WO2004052967A1 - 植物繊維強化プラスチック成形品 - Google Patents

植物繊維強化プラスチック成形品 Download PDF

Info

Publication number
WO2004052967A1
WO2004052967A1 PCT/JP2003/015787 JP0315787W WO2004052967A1 WO 2004052967 A1 WO2004052967 A1 WO 2004052967A1 JP 0315787 W JP0315787 W JP 0315787W WO 2004052967 A1 WO2004052967 A1 WO 2004052967A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced plastic
fiber
epoxy
resin
acid
Prior art date
Application number
PCT/JP2003/015787
Other languages
English (en)
French (fr)
Inventor
Hiroyuku Takeishi
Ryutoku Yosomiya
Mitsuhiro Shibata
Original Assignee
Caco Chemical Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caco Chemical Inc. filed Critical Caco Chemical Inc.
Priority to JP2004558456A priority Critical patent/JP3858040B2/ja
Priority to AU2003289302A priority patent/AU2003289302A1/en
Publication of WO2004052967A1 publication Critical patent/WO2004052967A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/22Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics reinforced
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F8/00Dummies, busts or the like, e.g. for displaying garments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Definitions

  • the present invention relates to a plant fiber reinforced plastic molded product, and more particularly, to a fiber reinforced plastic molding material comprising, as main components, a fiber obtained by spinning wood pulp using an amine oxide as a solvent, and a thermosetting resin, and using the same.
  • the present invention relates to a fiber-reinforced plastic molded product obtained by the above method.
  • fiber reinforced plastic (FRP) molded products mainly include carbon fiber reinforced plastic molded products for special fields (sports and aerospace) using relatively expensive carbon fibers, and relatively inexpensive glass.
  • FRP fiber reinforced plastic
  • a glass fiber reinforced plastic molded product for general industrial use and for general use which uses fibers is known.
  • an epoxy resin composition comprising an epoxy resin, a curing agent, and a compound having an amido group or the like in a molecule is impregnated into a reinforced fiber, and this is cured to form a fiber reinforced plastic molded article.
  • Products have been proposed (see Japanese Patent Application Laid-Open No. 2000-212,254), and the glass fiber reinforced plastic molded product contains an unsaturated polyester resin, a polymerizable monomer, and a curing agent.
  • a fiber-reinforced plastic molded product in which the composition is impregnated into a fiber sheet and a foamable resin sheet material and cured is proposed (see Japanese Patent Application Laid-Open No. 200-67257). ).
  • the present invention has been made to solve the above-mentioned problem in the case of a widely used glass fiber reinforced plastic molded product. That is, the problem to be solved by the present invention is that fiber-reinforced plastics satisfy various physical properties required for a glass fiber-reinforced plastic molded product, are easily incinerated, and do not adversely affect the human body due to fine fiber powder. To provide molded products.
  • the present invention provides a fiber-reinforced plastic molding material containing, as main components, a fiber obtained by spinning wood pulp by using amide oxide as a solvent, and a thermosetting resin.
  • the present invention also provides a fiber-reinforced plastic molded product obtained by curing the above-mentioned fiber-reinforced plastic molding material.
  • Molded products obtained by curing a fiber-reinforced plastic molding material mainly composed of fibers obtained by spinning wood pulp using aminoxide as a solvent and a thermosetting resin are made of conventional glass fibers and thermosetting resins. Satisfies the mechanical and electrical properties required for fiber-reinforced plastic molded products and uses fibers derived from wood pulp, so complete incineration is possible. The powder has no adverse effect on the human body.
  • the molded article of the present invention is easy to cut because the blade of the power cutter easily enters when scrapping, etc., and even when formed into a laminate, drilling and drilling is easy and accurate processing is possible. There is little wear on the drill blade. this As described above, the molded article of the present invention can not only solve environmental problems and safety problems associated with disposal treatment found in glass fiber reinforced plastic molded articles, but also can achieve improvement in processability.
  • the fiber-reinforced plastic molding material of the present invention comprises, as essential components, a fiber obtained by spinning wood pulp using amide oxide as a solvent (hereinafter referred to as “lyocell”) and a thermosetting resin.
  • lyocell a fiber obtained by spinning wood pulp using amide oxide as a solvent
  • thermosetting resin a thermosetting resin.
  • rayon cucumber is produced via a cellulose derivative
  • lyocell is a cellulose fiber obtained by directly dissolving and spinning cellulose in an organic solvent without passing through the derivative. Therefore, the lyocell is characterized in that the molecules are reoriented with little decrease in the degree of polymerization of the cellulose molecules, and has a higher strength than other cellulose fibers.
  • the strength becomes equal to or higher than that of a fiber-reinforced plastic molded product using glass fiber, and since it is a cellulose fiber, it can be incinerated and remains when completely burned. It has the advantage of no harm to the human body.
  • Lyocell is produced by dissolving wood pulp with amamine oxide, filtering it with a filter to remove impurities, then directly spinning and coagulating with solvent recovery.
  • the wood pulp may be softwood pulp or hardwood pulp.
  • conifers include larch, pine, fir, fir, larch, and pine.
  • hardwood include beech, hippo, oak, eucalyptus, mangrove, acacia, and rubber. Among these woods, it is preferable to use eucalyptus.
  • Wood pulp is preferably chemical pulp. Chemical pulp is one in which lignin and other fiber binders in wood chips are chemically removed (digested) and disintegrated into single fibers. Examples of such pulp include sulfite pulp, sulfate pulp, and soda pulp.
  • the shape of the pulp may be any shape such as block, powder, fiber, and sheet.
  • aminoxides include dimethylethanolamine oxide, triethylamine oxydioxide, N-monooxide (hydroxy-2-propoxy) -12-N, N-dimethylamine, N-monooxide N-methylmorpholine, and N-oxide N-methylbiperidine, N-acidi-D-N-methylpyrrolidine, N-di-oxide N-methylcyclohexylamine, N-di-methylhexylamine, N-di-N, N-dimethylbenzylamine It can be selected from known compounds.
  • the lyocell fiber used in the present invention can be used in any form of a long fiber, a short fiber, a nonwoven fabric, a woven fabric (woven fabric), and a knitted fabric.
  • a woven or knitted fabric is preferably used in order to obtain the maximum reinforcing effect. If maximum reinforcement is not required, long fibers, short fibers or nonwovens can be used. In short, an appropriate form may be appropriately selected according to the strength required for the product (molded product).
  • the diameter of the lyocell fiber is not particularly limited, but is generally about 1 to 500 ⁇ , preferably about 50 to 15
  • the one with about 0 Aim is used.
  • the weaving method is not particularly limited, but a twill or plain woven fabric is preferably used.
  • the fiber used may not be subjected to any particular surface treatment, but may be subjected to a surface treatment such as an alkali treatment, an esterification treatment, a cyanoethylation treatment, or various silane treatments, depending on the type of the polymer used.
  • thermosetting resin unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, urea resin, melamine resin, urethane resin and the like are used.
  • an unsaturated polyester resin, a butyl ester resin or an epoxy resin is used.
  • a curing catalyst or a curing agent generally used for each resin is used.
  • the unsaturated polyester resin can be produced by reacting an ⁇ , ⁇ monounsaturated polybasic acid or its anhydride, and optionally a saturated polybasic acid or its anhydride with a polyhydric alcohol. In this production, a saturated polybasic acid ester can be used if necessary.
  • Examples of the above monounsaturated dibasic acids or anhydrides include maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, and anhydrides thereof. These can be used alone or in combination of two or more.
  • Examples of the saturated polybasic acid or its anhydride include phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, tetrahydrophthalic anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, and hexahydro Examples include phthalic acid, hexahydrophthalic anhydride, daltaric acid, adipic acid, sepatic acid, trimellitic acid, trimellitic anhydride, pyromellitic acid, dimer acid, succinic acid, azerai acid, and rosin-maleic acid adduct. Can be These can be used alone or in combination of two or more.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, 1,3-butanediol, 1,6-hexanediol, Examples thereof include dihydric alcohols such as neopentyl glycol, 1,4-cyclohexanediol, bisphenol-monophenol A added with sulphate, trihydric alcohols such as glycerin and trimethylolpropane, and tetrahydric alcohols such as pentaerythritol. These can be used alone or in combination of two or more.
