WO2004073102A2 - 移動体通信用レンズアンテナ装置 - Google Patents

移動体通信用レンズアンテナ装置 Download PDF

Info

Publication number
WO2004073102A2
WO2004073102A2 PCT/JP2004/001351 JP2004001351W WO2004073102A2 WO 2004073102 A2 WO2004073102 A2 WO 2004073102A2 JP 2004001351 W JP2004001351 W JP 2004001351W WO 2004073102 A2 WO2004073102 A2 WO 2004073102A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
lens
mobile communication
antenna device
leveling mechanism
Prior art date
Application number
PCT/JP2004/001351
Other languages
English (en)
French (fr)
Other versions
WO2004073102A3 (ja
Inventor
Masatoshi Kuroda
Tetsuo Kishimoto
Yasuhiko Ura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Publication of WO2004073102A2 publication Critical patent/WO2004073102A2/ja
Publication of WO2004073102A3 publication Critical patent/WO2004073102A3/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning

Definitions

  • the present invention relates to a lens antenna device for mobile communication that is mounted on a mobile body such as a vehicle, a ship, an airplane, or the like, and receives electric waves from a geostationary satellite or the like.
  • Japanese Patent Application Laid-Open No. 2000-25732 Japanese Patent Application Laid-Open No. 2000-16531 0 0 1-3 5 2 2 1 1 JP, JP 2 00 0-8 3 6 4 5 JP, JP 2 00 1-4 4 7 4 6 JP and JP 2 2001- There is one disclosed in Japanese Patent Publication No. 102857/1990.
  • Each of the antennas disclosed in the above-mentioned patent publications is a ground-mounted antenna with a geostationary satellite or an orbiting satellite as a communication partner, and does not take into account any tilt or shaking of the installation surface.
  • an antenna using a Luneberg lens can respond to multiple radio waves simultaneously with a single compact antenna, and has high directivity from any direction. Because of its advantages such as the ability to receive radio waves with gain, it is expected to be used for mobile objects, but the position and direction of mobile objects change every moment. Significantly, for this reason, the conventional ground fixed lens antenna fluctuates in focus due to movement, and cannot capture radio waves stably.
  • the active type antenna can calculate the position and orientation of the antenna with respect to the communication partner's satellite and move the primary radiator to the fluctuating focal point position. If the position is changed, the control mechanism becomes considerably complicated, and the antenna device becomes expensive. In addition, in this method, a response delay of the position change is considered, and a practical antenna device is obtained. It is also difficult. Disclosure of the invention
  • An object of the present invention is to make it possible to use an antenna using a Luneberg lens as a mobile object while suppressing the complexity and cost of the mechanism.
  • a hemispherical Luneberg lens having a spherical or reflective plate, an antenna having a primary radiator and a support arm of the primary radiator, a cover for covering the antenna, A leveling mechanism having a leveling mechanism for the antenna; a self-position checking means for the antenna; and an azimuth adjusting mechanism for the antenna including azimuth checking means.
  • a lens antenna device for mobile communication in which an automatic azimuth correction based on self-position information and azimuth information is performed so that an initial attitude of an antenna is maintained.
  • the antenna is made to float on the liquid in the container (liquid suspension method: the liquid used is preferably a viscous fluid).
  • a weight that lowers the center of gravity of the hemispherical Luneberg lens antenna is attached below the reflector, and the antenna with this weight is swingably supported using a gimbal mechanism or the like (rise-over method 1).
  • leveling mechanisms are all passive mechanisms that use the Earth's gravity.Since they are simple, they pose a problem if severe shaking is assumed.
  • An active tilt correcting mechanism for correcting the tilt may be used in combination.
  • the level check of the antenna, which is required for tilt correction, can be performed with an encoder or level sensor. '
  • the self-locating means is optimally a GPS (Global Positioning System) device, but may be a gyro compass.
  • the azimuth confirmation means attached to the azimuth adjustment mechanism may be a geomagnetic compass, an azimuth sensor, or the like, which detects the azimuth by using a difference between a plurality of GPS positions.
