WO2004076550A1 - Melange plastique maitre entierement biodegradable et son procede de preparation - Google Patents

Melange plastique maitre entierement biodegradable et son procede de preparation Download PDF

Info

Publication number
WO2004076550A1
WO2004076550A1 PCT/CN2004/000143 CN2004000143W WO2004076550A1 WO 2004076550 A1 WO2004076550 A1 WO 2004076550A1 CN 2004000143 W CN2004000143 W CN 2004000143W WO 2004076550 A1 WO2004076550 A1 WO 2004076550A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
starch
plastic masterbatch
biodegradable plastic
fully biodegradable
Prior art date
Application number
PCT/CN2004/000143
Other languages
English (en)
French (fr)
Other versions
WO2004076550A8 (fr
Inventor
Shaozhong Ding
Original Assignee
Shaozhong Ding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaozhong Ding filed Critical Shaozhong Ding
Priority to JP2006501451A priority Critical patent/JP2006518780A/ja
Priority to EP04713837A priority patent/EP1659149A4/en
Priority to AU2004215733A priority patent/AU2004215733A1/en
Priority to US10/546,856 priority patent/US20090156713A1/en
Publication of WO2004076550A1 publication Critical patent/WO2004076550A1/zh
Publication of WO2004076550A8 publication Critical patent/WO2004076550A8/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/003Crosslinking of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/003Crosslinking of starch
    • C08B31/006Crosslinking of derivatives of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the invention relates to a biodegradable plastic masterbatch and a preparation method thereof, and particularly to a fully biodegradable plastic masterbatch and a preparation method thereof.
  • plastic materials appear on the market, such as: photodegradation, photobiodegradation, photooxidation biodegradation, high starch content biodegradation, high calcium carbonate photooxidation degradation plastic materials, and so on.
  • these plastic materials all contain more or less polyolefin components such as polyethylene, polypropylene, polystyrene, or polyvinyl chloride, which leads to incomplete degradation after disposal, the problem of "white pollution" has not been completely solved.
  • M represents the degree of polymerization.
  • R is a side chain and may be a different group.
  • Etc. enzymes that can be secreted by microorganisms
  • Starch is a natural polymer in nature, and its oxygen chain
  • the ester chain structure is similar and can be completely biodegradable
  • the object of the present invention is to provide a fully biodegradable plastic masterbatch with low unit production cost and a preparation method thereof.
  • the biodegradable plastic masterbatch according to the present invention is used to synthesize various kinds of degradable plastic products.
  • a completely biodegradable plastic masterbatch composition (parts by weight): 100 parts of starch, 3- 12 parts of coupling agent, 5-parts of dispersant 5- 20 parts, polycyclic lactones 30-90 parts, plasticizer 12-35 parts, anti-caking agents 0.2-1.0 parts, chemical lowering agents 3-18 parts, co-oxidants 0.2-1.2 parts;
  • the coupling agent is aluminate or diisocyanate, etc .;
  • the dispersant is glycerin, Corn oil or white oil, etc .
  • the polycyclic lactone when preparing a completely biodegradable engineering plastic masterbatch, the polycyclic lactone is a polycyclic lactone with short repeating unit chain links in the molecular structure, high rigidity, and high hardness (preferably polyethylene Lactide or polylactide);
  • the polycyclic lactone is a polycyclic lactone with a long repeating unit chain
  • the plasticizer is a silane-modified low-molecular wax (CH-PA) or an ethylene-vinyl acetate copolymer (EVA) low-molecular wax;
  • the co-oxidant is a low-temperature thermal oxidant or an unsaturated fatty acid;
  • the chemical lowering agent They are carboxylates of excessive metals;
  • the anticaking agent is sodium aluminosilicate or silicon dioxide.
  • the method for preparing the completely biodegradable plastic masterbatch of the present invention includes the following steps:
  • Starch refinement and dehydration 1 Mix starch, water, and anticaking agent, stir to form a slurry, and pour into a sand mill disperser to refine for 20-30 minutes until the starch particle size is 1-10 ⁇ , refinement temperature Controlled at 40-60 ⁇ , dewater the preliminarily refined starch slurry through the ultrafiltration membrane unit; 2 Remix the starch after initial dehydration with glycerin or corn oil, stir to form a slurry, and pour it into the sand mill disperser to refine 40 -50 min until the starch particle size is ⁇ 1 111, and the refinement temperature is controlled at 50-70 ° C.
  • the secondary refined starch slurry is dehydrated by the ultrafiltration membrane unit to the starch moisture content ⁇ 0.5%;
  • the starch was placed in a centrifuge for proper separation of oil powder;
  • 3 The starch obtained in step 2 and the coupling agent were poured into a high-speed kneader to knead and modify for 20-3 Omin to obtain modified starch 1;
  • step 2 In the modified starch 1 obtained in step 1 are sequentially added: polycyclic lactone, plasticizer, dispersant, co-oxidant, chemical lowering agent kneading and kneading, the kneading time is 20-30 min;
  • Molding Put the material obtained in step 2 into a twin-screw twin-exhaust extrusion granulator to pelletize it to obtain the required plastic master batch.
  • a vacuum-sealed packaging step may be added after granulation to ensure that the product is stored and transported without moisture deterioration, and that the finished product of the final product is easy to process.
  • the molding temperature of step 3 above is controlled at 130-160 ° C (130 ° C for group 1, 135 ° C for group 2, 140 ° C for group 3, and 4 group (145 ° C, 150 ° C in 5 groups, 155 ° C in 6 groups, 160 ° C in 7 groups, and 155 ° C in the head);
  • the above steps 3 forming temperature is controlled at a group of 8 0-l 2 0 ° C ( unit is 8 0 ° C, 2 groups of 8 8 ° C, 3 groups of 93 ° C, 4 groups of 98 ° C, 5 groups of 105 ° C, 112 ° C for 6 groups, 7 groups for 118 ° C, 8 groups is 120 ° C, and the head is 115 ° C).
  • Step 1 The sand disperser is SK80-2A sand disperser made by Jiangyin Kangsheng Machinery Co., Ltd .;
  • the ultrafiltration membrane unit is HDZC-006-1 ultrafiltration membrane unit produced by Tianjin Blue Cross Membrane Technology Co., Ltd .;
  • Step 1 The centrifuge is a GKH1250-N centrifuge manufactured by Hefei Tiangong Technology Development Co., Ltd .;
  • the high-speed kneader is a GL500 / 1600 high-speed kneader produced by Shandong Shuguang Group Machinery Factory;
  • the extruding and granulating unit is a TE-95 twin-screw twin-exhaust extruding and granulating unit produced by Nanjing Keya Company.