  • saturated polybasic acid ester used as needed examples include, for example, an alkylene glycol such as ethylene glycol, propylene glycol or butylene glycol, and a dibasic acid such as adipic acid, sebacic acid, terephthalic acid, or naphthalic acid.
  • low-molecular-weight esters or high-molecular-weight esters namely, saturated polyesters.
  • Specific examples include di (ethylene terephthalate), di (butylene terephthalate), polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyethylene.
  • unsaturated polyester resins described in “Polyester Resin Handbook” (Eiichiro Takiyama, 1st edition, Nikkan Kogyo Shimbun, 1988) may be used.
  • the polybasic acid component and the polyhydric alcohol are preferably used in an equivalent ratio, and when the polybasic acid component is 1, the polyhydric alcohol is preferably used in the range of 1 to 2.5, .
  • the number average molecular weight of the unsaturated polyester resin in the present invention is from 1,000 to 30,000. Preferably 0, 1, 5
  • the toughness tends to be extremely poor, and if it exceeds 30,000, the viscosity is too high and the compatibility workability tends to be poor.
  • Examples of the curing agent used for the unsaturated polyester resin include ketone peroxides, peroxydicarbonates, peroxides at the mouth, diasyl peroxides, baroxy ketals, dialkyl peroxides, and veroxy. Esters and alkyl peresters are exemplified.
  • the amount of the curing agent is preferably from 0.1 to 10 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the unsaturated polyester resin from the viewpoint of material preservability and molding cycle. preferable.
  • the vinyl ester resin has a (meth) atalyloyl group at the molecular terminal.
  • an epoxy compound having two or more epoxy groups in the molecule (meth) acrylic acid, and if necessary, a polybasic acid And an addition reaction thereof.
  • an epoxy resin can be used.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, hydrogenated bisphenol type epoxy resin, phenol novolak type epoxy resin, cresol novolak type epoxy resin And the like.
  • epoxy compound for example, polypentylglycole / glycolate glycolate such as neopentyl glycolone resin glycidinoleate ether, polypropylene dalicol diglycidinoleate ether, trimethylolpropane triglycidyl ether, etc .; / Diglycidinoleate oleate, dimer acid Examples thereof include glycidyl esters of polybasic acids such as diglycidyl ether and the like, and one or more of these may be used in combination.
  • an aromatic polybasic acid an aliphatic polybasic acid and the like can be used.
  • maleic acid tetrahydrophthalic acid, methyl tetrahydrophthalic acid, phthalic acid, pyromellitic acid
  • examples thereof include acids, trimellitic acid, dimer acid, polybutadiene having a carboxyl group, butadiene-acrylo-tolyl copolymer having a carboxyl group, and esters of polybasic acids and polyhydric alcohols having a terminal carboxyl group.
  • an addition reaction between an epoxy compound having two or more epoxy groups in the molecule, an unsaturated monobasic acid and, if necessary, a polybasic acid
  • the reaction is usually carried out in the presence of an addition reaction catalyst in the range of 50 to 50.
  • the reaction proceeds by heating at 150 ° C.
  • the addition reaction catalyst for example, a known catalyst for synthesizing an epoxy (meth) acrylate resin may be used, and examples thereof include tertiary amines, onium salts, and metal stones.
  • vinyl ester resins described in "Polyester Resin Handbook” (Eiichiro Takiyama, 1st edition, Nikkan Kogyo Shimbun, 1988) may be used.
  • the curing agent for the vinyl ester resin the same curing agents as those described for the unsaturated polyester resin can be used.
  • Epoxy resin is a compound having two or more epoxy groups in the molecule.
  • Specific examples of epoxy resins include glycidyl ethers obtained from polyols, glycidylamines obtained from amines having a plurality of active hydrogens, glycidyl esters obtained from polycarboxylic acids, and multiple double bonds in the molecule. And a polyepoxide obtained by oxidizing a compound having the same.
  • bisphenol-type epoxy resins such as bisphenol A-type epoxy resin obtained from bisphenol A and bisphenol F-type epoxy resin obtained from bisphenol F are exemplified.
  • Commercially available bisphenol A type epoxy resins include “Epicoat” 825 (epoxy equivalent 172-178), “Epicoat” 828 (epoxy equivalent 184-194) ), “Epicoat” 8 3 4 (Epoxy equivalent 2 3 0-2 70) (Made by Yuka Seal Epoxy Co., Ltd.), “Epototo” YD-127 (epoxy equivalent 180-: 190), “Epototo” YD-128 (epoxy equivalent 184-: 194) (Toto Kasei Co., Ltd.), “Epiclone” 840 (epoxy equivalent 180-190), “Epiclone” 850 (epoxy equivalent 184-194) (Dainippon Ink & Chemicals, Inc.), "Sumiepoxy
  • bisphenol F-type epoxy resins include “Epicoat” 806 (epoxy equivalent: 160-: 170), “Epicoat, 807 (epoxy equivalent: 16 ⁇ -: 175)” (both by Yuka Shell Epoxy Co., Ltd.) ), “Epiclone” 830 (epoxy equivalent 165-180, manufactured by Dainippon Ink & Chemicals, Inc.), “Epototo” YD F-170 (epoxy equivalent 160-180, manufactured by Toto Kasei Co., Ltd.)
  • Nopolak type epoxy resins which are norisac ethers of novolaks obtained from phenol derivatives such as phenols, alkylphenols, and halogenated phenols, are also available.
  • (poly) ethylene dalicol diglycidyl ether can be suitably used as an effective one for adjusting the viscosity of the epoxy resin composition.
  • the epoxy resin composition can be suitably used as an effective one for adjusting the viscosity of the epoxy resin composition.
  • (poly) propylene propylene glycol diglycidyl ether Commercial products of (poly) propylene propylene glycol diglycidyl ether include “Epolite” 2 OOP (epoxy equivalent of 200 to 240) and “Evolite” 4 OOP (epoxy equivalent of 320 to 360) (Kyoeisha Chemical Co., Ltd.) and other commercial products of 1,6-hexanediol diglycidyl ether include YED216 (epoxy equivalent of 150 to 170, Yuka Shell Epoxy Co., Ltd.) ), "Epolite” 16500 (epoxy equivalent: 135-165, manufactured by Kyoeisha Chemical Co., Ltd.), etc.
  • neopentyl glycol diglycidyl ether such as 0 7 (epoxy equivalent: 155-16.5, manufactured by BRT Japan Co., Ltd.) Equivalent 1 35 to 1 65, B 'T' R Japan Co., Ltd.
  • Commercially available products of trimethylolpropane triglycidyl ether such as “Epolite” 150 NP (epoxy equivalent: 135-165, manufactured by Kyoeisha Chemical Co., Ltd.). 1 (epoxy equivalent: 140, manufactured by Nagase Kasei Kogyo Co., Ltd.), "Epolite” 100 MF (epoxy equivalent: 135-165, manufactured by Kyoeisha Chemical Co., Ltd.), etc. can be used, respectively. .
  • polyoxyalkylene glycol diglycidyl ether etc. It can be suitably used as one that is effective for adjusting the viscosity of the resin composition.
  • glycidylamine examples include diglycidylaniline, tetramylicidyldiaminodiphenylmethane “Sumi Epoxy” ELM434 (epoxy equivalent: 110 to 130, manufactured by Sumitomo Chemical Co., Ltd.), and tetraglycidyl m-xylylenediamine.
  • Certain TETRAD-X epoxy equivalents 90 to 105, manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • epoxy resin having both glycidyl ether and glycidylamine structures "Sumiepoxy” E LM120 (epoxy equivalent: 118, manufactured by Sumitomo Chemical Co., Ltd.), a triglycidyl-aminophenol, and triglycidyl p-amino And phenol "Araldite” MY0510 (epoxy equivalent 94-107, manufactured by Ciba-Geigy).
  • glycidyl esters include diglycidyl phthalate, diglycidyl terephthalate, diglycidyl dimer, and the like.
  • Examples of the polyepoxide obtained by oxidizing a compound having a plurality of double bonds in a molecule include an epoxy resin having an epoxycyclohexane ring.
  • a specific example thereof is ERL of union carbide earth. 4221 (epoxy equivalents 131 to 143), ERL-4234 (epoxy equivalents 133 to 154) and the like, and furthermore, epoxidized soybean oil and the like.
  • a monofunctional epoxy resin (hereinafter, referred to as a “reactive diluent”) that is effective for adjusting the viscosity of the epoxy resin composition may be added to the epoxy resin composition.
  • reactive diluents include butyl glycidyl ether, "Hekikiseki” 61 (epoxy equivalent: 145-155, manufactured by B-T-R Japan, Ltd.) and 2-ethylhexyl glycidyl ether.
  • Disacol EX-12 1 (epoxy equivalent 187, manufactured by Nagase Kasei Kogyo Co., Ltd.), phenyldaricidyl ether "Denacol, EX-141 (epoxy equivalent 151, manufactured by Nagase Kasei Kogyo Co., Ltd.) Cresyl glycidyl ether, "Hexoxy” 62 (epoxy equivalent: 175-195, manufactured by BIRT Japan, Inc.), p_sec—butyl ricidyl ether YED 122 (epoxy Equivalent 220-250, oil Shell Epoxy Co., Ltd.) and "Denacol” EX-146 (epoxy equivalent: 255, manufactured by Nagase Kasei Kogyo Co., Ltd.), which is p-tert-butyldaricidyl ether. These may be used alone or in combination of two or more.