  • the azimuth adjustment of the antenna by the azimuth adjustment mechanism can be performed using an appropriate drive system, for example, a combination of a motor and a gear.
  • This antenna device is suitable for mounting on mobile objects such as cars, ships, and airplanes to receive radio waves from geostationary satellites.
  • FIG. 1 is a sectional view showing an embodiment of a lens antenna device of the present invention.
  • FIG. 2 is a plan view of an antenna employed in the lens antenna device of FIG.
  • FIG. 3 (a) is a cross-sectional view showing another example of the lens antenna device of the present invention
  • FIG. 3 (b) is a simplified cross-sectional view of the same antenna device at a position rotated 90 °
  • FIG. 3 (c) is FIG. 3 is a diagram showing a bearing correcting mechanism of the antenna device according to the first embodiment.
  • FIG. 4 is a sectional view showing still another example of the lens antenna device of the present invention.
  • FIG. 5 is a sectional view showing still another example of the lens antenna device of the present invention.
  • FIG. 1 shows an embodiment of a lens antenna device for mobile communication according to the present invention.
  • the antenna device 1 is composed of an antenna 2 shown in FIGS. 1 and 2, namely, a hemispherical Luneberg lens 3 having a reflector 3a, an arch-shaped support arm 4 that straddles the lens 3, and this support arm 4.
  • An antenna 2 comprising a primary radiator 5 supported and arranged at the focal point of the lens; 7, an antenna horizontal adjustment mechanism having a flattening mechanism 6, an antenna self-position confirmation means 7, and an orientation including an orientation confirmation means It is composed of an adjusting mechanism 8 and a force par 9 for transmitting radio waves.
  • the leveling mechanism 6 uses a liquid-surface floating type mechanism in which the antenna 2 is floated on a liquid 6 placed in a container 6a so as to allow swinging in the container. Even if the container 6a is around i, the liquid surface of the liquid 6b is kept horizontal, so that the antenna 2 floating on the liquid surface It is always kept horizontal.
  • the liquid 6b has a relatively high viscosity and is difficult to react to high-frequency vibrations (preferably, the liquid surface does not wobble.
  • An ER fluid electro-rheological fluid
  • the movement of the liquid level may be suppressed by electrically controlling the viscosity of the liquid.
  • a vibration damper 10 such as a vibration damping material and a vibration damping mount may be interposed between the container 6a and the antenna installation surface to absorb vibration transmitted from the antenna installation surface to the container 6a.
  • a mechanism for controlling the friction between the antenna 2 and the container 6a may be provided.
  • an active tilt correcting mechanism for suppressing the movement of the antenna installation surface A by actively absorbing vibration and tilt may be provided.
  • the tilt correction mechanism detects the force to tilt the antenna installation surface A, and the inclination of the antenna installation surface A with respect to the horizontal plane artificially obtained by an encoder or a horizontal sensor (gyroscopic level, level, etc.), and provides feedback.
  • a drive system that controls the cover to keep the cover installation surface B horizontal may be used, and a commercially available horizontal stage (multi-axial freedom positioning mechanism) with such a function may be used. If a horizontal adjustment mechanism using both the inclination correction mechanism and the leveling mechanism 6 is used, the antenna 2 can be maintained more horizontally.
  • the antenna 2 adjusts the center of gravity using the balance weight 6c so that the posture when the antenna 2 floats on the liquid 6b is horizontal.
  • the antenna 2 allows the elevation angle of the support arm 4 and the position of the primary radiator 5 on the support arm 4 to be changed, so that the antenna is supported to match the intended communication partner (always in the same direction).
  • the initial setting of the elevation angle of the arm 4 and the position of the primary radiator 5 is performed.
  • the antenna self-position checking means 7 uses a GPS device, but may use a gyrocompass.
  • the azimuth adjustment mechanism 8 is provided with a geomagnetic compass, an azimuth sensor, a plurality of GPS devices, or azimuth confirmation means 8a that combines them.
