WO2004064057A1 - 光ディスク製造用原盤の作製方法及び光ディスクの製造方法 - Google Patents

光ディスク製造用原盤の作製方法及び光ディスクの製造方法 Download PDF

Info

Publication number
WO2004064057A1
WO2004064057A1 PCT/JP2003/016620 JP0316620W WO2004064057A1 WO 2004064057 A1 WO2004064057 A1 WO 2004064057A1 JP 0316620 W JP0316620 W JP 0316620W WO 2004064057 A1 WO2004064057 A1 WO 2004064057A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
resist layer
manufacturing
recording
optical disc
Prior art date
Application number
PCT/JP2003/016620
Other languages
English (en)
French (fr)
Inventor
Shinichi Kai
Katsuhisa Aratani
Akira Kouchiyama
Kenzo Nakagawa
Yoshihiro Takemoto
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to US10/505,455 priority Critical patent/US8119043B2/en
Priority to DE60336928T priority patent/DE60336928D1/de
Priority to EP03789628A priority patent/EP1583091B1/en
Priority to JP2004566298A priority patent/JP4239977B2/ja
Priority to KR1020047014082A priority patent/KR101047255B1/ko
Publication of WO2004064057A1 publication Critical patent/WO2004064057A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/81Sound record

Definitions

  • the present invention relates to a method for manufacturing an optical disk, such as injection molding, an optical disk substrate having a concavo-convex pattern such as a group for tracking and an address, and a pit for data recording.
  • the present invention relates to a method for producing an optical disk production master for transferring and producing a stamper formed by the method and a method for producing an optical disk, and more particularly, to a master for obtaining an excellent optical disk by adjusting the exposure focus at the time of producing the master, and To be able to manufacture optical discs with excellent characteristics.
  • optical disks such as DVD (Diglta1Versati1eDisc) have been used in a wide range of fields as recording media.
  • This optical disc is composed of various information signals such as address signals and tracking signals on an optically transparent optical disc substrate such as a polycarbonate.
  • This optical disk is manufactured through manufacturing steps as shown in FIGS. 6A to 6J (for example, Japanese Patent Application Laid-Open Publication No. 2001-019571, paragraph [00002]- [0000].
  • a glass substrate 90 having a smooth surface is prepared (FIG. 6A), and a photosensitive photo resist (organic resist) is placed on the glass substrate 90.
  • the resist substrate 91 is formed by uniformly forming a resist layer 91 composed of the resist (FIG. 6B).
  • the recording laser beam is relatively run on the resist layer 91 of the resist substrate 92 from the inner peripheral portion to the outer peripheral portion or from the outer peripheral portion to the inner peripheral portion of the substrate 90, for example, in a spiral manner.
  • the recording layer is irradiated with a recording laser beam whose ON / OFF is controlled in accordance with the information signal pattern, and the resist layer 91 is exposed to a pattern exposure, ie, exposure, corresponding to the information uneven pattern of the optical disk substrate to be finally obtained.
  • the exposed master 93 is formed (Fig. 6C).
  • a metal nickel plating layer 93 is formed on the concavo-convex pattern surface of the master disk 94 by an electro-optical method (FIG. 6E).
  • the plating layer 95 is peeled off from the master 94 and subjected to predetermined processing to obtain a molding stamper 96 to which the concave / convex pattern of the master 94 has been transferred (FIG. 6F).
  • FIG. 6G Injection molding (FIG. 6G) is performed using this molding stamper 96 to form a resin optical disk substrate 97 made of thermoplastic polycarbonate (FIG. 6H).
  • an optical disk 200 is obtained by forming a reflective film 98 of A1 alloy (FIG. 61) and a protective film 99 on the uneven surface of the optical disk substrate 97 (FIG. 6J). .
  • An optical disc manufactured in this way becomes a product after quality inspection.
  • One of the quality items is a jitter value (Jitt er).
  • the jitter value indicates the fluctuation of the RF signal in the time axis direction when the signal is reproduced, and is an important item that is an index of the quality of the reproduced signal of the optical disk.
  • this focus adjustment requires a long optical system for observing the reflected light at a confocal point and a CCD (Charge ou 1 ed De V 1 ce) camera, as described later. Therefore, the configuration of the optical system of the exposure apparatus was complicated.
  • the jitter value is determined from the RF signal pattern when the signal is reproduced, it is difficult to measure the jitter value from the latent image of the resist layer after exposure. Only the optical disc in the final product stage (Fig. 6J) can be measured.
  • the manufacturing conditions of the exposure process In the event that a defective product is generated due to a defect, it takes a long time to determine the cause of the defect, and it takes much more time to reflect it in the correction of manufacturing conditions, and overall productivity And reduced yields.
  • the above-described exposure process is a process that has a significant effect on the pit formation, and among them, it is necessary to perform the exposure by focusing the recording laser beam particularly on the surface of the resist layer of the resist substrate. Strict control is required to keep the distance between the objective lens of the exposure apparatus and the surface of the resist layer of the resist substrate (hereinafter referred to as exposure focus position) constant.
  • the focus position in this exposure and process is adjusted by fixing the position (height) of the resist substrate and visually observing the reflected light from the resist substrate at a position that is confocal with the focus of the objective lens. Then, focus adjustment is performed so that the spot shape becomes the best. A method of operating the focus actuator to adjust the height position of the objective lens from the resist surface of the resist substrate is performed. ing. Disclosure of the invention
  • the present invention makes it possible to predict and evaluate the recording signal characteristics (jitter value) of an optical disc from the recording signal characteristics of an exposed portion on a resist in an exposure step, and to appropriately adjust the exposure focus position based on the evaluation result.
  • a method of manufacturing a master for manufacturing an optical disk and a method of manufacturing an optical disk, which can solve the above-mentioned problems. That is, the present inventors have proposed a method of exposing a resist layer made of an inorganic resist material to a laser beam or the like to chemically change the state of the resist layer.
  • the present inventors have found the present invention.
  • an information signal corresponding to an information signal of an information concavo-convex pattern formed on the optical disc with respect to the inorganic resist layer formed on the base is provided.
  • a recording laser beam is irradiated, and the characteristics of the recording signal of the resist layer are evaluated based on the reflected light.
  • the exposure focus position adjustment for determining the focus position is performed.
  • the method for manufacturing an optical disk according to the present invention includes a manufacturing process of an optical disk manufacturing master, a stamper manufacturing process of transferring and manufacturing a stamper for manufacturing an optical disk from the master, and an optical disk for transferring and manufacturing an optical disk substrate by the stamper. Forming a reflective film on the optical disk substrate; and forming a protective film on the optical disk substrate.
  • the manufacturing process of the master plate is performed with respect to the inorganic resist layer formed on the substrate.
  • a test exposure is performed on the non-recording area of the resist layer, and then the exposed portion is irradiated with a laser beam for evaluation, and the reflected light is used to evaluate the recording signal characteristics of the resist layer. Then, based on the evaluation result, an exposure focus position adjustment for determining an optimum focus position of a recording laser beam to be performed later is performed.
  • the present invention provides the above-described method for producing a master for producing an optical disk and the method for producing an optical disk, wherein the inorganic resist layer is a resist layer containing a transition metal incomplete oxide.
  • the evaluation area of the laser beam irradiation may be an area other than the irradiation area of the recording laser light.
  • the recording signal characteristic of the exposed portion of the test exposure before the exposure processing is measured. Pass / Fail can be determined. Therefore, from this result, it is possible to immediately set an appropriate exposure focus position for the scheduled exposure area for recording.
  • the evaluation of the recording signal characteristic of the resist layer is to evaluate the recording signal characteristic of the exposure master for an optical disc, that is, the relationship between the jitter value of a high frequency (RF) signal pattern and the exposure focus position. It is desirable to select an exposure focus position where the jitter value is minimized. This is because the recording signal characteristic of the resist layer has a relationship corresponding to the recording signal characteristic (jitter value) of the optical disk.
  • RF high frequency
  • the exposure focus position at which the modulation degree becomes maximum may be selected.
  • the exposure focus position condition is determined in an area that does not affect the quality of the optical disk immediately before the exposure processing in the exposure process.
  • the quality of the final product can be determined by this method, so that even if the result of the determination is NG (No Good), the evaluation can be immediately performed again, and the exposure focus position can be corrected.
  • 1A to 1J are process charts for manufacturing an optical disk to which the method for adjusting an exposure force position according to the present invention is applied.
  • FIG. 2 is a diagram schematically showing an exposure device used in a resist layer exposure process to which the present invention is applied.
  • FIG. 3 is a diagram showing a relationship between a focus spice voltage value during exposure and a jitter value of an evaluation signal of an exposure master in the exposure focus position adjusting method according to the present invention.
  • FIG. 4 shows the exposure focus position adjustment method according to the present invention.
  • FIG. 4 is a diagram illustrating a relationship between a focus bias voltage value during light and a jitter value of a reproduction signal of an optical disk.
  • FIG. 5 is a diagram showing a relationship between a focus noise voltage value during exposure and a modulation degree of an evaluation signal of an exposure master in the exposure focus position adjustment method according to the present invention.
  • 6A to 6J are views showing a conventional optical disk manufacturing process.
  • One of the production methods includes an incomplete oxide of a transition metal, wherein the incomplete oxide has an oxygen content of a stoichiometric composition corresponding to the possible valence of the transition metal.
  • a substrate 100 constituting a master is prepared (FIG. 1A).
  • a resist layer 101 made of a predetermined inorganic resist material is uniformly formed by a sputtering method.
  • a predetermined intermediate layer 110 may be formed between the substrate 100 and the resist layer 101 to improve the recording sensitivity of the resist layer 101 (FIG. 1B).
  • the thickness of the resist layer 101 can be arbitrarily set, but is preferably in the range of 10 nm to 120 nm.
  • a resist substrate 102 in which the resist layer 101 is formed on the substrate 100 is obtained.
  • the resist layer 101 is turned on by an information signal corresponding to an information uneven pattern on a huge optical disc.
  • An exposure process is performed by selective exposure using a recording laser beam that has been modulated.o In this manner, an exposure master 103 on which the required pattern exposure has been performed is manufactured (FIG. ⁇ ⁇ 0 1 1 1
  • the incomplete oxide of the transition metal constituting the stop material absorbs ultraviolet light or visible light, and changes its chemical property when irradiated with ultraviolet light or visible light.
  • a developing step of developing the resist layer 101 is performed to obtain a master 104 on which a predetermined uneven pattern is formed (FIG. 1D).
  • a difference occurs in the etching rate of the two portions with respect to the acid or alkaline solution even though the inorganic resist is used.
  • it can be developed with an aqueous solution of aluminum.
  • a metal nickel-metal layer 105 is formed on the concavo-convex pattern surface of the master 104 by an electro-optical method (FIG. 1E).
  • the mask layer 105 is peeled off from the master 104, subjected to a predetermined processing, and a mold stamper 100 onto which the concave and convex pattern of the master 104 has been transferred.
  • this molding stamper 106 for example, the injection molding method or
  • An optical disk substrate 107 made of thermoplastic resin is molded by the 2P method (FIGS. 1G and 1H).
  • a reflective film 108 made of, for example, an A1 alloy is formed on the round convex surface of the optical disk substrate 107 by vapor deposition or the like (FIG. 1I).
  • the optical disk 300 is changed to 1 J).
  • the resist material applied to the resist layer 101 is an incomplete oxide of a transition metal.
  • an incomplete oxide of a transition metal is a compound that is shifted in a direction in which the oxygen content is smaller than the stoichiometric composition corresponding to the valence of the transition metal, that is, the transition metal is incomplete. It is defined as a compound whose oxygen content in the complete oxide is smaller than the oxygen content of the stoichiometric composition corresponding to the valence of the transition metal.
  • the resist layer 102 made of this material can absorb the ultraviolet or visible light energy that is transmitted in the state of the complete oxide of the transition metal. This makes it possible to record a signal pattern using the change in the chemical state of the material.
  • transition metals constituting the resist material include Ti, v, Cr, Mn, Fe, Nb, Cu, Ni, Co, Mo, Ta, W, Zr, Ru, Ag and the like.
  • Mo, W, Cr, Fe, and Nb are preferably used, and Mo and W are particularly used from the viewpoint that a large chemical change can be obtained by ultraviolet light or visible light. Is preferred.
  • Fig. 2 shows the configuration of the exposure equipment used in the resist exposure process.
  • This device is provided with a beam source 11 for generating light for exposing and evaluating the resist layer, for example, a laser beam, and a laser beam output from the beam source is used for a collimator lens 12.
  • This exposure apparatus has a configuration in which the reflected light from the resist substrate 15 is connected on a split photodetector 18 via a beam splitter 13 and a condenser lens 17.
  • the split photodetector 18 detects the reflected light from the resist substrate 15 and outputs an electric signal corresponding to the amount of reflected light.
  • the arithmetic and control circuit 1a generates a focus error signal from the output signal from the split detector 18 and controls the focus actuator 1b according to the focus error signal.
  • the position (focus position) of the objective lens 14 with respect to the resist substrate 15 is controlled to be constant. In this way, even when the height of the resist substrate 15 fluctuates during recording exposure and evaluation, the position of the objective lens 14 with respect to the resist substrate 15 is kept constant by the control system described above. Fine adjustment of the position of the objective lens 14 is performed so that it is kept constant. Also, the position of the objective lens 14 (force position) with respect to the resist substrate 15 can be changed by changing the setting of the target value (focus bias voltage value).
  • the resist substrate (exposure master 103 in FIG. 1C) after the exposure step for resist substrate 15 (102) was irradiated with a laser beam for evaluation.
  • the output signal from the split photodetector 18 is used to generate an RF (high frequency) signal pattern in the arithmetic and control unit 1a, and the RF signal pattern is input to the measuring unit 1c and the jitter of the recording signal in the exposed portion is output. ⁇ The degree of modulation is measured.
  • the turntable 16 is provided with a feed mechanism (not shown), so that the exposure position of the resist substrate 15 can be changed with high accuracy.
  • a laser drive circuit (not shown) performs exposure while controlling a beam source 11 based on a data signal and a reflected light amount signal.
  • the center axis of the turntable 16 A spindle motor control system is provided to control the spindle motor by setting the optimum spindle rotation speed based on the radial position of the optical system and the desired linear velocity.
  • the resist substrate 15 is set on the turntable 16 of the exposure apparatus shown in FIG. 2 so that the resist film formation surface is disposed on the upper side.
  • the turntable 16 is rotated to rotate the resist substrate 15 mounted on the turntable 16 while turning the turntable 16.
  • the resist layer 15 spirals in the resist layer from the inner peripheral portion to the outer peripheral portion or from the outer peripheral portion to the inner peripheral portion on the main surface.
  • a concentric signal pattern is recorded, that is, pattern exposure is performed.
  • the amount of light emitted from the beam source 11 is changed in accordance with the recording signal pattern to create a pattern of recording marks on the resist layer. More signal recording is performed.
  • the area where signal recording is performed in the inorganic resist layer changes from the chemical state (amorphous) of the original inorganic resist material to a different chemical state (crystalline). I have.
  • the reflectivity of light such as laser light differs due to the difference in the state
  • the signal is taken out from the obtained exposure master 103 and the jitter value or the modulation degree of the recording signal of the exposure master 103 is obtained from the signal. That is, the chemistry of the exposed part
  • the change in the target state causes a difference in the reflectivity in the areas with and without exposure, and when the laser light for evaluation is irradiated, the diffraction phenomenon caused by the difference in the reflectivity occurs.
  • a change in the amount of reflected light occurs, from which an RF signal pattern can be obtained, and a jitter value and a degree of modulation can be obtained from the RF signal pattern.
  • the laser beam is emitted from the beam generation source 11 to the resist substrate 15 (in this case, the Ningbo substrate 103) while the laser beam having a power lower than the power at the time of exposure is irradiated.
  • the resist substrate 15 (103) mounted on the substrate in the radial direction with the turntable 16 the laser beam is relatively moved over the exposed portion by the Is irradiated while being scanned.
  • the irradiated laser light is reflected by the resist layer, and the reflected light passes through the beam splitter 13 and the condenser lens 17 of the exposure apparatus, and the photodetector 1
  • the RF signal pattern is extracted from the signal detected by the photodetector 18.
  • the jitter value or modulation factor is obtained from the RF signal pattern.
  • Fig. 3 shows the measurement results of the relationship between the force spice voltage value, that is, the exposure focus position, and the jitter value. That is, in this case, an exposure master 103 exposed by changing the exposure focus position is manufactured on the resist substrate 102, and the exposure master 103 is exposed at each exposure focus position. The RF signal pattern described above was extracted, and the result of calculating the jitter value from the RF signal pattern was plotted.
  • a resist layer 101 using an incomplete oxide of trivalent W and trivalent Mo was formed as a resist material on a substrate 100 of a silicon substrate.
  • the above-mentioned exposure master 103 was prepared on a resist substrate 102 with a laser beam having a wavelength of 405 nm. In this case, the recording and the price are determined under the condition that the beam spot diameter of the recording laser beam and the beam spot diameter of the evaluation laser beam are the same. went.
  • the focus bias voltage value is defined as the focus bias voltage value at which the jitter value becomes a minimum, for convenience, 0 (zero), and the relative value of the adjustment dial scale in the plus (+) direction and the minus (1) direction from there. It is shown.
  • the focus bias voltage value at which the jitter value is minimized that is, when the exposure focus position is set, the focus of the recording laser beam is most focused on the resist layer, that is, the light
  • the quality of the spot is considered to be the best.
  • FIG. 4 shows the measurement results.
  • Fig. 4 the same tendency as in Fig. 3 was observed, in which there was an exposure focus position where the jitter value was minimal between the focus bias voltage value during exposure (exposure focus position) and the jitter value during optical disc playback.
  • the focus bias voltage value was the same as the focus bias voltage value at which the jitter value was minimized in FIG.
  • the degree of modulation representing the degree of diffraction of the reflected light can be obtained, and the exposure focus position can be adjusted from the degree of modulation. That is, as shown in FIG. 5, there exists a force bias voltage value (exposure focus position) at the time of exposure at which the modulation degree of the exposure master 103 becomes maximum, and the exposure master 10 manufactured in FIG.
  • the focus bias voltage at which the jitter value during reproduction of the optical disc 300 manufactured according to the manufacturing process in Fig. 1 is minimized is the focus bias voltage at which the modulation factor is maximized in Fig. 5.
  • an optical disc 300 having an excellent signal characteristic and having a minimum jitter value can be obtained by exposing at the exposure focus position where the modulation degree of the exposure master 103 is maximized.
  • the exposure focus position adjustment method according to the present invention is a method performed at the stage of the exposure step shown in FIG. 1C.
  • the chemical state of the inorganic resist material in this exposure step is controlled by light such as laser light. Utilizing the difference in reflectance, it is based on the result of extracting and evaluating a signal from an exposure master 103 in the same manner as extracting a signal from an optical disk by an optical pickup.
  • the resist substrate 102 is set on the turntable 16 of the exposure apparatus shown in FIG. 2 so that the film surface of the resist layer is arranged on the upper side.
  • a portion that is not a recording area of the optical disc such as an inner peripheral portion and an outer peripheral portion (a portion not used as a disc standard; hereinafter, referred to as a test exposure portion).
  • Laser light is irradiated at the recording power as test exposure (S
  • the exposure focus position is changed by changing the focus bias value, and the recording laser light is irradiated.
  • the chemical property of the incomplete oxide of the transition metal in the resist layer 101 changes in a region irradiated with the recording laser beam.
  • test exposure portion is irradiated with an evaluation laser beam (S 2).
  • step S1 the rotation of the turntable 16 and the movement in the radial direction are the same as in step S1, the evaluation laser beam focus position is fixed, and the power is set to about one-third of the power at the time of exposure. Irradiate the test laser beam to the test exposure area.
  • the laser beam irradiated in step S2 is reflected by the resist layer, and is detected by the photodetector 18 through the beam splitter 13 and the condenser lens 17 of the exposure apparatus (S3).
  • the arithmetic and control circuit 1a extracts the RF signal pattern from the detected signal (S4). .
  • the jitter value or modulation factor for each exposure focus position changed during the test exposure is detected, and when evaluating the jitter value, the exposure focus position where the jitter value becomes the minimum is determined. In the case of evaluation, the exposure focus position where the degree of modulation is maximum is determined as the exposure focus position for actual recording (S5).
  • the resist layer is selectively exposed to light corresponding to the recording signal pattern and exposed (S6).
  • the jitter value of the recording signal of the optical disk can be accurately set within the standard range.
  • the exposure control method and the exposure evaluation method according to the method of the present invention can also be applied to a method of exposing the inorganic resist material with light obtained by combining laser light and light from a mercury lamp.
  • the resist substrate 102 is actually manufactured using an incomplete oxide of trivalent W and trivalent Mo as a resist material.
  • the optical disk 300 was finally manufactured.
  • a substrate 100 consisting of
  • an intermediate layer 110 made of amorphine is formed uniformly with a thickness of 80 nm by sputtering method.
  • the film is formed, and then W is formed thereon by sputtering.
  • a resist substrate 101 made of an incomplete oxide of Mo was formed uniformly to form a resist substrate 102 (FIG. 1B). Spatial sputtering was performed in an argon atmosphere using a sputter target composed of a complete oxide. O At this time, the resist layer deposited was analyzed by EDX (energy dispersive X-ray spectrometer). In this case, the ratio of W to Mo in the formed incomplete oxide of W and Mo was 80:20, and the oxygen content was 60 atom%. The thickness of the resist layer was 55 nm. The results of electron diffraction analysis using a transmission electron microscope confirmed that the crystalline state of the incomplete WMoO oxide before exposure was amorphous. ing.
  • the resist substrates 1, 02 on which the formation of the resist layer 101 has been completed are placed on the turntable 16 of the exposure apparatus described with reference to FIG.
  • the method was implemented. That is, while the turntable 16 is rotated at a desired number of revolutions, a portion of the main surface of the resist substrate 102, such as an inner peripheral portion and an outer peripheral portion, which is not an optical disc recording area (a disc standard and
  • the test bias exposure was performed by changing the focus bias voltage value and irradiating a recording laser beam, and then irradiating the exposed portion with an evaluation laser beam to obtain an RF signal pattern. And evaluated the jitter value.
  • the position in the height direction of 4 is moved and adjusted by the focus actuator, and the recording layer is forcibly focused on the resist layer.
  • the turntable 16 is moved to a desired radial position by the feed mechanism provided on the turntable 16 described above, and the recording laser beam is irradiated under the above-described exposure conditions.
  • the surface of the resist layer is irradiated to expose the resist layer.
  • the e-light was emitted while the turntable was continuously moved at a small distance in the radial direction of the resist substrate while rotating the tablet table.
  • predetermined development, electrodeposition, injection molding, formation of a reflective film and a protective film were performed, and an optical disc 300 having a diameter of 12 cm was obtained.
  • the steps up to obtaining the optical disk from the exposure master were manufactured by a conventionally known technique.
  • the optical disk was read under the following conditions, the RF signal was obtained as an eye pattern, and the signal was evaluated.
  • the symbol that has been subjected to the computational equalization processing for the eye pattern that has been read out was 8.0%, and the jitter value in the eye pattern subjected to the limit equalization process was a sufficiently low value of 4.6%. That is, it was confirmed that according to the present invention, a good optical disk having no practical problem could be obtained as a ROM disk having a recording capacity of 25 GB.
  • the exposure focus is determined based on the recording signal characteristic (jitter value or modulation factor) of the exposed portion. Since the quality of the final product can be determined based on the position, it is possible to immediately determine the exposure focus position for the actual exposure immediately from the result.
  • the recording signal characteristic jitter value or modulation factor
  • the quality of the final product can be determined based on the exposure focus position conditions. Evaluation can be performed and exposure focus position can be corrected It becomes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

明 細 書
光ディスク製造用原盤の作製方法及ぴ光ディスクの製造方法 技術分野
本発明は、 光ディスクの製造において、 トラッキング用、 ア ド レス用等のグループや、 データ記録のピッ ト等の凹凸パターンを 有する光ディスク基板を、例えば射出成型、 2 P (P h o t o P o 1 y m e r i z a t i o n ) 法によって形成するスタンパを転 写作製するための光ディスク製造用原盤の作製方法及び光ディス クの製造方法に関し、 特にその原盤作製時の露光フォーカス調整 によって優れた光ディスクを得る原盤と、 これによつて優れた特 性の光ディスクを製造することができるよ う にする。 背景技術
近年、 D V D (D i g l t a 1 V e r s a t i 1 e D i s c ) などの光ディスクは記録媒体と して幅広い分野で使用される よ う になった。
この光ディスクは 、 ポリ カーボネ一 ト等の光学的に透明な光デ イ スク基板上に各種情報信号例えばァ ドレス信号 、 卜ラ ッキング
一ぐ
信号を得るグルーブ 、 了一タ情報信号の記録部と してのピッ 卜等 の微細な情報凹凸パターンが形成され、 この上にアル 、、—ゥム等 の金属薄膜からなる反射膜が形成され、 更にその反射膜 ヒに保護 膜が形成された構造を有する。
この光ディスクは、 図 6 A〜図 6 J に示すよ う な製造工程を経 て製造される (例えば特開 2 0 0 1 — 1 9 5 7 9 1号公報、 段落 [ 0 0 0 2 ] 〜 [ 0 0 0 6 ] 参照)。
まず、 表面が平滑化されたガラス基板 9 0 を用意し (図 6 A)、 このガラス基板 9 0 の上に、 感光性のフォ ト レジス ト (有機レジ ス ト) からなる レジス ト層 9 1 を均一に形成してレジス ト基板 9 2を構成する (図 6 B )。
ついで、 記録用レーザ光をレジス ト基板 9 2のレジス ト層 9 1 上で基板 9 0の内周部から外周部、 あるいは外周部から内周部に かけて例えばらせん状に相対的に走查させながら、 情報信号パタ ーンに対応させてオンオフ制御した記録用レーザ光を照射してレ ジス ト層 9 1 に、 最終的に得る光ディスク基板の情報凹凸パター ンに対応するパターン露光すなわち感光を行った露光原盤 9 3 を 形成する (図 6 C )。
次に、 レジス ト層 9 1 を現像することによって所定の凹凸パタ ーンが形成された原盤 9 4 を得る (図 6 D )。
次に、 電鏡法によって原盤 9 4 の凹凸パターン面上に金属ニッ ケルメ ツキ層 9 3 を形成する (図 6 E )。 このメ ツキ層 9 5 を原盤 9 4から剥離し、 所定の加工を施し、 原盤 9 4の凹凸パターンが 転写された成型用スタンパ 9 6 を得る (図 6 F )。
この成型用スタンパ 9 6 を用いて射出成型(図 6 G )を行って熱 可塑性樹脂のポリ カーボネー トによる樹脂製の光ディスク基板 9 7を成形する (図 6 H )。
ついで、 この光ディスク基板 9 7の凹凸面に A 1 合金の反射膜 9 8 (図 6 1 ) と保護膜 9 9 とを成膜するこ とによ り光ディスク 2 0 0を得る (図 6 J )。
このよ う にして製造された光ディスクは品質検査された後に製 品となるが、 この品質項目の 1つと してジッタ値 ( J i t t e r ) がある。 ジッタ値は、 信号再生したときの R F信号の時間軸方向 の変動を示すものであり、 光ディスクの再生信号の品質の指標と なる重要項目である。
更に、ジッタ値は光ディスクに形成される凹凸パターンのう ち、 凹部 (ピッ ト) の寸法変動の影響を受けるため、 最近の光デイ ス 'クの高容量化に伴って凹凸パターンが微細化される状況において は、 よ り重要な管理項目 となってきている
したがつて 、 このピッ トの寸法形状を決定する露光原盤作製時 の露光スポク トの寸法形状の調整は需要とな Ό o レかしながら 、 この露光スポッ トの良否の判定には、 個人差が生じるため、 露光 時の露光フォ一カス調整にばらつきが生じヽ これが最終製品の光 ディスクの信号特性にばらつきが生じる一因となつていた。
また、 このフォ—カス調整は、 後述するよ う に、 反射光を共焦 点で観察するための長い光学系や C C D ( C h a r g e し o u 1 e d D e V 1 c e ) カメ ラが必要となるため 、 露光装置の 光学系の構成が複雑になっていた。
また 、 ジッタ値は、 信号再生したときの R F信号パターンから 求められるこ とから、 露光後のレジス ト層の潜像からそれを測定 するこ とは困難であるこ とから、 前記製造工程を経て後の最終製 品の段階 (図 6 J ) の光ディスクについてしか、 その測定ができ なかつた o
そのため、露光フォーカス位置の調整が不良であった場合には、 それまでの一連の労力、 製造時間、 製品が無駄となってしまって いた o
のよ うに、 露光工程の製造条件起因の不良が発生した場合に はその 失は極めて大きレ、。
また、 上述の最終工程後に判明したジッタ値の測定結果を製造 工程へブイ一 ドパックするという方法をと らざるを得ないため、 製造条件の素早い修正もできなかった。
特に、 露光工程における製造条件の修正に関して、 そのロ ッ ト が露光工程を通過した時点から、 そのロ ッ トの最終工程からのフ イー ドパック情報に基いて修正された露光条件が反映される時点 までには長時間を要していた。 したがって、 露光工程の製造条件 に起因する不良品が発生した場合には、 不良原因の究明にも長時 間を要することになり、 製造条件の修正に反映させるまでに、 更 に多大な時間を要し、 全体の生産性を阻害、 歩留ま り の低下をき たす事にもなつていた。
以上のこ とから、 光ディスクの情報凹凸パターン、 特にピッ ト の寸法変動をできるだけ抑制すべく上述の製造工程において、 各 工程の適正製造条件が設定され、 ジッタ値が或る一定の範囲内に 収まるよ う に管理されている。
特に、 上述した露光工程は、 ピッ ト形成に重大な影響を及ぼす 工程であり、 その中でも特に記録用レーザ光の焦点をレジス ト基 板のレジス ト層表面に合わせて露光を施す必要があるため、 露光 装置の対物レンズと レジス ト基板のレジス ト層表面との距離 (以 下、 露光フォーカス位置と称する) を一定に保つ厳格な管理が要 求されている。
通常、 この露光,工程におけるフォーカス位置の調整は、 レジス ト基板の位置 (高さ) は固定と し、 レジス ト基板からの反射光を 対物レンズの焦点と共焦点となるよ うな位置で目視観察し、 その スポッ ト形状が最も良く なるよ う にフォーカス調整を行う フォー カスァクチユエータを操作して対物レンズのレジス ト基板のレジ ス ト表面からの高さ位置について調整する方法が行われている。 発明の開示
本発明は、 露光工程においてレジス ト上の露光部分の記録信号 特性から光ディスクの記録信号特性 (ジッタ値) を予測評価し、 その評価結果に基いて露光フォーカス位置を適正に調整するこ と ができるよ う にして、 上述した諸問題の解決を図るこ とができる よ う にした光ディスク製造用原盤の作製方法及び光ディスクの製 造方法を提供する。 すなわち、 本発明者らは、 無機レジス ト材料からなる レジス ト 層をレーザ光などで露光してこのレジス ト層を化学的に状態変化 させる露光方法による とき、 この露光による無機レジス ト材料の 化学的な状態変化に対応して光の反射率 (反射光量) が変化する 現象を利用し、 それによる回折現象に着目 し鋭意検討を行った結 果、 本発明を見出すに至ったものである。
本発明による光ディスク製造用原盤の作製方法においては、 基 板上に形成された無機レジス ト層に対して、 前記光ディスクに形 成される情報凹凸パターンの情報信号に対応する情報信号によつ て変調された記録用レーザ光を照射して、 前記光ディ スクの前記 情報凹凸パターンに対応する露光パターンを形成する露光工程と、 その後前記無機レジス ト層に対し、 現像処理を行って、 前記無機 レジス ト層による前記情報凹凸パターンに対応する凹凸パターン を形成する現像工程とを有し、 前記露光工程において、 前記レジ ス ト層の非記録領域に試し露光を行って後、 該露光部分に評価用 レーザ光を照射し、 その反射光から前記レジス ト層の記録信号特 性の評価を行い、 その評価結果に基いて、 後に行う記録用レーザ 光の最適なフォーカス位置を決定する露光フォーカス位置調整を 行う ことを特徴とする。
また、 本発明による光ディスクの製造方法は、 光ディスク製造 用原盤の作製工程と、 前記原盤から光ディスク製造用のスタンパ を転写作製するスタンパ作製工程と、 前記スタンパによって光デ イスク基板を転写製造する光ディスクの作成工程と、 該光デイス ク基板上における反射膜の成膜工程と、 保護膜の成膜工程とを有 し、 前記原盤の作製工程は、 基板上に形成された無機レジス ト層 に対して、 前記光ディスクに形成される情報凹凸パターンの情報 信号に対応する情報信号によって変調された記録用レーザ光を照 射して、 前記光ディスクの前記情報凹凸パターンに対応する露光 パタ ンを形成する露光工程と、 その後前記無機レジス ト層に対 し、 像処理を行つて、 前記無機レジス ト層による前記情報凹凸 パタ一ンに対応する凹凸パターンを形成する現像工程とを有し、 刖 露光工程において、 前記レジス ト層の非記録領域に試し露光 を行つて後、 該露光部分に評価用レーザ光を照射し、 その反射光 ら刖記レジス 卜層の記録信号特性の評価を行い 、 その評価結果 に基レ、て 、 後に行う記録用レーザ光の最適なフォ一カス位置を決 定する露光フォ―カス位置調整を行う こ とを特徴とする。
また 、 本発明は 、 上述した光ディスク製造用原盤の作製方法及 ぴ光ティスクの製造方法において、 その無機レジス ト層が遷移金 属の不兀全酸化物を含んだレジス ト層とするこ とを特徴とする。
また本発明は、 上述した光ディスク製造用原盤の作製方法及び 光ディ スクの製造方法において、 前記評価甩レーザ光の照射領域 が、 記記録用レ一ザ光の照射領域以外の領域と されたこ とを特 徴とする。
上述した本発明方法によ ば、 露光工程の段階で、 .露光処理前 の試し露光の露光部分の記録信号特性を測定するものであり、 こ の測定結果に基いて、 その露光条件による最終製品の良否が判定 できる。 したがって、 この結果から直ちに記録用の露光予定領域 に対して適正な露光フォーカス位置を設定することが可能となる。
こ こで、 レジス ト層の記録信号特性の評価とは、 光ディスク用 露光原盤の記録信号特性、 すなわち高周波 (R F ) 信号パターン のジッタ値と露光フォーカス位置との関係を評価するこ とであり、 ジッタ値が最小となる露光フォーカス位置を選択することが望ま しいものである。 これは、 レジス ト層の記録信号特性が、 光ディ ス ク の記録信号特性 (ジッタ値) と対応する関係にあるこ とに因 る。
また、 光ディスク用露光原盤の R F信号パターンに関して、 露 光部分の反射光の回折の程度を表す変調度も光ディスクの記録信 号特性 (ジッタ値) と相関があるため、 その変調度が最大となる 露光フォーカス位置を選択するよ う にしても良い。
尚、 従来の感光性レジス ト材料である有機レジス ト材料を用い たレジス ト基板に露光して信号の記録を行う場合では、 レジス ト 層の露光あり の領域と露光なしの領域との間で反射光量に差異は 生じないため、 本発明を適用するこ とはできず、 露光段階ではど のよ うな信号が記録されているか確認できない。
また、 その試し露光を、 記録用レーザ光の照射領域以外の領域 とすることによって、 露光工程の露光処理直前の段階で光デイス クの品質に影響を与えない領域において、 その露光フォーカス位 置条件による最終製品の良否が判定できることから、 判定結果が N G ( N o G o o d ) の場合でも直ちにやり直し評価を行う こ とができ、 露光フォーカス位置の修正が可能となる。
したがって、 本発明によれば、 適正な露光パターンの形成、 ひ いては適正な凹凸パターンを有する光ディスク製造用原盤を作製 するこ とができ、 これによつてジッタが改善された光ディスクを 効率よく製造することができるものである。 図面の簡単な説明
図 1 A 〜 J は、 本発明に係る露光フォ一力ス ¼置調整方法を適 用する光ディスクの製造工程図である o
図 2は 、 本発明を適用したレジス ト層露光ェ程で用いられる露 光装置を模式的に表す図である。
図 3 は 、 本発明に係る露光フォ一カス位置調整方法における露 光時のフオーカスパイァス電圧値と露光原盤の評価信号のジッタ 値との関係を示す図であ 。
図 4は 、 本発明に係る露光フォーカス位置 整方法における露 光時のフォーカスパイァス電圧値と光ディスクの再生信号のジッ タ値との関係を示す図である。
図 5 は、 本発明に係る露光フォーカス位置調整方法における露 光時のフォーカスノ ィァス電圧値と露光原盤の評価信号の変調度 との関係を示す図である o
図 6 A〜 J は、 従来の光ディスクの製造ェ程図である。 発明を実施するための最良の形態
本発明による光デイスク製造用原盤の作製方法及び光ディスク の製造方法の形態例を説明する。
先ず、 その露光フォーカス位置調整方法の前提となる無機レジ ス ト材料を用いた光ディスクの製造方法を説明する。 この製造方 法の 1つと して、 遷移金属の不完全酸化物を含み、 不完全酸化物 は、 酸素の含有量が前記遷移金属のと り得る価数に応じた化学量 論組成の酸素含有量よ り小さいものであるよ うなレジス ト材料よ り なるレジス ト層を基板上に成膜した後、 このジス ト層を記録用 信号パターンに対応させて選択的に露光し、 現像して所定の凹凸 パターンを形成する方法がある。
その製造工程の概要を図 1 の工程図を参照して以下に説明する。 先ず、 原盤を構成する基板 1 0 0 を用意する (図 1 A )。
この基板 1 0 0上に、 スパッタ リ ング法によ り所定の無機系の レジス ト材料からなる レジス ト層 1 0 1 を均一に成膜する。 この 場合、 レジス ト層 1 0 1記録感度の改善のために基板 1 0 0 と レ ジス ト層 1 0 1 との間に所定の中間層 1 1 0 を形成してもよい (図 1 B ) 。 レジス ト層 1 0 1 の膜厚は、 任意に設定可能である が、 1 0 n m〜 1 2 0 n mの範囲内が好ま しい。 このよ う にして 基板 1 0 0にレジス ト層 1 0 1 が形成されたレジス ト基板 1 0 2 を得る。 次いで、 i 存のレ一ザ装置を備 た露光装置を利用して、 レジ ス ト層 1 0 1 に、 巨的とする光ディスクにおける情報凹凸パター ンに対応した情報信号によつてォン • ォフ変調した記録用レーザ 光によつて選択的露光による露光ェ程を行う o このよ う にして、 所要のパタ一ン露光がなされた露光原盤 1 0 3 を作製する (図 1 このときゝ レジス 卜層 1 0 1 のレシ 、、、
ス ト材を構成する遷移金属 の不完全酸化物は 、 紫外線又は可視光に対して吸収を示し、 紫外 線又は可視光が照射されることでその化学的性質が変化する。
次ぎに、 レジス ト層 1 0 1 を現像図する現像工程を行ちて所定の 凹凸パターンが形成された原盤 1 0 4を得る(図 1 D )。この場合、 露光工程による露光部と未露光部の形成で、 無機レジス トであり ながら酸またはァルカ リ水溶液に対して両部分のエッチング速度 に差が生じる 、 いわゆる選択比が生じるこ とから、 酸またはアル 力 リ水溶液によつて現像するこ とができる。
次に、 電鏡法によつて原盤 1 0 4 の凹凸パターン面上に金属二 ッケルメ ッキ層 1 0 5 を形成する (図 1 E )。
このメ ッキ層 1 0 5 を原盤 1 0 4から剥離し、 所定の加工を施 し、 原盤 1 0 4の凹凸パターンが転写された成型用スタンパ 1 0
6 を得る (図 1 F
この成型用スタンパ 1 0 6 を用いて例えば射出成型法あるいは
2 P法によつて熱可塑性樹脂のポリ 力 ポネー トによる樹脂製の 光ディスク基板 1 0 7を成形する (図 1 G、 H )。
ついで、 この光ディスク基板 1 0 7の回凸面に例えば A 1 合金 による反射膜 1 0 8 を蒸着等によつて成膜する (図 1 I )。
更に、 反射膜 1 0 8上に 、 保護膜 1 0 9 を成膜する。 このよ う にして光ディスク 3 0 0を 1 J )。
[レジス ト材料] 前記レジス ト層 1 0 1 に適用される レジス ト材料は、 遷移金属 の不完全酸化物である。 こ こで、 遷移金属の不完全酸化物とは、 遷移金属のと り う る価数に応じた化学量論組成よ り酸素含有量が 少ない方向にずれた化合物のこと、 すなわち遷移金属の不完全酸 化物における酸素の含有量が、 前記遷移金属のと り う る価数に応 じた化学量論組成の酸素含有量よ り小さい化合物のこ と と定義す る。
これによ り、 この材料からなる レジス ト層 1 0 2は、 その遷移 金属の完全酸化物の状態では透過してしま う紫外線又は可視光の 光エネルギーを吸収するこ とが可能となり、 無機レジス ト材料の 化学的な状態変化を利用した信号パターンの記録が可能となる。
レジス ト材料を構成する具体的な遷移金属と しては、 T i、v、 C r、 M n、 F e、 N b、 C u、 N i 、 C o、 M o、 T a、 W、 Z r、 R u、 A g等が挙げられる。 この中でも、 M o、 W、 C r、 F e、 N bを用いるこ とが好ましく 、 紫外線又は可視光によ り大 きな化学的変化を得られる という見地から特に M o、 Wを用いる ことが好ましい。
[レジス ト層に対する露光工程]
前記製造工程のう ち、 本発明が直接関わる レジス ト層の露光ェ 程について、 その詳細を以下に説明する。
図 2にレジス ト露光工程で使用される露光装置の構成を示す。 この装置は、 レジス ト層を露光する光や評価する光、 例えばレー ザ光を発生するビーム発生源 1 1 が設けられ、 こ こから出力され た レーザ光が、 コ リ メ ータ レンズ 1 2、 グレーティ ング 1 9、 ビ 一ムスプリ ッタ 1 3及び対物レンズ 1 4を通じて、 ターンテープ ル 1 6上に配置された、 レジス ト層の成膜が終了したレジス ト基 板 1 5 (図 1 Bにおける 1 0 2 )の レジス ト層にフォーカシングさ れて照射する構成を有する。 この露光装置は、 レジス ト基板 1 5からの反射光をビームスプ リ ッタ 1 3及ぴ集光レンズ 1 7 を介して分割フォ トディテクタ 1 8上で結ぶ構成を有する。 分割フォ トディテクタ 1 8は、 レジス ト基板 1 5からの反射光を検出し、 反射光量に応じた電気信号を 出力する。 演算制御回路 1 a は、 分割ディテクタ 1 8からの出力 信号からフォーカス誤差信号を生成し、 これによつてフォーカス ァクチユエータ 1 b を制御し、 目標値 (フォーカスバイアス電圧 値) に対応した位置に、 対物レンズ 1 4 の位置を制御して、 レジ ス ト基板 1 5 に対する対物レンズ 1 4 の位置(フォーカス位置)が 一定になるよ う に制御される。 このよ う にして、 記録露光時及び 評価時に、 レジス ト基板 1 5 の高さが変動しても、 上述した制御 系によ り、 レジス 'ト基板 1 5 に対する対物レンズ 1 4の位置が一 定に保持されるよ う に対物レンズ 1 4の位置の微調整が行われる。 また、レジス ト基板 1 5 に対する対物レンズ 1 4 の位置(フォー力 ス位置)は、目標値(フォーカスバイアス電圧値)の設定を変えるこ とによ り、 変化させるこ とができる。
また、 この露光装置は、 レジス ト基板 1 5 ( 1 0 2 ) に対する 露光工程後のレジス ト基板(図 1 Cにおける露光原盤 1 0 3 )に対 しては、 評価用レーザ光が照射された場合、 分割フォ トディテク タ 1 8からの出力信号は、 演算制御装置 1 a において R F (高周 波)信号パターンが生成され、 R F信号パターンは計測装置 1 c に 入力され露光部分の記録信号のジッタゃ変調度が測定される。
また、 ターンテーブル 1 6 には、 送り機構 (図示せず) が設け られており、 レジス ト基板 1 5の露光位置を精度良く変えるこ と ができる。
また、 この露光装置においては、 データ信号、 反射光量信号に 基いて、 レーザ駆動回路 (図示せず) がビーム発生源 1 1 を制御 しながら露光を行う。 更に、 ターンテーブル 1 6 の中心軸にはス ピン ドルモータ制御系が設けられ、 光学系の半径位置と所望の線 速度とに基いて、 最適なス ピン ドル回転数を設定しス ピン ドルモ ータ の制御を行う。
レジス ト層の記録用露光にあたっては、 まずレジス ト基板 1 5 を、 図 2に示される露光装置のターンテーブル 1 6上にレジス ト 成膜面が上側に配置されるよ う にセッ トする。
ついで、 ビーム発生源 1 1 からレジス ト基板 1 5 の レジス ト層 にレーザ光を照射しつつ、 ターンテーブル 1 6 を回転してこ の上 に搭載されたレジス ト基板 1 5 を回転させながら、 ターンテープ ル 1 6 と ともに半径方向に移動するこ とによ り、 レジス ト基板 1 5 の主面上の内周部から外周部、 あるいは外周部から内周部にか けてレジス ト層にらせん状若し同心円状の信号パターンを記録、 すなわちパターン露光する。 詳しく は、 レジス ト基板 1 5上に集 光されたビームスポッ トの光強度が或る程度以上である と、 レジ ス ト基板 1 5 上の無機レジス ト材料に化学的な状態変化が発生し、 記録マークが形成されるこ とから、 実際の露光では記録用信号パ ターンに対応させてビーム発生源 1 1 からの出射光量を変化させ、 レジス ト層の記録マークのパターンを作り 出すこ とによ り信号の 記録が行なわれる。
[露光原盤における反射光の信号特性]
前述したよ う に、 無機レジス ト層において信号記録が行われた 領域は、 も ともとの無機レジス ト材料の化学的状態 (ァモルフ ァ ス) から異なる化学的状態 (結晶質) に変化している。
本発明では、 その状態の違いによってレーザ光などの光の反射 率に差異が生じるこ とを利用して、 光ディスクから光ピックアツ プによ り信号を取り 出するのと同様に、 図 1 Cで得た露光原盤 1 0 3から信号を取り 出し、 その信号から露光原盤 1 0 3 の記録信 号のジッタ値または変調度を求める。 すなわち、 露光部分の化学 的状態が変化するこ とによ り露光の有 · 無の領域に反射率の差異 - が生じ、 そ に評価用レ一ザ光を照射する と反射率の差異によ り 発生する回折現象から反射光量の変動が生じ、 そこから R F信号 パターンが得られ 、 更にその R F信号パターンからジッタ値や変 調度を求めるこ とができ Ό
具体的には 、 ビーム発生源 1 1 からレジス ト基板 1 5 (この場 合、 寧光基板 1 0 3 ) に 、 露光時のパワーよ り も低いレーザ光を 照射しつつ 、 タ一ンテーブル 1 6 によって、 この上に搭載された レジス ト基板 1 5 ( 1 0 3 ) を回転させながら、 ターンテーブル 1 6 と ともに半径方向に移動することによ り、 レーザ光が相対的 に露光部分の上を走査されながら照射される。 その際、 照射され たレーザ光がレジス ト層で反射され、 その反射光を露光装置のビ 一ムスプリ ッタ 1 3 、 集光レンズ 1 7 を経てフォ トディテクタ 1
8で検出する。 フォ 卜ディテクタ 1 8で検出された信号から R F 信号パターンが取り 出されヽ その R F信号パターンからジッタ値 または変調度が求められる
図 3 は、 フォー力スパイァス電圧値、 すなわち露光フォーカス 位置と、 ジッタ値との関係の測定結果を示す。 すなわち、 この場 合、 レジス ト基板 1 0 2 に 、 露光フォーカス位置を変化させて露 光した露光原盤 1 0 3 を作製し、 この露光原盤 1 0 3 の、 それぞ れの露光フォーカス位置での前述した R F信号パターンを取り 出 し、 その R F信号パタ ―ンからジッタ値を求めた結果をプロ ッ ト した。 ここでは、 シ V コン基板による基板 1 0 0上に、 レジス ト 材料と して Wの 3価と M o の 3価との不完全酸化物を用いたレジ ス ト層 1 0 1 を形成したレジス ト基板 1 0 2 に、 波長 4 0 5 n m のレーザ光で、 上述した露光原盤 1 0 3 を作製した。 そして、 こ の場合、 その記録と 価とは、 記録用レーザ光のビームスポッ ト 径と評価用レーザ光のビームスポッ ト径とは同一径とする条件で 行った。
図 3 によれば、 フォーカスバイアス電圧値、 すなわち露光フォ 一カス位置を変化させるとジッタ値が極小となる露光フォーカス 位置が存在することが認められた。 このフォーカスバイアス電圧 値は、 ジッタ値が極小となるフォーカスバイアス電圧値を便宜上 0 (零) と し、 そこからのプラス (+ ) 方向、 マイナス (一) 方 向への調整ダイヤル目盛の相対値を示したものである。
露光原盤 1 0 3 の評価において、 ジッタ値が極小となるフォー カスバイアス電圧値、 すなわち露光フォーカス位置と した場合が 記録用レーザ光の焦点がレジス ト層上に最も合っている、 すなわ ち光スポッ トの品質が最もよいと考えられる。
次に、 図 3 の特性による露光原盤 1 0 3 を使用して、 図 1 で説 明した製造工程に従って光ディスク 3 0 0を作製し、 これからの 再生信号のジッタ値を測定した。 この測定結果を図 4に示す。 図 4 においても、 露光時のフォーカスバイアス電圧値 (露光フォー カス位置) と光ディスク再生時のジッタ値との間においてジッタ 値が極小となる露光フォーカス位置が存在する という図 3 と同様 の傾向が認められ、 そのフォーカスバイアス電圧値は図 3 におい てジッタ値が極小となるフォーカスバイアス電圧値と同じであつ た。
したがって、 現像前の段階で露光原盤のジッタ値からその原盤 から作製される光ディスクの記録信号のジッタ値を推定するこ と が可能である。 換言すれば、 露光原盤 1 0 3 のジッタ値が最小と なる露光フォーカス位置で露光すればジッタ値が最小となる信号 特性の優れた光ディスク 3 0 0'を作製するこ とができる。 この場 合、 レジス ト層の現像工程以降の製造条件が一定であるこ となど が前提である。
また、 光ディスク用露光原盤の R F信号パターンから露光部分 の反射光の回折の程度を表す変調度を求め、 その変調度から露光 フォーカス位置を調整するこ と もできる。 すなわち、 図 5 に示す よ う に、 露光原盤 1 0 3の変調度が極大となる露光時のフォー力 スバイ アス電圧値 (露光フォーカス位置) が存在し、 図 5 で作製 された露光原盤 1 0 3 を使用して、 図 1 の製造工程に従い作製し た光ディスク 3 0 0の再生時のジッタ値が極小となるフォーカス バイ アス電圧値は、 図 5 において変調度が極大となるフォーカス バイ アス電圧値と同じであった。
この関係に基いて、 露光原盤 1 0 3 の変調度が最大となる露光 フォーカス位置で露光すればジッタ値が最小となる信号特性の優 れた光ディスク 3 0 0 を得ることができる。
[露光フォーカス位置調整方法]
本発明に係る露光フォーカス位置調整方法は、 図 1 cの露光ェ 程の段階で行う方法であり 、 この露光工程における無機レジス ト 材料の化学的状 ^匕の趣いによるレーザ光などの光の反射率の差異 を利用し、 光ディスクから光ピックアップによ り信号を取り 出す のと同様に露光原盤 1 0 3から信每を取り 出し評価した結果に基 いて行う。
この露光フォ一力ス位置調整方法の一実施形態例を以下に説明 する。
図 1 Cのレジス 卜層露光工程において、 露光前のレジス ト基板
1 5 (レジス ト基板 1 0 2 ) が、 図 2の露光装置のターンテープ ル 1 6上に、 そのレジス ト層の成膜面が上側に配置されるよ う に セ ッ トされた状態で 、 レジス ト基板 1 5 ( 1 0 2 ) の主面上の内 周部や外周部などの光ディスクの記録領域とならない部分 (ディ スク規格と して用いない部分。 以下、 試し露光部分と称する。 ) において試し露光と して記録用パワーでレーザ光を照射する ( S
1 ) 。 詳しく はヽ ビ ム発生源 1 1 からレジス ト基板 1 5 へ記録 用レーザ光を照射しつつ、 ターンテーブル 1 6 によってこの上に 搭載されたレジス ト基板 1 5 を回転させながら、 ターンテーブル 1 6 と と もに半径方向に移動することによ り、 試し露光部分に露 光を施す。
このと き、 露光フォーカス位置を、 フォーカスバイアス値を変 ィ匕させるこ とによって変化させて、 記録用レーザ光を照射する。 このとき、 レジス ト層 1 0 1 の遷移金属の不完全酸化物のう ち、 記録用レーザ光が照射された領域ではその化学的性質が変化する。
次に、その試し露光部分について評価用レーザ光を照射する( S 2 ) 。
ここで、 ターンテーブル 1 6 の回転と半径方向への移動は、 ス テツプ S 1 と同様と し、評価用レーザ光フォーカス位置を固定し、 パワーを露光時の 3 0分の 1程度と した評価用レーザ光を試し露 光部分に照射する。
ステップ S 2で照射されたレーザ光がレジス ト層で反射された 光を露光装置のビームスプリ ッタ 1 3、 集光レンズ 1 7を経てフ オ トディテクタ 1 8で検出する ( S 3 ) 。
フォ トディテクタ 1 8で検出された信号は、 レジス ト層 1 0 1 の反射率と相関があるこ とから、 演算制御回路 1 a においてその 検出された信号から R F信号パターンを取り 出す ( S 4 ) 。
次に、 その R F信号パターンから試し露光時に変化させた露光 フォーカス位置ごとのジッタ値または変調度を検出し、 ジッタ値 を評価する場合にはジッタ値が最小となる露光フォーカス位置を、 変調度を評価する場合には変調度が最大となる露光フォーカス位 置を本番記録用の露光フォーカス位置と して決定する ( S 5 ) 。
ステップ S 5で決定された露光フォーカス位置で所定の記録パ ヮ一のレーザ光の照射によって、 レジス ト層に記録用信号パター ンに対応した選択的な露光を施し感光させる ( S 6 ) 。 こ の方法によって光ディスクの記録信号のジッタ値を規格範囲 内に精度良く収めるこ とができる。
また、 本発明に方法における係る露光制御方法及び露光評価方 法は、 前記無機レジス ト材料に対してレーザ光と水銀ランプの光 とを組み合わせた光で露光する方法にも適用可能である。例えば、 波長 6 6 0 n mの赤色半導体レーザと、 波長 1 8 5 n m、 2 5 4 n m、 及ぴ 4 0 5 n m程度にピークを有する水銀ランプからの露 光との組み合わせである。
【実施例】
本発明による光ディスク製造用原盤の作製方法及び光ディスク の製造方法において、 レジス ト材料と して Wの 3価と M o の 3価 と の不完全酸化物を用いてレジス ト基板 1 0 2を実際に作製し、 最終的に光ディスク 3 0 0 を作製した。 以下、 この実施例を前述 した図 1 を参照して詳細に説明する。
この実施例においては、 、ンリ コンゥェハよ り成る基板 1 0 0 を
- 用意した (図 1 A) 0 の基板 1 0 0上に 、 ス / ッタ リ ング法によ り ァモルフ ァ スシ y ンからなる中間層 1 1 0を 8 0 n mの膜厚 で均一に成膜し、 ついで、 この上にスパッタ リ ング法によ り Wと
M o との不完全酸化物からなる レジス 卜層 1 0 1 を均一に成膜し て レジス ト基板 1 0 2を作製した (図 1 B ) o ~ のとさ 、 Wと M o との不完全酸化物からなるスパッタターゲッ 卜を用い 、 ァルゴ ン雰囲気中でスパ シタ リ ングを行つた o このとき 、 堆禾貝したレジ ス ト層を E D X (エネルギー分散型 X線分光器) にて解析したと ころ、 成膜された Wと M o との不完全酸化物における Wと M o と の比率は 8 0 : 2 0であり、 酸素の含有率は 6 0 a t o m%であ つた。 また、 レジス ト層の膜厚は 5 5 n mであった。 尚、 透過型 電子線顕微鏡による電子線回折の解析結果よ り、 WM o O不完全 酸化物の露光前の結晶状態はアモルフ ァ スであるこ とが確認され ている。
このよ う に、 レジス ト層 1 0 1 の成膜が終了したレジス ト基板 1, 0 2 を、 図 2で説明した露光装置のターンテーブル 1 6上に載 置し、 前述した露光フォーカス位置調整方法を実施した。 すなわ ち、 ターンテーブル 1 6 を所望の回転数で回転させながらレジス 卜基板 1 0 2の主面上の内周部や外周部などの光ディ スクの記録 領域とならない部分 (ディ スク規格と して用いない部分) におい てフォーカスバイアス電圧値を変化させて記録用レーザ光を照射 して試し露光を行い、 ついでその露光部分に評価用レ一ザ光を照 射して R F信号パターンを取り 出し、 そのジッタ値を評価した。
このと きの露光条件を以下に示す。
' 露光波長 : 4 0 5 n m
• 露光光学系の開口数 N A : 0 . 9 5
• 露光時の線速度 : 4 . 9 2 m / s
• 書込方式 : 相変化ディスク と同様な簡 ^7曰込み方式
. 記録用レーザ光のパヮー : 1 3 m W
' 評価用レーザ光のパヮ一 : 0 · 2 m W
試し露光部分の信号評価結果と して、 ンッタ値が最小となるフ オーカスバイアス電圧値が選択され、 本番露光用のフォ カスノ ィァス電圧値と して設定した。 この設定によつて、 対物レンズ 1
4の高さ方向の位置をフォーカスァクチュェータによつて移動調 整して、 レジス ト層に記録用レーザ光をフォ一力シングさせる。
次に、 光学系を固定した状態で、 上述のタ一ンテーブル 1 6 に 設けられた送り機構によ り所望の半径位置にターンテ ブル 1 6 を移動させ、 前記露光条件で記録用レーザ光をレジス 卜層表面に 照射し、 レジス ト層を露光する。 また、 このとさ、 タ一ンテープ ルを回転させたままレジス ト基板の半径方向にターンテ ブルを 連続的に僅かな距離にて移動させながら 、 e¾光を行つた ο 前記露光後に所定の現像、 電铸、 射出成型、 反射膜 · 保護膜形 成を行い、 1 2 c m径の光ディスク 3 0 0 を得た。 尚、 以上の露 光原盤から光ディスクを得るまでの工程は、 従来公知の技術で製 造した。 得られた光ディスクでは、 1 3 0 n m長のピッ ト、 幅 1 4 9 n mの線状のピッ トなどが実際の信号パターンに対応する状 態で形成されており、 記録容量 2 5 G Bの光ディスク となってい るこ とが確認された。
次に、 前記光ディスクを以下の条件で読出し、 その R F信号を アイパターンと して得て、 信号評価を行った。
· トラッキングサーポ : プッシュプル法
• 読出し線速度 : 4 . 9 2 m / s
' 読出し照射パワー : 0 . 4 m W
信号評価の結果、 読出したままのアイパターンについてコンペ ンショナル · ィ コライゼーショ ン処理を行ったァイ ノ、。ターンにお けるジッタ値は 8 . 0 %、 リ ミ ッ ト ' ィコライゼーシヨ ン処理を 行ったアイパターンにおけるジッタ値は 4 . · 6 %と十分に低い値 となっていた。 すなわち、 本発明によれば記録容量 2 5 G Bの R O Mディスク と して実用上問題のない良好な光ディスクを得られ ることが確認された。
上述したよ う に、本発明に方法においては、露光工程の段階で、 露光処理前の試し露光直後にその露光部分の記録信号特性 (ジッ タ値、 または変調度) に基いて、 その露光フォーカス位置による 最終製品の良否が判定できることから、 その結果から直ちに本番 用露光の露光フォーカス位置の適切な決定が可能となる。
また、 露光工程の露光処理直前の段階で光ディスクの品質に影 響を与えない領域において、 その露光フォーカス位置条件による 最終製品の良否が判定できるこ とから、 判定結果が N Gの場合で も直ちにやり直し評価が行え、 露光フォーカス位置の修正が可能 となる。
したがって、 従来方法におけるよ う に、 最終段階つま り製造さ れた光ディスクの特性測定によってその良否を判定して製造工程 の露光条件の調整等を行う場合における不良品の発生量の問題、 時間、 手間の問題の改善が図られ、 生産性の向上が図られる。

Claims

請 求 の 範 囲
1 . 光ディスク製造用原盤の作製方法であって、
基板上に形成された無機レジス ト層に対して、 前記光ディスク に形成される情報凹凸パターンの情報信号に対応する情報信号に よつて変調された記録用レーザ光を照射して、 前記光 y イ ス ク の
-、
mi記情報凹凸パタ ンに対応する露光パターンを形成する露光ェ 程と、
その後前記無機レジス ト層に対し、 現像処理を行つて 、 前記無 機レジス ト層による刖記情報凹凸パタ一ンに対応する凹凸パター ンを形成する現像ェ程とを有し、
i 己露光工程に レ、て、 前記レジス 卜層の非記録領域に試し露 光を行つて後、 該露光部分に評価用レ一ザ光を照射しヽ その反射 光力 ら刖記レジス 卜層の記録信号特性の評価を行いゝ その評価結 果に基レ、て、 後に行 Bし録 /¾ レーザ光の最適なフォ 力ス位置を 決定する露光フォ一力ス 置調整を行つ こ とを特徴と'する光ディ スク製造用原盤の作製方法。
2 . 前記無機レジス ト層が遷移金属の不完全酸化物を含んだレジ ス ト層であるこ とを特徴とする請求の範囲第 1項に記載の光ディ スク製造用原盤の作製方法。
3 . 前記評価用レーザ光の照射領域が、 前記記録用レーザ光の照 射領域以外の領域と されたこ とを特徴とする請求の範囲第 1項に 記載の光ディスク製造用原盤の作製方法。
4 . 前記評価用レーザ光の照射領域が、 前記記録用レーザ光の照 射領域以外の領域と されたこ とを特徴とする請求の範囲第 2項に 記載の光ディスク製造用原盤の作製方法。
5 . 光ディスク製造用原盤の作製工程と、 前記原盤から光デイス ク製造用のスタンパを転写作製するスタンパ作製工程と、 前記ス タンパによって光ディスク基板を転写製造する光ディスク基板作 製工程と、 該光ディスク基板上における反射膜の成膜工程と、 保 護膜の成膜工程とを有する光ディスクの製造方法であって、
前記原盤の作製工程は、 基板上に形成された無機レジス ト層に 対して、 前記光ディスクに形成される情報凹凸パターンの情報信 号に対応する情報信号によって変調された記録用レーザ光を照射 して、 前記光ディ スク の前記情報凹凸パターンに対応する露光パ ターンを形成する露光工程と、
その後前記無機レジス ト層に対し、 現像処理を行って、 前記無 機レジス ト層による前記情報凹凸パターンに対応する凹凸パター ンを形成する現像工程とを有し、
前記露光工程において、 前記レジス ト層の非記録領域に試し露 光を行って後、 該露光部分に評価用レーザ光を照射し、 その反射 光から前記レジス ト層の記録信号特性の評価を行い、 その評価結 果に基いて、 後に行う記録用レーザ光の最適なフォーカス位置を 決定する露光フォーカス位置調整を行う こ とを特徴とする光ディ ス ク の製造方法。
6 . 前記無機レ ;ジス ト層が遷移金属の不完全酸化物を含んだレジ ス ト層であるこ とを特徴とする請求の範囲第 5項に記載の光ディ スクの製造方法。
7 . 前記評価用レーザ光の照射領域が、 前記記録用レーザ光の照 射領域以外の領域と されたことを特徴とする請求の範囲第 5項に 記載の光ディスクの製造方法。
8 . 前記評価用レーザ光の照射領域が、 前記記録用レーザ光の照 射領域以外の領域と されたことを特徴とする請求の範囲第 6項に 記載の光ディスクの製造方法。
PCT/JP2003/016620 2003-01-09 2003-12-24 光ディスク製造用原盤の作製方法及び光ディスクの製造方法 WO2004064057A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/505,455 US8119043B2 (en) 2003-01-09 2003-12-24 Method of making master for manufacturing optical disc and method of manufacturing optical disc
DE60336928T DE60336928D1 (de) 2003-01-09 2003-12-24 Herstellungsprozess für einen originalen datenträger zur herstellung eines optischen datenträgers unger
EP03789628A EP1583091B1 (en) 2003-01-09 2003-12-24 Manufacturing process of original disc for producing optical disc and production process of optical disc
JP2004566298A JP4239977B2 (ja) 2003-01-09 2003-12-24 光ディスク製造用原盤の作製方法及び光ディスクの製造方法
KR1020047014082A KR101047255B1 (ko) 2003-01-09 2003-12-24 광 디스크 제조용 원반의 제작 방법 및 광 디스크의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-3217 2003-01-09
JP2003003217 2003-01-09

Publications (1)

Publication Number Publication Date
WO2004064057A1 true WO2004064057A1 (ja) 2004-07-29

Family

ID=32708898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016620 WO2004064057A1 (ja) 2003-01-09 2003-12-24 光ディスク製造用原盤の作製方法及び光ディスクの製造方法

Country Status (8)

Country Link
US (1) US8119043B2 (ja)
EP (1) EP1583091B1 (ja)
JP (1) JP4239977B2 (ja)
KR (1) KR101047255B1 (ja)
CN (1) CN100409335C (ja)
DE (1) DE60336928D1 (ja)
TW (1) TWI277972B (ja)
WO (1) WO2004064057A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093700A1 (ja) 2008-01-25 2009-07-30 Asahi Kasei Kabushiki Kaisha シームレスモールドの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484785B2 (ja) * 2005-08-09 2010-06-16 ソニー株式会社 記録方法
WO2009041916A1 (en) * 2007-09-28 2009-04-02 Agency For Science, Technology And Research A method of generating a pattern on a substrate
EP2345932A4 (en) * 2008-10-14 2012-06-13 Asahi Kasei Corp HEAT-RESISTANT RESISTANT MATERIAL, LAMINATED BODY FOR THERMAL LITHOGRAPHY WITH THE MATERIAL AND MOLDING PROCESS WITH THE MATERIAL AND LAMINATE BODY
US8178011B2 (en) * 2009-07-29 2012-05-15 Empire Technology Development Llc Self-assembled nano-lithographic imprint masks
JP2011175693A (ja) * 2010-02-23 2011-09-08 Sony Corp 露光装置、及び、露光方法
JP2012195020A (ja) * 2011-03-15 2012-10-11 Sony Corp 原盤ストラテジ調整方法、ディスク製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288853A (ja) * 2001-03-27 2002-10-04 Toshiba Corp フォーカスサーボ方式及び光ディスク原盤露光装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539101A (en) 1976-07-12 1978-01-27 Mitsubishi Electric Corp Recording device
JPS57203233A (en) 1982-05-12 1982-12-13 Matsushita Electric Ind Co Ltd Optical recorder and reproducer
US4615969A (en) * 1982-05-28 1986-10-07 Energy Conversion Devices, Inc. Method and apparatus for making a stamping master for video disk replication
JPS60254432A (ja) 1984-05-31 1985-12-16 Fujitsu Ltd 露光装置
JPH04356744A (ja) 1991-02-18 1992-12-10 Ricoh Co Ltd 光ディスク原盤露光方法及びその装置
JPH07235149A (ja) 1991-02-20 1995-09-05 Internatl Business Mach Corp <Ibm> 情報記録方法
JPH08124226A (ja) 1994-10-27 1996-05-17 Sony Corp 光ディスク製造方法及び光ディスク製造装置
JPH08306069A (ja) * 1995-05-11 1996-11-22 Seiko Epson Corp 光ディスクおよび光ディスクの製造方法
JPH08329534A (ja) 1995-06-01 1996-12-13 Hitachi Maxell Ltd 光ディスク用原盤の製造方法
US5691091A (en) * 1995-06-07 1997-11-25 Syracuse University Optical storage process
JPH09128818A (ja) * 1995-11-02 1997-05-16 Sony Corp 露光装置
JPH09152716A (ja) 1995-11-30 1997-06-10 Sony Corp 現像方法、現像装置及びデイスク状記録媒体
US5851251A (en) 1996-05-17 1998-12-22 Victor Company Of Japan, Ltd. Manufacturing methods of optical disc and blank master
SE513967C2 (sv) * 1998-05-29 2000-12-04 Obducat Ab Råmatris för optisk minnesmedia samt sätt för att tillverka en sådan matris
JP3475850B2 (ja) 1999-04-26 2003-12-10 株式会社日立製作所 ディスク装置
KR100697756B1 (ko) 1999-04-26 2007-03-21 소니 가부시끼 가이샤 광 디스크 및 그 제조 방법
AU5754299A (en) 1999-09-24 2001-04-24 Andras Nober Optically readable data carrier and manufacture thereof
JP2001195791A (ja) 2000-01-11 2001-07-19 Sony Corp 光ディスク原盤の製造方法及び光ディスク原盤の現像装置
JP2001307332A (ja) 2000-04-25 2001-11-02 Sanyo Electric Co Ltd 光ディスク再生装置におけるパラメータ調整方法及び光ディスク再生装置
AU2002222484A8 (en) * 2000-12-12 2012-02-02 Consellation Trid Inc Photolithographic method including measurement of the latent image
IE20011096A1 (en) 2000-12-20 2002-09-18 Xonen Res Ltd Production of master recording media
JP2002342975A (ja) 2000-12-28 2002-11-29 Sony Corp 光ディスク記録及び/又は再生装置及び収差調整方法
JP3754917B2 (ja) 2001-12-05 2006-03-15 ソニー株式会社 データ記録媒体、データ記録方法および装置
JP4055543B2 (ja) * 2002-02-22 2008-03-05 ソニー株式会社 レジスト材料及び微細加工方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288853A (ja) * 2001-03-27 2002-10-04 Toshiba Corp フォーカスサーボ方式及び光ディスク原盤露光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093700A1 (ja) 2008-01-25 2009-07-30 Asahi Kasei Kabushiki Kaisha シームレスモールドの製造方法
JP4977212B2 (ja) * 2008-01-25 2012-07-18 旭化成株式会社 シームレスモールドの製造方法
US10399254B2 (en) 2008-01-25 2019-09-03 Asahi Kasei Kabushiki Kaisha Seamless mold manufacturing method

Also Published As

Publication number Publication date
EP1583091A1 (en) 2005-10-05
KR20050097880A (ko) 2005-10-10
TW200425135A (en) 2004-11-16
TWI277972B (en) 2007-04-01
US20050161842A1 (en) 2005-07-28
US8119043B2 (en) 2012-02-21
JPWO2004064057A1 (ja) 2006-05-18
DE60336928D1 (de) 2011-06-09
EP1583091B1 (en) 2011-04-27
JP4239977B2 (ja) 2009-03-18
CN1692418A (zh) 2005-11-02
EP1583091A4 (en) 2008-11-12
KR101047255B1 (ko) 2011-07-06
CN100409335C (zh) 2008-08-06

Similar Documents

Publication Publication Date Title
TW200402598A (en) Photoresist material and micro-fabrication method
JP2009003993A (ja) 記録媒体およびその製造方法、並びに記録媒体用原盤およびその製造方法
JP2007164965A (ja) 記録媒体およびその製造方法、並びに記録媒体用原盤およびその製造方法
US7933186B2 (en) Method for manufacturing optical disk master, method for manufacturing optical disk, and apparatus for manufacturing optical disk master
JP4239975B2 (ja) 光ディスク製造用原盤の作製方法及び光ディスクの製造方法
JP4239977B2 (ja) 光ディスク製造用原盤の作製方法及び光ディスクの製造方法
TWI243372B (en) Method of manufacturing original disk for optical disks, and method of manufacturing optical disk
JP2003085778A (ja) 光学記録再生媒体、光学記録再生媒体製造用マザースタンパ及び光学記録再生装置
JP2007058992A (ja) 光記録方法、光記録装置、光記録媒体及び光記録再生方法
US8168094B2 (en) Method for manufacturing disc and method for manufacturing stamper
US8582410B2 (en) Master strategy adjustment method and disc manufacturing method
JP4320916B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2005032317A (ja) 光学記録再生媒体、光学記録再生媒体製造用スタンパ及び光学記録方法
JP4320915B2 (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2000048409A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置
JP2008299256A (ja) レジスト、多層光記録媒体用のスタンパの製造方法、及び多層光記録媒体の製造用のスタンパ
JP2005518617A (ja) ローカルトラックのピッチを測定する装置及び方法
JP2004178651A (ja) 光学記録再生媒体及びこれを用いた光学記録再生装置
JP2001291289A (ja) 光ディスク用スタンパの再生方法
JP2009070497A (ja) 光ディスク用原盤
JP2000040258A (ja) 光記録媒体、光記録媒体製造用原盤及び光記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2004566298

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003789628

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A03242

Country of ref document: CN

Ref document number: 1020047014082

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10505455

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003789628

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014082

Country of ref document: KR