  • the twin-screw twin-exhaust extrusion granulation unit was selected mainly because: Polycyclic lactone and starch contain a large number of hydroxyl groups in the molecular structure, which is very easy to adsorb water molecules, and the twin-screw mixing and extrusion can make the two It is well melted and combined together to form an interpenetrating network structure, and then the double exhaust structure can effectively remove water molecules, so as to obtain a dried product, which is beneficial to the processing of the final product.
  • the starch is refined because the particle size of the commonly used starch is relatively large (20-150 ⁇ ), which is not conducive to the combination of starch and polylactone, so the starch is refined to Below 1 ⁇ , the purpose of increasing the surface area with which the polylactone is combined is achieved so that it can be better combined with the polylactone.
  • the advantages of the completely biodegradable plastic masterbatch prepared by using the preparation method of the present invention are: after being used and discarded, it can be quickly degraded by enzymes secreted by microorganisms in a short period of time, and all are converted into water and carbon dioxide, thereby realizing elimination.
  • the cost of plastic masterbatch is reduced by more than 3-4 times, and because starch is a fast-growing, renewable resource and rich in resources, the product of the present invention has good replaceability. The best way to implement the invention
  • the refinement temperature was controlled at 50-70 ⁇ ; (4) dehydrating the secondary refined starch slurry through the aforementioned ultrafiltration membrane unit to a starch moisture content of ⁇ 0.5%; (5) placing the secondary dehydrated starch in a GKH1250-N centrifuge for proper powder separation; (6) the step (5) is made with a coupling agent 3 parts starch was poured into GL500 / 1600 high-speed kneader to knead the modified 2 0-30min; (7) then were added 30 polylactide / parts by 12 parts of plasticizer, 5 parts of dispersant, 0.5 parts of co-oxidant, 3 parts of chemical lowering agent, kneaded and plasticized for 20-30 min; (8) Place the material obtained in step (7) in a twin screw double Exhaust extrusion Granulation and extrusion temperature control at 130-160 ° C (130 ° C for group 1, 135 ° C for group 2, 140 ° C for group 3, 145 ° C for group 4, 150 ° C
  • the refinement temperature is controlled at 40-60 ° C;
  • the preliminary refined starch slurry is dehydrated by the HDZC-006-1 ultrafiltration membrane unit;
  • the starch and glycerol or corn after the initial dehydration 100 parts of oil was remixed, stirred into a slurry, and then poured into the aforementioned sand mill disperser to refine, the refinement time was 40-50 min until the starch particle size was ⁇ 1 ⁇ , and the refinement temperature was controlled at 50-70 ° C;
  • (4) Dehydrate the secondary refined starch slurry through the aforementioned ultrafiltration membrane unit to the water content of starch ⁇ 0.5%;
  • (6) Pour 4 parts of the starch and coupling agent obtained in step (5) into a GL500 / 1600 high-speed kneader to knead and modify for 20-30 minutes;
  • the refining time is 40-50 min until the starch particle size is ⁇ 1 111, and the refining temperature is controlled at 50-70'C; (4) the second-refined starch slurry is dehydrated to the starch moisture content by the aforementioned ultrafiltration membrane unit ⁇ 0.5%; (5) Put the dehydrated starch in a GKH1250-N centrifuge for proper oil powder separation; (6) Pour 8 parts of the starch coupling agent prepared in step (5) into GL500 / 1600 Knead and modify in high speed kneader for 20-30min; (7) Then add 50 parts of polycaprolactone, 24 parts of plasticizer, 10 parts of dispersant, 1.0 part of co-oxidant, 5 parts of chemical lowering agent, and knead the plastic The time is 20-30 min; (8) The material obtained in step (7) is granulated in an extrusion granulation unit, and the extrusion temperature is controlled at 80-120 ° C (80 ° C for the first group of the unit,
  • the refinement time is 20-30 min to the starch particle size is 1-10 ⁇ .
  • the refinement temperature is controlled at 40-60 ° C;
  • the preliminary refined starch slurry is dehydrated by the HDZC-006-1 ultrafiltration membrane unit;
  • the starch and glycerol or corn oil after the initial dehydration are 100 Parts are mixed and stirred into a slurry, and then poured into the aforementioned sand mill disperser to refine, the refinement time is 40-50 min to the starch particle size ⁇ !
  • the refinement temperature is controlled at 50-70 ° C;
  • the secondary refined starch slurry is dehydrated to the water content of starch ⁇ 0.5% by the aforementioned ultrafiltration membrane unit;
  • the starch after secondary dehydration is placed in a GKH1250-N centrifuge for proper separation of oil powder;
  • ( 6) Pour 12 parts of the starch and coupling agent obtained in step (5) into a GL500 / 1600 high-speed kneader to knead and modify for 20-30min; (7) Then add 90 parts of poly ⁇ -hydroxybutyl ester, 35 parts of plasticizer, 20 parts of dispersant, 1.2 parts of co-oxidant, 18 parts of chemical lowering agent, and knead for 30-30 minutes;
  • step bran (7) Put the material produced by step bran (7) into an extrusion granulation unit to granulate.
  • the extrusion temperature is controlled at 80-120 ° C (80 ° C for group 1 and 88 ° C for group 2). (Group 93 ° C, group 4 98 ° C, group 5 105 ° C, group 6 112 ° C, group 7 118 ° C, group 8 120 ° C, handpiece 115 ° C),
  • the pellets are vacuum-sealed, and the pellets can be used to prepare fully biodegradable film plastics.
  • the degree of degradation is measured using the ISO14855 test method: An experimental method to determine the aerobic biodegradability and structural collapse performance of plastic materials under controlled composting conditions-a method to analyze the amount of CO 2 produced.
  • IS014855 stipulates: Use cellulose that can be completely biodegradable as a reference material for testing the degradation rate of plastic materials. After 45 days of testing, the biodegradation rate of the reference material is greater than 70%, which means complete degradation.
  • the degradation rate of existing starch-based biodegradable plastic materials is low.-National industry standard QB / T2461-1999 (degradable polyethylene film for packaging) stipulates that the degradation rate is not less than 20%. Technical requirements for environmental labeling products HJBI 12-2000 Products) The prescribed degradation rate is not less than 15%. Therefore, it can be seen from the data in the above table that the plastic masterbatch of the present invention can be completely degraded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

