WO2004076100A1 - 焼結方法及び装置 - Google Patents

焼結方法及び装置 Download PDF

Info

Publication number
WO2004076100A1
WO2004076100A1 PCT/JP2003/016155 JP0316155W WO2004076100A1 WO 2004076100 A1 WO2004076100 A1 WO 2004076100A1 JP 0316155 W JP0316155 W JP 0316155W WO 2004076100 A1 WO2004076100 A1 WO 2004076100A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered
sintering
mold
electrode
current
Prior art date
Application number
PCT/JP2003/016155
Other languages
English (en)
French (fr)
Inventor
Shuji Tada
Zheng Ming Sun
Hitoshi Hashimoto
Toshihiko Abe
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003046661A external-priority patent/JP4119977B2/ja
Priority claimed from JP2003046690A external-priority patent/JP4119978B2/ja
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003289384A priority Critical patent/AU2003289384A1/en
Priority to US10/541,641 priority patent/US20060104849A1/en
Publication of WO2004076100A1 publication Critical patent/WO2004076100A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding

Definitions

  • the heating portion of the material to be sintered such as metal or ceramic is limited to a specific position
  • direct pressure conduction is performed by moving the material to be sintered and the heating portion relative to each other for a short time.
  • Method and apparatus for sintering materials The present invention provides a manufacturing method and apparatus suitable for obtaining a sintered body having a non-uniform cross section of a long rod material.
  • the manufacturing time can be largely shortened as compared with the conventional sintering method by the atmosphere heating.
  • an electrode for current application heating is disposed at both ends in the axial direction of the material to be sintered, and a method of simultaneously heating and pressing is adopted. 0 0 0 2 3 9 7 0 7).
  • the calorific value at the contact portion between the two in the energization path is particularly large as compared with the other portions of the powder to be sintered, so the sintered material from the electrode contact surface A temperature gradient is generated toward the central part (at a distance from the electrode).
  • the electrical resistance changes due to the difference in area of the cross section perpendicular to the current passage.
  • the calorific value changes and a uniform sintered body can not be obtained. Therefore, it is difficult to produce a sintered product having a nonuniform cross section such as a rod material having a certain length or more and a stepped member by a conventional direct current pressure sintering method into a product having a uniform material. There was a problem that.
  • the present invention provides a sintering method and apparatus having uniform quality of sintered body and excellent sinterability, even for a long rod or a sintered body having an uneven cross section. It is provided.
  • the heating portion (position) of the material to be sintered is limited (restricted). It has been found that this object can be achieved by carrying out sintering while relatively sequentially moving
  • the present invention is based on the above findings.
  • a connecting terminal plate of an electrode having a space closely attached to the periphery of the mold and freely moving on a single axis is provided, and the conductive portion is moved and sintered by the connecting terminal plate.
  • the present invention is also based on the above findings.
  • Sintering apparatus characterized in that it is equipped with a liftable ram that can be controlled
  • a sintering apparatus characterized by comprising a load-controllable pressure ram for pressing the sintered powder material disposed in the cylindrical mold from one end of the mold. 1 1.
  • FIG. 1 is a schematic explanatory view showing an example of an apparatus used in a method for manufacturing a long sintered body by fixing the raw material of the present invention and moving the electrode
  • FIG. 2 shows the electrode and die of the present invention
  • Fig. 3 is a schematic explanatory view showing an example of an apparatus used in a method for producing a long sintered body by fixing a powder and moving a powder material for sintering
  • Fig. 3 the long sintered body of the present invention
  • Schematic explanatory drawing which shows an example of the apparatus used for manufacture
  • FIG. 4 is explanatory drawing which shows the temperature distribution measuring method of a type
  • FIG. 5 Electrode connection terminal board FIG.
  • FIG. 6 shows the result of temperature distribution measurement at the time of current passing through
  • FIG. 6 shows an outline of the apparatus of the sintering method used in Example 2
  • FIG. 7 shows the thermoelectric conditions under the sintering conditions of Example 2.
  • Fig. 8 is a cross-sectional view of the heating part where the pair 12 exists
  • Fig. Fig. 9 is a diagram showing the temperature change of Linda
  • Fig. 9 is a diagram showing the effect of sintering temperature on the density of the aluminum sintered product obtained by Example 2
  • Fig. 10 is a current path, ie, a heating site
  • FIG. 11 is a schematic view of a method of sintering while moving
  • FIG. 11 is a schematic view of a method of sintering while moving
  • FIG. 11 is a schematic cross-sectional explanatory view showing an example of sintering of the stepped component shown in Example 4.
  • Fig.12 is a schematic cross-sectional explanatory view showing an example of sintering of parts (tape parts) whose diameter is changed
  • Fig.13 is a length using the stationary stage and the spacer of the present invention.
  • Fig. 14 is a schematic explanatory view showing an example of an apparatus used for producing a sintered body of a length
  • Fig. 14 shows a state in which a long sintered body is produced using two spacers in Fig. 13.
  • FIG. 15 is a schematic explanatory view showing how a long sintered body is manufactured using four additional sheets of the spacer in Fig.14
  • Fig.16 is a schematic view
  • FIG. 16 is a schematic explanatory view showing production of a long sintered body to be subjected to final sintering by inverting a partially sintered mold after the sintering of FIG.
  • the electrically conductive portion and the mold provided with the sintering space are integrally heated as a whole based on the known electric pressure and pressure sintering method. It is limited to a specific position, and sintering is performed continuously in one direction while relatively moving between a portion to be sintered and a heating portion, so that a rod or sintered body having a non-uniform cross section is obtained.
  • an electrode connection terminal plate (movable electrode) 1 having a thickness corresponding to the portion to be heated, and a cylinder for filling the raw material powder 2 Place it in close contact with the outer wall of the mold (cylinder) 3 and move freely on one axis (of a cylindrical mold).
  • the filled sintering powder 2 is pressed from both ends by the punch 4 inside the mold.
  • Reference numeral 5 is a pressure plate.
  • power is supplied to the movable electrode 1 while pressing the powder, and the electrode 1 is moved while being controlled to achieve a desired temperature and speed.
  • a sintered body having a rod-like shape or an uneven cross section can be obtained.
  • the die 6 connected to the electrode 1 is energized and controlled to a desired temperature, and then the raw material powder 2 is pressurized by the push rod 10 Send in.
  • the sintered product 9 Pressurize the raw material powder by taking measures to create resistance to the progress.
  • the apparatus of the present invention has a mold 23 having a cylindrical molding space in which the powder 29 to be sintered is filled, and has the same inner diameter as the molding space of the mold 23.
  • Punches 2 4 and 2 5 having a dimensional outline are disposed at both ends (upper and lower end portions) of the mold 2 3, and the punch 2 4 4 is used to press the powder 2 9 to be sintered in the mold. it can.
  • the lower punch 25 is normally fixed, and has a structure in which the powder 2 9 in the mold is further pressed (loaded) by the upper punch 2, but the lower punch 2 5 may also be moved. it can.
  • the upper punch 24 is pressurized by the pressurizing ram 21. As shown in FIG. 3, a structure may be adopted in which pressure is applied by the pressure ram 21 via the pressure plate 33.
  • the lower punch 25 is supported by a lifting ram 22 via a movable lifting stage 34.
  • the elevating stage 34 has a structure for supporting the mold 23 having a cylindrical molding space, and adjusts the height of the mold 23 having the molding space by raising and lowering the mold 23.
  • An electrode 28 for electrically heating the powder to be sintered in the mold 23 is designed to be movable in the horizontal direction. This is necessary in order not to complicate the mechanism of the power supply from the power supply. Further, as shown in FIG. 1 c , provided with an electrode pressure ram 30 for pressing the current-carrying part of the electrode 28 into a mold, as shown in FIG. The electrode 28 can be configured to be pressed against the mold 23 via the current plate 26.