  • a geomagnetic compass When the antenna 2 deviates from the communication partner, feedback control based on the deviation is performed, and the antenna 2 is rotated together with the cover 9 in a horizontal plane to face the direction of the communication partner. The rotation of the antenna is combined with the azimuth control mode 8b and gear. This is performed by the azimuth correction mechanism.
  • the tilt of the floating antenna is prevented by the leveling mechanism 6 of the liquid surface floating type, and the antenna 2 is always kept horizontal.
  • the control which takes in a report of the current position detected by the self-position checking means 7 and the antenna direction detected by the direction checking means 8a is performed.
  • the switching is performed.
  • the primary radiator 5 does not greatly deviate from the focal point of the radio wave even if there is a change in the moving direction and position of the moving object, and even if there is shaking, Radio waves from satellites can be captured stably.
  • FIGS. 3 to 5 show other embodiments of the leveling mechanism (all are raised and spilled).
  • the leveling mechanism 16 in Fig. 3 is a vertical rotation axis 1 that is rotated by an azimuth correction mechanism 8 that combines an azimuth control motor 8b and a gear 8c on the back of a reflector 3a of a hemispherical Luneberg lens antenna. 6a and the weight 16b that lowers the center of gravity of the antenna are attached, and the gimbal mechanism 1 2 provided between the gantry 11 and the rotary shaft 16a supports the antenna 2 so that it can swing in two axial directions. I have.
  • the leveling mechanism 26 in Fig. 4 uses a lightweight material for the upper half of the spherical Luneberg lens 3 and a high-mass material for the lower half, and makes the relative permittivity of the upper half and the lower half substantially the same.
  • the lower outer surface of the spherical Luneberg lens is swingably supported by a support 26b.
  • the holder 26 b since the entire surface contact with the lower half of the Luneberg lens 3 is not slippery, it is preferable to use the holder 26 b together with the roller 13.
  • the leveling mechanism 36 in FIG. 5 has a spherical weight 36 a fixed to the lower part of the spherical Luneberg lens 3 on the outer surface that lowers the center of gravity of the antenna. 6 b and sliding rollers 13 are supported swingably.
  • the lens 3 in FIG. 5 does not necessarily have to have a difference in weight between the upper half and the lower half. However, like the lens in FIG. The It is preferable because the size of the unit 36a can be reduced.
  • the primary radiator 5 in FIGS. 4 and 5 is fixed to the lens 3 and moves with the movement of the lens.
  • the receiving member 26 b in FIG. 4 prevents relative rotation with the lens 3, and the receiving member 36 b of FIG. 5 prevents relative rotation with the weight 36 a. Must be kept.
  • Antenna devices that use the leveling mechanism shown in Figs. 3 to 5 also use a mechanism to control the friction of the antenna's tilt absorbing part, a vibration damper that attenuates the vibration transmitted to the receiver, or an active tilt correction mechanism. Can be used in combination. Industrial applicability
  • the antenna is always kept horizontal by the leveling mechanism, and furthermore, the antenna is controlled based on the position information and the direction information from the self-position checking means and the direction checking means. Since the azimuth is automatically corrected and the initial attitude of the antenna is maintained, it is mounted on a mobile object where changes in position and traveling direction and shaking are inevitable, and radio waves from geostationary satellites etc. are stabilized and high sensitivity Can be received.
  • the Luneberg lens since the Luneberg lens is used, it can handle multiple radio waves, and can simplify the antenna device and reduce the cost.
  • the antenna is maintained horizontally by a liquid-floating method using natural force or a rising-and-spilling leveling mechanism, the mechanism is not complicated and the cost is further improved.
  • the antenna is supported swingably from below, the supporting structure can be reduced in size and weight, and an easy-to-use antenna can be provided.
  • the function that attenuates the vibration transmitted to the antenna and the active tilt correction function are added, so that the antenna can be more horizontally maintained and the shaking can be reduced. Even if it is adopted for an assumed mobile, it can reliably capture radio waves from the communication partner.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Description

