publication Number Publication Date
WO2004086062A1 true WO2004086062A1 (ja) 2004-10-07

Family

ID=33095019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003936 WO2004086062A1 (ja) 2003-03-26 2004-03-23 電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法

Country Status (6)

Country Link
US (1) US20060176064A1 (ja)
EP (1) EP1607751A1 (ja)
KR (1) KR20050115297A (ja)
CN (1) CN1764844A (ja)
TW (1) TWI256476B (ja)
WO (1) WO2004086062A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043631A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置
WO2006043628A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
WO2006043629A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation アダプター装置およびその製造方法並びに回路装置の電気的検査装置
TWI716106B (zh) * 2019-09-16 2021-01-11 力成科技股份有限公司 封裝基板之電阻量測方法及其封裝基板

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595790B2 (en) * 2005-01-31 2009-09-29 Panasonic Corporation Pressure sensitive conductive sheet, method of manufacturing the same, and touch panel using the same
JP5008005B2 (ja) * 2006-07-10 2012-08-22 東京エレクトロン株式会社 プローブカード
TWI497084B (zh) * 2010-09-30 2015-08-21 Ismeca Semiconductor Holding 電性接點及測試平台
KR101118650B1 (ko) * 2010-12-30 2012-03-06 경북대학교 산학협력단 도전성 박막의 무손상 저항 균일성 평가 장치
CN102175919B (zh) * 2011-01-28 2015-11-04 上海华虹宏力半导体制造有限公司 金属硅化物薄膜电阻模型的提取方法
US9442133B1 (en) * 2011-08-21 2016-09-13 Bruker Nano Inc. Edge electrode for characterization of semiconductor wafers
US9176167B1 (en) * 2011-08-21 2015-11-03 Bruker Nano Inc. Probe and method of manufacture for semiconductor wafer characterization
CN102520252A (zh) * 2011-12-29 2012-06-27 广州杰赛科技股份有限公司 一种测试模具及其制作方法及薄膜电阻基板单位阻值检测方法
CN103472304B (zh) * 2013-09-17 2014-10-22 中国科学院物理研究所 一种弹性探针阵列多通道电阻测量方法和装置
CN109997046B (zh) * 2016-12-01 2022-01-14 日本电产理德股份有限公司 电阻测量装置及电阻测量方法
JP6918518B2 (ja) * 2017-02-27 2021-08-11 デクセリアルズ株式会社 電気特性の検査冶具
JP7352840B2 (ja) * 2018-09-14 2023-09-29 ニデックアドバンステクノロジー株式会社 検査指示情報生成装置、基板検査システム、検査指示情報生成方法、及び検査指示情報生成プログラム
JP7281620B2 (ja) * 2018-10-15 2023-05-26 パナソニックIpマネジメント株式会社 特性計測装置、部品実装装置、特性計測方法および部品実装方法
KR102587764B1 (ko) * 2018-11-21 2023-10-10 미쓰이 가가쿠 가부시키가이샤 이방 도전성 시트, 이방 도전성 복합 시트, 이방 도전성 시트 세트, 전기 검사 장치 및 전기 검사 방법
CN110045208A (zh) * 2019-04-30 2019-07-23 北京航天时代光电科技有限公司 一种用于快速检测电连接器的通用装置及方法
CN113495190A (zh) * 2020-04-01 2021-10-12 株式会社东芝 电阻映射装置、电阻测定装置、电阻测定方法、程序以及记录介质
CN113051853B (zh) * 2021-03-05 2022-05-31 奥特斯科技(重庆)有限公司 受损部件载体确定方法、计算机程序、计算机可读介质以及检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592749U (ja) * 1992-05-14 1993-12-17 株式会社アドバンテスト スルーホール抵抗測定用プローブ
JP2000180472A (ja) * 1998-12-11 2000-06-30 Hitachi Cable Ltd ベアチップ検査用プローブ基板
JP2000241485A (ja) * 1999-02-24 2000-09-08 Jsr Corp 回路基板の電気抵抗測定装置および方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1195860B1 (en) * 2000-09-25 2004-12-01 JSR Corporation Anisotropically conductive sheet, production process thereof and applied product thereof
JP4522604B2 (ja) * 2001-03-19 2010-08-11 日東電工株式会社 異方導電性フィルム
US6771077B2 (en) * 2002-04-19 2004-08-03 Hitachi, Ltd. Method of testing electronic devices indicating short-circuit
JP2003322665A (ja) * 2002-05-01 2003-11-14 Jsr Corp 電気抵抗測定用コネクター並びに回路基板の電気抵抗測定装置および測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592749U (ja) * 1992-05-14 1993-12-17 株式会社アドバンテスト スルーホール抵抗測定用プローブ
JP2000180472A (ja) * 1998-12-11 2000-06-30 Hitachi Cable Ltd ベアチップ検査用プローブ基板
JP2000241485A (ja) * 1999-02-24 2000-09-08 Jsr Corp 回路基板の電気抵抗測定装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043631A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置
WO2006043628A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
WO2006043629A1 (ja) * 2004-10-22 2006-04-27 Jsr Corporation アダプター装置およびその製造方法並びに回路装置の電気的検査装置
TWI716106B (zh) * 2019-09-16 2021-01-11 力成科技股份有限公司 封裝基板之電阻量測方法及其封裝基板