  • the current-carrying plate 26 has a width corresponding to the heating area 27 of the raw material powder 29 for sintering.
  • the electrode 28 itself is designed to have the same width.
  • the conductive plate 26 has a structure in which the mold is sandwiched from the left and right, but instead, a ring conductive ring which can freely move in the longitudinal direction of the mold 23 and is in close contact with the mold 23 is used. It can also be used. Also in this case, it has a width corresponding to the heating area of the raw material powder 29 for sintering as well.
  • the powder 29 is loaded into a mold 23 having a cylindrical molding space, the elevation stage 34 is once fixed and the height position is adjusted, and then added from the upper end of the mold 23 The raw material sintered powder 29 is pressed by the pressing upper punch 24.
  • the position of the current-carrying electrode 28 is aligned with the sintered portion of the raw material sintered powder 29 so as to set the upper and lower positions and start the current conduction.
  • the current sintering is performed in a short time.
  • adjustment of the stage position can be performed stepwise or continuously. It is also possible to adjust the stage position while energizing or disconnecting it.
  • the stage position is arbitrarily adjusted stepwise or continuously, and simultaneously with or with the application of electric current simultaneously, the raw material sintered powder 2 9 is punched by pressing it from one end of the die 23. Can be pressed to sinter.
  • a long rod can be sintered stepwise (continuously) stepwise while moving the portion to be sintered from the upper end of the mold 23 sequentially.
  • the stage lift ram 22 which can be freely set, by adjusting the load by the current supplied to the electrode 28 and the load by the pressure ram 21, any position of the long material can be obtained. It can be sintered at any temperature while controlling the applied pressure.
  • the cross-sectional shape (electrical resistance) in the material to be sintered changes, the absolute value of the difference in the calorific value at each position due to the shape change becomes smaller if the heating area is made smaller. Therefore, if the thickness t of the current-carrying plate 26 which determines the heating area to a degree that does not affect the quality of the sintering is made sufficiently thin, even a member having a non-uniform cross section can be sintered well.
  • the present sintering method is characterized in that it is possible to sinter the sintered powder material 29 in one direction, and as described above, it is also possible to easily sinter the long sintered powder material 29. Have. In addition, it is possible to sinter the material whose cross section is not uniform while setting the heating part, for example, a rod-like body having a small diameter portion and a large diameter portion, that is, a rod-like body having a step can be easily sintered.
  • the present invention has the remarkable feature of being able to easily sinter a long or odd rod-like material by a relatively simple device structure.
  • Example 1 The results of the temperature distribution measured according to Example 1 are shown in FIG. It can be seen that the temperature decreases as it leaves the electrode connection plate 11. From this result, it can be seen that according to the present invention, only limited regions can be heated to the sintering temperature.
  • the thickness t of the electrode connection terminal plate 11 is set sufficiently thin so as not to affect the quality of the sintering, even a member having a non-uniform cross section can be sintered well.
  • an inner diameter of ⁇ ⁇ ⁇ 3 Omm, inner diameter 15 15 mm, length L 160 0 mm, made of Graphite cylinder, filled with 3.82 g of aluminum dioxide with an average particle diameter of 20 m. Then, hold it from the top and bottom with a 80 mm long Graphite punch.
  • a cylinder with a mm 3 O mm hole in the center and a length of 70 mm on one side and a thickness of t 10 to 20 mm.
  • Square plate) 1 1 is fitted to the side wall so as to be in intimate contact.
  • a cross-sectional view of the heating unit in which the thermocouple 12 is present is shown in FIG.
  • the method is not particularly limited to the electric heating method, and any method can be used.
  • Electrode 1 Attach the electrode 1 to the terminal plate 11 so that it can be energized in the direction perpendicular to the pressure axis.
  • a hole of 7 mm in depth is made through the terminal plate for electrode connection (square plate) in the center of the die (cylinder) 3 and temperature control and monitoring can be performed by inserting a thermocouple 12 used.
  • the center part of the mold (cylinder) is heated to 580 ° C. to 640 ° C. by applying electricity between the electrodes while pressurizing with a load of about 10 kN, I made a conclusion.
  • FIG. 1 An example of the result of measuring the temperature change of the mold (cylinder) in Example 2 is shown in FIG. It can be seen that the temperature on the opposite side of the material to be sintered almost agrees with the set temperature (corresponding to the control thermocouple) shown by the solid line, that is, for electrode connection embedded in a die (cylinder) It is understood that, even when current is supplied through the terminal plate 11, the temperature of the material to be sintered 2 can be controlled to a desired temperature.
  • FIG. 9 shows the result of examining the density of the sintered aluminum product obtained in Example 2.
  • the relative density showed a value of at least 99%. If the moving distance is increased, even longer products can be manufactured. Therefore, it is clear that the present method can produce a rod-like sintered product with excellent compactness.
  • this example has a large diameter portion and a small diameter.
  • the terminal plate 11 for electrode connection is used as the large diameter part 1 3 of the raw material powder. Install in In this case, make sure that the electrode connection terminal plate 11 does not get caught on the raw material powder of the small diameter portion 14.
  • the conduction region is a heating region 15.sub.5 indicated by hatching.
  • the powder located in the large diameter portion 13 is heated and sintered.
  • the electrode connection terminal plate 11 is moved to the small diameter portion 14 and similarly electric heating is performed to sinter.
  • the electric heating part is the central heating area 16 in the lower part of FIG.
  • the terminal plate for electrode connection 1 1 should not get caught in the large diameter portion 1 3.
  • energization can be performed independently according to the electrical resistance.
  • the stepped portion can be uniformly sintered.
  • the current may be stopped or a current of about heat retention may be supplied. This can be set arbitrarily.
  • the thickness t of the electrode connection terminal plate 11 which determines the heating region is such that the difference in the calorific value does not affect the quality of the sintering. By making it sufficiently thin, it is possible to produce a good sintered product.
  • the outer diameter 40 mm with a hole of diameter 15 mm, length L 100 mm, while the graphite cylinder type 3 is 3 mm, the length 10 mm is a punch 5 was inserted so as not to protrude from the lower end of cylinder 3 and 26.0 g of aluminum powder 9 having an average particle size of 20 was filled to prepare a sample for a sintering test.
  • a punch 4 with a length of 4 O mm was attached to the top of the cylinder 3 and compacted with a load of 900 kgf. In this state, current is supplied between the electrodes 8 and heated to 650 ° C. In temperature control, a hole with a depth of 1 2. 0 mm opened at the center of the side surface located at a height of 8 0 mm from the lower end of the cylinder. The temperature was measured by the thermocouple inserted in the
  • the present invention allows for production by sintering of good lengths as well as members whose cross-sectional shape is not uniform.
  • the present invention proposes a method of sintering while moving the raw material and the electrode relative to each other, and it is not necessary to sinter the whole product at one time, so that the area to be heated can be reduced. is there.
  • electricity is supplied through the electrode connection terminal plate attached to the mold, heat is generated only in the portion corresponding to the thickness of the electrode connection terminal plate. Therefore, if the thickness of the electrode connection terminal plate is reduced to the range where the cross section of the material to be sintered is uniform, the heat generation of the material to be sintered at that position becomes uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