明細書
移動体通信用レンズアンテナ装置 技術分野
この発明は、 車両、 船舶、 飛行機等の移動体に搭載し、 静止衛星などからの電 波を受信する移動体通信用レンズアンテナ装置に関する。 背景技術
ル一ネベルグレンズを用いた衛星通信用アンテナとして、 例えば、 特開 2 0 0 0 - 2 5 7 3 2号公報、 特開 2 0 0 0 - 1 6 5 1 3 1号公報、 特開 2 0 0 1— 3 5 2 2 1 1号公報、 特開 2 0 0 0— 8 3 6 4 5号公報、 特開 2 0 0 1 — 4 4 7 4 6号公報および特開 2 0 0 1 - 1 0 2 8 5 7号公報に示されるものがある。
上記公開特許公報のアンテナは、 いずれも静止衛星や周回衛星を通信相手にし た地上設置用のアンテナであり、 設置面の傾きや揺れ動きは、 全く考慮されてい ない。
従って、 設置面の位置、 方位が変化し、 しかも設置面が揺れ動く移動体用として は、 適さない。
ルーネベルグレンズを用いたアンテナは、 従来の移動体通信用アンテナ (パラ ボラアンテナ) と違ってひとつのコンパクトなアンテナで同時に複数の電波に対 応でき、 かつ、 どの方向からも指向性の高い高ゲインの電波を受信できるなどの 利点があることから、 移動体用としても大きな期待が寄せられているが、 移動体 は、 位置、 方位が刻々と変化し、 また、 船舶は、 特に、 揺れも著しく、 このため、 従来の地上固定用のレンズァンテナでは、 移動による焦点の変動が起こり、 電波 を安定して捕捉することができない。
なお、アクティブ方式のアンテナは、通信相手の衛星に対するアンテナの位置、 方位を計算し、 一次放射器を変動した焦点位置に移動させることができるが、 頻 繁に起こる焦点変動に対して一次放射器の位置を変えて対応しょうとすると、 制 御機構がかなり複雑になり、 アンテナ装置が高価なものになってしまう。 また、 この方法は、 位置変更の応答遅れが考えられ、 実用性のあるアンテナ装置を得る のも難しい。 発明の開示
この発明は、 ルーネベルグレンズを用いたアンテナを機構の複雑化ゃコストァ ップを抑えて移動体用として使用できるようにすることを課題としている。
上記の課題を解決するため、 この発明においては、 球状又は反射板を有する半 球状のルーネベルグレンズ、 一次放射器及び一次放射器の支持アームを備えるァ ンテナと、 そのアンテナを覆うカバ一と、 アンテナの水平化機構を有する水平調 整機構と、 アンテナの自己位置確認手段と、 方位確認手段を含むアンテナの方位 調整機構とを具備し、 移動体の移動中に前記水平化機構による水平化および、 自 己位置情報、 方位情報に基づく自動方位修正がなされてアンテナの初期姿勢が保 たれるようにした移動体通信用レンズァンテナ装置を提供する。
ァンテナの水平化機構は、 以下に列挙するものが特に好ましい。
( 1 ) アンテナを容器内の液体に浮かばせて構成されるもの (液体浮遊方式: 使用する液体は、 粘性流体が好ましい)。
( 2 ) 半球状ルーネベルグレンズアンテナの反射板下にアンテナの重心を下げ るウェイトを取り付け、 このウェイトを有するアンテナをジンバル機構などを用 いて揺動可能に受け支えるもの (起き上がりこぼし方式 1 )。
( 3 ) 上半分を軽量材で、 下半分を重量材で各々形成し、 上半分と下半分の比 誘電率を略同一にした全球型ルーネベルグレンズの下部外面、 または、 外面が球 面のウェイトを下部に取り付けて重心を下げた全球型ル一ネベルグレンズの前記 ウェイトの外面を揺動可能に支えるもの (起き上がりこぼし方式 2 )。
これらの水平化機構は、いずれも地球の重力を利用したパッシブな機構であり、 簡素である反面、 激しい揺れが想定される場合には、 問題があるので、 必要に応 じてアンテナ設置面の傾きを修正するァクティブな傾き修正機構等を併用しても よい。 傾き修正で必要になるアンテナの水平確認は、 エンコーダや水平センサな どで行える。'
前記自己位置確認手段は、 G P S (汎世界測位システム)装置が最適であるが、 ジャイロコンパスでもよい。 方位調整機構に付属させる方位確認手段は、 地磁気方位計、 方位センサなどの ほか、 複数 G P Sの位置の差を利用して方位を検知するものでもよい。 この方位 調整機構によるアンテナの方位修正は、 適当な駆動系、 例えば、 モータとギヤを 組み合わせたものなどを用いて行える。
