WO2004078739A1 - プロピレンオキサイドの製造方法 - Google Patents

プロピレンオキサイドの製造方法 Download PDF

Info

Publication number
WO2004078739A1
WO2004078739A1 PCT/JP2004/002757 JP2004002757W WO2004078739A1 WO 2004078739 A1 WO2004078739 A1 WO 2004078739A1 JP 2004002757 W JP2004002757 W JP 2004002757W WO 2004078739 A1 WO2004078739 A1 WO 2004078739A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene oxide
organic solvent
water
catalyst
reaction
Prior art date
Application number
PCT/JP2004/002757
Other languages
English (en)
French (fr)
Inventor
Masaru Ishino
Hiroaki Abekawa
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to EP04717234A priority Critical patent/EP1602651A4/en
Priority to US10/547,628 priority patent/US7531674B2/en
Publication of WO2004078739A1 publication Critical patent/WO2004078739A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide by epoxidizing propylene with hydrogen peroxide in the presence of a crystalline titanosilicate catalyst.
  • Methanol, acetone, acetonitrile, etc., using Ti-MWW catalyst A method using an organic solvent that is completely mixed with water is also known. In this case, an acetonitrile solvent is preferable, and a higher activity can be obtained as compared with the case where a TS-1 catalyst and a methanol solvent are used. It is also known (for example, FY2001 Next-Generation Chemical Process Technology Development ⁇ Halogen-free Chemical Process Technology Development Report, 168-1210, (2002)). However, there is a problem that it is necessary to separate the produced water and the solvent, and the distillation separation which is usually used in industry requires a lot of energy. Disclosure of the invention
  • An object of the present invention is a method for producing propylene oxide by reacting propylene with hydrogen peroxide in the presence of a crystalline titanosilicide catalyst, which can carry out the reaction with high efficiency. It is an object of the present invention to provide an industrially excellent method for producing propylene oxide, in which a product and a solvent can be easily recovered from a mixed solution.
  • the present invention provides a reaction between propylene and hydrogen peroxide in the presence of a crystalline titanosilicate catalyst having a pore structure of 12 or more oxygen rings using an organic solvent capable of separating water and liquid as a medium.
  • a reaction mixture containing propylene oxide liquid-liquid separation of the reaction solution into an aqueous layer and an oil layer containing the organic solvent, and separation of propylene oxide from water into the oil layer. It concerns the manufacturing method.
  • a crystalline titanosilicate having a pore structure of 12 or more oxygen rings is used as a catalyst.
  • the crystalline titanosilicate is a titanosilicate having a zeolite structure.
  • Typical crystalline titanosilicates having a pore structure of at least a two-membered oxygen ring include crystalline titanosilicates (T i-ZS M- 12) having a MTW structure and a BEA structure using the structure code of the International Zeolite Society.
  • Crystalline titanosilicate (T i- iS), crystalline titanosilicate having MWW structure —Ti (Ti-MWW), crystalline titanosilicate having a DON structure (Ti-UTD-1), and the like.
  • Ti-ZSM-12, Ti-j8 and Ti-MWW have an oxygen 12-membered ring pore structure
  • Ti-UTD-1 is an oxygen 14-member. It has been shown by the International Zeolite Society to have a ring pore structure.
  • the term “pore structure having 12 or more oxygen rings” refers to a pore structure in which the entrance of a pore is a ring having 12 or more oxygen rings. In the reaction, the size of the pore entrance is important.
  • the Ti-MWW catalyst is particularly preferably used because of its high reaction activity between propylene and hydrogen peroxide in the presence of an organic solvent capable of separating water and water. Furthermore, a higher reaction activity can be obtained by treating the Ti-MWW catalyst with a silylating agent, so that a silylated Ti-MWW catalyst can be particularly preferably used.
  • the crystalline titanosilicate catalyst having an oxygen 12-membered ring pore structure used in the present invention is used in the form of a powder or a molded product depending on the reaction system.
  • a reaction method a fixed bed flow reaction method or a slurry reaction method is generally adopted.
  • the reaction between propylene and hydrogen peroxide is carried out in the presence of an organic solvent which can be separated from water.
  • the organic solvent capable of being separated from water in the present invention means an organic solvent that forms a two-liquid layer when mixed with water at 20 ° C. A single solvent is preferred in consideration of separation, but a mixed solvent is also preferable. Good.
  • the organic solvent is preferably a compound which is substantially inert to the reaction, and hydrocarbons, halogenated hydrocarbons, nitrile compounds, ketone compounds and ether compounds can be suitably used.
  • the organic solvent may be a mixture with an organic compound other than a hydrocarbon, a halogenated hydrocarbon, a nitrile compound, a ketone compound and an ether compound.
  • the organic solvent may be mixed with propylene oxide. A compound having a higher boiling point than propylene oxide is preferred to facilitate the separation by distillation.
  • the epoxidation reaction is usually 0 to 150. C, can be carried out at 20-100 ° C.
  • the reaction pressure is usually 0.1 to 2 OMPa, preferably 0.3 to 10 MPa.
  • the method of supplying hydrogen peroxide is not particularly limited, and examples thereof include a method of supplying hydrogen peroxide that has been produced in advance, and a method of synthesizing and supplying hydrogen peroxide in a system from hydrogen and oxygen.
  • the amount of propylene fed to hydrogen peroxide is usually 1 to 200 times, preferably 1.1 to 100 times in terms of a molar ratio of (propylene hydrogen peroxide). is there.