筒状の成形空間を有する型内で粉末を直接通電加圧焼結する方法において、通電部分と被焼結部位とを相対的に移動させながら連続的に焼結することを特徴とする焼結方法及び通電用電極の上下位置を不変にすると共に該通電用電極に対して型と被焼結部位を順次移動させ、連続的に焼結することを特徴とする焼結装置。長尺の棒材又は断面が一様でない焼結体であっても、焼結体の品質が均一であり、焼結性に優れた焼結方法及び焼結装置を提供する。

Description

明 細 書 焼結方法及び装置 技術分野
本発明は、 金属、 セラミックス等の被焼結材料の加熱部位を特定位 置に限定しながら、 被焼結材料と加熱部位とを相対的に移動させることに より直接加圧通電し、 短時間で材料を焼結する方法及び装置に関する。 本 発明は、 長尺の棒材ゃ断面が一様とならない焼結体を得るのに好適な製造 方法及び装置を提供するものである。
直接通電による加圧焼結法によれば、 被焼結材をきわめて高速に昇 温できるため、 雰囲気加熱による従来の焼結手法と比較して製造時間の大 幅な短縮が可能である。
一般に、 従来の直接通電による加熱焼結法は、 被焼結体の軸方向の 両端に通電加熱用の電極を配置して加圧すると同時に加熱する手法が取ら れている (例えば、 特開 2 0 0 0— 2 3 9 7 0 7号公報参照) 。
しかしながら、 このような直接通電による加熱では、 通電経路にお ける両者の接触部分での発熱量が、 他の被焼結粉末の部位に比べて特に大 きくなるため、 電極接触面から焼結材料中央部 (電極から離れた位置) へ 向かって、 温度勾配が発生する。
したがって、 棒材のように通電経路が長い焼結製品を製造する場合 には材料全体を均一な温度で焼結することがきわめて難しいという問題が ある。
また、 通電経路に対して焼結体の断面が長さ方向に一様とならない 部材 (すなわち断面積が変化する部材) では、 通電経路に垂直な断面の面 積差によって電気抵抗が変わるため、 発熱量が変化して均一な焼結体が得 られないという問題がある。 したがって、 従来の直接通電による加圧焼結法では、 ある長さ以上 を有する棒材ならびに段付の部材など断面が一様でない焼結体を、 均一な 材質をもつ製品に製造することが難しいという問題があった。
このようなことから、 従来の被焼結体の軸方向の両端に通電加熱用 の電極を配置して加圧する替わりに、 被焼結体の側面に電極を配置し加熱 する方法が提案されている (例えば、 特開平 1 0— 2 5 9 4 0 5号公報参 照) 。 しかし、 この場合電極及び焼結体は固定された位置で行われている ので、 長尺のものを連続的に焼結することはできない。
また、 連続的に焼結するという観点からみると、 被焼結粉末をロー ルに挟んで薄板をロール状の電極で通電加熱する提案もある (例えば、 特 開平 9一 2 6 8 3 0 2号公報参照) 。 しかし、 この場合薄板を製造するこ とだけに限定され、 他の形状の部品を焼結できないという問題がある。 発明の開示
本発明は、 かかる事情に鑑み、 長尺の棒材又は断面が一様でない焼結 体であっても、 焼結体の品質が均一であり、 焼結性に優れた焼結方法及び 装置を提供するものである。
本発明は、 棒状又は断面が一様でない焼結体を得るために研究を重ね た結果、 被焼結材料の加熱する部分 (位置) を制限 (限定) し、 被焼結材 料と通電部とを相対的に順次移動させながら焼結を行うことにより、 この 目的を達成し得ることを見いだした。
すなわち、 本発明は、 上記知見に基づき、
1 . 筒状の成形空間を有する型内で粉末を直接通電加圧焼結する方法にお いて、 通電部分と被焼結部位とを相対的に移動させながら連続的に焼結す ることを特徴とする焼結方法 2 . 筒状の型内に配置した焼結粉末材料を型の端部から加圧するとともに, 型の周囲に該型の長さ方向に移動可能な電極を配置し、 焼結粉末材料に通 電加熱して焼結することを特徴とする上記 1記載の焼結方法
3 . 焼結粉末材料を型の両端部から加圧することを特徴とする上記 2記載 の焼結方法
4 . 型の周囲に密着しかつ一軸上で自由に動く空間部を有する電極の接続 端子板を設け、 該接続端子板によって通電部位を移動させて焼結すること を特徴とする上記 1〜 3のいずれかに記載の焼結方法
5 . 固定した筒状のダイスの周囲に固定電極を配置し、 該ダイス内に焼結 粉末材料を装入して通電加熱焼結すると共に、 ダイスの一方から原料粉末 を押圧し、 かつそれによつて焼結された焼結体をダイスの他方から押出し て順次焼結することを特徴とする上記 1記載の焼結方法
6 . 焼結粉末材料を一方向に焼結することを特徴とする上記 1〜 5のいず れかに記載の焼結方法
7 . 長尺の焼結粉末材料を焼結することを特徴とする上記 1〜 6のいずれ かに記載の焼結方法
8 . 加熱部位を設定しながら断面が一様でない材料を焼結することを特徴 とする上記 1〜 7のいずれかに記載の焼結方法
を提供する。
本発明は、 また上記知見に基づき、
9 . 通電部分と被焼結部位とを相対的に移動させながら筒状の成形空間を 有する型内で粉末を直接通電加圧焼結する装置において、 型と被焼結部位 を順次移動させる位置制御が可能な昇降ラムを備えていることを特徴とす る焼結装置
1 0 . 筒状の型内に配置した焼結粉末材料を型の一端部から加圧する荷重 制御可能な加圧ラムを備えていることを特徴とする上記 9記載の焼結装置 1 1 . 型の周囲に配置した通電用電極を押圧するか又は通電板を介して押 圧する電極ラムを備えることを特徴とする上記 9又は 1 0記載の焼結装置
1 2 . 焼結粉末材料を一方向に焼結することを特徴とする上記 9〜 1 1の いずれかに記載の焼結装置
1 3 . 長尺の焼結粉末材料を焼結することを特徴とする上記 9〜 1 2のい ずれかに記載の焼結装置
1 4 . 加熱部位を設定しながら断面が一様でない材料を焼結することを特 徴とする上記 9〜 1 3のいずれかに記載の焼結装置
を提供する。 図面の簡単な説明