このアンテナ装置は、 車、 船舶、 飛行機などの移動体に搭載して静止衛星から の電波を受信するのに適している。 図面の簡単な説明
図 1は、 この発明のレンズァンテナ装置の実施形態を示す断面図である。
図 2は、 図 1のレンズアンテナ装置に採用したアンテナの平面図である。
図 3 ( a ) は、 この発明のレンズァンテナ装置の他の例を示す断面図、 図 3 ( b ) は、 同上のアンテナ装置の 9 0 °回転した位置の簡略断面図、 図 3 ( c ) は、 同 上のァンテナ装置の方位修正機構を示す図である。
図 4は、 この発明のレンズァンテナ装置のさらに他の例を示す断面図である。 図 5は、 この発明のレンズアンテナ装置のさらに他の例を示す断面図である。 発明を実施するための最良の形態
以下 本発明をより詳しく説明する。 なお、 図面の説明においては、 同一要素 には同一符号を付し、 重複する説明を省略する。 また、 図面の寸法比率は、 説明 のものと必ずしも一致していない。 図 1に、 この発明の移動体通信用レンズァン テナ装置の実施形態を示す。 このアンテナ装置 1は、 図 1、 図 2に示すアンテナ 2、 即ち、 反射板 3 aを有する半球状のル一ネベルグレンズ 3、 レンズ 3を跨ぐ アーチ状の支持アーム 4、 この支持アーム 4で支えてレンズの焦点部に配置する 一次放射器 5とから成るァンテナ 2と、 7平化機構 6を有するァンテナの水平調 整機構と、 アンテナの自己位置確認手段 7と、 方位確認手段を含む方位調整機構 8と、 電波を透過させる力パー 9とで構成される。
水平化機構 6は、 容器 6 aに入れた液体 6 上にアンテナ 2を容器内での揺れ が許容されるように浮かべた液面浮遊方式の機構を用いている。 容器 6 aが i頃い ても液体 6 bの液面は、 水平に保たれ、 このために液面に浮かべたアンテナ 2が 常に水平に保たれる。
液体 6 bは、 粘度が比較的高く高周波数の振動に反応し難い (液面が波立ち難 レ ものが好ましい。 この液体 6 bとして E R流体 (電気粘性流体) を使用し、 振幅や振動数に合わせて液体の粘度を電気的に制御して液面の動きを抑えるよう にしてもよい。
また、 容器 6 aとアンテナ設置面との間に制振材、 制振マウントなどの制振体 1 0を介在して、 アンテナ設置面から容器 6 aに伝わる振動を吸収するようにし てもよい。 また、 アンテナ 2と容器 6 aとの間の摩擦を制御する機構を備えても よい。
さらに、 振動、 傾きを積極的に吸収してアンテナ設置面 Aの動きを抑えるァク ティブな傾き修正機構を備えてもよい。 その傾き修正機構は、 アンテナ設置面 A を傾けようとする力や、 エンコーダ、 水平センサ(ジャイロ水平儀、水準器など) で人工的に得た水平面に対するァンテナ設置面 Aの傾きを検知し、 フィードバッ ク制御を行つて駆動系でカバ一設置面 Bを水平に保つもの等でよく、 そのような 機能を持つ市販の水平ステ一ジ (多軸自由度位置決め機構) などを利用できる。 この傾き修正機構と水平化機構 6を併用した水平調整機構を用いるとァンテナ 2 の水平維持がより確実になる。
アンテナ 2は、 バランスウェイト 6 cを用いて重心を調節し、 液体 6 bに浮か ベたときの姿勢が水平になるようにしている。 このアンテナ 2は、 支持アーム 4 の仰角と支持アーム 4上での一次放射器 5の位置を変えられるようにしており、 目的の通信相手 (これは、 常に同じ方向にある) に合うように支持アーム 4の仰 角と一次放射器 5の位置の初期設定がなされている。
アンテナの自己位置確認手段 7は、 G P S装置を使用しているが、 ジャイロコ ンパスを用いてもよい。
方位調整機構 8は、 地磁気方位計、 方位センサ、 複数の G P S装置、 あるいは これ等を組合わた方位確認手段 8 aを備えており、 移動体の進行方向や位置が変 わってアンテナの向きが目的の通信相手からずれたときにずれに基づくフィード バック制御を行ってアンテナ 2をカバー 9と共に水平面内で回転させて通信相手 の方向に向ける。 アンテナの回転は、 方位制御モ一夕 8 bとギヤを組み合わせた 方位修正機構によつてなされる。
以上のように構成したアンテナ装置 1は、 液面浮遊方式の水平化機構 6により 浮遊したアンテナの傾きが防止されてアンテナ 2が常に水平に保たれる。