一种可完全生物降解塑料母料及其制备方法 技术领域
本发明涉及一种生物降解塑料母料及其制备方法, 特别是涉 及一种可完全生物降解塑料母料及其制备方法。 背景技术
已知市面上出现的各种可降解塑料材料, 如: 光降解、 光生 物降解、 光氧生物降解、 高淀粉含量生物降解、 高碳酸钙光氧降 解塑料材料等。 但因这些塑料材料均含有或多或少的聚乙烯、 聚 丙烯、 聚苯乙烯或聚氯乙烯等聚烯烃成份, 以致废弃后降解不彻 底, "白色污染" 问题未得到完全解决。
近年来, 《聚己内酯的特性介绍及其应用前景》 (中国科学院 新疆分院, 新疆第四届学术年会学术报告, www.xjb.ac.cn)、 《生 物可降解塑料-聚羟基脂肪酸酯(PHA)的生产技术研究》 ( 《中国塑 协降解塑料专委会成立大会的论文集》, 2001 年 11 月)、 《微生物 合成聚羟基脂肪酸酯高分子母料》 ( 《降解塑料通讯》, 2002年 12 月 20 日, 33期)等文献资料披露: 带有酯基的聚环内酯塑料母料 (分子结构式
Figure imgf000002_0001
0
如: 聚乙交酯(分子式 -C2H202- , 分子结构式 G— CH
CH3
聚丙交酯(分子式: "C3H4O2- 分子结构式: -+0— C-CH )、 聚己内酯(分子式
Figure imgf000002_0002
o
分子结构式 -O— C— CH2CH2CH2CH2CH2- )、 聚羟 其中
Figure imgf000003_0001
Μ表示聚 合度。 R为侧链, 可为不同基团。 )等, 可以被微生物分泌的酶迅
0
速降解,其主链上的酯基 一 0—一 能迅速断裂生成二氧化碳和 水, 达到完全生物降解。 但因这类母料的单位生产成本高(6-8 美 元 /公斤), 且是非速生资源, 在市场上难以推广。
淀粉是自然界的天然高分子, 其 氧链节
(分子式 -C6H10O5-t— , 分子结构式: ) , 和聚
Figure imgf000003_0002
酯链节结构相似, 可完全生物降解 发明的公开
本发明的目的旨在提供一种单位生产成本较低的可完全生物 降解的塑料母料及其制备方法。 本发明所述的可完全生物降解的 塑料母料用作合成各类可降解塑料制品。
为了实现上述目的, 本发明的技术方案是以如下方案实现的: 一种可完全生物降解的塑料母料组成为(重量份): 淀粉 100 份, 偶联剂 3- 12份, 分散剂 5-20份, 聚环内酯 30-90份, 增塑剂 12-35份,抗结剂 0.2- 1.0份,化学促降剂 3- 18份,助氧化剂 0.2- 1.2 份; 所述偶联剂为铝酸酯或二异氰酸酯等; 所述分散剂为甘油、 玉米油或白油等; 当制备可完全生物降解的工程塑料母料时所述聚环内酯为分 子结构中重复单元链节短、 刚性大、 硬度高的聚环内酯(优选为聚 乙交酯或聚丙交酯); 当制备可完全生物降解的薄膜类塑料母料时 所述聚环内酯为分子结构中重复单元链节长、 柔性大、 韧性强的 聚环内酯,(优选为聚己内酯或聚羟基脂肪酸酯(优选为聚 β-羟基丁
0
酯(分子结构式 -0— C—— CH2— CH-
Figure imgf000004_0001
CH3
所述增塑剂为硅烷改性低分子蜡(CH-PA)或乙烯 -醋酸乙烯共 聚 (EVA)低分子蜡; 所述助氧化剂为低温热氧化剂或不饱和脂肪酸等; 所述化学促降剂为过度金属的羧酸盐类; 所述抗结剂为硅铝酸钠或二氧化硅等。 在本发明的可完全生物降解塑料母料的上述组成中, 加入增 塑剂、 分散剂是为了降低聚环内酯的塑化温度, 使之能和淀粉较 好地混炼结合。 在本发明的可完全生物降解塑料母料的上述组成中, 因为淀 粉分子链节上有三个羟基为亲水基团, 而聚环内酯只有在链尾才 有这样的基团, 为了二者能够很好地结合, 所以还需加入偶联剂 进行改性。
本发明的可完全生物降解塑料母料的制备方法包括以下步 骤:
1. 淀粉细化、 脱水: ①将淀粉、 .水、 抗结剂混合、 搅拌成浆, 倒入砂磨分散机中细化 20-30 min至淀粉颗粒粒径为 1-10μπι, 细 化温度控制在 40-60Ό, 将初步细化的淀粉浆液经超滤膜机组脱 水; ②将初次脱水后的淀粉与甘油或玉米油再混合、 搅拌成浆, 再次倒入砂磨分散机中细化 40-50 min至淀粉颗粒粒径<1 111, 细 化温度控制在 50-70°C , 将二次细化的淀粉浆液经超滤膜机组脱水 至淀粉含水量 < 0.5 %; 将二次脱水后的淀粉置于离心机内作油粉适 量分离; ③将步骤②所得淀粉与偶联剂倒入高速捏合机中捏合改 性 20-3 Omin , 制得变性淀粉 1;
2. 混炼: 在步驟 1 中制得的变性淀粉 1 中依次加入: 聚环内 酯、 增塑剂、 分散剂、 助氧化剂、 化学促降剂捏合塑炼, 捏合时 间为 20-30 min;
3. 成型: 将步骤 2所制得物料置于双螺杆双排气挤出造粒机 组造粒, 得到所需塑料母料。