図 1は、 本発明の原料を固定して電極を移動させて長尺の焼結体を 製造する方法に使用する装置の一例を示す概略説明図、 図 2は、 本発明の、 電極及びダイスを固定して焼結用粉末原料を移動させて長尺の焼結体を製 造する方法に使用する装置の一例を示す概略説明図、 図 3、 本発明の、 長 尺の焼結体を製造するために使用する装置の一例を示す概略説明図、 図 4 は、 電極接続端子板を介して通電したときの型の温度分布測定方法を示す 説明図、 図 5は、 電極接続端子板を介した通電時の温度分布測定結果を示 す図、 図 6は、 実施例 2で使用した焼結方法の装置の概要を示した図、 図 7は、 実施例 2の焼結条件において、 熱電対 1 2が存在する位置の加熱部 の断面図、 図 8は、 加圧軸から通電経路を分離して加熱を行ったときの型 (シリンダ) の温度変化を示す図、 図 9は、 実施例 2により得られたアル ミニゥム焼結品の密度に及ぼす焼結温度の影響について示した図、 図 1 0 は、 通電経路すなわち加熱部位を動かしながら焼結する方法の概略を示す 図、 図 1 1は、 実施例 4に示す段付き部品の焼結例を示す断面概略説明図 である。 また、 図 1 2は、 径が変更される部品 (テ一パ部品) の焼結例を示 す断面概略説明図、 図 1 3は、 本発明の静止ステージとスぺーサを使用し て長尺の焼結体を製造するために使用する装置の一例を示す概略説明図、 図 1 4は、 図 1 3においてスぺーサを 2枚使用して長尺の焼結体を製造す る様子を示した概略説明図、 図 1 5は、 図 1 4においてスぺ一サを 4枚追 加使用して長尺の焼結体を製造する様子を示した概略説明図、 図 1 6は、 図 1 5の焼結後、 部分的に焼結した型を反転させて最後の焼結を行う長尺 の焼結体を製造する様子を示した概略説明図である。 発明の実施の形態
本発明においては、 公知の通電加圧焼結法を基に、 従来は被焼結材料 と焼結空間を備えた型とを一体として全体的に加熱していたものを、 通電 部分を型の特定位置に限定し、 被焼結部位と加熱部分とを相対的に移動さ せながら一方向へ連続的に焼結していくことによって、 焼結品質が良好な 棒状又は断面が一様でない焼結部材を製造する方法を開発した。
原料を固定して電極を移動する場合を図 1に、 電極を固定して原料を 移動させる場合を図 2にそれぞれ概略を示す。
図 1に示すように、 原料を固定して電極側を移動する場合には、 まず 加熱したい部分に相当する厚みをもつ電極接続端子板(可動電極) 1を、 原 料粉末 2充填用の筒形の型 (シリンダ) 3の外壁に密着させ、 かつ一軸 (筒形の型の) 上で自由に動くように配置する。
一方、 充填された焼結用粉末 2は、 型の内部でパンチ 4により両端か ら加圧される。 符号 5は加圧盤である。 この状態で、 粉末を加圧しながら 可動電極 1に通電し、 所望の温度および速度となるように制御しながら電 極 1を移動させる。 これによつて、 棒状若しくは断面が一様でない焼結体 が得られる。 一方、 図 2に示すように、 焼結用原料 2を移動する場合には、 電極 1 に接続したダイス 6に通電し、 所望の温度に制御したところで原料粉末 2 をプッシュロッド 1 0により加圧し送り込む。
このとき、 出口側には回転抵抗をもったロール 7や内径を通電するダ イス 6よりも若干小さくした 2次ダイス的なもの (図示せず) などを設置 することにより、 焼結品 9の進行に対して抵抗が生ずる措置を講じて、 原 料粉末を加圧する。
以上の方法によって、 焼結品の均一性に優れた棒状若しくは断面が一 様でない焼結製品を得ることができる。
また、 本発明の装置は、 図 3に示すように、 被焼結粉末 2 9を充填す る筒状の成形空間を有する型 2 3を有し、 該型 2 3の成形空間の内径と同 寸法の外形を有するパンチ 2 4、 2 5を型 2 3の両端部 (上下端部) に配 置し、 このパンチ 2 4により型内の被焼結粉末 2 9を押圧する構造とする ことができる。
下パンチ 2 5は通常固定式であり、 上パンチ 2 によってより型内の 被焼結粉末 2 9を押圧する (負荷を与える) 構造であるが、 下パンチ 2 5 を移動する構造とすることもできる。 上パンチ 2 4は加圧用ラム 2 1によ り加圧する。 図 3に示すように、 加圧盤 3 3を介して加圧用ラム 2 1によ り加圧する構造とすることもできる。
下パンチ 2 5は移動可能な昇降ステージ 3 4を介して昇降用ラム 2 2 に支持されている。 昇降ステージ 3 4は筒状の成形空間を有する型 2 3を 支持する構造とし、 その昇降によって成形空間を有する型 2 3の高さを調 節する。
型 2 3内の被焼結粉末に通電加熱する電極 2 8は、 水平方向に移動で きるように設計されている。 これは電源からの通電装置の機構を複雑にし ないために必要である。 さらに、 電極 2 8の通電部を型に押圧する電極加圧ラム 3 0を備える c 図 1に示すように、 左右に一対の電極加圧ラム 3 0を有する。 電極 2 8は 型 2 3に対して通電板 2 6を介して押圧する構造とすることができる。
この通電板 2 6は、 焼結用原料粉末 2 9の加熱領域 2 7に相応する幅 を有している。 通電板 2 6を持たずに直接電極 2 8を使用して通電する場 合は、 電極 2 8そのものが同様の幅を持つように設計する。
図 3において、 通電板 2 6は左右から型を挟む構造となっているが、 これに替えて、 型 2 3の長手方向に自由に移動でき、 かつ型 2 3に密着す るリング通電リングを用いることもできる。 この場合も、 同様に焼結用原 料粉末 2 9の加熱領域に相応する幅を有している。
上記の装置において、 筒状の成形空間を有する型 2 3内に粉末 2 9を 装填し、 さらに昇降ステージ 3 4を一旦固定して高さ位置を調節した後、 型 2 3の上端部から加圧する上パンチ 2 4により原料焼結粉末 2 9を押圧 する。