また、 アンテナ装置 1を搭載した移動体の進行方向や位置が変わると、 自己位 置確認手段 7によって検出される現在位置、 方位確認手段 8 aによって検知され るアンテナ方位の倩報を取り込んだ制御部 (図示せず) から方位修正機構に作動 指令が流れてアンテナを初期姿勢に保っための方位修正が自動的に実行され、 ァ ンテナ 2が通信相手からの電波を受ける姿勢を維持する。 また、 基準方位を切り 換える必要が生じたときには、 その切り換えがなされる。 従って、 通信相手が例 えば静止衛星である場合には、 移動体の移動方向や位置の変化、 さらには、 揺れ があっても一次放射器 5が電波の焦点部から大きくずれることがなく、 静止衛星 からの電波を安定して捕捉することができる。
図 3〜図 5は、 水平化機構の他の実施形態である (いずれも起き上がりこぼし 方式)。
図 3の水平化機構 1 6は、 半球状ルーネベルグレンズアンテナの反射板 3 aの 裏面に、 方位制御モータ 8 bとギヤ 8 cを組み合わせた方位修正機構 8で回転さ せる垂直な回転軸 1 6 aと、アンテナの重心を下げるウェイト 1 6 bを取り付け、 架台 1 1と回転軸 1 6 aとの間に設けたジンパル機構 1 2でアンテナ 2を 2軸方 向揺動自在に受け支えている。
また、 図 4の水平化機構 2 6は、 全球型ルーネベルグレンズ 3の上半分を軽量 材で、下半分を高質量材で各々形成し、上半分と下半分の比誘電率を略同一にし、 この全球型ルーネベルグレンズの下部外面を受け具 2 6 bで揺動自在に受け支え ている。 なお、 ルーネベルグレンズ 3の下半分との全面接触は、 すべり性が良く ないので、 受け具 2 6 bは、 コロ 1 3と併用するのがよい。
さらに、 図 5の水平化機構 3 6は、 全球型ルーネベルグレンズ 3の下部にアン テナの重心を下げる外面が球面のウェイト 3 6 aを固定し、 このウェイト 3 6 a の外面を受け具 3 6 bおよびすベり用コロ 1 3で揺動自在に受け支えている。 図 5のレンズ 3は、 必ずしも上半分と下半分の重さに差をつける必要はないが、 図 4のレンズと同様、 上半分を軽量材で、 下半分を高質量材で各々形成するとゥェ イト 3 6 aを小型化できて好ましい。 図 4、 図 5の一次放射器 5は、 レンズ 3に 固定されており、 レンズの動きに伴って動く。
なお、 図 4の受け具 2 6 bは、 レンズ 3との相対回転が、 また、 図 5のアンテ ナの受け具 3 6 bは、 ウェイト 3 6 aとの相対回転が阻止されるようにしておく 必要がある。
また、 図 1のパランスウェイト 6 c、 図 3、 図 5の重心下げ用のウェイト 1 6 b、 3 6 aは、 体積削減のために高質量体を用いるのが好ましい。
図 3〜図 5の水平化機構を採用するアンテナ装置も、 アンテナの傾き吸収部の 摩擦を制御する機構や、 受け具に伝わる振動を減衰させる制振体、 あるいはァク ティブな傾き修正機構などを併用することができる。 産業上の利用可能性
以上述べたように、 この発明のレンズアンテナ装置は、 水平化機構によってァ ンテナが常時水平に保たれ、 さらに、 自己位置確認手段及び方位確認手段からの 位匱情報、 方位情報に基づいてアンテナの方位が自動的に修正されてアンテナの 初期姿勢が維持されるようにしたので、 位置及び進行方向の変化と揺れが不可避 の移動体に搭載して静止衛星などからの電波を安定して高感度に受信することが できる。
また、 ルーネベルグレンズを使用しているので、 複数の電波に対応でき、 アン テナ装置の簡素化や低コスト化も図れる。
• さらに、 アンテナの水平維持を自然の力を利用する液面浮遊方式や起き上がり こぼし方式の水平化機構によって行うので、 機構が複雑にならず、 コスト面でさ らに有利になる。
このほか、 アンテナの上部に電波の妨げとなる部材が存在しないので、 アンテ ナの電気性能が安定する。 また、 アンテナを揺動可能に下から受け支えているの で、 支持構造物の小型化や軽量化なども図れ、 使い勝手のよいアンテナを提供で きる。
なお、 アンテナに伝達される振動を減衰させる機能ゃァクティブな傾き修正機 能を付加したものは、 アンテナの水平維持がより安定してなされ、 きつい揺れが 想定される移動体に採用しても通信相手からの電波を確実に捕捉することができ る。