  • curing agent used for the epoxy resin examples include 4,4, diaminodiphenylmethane, 4,4'diaminodiphenylsulfone, 3,3'diaminodiphenylsulfone, m-phenylenediamine, and m_xylylenediamine.
  • Aromatic amines having such active hydrogens diethylenetriamine, triethylenetetramine, tetraethylenepentamine, isophorondiamine, bis (aminomethyl) norvonolenane, bis (4-aminohexyl) methane, bis (4-amino) 1-Methylcyclyl hexyl)
  • Aliphatic amine having active hydrogen such as methane and polyethyleneimine dimer acid ester, epoxy compound, acrylonitrile, phenol and formaldehyde, thiourea Reacting compounds such as Modified amines, dimethylaniline, dimethylbenzylamine, tertiary amines without active hydrogens such as 2,4,6-tris (dimethinoleaminomethyl) phenol and mono-substituted imidazole, dicyandiamide, and tetramethylguam Carboxylic anhydrides such as dizine, hexahydrophthalic anhydride, tetra
  • these curing agents may be combined with an appropriate curing aid to enhance the curing activity.
  • dicyandiamide can be added to 3-phenyl_1,1-dimethylurea, 3- (3,4-dichlorophenyl) 1-1,1-dimethylurea (D CMU), 3- (3-chloro-4-methylphenyl)
  • D CMU 3-phenyl_1,1-dimethylurea
  • D CMU 3-(1,1-dimethylurea
  • 3- (3,4-dichlorophenyl) 1-1,1-dimethylurea D CMU
  • 3- (3-chloro-4-methylphenyl) 3- combining urea derivatives such as 1,1, -dimethylurea and 2,4-bis (3,3-dimethylperido) toluene as curing aids.
  • tertiary amine is added to carboxylic acid anhydride novolak resin. Examples of the combination as a curing assistant are given.
  • the curing agent is preferably used in an amount of 0.1 to 100 parts by weight, more preferably 1 to 50 parts by weight, based on 100 parts by weight of the epoxy resin.
  • the curing aid is preferably added in the range of 0.1 to 20 parts by weight, and more preferably in the range of 0.1 to 10 parts by weight, based on 100 parts by weight of the epoxy resin. .
  • lyocell fabric lyocell cloth
  • thermosetting resin 1 to 500 parts by weight of lyocell cloth, preferably 100 to 200 parts by weight, more preferably 30 to 170 parts by weight (Ryocell based on the total of thermosetting luster and lyocell cloth) In terms of cloth, it is 23-63% by weight).
  • a lyocell other than lyocell cloth the preferable range and the more preferable range are the same.
  • the material for molding fiber-reinforced plastic of the present invention may contain, if necessary, a moisture-proofing agent, an anti-swelling agent, an antistatic agent, various stabilizers, a nucleating agent, a plasticizer, a flame retardant, a pigment, a coloring agent, and an organic solvent. And the like can be appropriately added according to a known method as long as the characteristics of the molded article are not impaired.
  • a commonly used FRP molding method can be applied.
  • lamination molding methods such as hand lay-up molding and spray-up, compression molding method (heat compression molding method), filament winding method, injection molding method, centrifugal molding method, vacuum or pressure pack method, continuous molding method, bow I extrusion molding method, injection molding, etc.
  • compression molding method heat compression molding method
  • filament winding method filament winding method
  • injection molding method centrifugal molding method
  • vacuum or pressure pack method continuous molding method
  • bow I extrusion molding method injection molding
  • injection molding etc.
  • a sheet molding compound method and a reaction injection molding method can be used.
  • the fiber-reinforced plastic molded articles of the present invention include electric and electronic components such as tanks, containers, and copper-clad laminates, wall materials for building interiors, roof materials (flat plates, corrugated plates), ceiling airways, ceiling curtains, and the like. Building materials, bathtubs, bathtubs with washrooms, bathroom units, temporary mobile tyre units, temporary mobile sharyuettes and other housing equipment and materials, low boats, footboats, boats, canoe boats, motor boats and other sports. Vehicles such as leisure goods, ships including fishing boats, vehicle air conditioning ducts, driver consoles, vehicle interior components, automobile headlamp reflectors, etc. Vehicle parts, artificial rocks, artificial trees, artificial stones installed in registrar facilities, etc. It can be widely used for mannequins, dolls, models, and various replicas. Aerospace, agriculture, forestry, fisheries, nursing care, medical care, etc
  • a structural material of a tank or a container in which a waste disposal problem has become apparent and a copper-clad laminate used for a printed wiring board.
  • structural materials for corrosion-resistant tanks containing mainly corrosive liquid chemicals such as unsaturated polyester resin or butyl ester resin, and mainly epoxy resin.
  • Oxide (Nippon Yushi Co., Ltd., Permec F) 1.0 part by weight was added and mixed, and lyocell cloth (Unitichicate Textile Co., Ltd., Sylph (registered trademark), (warp) Lyocell 20th, (Weft) Lyocell 10th, twill weave (2 no 2 twill), 25 OmmX 40 OmmX 0.35 mm), and impregnated while removing air bubbles with a defoaming roller.
  • Four or fifteen layers of the lyocell cloth were laminated, sandwiched between wooden boards with PET films attached, and a stainless steel plate and a 300 kg weight were placed on top of them and left at room temperature for 16 hours.
  • the cured composite plate was taken out and heat-treated at 80, 100, and 120 ° C for 2 hours each for complete hardening.
  • the results of measuring the tensile properties of the obtained fiber-reinforced plastic molded product are summarized in Table 1.
  • the ratio of the lyocell cloth to the total of the vinyl ester resin and the lyocell cloth was about 48%.
  • the vinyl ester resin / Lyocell cloth composite material of Example 1 satisfies the minimum tensile strength required for the glass fiber-reinforced plastic corrosion-resistant storage tank shown in Table 2.
  • Table 3 summarizes the results of measuring the bending physical properties of the fiber-reinforced plastic molded article manufactured in the same manner as in Example 1.
  • Table 4 shows the minimum values of the bending properties of the reinforced plastic laminates described in the glass fiber reinforced plastic corrosion resistant storage tank (JIS K7012).
  • the bulester resin Z-Lyocell cloth composite material of Example 2 satisfies the minimum bending properties required for the corrosion-resistant storage tank made of glass fiber reinforced plastic shown in Table 4.
  • Flame-retardant epoxy resin (Sumi-Epoxy ESB-500 (epoxy equivalent 500 g / e q.) Manufactured by Sumitomo Chemical Co., Ltd.) and 90 parts by weight of o-cresol novolak type epoxy resin (Sumitomo Chemical Co., Ltd.) Sumiepoxy ESCN—22 OF (epoxy equivalent 220 g / e q.) 10 parts by weight, 3.5 parts by weight of dicyandiamide, 0.1 part by weight of 2-ethyl-4-methylimidazole, 70 parts by weight of methyl sorb Lyocell cloth (manufactured by Unitichi Catteistyle Co., Ltd., Sylph (registered trademark), (warp) Lyocell 20th, (weft) Lyocell 10th, twill weave (2Z2 twill), 50 OmmX 50 OmmX 0.35 mm) The cloth was impregnated with varnish while air bubbles were removed by
  • the lyocell fabric-based epoxy resin of Example 3 satisfies the required minimum physical properties of the glass fabric-based epoxy resin.
  • Example 3 10 parts by weight of epoxy resin and 3.5 parts by weight of dicyandiamide were combined with 100 parts by weight of an unsaturated polyester resin composed of terephthalic acid, maleic anhydride, propylene glycol, pentyl dalycol and ethylene dalicol.
  • An unsaturated polyester resin composed of terephthalic acid, maleic anhydride, propylene glycol, pentyl dalycol and ethylene dalicol.
  • a single-sided copper-clad laminate having a thickness of 1.4 Omm was produced in the same manner as in Example 3, except that the amount of t-butyl perbenzoate was changed to 1.5 parts by weight.
  • the single-sided copper-clad laminate of Example 4 also satisfied the required minimum physical properties of the glass cloth base epoxy resin.
  • Example 2 Except that the 4-layer or 15-layer lyocell cloth of Example 1 was changed to 4-layer lyocel matte (non-woven fabric, 70 g / m 2 ), the thickness was 1.8 mm and the fiber content was 20 wt. % Plate material was produced. Bending strength of the produced sheet material 155 MP a, bending modulus 6. 3 GP a, ⁇ is 1 7. 5 k J / m 2 , sufficient mechanical for use as a building interior plate It had physical properties.
  • the shape of the mannequin was formed using the lyocell matt impregnated with the vinyl ester resin of Example 5 and left at room temperature for 16 hours. A test piece was cut out from the obtained mannequin, and the mechanical properties were measured. The flexural strength was 123 MPa and the flexural modulus was 5.0 G. P a, a ⁇ 1 1. 7 k jZm 2, had sufficient force science properties for use as a mannequin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、ガラス繊維強化プラスチック成形品と同等以上の各種物性値を有し、かつ、焼却処理が容易で繊維微粉末により人体へ悪影響を及ぼさない植物繊維強化プラスチック成形材料及びそれを用いて得られる繊維強化プラスチック成形品に関する。本発明の植物繊維強化プラスチック成形材料は、アミンオキシドを溶媒に使って木材パルプを紡糸した繊維と、熱硬化性樹脂とを主成分とする繊維強化プラスチック成形用材料である。本発明の植物繊維強化プラスチック成形品は容器、銅張り積層板、建築用内装板材、マネキン、スポーツ用品等に使用できる。

Description

植物繊維強化プラスチック成形ロ口 技術分野
本発明は、 植物繊維強化プラスチック成形品に関し、 さらに詳しくは、 ァミン ォキシドを溶媒に使って木材パルプを紡糸した繊維と熱硬化性樹脂とを主成分と する繊維強化プラスチック成形用材料及びそれを用いて得られる繊維強化ブラス チック成形品に関する。 明 田
冃景 . 技術
従来から、 繊維強化プラスチック (F R P ) 成形品には、 主として、 比較的高 価な炭素繊維を用いた特殊分野 (スポーツや航空宇宙) 用の炭素繊維強化プラス チック成形品と、 比較的安価なガラス繊維を用レ、た一般産業分野用かつ汎用のガ ラス繊維強化ブラスチック成形品とが知られている。
また、 炭素繊維強化プラスチック成形品としては、 エポキシ樹脂、 硬化剤及び 分子内にァミド基等を有する化合物からなるエポキシ榭脂組成物を強化繊維に含 浸させ、 これを硬化させた繊維強化プラスチック成形品が提案されており (特開 2 0 0 0 - 2 1 2 2 5 4号参照) 、 ガラス繊維強化プラスチック成形品としては、 不飽和ポリエステル樹脂、 重合性単量体及び硬化剤を含んでなる組成物を繊維類 シート及ぴ発泡性樹脂シート材に含浸させ、 これを硬化させた繊維強化プラスチ ック成形品が提案されている (特開 2 0 0 2 - 6 7 2 5 7号公報参照) 。
ところで、 近年、 地球環境へ与える負荷を低減することが強く求められるよう になっており、製品のライフサイクル全般にわたって環境に配慮する必要がある。 汎用されるガラス繊維強化プラスチック成形品を焼却処理した場合には、 ガラス 繊維の残渣の処理が問題となっている。 また、 埋立て処理においては、 利用でき る埋立て地が少なくなつていることと自然環境への影響も無視できないなどの問 題点があった。 特に、 プラスチックとして熱硬化性樹脂を用いた場合は、 成形品 が不溶不融となりマテリアルリサイクルも困難である。 以上のようなことから、 ガラス繊維強化熱硬化性樹脂を用いた成形品は使用時の物性に優れるものの、 廃 棄物処理の有効な手段がないという問題を有している。
また、 ガラス繊維強化プラスチック成形品の加工時などに発生するガラス繊維 微粉末は飛散し易く、 人体に対する悪影響も無視できないなど安全上の問題もあ つた。
ガラス繊維強化プラスチック成形品は、 タンク ·容器類、 電気'電子部品、 建 築資材、 住設資材、 船舶、 自動車 '車両、 航空 ·宇宙、 スポーツ ' レジャー等の 幅広レ、分野で用いられているので、 上記問題の早急な解決が強く望まれている。 発明の開示
本発明は、 汎用されるガラス繊維強化プラスチック成形品の場合の上記問題を 解決しようとしてなされたものである。 すなわち本発明が解決しようとする課題 は、 ガラス繊維強化プラスチック成形品として必要な各種物性値を満足し、 かつ、 焼却処理が容易で繊維微粉末により人体へ悪影響を及ぼさなレ、繊維強化プラスチ ック成形品を提供することである。
上記課題は、 以下の手段をとることにより解決できた。
すなわち、 本発明は、 ァミンォキシドを溶媒に使って木材パルプを紡糸した繊 維と、 熱硬化性榭脂とを主成分とする繊維強化プラスチック成形用材料を提供す る。
また、 本発明は、 上記繊維強化プラスチック成形用材料を、 硬化させて得られ る繊維強化ブラスチック成形品も提供する。
ァミンォキシドを溶媒に使って木材パルプを紡糸した繊維と熱硬化性樹脂とを 主成分とする繊維強化プラスチック成形用材料を硬化して得られる成形品は、 従 来のガラス繊維と熱硬化性樹脂からなる繊維強化プラスチック成形品において必 要とされる力学的おょぴ電気的物性値を満足しており、 かつ、 木材パルプ由来の 繊維を使用しているので完全焼却処理が可能であり、 その微粉末が人体へ悪影響 を及ぼすこともない。 本発明の成形品はスクラップ化する際等に力ッターの刃が 入りやすいので切断しやすく、 積層板に成形した場合にもドリルによる穴空け加 ェが容易であり、 正確な加工が可能となる上にドリルの刃の摩耗が少ない。 この ように、 本発明の成形品は、 ガラス繊維強化プラスチック成形品にみられる廃棄 処理に伴う環境問題、 安全上の問題を解決できるのみでなく、 加工適性の向上を 達成することができる。 発明を実施するための最良の形態
以下、 詳細に本発明を説明する。
本発明の繊維強化プラスチック成形用材料は、 ァミンォキシドを溶媒に使つて 木材パルプを紡糸した繊維 (以下、 「リヨセル」 という。 ) と熱硬化性樹脂とを 必須成分とする。 レーヨンゃキュブラがセルロース誘導体を経由して製造される のに対し、 リヨセルはセルロースを誘導体を経ずに、 直接、 有機溶媒に溶解させ 紡糸して得られるセルロース繊維である。 したがって、 リヨセルは、 セルロース 分子の重合度の低下が少ないまま分子が再配向されることとなり、 他のセルロー ス繊維よりも高強度であるという特徴をもつ。 このリョセルと熱硬化性樹脂を組 み合わせることにより、 強度がガラス繊維を用いた繊維強化プラスチック成形品 と同等以上となり、 かつ、 セルロース繊維なので、 焼却処理が可能であり完全燃 焼したときに残渣がないことと人体への悪影響がないという利点をもつ。
リョセルは、 木材パルプをァミンォキシドを用いて溶解させ、 これをフィルタ 一でろ過し、 不純物を取り除き、 その後直接紡糸し、 溶剤回収と同時に凝固させ ることにより製造される。
木材パルプは、針葉樹パルプでも広葉樹パルプでもよい。針葉樹の例としては、 ァカマツ、 ェゾマツ、 トドマツ、 モミ、 カラマツ、 パインなどが挙げられる。 広 葉樹の例としては、 ブナ、 カバ、 ナラ、 ユーカリ、 マングローブ、 アカシア、 ゴ ムなどが挙げられる。 これらの木材の中で、 ユーカリを用いることが好ましい。 木材パルプはケミカルパルプが好ましい。 ケミカルパルプとは、 木材チップ中 のリグニンその他の繊維結合物を化学的に除去 (蒸解) し、 単繊維に離解したも のであり、 例えば、 亜硫酸パルプ、 硫酸パルプ、 ソーダパルプなどである。
また、 一セルロース分が 9 0 %以上のパルプを用いることが好ましい。
パルプの形状は、 ブロック状、 粉末状、 繊維状、 シート状などいかなる形状で あってもよレヽ。 アミンォキシドとしては、 酸化ジメチルエタノールァミン、 酸ィ匕トリエチルァ ミン、 N—酸化一 (ヒドロキシー 2—プロポキシ) 一 2— N, N—ジメチルアミ ン、 N—酸化一N—メチルモルフォリン、 N—酸化一 N—メチルビペリジン、 N ー酸ィ匕一 N—メチルピロリジン、 N—酸化ージ一N—メチルシク口へキシルアミ ン、 N—酸化一ジメチルへキシルァミン、 N—酸化一 N, N—ジメチルベンジル ァミンなどの公知の化合物から選定できる。
本発明に用いるリヨセル繊維は長繊維、 短繊維、 不織布、 織布 (織物) 、 編物 いずれの形態でも使用可能である。 なかでも、最大限の補強効果を得るためには、 織物や編物が好ましく用いられる。 最大限の補強効果を必要としない場合は、 長 繊維、 短繊維、 あるいは不織布を用いることができる。 要するに、 製品 (成形品) に要求される強度に応じて、 適当な形態を適宜選べばよい。 リヨセル繊維の直径 は、 特に限定されないが、 一般的に 1〜5 0 0 μ πι程度、 好ましくは 5 0〜 1 5
0 Ai m程度のものが用いられる。
リョセル繊維を織物として使用する場合のその織り方は、特に限定されないが、 綾織りや平織りの布が好ましく用いられる。 用いる繊維は特に表面処理をしなく てもよいが、 用いるポリマーの種類によっては、 アルカリ処理、 エステル化処理、 シァノェチル化処理、 各種シラン処理などの表面処理を行ってもよい。
熱硬化性樹脂としては、 不飽和ポリエステル樹脂、 ビニルエステル樹脂、 ェポ キシ樹脂、 フエノール樹脂、 尿素樹脂、 メラミン樹脂、 ウレタン樹脂などが用い られる。 好ましくは不飽和ポリエステル樹脂、 ビュルエステル樹脂又はエポキシ 樹脂が用いられる。 これらの熱硬化性樹脂にはそれぞれの樹脂に対して一般的に 用いられる硬化触媒や硬化剤が使用される。
不飽和ポリエステル樹脂は、 α, β一不飽和多塩基酸又はその無水物や必要に より用いる飽和多塩基酸又はその無水物と多価アルコールとを反応させて製造で きる。 また、 この製造において必要に応じ飽和多塩基酸エステルを使用すること ができる。
上記ひ, 一不飽和二塩基酸又はその無水物としては、 例えば、 マレイン酸、 フマル酸、 ィタコン酸、 シトラコン酸、 無水マレイン酸、 これらの無水物等が挙 げられる。 これらは、 単独で又は 2種以上を組み合わせて使用できる。 上記飽和多塩基酸又はその無水物としては、 例えば、 フタル酸、 無水フタル酸、 イソフタル酸、 テレフタル酸、 テトラヒドロフタル酸、 テトラヒドロ無水フタル 酸、 3 , 6—エンドメチレンテトラヒドロ無水フタル酸、 へキサヒドロフタル酸、 へキサヒドロ無水フタル酸、 ダルタル酸、 アジピン酸、 セパチン酸、 トリメリッ ト酸、 無水トリメリット酸、 ピロメリット酸、 ダイマー酸、 コハク酸、 ァゼライ ン酸、 ロジン一マレイン酸付加物などが挙げられる。 これらは、 単独で又は 2種 以上を組み合わせて使用できる。
上記多価アルコールとしては、 例えば、 エチレングリコール、 ジエチレングリ コーノレ、 トリエチレングリコーノレ、 プロピレングリコーノレ、 ジプロピレングリコ ール、 トリプロピレングリコール、 1 , 3一ブタンジオール、 1 , 6—へキサン ジオール、 ネオペンチルグリコール、 1, 4ーシクロへキサンジオール、 7 素添 加ビスフエノ一ノレ A等の二価アルコール、 グリセリン、 トリメチロールプロパン 等の三価アルコール、 ペンタエリスリ トール等の四価アルコールなどが挙げられ る。 これらは、 単独で又は 2種以上を組み合わせて使用できる。
必要に応じて用いる飽和多塩基酸エステルとしては、 例えば、 エチレングリコ ール、 プロピレングリコーノレ、 プチレングリコーノレ等のアルキレングリコールと アジピン酸, セバシン酸、 テレフタル酸、 ナフタル酸等の二塩基酸との低分子量 エステル又は高分子量エステル (すなわち飽和ポリエステル) が挙げられ、 具体 的には、 ジ (エチレンテレフタレート) 、 ジ (ブチレンテレフタレート) 、 ポリ エチレンテレフタレート、 ポリブチレンテレフタレート、 ポリエチレンナフタレ ート、 ポリプチレンナフタレート、 ジ (エチレンアジペート) 、 ジ (ブチレンァ ジペート) 、 ポリエチレンアジペート、 ポリブチレンアジペート等が挙げられる。 これらは、 単独で又は 2種以上を組み合わせて使用される。
上記の化合物のほかに、 「ポリエステル樹脂ハンドブック」 (滝山栄一郎著、 第 1版、 日刊工業新聞社、 1 9 8 8年) 記載の不飽和ポリエステル樹脂を用いて よい。
不飽和基の濃度を調節すること、 可撓性、 耐熱性、 強度等の特性を付与する点 から、 α, ;8—不飽和多塩基酸又はその無水物 aモルと飽和多塩基酸又はその無 水物 bモルとして、 a / ( a + b ) = 0 . l Z l〜0 . 9 5 1であることが好 ましく、 0 . 3 Z l〜0 . 7 5 / 1であることがより好ましい。
多塩基酸成分と多価アルコールとは、 当量比で、 多塩基酸成分を 1とするとき、 多価アルコールを 1〜 2 . 5の範囲で使用することが好ましく、 1 . 0 0 5〜2 .
0の範囲で使用することがより好ましい。 多価アルコールが少なくなると、 得ら れる不飽和ポリエステル樹脂の分子量が小さくなったり、 ポリエステル樹脂を製 造する際にゲル化しやすくなる傾向にあり、 多くなると酸価が小さくなり、 増粘 剤による増粘の進行が遅くなる傾向がある。
本発明における不飽和ポリエステル榭脂の数平均分子量 (ゲルパーミッション クロマトグラフィー法により測定し、 標準ポリスチレン検量線を用いて換算した 値、 以下も同じ) は、 1, 0 0 0〜3 0, 0 0 0であることが好ましく、 1 , 5
0 0〜1 0, 0 0 0であることがより好ましい。 1, 0 0 0未満では、 靭性が極 端に劣る傾向があり、 3 0 , 0 0 0を超えると粘度が高すぎ相溶性作業性が劣る 傾向がある。
不飽和ポリエステル樹脂に用いる硬化剤としては、 例えば、 ケトンパーォキサ イ ド類、 パーォキシジカーボネート類、 ハイ ド口パーオキサイド類、 ジァシルパ ーォキサイド類、 バーオキシケタール類、 ジアルキルパーォキサイド類、 バーオ キシエステル類、 アルキルパーエステル類等が挙げられる。 硬化剤の配合量は、 材料の保存性、 成形サイクルの面から前記不飽和ポリエステル樹脂 1 0 0重量部 に対して 0 . 1〜1 0重量部が好ましく、 0 . 5〜 5重量部がより好ましい。 ビニルエステル樹脂は、 分子末端に (メタ) アタリロイル基を有するものであ り、 例えば、 分子内にエポキシ基を 2個以上有するエポキシ化合物と、 (メタ) アクリル酸と、 必要に応じて多塩基酸とを付加反応させることにより得られる。 エポキシ化合物としては、 エポキシ樹脂を用いることができ、 例えば、 ビスフ ェノール A型エポキシ榭脂、 ビスフヱノール F型エポキシ樹脂、 水素化ビスフエ ノール型エポキシ樹脂、 フエノールノボラック型エポキシ樹脂、 クレゾ一ルノボ ラック型エポキシ樹脂等が挙げられる。 また、 エポキシ化合物としては、 例えば、 ネオペンチルグリコーノレジグリシジノレエーテノレ、 ポリプロピレンダリコールジグ リシジノレエーテル、 トリメチロールプロパントリグリシジルェ一テル等の多価了 ノレコーノレのグリシジ /レエーテノレ等; フタ/レ酸ジグリシジノレエーテノレ、 ダイマー酸 ジグリシジルエーテル等の多塩基酸のグリシジルエステル等が挙げられ、 これら の 1種、 あるいは 2種以上を併用してもよい。
上記、 必要に応じて用いる多塩基酸としては、 芳香族多塩基酸、 脂肪族多塩基 酸等を用いることができ、 例えば、 マレイン酸、 テトラヒドロフタル酸、 メチル テトラヒドロフタル酸、 フタル酸、 ピロメリット酸、 トリメリット酸、 ダイマー 酸、 カルボキシル基を有するポリブタジエン、 カルボキシル基を有するブタジェ ンーァクリノレ-トリル共重合体、 末端にカルボキシル基を有する多塩基酸と多価 アルコールのエステルィヒ物等が挙げられる。 これらの多塩基酸を併用することに より、 柔軟性に富むビニルエステル樹脂を得ることができる。 分子内にエポキシ 基を 2個以上有するエポキシ化合物と、 不飽和一塩基酸と、 必要に応じて多塩基 酸とを付加反応させるためには、通常、付加反応触媒の存在下で、 5 0〜1 5 0 °C の範囲で加熱することで反応は進行する。 付加反応触媒としては、 例えば、 公知 のエポキシ (メタ) アタリレート型樹脂の合成触媒を用いれば良く、 3級ァミン 類、 ォニゥム塩類、 金属石鹼等が挙げられる。
上記の化合物のほかに、 「ポリエステル樹脂ハンドブック」 (滝山栄一郎著、 第 1版、 日刊工業新聞社、 1988年) 記載のビニルエステル樹脂を用いてもよい。 ビニルエステル樹脂の硬化剤としては、 不飽和ポリエステル樹脂で挙げたもの と同様の硬化剤を用いることができる。
エポキシ樹脂は、 分子内に 2個以上のエポキシ基を有する化合物である。 ェポ キシ榭脂の具体例としては、 ポリオールから得られるグリシジルエーテル、 活性 水素を複数有するァミンより得られるグリシジルァミン、 ポリカルボン酸より得 られるグリシジルエステルや、 分子内に複数の 2重結合を有する化合物を酸化し て得られるポリエポキシドなどが挙げられる。
グリシジルエーテルの具体例としては、 以下のようなものが挙げられる。 まず、 ビスフエノール Aから得られるビスフエノール A型エポキシ樹脂、 ビスフエノー ル Fから得られるビスフエノール F型エポキシ樹脂などのビスフエノール型ェポ キシ樹脂が挙げられる。ビスフエノール A型エポキシ樹脂の市販品としては、 "ェ ピコート" 8 2 5 (エポキシ当量 1 7 2〜1 7 8 ) 、 "ェピコ一ト" 8 2 8 (ェ ポキシ当量 1 8 4〜1 9 4 ) 、 "ェピコート" 8 3 4 (エポキシ当量 2 3 0〜2 70) (以上、 油化シヱルエポキシ (株) 製) 、 "ェポトート" YD— 127 (ェ ポキシ当量 180〜: 190) 、 "ェポトート" YD— 128 (エポキシ当量 18 4〜: 1 94) (以上、 東都化成 (株) 製) 、 "ェピクロン" 840 (エポキシ当 量 180〜 1 90) 、 "ェピクロン" 850 (エポキシ当量 184〜194) (以 上、 大日本インキ化学工業 (株) 製) 、 "スミエポキシ" ELA— 128 (ェポ キシ当量 184〜: 1 94、 住友化学 (株) 製) 、 DER331 (エポキシ当量 1 82〜1 92、 ダウケミカル社製) などを使用することができる。 ビスフエノー ル F型エポキシ樹脂の市販品としては、 "ェピコート" 806 (エポキシ当量 1 60〜: 170) 、 "ェピコート,, 807 (エポキシ当量 16◦〜: 175) (以上、 油化シェルエポキシ (株) 製) 、 "ェピクロン" 830 (エポキシ当量 165〜 180、 大日本インキ化学工業 (株) 製) 、 "ェポトート" YD F— 170 (ェ ポキシ当量 160〜180、 東都化成 (株) 製) などを使用することができる。 また、 フエノールやアルキルフエノール、 ハロゲンィ匕フエノールなどのフエノ ール誘導体から得られるノボラックのダリシジルエーテルであるノポラック型ェ ポキシ樹脂なども挙げられる。ノポラック型エポキシ樹脂の市販品としては、 "ェ ピコート" 1 52 (エポキシ当量 1 72〜 1 79) 、 "ェピコート" 154 (ェ ポキシ当量 1 76〜181) (以上、 油化シェルエポキシ (株) 製) 、 DER4 38 (エポキシ当量 176〜: 181、 ダウケミカル社製) 、 "ァラルダイト" E PN 1 138 (エポキシ当量 176〜181、 チバ社製) 、 "ァラノレダイト" E PN1 139 (エポキシ当量 172〜179、 チバ社製) 、 "ェポトート" YD CN-702 (エポキシ当量 200〜230、 東都化成 (株) 製) などを使用す ることができる。