Also Published As

Publication number Publication date
TW200506372A (en) 2005-02-16
TWI256476B (en) 2006-06-11
US20060176064A1 (en) 2006-08-10
KR20050115297A (ko) 2005-12-07
EP1607751A1 (en) 2005-12-21
CN1764844A (zh) 2006-04-26

Similar Documents

Publication Publication Date Title
WO2004086062A1 (ja) 電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法
US7038471B2 (en) Connector for measuring electric resistance, apparatus and method for measuring electric resistance of circuit board
JP3753145B2 (ja) 異方導電性シートおよびその製造方法、アダプター装置およびその製造方法並びに回路装置の電気的検査装置
JP2002139529A (ja) 電気抵抗測定用コネクター並びに回路基板の電気抵抗測定装置および測定方法
WO2006009144A1 (ja) 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
JP2007085833A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカード並びにウエハ検査装置
WO2007007869A1 (ja) 電気抵抗測定用コネクター並びに回路基板の電気抵抗測定装置および測定方法
JP3705288B2 (ja) 回路基板検査用アダプターおよび回路基板検査装置
JP2007071753A (ja) 電気抵抗測定用コネクター並びに回路基板の電気抵抗測定装置および測定方法
JP4380373B2 (ja) 電気抵抗測定用コネクター、電気抵抗測定用コネクター装置およびその製造方法並びに回路基板の電気抵抗測定装置および測定方法
JP5104265B2 (ja) プローブ部材およびその製造方法ならびにその応用
JP2007087709A (ja) 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
JP2006261099A (ja) 複合導電性シートおよびその製造方法、異方導電性コネクター、アダプター装置並びに回路装置の電気的検査装置
WO2006043629A1 (ja) アダプター装置およびその製造方法並びに回路装置の電気的検査装置
JP2009098065A (ja) プローブ部材およびその製造方法ならびにその応用
JP2007040952A (ja) アダプター装置およびその製造方法並びに回路装置の電気的検査装置
JPH1164377A (ja) 積層型コネクターおよび回路基板検査用アダプター装置
JP2010066003A (ja) 電気抵抗測定用電極シートおよびその製造方法、電気抵抗測定用コネクター並びに回路基板の電気抵抗測定装置
JP2000003741A (ja) コネクターおよびそれを用いた回路基板検査装置
JP3111688B2 (ja) 回路基板検査用アダプター装置の製造方法並びに回路基板の検査方法および検査装置
JP2007265705A (ja) 異方導電性コネクターおよびその応用
JPH10229270A (ja) 複合基板
JPH10197591A (ja) 回路基板検査装置
WO2006043628A1 (ja) 異方導電性コネクターおよびその製造方法、アダプター装置並びに回路装置の電気的検査装置
JPWO2007029766A1 (ja) ウエハ検査用プローブカード並びにウエハ検査装置およびウエハ検査方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004722682

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006176064

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004807778X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057017795

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057017795

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004722682

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10548586

Country of ref document: US