  • the unreacted propylene after the reaction is usually separated and purified and then recycled and used as an epoxidation reaction raw material.
  • an organic solvent that can be separated from water By using an organic solvent that can be separated from water, the reaction mixture can be separated into two layers, an aqueous layer and an oil layer.
  • propylene oxide and the organic solvent By performing liquid-liquid separation, propylene oxide and the organic solvent can be easily recovered.
  • an oil layer mainly composed of an organic solvent and propylene oxide propylene oxide and the organic solvent can be easily recovered by, for example, ordinary distillation separation.
  • active ingredients such as propylene, propylene oxide, and a solvent dissolved in the aqueous layer can be collected by liquid-liquid extraction or distillation separation.
  • the recovery method by liquid-liquid extraction is preferable because there is no loss or energy loss of propylene oxide due to distillation.
  • the extractant used for the liquid-liquid extraction is not particularly limited as long as the active ingredient can be extracted.
  • the reaction was carried out using a D-I MWW catalyst having a Ti content of 1.1 wt% by ICP emission analysis prepared according to the method described in Chemistry Letters 774, (2000). That is, using a 36% H 2 0 2 solution and propionic two tri le and pure water, H 2 0 2: 5 wt%, water: 47.5 wt%, propionic nitrile: was prepared 47.5 wt% solution . 12 ml of the prepared solution and a milled Ti-MWW catalyst 0.1 Og Og were charged into a 50 ml stainless steel autoclave. The filled solution was separated into two layers. Next, the autoclave was transferred onto an ice bath and charged with 10 g of liquefied propylene.
  • the pressure was further increased to 2MPa_G with nitrogen.
  • the autoclave was placed in a 40 ° C aluminum block bath and reacted at 40 ° C. The reaction was started 5 minutes after the internal temperature reached approximately 35 ° C. One hour after the start of the reaction, the autoclave was removed from the block bath. The autoclave was cooled on ice, and the pressure was released while absorbing gas in acetonitrile. Acetonitrile was added to the obtained reaction solution to make a homogeneous solution. The gas-absorbed acetonitrile and the reaction solution in which acetonitrile was added to make a homogeneous solution were analyzed by gas chromatography.
  • the activity of producing propylene oxide per unit weight of the catalyst was 0.37 Omo 1 ⁇ h ” 1 ⁇ g- 1 .
  • the reaction was performed again under the same conditions, and a reaction solution was obtained by the same method.
  • the catalyst was removed from the obtained reaction solution and allowed to stand, and the reaction solution was separated into two liquid layers.
  • Example 3 The reaction and analysis were carried out in the same manner as in Example 1, except that 1,2-dichloroethane was used instead of propionitrile. As a result of the analysis, the pro The pyrenoxide production activity was 0.272 mo 1 ⁇ h- 1 ⁇ g _1 .
  • the solution using 1,2-dichloroethane was also separated into two liquid layers in the same manner as in Example 1. Again, the reaction was carried out under the same conditions to obtain a reaction solution in the same manner. The catalyst was removed from the obtained reaction solution and allowed to stand. The reaction solution was separated into two liquid layers. After standing, the reaction solution was separated, and a 6.lg aqueous layer and a 5.4 g oil layer were collected. As a result of analysis by gas chromatography, the distribution ratio of propylene oxide in the aqueous layer to propylene oxide in the oil layer was 0.23 / 0.77.
  • Example 3 The distribution ratio of propylene oxide in the aqueous layer to propylene oxide in the oil
  • the Ti-MWW catalyst used in Example 1 was silylated to prepare a silylated Ti-MWW catalyst. That is, 3.4 g of 1,1,1,3,3,3-hexamethyldisilazane, 50 g of toluene, and 5 g of Ti-MWW catalyst are mixed, and the mixture is refluxed for 1.5 hours for silylation. Was done. Further, after filtration, washing and drying under reduced pressure at 120 ° C., a silylated Ti—MWW catalyst was obtained. Using the obtained silylated Ti-MWW catalyst, reaction and analysis were carried out in the same manner as in Example 1 using propionitrile as a solvent. As a result of the analysis, the activity of producing propylene oxide per unit weight of the catalyst was 0.489 mol ⁇ h ⁇ l ⁇ g ⁇ 1 .
  • Example 2 The reaction and analysis were performed using 1,2-dichloroethane as a solvent in the same manner as in Example 2 except that the silylated Ti-MWW hornworm medium used in Example 3 was used. The liquid after the reaction was separated into two liquid layers as in Example 2. As a result of the analysis, the activity of forming propylene oxide per unit weight of the catalyst was found to be 0.594 mo1 ⁇ h— 1 ⁇ g- 1 . Comparative Example 1
  • Propionitrile was prepared in the same manner as in Example 1 except that a TS-1 catalyst containing 1.3% by weight of Ti by ICP emission spectrometry having a 10-membered oxygen ring pore structure was used instead of the Ti-MWW catalyst.
  • the reaction was carried out using as a solvent and analyzed. Analysis results As a result, the activity of producing propylene oxide per unit weight of the catalyst was 0.0101 mO 1 ⁇ h- 1 -g ” 1. Comparative Example 2
  • 1,2-dichloromethane was used as the solvent in the same manner as in Example 2 except that the Ti-1 MWW catalyst was replaced with the TS-1 catalyst having a 10-membered oxygen pore structure used in Comparative Example 1.
  • the reaction was carried out and analyzed. As a result of the analysis, per unit catalyst weight propylene O key side generating activity, 0. 0464mo l * h- 1 ⁇ g "1 Atsu 7 this. Comparative Example 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epoxy Compounds (AREA)