一方、 通電用電極 2 8の位置を原料焼結粉末 2 9の焼結部分に位置合 わせして上下の位置を設定すると共に通電を開始する。 通電焼結は短時間 で実施される。 長尺の棒状材を焼結する場合、 ステージ位置の調整は段階 的に又は連続的に行うこともできる。 また通電を行いながら又は通電を断 続させてステージ位置を調整するもできる。
すなわち、 ステージ位置を段階的に又は連続的に任意に調節し、 また 同時に通電を行いながら又は通電を断続させて、 型 2 3の一端部から加圧 するパンチ 2 4により原料焼結粉末 2 9を押圧し焼結を行うことができる。
これによつて、 長尺の棒材であっても、 型 2 3の上端部から被焼結部 位を順次移動させながら、 段階的に順次 (連続的に) 焼結することができ る。 また、 自由に設定可能なステージ昇降ラム 2 2の位置に連動させな がら、 電極 2 8に通電する電流及び加圧ラム 2 1による負荷を調節するこ とにより、 長尺材の任意の位置を任意の温度に、 加圧力を制御しながら焼 結することができる。
また、 被焼結材料における断面形状 (電気抵抗) が変化しても、 加 熱領域を小さくすれば形状変化に伴う各位置での発熱量の差の絶対値は小 さくなる。 したがって、 焼結の良否に影響を及ぼさない程度まで加熱領域 を決定する通電板 2 6の厚み tを十分薄くすれば、 断面が一様でない部材 でも良好に焼結することができる。
以上のように、 焼結粉未原料 2 9の部分ごとに、 電気抵抗に合わせた きめ細かく電流値の制御が可能である。
本焼結方法は、 焼結粉末材料 2 9を一方向に焼結することが可能であり、 上記のように、 長尺の焼結粉末材料 2 9を焼結することも容易にできる特 徴を有する。 また、 加熱部位を設定しながら断面が一様でない材料を焼結 すること、 例えば小径部と大径部を有する棒状体、 即ち段差のある棒状体 も容易の焼結することができる。
すなわち本発明は、 比較的簡単な装置構造により、 長尺又は異形の棒状 材を容易に焼結することができる著しい特徴を有している。 実施例
次に、 実施例により本発明をさらに詳細に説明するが、 本発明はこれ らの例によってなんら限定されるものではない。 すなわち、 本発明の技術 思想の範囲で、 本実施例以外の態様あるいは変形を全て包含するものであ る。 (実施例 1)
図 4に示すように、 原料粉末となるアルミニウムを充填した型に厚さ t = 10. Ommのグラフアイト製電極接続端子板 1 1を取り付け、 これ に通電したときの接続端子板 1 1からの距離に対する温度分布を測定した。
実施例 1により測定した温度分布の結果を図 5に示す。 電極接続端子 板 1 1から離れるにつれ温度は低下することがわかる。 この結果から、 本 発明によって、 任意の限られた領域のみを焼結温度まで加熱できることが 分かる。
被焼結材料における断面形状 (電気抵抗) が変化しても、 加熱領域を 小さくすれば形状変化に伴う各位置での発熱量の差の絶対値は小さくなる。 したがって、 焼結の良否に影響を及ぼさない程度まで加熱領域を決定する 電極接続端子板 1 1の厚み tを十分薄くすれば、 断面が一様でない部材で も良好に焼結することができる。
また、 電極接続端子板 1 1からはずれる領域では発熱が生じないため、 端子板でカバ一された部分の温度よりも高くなることはなく、 原料が過熱 したりあるいは溶解したりすることはない。
(実施例 2)
図 5に示すように、 外径 Φ 3 Omm、 内径 φ 15 mm, 長さ L= 16 0mmのグラフアイト製シリンダ型の中に、 平均粒径 20 mのアルミ二 ゥムを 3. 82 g充てんし、 長さ 80mmのグラフアイト製パンチで上下 から押さえる。
このシリンダに、 中央に Φ 3 Ommの穴をあけた一辺の長さが 70 m mで厚さ、 t= 1 0. 0〜13. 2mmのグラフアイ ト製の電極接続用端 子板 (穴あき角板) 1 1を側壁に密着するように嵌め込む。 熱電対 12が 存在する加熱部の断面図を図 7に示す。 この場合、 電極接続用端子板 (穴あき角板) 1 1の材質をシリンダと 同質の材料を使用する。 これによつてシリンダまで電流が流れ、 さらにシ リンダ内の原料粉の電気抵抗が小さい場合には、 原料粉が通電により加熱 される。 また、 原料粉の電気抵抗が大きい場合はシリンダが発熱し、 原料 粉が間接的に加熱され焼結される。
なお、 電極接続用端子板 1 1を分割してシリンダに密着させてシリン ダ又はその中にある粉末に通電して加熱する方法を採ることもできる。 特 に通電加熱方法に制限されず、 いずれの方法も使用することができる。
端子板 1 1には電極 1を取り付け、 加圧軸とは垂直方向に通電できる ようにする。 また、 型 (シリンダ) 3中央部には電極接続用端子板 (角 板) を貫通して深さ 7 mmの穴をあけ、 熱電対 1 2を差し込むことによつ て温度の制御およびモニタリングに利用した。
上記準備を行った後、 約 1 0 k Nの荷重で加圧しながら、 電極間に通 電することによって型 (シリンダ) 中央部を 5 8 0 ° C〜 6 4 0 ° Cまで 加熱し、 焼結を行った。
上記実施例 2における型 (シリンダ) の温度変化について測定した結 果の一例を図 8に示す。 実線で示した設定温度(制御用熱電対に対応)に対 し、 被焼結材料をはさんだ反対側の温度もほぼ一致していることがわかる すなわち、 型 (シリンダ) にはめ込んだ電極接続用端子板 1 1を介し て通電を行った場合でも、 被焼結材 2を所望の温度に制御できることが分 かる。
また、 実施例 2により得られたアルミニウム焼結品の密度について調 ベた結果を図 9に示す。
この図 9ら焼結温度の上昇とともに密度は高くなり、 6 4 0 ° Cでほ ぼ緻密化することがわかる。 この結果より、 通電経路を加圧軸から分離し ても良好な焼結体を得られることが明らかである。 電極を接続した端子板は型 (シリンダ) にはめ込んであるだけなので, シリンダ長手方向に対して自由に移動させることができる。 したがって、 端子板を動かしながら焼結を実行すれば、 長尺の均質な焼結体を製造する ことができ、 本発明を遂行できることができる。
(実施例 3 )
図 1 0に示すように、 実施例 2に示した焼結手法に準じ、 アルミニゥ ムを 9 . 5 4 g充てんし、 グラフアイト製端子板を 1番の位置から 3番の 位置まで順次動かしながら、 それぞれの位置で通電加熱し焼結を行った。
実施例 3により得られたアルミニウム焼結品の密度について調べたと ころ、 相対密度で 9 9 %以上の値が示された。 移動する距離を長くすれば、 さらに長い製品の製造も可能である。 よって、 本方法により、 緻密性に優 れた棒状の焼結品を製造できることが明らかである。
次に、 加熱部位を設定しながら断面が一様でない材料を焼結する一例 として、 図 1 1に示すような段付き部品の焼結を考えると、 この例は径の 大きい部分と径の小さい部分からなる段付きの焼結品を焼結する場合であ り、 まず大径部分 1 3の焼結を行う場合には、 電極接続用端子板 1 1を原 料粉末の大径部分 1 3に設置する。 この場合、 電極接続用端子板 1 1が小 径部分 1 4の原料粉末に掛からないようにする。
通電領域は図 1 1の上方の図に示すように、 斜線で示す加熱領域 1 5 である。 これによつて大径部分 1 3に位置する粉末は加熱され焼結する。 次に、 電極接続用端子板 1 1を小径部分 1 4に移動させ、 同様に通電加 熱し焼結する。 通電加熱部は図 1 1の下方の図における中央加熱領域 1 6 である。 この場合、 電極接続用端子板 1 1は大径部分 1 3に掛からないよ うにする。 それぞれの位置で、 電気抵抗に合わせた通電を独立して行うことがで きる。 これによつて、 段付き部分でも均一に通電焼結できる。 なお、 電極 接続用端子板 1 1の移動中は、 通電を停止しても良いし、 また保温程度の 電流を流しても良い。 これは任意に設定できる。
また、 図 1 2に示すように、 テーパ部を有する材料であっても、 加熱 領域を決定する電極接続端子板 1 1の厚み tを発熱量の差が焼結の良否に 影響を及ぼさない程度まで十分薄くすることにより、 良好な焼結品を製造 することが可能となる。
(実施例 4 )
図 1 3に示すように、 直径 Φ 1 5 mmの穴をあけた外寸 4 0 mm角、 長さ L = 1 0 0 mmのグラフアイト製シリンダ型 3に対し、 長さ 1 0 mm のパンチ 5をシリンダ 3の下端からはみ出さないように差し込み、 平均粒 径 2 0 のアルミニウム粉末 9を 2 6 . 0 g充てんして焼結試験用のサ ンプルを準備した。
このサンプルをシリンダ 3の下端から電極 8の中心までの距離が 8 0 m mとなるよう高さを調整してステージ上に立て、 電極 8の中央に取り付け た高さ 3 O mm X幅 4 0 mmの通電板 6で挟んだ。
シリンダ 3上部に長さ 4 O mmのパンチ 4を取り付け、 9 0 0 k g f の荷重で圧粉した。 この状態で電極 8間に通電し 6 5 0 ° Cまで加熱した なお、 温度制御に際し、 シリンダの下端から 8 O mmの高さにある側面中 央にあけた深さ 1 2 . O mmの穴に差し込んだ熱電対により温度測定を 行つた。
続いて、 図 1 4に示すように、 ステージ上に厚さ 1 O mmのスぺーサ を 2枚おき、 シリンダの位置を 2 O mm上げると同時に、 熱電対の位置を 2 O mm下げ(電極の中心線上)、 上記と同様の手順により 2回目の加熱を 仃つた。 これを続いて 2回繰り返し、 合計 4回の加熱を行って棒状焼結品とし た。 なお、 4回目の加熱については、 図 1 6に示すように、 使用した装置 におけるチャンバ寸法の関係で、 ステージ上に 6 0 mm分のスぺーサを揷 入することができなかったためシリンダを上下反転させて行った。
この実施例により、 長さ約 5 5 mmのアルミニウム焼結品を得ること ができた。 この焼結品の密度について調べたところ、 相対密度で 9 9 . 7 %という値が得られた。
この結果は、 焼結品の密度として十分な数値を示すものであり、 本発 明によって良好な棒状の焼結品が得られることが確認できた。 なお、 必要 に応じて、 図 1 5のように、 スぺーサ 4枚を追加使用することも可能であ る。
装置のスケールアップを図り、 型 (シリンダ) 3をより長く動かせる ようにすれば、 加熱の回数を増やすことによってさらに長い焼結品を製造 することができる。
また、 加熱領域を小さくとり、 部分ごとの電気抵抗にあわせた電流値 の制御を行えば、 断面形状が変化しても一定の温度で焼結することが可能 である。 したがって、 本発明により良好な長尺物ならびに断面形状が一様 でない部材の焼結による製造が可能である。
なお、 実施例ではアルミニウムについてのみ行ったが、 アルミニウム 材料に制限されるものではない。 他の金属やセラミックスなどの粉末にも 十分適用できる。 産業上の利用可能性
本発明は、 原料と電極とを相対的に移動させながら焼結する方法を提案 するものであり、 製品全体を一度に焼結する必要がないため加熱する領域 を小さくすることができるという効果がある。 また、 型に取り付けた電極 接続端子板を通して通電するので、 電極接続端子板の厚さに相当する部分 にだけ発熱が生ずる。 したがって、 電極接続端子板の厚みを被焼結材料の 断面が一様である範囲にまで薄くすれば、 その位置における被焼結材料の 発熱は均一となる。
これにより、 焼結時の温度むらが抑制され、 品質に優れた長尺焼結体又 は断面形状が一様でない部材の焼結体の製造が可能となる著しい効果を有 する。
また、 原料粉末を逐次供給する方法を適用することによって、 棒材の連 続的な製造が可能となる。 その結果、 従来のバッチ的生産手法と比べて、 焼結部材にかかる生産性の大幅な向上が期待できるという優れた効果を有 する。