在上述可完全生物降解塑料母料的制备方法的成型步骤 3中, 还可以在造粒后增加抽真空密封包装步骤, 以确保产品储存、 运 输不致受潮变质, 确保终极产品的成品加工容易进行。
当制备可完全生物降解的工程塑料母料时, 上述步骤 3 成型 温度控制在 130-160°C (机组 1 组为 130°C , 2组为 135°C , 3 组为 140°C , 4组为 145°C, 5组为 150°C , 6组为 155°C , 7组为 160°C, 机头为 155°C); 当制备可完全生物降解的薄膜类塑料母料时, 上 述步骤 3成型温度控制在 80-l20°C (机组 1组为 80°C ,2组为 88°C, 3 组为 93°C , 4组为 98°C , 5组为 105°C , 6组为 112°C , 7組为 118 °C , 8组为 120 °C , 机头为 115 °C )。
步驟 1 所述砂磨分散机为江阴 市康盛机械有限公司 产 SK80-2A砂磨分散机;
步骤 1 所述超滤膜机组为天津蓝十字膜技术有限公司产 HDZC-006- 1超滤膜机组;
步骤 1 所述离 心机为合肥天公科技开发有限公司 产 GKH1250-N离心机;
步骤 2 所述高速捏合机为 山 东曙光集团公司机械厂产 GL500/1600高速捏合机;
步骤 3 所述挤出造粒机组为南京科亚(KEYA)公司生产的 TE-95型双螺杆双排气挤出造粒机组。选用双螺杆双排气挤出造粒 机组主要是因为: 聚环内酯和淀粉的分子结构上均含有大量羟基, 极易吸附水分子, 而经双螺杆混炼挤出, 则可使二者很好地熔融、 结合在一起, 形成互穿网络结构, 再经双排气结构则可将水分子 有效地清除干净, 以便得到干燥的制品, 有利于终极产品的加工。
上述其余过程均为一般必须过程, 无特别要求。
在本发明的可完全生物降解塑料母料的制备方法中, 淀粉细 化是因为常用淀粉的粒径较大( 20 - 150 μηι ) ,不利于淀粉同聚环内酯 结合, 所以细化淀粉至 Ι μηι以下, 达到增加其同聚环内酯结合的 表面积的目的, 以便其更好地同聚环内酯结合。
在本发明的可完全生物降解塑料母料的制备方法中, 因淀粉 含有大量的亲水基团, 含水量较高, 不利于制品成型, 为此, 淀 粉的脱水至关重要。
采用本发明制备方法制得的可完全生物降解塑料母料的优点 是: 在使用废弃后, 因能在短时间内百分之百被微生物分泌的酶 迅速降解, 全部转化成水和二氧化碳, 从而真正实现消除 "白色 污染", 与环境同化; 因淀粉在本发明所述制品的组份含量高, 而 淀粉价格低廉, 使本发明所述制品的单位成本低(约为 1.5美元), 较已有聚环内酯塑料母料成本降低 3-4 倍以上, 又因为淀粉是速 生、 可再生资源, 资源丰富, 使本发明所述制品的可替代性好。 为实施发明的最佳方式
以下将以实施例的方式详细描述本发明的实施过程。 在以下 各实施例中, 如无特别声明, 所述组份的份数均为重量份, 每重 量份为 lkg。 实施例 1
(1)将淀粉 100份、 水 200份、 抗结剂 0.3份混合、 搅拌成浆, 倒入 SK80-2A砂磨分散机中细化, 细化时间为 20-30 min至淀粉 颗粒粒径为 1-10μηι, 细化温度控制在 40-60 °C; (2)将初步细化的 淀粉浆液经 HDZC-006-1超滤膜机组脱水;( 3 )将初次脱水后的淀粉 与甘油或玉米油 100 份再混合、 搅拌成浆, 再次倒入前述砂磨分 散机中细化, 细化时间为 40-50 min至淀粉颗粒粒径<1 1!1, 细化 温度控制在 50-70Ό; (4)将二次细化的淀粉浆液经前述超滤膜机组 脱水至淀粉含水量 <0.5%; (5)将二次脱水后 的 淀粉置于 GKH1250-N离心机内作油粉适量分离; (6)将步骤 (5)中制得的淀粉 与偶联剂 3份倒入 GL500/1600高速捏合机中捏合改性 20-30min; (7)再依次加入聚丙交酯 30/份、 增塑剂 12份、 分散剂 5份、 助氧 化剂 0.5份、 化学促降剂 3份, 捏合塑炼, 时间为 20-30 min; (8) 将步驟 (7)所制得物料置于双螺杆双排气挤出造粒机组造粒, 挤出 温度控制在 130-160°C (机组 1 组为 130°C , 2组为 135°C , 3组为 140 °C , 4组为 145 °C , 5组为 150°C , 6组为 155 °C , 7组为 160°C , 机头为 155°C), 所得粒料抽真空密封, 该粒料可用于制备可完全 生物降解工程塑料。 实施例 2
(1)将淀粉 100份、 水 200份、 抗结剂 0.2份混合、 搅拌成浆, 倒入 SK80-2A砂磨分散机中细化, 细化时间为 20-30 min至淀粉 颗粒粒径为 1-10μηι, 细化温度控制在 40-60°C; (2)将初步细化的 淀粉浆液经 HDZC-006-1超滤膜机组脱水;(3)将初次脱水后的淀粉 与甘油或玉米油 100 份再混合、 搅拌成浆, 再次倒入前述砂磨分 散机中细化, 细化时间为 40-50 min至淀粉颗粒粒径 <1 μπι , 细化 温度控制在 50-70°C; (4)将二次细化的淀粉浆液经前述超滤膜机組 脱水至淀粉含水量 <0.5%; (5)将二次脱水后 的 淀粉置于 GKH 1250-N离心机内作油粉适量分离 ; (6)将步骤 (5)中制得的淀粉 与偶联剂 4份倒入 GL500/1600高速捏合机中捏合改性 20-30min; (7)再依次加入聚乙交酯 40份、 增塑剂 16份、 分散剂 8份、 助氧 化剂 0.2份、 化学促降剂 6份, 捏合塑炼, 时间为 20-30 min; (8) 将步骤 ( 7 )所制得物料置于双螺杆双排气挤出造粒机组造粒, 挤出 温度控制在 130-160°C (机组 1 组为 130°C, 2组为 135°C , 3组为 140 °C , 4组为 145 °C , 5组为 150°C , 6组为 155 °C , 7组为 160°C , 机头为 155°C), 所得粒料抽真空密封, 该粒料可用于制备可完全 生物降解工程塑料。 实施例 3
(1)将淀粉 100份、 水 200份、 抗结剂 0.9份混合、 搅拌成浆, 倒入 SK80-2A矽、磨分散机中细化, 细化时间为 20-30 min至淀粉 颗粒粒径为 1-10μιη, 细化温度控制在 40-60°C; (2)将初步细化的 淀粉浆液经 HDZC-006-1超滤膜机组脱水;(3)将初次脱水后的淀粉 与甘油或玉米油 100 份再混合、 搅拌成浆, 再次倒入前述砂磨分 散机中细化, 细化时间为 40-50 min至淀粉颗粒粒径<1 111, 细化 温度控制在 50-70'C; (4)将二次细化的淀粉浆液经前述超滤膜机组 脱水至淀粉含水量 <0.5%; (5)将二次脱水后 的 淀粉置 于 GKH1250-N离心机内作油粉适量分离; (6)将步骤 (5)中制得的淀粉 偶联剂 8份倒入 GL500/1600高速捏合机中捏合改性 20-30min; (7)再依次加入聚已内酯 50份、 增塑剂 24份、 分散剂 10份、 助氧 化剂 1.0份、 化学促降剂 5份, 捏合塑炼, 时间为 20-30 min; (8) 将步骤 ( 7 )所制得物料置于挤出造粒机组造粒, 挤出温度控制在 80-120 °C (机组 1组为 80°C ,2组为 88°C ,3组为 93 Ό , 4组为 98°C , 5组为 105°C , 6组为 112°C, 7组为 118°C , 8组为 120 °C , 机头 为 115°C), 所得粒料抽真空密封, 该粒料可用于制备可完全生物 降解薄膜塑料。
实施例 4
将淀粉 100份、 水 200份、 抗结剂 1.0份混合、 搅拌成浆, 倒入 SK80-2A砂磨分散机中细化, 细化时间为 20-30 min至淀粉 颗粒粒径为 1-10μπι, 细化温度控制在 40-60°C; (2)将初步细化的 淀粉浆液经 HDZC-006-1超滤膜机組脱水;(3)将初次脱水后的淀粉 与甘油或玉米油 100 份再混合、 搅拌成浆, 再次倒入前述砂磨分 散机中细化, 细化时间为 40-50 min至淀粉颗粒粒径<^!11, 细化 温度控制在 50-70 °C; (4)将二次细化的淀粉浆液经前述超滤膜机组 脱水至淀粉含水量 <0.5%; (5)将二次脱水后 的 淀粉置 于 GKH1250-N离心机内作油粉适量分离; (6)将步骤 (5)中制得的淀粉 与偶联剂 12份倒入 GL500/1600高速捏合机中捏合改性 20-30min; (7)再依次加入聚 β-羟基丁酯 90份、 增塑剂 35份、 分散剂 20份、 助氧化剂 1.2份、化学促降剂 18份, 捏合塑炼, 时间为 20-30 min;
(8)将步糠 (7)所制得物料置于挤出造粒机组造粒, 挤出温度控制在 80-120°C (机组 1组为 80°C ,2组为 88°C ,3组为 93 °C ,4组为 98°C , 5組为 105 °C , 6组为 112°C, 7组为 118°C , 8组为 120°C , 机头 为 115°C), 所得粒料抽真空密封, 该粒料可用于制备可完全生物 降解薄膜塑料。
所得制品降解性能检测结果见下表。
Figure imgf000010_0001
降解度采用 ISO14855的检测方法测定: 测定塑料材料在可控 堆肥条件下的需氧生物降解性能及结构崩坏性能的实验方法-分 析 C02产生量的方法。 IS014855 中规定: 用能完全生物降解的纤 维素作为测试塑料材料降解率的参比材料, 其测试实验 45天后, 参比材料的生物降解率大于 70%, 即为完全降解。
现有淀粉型生物降解塑料材料的降解率较低, -国家行业标准 QB/T2461-1999(包装用降解聚乙烯膜)规定降解率不小于 20%, 环 境标志产品技术要求 HJBI 12-2000(包装制品)规定降解率不小于 15%。 故, 从以上表格中的数据可以看出, 本发明的塑料母料是可 以完全降解的。

Claims

权利要求
1 . 一种可完全生物降解的塑料母料, 该塑料母料通过将 100 份淀粉和 0.2- 1 .0份抗结剂经两次细化、脱水后与 3- 12份偶联剂捏 合得到变性淀粉, 然后与 5-20份分散剂, 30-90份聚环内酯, 12-35 份增塑剂, 3- 1 8份化学促降剂, 0.2- 1 .2份助氧化剂一起混炼、 成 型得到, 其中份数均按重量份计。
2. 根据权利要求 1所述可完全生物降解的塑料母料, 当制备 可完全生物降解的工程塑料母料时, 其中聚环内酯为分子结构中 重复单元链节短、 刚性大、 硬度高的聚环内酯。
3. 根据权利要求 2所述可完全生物降解的塑料母料, 其中聚 环内酯为聚丙交酯或聚乙交酯。
4. 根据权利要求 1所述可完全生物降解的塑料母料, 当制备 可完全生物降解的薄膜类塑料母料时, 其中聚环内酯为分子结构 中重复单元链节长、 柔性大、 韧性强的聚环内酯。
5. 根据杈利要求 4所述可完全生物降解的塑料母料, 其中聚 环内酯为聚己内酯或聚羟基脂肪酸酯。
6. 根据权利要求 5所述可完全生物降解的塑料母料, 其中聚 羟基脂肪酸酯为聚 β-羟基丁酯。
7. 根据权利要求 3所述可完全生物降解的塑料母料, 其中按 重量份计, 使用 100份淀粉, 3-4份偶联剂, 5-8份分散剂, 30-40 份聚丙交酯或聚乙交酯, 12- 16份增塑剂, 0.2-0.3 份抗结剂, 3-6 份化学促降剂, 0.2-0.5份助氧化剂。
8. 根据权利要求 5或 6所述可完全生物降解的塑料母料, 其 中按重量份计,使用 100份淀粉, 8- 12份偶联剂, 10-20份分散剂, 50-90份聚已内酯或聚 β-羟基丁酯, 24-35份增塑剂, 0.9- 1 .0份抗 结剂, 5-18份化学促降剂, 1.0-1.2份助氧化剂。
9. 一种可完全生物降解塑料母料的制备方法,包括以下步驟:
(1)淀粉细化、 脱水: ①将淀粉、 水、 抗结剂混合、 搅拌成浆, 倒入 -磨分散机中细化 20-30' min至淀粉颗粒粒径为 1-10μπι, 细 化温度控制在 40-60°C , 将初步细化的淀粉浆液经超滤膜机组脱 水; ②将初次脱水后的淀粉与甘油或玉米油再混合、 搅拌成浆, 再次倒入砂磨分散机中细化 40-50 min至淀粉颗粒粒径<1 111', 细 化温度控制在 50-70°C , 将二次细化的淀粉浆液经超滤膜机組脱水 至淀粉含水量 <0.5%; 将二次脱水后的淀粉置于离心机内作油粉适 量分离; ③将步骤②所得淀粉与偶联剂倒入高速捏合机中捏合改 性 20-3 Omin , 制得变性淀粉 1;
(2)混炼: 在步驟(1)中制得的变性淀粉 1 中依次加入: 聚环内 酯、 增塑剂、 分散剂、 助氧化剂、 化学促降剂捏合塑炼, 捏合时 间为 20-30 min;
(3)成型: 将步骤(2)所制得物料置于双螺杆双排气挤出造粒机 组造粒, 得到所需塑料母料。
10. 根据权利要求 9 所述可完全生物降解塑料母料的制备方 法, 其中成型步骤(3)中, 还可以在造粒后增加抽真空密封包装步 骤。
11. 根据权利要求 9 所述可完全生物降解塑料母料的制备方 法, 当制备可完全生物降解的工程塑料母料时, 上述步驟(3)成型 温度控制在 130-160°C。
12. 根据权利要求 9 所述可完全生物降解塑料母料的制备方 法, 当制备可完全生物降解的薄膜类塑料母料时, 上述步骤(3)成 型温度控制在 80-120°C。
PCT/CN2004/000143 2003-02-25 2004-02-24 Melange plastique maitre entierement biodegradable et son procede de preparation WO2004076550A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006501451A JP2006518780A (ja) 2003-02-25 2004-02-24 完全に生物分解可能なプラスチック原料及びその製造方法
EP04713837A EP1659149A4 (en) 2003-02-25 2004-02-24 COMPLETELY BIODEGRADABLE MASTER PLASTIC MIXTURE AND PROCESS FOR PREPARING THE SAME
AU2004215733A AU2004215733A1 (en) 2003-02-25 2004-02-24 A fully-biodegradable plastic masterbatch and its preparation process
US10/546,856 US20090156713A1 (en) 2003-02-25 2004-08-24 Totally Biodgradable Plastic Master Batch & Its Preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03105343.2 2003-02-25
CN03105343.2A CN1230466C (zh) 2003-02-25 2003-02-25 一种可完全生物降解塑料母料及其制备方法

Publications (2)

Publication Number Publication Date
WO2004076550A1 true WO2004076550A1 (fr) 2004-09-10
WO2004076550A8 WO2004076550A8 (fr) 2005-04-14

Family

ID=32913706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000143 WO2004076550A1 (fr) 2003-02-25 2004-02-24 Melange plastique maitre entierement biodegradable et son procede de preparation

Country Status (6)

Country Link
US (1) US20090156713A1 (zh)
EP (1) EP1659149A4 (zh)
JP (1) JP2006518780A (zh)
CN (1) CN1230466C (zh)
AU (1) AU2004215733A1 (zh)
WO (1) WO2004076550A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338132C (zh) * 2005-02-28 2007-09-19 成都新柯力化工科技有限公司 全生物分解组合物及其制备方法和用途
US20110183143A1 (en) * 2008-05-29 2011-07-28 Arkema France Pvc composition prepared from renewable raw materials used for decorating an automobile interior

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010048176A1 (en) * 1995-04-14 2001-12-06 Hans G. Franke Resilient biodegradable packaging materials
CN1326928C (zh) * 2004-12-20 2007-07-18 陈明忠 淀粉类生物降解塑料母料及其制备方法
CN100335544C (zh) * 2004-12-20 2007-09-05 陈明忠 可生物降解塑料片材及其制备方法
CN102167890A (zh) 2006-07-28 2011-08-31 比澳格(香港)有限公司 适用于制备可生物降解的聚合物组合物的母料及其制备方法
PT104846A (pt) * 2009-11-26 2011-05-26 Cabopol Ind De Compostos S A Misturas polim?ricas biocompost?veis
CN102604164A (zh) * 2012-03-06 2012-07-25 浙江天禾生态科技有限公司 一种可完全生物降解塑料膜的母料及其制备方法
US20130253102A1 (en) * 2012-03-26 2013-09-26 Sung-Yuan LIU Biodegradable plastic material
CN103012857A (zh) * 2012-12-06 2013-04-03 湖南工业大学 一种基于微晶纤维素和聚己内酯增强的淀粉基全生物降解共混材料及其制备方法
CN104356621A (zh) * 2014-11-19 2015-02-18 深圳市中纺滤材无纺布有限公司 一种可生物降解塑料蜂窝芯及其加工工艺
CN104494261B (zh) * 2014-12-11 2016-08-17 昆山市张浦彩印厂 可降解evoh高阻隔复合薄膜
CN105904778A (zh) * 2016-04-28 2016-08-31 句容市鼎盛纸箱包装有限公司 一种可降解阻燃蜂窝纸板的制备方法
CN106366569A (zh) * 2016-08-29 2017-02-01 芜湖众力部件有限公司 一种可降解的耐低温性佳的改性塑料及其制作方法
CN107083045B (zh) * 2017-05-25 2020-01-17 句容市兴武包装有限公司 一种以蓝藻为基料制备可降解包装薄膜的方法
EP3676316B1 (en) * 2017-08-31 2021-10-06 Carbios Liquid composition comprising biological entities and uses thereof
CN114933791A (zh) * 2022-06-30 2022-08-23 深圳市赛卓塑业有限公司 一种环保型可降解快餐盒材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077966A (zh) * 1991-08-01 1993-11-03 诺瓦蒙特股份公司 含淀粉和热塑性树脂的组合物
JPH06313063A (ja) * 1993-04-30 1994-11-08 Tsutsunaka Plast Ind Co Ltd 生分解性を有する澱粉系組成物
US5444107A (en) * 1991-08-08 1995-08-22 Mitsui Toatsu Chemicals, Inc. Degradable polymer composition
JPH09194692A (ja) * 1996-01-11 1997-07-29 Daicel Chem Ind Ltd 分解性樹脂組成物
US5703160A (en) * 1992-07-15 1997-12-30 Solvay S.A. Biodegradable moulding compositions comprising a starch, a biodegradable polyester, and a salt of a hydroxycarboxylic acid
CN1227568A (zh) * 1996-08-09 1999-09-01 生物技术生物学自然包装有限公司 可热塑性加工的淀粉或淀粉衍生物聚合物混合物
KR20010100067A (ko) * 2001-08-30 2001-11-14 김권 전분이 결합된 생분해성 수지 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539541B1 (en) * 1991-05-03 1997-07-09 NOVAMONT S.p.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
US5256711A (en) * 1991-10-04 1993-10-26 Director-General Of Agency Of Industrial Science Starch-containing biodegradable plastic and method of producing same
DE4237535C2 (de) * 1992-11-06 2000-05-25 Biotec Biolog Naturverpack Biologisch abbaubare Polymermischung, ein Verfahren und eine Folie
JP3773335B2 (ja) * 1996-10-04 2006-05-10 ダイセル化学工業株式会社 生分解性脂肪族ポリエステル樹脂−でん粉組成物
JP2961135B2 (ja) * 1997-01-10 1999-10-12 工業技術院長 生分解性プラスチック組成物及びその製造方法
JP2001072202A (ja) * 1999-09-03 2001-03-21 Daicel Chem Ind Ltd コンポスト化用網状ゴミ袋
US6573340B1 (en) * 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials
CN1363625A (zh) * 2001-11-15 2002-08-14 天津丹海股份有限公司 生物降解树脂的生产方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1077966A (zh) * 1991-08-01 1993-11-03 诺瓦蒙特股份公司 含淀粉和热塑性树脂的组合物
US5444107A (en) * 1991-08-08 1995-08-22 Mitsui Toatsu Chemicals, Inc. Degradable polymer composition
US5703160A (en) * 1992-07-15 1997-12-30 Solvay S.A. Biodegradable moulding compositions comprising a starch, a biodegradable polyester, and a salt of a hydroxycarboxylic acid
JPH06313063A (ja) * 1993-04-30 1994-11-08 Tsutsunaka Plast Ind Co Ltd 生分解性を有する澱粉系組成物
JPH09194692A (ja) * 1996-01-11 1997-07-29 Daicel Chem Ind Ltd 分解性樹脂組成物
CN1227568A (zh) * 1996-08-09 1999-09-01 生物技术生物学自然包装有限公司 可热塑性加工的淀粉或淀粉衍生物聚合物混合物
KR20010100067A (ko) * 2001-08-30 2001-11-14 김권 전분이 결합된 생분해성 수지 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1659149A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338132C (zh) * 2005-02-28 2007-09-19 成都新柯力化工科技有限公司 全生物分解组合物及其制备方法和用途
US20110183143A1 (en) * 2008-05-29 2011-07-28 Arkema France Pvc composition prepared from renewable raw materials used for decorating an automobile interior

Also Published As

Publication number Publication date
CN1524897A (zh) 2004-09-01
EP1659149A4 (en) 2007-06-27
WO2004076550A8 (fr) 2005-04-14
AU2004215733A1 (en) 2004-09-10
JP2006518780A (ja) 2006-08-17
US20090156713A1 (en) 2009-06-18
EP1659149A1 (en) 2006-05-24
CN1230466C (zh) 2005-12-07

Similar Documents

Publication Publication Date Title
WO2004076550A1 (fr) Melange plastique maitre entierement biodegradable et son procede de preparation
US20200291225A1 (en) Low cost bio-based full degradable film and preparation method thereof
CN102108196B (zh) 一种聚乳酸可降解材料的制备方法
CN108456407A (zh) 一种可降解包装材料及其制备方法
CN102604164A (zh) 一种可完全生物降解塑料膜的母料及其制备方法
KR100859028B1 (ko) 완전 생분해성 플라스틱 마스터 배치 및 그 제조방법
CN108929527A (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN1640919A (zh) 淀粉类可生物降解塑料母料及其制备方法
CN112778723A (zh) 一种淀粉基可降解吸管材料及其制备方法
CN101205314A (zh) 一种热塑性淀粉材料的制备方法
CN113881111A (zh) 一种用于塑料填充的热塑性玉米淀粉及其制备方法
CN111808332A (zh) 一种可堆肥快速降解的淀粉基塑料及制备方法
CN111978599A (zh) 一种二氧化硅溶胶改进的耐热性淀粉降解塑料及制备方法
CN113087987A (zh) 一种改性稻壳粉/聚乙烯木塑复合材料及其制备方法
CN110922703A (zh) 基于pva淀粉的母粒组合物及其母粒和应用
CN111015996A (zh) 基于pva/淀粉的造粒方法及其制得母粒和应用
CN110628088A (zh) 一种高淀粉含量全生物降解母粒及其制备方法
CN115819815B (zh) 木质素/淀粉/pbat复合薄膜材料及其制备方法和应用
CN114106358B (zh) 改性生物基材料、复合材料及其原料、制备方法和应用
CN113831639B (zh) 一种环保纳米络合物发泡剂及其制备方法
CN117229604A (zh) 一种可降解塑料组合物及其制备的可降解塑料吸管
CN116144191A (zh) 一种利用植物木质纤维制备的可降解塑料及其制备方法
CN111100431A (zh) 颗粒状全降解环保淀粉和变性淀粉母粒及其生产方法
CN112175247A (zh) 一种微细淀粉-热塑性无机粉体降解塑料母料及制备方法
CN113667215A (zh) 一种可降解塑料辅助成型聚丙烯发泡卷材的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page

Free format text: UNDER (57) PUBLISHED ABSTRACT IN ENGLISH REPLACED BY CORRECT ABSTRACT

CFP Corrected version of a pamphlet front page

Free format text: UNDER (74) PUBLISHED NAME IN CHINESE REPLACED BY CORRECT NAME

WWE Wipo information: entry into national phase

Ref document number: 2004713837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006501451

Country of ref document: JP

Ref document number: 1020057015687

Country of ref document: KR

Ref document number: 2004215733

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004215733

Country of ref document: AU

Date of ref document: 20040224

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004215733

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057015687

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004713837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10546856

Country of ref document: US