さらに、 レゾルシンジグリシジルエーテルである "デナコール" EX- 201 (エポキシ当量 1 18、 ナガセ化成工業 (株) 製) 、 トリス (p—ヒ ドロキシフ ェニル) メタンのトリグリシジルエーテルである TACT I X 742 (ェポキ シ当量 150〜 157、 ダウケミカル社製) 、 グリセリンのトリグリシジルエー テルである "デナコール" EX—3 14 (エポキシ当量 145、 ナガセ化成工業 (株) 製) 、 ペンタエリスリ トールのテトラグリシジルエーテルである "デナコ ール" EX— 41 1 (エポキシ当量 231、 ナガセ化成工業 (株) 製) 、 ソルビ ト一ルのポリグリシジルェ一テルである "デナコール" E X - 6 1 1 (エポキシ 当量 1 6 7、 ナガセ化成工業 (株) 製) なども使用することができる。
また、 (ポリ) エチレンダリコールジグリシジルエーテルは、 エポキシ樹脂組 成物の粘度の適性化に効果のあるものとして好適に使用できる。
(ポリ) エチレングリコールジグリシジルエーテルの市販品としては、 "ェポ ライト" 2 0 0 E (エポキシ当量 1 8 5〜2 1 5 ) 、 "ェポライト" 4 0◦ E (ェ ポキシ当量 2 7 5〜 3 0 5 ) (以上共栄社化学 (株) 製) などを使用することが できる。
さらに、 (ポリ) プロピレングリコールジグリシジルエーテル、 1 , 6—へキ サンジオールジグリシジルエーテル、 シク口へキサンジメタノ一ルジグリシジル エーテル、 ネオペンチルグリコールジグリシジルエーテル、 トリメチロールプロ パントリグリシジルエーテルなどもまた、 エポキシ榭脂組成物の粘度の適性化に 効果のあるものとして好適に使用できる。
(ポリ) プロピレンダリコールジグリシジルエーテルの市販品としては、 "ェ ポライ ト" 2 O O P (エポキシ当量 2 0 0〜2 4 0 ) 、 "エボライト" 4 O O P (エポキシ当量 3 2 0 ~ 3 6 0 ) (以上共栄社化学 (株) 製) など、 1, 6—へ キサンジオールジグリシジルエーテルの市販品としては、 Y E D 2 1 6 (ェポキ シ当量 1 5 0〜1 7 0、 油化シェルエポキシ (株) 製) 、 "ェポライト" 1 6 0 0 (エポキシ当量 1 3 5〜1 6 5、 共栄社化学 (株) 製) など、 シクロへキサン ジメタノ一ルジグリシジルエーテルの市販品としては、 "へ口キシ" 1 0 7 (ェ ポキシ当量 1 5 5〜1 6 5、 ビィ 'ティ ·アール ·ジャパン (株) 製) など、 ネ ォペンチルグリコールジグリシジルエーテルの市販品としては、 "へ口キシ" 6 8 (エポキシ当量 1 3 5〜1 6 5、 ビィ 'ティ 'アール ·ジャパン (株) 製) 、 "ェポライト" 1 5 0 0 N P (エポキシ当量 1 3 5〜1 6 5、 共栄社化学 (株) 製) など、 トリメチロールプロパントリグリシジルエーテルの市販品としては、 "デナコール" E X— 3 2 1 (エポキシ当量 1 4 0、 ナガセ化成工業 (株) 製) 、 "ェポライト" 1 0 0 M F (エポキシ当量 1 3 5〜1 6 5、 共栄社化学 (株) 製) などをそれぞれ使用することができる。
また、 ポリォキシアルキレングリコールジグリシジルエーテルなどもエポキシ 樹脂組成物の粘度の適性化に効果のあるものとして好適に使用できる。
グリシジルァミンの具体例としては、 ジグリシジルァニリン、 テトラダリシジ ルジアミノジフエニルメタンである "スミーエポキシ" ELM434 (エポキシ 当量 1 10〜130、 住友化学 (株) 製) 、 テトラグリシジル m—キシリレンジ ァミンである TETRAD— X (エポキシ当量 90〜105、 三菱ガス化学 (株) 製) などが挙げられる。
さらに、 グリシジルエーテルとグリシジルァミンの両構造を併せ持つエポキシ 樹脂として、 トリグリシジ —ァミノフエノールである "スミエポキシ" E LM120 (エポキシ当量 1 18、 住友化学 (株) 製) 、 及ぴトリグリシジルー p—ァミノフエノールである "ァラルダイト" MY0510 (エポキシ当量 94 〜 107、 チバガイギ一社製) などが挙げられる。
グリシジルエステルの具体例としては、 フタル酸ジグリシジルエステル、 テレ フタル酸ジグリシジルエステル、 ダイマー酸ジグリシジルエステルなどが挙げら れる。
分子内に複数の 2重結合を有する化合物を酸化して得られるポリエポキシドと しては、 エポキシシクロへキサン環を有するエポキシ樹脂が挙げられ、 具体例と しては、 ユニオンカーバイドネ土の ERL— 4221 (エポキシ当量 131〜14 3) 、 ERL-4234 (エポキシ当量 133〜 154 ) などが挙げられ、 さら にエポキシィ匕大豆油なども挙げることができる。
なお、 エポキシ樹脂組成物には、 エポキシ榭脂組成物の粘度の適性ィ匕に効果の ある 1官能のエポキシ樹脂 (以下、 「反応性希釈剤」 という。 ) を配合すること もできる。反応性希釈剤の市販品としては、プチルグリシジルエーテルである "へ 口キシ" 61 (エポキシ当量 145〜155、 ビィ 'ティ 'アール'ジャパン (株) 製) 、 2—ェチルへキシルグリシジルエーテルである "デナコール" EX— 12 1 (エポキシ当量 187、 ナガセ化成工業 (株) 製) 、 フエニルダリシジルエー テルである "デナコール,, EX—141 (エポキシ当量 15 1、 ナガセ化成工業 (株) 製) 、 クレジルグリシジルエーテルである "へ口キシ" 62 (エポキシ当 量 1 75〜 195、 ビィ 'ティ 'アール ·ジャパン (株) 製) 、 p _ s e c—ブ チルダリシジルエーテルである YED 122 (エポキシ当量 220〜250、 油 化シェルエポキシ (株) 製) 、 p— t e r tーブチルダリシジルエーテルである "デナコール" E X—1 4 6 (エポキシ当量 2 2 5、 ナガセ化成工業 (株) 製) などが挙げられる。 これらは各々単独で使用しても良いし、 2種類以上を混合し て使用しても良い。
エポキシ樹脂に用いる硬化剤の具体例としては、 4, 4, ージアミノジフエ二 ルメタン、 4, 4 ' ージァミノジフエニルスルホン、 3, 3 ' ージァミノジフエ ニルスルホン、 m—フエ二レンジァミン、 m_キシリ レンジァミンのような活性 水素を有する芳香族ァミン、 ジエチレントリアミン、 トリエチレンテトラミン、 テトラエチレンペンタミン、 ィソホロンジァミン、 ビス (アミノメチル) ノルボ ノレナン、 ビス ( 4ーァミノシク口へキシル) メタン、 ビス (4—ァミノ一 3—メ チルシク口へキシル) メタン、 ポリエチレンィミンのダイマー酸エステルのよう な活性水素を有する脂肪族ァミン、 これら活性水素を有するアミンにエポキシ化 合物、 アクリロニトリル、 フエノールとホルムアルデヒ ド、 チォ尿素などの化合 物を反応させて得られる変性ァミン、 ジメチルァニリン、 ジメチルベンジルアミ ン、 2, 4 , 6—トリス (ジメチノレアミノメチル) フエノールや 1一置換イミダ ゾールのような活性水素を持たない第三ァミン、 ジシアンジァミ ド、 テトラメチ ルグァ二ジン、 へキサヒドロフタル酸無水物、 テトラヒドロフタル酸無水物、 メ チルへキサヒドロフタル酸無水物、 メチルナジック酸無水物のようなカルボン酸 無水物、 アジピン酸ヒドラジドゃナフタレンジカルボン酸ヒ ドラジドのようなポ リカルボン酸ヒ ドラジド、 ノボラック樹脂などのポリフエノール化合物、 チォグ リコール酸とポリオールのエステルのようなポリメルカプタン、 三フッ化ホウ素 ェチルアミン錯体のようなルイス酸錯体、 芳香族スルホ -ゥム塩などが挙げられ る。
また、 これらの硬化剤には、 硬化活性を高めるために適当な硬化助剤を組み合 わせることができる。 具体的には、 ジシアンジアミ ドに、 3—フエニル _ 1, 1 —ジメチル尿素、 3— (3, 4ージクロ口フエニル) 一 1 , 1ージメチル尿素 (D CMU) 、 3一 ( 3—クロロー 4一メチルフエニル) 一 1, 1—ジメチル尿素、 2 , 4一ビス ( 3, 3—ジメチルゥレイド) トルェンのような尿素誘導体を硬化 助剤として組み合わせる例、 カルボン酸無水物ゃノボラック樹脂に第三ァミンを 硬化助剤として組み合わせる例などが挙げられる。
硬化剤は、 エポキシ樹脂 1 0 0重量部に対して 0 . 1〜 1 0 0重量部配合する のが好ましく、 1〜,5 0重量部配合するのがさらに好ましい。
硬化助剤は、 エポキシ樹脂 1 0 0重量部に対して 0 . 1〜 2 0重量部の範囲で 配合するのが良く、 好ましくは 0 . 1〜1 0重量部の範囲で配合するのが良い。
リヨセルとしてリョセル織物 (リョセル布) を使用する場合、 このリョセル布 と熱硬化性樹脂の両成分の混合割合に特に制限はないが、 一般には熱硬化性榭月旨 1 0 0重量部に対して、 リヨセル布 1ないし 5 0 0重量部、 好ましくは 1 0ない し 2 0 0重量部、 より好ましくは 3 0ないし 1 7 0重量部である (熱硬化性樹月旨 とリヨセル布の合計に対するリョセル布の割合で言うと、 2 3— 6 3重量%であ る) 。 リヨセル布以外のリヨセルを使用する場合にも好ましい範囲、 より好まし い範囲は同じである。
本発明の繊維強化プラスチック成形用材料には、 必要に応じて、 防湿剤、 膨潤 防止剤、 帯電防止剤、 各種の安定剤、 核剤、 可塑剤、 難燃剤、 顔料、 着色剤、 有 機溶媒などを、 成形品の特長を損なわない範囲で、 公知の方法に従い適宜添加す ることができる。
本発明における繊維強化プラスチック成形用材料の硬化又は成形方法として は、 一般に用いられている F R P成形法が適用できる。 例えば、 ハンドレイアツ プ成形ゃスプレイアップ等の積層成形法、 圧縮成形法 (加熱圧縮成形法) 、 フィ ラメントワインデイング法、 注入成形法、 遠心成形法、 真空又は加圧パック法、 連続成形法、 弓 I抜き成形法、 射出成形等である。 繊維を織物の形態で用いる場合 は、 ハンドレイアップ成形と圧縮成形法 (加熱圧縮成形法) が好ましく用いられ る。 また、 シートモールディングコンパウンド法及ぴ反応射出成形法も用いるこ とができる。
本発明の繊維強化プラスチック成形品は、 タンク ·容器類、 銅張り積層板など の電気 ·電子部品類、 建築用内装壁板材、 屋根板材 (平板、 波板) 、 天井風道、 天井幕板などの建築資材類、 浴槽、 洗い場付き浴槽、 浴室ユニット、 仮設移動ト ィレユニット、 仮設移動シャヮーユエットなどの住設機器 ·資材類、 ローボート、 足踏みボート、 シ一力ャック、 カヌーボート、 モーターボートなどのスポーツ . レジャー用品類、 漁船を含む船舶類、 車両用空調ダクト、 運転席コンソール、 車 両内装部材、 自動車へッドランプリフレタターなどの自動車.車両用部品、 レジ ヤー施設等に設ける擬岩、 擬木、 擬石、 擬山など、 その他、 マネキン、 人形、 模 型、 各種レプリカなどへ幅広く用いることができる。 航空 .宇宙、 農林 '水産、 介護 ·医療などの分野にも用いることができる。
特に、 廃棄物処理問題が顕在化しているタンク又は容器の構造材料、 プリント 配線板に用いられる銅張り積層板に好ましく用いられる。 それらの用途のなかで も特に、 主に不飽和ポリエステル榭脂あるいはビュルエステル榭脂が用いられて Vヽる腐食性のある液体薬品などを収容する耐食タンク用の構造材料や、 主にェポ キシ榭脂が用いられている 8層以下程度のプリント配線板用途に適している。 実施例
以下、 本発明の実施例を示すが、 本発明はこれらの実施例に限定されるもので はない。
(実施例 1 )
ビニルエステル樹脂 (日本ュピカ (株) 製、 ネオポール 8250M) 100重 量部にナフテン酸コバルト (日本ュピカ (株) 製) 0. 5重量部を添加し、 15 分間撹拌した後、 メチルェチルケトンパーォキシド (日本油脂 (株) 製、 パーメ ック F) 1. 0重量部を添加、 混合し、 リヨセル布 (ュニチカテキスタイル (株) 製、 シルフ (登録商標) 、 (経糸) リヨセル 20番手、 (緯糸) リヨセル 10番 手、 綾織 (2ノ2ツイル) 、 25 OmmX 40 OmmX 0. 35mm) に塗布し、 脱泡ローラで気泡を除去しながら含浸させた。 そのリョセル布を 4層または 15 層を積層し、 PETフィルムを貼り合わせた木板の間に挟み込み、 その上にステ ンレス板と 300 k g錘をのせて室温で 16時間放置した。 硬化した複合板を取 り出し、 さらに 80、 100、 120°Cで各 2時間熱処理することにより完全硬 化させた。 得られた繊維強化プラスチック成形品の引張り物性を測定した結果を 表 1にまとめて示した。 試料 1及ぴ 2いずれもビニルエステル樹脂及ぴリョセル 布の合計に占めるリヨセル布の割合は約 48%であった。 また、 表 2にガラス繊 維強化プラスチック製耐食貯槽 ( J I S K7012) に記載されている強化プ 製積層板の引張り物性の最小値を示す。
Figure imgf000015_0001
表 2
Figure imgf000015_0002
実施例 1のビニルエステル樹脂/リョセル布複合材料は表 2のガラス繊維強化 プラスチック製耐食貯槽に必要な最小引張り強度の値を満足している。
(実施例 2)
実施例 1と同様の方法により作製した繊維強化ブラスチック成形品の曲げ物性 を測定した結果を表 3にまとめて示した。 また、 ガラス繊維強化プラスチック製 耐食貯槽 ( J I S K7012) に記載されている強化プラスチック製積層板の 曲げ物性の最小値を表 4に示した。
表 3
試験片の厚さ 曲げ強度 曲げ弾性率
(p 1 y) (mm; (MP a) (GP a)
1 4 1. 45 187. 1 6. 77
2 15 5. 13 1 50. 8 6. 37 表 4
Figure imgf000016_0001
実施例 2のビュルエステル樹脂 Zリョセル布複合材料は表 4のガラス繊維強化 プラスチック製耐食貯槽に必要な最小曲げ物性の値を満足している。
(実施例 3)
難燃性エポキシ樹脂 (住友化学工業 (株) 製スミエポキシ ESB— 500 (ェ ポキシ当量 500 g/e q. ) 90重量部と o—クレゾ一ルノボラック型ェポキ シ榭脂 (住友化学工業 (株) 製スミエポキシ ESCN— 22 OF (エポキシ当量 220 g/e q. ) 10重量部、 ジシアンジアミド 3. 5重量部、 2—ェチルー 4ーメチルイミダゾール 0. 1重量部、 メチルセ口ソルブ 70重量部からなるヮ ニスをリヨセル布 (ュニチカテキスタイル (株) 製、 シルフ (登録商標) 、 (経 糸) リヨセル 20番手、 (緯糸) リヨセル 10番手、 綾織 (2Z2ツイル) 、 5 0 OmmX 50 OmmX 0. 35mm) に塗布し、 脱泡ローラで気泡を除去しな がら布にワニスを含浸させた。そのワニス含浸布を 100°Cで 10分間乾燥させ、 プリプレダを得た。 得られたプリプレダ 4枚と 70 im銅泊 (古川サーキットフ オイル (株) ) 1枚を重ねて、 160°C、 50 k g/cm2の条件で 1. 5時間プ レス成形を行い、 厚さ 1. 4 Ommの片面銅張り積層板を作製した。 得られた積 層板の各種物性値と、 印刷回路用銅張積層板 (ガラス布基材エポキシ樹脂) ( J I S C 6484) に記載されている最低物性値を表 5にまとめて示す。 表 5
Figure imgf000017_0001
表 5に記載した測定項目すべてにおいて実施例 3のリヨセル布基材エポキシ樹 脂はガラス布基材ェポキシ樹脂の必要最低物性値を満足している。
(実施例 4)
実施例 3において、 エポキシ樹脂 10◦重量部おょぴジシアンジァミド 3. 5 重量部を、 テレフタル酸、 無水マレイン酸、 プロピレングリコール、 ペンチルダ リコールおょぴエチレンダリコールからなる不飽和ポリエステル樹脂 100重量 部おょぴ t一ブチルパーべンゾエート 1. 5重量部に変更したほかは、 実施例 3 と同様にして厚さ 1. 4 Ommの片面銅張り積層板を作製した。
実施例 4の片面銅張り積層板も、 ガラス布基材エポキシ樹脂の必要最低物性値 を満足していた。
(実施例 5)
実施例 1の 4層または 15層のリョセル布を 4層のリョセルマツト (不織布、 70 g/m2) に変更したほかは、 実施例 1と同様にして厚み 1. 8mm、 繊維含 有率 20 w t %の板材を作製した。 作製した板材の曲げ強度は 155 MP a、 曲 げ弾性率は 6. 3 G P a、 耐衝擊値は 1 7. 5 k J/m2であり、 建築用内装板材 として使用するのに十分な力学物性を有していた。
(実施例 6)
実施例 5のビニルエステル樹脂を含浸させたリョセルマツトを用いて、 マネキ ンの形状を形作り、 室温で 16時間放置した。 得られたマネキンから試験片を切 り出し、 力学物性を測定した結果、 曲げ強度 123MP a、 曲げ弾性率 5. 0 G P a、耐衝擊値 1 1. 7 k jZm2であり、 マネキンとして使用するのに十分な力 学物性を有していた。
(実施例 7)
実施例 1のビニルエステル樹脂を含浸させたリョセル布 15層の積層物を用い て、 モーターボートの形状を形作り、 室温で 48時間放置した。 得られたボート から試験片を切り出し、 力学物性を測定した結果、 曲げ強度 185MP a、 曲げ 弾性率 7. 1 G P a、 耐衝擊値 24. 7 k j/m2であり、 モーターポートとして 使用するのに十分な力学物^を有していた。

Claims

請 求 の 範 囲
1 . アミンォキシドを溶媒に使って木材パルプを紡糸した繊維と、 熱硬化性樹脂 とを主成分とする繊維強化プラスチック成形用材料。
2 . 請求項 1に記載の繊維強化ブラスチック成形用材料にぉレ、て、 熱硬化性樹脂 として不飽和ポリエステル樹脂又はビニルエステル樹脂を用いる繊維強化プ ラスチック成形用材料。
3 . 請求項 1に記載の繊維強ィヒプラスチック成形用材料において、 熱硬化性樹脂 としてエポキシ榭脂を用いる繊維強化プラスチック成形用材料。
4 . 請求項 1〜 3いずれか 1つに記載の繊維強化プラスチック成形用材料におい て、 繊維として織物を用 ヽる繊維強化プラスチック成形用材料。
5 . 請求項 1〜4いずれか 1つに記載の繊維強ィ匕プラスチック成形用材料を、 硬 化させて得られる繊維強化プラスチック成形品。
6 . 請求項 5に記載の繊維強化プラスチック成形品において、 成形品は容器であ る繊維強化プラスチック成形品。
7 . 請求項 5に記載の繊維強化プラスチック成形品において、 成形品は銅張り積 層板である繊維強化プラスチック成形品。
8 . 請求項 5に記載の繊維強化プラスチック成形品において、 成形品は建築用内 装板材である繊維強化プラスチック成形品。
9 . 請求項 5に記載の繊維強化プラスチック成形品において、 成形品はマネキン である繊維強化プラスチック成形品。
1 0 . 請求項 5に記載の繊維強化プラスチック成形品において、成形品はスポー ッ · レジャー用品類である繊維強化プラスチック成形品。
PCT/JP2003/015787 2002-12-12 2003-12-10 植物繊維強化プラスチック成形品 WO2004052967A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004558456A JP3858040B2 (ja) 2002-12-12 2003-12-10 植物繊維強化プラスチック成形品
AU2003289302A AU2003289302A1 (en) 2002-12-12 2003-12-10 Plant fiber reinforced plastic formed article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002360163 2002-12-12
JP2002-360163 2002-12-12

Publications (1)

Publication Number Publication Date
WO2004052967A1 true WO2004052967A1 (ja) 2004-06-24

Family

ID=32500977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015787 WO2004052967A1 (ja) 2002-12-12 2003-12-10 植物繊維強化プラスチック成形品

Country Status (3)

Country Link
JP (1) JP3858040B2 (ja)
AU (1) AU2003289302A1 (ja)
WO (1) WO2004052967A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240178A (ja) * 2009-04-07 2010-10-28 Yamato Mannequin Co Ltd バイオマス素材からなるマネキン人形の製造方法及びその製造方法からなるマネキン人形
JP2014047351A (ja) * 2012-09-03 2014-03-17 Agency For Defence Development 繊維強化複合材料
JP2015014055A (ja) * 2013-07-03 2015-01-22 ユニチカトレーディング株式会社 Frp用セルロース織物
JP2015151475A (ja) * 2014-02-14 2015-08-24 ユニチカトレーディング株式会社 繊維強化プラスチック
GB2523472A (en) * 2014-02-12 2015-08-26 Global Display Projects Ltd Novel material
GB2588571A (en) * 2019-02-25 2021-05-05 Medibord Ltd Composite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019537A1 (en) * 1994-12-21 1996-06-27 Perstorp Ab A thermosetting material
JPH09302240A (ja) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd 繊維強化樹脂組成物
JP2000119999A (ja) * 1998-10-09 2000-04-25 Oji Seitai Kk 古紙を原料とする低密度体
WO2001002469A1 (de) * 1999-07-03 2001-01-11 Cognis Deutschland Gmbh Verfahren zur herstellung von faserverbundwerkstoffen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996019537A1 (en) * 1994-12-21 1996-06-27 Perstorp Ab A thermosetting material
JPH09302240A (ja) * 1996-05-13 1997-11-25 Asahi Chem Ind Co Ltd 繊維強化樹脂組成物
JP2000119999A (ja) * 1998-10-09 2000-04-25 Oji Seitai Kk 古紙を原料とする低密度体
WO2001002469A1 (de) * 1999-07-03 2001-01-11 Cognis Deutschland Gmbh Verfahren zur herstellung von faserverbundwerkstoffen

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240178A (ja) * 2009-04-07 2010-10-28 Yamato Mannequin Co Ltd バイオマス素材からなるマネキン人形の製造方法及びその製造方法からなるマネキン人形
JP2014047351A (ja) * 2012-09-03 2014-03-17 Agency For Defence Development 繊維強化複合材料
JP2015014055A (ja) * 2013-07-03 2015-01-22 ユニチカトレーディング株式会社 Frp用セルロース織物
GB2523472A (en) * 2014-02-12 2015-08-26 Global Display Projects Ltd Novel material
GB2523472B (en) * 2014-02-12 2016-05-11 Global Display Projects Ltd Composite material comprising unsaturated polyester resin and plant fibres
JP2015151475A (ja) * 2014-02-14 2015-08-24 ユニチカトレーディング株式会社 繊維強化プラスチック
GB2588571A (en) * 2019-02-25 2021-05-05 Medibord Ltd Composite

Also Published As

Publication number Publication date
JPWO2004052967A1 (ja) 2006-04-13
AU2003289302A1 (en) 2004-06-30
JP3858040B2 (ja) 2006-12-13

Similar Documents

Publication Publication Date Title
RU2395545C2 (ru) Эпоксидные смолы, упрочненные амфифильными блок-сополимерами, и электроизоляционные ламинаты, выполненные с ними
CN101616949B (zh) 环氧树脂组合物、预浸渍体、层合板和印刷配线板
CN104736588B (zh) 树脂组合物、预浸料、层压板、以及印刷电路板
JP6007914B2 (ja) 真空成形用プリプレグ、繊維強化複合材料およびその製造方法
JP4997727B2 (ja) 難燃性樹脂組成物、並びにこれを用いたプリプレグ及び積層板
GB2460050A (en) Epoxy composite
US4524107A (en) Toughened thermoset laminates
EP0262891A2 (en) Resin composition of thermosetting resin and thermoplastic resin
JP2006193607A (ja) 樹脂組成物並びにこれを用いたプリプレグ及び積層板
CN104736589A (zh) 树脂组合物、预浸料、层压板、覆金属箔层压板以及印刷电路板
WO2017092471A1 (zh) 热固性烷基多元醇缩水甘油醚树脂组合物及其应用
KR101950627B1 (ko) 에폭시 수지 조성물, 및 이것을 이용한 필름, 프리프레그 및 섬유 강화 플라스틱
JP5040102B2 (ja) プリプレグ及び積層板
CN112262174B (zh) 环氧树脂配制物
WO2004052967A1 (ja) 植物繊維強化プラスチック成形品
JP2004175925A (ja) プリプレグ及び積層板
JP4894339B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物
JP2006316285A (ja) 植物繊維強化プラスチック成形品
CN114729105A (zh) 用于层合物的具有高透明性、低黄变和高玻璃化转变温度的基质树脂
JP2019052261A (ja) 硬化性組成物及びその硬化物
CN114292404B (zh) Poss改性的噁唑啉衍生物及其制备方法、环氧树脂组合物
JP3396578B2 (ja) プリプレグ及びそれを用いた銅張積層板
Unnikrishnan et al. Studies on the toughening of epoxy resins
JP2021088675A (ja) 熱硬化性樹脂組成物、繊維強化樹脂複合材料及びその製造方法
KR102109653B1 (ko) 섬유보강 복합재의 재활용을 위한 화학분해 가능한 열경화성 수지 조성물 및 이의 용해방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004558456

Country of ref document: JP

122 Ep: pct application non-entry in european phase