Claims

請求の範囲
1 . 球状又は反射板を有する半球状のルーネベルグレンズ、 一次放射器及び一次 放射器の支持アームを備えるアンテナと、 そのアンテナを覆うカバーと、 アンテ ナの水平化機構を有する水平調整機構ど、 アンテナの自己位置確認手段と、 方位 確認手段を含むアンテナの方位調整機構とを具備し、
移動体の移動中に前記水平化機構による水平化および、 自己位置情報、 方位情報 に基づく自動方位修正がなされてアンテナの初期姿勢が維持されるようにした移 動体通信用レンズァンテナ装置。
2 . 前記自己位置確認手段として G P S装置及び/若しくはジャイロコンパスを 用いた請求項 1に記載の移動体通信用レンズアンテナ装置。
3 . アンテナを容器内の液体に浮かばせたものを前記水平化機構として用いた請 求項 1または 2に記載の移動体通信用レンズアンテナ装置。
4. 前記液体として粘性流体を用いた請求項 3に記載の移動体通信用レンズアン テナ装置。
5 · 半球状ルーネベルグレンズアンテナの反射板下にアンテナの重心を下げるゥ エイ卜を取り付け、 このウェイトを有するァンテナを揺動可能に受け支えたもの を前記水平化機構として用いた請求項 1または 2に記載の移動体逋信用レンズァ ンテナ装置。
6 . ジンバル機構を用いてアンテナを 2軸方向揺動可能に受け支えた請求項 5に 記載の移動体通信用レンズァンテナ装置。
7 . 上半分を軽量材で、 下半分を重量材で各々形成し、 上半分と下半分の比誘電 率を略同一にした全球型ルーネベルグレンズの下部外面、 または、 外面が球面の ウェイトを下部に取り付けて重心を下げた全球型ル一ネベルグレンズの前記ゥェ ィトの外面を揺動可能に支えたものを前記水平化機構として用いた請求項 1また は 2または 6に記載の移動体通信用レンズアンテナ装置。
PCT/JP2004/001351 2003-02-13 2004-02-09 移動体通信用レンズアンテナ装置 WO2004073102A2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003035444 2003-02-13
JP2003-035444 2003-02-13
JP2004025697A JP2004266816A (ja) 2003-02-13 2004-02-02 移動体通信用レンズアンテナ装置
JP2004-025697 2004-02-02

Publications (2)

Publication Number Publication Date
WO2004073102A2 true WO2004073102A2 (ja) 2004-08-26
WO2004073102A3 WO2004073102A3 (ja) 2004-10-07

Family

ID=32871176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001351 WO2004073102A2 (ja) 2003-02-13 2004-02-09 移動体通信用レンズアンテナ装置

Country Status (2)