Claims

請 求 の 範 囲
1 . 筒状の成形空間を有する型内で粉末を直接通電加圧焼結する方法にお いて、 通電部分と被焼結部位とを相対的に移動させながら連続的に焼結す ることを特徴とする焼結方法。
2 . 筒状の型内に配置した焼結粉末材料を型の端部から加圧するとともに、 型の周囲に該型の長さ方向に移動可能な電極を配置し、 焼結粉末材料に通 電加熱して焼結することを特徴とする請求の範囲第 1項記載の焼結方法。
3 . 焼結粉末材料を型の両端部から加圧することを特徴とする請求の範囲 第 2項記載の焼結方法。
4 . 型の周囲に密着しかつ一軸上で自由に動く空間部を有する電極の接続 端子板を設け、 該接続端子板によって通電部位を移動させて焼結すること を特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の焼結方法。
5 . 固定した筒状のダイスの周囲に固定電極を配置し、 該ダイス内に焼結 粉末材料を装入して通電加熱焼結すると共に、 ダイスの一方から原料粉末 を押圧し、 かつそれによつて焼結された焼結体をダイスの他方から押出し て順次焼結することを特徴とする請求の範囲第 1項記載の焼結方法。
6 . 焼結粉末材料を一方向に焼結することを特徴とする請求の範囲第 1項 〜第 5項のいずれかに記載の焼結方法。
7 . 長尺の焼結粉末材料を焼結することを特徴とする請求の範囲第 1項〜 第 6項のいずれかに記載の焼結方法。
8 . 加熱部位を設定しながら断面が一様でない材料を焼結することを特徴 とする請求の範囲第 1項〜第 7項のいずれかに記載の焼結方法。
9 . 通電部分と被焼結部位とを相対的に移動させながら筒状の成形空間を 有する型内で粉末を直接通電加圧焼結する装置において、 型と被焼結部位 を順次移動させる位置制御が可能な昇降ラムを備えていることを特徴とす る焼結装置。
1 0 . 筒状の型内に配置した焼結粉末材料を型の一端部から加圧する荷重 制御可能な加圧ラムを備えていることを特徴とする請求の範囲第 9項記載 の焼結装置。
1 1 . 型の周囲に配置した通電用電極を押圧するか又は通電板を介して押 圧する電極ラムを備えることを特徴とする請求の範囲第 9項又は第 1 0項 記載の焼結装置。
1 2 . 焼結粉末材料を一方向に焼結することを特徴とする請求の範囲第 9 項〜第 1 1項のいずれかに記載の焼結装置。
1 3 . 長尺の焼結粉末材料を焼結することを特徴とする請求の範囲第 9項 〜第 1 1項のいずれかに記載の焼結装置。
1 4 . 加熱部位を設定しながら断面が一様でない材料を焼結することを特 徴とする請求の範囲第 9項〜第 1 3項のいずれかに記載の焼結装置。
PCT/JP2003/016155 2003-02-25 2003-12-17 焼結方法及び装置 WO2004076100A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289384A AU2003289384A1 (en) 2003-02-25 2003-12-17 Sintering method and device
US10/541,641 US20060104849A1 (en) 2003-02-25 2003-12-17 Sintering method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-46690 2003-02-25
JP2003046661A JP4119977B2 (ja) 2003-02-25 2003-02-25 焼結方法
JP2003-46661 2003-02-25
JP2003046690A JP4119978B2 (ja) 2003-02-25 2003-02-25 焼結装置及び焼結方法

Publications (1)

Publication Number Publication Date
WO2004076100A1 true WO2004076100A1 (ja) 2004-09-10

Family

ID=32929635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016155 WO2004076100A1 (ja) 2003-02-25 2003-12-17 焼結方法及び装置

Country Status (3)

Country Link
US (1) US20060104849A1 (ja)
AU (1) AU2003289384A1 (ja)
WO (1) WO2004076100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586138A (zh) * 2018-12-19 2019-04-05 西安赛尔电子材料科技有限公司 一种多针连接器玻璃烧结模具

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764978B2 (en) 2001-07-16 2014-07-01 Foret Plasma Labs, Llc System for treating a substance with wave energy from an electrical arc and a second source
US10188119B2 (en) 2001-07-16 2019-01-29 Foret Plasma Labs, Llc Method for treating a substance with wave energy from plasma and an electrical arc
US9481584B2 (en) 2001-07-16 2016-11-01 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US8981250B2 (en) 2001-07-16 2015-03-17 Foret Plasma Labs, Llc Apparatus for treating a substance with wave energy from plasma and an electrical Arc
US7857972B2 (en) 2003-09-05 2010-12-28 Foret Plasma Labs, Llc Apparatus for treating liquids with wave energy from an electrical arc
US10267106B2 (en) 2007-10-16 2019-04-23 Foret Plasma Labs, Llc System, method and apparatus for treating mining byproducts
US8278810B2 (en) 2007-10-16 2012-10-02 Foret Plasma Labs, Llc Solid oxide high temperature electrolysis glow discharge cell
US8810122B2 (en) 2007-10-16 2014-08-19 Foret Plasma Labs, Llc Plasma arc torch having multiple operating modes
US9516736B2 (en) 2007-10-16 2016-12-06 Foret Plasma Labs, Llc System, method and apparatus for recovering mining fluids from mining byproducts
US9560731B2 (en) 2007-10-16 2017-01-31 Foret Plasma Labs, Llc System, method and apparatus for an inductively coupled plasma Arc Whirl filter press
US11806686B2 (en) 2007-10-16 2023-11-07 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US9051820B2 (en) 2007-10-16 2015-06-09 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US9445488B2 (en) 2007-10-16 2016-09-13 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US9761413B2 (en) 2007-10-16 2017-09-12 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US9230777B2 (en) 2007-10-16 2016-01-05 Foret Plasma Labs, Llc Water/wastewater recycle and reuse with plasma, activated carbon and energy system
US9185787B2 (en) 2007-10-16 2015-11-10 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US8904749B2 (en) 2008-02-12 2014-12-09 Foret Plasma Labs, Llc Inductively coupled plasma arc device
US10244614B2 (en) 2008-02-12 2019-03-26 Foret Plasma Labs, Llc System, method and apparatus for plasma arc welding ceramics and sapphire
CA2715973C (en) 2008-02-12 2014-02-11 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
WO2014093560A1 (en) 2012-12-11 2014-06-19 Foret Plasma Labs, Llc High temperature countercurrent vortex reactor system, method and apparatus
US9699879B2 (en) 2013-03-12 2017-07-04 Foret Plasma Labs, Llc Apparatus and method for sintering proppants
CN113932602B (zh) * 2021-09-02 2023-10-31 山东晶盾新材料科技有限公司 一种用于快速热压烧结的自动化连续生产装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120612A (en) * 1977-03-30 1978-10-21 Inoue Japax Res Inc Sintering apparatus
JPS60101480A (ja) * 1983-11-07 1985-06-05 石川島播磨重工業株式会社 ホツトプレス装置
JPS62248553A (ja) * 1986-04-19 1987-10-29 Kubota Ltd 二層中空筒体の製造方法
JPS63108191A (ja) * 1986-10-27 1988-05-13 石川島播磨重工業株式会社 ホツトプレス装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340052A (en) * 1961-12-26 1967-09-05 Inoue Kiyoshi Method of electrically sintering discrete bodies
AU5498298A (en) * 1997-01-20 1998-08-07 Akane Co., Ltd. Sintering method and sintering apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53120612A (en) * 1977-03-30 1978-10-21 Inoue Japax Res Inc Sintering apparatus
JPS60101480A (ja) * 1983-11-07 1985-06-05 石川島播磨重工業株式会社 ホツトプレス装置
JPS62248553A (ja) * 1986-04-19 1987-10-29 Kubota Ltd 二層中空筒体の製造方法
JPS63108191A (ja) * 1986-10-27 1988-05-13 石川島播磨重工業株式会社 ホツトプレス装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586138A (zh) * 2018-12-19 2019-04-05 西安赛尔电子材料科技有限公司 一种多针连接器玻璃烧结模具

Also Published As

Publication number Publication date
US20060104849A1 (en) 2006-05-18
AU2003289384A1 (en) 2004-09-17

Similar Documents

Publication Publication Date Title
WO2004076100A1 (ja) 焼結方法及び装置
US8317508B2 (en) Frame for a device for manufacturing a three-dimensional object and device for manufacturing a three-dimensional object by such a frame
KR101340113B1 (ko) 분말 금속 플레이트의 제조 방법
JPS5834523B2 (ja) 電気伝導性粒状材料の連続押出し加工装置
JP6403421B2 (ja) 焼結装置および焼結方法
JP4449847B2 (ja) 放電表面処理用電極の製造方法およびその製造装置
JP4119978B2 (ja) 焼結装置及び焼結方法
JP4119977B2 (ja) 焼結方法
JP5048704B2 (ja) 通電加圧焼結装置の焼結型および通電加圧焼結装置による焼結方法
JP4163394B2 (ja) 加圧通電焼結装置およびそのパンチ温度制御方法
JP5946323B2 (ja) 鍛造用金型装置
JPH10330804A (ja) 焼結装置
JP4168521B2 (ja) 通電加熱式加圧焼結装置
JP3681993B2 (ja) 通電加圧焼結装置の焼結型
JP4217852B2 (ja) 焼結成形品の製造方法
JP6699016B2 (ja) 高速ダイセット式通電熱加工装置及びその方法
JP4859041B2 (ja) 金型装置
JP2003113405A (ja) 通電加圧焼結装置
JP2003321229A (ja) 光学素子の製造装置
JPH07330446A (ja) 焼結方法及びその装置
JP4035817B2 (ja) 熱可塑性樹脂成形体の溶着方法及びその装置
JP2003096505A (ja) ハイブリッドホットプレスとその制御方法
JP6549515B2 (ja) 成形体の製造装置及び成形体の製造方法
JP3481815B2 (ja) 電気アプセッタ用極板の製造方法
JP4677551B2 (ja) 焼結方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006104849

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10541641

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10541641

Country of ref document: US