Abstract

酸素12員環以上の細孔構造を有する結晶性チタノシリケート触媒の存在下、水と分液が可能な有機溶媒を媒体として用いてプロピレンと過酸化水素を反応させ、プロピレンオキサイドを含む反応混合物を得、該反応液を水層と該有機溶媒を含む油層に液液分離し、該油層へプロピレンオキサイドを水から分離することを特徴とするプロピレンオキサイドの製造方法。

Description

プロピレンォキサイドの製造方法 技術分野
本発明は結晶性チタノシリケート触媒の存在下に過酸化水素を用いてプロピ レンをエポキシ化してプロピレンォキサイドを製造する方法に関する。 背景技術
結晶性チタノシリケート触媒の存在下、 過酸化水素を用いてプロピレンのェ ポキシ化反応を行うことによりプロピレンォキサイドを製造する技術としては、 T S - 1触媒を用いる方法が公知であり、 この際にメ夕ノール溶媒が好適であ ることはよく知られている (例えば、 J o u r n a l o f C a t a 1 y s i s 1 2 9 , 1 5 9 , ( 1 9 9 1 ))。 しかし、 反応混合液からプロピレンォキ サイドを得るためには、 水およびメタノール溶媒からプロピレンオキサイドを 蒸留分離する必要があり、 さらにメタノール溶媒回収のためには、 水とメタノ ールを蒸留等により分離する必要があり、 このためのエネルギーを多大に要す るという問題があった。 さらに、 メタノールや水とプロピレンオキサイドは容 易に反応してメトキシプロパノールやプロピレングリコールを生成することが 知られており、 プロピレンォキサイドをロスしてしまう恐れがあった。 そのた め、 T S— 1触媒およびメタノール溶媒で得られた反応混合液を水と分液が可 能な有機溶媒を用いて目的のエポキシ化合物を液液抽出により水から分離する 方法が開示されている (例えば、 W0 9 9 1 4 2 0 8 )。 しかし、 この方法で は反応溶媒と異なる別個の抽出溶媒を使用するため、 2つの有機溶媒の蒸留分 離や各溶媒の蒸留精製など複雑な工程が必要となるという問題があつた。 また、 メタノール溶媒を用いなければ、 複雑な工程を必要としないが、 高い活性が ί ;旦 られないという問題があつた。
また、 T i一 MWW触媒を用い、 メタノール、 アセトン、 ァセトニトリル等 水と完全に混合する有機溶媒を使用する方法も公知であり、 この際にァセトニ トリル溶媒が好適であり、 T S— 1触媒およびメタノ一ル溶媒を用いた場合に 比べて高い活性が得られる事も知られている (例えば、 平成 1 3年度次世代化 学プロセス技術開発 ·ノンハロゲン化学プロセス技術開発成果報告書, 1 6 8 一 2 1 0, (2 0 0 2 ))。 しかし、 生成水と溶媒を分離する必要があり、 通常ェ 業的に用いられている蒸留分離ではエネルギーを多大に要するという問題があ つた。 発明の開示
本発明の目的は、 結晶性チタノシリゲート触媒の存在下、 プロピレンと過酸 化水素を反応させてプロピレンォキサイドを製造する方法であって、 高効率下 に反応を実施することができ、 また反応混合液から生成物や溶媒の回収が容易 に実施できるという工業的に優れたプロピレンオキサイドの製造方法を提供す ることにある。
すなわち、 本発明は酸素 1 2員環以上の細孔構造を有する結晶性チタノシリ ケ一ト触媒の存在下、 水と分液が可能な有機溶媒を媒体として用いてプロピレ ンと過酸化水素を反応させ、 プロピレンオキサイドを含む反応混合物を得、 該 反応液を水層と該有機溶媒を含む油層に液液分離し、 該油層へプロピレンォキ サイドを水から分離することを特徴とするプロピレンォキサイドの製造方法に 係るものである。 発明を実施するための形態
本発明は、 酸素 1 2員環以上の細孔構造を有する結晶性チタノシリケ一トを 触媒として用いる。 結晶性チタノシリゲートとは、 ゼォライト構造を有するチ タノシリケートである。 代表的な酸素 1 2員環以上の細孔構造を有する結晶性 チタノシリゲートとしては、 国際ゼォライト学会の構造コードで MTW構造を 有する結晶性チタノシリケー卜 (T i—Z S M- 1 2 ) 、 B E A構造を有する結 晶性チタノシリケート (T i— iS ) 、 MWW構造を有する結晶性チタノシリケ —ト (T i一 MWW) 、 D O N構造を有する結晶性チタノシリゲート (T i一 U T D - 1 ) 等が例示される。 上記結晶性チタノシリゲートのうち、 T i一 Z S M - 1 2 , T i - j8及び T i—MWWは酸素 1 2員環細孔構造を有し、 また T i一 UT D— 1は酸素 1 4員環細孔構造を有することが国際ゼォライト学会 により明らかにされている。 なお、 本発明における酸素 1 2員環以上の細孔構 造とは、 細孔の入口が酸素 1 2員環以上の細孔構造のことであり、 本発明にお けるプロピレンと過酸化水素の反応においては、 細孔の入口の大きさが重要で ある。
上記結晶性チタノシリゲートのうち、 T i一 MWW触媒は水と分液可能な有 機溶媒の存在下でのプロピレンと過酸化水素との反応活性が高いので特に好ま しく使用できる。更に、 T i一 MWW触媒をシリル化剤で処理することにより、 より高い反応活性を得ることができるため、 シリル化した T i一 MWW触媒も 特に好ましく使用できる。
本発明に用いられる酸素 1 2員環細孔構造を有する結晶性チタノシリケ一ト 触媒は反応方式に応じて粉体状あるいは成型体の形で使用される。 また、 反応 方式としては、 固定床流通反応方式あるいはスラリ一反応方式が一般に採用さ れる。
本発明において、 プロピレンと過酸化水素との反応は水と分液可能な有機溶 媒の存在下で実施される。 本発明における水と分液可能な有機溶媒とは 2 0 °C において水と混合すると 2液層を形成する有機溶媒のことを意味し、 分離を考 慮すると単一溶媒が好ましいが混合溶媒でもよい。 該有機溶媒は反応に実質的 に不活性な化合物が好ましく、 炭化水素、 ハロゲン化炭化水素、 二トリル化合 物、 ケトン化合物、 エーテル化合物が好適に使用できる。 具体例としてはへキ サン、 ヘプタン、 ベンゼン、 トルエン、 キシレン、 エチレンジクロライド、 ク ロルベンゼン、 プロピオ二トリル、 メチルェチルケトン、 メチルイソプチルケ トン、 ジブチルェ一テルなどが挙げられる。 該有機溶媒は炭化水素、 ハロゲン 化炭化水素、 二卜リル化合物., ケトン化合物-. エーテル化合物以外の有機化合 物との混合物であってもよい。 また、 該有機溶媒はプロピレンオキサイドとの 蒸留分離を容易とするため、 プロピレンォキサイドよりも高沸点の化合物が好 ましい。
過酸化水素を用いてプロピレンのエポキシ化反応を行う場合、 水が生成する ため水と分液可能な有機溶媒は水存在下で使用される。 反応で生成する水以外 に、 水は一般に分離精製工程等からのリサイクルされる。 また、 予め製造した 過酸化水素を用いる場合、 一般に過酸化水素と共に過酸化水素水として供給さ れる。
エポキシ化反応は、 通常 0〜1 5 0。C、 好ましぐは 2 0〜1 0 0 °Cで実施で きる。 反応圧力は通常 0 . 1〜2 O M P a、 好ましくは 0 . 3〜1 0 M P aで ある。
過酸化水素の供給方法としては特に限定されないが、 予め製造した過酸化水 素水を供給する方法、 または水素および酸素から系内で過酸化水素を合成して 供給する方法があげられる。 予め製造した過酸化水素を用いる場合、 フィード されるプロピレンの過酸化水素に対する量は (プロピレンノ過酸化水素) モル 比で通常 1〜2 0 0倍、 好ましくは 1 . 1〜 1 0 0倍である。
反応後の未反応プロピレンは、 通常は分離精製後リサイクルしてエポキシ化 反応原料として用いる。 水と分液可能な有機溶媒を用いることにより、 反応混 合液は水層と油層との 2層に液液分離させることができる。 液液分離させるこ とにより、 プロピレンオキサイドと有機溶媒の回収が容易に実施できる。 主と して有機溶媒とプロピレンオキサイドからなる油層は、 例えば、 通常の蒸留分 離によりプロピレンオキサイドと有機溶媒が容易に回収できる。 水層は、 水層 に溶解したプロピレン、 プロピレンオキサイド、 溶媒等の有効成分を液液抽出 や蒸留分離により回収することができる。 液液抽出による回収方法が蒸留によ るプロピレンォキサイドのロスやエネルギーロスが無いため好ましい。 液液抽 出に用いる抽剤としては、 有効成分の抽出ができれば特に限定されないが上記 反応で用いた有機溶媒を用いることも溶媒の分離回収が容易であるため好まし い。
実施例 以下実施例により本発明を具体的に説明する。
実施例 1
C e m i s t r y L e t t e r s 774, (2000) に記載の方法 に従い調製した I CP発光分析による T i含量が 1. 1重量%の丁 i一 MWW 触媒を用いて反応を行った。 すなわち、 36 %H202水溶液とプロピオ二トリ ルと純水を用い、 H202: 5重量%、 水: 47. 5重量%、 プロピオ二トリル: 47. 5重量%溶液を調製した。 調製した溶液 12 gと粉碎した T i -MWW 触媒 0. O l O gを 50m lステンレスオートクレープに充填した。 充填した 溶液は 2層に分液していた。 次にオートクレープを氷浴上に移し、 液化プロピ レン 10 gを充填した。 さらに窒素で 2MP a_Gまで昇圧した。 オートクレ ーブを 40°Cのアルミニウム製ブロックバスに入れ、 40°Cで反応を行った。 内温がおよそ 35°Cになる 5分後を反応開始とした。 反応開始から 1時間後、 ォ一トクレーブをブロックバスから取り出した。 オートクレープを氷冷し、 ガ スをァセトニトリルに吸収しながら脱圧した後、 反応液を取出した。 得られた 反応液にァセトニトリルを加えて均一溶液にした。 ガスを吸収させたァセトニ トリルおよび、 ァセトニトリルを加えて均一溶液にした反応液をそれぞれガス クロマトグラフィを用いて分析を行なった。 その結果、 単位触媒重量あたりの プロピレンォキサイド生成活性は 0. 37 Omo 1 · h"1 · g—1であった。 再び、 同じ条件で反応を行い、 同じ方法で反応液を得た。 得られた反応液か ら触媒を除去し、 静置した。 反応液は、 2つの液層に分液していた。
静置後、 反応液を分液し、 6. 3 gの水層と 5. 4 gの油層を回収した。 それ ぞれ、 ガスクロマトグラフィで分析した結果、 水層中のプロピレンオキサイド と油層中のプロピレンオキサイドの分配比率は、 0. 21/0. 79であった。 実施例 2
プロピオ二トリルの代わりに 1, 2ージクロロェタンを用いた以外、 実施例 1と同様に反応および分析を行った。 分析の結果、 単位触媒重量あたりのプロ ピレンォキサイド生成活性は 0. 272 mo 1 · h— 1 · g_1であった。 1, 2 ージクロロェタンを用いた溶液も実施例 1と同様に 2液層に分液していた。 再び、 同じ条件で反応を行い 同じ方法で反応液を得た。 得られた反応液か ら触媒を除去し、 静置した。 反応液は., 2つの液層に分液していた。 静置後、 反応液を分液し、 6. l gの水層と 5. 4 gの油層を回収した。 それぞれ、 ガ スクロマトグラフィで分析した結果、 水層中のプロピレンォキサイドと油層中 のプロピレンオキサイドの分配比率は、 0. 23/0. 77であった。 実施例 3
実施例 1で用いた T i一 MWW触媒をシリル化し、 シリル化 T i一 MWW触 媒を調製した。 すなわち、 1, 1, 1, 3, 3, 3—へキサメチルジシラザン 3. 4 gとトルエン 50 gと T i—MWW触媒 5 gを混合し、 1. 5時間リフ ラックスさせることでシリル化を行った。 更に、 ろ別、 洗浄後、 120°Cで減 圧乾燥し、 シリル化 T i— MWW触媒を得た。 得られたシリル化 T i一 MWW 触媒を用い、 プロピオ二トリルを溶媒に用い、 実施例 1と同様に反応および分 析を行った。 分析の結果、 単位触媒重量あたりのプロピレンオキサイド生成活 性は 0. 489mo 1 · h—1 · g— 1であった。 実施例 4
実施例 3で用いたシリル化 T i一 MWW角虫媒を用いた以外は実施例 2と同様 に 1, 2—ジクロロェタンを溶媒に用いて反応および分析を行った。 反応後の 液も実施例 2と同様に 2液層に分液していた。 分析の結果、 単位触媒重量あた りのプロピレンォキサイド生成活性は 0. 594mo 1 · h— 1 · g-1であった。 比較例 1
T i一 MWW触媒の代わりに、 酸素 10員環細孔構造を持つ I C P発光分析 による T i含量が 1. 3重量%の TS— 1触媒を用いた以外、 実施例 1と同様 にプロピオ二トリルを溶媒に用いて反応を行い、 その分析を行った。 分析の結 果、 単位触媒重量あたりのプロピレンォキサイド生成活性は、 0. 0101m o 1 · h一 1 - g" 1 であった。 比較例 2
T i一 MWW触媒の代わりに、 比較例 1で用いた酸素 10員環細孔構造を持 つ TS— 1触媒を用いた以外、 実施例 2と同様に 1, 2—ジクロ口エタンを溶 媒に用いて反応を行い、 その分析を行った。 分析の結果、 単位触媒重量あたり のプロピレンォキサイド生成活性は、 0. 0464mo l * h— 1 · g" 1 あつ 7こ。 比較例 3
プロピオ二トリルの代わりにァセトニトリルを用いた以外、 実施例 1と同様 に、 T i一 MWW触媒を用いた反応および分析を行った。 分析の結果、 単位触 媒重量あたりのプロピレンォキサイド生成活性は、 0. S S Smo l . h- 1 · g一 1 であった。 しかし、 得られた反応液は均一であり、 液液分離は出来なか つた。 比較例 4
プロピオ二トリルの代わりにメタノールを用い、 T i—MWW触媒の代わり に比較例 1で用いた TS— 1触媒を用いた以外、 実施例 1と同様に反応および 分析を行った。 分析の結果、 単位触媒重量あたりのプロピレンオキサイド生成 活性は、 0. Ι β δΗΐο Ι ' Ιι— 1 - ~ 1 であった。 また、 得られた反応液 は均一であり、 液液分離は出来なかった。 産業上の利用可能性
以上説明したとおり、 本発明によれば、 結晶性チタノシリゲート触媒の存在 下、 プロピレンと過酸化水素を反応させてプロピレンォキサイドを製造する方 法であって、 髙効率下に反応を実施することができ、 また反応混合液からの生 成物や溶媒の回収が容易に実施できるという優れた特徴を有するプロピレンォ キサイドの製造方法を提供することができる。

Claims

請 求 の 範 囲
1 . 酸素 1 2員環以上の細孔構造を有する結晶性チタノシリゲート触媒の存 在下、 水と分液が可能な有機溶媒を媒体として用いてプロピレンと過酸化水素 を反応させ、 プロピレンォキサイドを含む反応混合物を得、 該反応液を水層と 該有機溶媒を含む油層に液液分離し、 該油層へプロピレンォキサイドを水から 分離することを特徴とするプロピレンォキサイドの製造方法。
2 . 触媒が MWW構造を有する結晶性チタノシリケート触媒である請求の範 囲第 1項記載の方法。
3 . 有機溶媒が炭化水素、 ハロゲン化炭化水素、 二トリル化合物、 ケトン化 合物及びエーテル化合物からなる群から選ばれた水と分液が可能な有機溶媒で ある請求の範囲第 1又は 2項記載の方法。
PCT/JP2004/002757 2003-03-06 2004-03-04 プロピレンオキサイドの製造方法 WO2004078739A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04717234A EP1602651A4 (en) 2003-03-06 2004-03-04 PROCESS FOR PRODUCING PROPYLENE OXIDE
US10/547,628 US7531674B2 (en) 2003-03-06 2004-03-04 Process for producing propylene oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-059604 2003-03-06
JP2003059604 2003-03-06

Publications (1)

Publication Number Publication Date
WO2004078739A1 true WO2004078739A1 (ja) 2004-09-16

Family

ID=32958855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002757 WO2004078739A1 (ja) 2003-03-06 2004-03-04 プロピレンオキサイドの製造方法

Country Status (4)

Country Link
US (1) US7531674B2 (ja)
EP (1) EP1602651A4 (ja)
CN (1) CN100384829C (ja)
WO (1) WO2004078739A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074760A1 (ja) * 2005-12-26 2007-07-05 Sumitomo Chemical Company, Limited プロピレンオキサイドの製造方法
JP2008081488A (ja) * 2005-12-26 2008-04-10 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153986B2 (en) * 2002-03-04 2006-12-26 Sumitomo Chemical Company, Limited Method for producing propylene oxide
EP1488853A4 (en) * 2002-03-04 2011-11-02 Sumitomo Chemical Co PROCESS FOR IMPROVING CRYSTALLINE TITANICILICATE CATALYST WITH MWW STRUCTURE
CN101432271A (zh) * 2006-04-27 2009-05-13 住友化学株式会社 氧化丙烯的制备方法
CN100460324C (zh) * 2006-09-30 2009-02-11 华东师范大学 一种碱改性的含钛分子筛的合成方法
WO2009008493A2 (en) * 2007-07-10 2009-01-15 Sumitomo Chemical Company, Limited Method for producing propylene oxide
KR20110126598A (ko) * 2009-03-13 2011-11-23 스미또모 가가꾸 가부시끼가이샤 올레핀 옥사이드의 제조 방법
US20100317880A1 (en) * 2009-06-11 2010-12-16 Grey Roger A Direct epoxidation process using modifiers
KR101802535B1 (ko) 2009-07-16 2017-11-28 바스프 에스이 물로부터 아세토니트릴을 분리하는 방법
CN102471299A (zh) * 2009-08-05 2012-05-23 陶氏环球技术有限责任公司 用于制备环氧丙烷的方法
US20110098491A1 (en) * 2009-10-28 2011-04-28 Bernard Cooker Direct epoxidation process using alkanoic acid modifier
US8207360B2 (en) * 2010-01-29 2012-06-26 Lyondell Chemical Technology, L.P. Propylene oxide process
US8440846B2 (en) 2010-09-30 2013-05-14 Lyondell Chemical Technology, L.P. Direct epoxidation process
CN112645903A (zh) * 2020-12-17 2021-04-13 浙江师范大学 一种用于丙烯液相环氧化制环氧丙烷的催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025285A (ja) * 1996-07-08 1998-01-27 Mitsubishi Gas Chem Co Inc オレフィン化合物のエポキシ化法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453511A (en) * 1993-12-23 1995-09-26 Arco Chemical Technology, L.P. Bis-piperidinium compounds
JP3332784B2 (ja) 1997-02-14 2002-10-07 日本化薬株式会社 滑沢剤、錠剤及びその製造法
BE1011456A3 (fr) * 1997-09-18 1999-09-07 Solvay Procede de fabrication d'un oxiranne.
US6114551A (en) * 1999-10-04 2000-09-05 Mobil Oil Corporation Olefin epoxidation catalysts
US6500311B1 (en) * 2001-09-21 2002-12-31 Arco Chemical Technology, L.P. Propylene oxide purification
US7153986B2 (en) * 2002-03-04 2006-12-26 Sumitomo Chemical Company, Limited Method for producing propylene oxide
EP1488853A4 (en) 2002-03-04 2011-11-02 Sumitomo Chemical Co PROCESS FOR IMPROVING CRYSTALLINE TITANICILICATE CATALYST WITH MWW STRUCTURE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025285A (ja) * 1996-07-08 1998-01-27 Mitsubishi Gas Chem Co Inc オレフィン化合物のエポキシ化法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAPAN CHEMICAL INOVATION ISNTITUTE: "Heisei 13 nendo jisedai kagaku process gijutsu kaihatsu seika hokokusho", HEISEI 14 NEN 6 GATSU 7 NICHI, NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION, pages 168 - 210, XP002982539, Retrieved from the Internet <URL:http://www.tech.nedo.go.jp/servlet/hokokishoDownloadServlet?BARCODE=010000656&db=n&ZF=1> *
See also references of EP1602651A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074760A1 (ja) * 2005-12-26 2007-07-05 Sumitomo Chemical Company, Limited プロピレンオキサイドの製造方法
JP2008081488A (ja) * 2005-12-26 2008-04-10 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
US8273907B2 (en) 2005-12-26 2012-09-25 Sumitomo Chemical Company, Limited Process for producing propylene oxide

Also Published As

Publication number Publication date
CN100384829C (zh) 2008-04-30
EP1602651A4 (en) 2008-07-09
EP1602651A1 (en) 2005-12-07
CN1756749A (zh) 2006-04-05
US7531674B2 (en) 2009-05-12
US20060173200A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
JP5373240B2 (ja) 酸化オレフィン類の一体化製造方法
EP1313722B1 (en) Process for the continuous production of an olefinic oxide
RU2162466C2 (ru) Способ эпоксидирования олефина
JP5073128B2 (ja) エピクロロヒドリン主体生成物及びその生成物の製造方法
CN1062863C (zh) 制备环氧化物的集中方法
WO2004078739A1 (ja) プロピレンオキサイドの製造方法
TWI473795B (zh) 製備環氧乙烷的方法
JP2001516753A (ja) エポキシド製造法
KR20030009354A (ko) 올레핀의 에폭시화 방법
TWI523689B (zh) 使用預處理環氧催化劑製備環氧丙烷之方法
JP5047444B2 (ja) エポキシドの一体化製法
JP5196696B2 (ja) 過酸化物化合物を用いたオキシランの製造方法
US5693834A (en) Integrated process for epoxidation
JP5258135B2 (ja) 反応媒体からオキシランを分離する事を含むオキシランの製造方法
JP4639606B2 (ja) プロピレンオキサイドの製造方法
JP2001522821A (ja) 有機化合物の製造方法
KR101217973B1 (ko) 고정층 반응기에서 벤젠으로부터 페놀을 제조하기 위한 연속 공정
JPH02115136A (ja) ジクロロヒドリンの連続的製造方法
WO2003068763A1 (fr) Procede de recuperation d&#39;oxyde de propylene
JP2004525073A (ja) オレフィンオキシドの連続製造方法
JP2004525073A5 (ja)
JP2007314525A (ja) プロピレンオキサイドの製造方法
WO2004078740A1 (ja) プロピレンオキサイドの製造方法
JPH0374364A (ja) エポキシ化反応液の処理方法
JPH0366666A (ja) ハイドロパーオキシドの回収方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004717234

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006173200

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10547628

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048059118

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004717234

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10547628

Country of ref document: US