Country Link
JP (1) JP2004266816A (ja)
WO (1) WO2004073102A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461889A (zh) * 2018-02-05 2018-08-28 国网河南省电力公司电力科学研究院 一种故障定位天线用调平回转装置
CN111276817A (zh) * 2020-02-12 2020-06-12 宿迁学院 一种卫星通讯信号接收天线及其工作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812824B2 (ja) * 2008-10-28 2011-11-09 独立行政法人電子航法研究所 全方向性を有する誘電体レンズ装置を用いた電磁波の反射器を有するアンテナ。
JP2022120321A (ja) * 2021-02-05 2022-08-18 日本電業工作株式会社 アンテナ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121721A (ja) * 1998-10-14 2000-04-28 Japan Radio Co Ltd 空中線
JP2000183645A (ja) * 1998-12-18 2000-06-30 Toshiba Corp アンテナ装置
JP2001284939A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 衛星通信用移動体装置
JP2002232230A (ja) * 2001-02-01 2002-08-16 Toshiba Corp レンズアンテナ装置
JP2003188640A (ja) * 2001-12-13 2003-07-04 Sumitomo Electric Ind Ltd レンズアンテナ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595219A (ja) * 1991-10-02 1993-04-16 Sharp Corp Gps測位装置
JP3306684B2 (ja) * 1993-10-19 2002-07-24 株式会社トキメック アンテナ指向装置
JPH07249919A (ja) * 1994-03-08 1995-09-26 Tokimec Inc アンテナ指向装置
JPH07326916A (ja) * 1994-05-31 1995-12-12 Matsushita Electric Works Ltd アンテナ装置
JPH10107530A (ja) * 1996-09-26 1998-04-24 Japan Radio Co Ltd アンテナ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121721A (ja) * 1998-10-14 2000-04-28 Japan Radio Co Ltd 空中線
JP2000183645A (ja) * 1998-12-18 2000-06-30 Toshiba Corp アンテナ装置
JP2001284939A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 衛星通信用移動体装置
JP2002232230A (ja) * 2001-02-01 2002-08-16 Toshiba Corp レンズアンテナ装置
JP2003188640A (ja) * 2001-12-13 2003-07-04 Sumitomo Electric Ind Ltd レンズアンテナ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461889A (zh) * 2018-02-05 2018-08-28 国网河南省电力公司电力科学研究院 一种故障定位天线用调平回转装置
CN111276817A (zh) * 2020-02-12 2020-06-12 宿迁学院 一种卫星通讯信号接收天线及其工作方法

Also Published As

Publication number Publication date
JP2004266816A (ja) 2004-09-24
WO2004073102A3 (ja) 2004-10-07

Similar Documents

Publication Publication Date Title
US7259724B2 (en) Antenna positioner system with dual operational mode
US6285338B1 (en) Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna
KR102479537B1 (ko) 추적 받침대에 액티브 어레이를 갖는 안테나 시스템
US5517205A (en) Two axis mount pointing apparatus
KR20130098277A (ko) 운동 플랫폼 및 피기백 어셈블리를 갖는 3-축 받침부
CN105870571B (zh) 用于天线的定位系统以及天线系统
US20230050129A1 (en) Antenna positioner with eccentric tilt position mechanism
US20110068989A1 (en) Antenna System with Three Degrees of Freedom
WO2004073102A2 (ja) 移動体通信用レンズアンテナ装置
EP2752938B1 (en) Antenna device
JP4087355B2 (ja) 追尾機器
WO1998057389A1 (en) An arrangement comprising an antenna reflector and a transceiver horn combined to form a compact antenna unit
JP3754955B2 (ja) 移動体通信用レンズアンテナ装置
JP2007006266A (ja) 電波レンズアンテナ装置
JP2005244611A (ja) アンテナマウント
JPS61281917A (ja) 安定化プラツトホ−ム装置
KR20000067631A (ko) 선박용 위성통신안테나 시스템
JPH07263939A (ja) 移動体搭載用衛星アンテナ装置
JP3122579U (ja) アンテナ追尾装置及びアンテナ
JP3136367B2 (ja) アンテナ指向装置
JPH06196917A (ja) アンテナ方向調整装置
JPS6118362B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase