WO2004049055A1 - 分極反転構造の形成方法および分極反転構造を有する光学素子 - Google Patents

分極反転構造の形成方法および分極反転構造を有する光学素子 Download PDF

Info

Publication number
WO2004049055A1
WO2004049055A1 PCT/JP2003/014952 JP0314952W WO2004049055A1 WO 2004049055 A1 WO2004049055 A1 WO 2004049055A1 JP 0314952 W JP0314952 W JP 0314952W WO 2004049055 A1 WO2004049055 A1 WO 2004049055A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
electrode
inverted
forming
substrate
Prior art date
Application number
PCT/JP2003/014952
Other languages
English (en)
French (fr)
Inventor
Kiminori Mizuuchi
Akihiro Morikawa
Tomoya Sugita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003284646A priority Critical patent/AU2003284646A1/en
Priority to EP03774164.2A priority patent/EP1566689B1/en
Priority to US10/535,975 priority patent/US7230753B2/en
Publication of WO2004049055A1 publication Critical patent/WO2004049055A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]

Definitions

  • the present invention relates to a method for forming a domain-inverted structure using electric field application, and an optical element having a domain-inverted structure and applicable to an optical wavelength conversion element, a polarization element, an optical switch, a phase modulator, and the like.
  • a domain inversion structure in which domain inversion regions are periodically arranged inside the ferroelectric can be formed.
  • the domain-inverted structure formed in this way is an optical frequency modulator using surface elastic waves, an optical wavelength conversion element using non-linear polarization inversion, and light using a prism-shaped or lens-shaped inverted structure. Used for polarizers.
  • an optical wavelength conversion device with extremely high conversion efficiency can be manufactured. If this is used to convert the wavelength of light from a semiconductor laser or the like, a small, short-wavelength light source that can be applied to printing, optical information processing, optical measurement and control fields, etc. can be obtained.
  • a ferroelectric has a charge bias in a crystal due to spontaneous polarization.
  • the direction of spontaneous polarization can be changed by applying an electric field opposing spontaneous polarization.
  • the direction of spontaneous polarization depends on the type of crystal (material). L i T a 0 3 , L i N b ⁇ 3 , or a mixed crystal of L i T a u — x ) N b x 0 3 (0 ⁇ x ⁇ 1) Due to spontaneous polarization, in these crystals the polarization is in the + direction along the C axis and vice versa There are only two ways in one direction. When an electric field is applied, the polarization of these crystals is rotated by 180 degrees, and the direction is reversed. This phenomenon is called polarization reversal.
  • L i Nb_ ⁇ 3 L i T A_ ⁇ 3 such crystals, about 20 k V / mm at room temperature, MgO: about by L i Nb0 3 Take a value of 5 kV / mm.
  • Single domain polarization Making a ferroelectric crystal with a single polarization direction is called "single domain polarization".
  • single domain polarization a method of applying an electric field at high temperature after crystal growth is generally performed.
  • the 1 9 7 1 9 discloses a comb electrode formed on the L i Nb0 3 (lithium niobate) substrate, pulses thereto It describes a method of applying a field-like electric field.
  • the comb-shaped electrode is formed on the + C surface of the L i Nb_ ⁇ 3 substrate to form a flat electrode to a C-plane.
  • the + C plane is grounded, a pulse voltage with a pulse width of 100 s is applied to the plane electrode on the 1C plane, and polarization inversion is caused by the pulse electric field applied to the substrate.
  • the electric field required to reverse the polarization is about 20 kVZmm or more.
  • the substrate When an electric field of such a value is applied, if the substrate is thick, the crystal of the substrate may be destroyed by the applied electric field.
  • the thickness of the substrate by setting the thickness of the substrate to about 200 m, it is possible to avoid crystal breakage due to the application of an electric field, and to form a domain-inverted region at room temperature. Thereby, a deep domain inversion region penetrating the substrate is obtained.
  • a short-period polarization reversal structure in the range of 3 to 4 m is required.
  • the conventional method uses a pulse width of about 100 s and applies a short pulse voltage to the electrodes to form a short-period domain-inverted structure. Is possible.
  • MgLN L i Nb_ ⁇ 3 substrate
  • JP-A-6 _ 24247 8 JP-periodic polarization to MgLN of Z plate A method for forming an inverted structure is shown. According to this, a comb-shaped electrode is formed on the + Z surface of Mg LN, and a corona is irradiated from the back surface, thereby obtaining a domain-inverted structure having a period of 4 / m and penetrating a substrate with a thickness of 0.5 mm.
  • JP-A-9-128431 a method of forming a domain-inverted structure in off-cut MgLN is described in JP-A-9-128431.
  • An electrode is formed on an off-cut MgLN substrate whose polarization direction is slightly inclined from the substrate surface, and a voltage is applied to this electrode to form a needle-like polarization inversion structure.
  • the domain-inverted region grows in the crystal polarization direction, and a domain-inverted structure with a period of about 5 zm is formed.
  • the Mg de one-flop L i T a (1 _ x ) Nb x 0 3 (0 ⁇ x ⁇ 1) substrate Z plate it is difficult to form a fine domain-inverted structure.
  • the formation of the domain-inverted structure on the off-cut substrate was possible by applying an electric field.
  • a complicated method such as corona poling has been known as a method for forming a uniform fine inverted structure on a Z-plate substrate.
  • Corona poling is a method in which charged particles are deposited on a substrate to generate an electric field, thereby inverting the polarization.
  • the thickness of the substrate on which the domain-inverted structure can be formed is limited to about 0.5 mm. Formation was difficult.
  • the method of applying a voltage using electrodes is effective for forming a domain-inverted structure on an off-cut substrate, but it has been difficult to form a domain-inverted structure widely and uniformly on a Z-plate by this method.
  • a comb-shaped electrode is It is disclosed that a periodic domain-inverted structure can be formed by applying a voltage to the Mg LN. This method has the feature that a periodically poled structure can be formed uniformly.
  • the polarization reversal formed is limited to a part of the electrode tip, and there is a problem that it is difficult to form a polarization reversal structure deeply and uniformly over a wide range under the electrode. Disclosure of the invention
  • An object of the present invention is to provide a method for forming a deep and uniform domain-inverted structure with a short period and a wide width on a ferroelectric substrate.
  • a ferroelectric substrate having a main surface substantially perpendicular to the Z axis of the crystal is used, and a plurality of electrodes periodically arranged on the main surface of the ferroelectric substrate.
  • a first electrode having a pattern on which a finger is formed; a counter electrode facing the first electrode on another surface of the ferroelectric substrate; a ferroelectric substance interposed between the first electrode and the counter electrode; An electric field is applied to the substrate to form a polarization inversion region corresponding to the pattern of the first electrode on the ferroelectric substrate.
  • the method of the present invention is characterized in that the electrode fingers are arranged such that a direction from a base of the electrode finger of the first electrode to a tip thereof is along a Y-axis direction of the crystal of the ferroelectric substrate.
  • the optical element of the present invention includes: a ferroelectric substrate having a plane substantially perpendicular to the Z axis of the crystal; and a plurality of domain-inverted regions periodically formed on the ferroelectric substrate. Each has an axially symmetric plane shape, and is arranged so that the symmetry axes are parallel to each other.
  • a feature of the optical element of the present invention is that the domain-inverted region is formed such that the direction of the symmetry axis is along the Y ′ axis of the crystal of the ferroelectric substrate, and the domain-inverted region is one-way from the + Z plane.
  • FIG. 1A is a plan view showing an electrode structure used for a method of forming a domain-inverted structure in Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view
  • FIG. 2A is a plan view showing a state of a domain-inverted region formed by the method of forming the domain-inverted structure
  • FIG. 2B is a side view
  • Fig. 3A is a perspective view for explaining the superiority of an electrode with a fine tip
  • Fig. 3B is a cross-sectional view
  • Fig. 3C changes the characteristics of the ferroelectric substrate as the domain-inverted region expands. A graph showing the situation
  • 4A and 4B are a plan view and a sectional view, respectively, showing a method for enlarging a domain-inverted region
  • FIGS. 5A and 5B are similarly a plan view and a sectional view showing a method for enlarging the domain-inverted region
  • FIG. 6 is a characteristic factor diagram showing the relationship between the length r of the domain-inverted region manufactured by the method of forming the domain-inverted structure and the crystal orientation of the substrate.
  • FIG. 7A is a plan view showing another electrode structure
  • FIG. 7B is a sectional view
  • FIG. 8A is a plan view showing a method of forming a domain-inverted structure of the present invention
  • FIG. 8B is a cross-sectional view
  • FIG. 9A is a plan view showing a method of forming a domain-inverted structure of the present invention
  • FIG. 9B is a cross-sectional view
  • Fig. 1 OA shows the temperature curve of the anneal process for explaining the characteristic factors indicating the stability of the domain-inverted region.
  • Fig. 10 B shows the relationship between the heating rate and the decay rate of the domain-inverted region.
  • FIG. 11A is a plan view showing a method of forming a domain-inverted structure according to the third embodiment.
  • Figure 1 1B is a sectional view,
  • FIG. 12 is a cross-sectional view showing a state where a polarization inversion region is formed in a first electrode and a second electrode in the same embodiment.
  • FIG. 13 is a diagram showing a relationship between the distance L between the first electrode and the second electrode and the length Lr of the domain-inverted region in the embodiment.
  • FIG. 14 is a diagram showing the relationship between the temperature of the insulating solution and the length r of the domain-inverted region in the embodiment.
  • FIG. 15 is a diagram showing the relationship between the substrate thickness and the polarization inversion period in the same embodiment
  • FIG. 16A is a plan view showing a method of forming a domain-inverted structure in Embodiment 4,
  • FIG. 16B is a cross-sectional view,
  • FIG. 17 is a diagram showing the relationship between the pulse width of the applied voltage and the length Lr of the domain-inverted region in the third and fourth embodiments.
  • FIG. 18 is a perspective view showing an optical element according to the sixth embodiment.
  • FIG. 19A is a plan view showing an optical deflector which is an example of the optical element
  • FIG. 19B is a sectional view.
  • the direction of the electrode finger of the first electrode for applying an electric field to the ferroelectric substrate is set such that the direction from the base to the tip is the Y axis of the crystal of the ferroelectric substrate.
  • a fine domain-inverted region can be formed. This effect is based on the fact that the spread of domain inversion in the Y-axis direction is several times larger and more uniform than in the X-axis.
  • a voltage is concentrated on each tip of a plurality of electrode fingers arranged periodically, when domain inversion is caused on the substrate of the Z plate by such an electrode, a domain inversion region is efficiently formed.
  • the ratio of the area of the domain-inverted region penetrating from the front surface to the rear surface of the ferroelectric substrate is 50% with respect to the entire area of the domain-inverted region.
  • An electric field is applied to the ferroelectric substrate as described below.
  • a fine domain-inverted structure can be formed uniformly.
  • a domain-inverted region was partially formed in a ferroelectric substrate where the crystal Z-axis was almost perpendicular to the substrate plane, and when that portion penetrated the substrate and short-circuited between the electrodes, the spread of the domain-inverted region penetrated Concentration in the inversion region prevents the formation of uniform polarization inversion. Therefore, suppressing the area of such a domain-inverted region that penetrates is effective to ensure the uniformity of the domain-inverted structure.
  • the thickness of the ferroelectric substrate is preferably 1 mm or more.
  • the above method is particularly suitable when the ferroelectric substrate is M g doping L i T a (1 _ x ) N b x ⁇ 3 (0 ⁇ x ⁇ 1).
  • the first electrode may be a comb-shaped electrode, and the electrode fingers may have a stripe shape.
  • the electrode finger of the first electrode may be triangular, and the tip of the electrode finger may be formed by the apex of the triangle.
  • the electrode fingers have a shape symmetrical with respect to an axis in a direction from the base to the tip, and the electrode fingers are arranged such that the axis of symmetry is along the Y-axis direction of the crystal of the ferroelectric substrate. May be.
  • the width of the tip of the electrode finger is 5 m or less.
  • the step of applying an electric field to the ferroelectric substrate includes a step of applying a pulse voltage having an electric field intensity of E1, and a step of applying a DC voltage having an electric field intensity of E2.
  • the pulse waveform of the applied voltage can be controlled so that a uniform inversion region is formed as widely as possible along the electrode under the designed electrode.
  • domain inversion is caused on the Z-plate substrate using an electrode having a tip, a voltage is concentrated on the tip of the electrode, and a domain-inverted region in this portion is efficiently formed.
  • it is effective to use both a pulse voltage and a DC voltage as an applied electric field. That is, a domain-inverted nucleus can be formed by a pulse voltage, and a domain-inverted region can be expanded around a domain-inverted nucleus by a DC voltage.
  • the electric field E1 is larger than 6 kV / mm, and the electric field E2 is smaller than 5 kV / mm. Further, it is preferable that the pulse voltage is composed of two or more pulse trains.
  • the ferroelectric substrate is subjected to a heat treatment at 20 Ot: or more, and during the heat treatment, The generation of pyroelectric charges on the body substrate is suppressed. Thereby, the stability of the domain-inverted region formed by applying an electric field is improved, and scattering due to domain-inverted is reduced.
  • the front and back surfaces of the ferroelectric substrate are electrically short-circuited during the heat treatment. Further, it is preferable that the rate of temperature increase in the heat treatment is 1 ° C. or less.
  • the method for forming a domain-inverted structure of the present invention is suitable when the domain-inverted electric field of the ferroelectric substrate is 5 kV / mm or less. Further, the crystal of the ferroelectric substrate can have a substantially stoichiometric composition.
  • a second electrode is provided on the main surface so as to face the tips of the plurality of electrode fingers of the first electrode at intervals.
  • the second electrode concentrates the electric field at the tip of the first electrode Serves to assist An inversion nucleus is formed by the concentration of the electric field at the tip of the first electrode, and the growth of the domain inversion starts quickly.
  • the relationship between the shortest distance L between the tip of the electrode finger and the second electrode and the thickness T of the ferroelectric substrate satisfies L ⁇ TZ2.
  • the relationship between the electrode distance L and the substrate thickness T affects the electric field distribution at the tip of the electrode finger.
  • the effect of the second electrode becomes too small.
  • a voltage is applied between the first electrode and the counter electrode to form a domain-inverted region below the first and second electrodes. By separately applying electrodes in the same plane, a polarization inversion region is formed under each adjacent electrode. Therefore, it is very effective for forming a wide range of domain-inverted regions.
  • a first electric field applying step of applying a voltage between the first electrode and the counter electrode, and a second electric field applying step of applying a voltage between the second electrode and the counter electrode Have. Further, it is preferable that a domain-inverted region is formed under the first and second electrodes by the first electric field applying step and the second electric field applying step. Also preferably, the first electric field applying step and the second electric field applying step are performed separately.
  • the second electrode has a plurality of electrode fingers, the tip of which faces the tip of the electrode finger of the first electrode, and the direction of the electrode finger of the second electrode from the base to the tip is the ferroelectric substrate. May be arranged along the Y-axis direction of the crystal.
  • a distance L between the first electrode and the second electrode is 50 m ⁇ L ⁇ 200.
  • the step of applying an electric field to the ferroelectric substrate is performed in an insulating solution of 10 ° C. or more.
  • an angle 0 formed by the main surface and the Z axis is in a range of 80 ° ⁇ 0 ⁇ 100 °.
  • a domain-inverted region in which the thickness T of the ferroelectric substrate is 1 mm or more and the period 2 is 2 z / m or less is produced. More preferably, it is manufactured such that the depth D of the domain-inverted region satisfies the relationship of D ⁇ T with the substrate thickness T.
  • the thickness T of the ferroelectric substrate is T ⁇ lmm
  • an insulating layer is formed between the counter electrode and the ferroelectric substrate
  • a pulse width is defined between the first electrode and the counter electrode. Applies a pulse voltage of 1 ms ec to 50 ms ec.
  • the insulating layer may be a S i 0 2 film, T i 0 2 film or T a 2 0 5 films.
  • a thickness T of the ferroelectric substrate is T ⁇ 1 mm
  • a semiconductor film is formed between the counter electrode and the ferroelectric substrate, and a pulse width between the first electrode and the counter electrode is 1
  • a pulse voltage of msec to 50 ms ec may be applied.
  • the semiconductor film can be a Si film, a ZnSe film, or a GaAs film.
  • the ratio of the area of the domain-inverted region penetrating from the front surface to the rear surface of the ferroelectric substrate with respect to the entire area of the domain-inverted region is 50% or less, or When the average depth of the region is in the range of 40 to 95% of the thickness of the ferroelectric substrate, a fine domain-inverted structure can be formed uniformly.
  • the domain-inverted region penetrates the substrate and shorts between the electrodes Then, the spread of the domain-inverted regions concentrates on the penetrated domain-inverted regions, thereby preventing uniform domain-inverted formation. Therefore, suppressing the area of such a domain-inverted region that penetrates is effective in ensuring uniformity of the domain-inverted structure.
  • the ferroelectric substrate is Mg doped L i T a (1 _ x ) Nb x 0 3 (0 ⁇ x ⁇ l). More preferably, the period of the domain-inverted region is 4 m or less. Also preferably, the thickness of the ferroelectric substrate is lmm or more. Also preferably, the substrate thickness T of the ferroelectric substrate is lmm, and the period ⁇ ⁇ of the domain-inverted region is 2 Hm or less. Also preferably, the depth D of the domain-inverted region satisfies the relationship of D ⁇ T with the substrate thickness T. Also preferably, an angle 0 formed by the main surface and the Z axis is within a range of 80 ° ⁇ 0 ⁇ 100 °.
  • FIG. 1A is a plan view showing an electrode structure for implementing a method of forming a domain-inverted structure according to the first embodiment of the present invention
  • FIG. 1B is a sectional view.
  • a first electrode 3 having a comb-shaped pattern is formed on a main surface 2 of an Mg LN substrate 1.
  • the plurality of electrode fingers 5 constituting the first electrode 3 have an elongated stripe shape and are arranged periodically. Thereby, the fine tips 5a of the electrode fingers 5 are periodically arranged.
  • the second electrode 4 is formed on the main surface 2 at a predetermined distance from the tip 5 a of the first electrode 3.
  • the first electrode 3 and the second electrode 4 are electrically insulated.
  • a counter electrode 6 is provided so as to face the first electrode 3 and the second electrode 4.c
  • the counter electrode 6 has a region corresponding to the first electrode 3 and the second electrode 4.
  • Each of the plurality of electrode fingers 5 forming the first electrode 3 is arranged with the symmetry axis of the stripe along the Y-axis direction of the crystal of the MgLN substrate 1. In other words, the tip 5a extends from the base of the electrode finger 5 in the Y-axis direction.
  • the controlled voltage is a pulse voltage or a DC voltage having a predetermined voltage level or duration, which will be specifically described later.
  • a DC voltage is applied.
  • a current (referred to as “reversal current”) proportional to the spontaneous polarization of the ferroelectric and the electrode area flows between the first electrode 3 and the second electrode 4.
  • the uniformity of the periodic structure of the domain inversion means the stability of the period or the duty ratio. Uniformity affects the conversion efficiency when the domain-inverted structure is used for wavelength conversion. For example, when a periodic domain-inverted structure is formed over a length of about 10 mm, a part where the periodic structure is partially disordered is formed. The main cause of the non-uniformity is that the lateral direction of the domain-inverted region partially expands, and a portion where the duty ratio is greatly disturbed is locally formed. In the conventional method, such non-uniform portions are formed at several tens of force points per 10 mm of the inverted structure, and when the period is 3 im or less, almost non-uniformly over the front surface.
  • the conversion efficiency was only about several percent to 50% of the theoretical value.
  • good uniformity in the present embodiment means, for example, that the number of non-uniform portions is several or less over a length of 10 mm. This also means that a very high efficiency close to the theoretical value can be obtained, with the conversion efficiency of 90% or more of the theoretical value when used for wavelength conversion.
  • An ideal domain-inverted structure is one in which the width W of the domain-inverted region is small and the length Lr of the domain-inverted region is long. As the width W is smaller, it becomes easier to finely control the domain-inverted region. For example, if the width W is small, a short-period polarization inversion structure can be formed. Also, the longer the length Lr, the wider the domain-inverted region can be formed.
  • a domain-inverted region cannot be formed uniformly with a pattern electrode that has a wide tip instead of a fine one. Since the electric field is formed uniformly under the electrode, the domain-inverted nucleus is generated at the point where the domain-inverted region spreads around this nucleus. It is. According to the electrode structure of the present embodiment, the domain in which the domain-inverted nuclei are formed can be specified and formed at the tip of the electrode, so that the controllability of domain-inverted area formation is improved and a uniform domain-inverted structure can be formed. It becomes.
  • a comb-shaped electrode 11 is formed on the + Z face of the Mg LN substrate 10, and a flat electrode 12 is formed on the -Z face, and when a voltage is applied between the electrodes, an electric field 13 is generated. Since the concentration is at the tip of 1, the electric field strength at the tip is higher than at other parts. As a result, a domain-inverted nucleus is generated, and the domain-inverted region 14 is spread around the domain-inverted nucleus.
  • the fact that the tip of the electrode finger is fine means that the width at the tip is small enough that the electric field applied by the electrode can be sufficiently concentrated. Concentrating the electric field sufficiently means the degree necessary to uniformly form the domain-inverted structure.
  • the width of the tip is preferably 5 x m or less, and if it is 2 m or less, the uniformity of the domain-inverted structure to be formed is improved, so that it is more preferable.
  • the tip is 1 m or less, a fine domain-inverted structure can be formed, which is more preferable.
  • the electric resistance of the domain-inverted region significantly decreases. Therefore, the resistance decreases as the domain-inverted region expands. Therefore, if the amount of current of the applied pulse is kept constant, the applied voltage decreases as the domain-inverted region expands, as shown in Fig. 3C.
  • the applied voltage decreases and becomes equal to or lower than the domain-inverted voltage Vc, the growth of the domain-inverted region is automatically reduced.
  • FIGS. 4A and 4B FIGS. 5A and 5B
  • a polarization inversion method for further expanding the domain inversion region will be described.
  • the domain-inverted region 14 stops as it expands. If the current value is set large to avoid this, the initial resistance In a high state, a large current flows in the domain-inverted region, causing dielectric breakdown due to a rise in temperature and a sudden lateral expansion of the domain-inverted region. To prevent this, do the following.
  • a relatively low current for example, a maximum current of about 0.1 mA is applied to form a domain-inverted region as shown in FIGS. 4A and 4B.
  • the maximum current is further increased to promote the growth of the domain-inverted region, as shown in Figs. 5A and 5B.
  • the second electrode 4 is formed at a position separated from the tip of the first electrode 3 by a distance L.
  • the second electrode 4 plays a role of helping the electric field to concentrate on the tip 5 a of the first electrode 3.
  • Mg LN is a uniaxial crystal. In the plane perpendicular to the z-axis, the crystal was considered to be symmetric. In particular, it was thought that there was no dependence on the polarization reversal characteristics in the X and Y axis directions. However, it was found that the polarization reversal characteristics of the Z-plate substrate largely depend on the X and Y axes of the crystal.
  • FIG. 6 shows the crystal axis dependence of the length Lr of the domain-inverted region to be formed.
  • the direction of the electrode finger 5 is rotated in the directions of the X and Y axes, and the length L r of the polarization inversion formed in each direction is indicated by the distance from the origin.
  • the tip of the electrode finger 5 is oriented in the Y-axis direction and the axial direction of the electrode finger 5 is aligned with the Y-axis direction, the length L r of the domain-inverted region becomes very long.
  • the electrode finger 5 was moved along the X-axis direction, the length L r was reduced to less than half.
  • the non-uniformity of the magnitude of the polarization reversal becomes larger than when the electrode fingers 5 are formed in the Y-axis direction.
  • the variation in the size of the domain-inverted regions formed is several percent or less, and a practically uniform domain-inverted structure can be obtained.
  • the direction of the electrode finger 5 is ⁇ 10 ° or less with respect to the Y axis, the length Lr is relatively long, and a domain-inverted structure that is practically satisfactory and uniform can be obtained. . Below ⁇ 5 ° the uniformity is better. It was found that when the angle exceeded ⁇ 10 ° with respect to the Y axis, the length L r was significantly reduced, and at the same time, the non-uniformity was increased.
  • forming electrode fingers with fine tips with their axial directions aligned with the Y-axis direction of the crystal is an important condition for forming a uniform domain-inverted structure.
  • the electric field concentrates on the tip of the electrode finger, the surface electric field in this part becomes higher than in other parts, and the domain-inverted nucleus is formed first. Thereafter, the domain-inverted region spreads below the electrode finger centering on the nucleus, and domain-inversion is formed.
  • the axis direction of the electrode finger is oriented in the Y-axis direction, the spread of domain inversion spreads in the Y-axis direction of the crystal. Utilizing easy characteristics, uniform polarization reversal is formed.
  • domain-inverted nuclei are formed irregularly, so the domain-inverted region expands irregularly, and a fine domain-inverted shape, especially an inverted structure of 10 m or less, is formed uniformly. It is difficult.
  • the tip is formed in the X-axis direction, it is difficult to secure a sufficient length Lr and to form a fine structure uniformly.
  • a triangular shape as shown in FIGS. 7A and 7B can be used in addition to the stripe shape of the comb-shaped electrode.
  • a triangular domain-inverted region 9 can be periodically formed. Triangular periodically poled regions can be applied to prisms, deflectors, etc.
  • the domain inversion region can be enlarged by setting the symmetry axis along the Y-axis direction of the substrate crystal. In that case, the vertex of the triangle becomes the tip, polarization inversion occurs around the vertex, and the triangle grows.
  • a fine domain-inverted structure could be formed uniformly.
  • the applied electric field was preferably a pulse electric field having a pulse width of ⁇ 10 msec.
  • a uniform domain-inverted structure can be formed.
  • the applied voltage was 6 kVZmm or less, no domain-inverted region was formed.
  • the application of a pulse train made it possible to form a domain-inverted structure.However, the domain-inverted region formed was limited to the vicinity of the tip of the electrode finger, and a large length Lr extending along the electrode finger. No inversion region was formed.
  • the optimal number of pulses can be determined while observing the voltage waveform shown on the oscilloscope.
  • the voltage amplitude at the start of voltage application is monitored, and the voltage amplitude decreases as the number of d- pulses increases, and the voltage amplitude stops decreasing at a certain number of times.
  • the saturation of the voltage amplitude and the minimum number of applied pulses can be determined by monitoring the amount of decrease in the voltage amplitude.
  • the inversion region did not expand even if more pulses were given.
  • the minimum number of applied pulses depends on the set current, and the number decreases as the current value increases.
  • the application time is about 1 to 100 sec. It was difficult to form a uniform domain-inverted structure only by applying DC, but when a DC voltage was applied following the application of a pulse train, the domain-inverted region expanded along the electrodes, and the length r was smaller than when only a pulse was applied. Increased several times. In other words, by applying a DC voltage after applying a pulse train, it was possible to form a uniform domain-inverted structure over a wide area.
  • the applied electric field pulse has a pulse width of 0.5 ms, the number of pulses is about 200 to 500,000 times, and the applied voltage is 5 to 6 kV when the substrate thickness is 2 mm. Good results were obtained.
  • the maximum value of the current is about 0.2 to 1 mA.
  • the magnitude of the DC voltage is much smaller than the pulse voltage, and good results can be obtained when the DC voltage is 0.2 to 4 kV / mm or less.
  • Polarization inversion is formed at a very low voltage because a domain-inverted nucleus is formed by applying a pulse train, and application of a DC voltage contributes to the action of expanding the domain-inverted region around the domain-inverted nucleus. Conceivable. When a DC voltage of 5 kV or more was applied after the pulse application, the domain-inverted region became too wide and it became difficult to form a fine domain-inverted region.
  • MgLN if the current value is not controlled, a large current will flow and crystal breakage will occur. To prevent this, a mechanism is needed to control the applied voltage automatically so that the current value does not exceed the set maximum value. In the case of actual MgLN, it depends on the area of the electrode, but the maximum current is preferably 10 mA or less. In the case of a short period structure with a period of 3 m or less, it is necessary to control it to 5 mA or less.
  • the substrate thickness of MgLN is preferably 1 mm or more.
  • the substrate thickness was lmm or more, good results were obtained for the uniformity of the domain-inverted structure and the length Lr of the domain-inverted region under the electrode. The reason for this is that the use of a thick substrate can prevent the polarization reversal region from penetrating the substrate.
  • the domain-inverted region penetrates the substrate, the non-uniformity of the domain-inverted region increases, and it becomes difficult to form a fine domain-inverted structure.
  • By increasing the thickness of the substrate it was possible to suppress the penetration of the domain-inverted region and to form a uniform domain-inverted structure.
  • the thickness of the substrate has been reduced to 0.5 mm or less to facilitate the formation of domain-inverted regions, and to enable the formation of finer inverted structures.
  • the phenomenon that the inversion region can be made uniform and finer by making the substrate thicker is due to the Mg-doped Li T a (1 _ x ) N b x 0 3 (0 ⁇ x ⁇ 1) substrate. This is particularly noticeable.
  • the reverse voltage of the Mg-doped substrate Li T a (1 _ x) Nb x 0 3 (0 ⁇ x ⁇ 1) is less than 1 Z4 of normal LN. In the case of ordinary LN, etc., when the substrate is thickened, dielectric breakdown occurs due to the reversal voltage. However, the lower reversal voltage allows the application of the polarization reversal voltage without dielectric breakdown.
  • the method of forming the domain-inverted structure in the case of using the Z-plate Mg LN is described as an example. Since the Z-plate substrate has the crystal C-axis perpendicular to the substrate, it can efficiently apply an electric field using the electro-optic effect. In addition, it has an advantage that the depth of the domain-inverted region is increased, and is an ideal substrate for a bulk-type optical element. However, a similar effect was observed on off-cut substrates close to the Z-plate.
  • the method of forming the domain-inverted structure of the present embodiment except MgLN of Kondaruento sets formed, Mg-doped L i T a (1 _ x ) Nb x ⁇ 3 (0 ⁇ x ⁇ 1) substrate, Mg of Sutoikio composition It is also applicable to the substrate L i T a (1 _ x ) Nb x ⁇ 3 (0 ⁇ x ⁇ 1).
  • the Mg doping amount and the polarization reversal characteristics of the congruent Mg LN were evaluated.
  • the thickness of the substrate was lmm.
  • the doping amount of Mg greatly affected the polarization inversion characteristics.
  • the change in electrical resistance due to domain inversion increases depending on the amount of Mg doping, and the formation of a short-period domain-inverted structure also depends on the amount of Mg doping.
  • Short-period structures with a period of 3 im or less were formed only when the Mg doping amount was in the range of 4 to 5.5 zm.
  • a large periodic structure with a period of 10 / zm or more could be formed even with a Mg doping amount of 2 to 7 mol 1%.
  • the mo 1 concentration is preferably 2 to 7 mo 1%. In order to realize a short period structure, 4 to 5.5 mol% is more preferable.
  • the composition of the substrate As for the composition of the substrate, a comparison was made between the condurant composition and the stoichiometric composition, but there was no significant difference in the relationship between the Mg doping amount and the polarization reversal characteristics.
  • Mg stoichiometric Mg LN, MgLT, and the mixture of Mg dope Li T a (1 _ x) Nb x 0 3 (0 ⁇ x ⁇ 1) Mg doping amount and polarization
  • Mg doping amount and polarization The relationship of the reversal characteristics was similar.
  • the depth of the domain-inverted region formed is great for the uniformity of the domain-inverted region. It was found to have a significant effect.
  • the domain-inverted region is formed to penetrate from the front surface to the back surface.
  • a domain-inverted region is formed with a similar configuration, non-uniformity will increase significantly when a domain-inverted structure having a short period, particularly a periodic structure of 4 m or less, is formed.
  • the formed polarization region has a rectification characteristic, and a current flows at an applied voltage equal to or lower than a voltage at which polarization inversion occurs.
  • the domain-inverted depth D can be controlled so as not to reach the substrate thickness T because the domain-inverted state is generated by pulse application.
  • the number of pulse applications can be controlled to control the polarization inversion depth D so as not to reach the substrate thickness T, thereby limiting the rate at which the domain inversion region penetrates to the back surface, and thereby controlling the domain inversion. Uniformity can be improved.
  • the average value of the domain-inverted depth D is 40 to 95% of the substrate thickness T. It is effective to control so that When the average value of the polarization reversal depth D exceeded 95%, the penetration rate of the domain reversal region exceeded 50%, and the non-uniformity of reversal increased significantly. On the other hand, if it is less than 40%, the portion where no domain-inverted region is formed increases, resulting in a non-uniform domain-inverted structure. When the average value of the polarization reversal depth D is suppressed to 50 to 80% of the substrate thickness T, the uniformity is further improved.
  • the domain-inverted nuclei are formed directly below and around the electrode on the crystal surface, and the domain-inverted portions grow around the domain-inverted nuclei.
  • the generation of this inversion nucleus can be reduced by performing ion exchange on the crystal surface and deteriorating the ferroelectricity of the crystal. For example, by performing proton exchange, a type of ion exchange, the lateral expansion of the domain-inverted region is suppressed, and a short-period domain-inverted structure can be formed.
  • the exchange depth is desirably 0.5 m or less.
  • At least one of the first electrode 3 and the second electrode 4 has a multilayer structure of a metal 16 and a dielectric 17 so that the uniformity of the polarization reversal can be improved. It is possible to increase the size and the domain-inverted region formed under the electrode. This is because, when a pulse voltage is applied between the electrodes, the transient characteristics of the pulse waveform change due to an increase in the capacitance of the electrodes. As a method of increasing the capacity, it is effective to form the electrode into a multilayer film of a metal and a dielectric. As the dielectric, the dielectric constant large S I_ ⁇ 2, T a 2 ⁇ 5, N b 2 0 5, the material of the other high dielectric constant is preferable.
  • the method for forming the domain-inverted structure in the second embodiment relates to an improvement for stabilizing domain-inverted structure.
  • the experiment used a Mg 5mo 1 -doped Z plate Li Nb ⁇ 3 substrate.
  • An electrode was formed on the z-plane of a 1 mm thick substrate, and a pulse voltage of about 10 kV was applied to form a domain-inverted region under the electrode.
  • a pulse voltage of about 10 kV was applied to form a domain-inverted region under the electrode.
  • the substrate on which the domain-inverted regions are formed is heat-treated at about 100 ° C. for 30 minutes, and then subjected to HF etching again to observe the domain-inverted portions. It was observed to have decreased by nearly half. Other observed phenomena are as follows.
  • the inversion region is reduced even by heat treatment at a low temperature of about 80 ° C.
  • the domain-inverted region is reduced, so that it is not possible to process a substrate with domain-inverted by heating.
  • the polarization reversal changes with time
  • the device characteristics change with time.
  • the method for forming the domain-inverted structure according to the present embodiment solves the above problem.
  • the feature of this method is that, for example, the same structures as those of the first embodiment are used as the structure of the substrate and the electrodes, and after the domain-inverted region is formed by applying a voltage, an annealing process is performed. Annie after domain-inverted region formation By appropriately setting the conditions of the annealing process, the decrease in the domain-inverted region can be suppressed.
  • FIG. 10A shows the temperature profile of the annealing process. After reaching the annealing temperature at a constant heating rate, annealing is performed for 1 hour at 100 ° C, and then cooled to room temperature at a constant cooling rate.
  • FIG. 10B shows the result of measuring the relationship between the rate of temperature rise in the annealing treatment and the rate of decrease in the inversion region. As can be seen from Fig. 10B, as the heating rate increases, the inversion region decreases more. When the heating rate exceeds 20 ° C / min, the inversion region attenuates by 50% or more.
  • the heating rate becomes 10 ° C / min or less
  • the attenuation rate becomes 10% or less
  • the heating rate becomes 5 ° C / min or less
  • the instability of the domain-inverted region was found to be caused by re-inversion of the domain inversion due to pyroelectric charge, and other methods for preventing this were examined.
  • pyroelectric charges appear on the front and back surfaces of the substrate, forming an electric field in the Z-axis direction. To prevent this, the front and back surfaces of the substrate may be electrically short-circuited. Therefore, a metal paste was applied to the front and back surfaces of the substrate on which the domain-inverted regions were formed, and the front and back surfaces were electrically short-circuited.
  • the annealing process was performed in this state.
  • the annealing temperatures were 400, 600 and 800 ° C.
  • the domain-inverted region decreased at 800 ° C, but at 600 ° C or lower, the stability of domain-inverted was confirmed for any high-speed heat treatment. It has been certified. As described above, by short-circuiting the front and back surfaces of the substrate to eliminate the electric field due to the pyroelectric charge, high-speed annealing can be performed.
  • Heat treatment at 400 ° C or higher reduced the scattering loss existing in the substrate to six widths, enabling the formation of a domain-inverted structure with high transparency. For this reason, for example, when applied to an optical wavelength conversion device utilizing the nonlinear optical effect, the conversion efficiency has been greatly increased. Also, when applied to a polarizing element, the propagation loss in the crystal is reduced to 1/2 or less, so that a polarizer with small loss can be realized.
  • the polarization inversion electric field of Mg LN is equal to or less than 5 k V ZMM, by conventional L i Nb0 3, L i T A_ ⁇ very small 1/4 or less, such as 3 is there. Since the polarization reversal voltage is low, the reversal part after polarization reversal is unstable, and re-reversal occurs due to a slight pyroelectric effect. The same heat treatment is required for stoichiometric crystals because the inversion voltage is low. In addition, the upper limit of the heat treatment temperature depends on the Curie temperature of the substrate.
  • the heat treatment temperature must be limited to 800 ° C or less. Above 800 ° C, the domain-inverted region became smaller. In the case of L i T a 0 3 for the Curie temperature of about 60 (TC, the upper limit of the heat treatment is not more than 500 ° C.
  • the heat treatment of the present embodiment is particularly effective for the domain-inverted structure formed by the method of Embodiment 1, but is applied to stabilize the domain-inverted structure formed by another method. Is also possible.
  • the method of forming the domain-inverted structure according to the third embodiment is characterized by a method of applying a voltage when an electrode structure as shown in FIGS. 11A and 11B is used.
  • a voltage is applied using the first electrode 3 and the second electrode 4 formed on the + Z surface of the MgLN substrate 1 having the main surface 2 perpendicular to the Z axis. That is, by applying a voltage to one of the electrodes and forming a domain-inverted region under the other electrode, a wide range of domain-inverted regions can be formed.
  • a case where a domain-inverted region is formed in a 1 mm thick Z-plate MgLN substrate will be described as an example.
  • the same elements as those in Embodiment 1 are denoted by the same reference numerals, and description thereof will not be repeated.
  • the plurality of electrode fingers 5 forming the comb-shaped first electrode 3 are arranged at a predetermined period with the symmetric axis of each elongated shape along the Y-axis direction of the crystal of the MgLN substrate 1.
  • the tip 5 a extends from the base of the electrode finger 5 in the Y-axis direction.
  • the second electrode 4 also has a comb-shaped electrode finger 15, and the tip 15a extends from the base in the Y-axis direction.
  • a domain-inverted region is formed between the electrodes. It has a predetermined voltage level, and can apply a pulse voltage or a DC voltage to the MgLN substrate 1 as necessary. To avoid discharge onset raw when a voltage is applied, a voltage is applied to place the Mg LN substrate 1 in an insulating liquid or in a vacuum (10- 6 To rr below).
  • a method for applying a voltage specific to this embodiment will be described. First, a pulse voltage is applied between the second electrode 4 and the counter electrode 6, and then a DC voltage is applied. Next, a pulse voltage is applied between the first electrode 3 and the counter electrode 6, and then a DC voltage is applied. As a result, domain-inverted nuclei are generated below the tips 5a and 15a of the first electrode 3 and the second electrode 4, and domain-inverted nuclei are formed. It is.
  • FIG. 12 is a cross-sectional view showing how a domain-inverted region is formed.
  • a domain-inverted region R2 is formed below the electrode of the second electrode 4 and below the electrode of the first electrode 3.
  • the domain-inverted regions formed below both electrodes further grow, and the domain-inverted region R1 is formed. This shows that it is effective to apply a voltage using the other electrode formed on the same plane to enlarge the domain-inverted region.
  • (a) a method of applying a voltage will be described.
  • the voltage application method simultaneous application to the first electrode 3 and the second electrode 4 and individual application to separately apply to each electrode were examined.
  • the simultaneous application the current flowing near the + Z plane increases, and a large current easily flows in the same plane of the first electrode 3 and the second electrode 4, so that the rate of occurrence of discharge is extremely high. . Therefore, the individual application is more preferable as the voltage application method. This will be described in detail below.
  • the electric field concentrated at the tip of each electrode decreases, and the growth of the domain-inverted region is hindered. For this reason, it is more effective to apply electric fields separately in the initial electric field application.
  • the electric field applied by the adjacent electrodes causes the polarization inversion to occur under the electrode to which no voltage is applied. This has the effect of greatly expanding the domain-inverted region formed in the substrate. Also, by applying the electric field alternately, the effect of lengthening the inversion region can be obtained as compared with the case where the electric field is applied with a single electrode.
  • a first electric field application step of applying a voltage between the first electrode 3 and the counter electrode 6 and a second electric field application of a voltage between the second electrode 4 and the counter electrode 6 An electric field is applied by the steps.
  • a pulse voltage of electric field intensity E l and a pulse width of ⁇ 10 msec is applied
  • a DC voltage of electric field intensity E 2 and a pulse width of ⁇ 1 sec is applied. Apply voltage and set E 1> E 2.
  • FIG. 4 is a diagram illustrating a relationship between L r.
  • the length Lr increases as the electrode spacing L decreases. Further, the length Lr starts to be saturated from the vicinity of the electrode interval L of 200 m.
  • the electrode spacing L was too short (L ⁇ 50 z m)
  • the rate of occurrence of discharge increased.
  • the shape of the second electrode 4 As the shape of the second electrode 4, a shape in which the tip 15a extends in the Y-axis direction from the base of the electrode finger 15 is effective. However, since the second electrode 4 is used as a dummy electrode for enlarging the domain-inverted region under the first electrode, if the domain-inverted region under the first electrode 3 is expanded by applying an electric field, other electrodes are used. It may be an electrode shape. In fact, even when a rectangular electrode was used as the second electrode 4, the inversion region of the first electrode 3 was enlarged by applying an electric field to the second electrode 4.
  • FIG. 14 is a diagram showing the relationship between the temperature of the insulating solution and the length Lr of the domain-inverted region.
  • the temperature of the insulating solution is preferably set to 150 or less for forming the short-period domain inversion. This condition is different from the method in the first embodiment. The same applies to the same.
  • a short-period domain-inverted structure with a period of 10 or less was obtained uniformly and with a wide area of inversion on a Z-plate MgLN substrate with a thickness of lmm.
  • good results were obtained when the substrate thickness of MgLN was 1 mm or more. That is, when the uniformity of the domain-inverted region and the extension Lr of the domain-inverted portion under the electrode were equal to or greater than the substrate thickness lmm, the results were good. This is because the use of a thick substrate can prevent the domain-inverted region from penetrating the substrate.
  • FIG. 15 shows the relationship between the substrate thickness T and the polarization inversion period at which domain inversion can be formed.
  • periodic polarization reversal of less than 7 m is very difficult.
  • fine polarization inversion can be achieved. This is because, as will be described later, when the domain-inverted region penetrates the substrate, the non-uniformity of the domain-inverted region increases and it becomes difficult to form a fine domain-inverted structure.
  • By increasing the thickness of the substrate it is possible to suppress the penetration of the domain-inverted region and to form a uniform domain-inverted region.
  • a method for forming a domain-inverted structure according to the fourth embodiment will be described with reference to FIGS.
  • the electrode structure in the present embodiment is substantially the same as that in the third embodiment. The difference is that sandwich the S I_ ⁇ 2 film as the insulating film 1 8 during one Z plane and the counter electrode 6 of MgLN substrate 1, also, by applying a pulse voltage of a low frequency between the electrodes, Formed on the + Z plane A wide range of domain-inverted regions is formed under the electrode.
  • M g LN has a unique rectification characteristic.
  • a part of the polarization is reversed and penetrates between the M g LN substrates 1, a current flows through that portion, and Polarization grows larger than other portions.
  • the desired voltage is not applied to the entire MgLN substrate 1 and the inversion region stops growing or the inversion becomes non-uniform.
  • a domain-inverted structure having a periodic structure of 4 zm or less is formed, non-uniformity is greatly increased.
  • the Z-plane and the counter electrode are used.
  • An S i 0 2 film is interposed between 6 as an insulating film 18.
  • the inversion region expanded when the pulse width was in the range of 1 msec to 50 msec.
  • the inversion region was remarkably enlarged.
  • the polarization reversal width W is about 0.5 ⁇ ( ⁇ is the polarization reversal period)
  • the duty ratio is close to 50%, and the efficiency is highest.
  • the inversion region was expanded using a 2 mm-thick MgLN substrate, the dependence of the inversion characteristics on the pulse width was also confirmed. That is, in the region where the pulse width is 10 ms to 2 sec, the inversion region with a period of 4 m was expanded.
  • the insulating film in addition to S I_ ⁇ 2 film, it is possible to use T i 0 2 film, Ta 2 ⁇ 5 film, Nb 2 0 5 film.
  • a pulse waveform to be applied when a semiconductor film is used based on the present embodiment was examined.
  • a pulse waveform with a pulse width of 10 to 100 sec was applied.However, even if the current value was set low, periodic polarization inversion was not obtained. It was observed. This is due to the long applied pulse width.
  • 1 A pulse waveform with a pulse width of ms ec was applied, but the inversion region did not expand even if the number of pulses and the current were increased.
  • the pulse width was optimized, it was found that the inversion region expanded when the pulse width was in the range of 10 ms ec to 1 sec. In particular, in the range of 20 ms ec to 50 ms ec, the inversion region was significantly enlarged.
  • the dependence of the inversion characteristics on the pulse width was also confirmed. That is, in the region where the pulse width is 10 ms to 2 seconds, the inversion region with a period of 4 m was expanded.
  • a ZnSe film, a GaP film, or the like can be used as the semiconductor film other than the Si film.
  • the optical element according to Embodiment 6 can be manufactured by using the method for forming a polarization reversal structure according to the above-described embodiment.
  • a wavelength conversion element which is an example of the optical element according to the present embodiment will be described with reference to FIG.
  • FIG. 18 is a perspective view of a wavelength conversion element.
  • Periodically domain-inverted regions 21 are formed on an Mg LN substrate 20 of a Z plate.
  • the fundamental wave having the wavelength ⁇ can be converted into a harmonic wave having a wavelength ⁇ 2 by performing wavelength conversion using a periodic polarization inversion structure.
  • the polarization inversion period can be, for example, 4 m, and the wavelength of 900 nm light can be converted to 450 nm wavelength light.
  • the thickness of the substrate 20 is, for example, 1 mm, and the depth of the domain-inverted region 21 is about 0.8 mm.
  • the domain-inverted region 21 extends along the Y axis of the substrate crystal.
  • the domain-inverted region 21 is also formed from the + Z plane to the ⁇ Z plane side of the substrate 20.
  • the depth of the domain-inverted regions 21 is formed such that most of the domain-inverted regions 21 are shallower than the thickness of the substrate 20. Although some of the domain-inverted regions 21 are formed through the substrate 20, The area of the region 21 is 50% or less of the entire domain-inverted region area.
  • a domain-inverted region 21 was formed over a length of 10 mm in the X-axis direction, and when 900 nm light was incident on the lens, the wavelength was converted at a conversion efficiency of 5% ZW. nm harmonics were obtained. It can be seen that a uniform domain-inverted region is formed, and highly efficient wavelength conversion is performed.
  • the thickness of the substrate 20 By setting the thickness of the substrate 20 to 1 mm or more, the beam waist of the fundamental wave and the harmonic wave can be increased. As a result, the power density of light can be reduced, and high output can be obtained.
  • the output can be increased by a factor of 4 compared to a case where a domain-inverted region is formed on a 0.5 mm thick substrate.
  • the domain-inverted regions 21 in the Y-axis direction it is possible to form a uniform and short-period domain-inverted structure. It is possible to form a polarization reversal structure with a period of 2 ⁇ m or less, thereby generating ultraviolet light with a wavelength of 400 nm or less. By forming the domain-inverted region 21 in the Y-axis direction, short-wavelength light can be generated. On the other hand, when the domain-inverted region 21 was formed in the X-axis direction, it was difficult to form a short-period domain-inverted structure, and only light having a wavelength of 500 nm or more was obtained. ⁇
  • a uniform domain-inverted structure can be formed by forming the domain-inverted region to be shallower than the substrate and keeping the area of the penetrating domain-inverted region to 50% or less.
  • the ratio of the domain-inverted regions penetrated was in the range of 1% to 50%, uniform domain-inverted regions were obtained.
  • the domain-inverted region was less than 1%, the instability of the domain-inverted structure was increased, and a phenomenon was observed in which the fabricated domain-inverted region changed over time.
  • the domain-inverted region exceeds 50%, it becomes difficult to form a short-period domain-inverted structure. Therefore, it was difficult to generate the second harmonic having a wavelength of 500 nm or less by the manufactured wavelength conversion element.
  • a uniform domain-inverted region can be obtained with a domain-inverted period of 3 or less, and a wavelength of 40 Ultraviolet light of 0 nm or less can be generated.
  • a polarizer can be formed by forming a domain-inverted structure in a prism shape or a grating shape, for example, in addition to the above-described light wavelength conversion element.
  • it can be applied to phase shifters, optical modulators, lenses, etc.
  • the change in the refractive index due to the electro-optic effect can be controlled, so that switches, polarizers, modulators, phase shifters, beam shaping, etc. can be configured as optical elements using this. .
  • the method of the present embodiment makes it possible to form a fine domain-inverted structure, so that the performance of these optical elements can be improved.
  • Figures 19A and 19B show optical deflectors using prism-shaped polarization reversal.
  • a ferroelectric substrate 22 On a ferroelectric substrate 22, a periodically prism-shaped domain-inverted region 23 is formed. Electrodes 24 and 25 are formed above and below the domain-inverted region 23.
  • Electrodes 24 and 25 By applying an electric field to the electrodes 24 and 25, a change in the refractive index is generated, and the direction of the beam 26 is controlled (for example, the angle can be changed. Therefore, when an electric field is applied as shown in the figure, the sign of the refractive index change is reversed between the domain-inverted region 23 and the non-inverted region, and it is possible to control the refraction direction of light at the prism portion.
  • the present embodiment can be similarly applied to the case of a substrate or the like.
  • the substrate made of a Nd-doped crystal is capable of laser oscillation, so generation of a fundamental wave by laser oscillation and generation of a second harmonic by wavelength conversion of the fundamental wave occur. Can be performed simultaneously. Therefore, a short wavelength light source having high efficiency and stable operation characteristics can be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

結晶のZ軸にほぼ垂直な主面を有する強誘電体基板(1)を用い、強誘電体基板の主面に、周期的に配列された複数の電極指(5)が形成されたパターンを有する第一電極(3)を設け、強誘電体基板の他の面に第一電極に対向する対向電極(6)を設け、第一電極と対向電極を介し強誘電体基板に電界を印加して、強誘電体基板に第一電極のパターンに対応した分極反転領域を形成する。第一電極の電極指の基部から先端(5a)に向かう方向が強誘電体基板の結晶のY軸方向に沿うように、各電極指を配置する。均一で短周期な分極反転構造の形成を可能とする。

Description

明 細 書 分極反転構造の形成方法および分極反転構造を有する光学素子 技術分野
本発明は、 電界印加を利用する分極反転構造の形成方法、 および分極 反転構造を有し、 光波長変換素子、 偏光素子、 光スィッチ、 位相変調器 等に応用可能な光学素子に関する。 背景技術
強誘電体の分極を強制的に反転させる分極反転現象を利用すると、 強 誘電体の内部に分極反転領域が周期的に配置された分極反転構造を形成 することができる。 このようにして形成された分極反転構造は、 表面弾 性波を利用した光周波数変調器や、 非線形分極の分極反転を利用した光 波長変換素子、 プリズム形状やレンズ形状の反転構造を利用した光偏光 器などに利用される。 特に、 非線形光学物質の非線形分極を周期的に反 転させれば、 非常に変換効率の高い光波長変換素子を作製することがで きる。 これを用いて半導体レーザなどの光を波長変換すれば、 印刷、 光 情報処理、 光応用計測制御分野などに応用できる小型の短波長光源が得 られる。
強誘電体は、 自発分極による電荷の偏りを結晶内に有している。 自発 分極の方向は、 自発分極に対抗する電界を印加することにより変えるこ とができる。 自発分極の方向は、 結晶 (材料) の種類により異なる。 L i T a 0 3、 L i N b〇3、 またはその混晶である L i T a ux ) N b x 0 3 ( 0≤x≤ 1 ) 基板の結晶は、 C軸方向のみに自発分極を有するた め、 これらの結晶では、 分極は C軸に沿った +方向あるいはその逆向き の一方向の 2通りしか存在しない。 電界を印加することで、 これらの結 晶の分極は 180度回転して、それまでとは逆向きになる。この現象を、 分極反転という。 分極反転を生じさせるために必要な電界を反転電界と 称し、 L i Nb〇3、 L i T a〇3等の結晶では、 室温で約 20 k V/m m、 MgO: L i Nb03で約 5 k V/mmの値をとる。
強誘電体において、 単一の分極方向を持った結晶にすることを 「分極 の単分域化」 と称する。 分極を単分域化するためには、 結晶成長後に高 温中で電界を印加する方法が一般に行われている。
周期的な分極反転領域を形成する従来の方法として、 例えば特開平 4 — 1 9 7 1 9号公報には、 L i Nb03 (ニオブ酸リチウム) 基板に櫛 形電極を形成し、 これにパルス状の電界を印加する方法が記載されてい る。 それによれば、 L i Nb〇3基板の +C面に櫛形電極を形成し、 一 C面に平面電極を形成する。 +C面を接地し、 一 C面の平面電極にパル ス幅が 1 00 sのパルス電圧を印加して、 基板に印加されるパルス電 界により分極反転を起こさせる。分極を反転させるために必要な電界は、 約 20 k VZmm以上である。 そのような値の電界を印加すると、 基板 が厚い場合、 電界印加によって基板の結晶が破壊される可能性がある。 しかし、 基板の厚みを 200 m程度にすることで、 電界印加による結 晶破壊を回避することが可能であり、 室温での分極反転領域の形成が可 能になる。 それにより、 基板を貫通する深い分極反転領域が得られる。 光波長変換素子を高効率化するには、 3〜4 mの範囲の短周期の分 極反転構造が必要である。電界印加によって分極反転領域を形成すると、 電極直下の分極が反転した後に、基板の横方向に分極反転領域が広がる。 このため、 分極反転構造の短周期化が困難になる。 この問題を克服する ために、 従来の方法では、 パルス幅を 1 00 s程度とし、 短時間のパ ルス電圧を電極に印加することによって、 短周期の分極反転構造の形成 を可能としている。
Mgド一プした L i Nb〇3基板 (以下 MgLNと記す) に短周期の 分極反転構造を形成する方法としては、 例えば特開平 6 _ 24247 8 号公報に、 Z板の MgLNに周期的分極反転構造を形成する方法が示さ れている。 それによれば、 Mg LNの + Z面に櫛形電極を形成し、 裏面 からコロナを照射することで、 周期が 4 /mで、 厚み 0.5 mmの基板を 貫通する分極反転構造が得られる。
また、 オフカットの MgLNに分極反転構造を形成する方法が、 特開 平 9一 21 843 1号公報に記載されている。 分極方向を基板表面から わずかに傾けたオフカットの MgLN基板に電極を形成し、 これに電圧 を印加することで針状の分極反転構造が形成される。 分極反転領域は結 晶の分極方向に成長し、 周期 5 zm程度の分極反転構造が形成される。 しかしながら、 Z板の Mgド一プ L i T a (1_x) Nbx03 (0≤x≤ 1) 基板に、 微細な分極反転構造を形成することは困難であった。 従来 の方法により、 オフカット基板に対する分極反転構造の形成は、 電界印 加により可能であった。 しかしながら、 Z板基板に対する均一な微細反 転構造の形成方法としては、 コロナポーリング等の複雑な方法しか知ら れていなかった。 コロナポーリングは、 荷電粒子を基板に堆積させて電 界を発生し、 これによつて分極を反転させる方法である。 ところが、 荷 電粒子による電界の大きさに限界があるため、 分極反転構造を形成でき る基板の厚みが 0.5 mm程度に限られており、 1 mmを越えるような厚 い基板への分極反転構造形成は困難であった。 一方、 電極によって電圧 を印加する方法は、 オフカツト基板への分極反転構造形成には有効であ るが、 その方法で Z板に分極反転構造を広く均一に形成することは困難 であった。
また、 特開平 200 1 - 666 52号公報において、 櫛形電極を Z板 の M g L Nに形成し、 これに電圧を印加することで周期的な分極反転構 造が形成できることが開示されている。 この方法は、 周期的な分極反転 構造を均一に形成できる特長をもっている。 しかしながら、 形成される 分極反転は、 電極先端の一部にかぎられており、 電極下の広い範囲で分 極反転構造を、 深く均一に形成するのが難しいという問題があった。 発明の開示
本発明の目的は、強誘電体基板に、短周期で幅の広い分極反転構造を、 深く均一に形成する方法を提供することである。
本発明の分極反転構造の形成方法においては、 結晶の Z軸にほぼ垂直 な主面を有する強誘電体基板を用い、 前記強誘電体基板の主面に、 周期 的に配列された複数の電極指が形成されたパターンを有する第一電極を 設け、 前記強誘電体基板の他の面に前記第一電極に対向する対向電極を 設け、 前記第一電極と前記対向電極を介し前記強誘電体基板に電界を印 加して、 前記強誘電体基板に前記第一電極のパターンに対応した分極反 転領域を形成する。 本発明の方法は、 前記第一電極の電極指の基部から 先端に向かう方向が前記強誘電体基板の結晶の Y軸方向に沿うように、 前記各電極指を配置することを特徴とする。
本発明の光学素子は、 結晶の Z軸にほぼ垂直な平面を有する強誘電体 基板と、 前記強誘電体基板に周期的に形成された複数の分極反転領域と を備え、 前記分極反転領域は、 各々軸対称な平面形状を有し、 その対称 軸が互いに平行になるように配置される。 本発明の光学素子の特徴は、 前記分極反転領域は、 前記対称軸の方向が前記強誘電体基板の結晶の Y '軸に沿うように形成され、 前記分極反転領域は、 + Z面から一 Z面に向 かって延びた形状を有し、 前記分極反転領域の全体の面積に対する、 前 記強誘電体基板の表面から裏面に貫通している前記分極反転領域の面積 の割合が 5 0 %以下であるか、 または前記分極反転領域の平均深さが、 前記強誘電体基板の厚みの 4 0〜9 5 %の範囲内であることである。 図面の簡単な説明
図 1 Aは、 本発明の実施の形態 1における分極反転構造の形成方法に 用いる電極構造を示す平面図、 図 1 Bは断面図、
図 2 Aは、 同分極反転構造の形成方法により形成される分極反転領域 の様子を示す平面図、 図 2 Bは側面図、
図 3 Aは、 微細な先端を有する電極の優位性について説明するための 斜視図、 図 3 Bは断面図、 図 3 Cは、 分極反転領域の拡大に伴い強誘電 体基板の特性が変化する様子を示すグラフ、
図 4 Aおよび 4 Bは各々、 分極反転領域を拡大するための方法を示す 平面図および断面図、
図 5 Aおよび 5 Bは各々、 同様に、 分極反転領域を拡大するための方 法を示す平面図および断面図、
図 6は、 同分極反転構造の形成方法により製造された分極反転領域の 長さ rと基板結晶方位の関係を表す特性要因図、
図 7 Aは、 他の電極構造を示す平面図、 図 7 Bは断面図、
図 8 Aは、 本発明の分極反転構造の形成方法を示す平面図、 図 8 Bは 断面図、
図 9 Aは、 本発明の分極反転構造の形成方法を示す平面図、 図 9 Bは 断面図、
図 1 O Aは、 分極反転領域の安定性を示す特性要因を説明するための ァニ一ル処理の温度カーブを示す図、 図 1 0 Bは、 昇温速度と分極反転 領域の減衰率の関係を示す図、
図 1 1 Aは、 実施の形態 3における分極反転構造の形成方法を示す平 面図、 図 1 1 Bは断面図、
図 1 2は、 同実施の形態における第一電極と第二電極における分極反 転領域形成の状態を示す断面図、
図 1 3は、 同実施の形態における第一電極と第二電極間距離 Lと分極 反転領域の長さ L rの関係を示す図、
図 1 4は、 同実施の形態における絶縁溶液の温度と分極反転領域の長 さ rの関係を示す図、
図 1 5は、 同実施の形態における基板厚みと分極反転周期の関係を示 す図、
図 1 6 Aは、 実施の形態 4における分極反転構造の形成方法を示す平 面図、 図 1 6 Bは断面図、
図 1 7は、 実施の形態 3、 4における印加電圧のパルス幅と分極反転 領域の長さ L rの関係を示す図
図 1 8は、 実施の形態 6における光学素子を示す斜視図、
図 1 9 Aは、 同光学素子の一例である光偏向器を示す平面図、 図 1 9 Bは断面図である。 発明を実施するための最良の形態
本発明の分極反転構造の形成方法によれば、 強誘電体基板に電界を印 加するための第一電極の電極指を、 その基部から先端に向かう方向が強 誘電体基板の結晶の Y軸方向に沿うように配置することにより、 微細な 分極反転領域の形成が可能になる。 この効果は、 Y軸方向の分極反転の 広がりが、 X軸に比べて数倍大きくかつ均一なことに基づくものである。 また、周期的に配列された複数の電極指の各先端に電圧が集中するため、 そのような電極により Z板の基板に分極反転を起こさせると、 分極反転 領域が効率良く形成される。 本発明の分極反転構造の形成方法において好ましくは、 前記分極反転 領域の全体の面積に対し、 前記強誘電体基板の表面から裏面に貫通して いる前記分極反転領域の面積の割合が 5 0 %以下に抑制されるように、 前記強誘電体基板に電界を印加する。 それにより、 微細な分極反転構造 を均一に形成することが可能となる。 結晶の Z軸が基板平面とほぼ垂直 な強誘電体基板において、 分極反転領域が部分的に形成され、 その部分 が基板を貫通して電極間を短絡すると、 分極反転領域の広がりが貫通し た反転領域に集中して、 均一な分極反転の形成を妨げる。 従って、 この 様な貫通する分極反転領域の面積を抑制することが、 分極反転構造の均 一性を確保するのに効果的である。
この構成において、 前記強誘電体基板の厚み丁が 1 mm以上であるこ とが好ましい。
また、 前記分極反転領域の深さ Dの平均値が、 前記強誘電体基板の厚 みの 4 0 %〜9 5 %になるように前記強誘電体基板に電界を印加するこ とにより、 上記と同様な効果を得ることができる。
上記の方法は、 前記強誘電体基板が M gドープの L i T a ( 1 _ x ) N b x3 ( 0≤x≤ 1 ) である場合に特に適している。
前記第一電極が櫛形電極であり、 前記電極指がストライプ状である構 成とすることができる。 あるいは、 前記第一電極の電極指が三角形であ り、 電極指の先端が三角形の頂点により形成されている構成とすること ができる。 あるいは、 前記電極指がその基部から先端に向かう方向の軸 に対して対称な形状を有し、 その対称軸が前記強誘電体基板の結晶の Y 軸方向に沿うように、 前記電極指を配置してもよい。
好ましくは、 前記電極指の先端の幅を、 5 m以下とする。
また好ましくは、 前記強誘電体基板に電界を印加する工程が、 電界強 度 E 1のパルス電圧を印加する工程と、 電界強度 E 2の直流電圧を印加 する工程とを含み、 E 1 > E 2を満足するように行われる。それにより、 設計した電極の下に、 電極に沿ってなるべく広い範囲で均一な反転領域 が形成されるように、 印加電圧のパルス波形を制御することができる。 先端を有する電極を用いて Z板の基板に分極反転を起こさせると、 電極 先端に電圧が集中し、 この部分の分極反転領域が効率良く形成される。 この分極反転領域を電極全体に広がり易くするために、印加電界として、 パルス電圧と、 直流電圧を併用することが効果的である。 すなわち、 パ ルス電圧により分極反転核を形成し、 直流電圧により分極反転核を中心 に分極反転領域を拡大することが可能である。
好ましくは、 前記電界 E 1を 6 k V /mmより大とし、 前記電界 E 2 を 5 k V/mmより小とする。 また、 前記パルス電圧が 2つ以上の複数 のパルス列からなることが好ましい。
また、 本発明の分極反転構造の形成方法において好ましくは、 前記分 極反転領域を形成した後、 前記強誘電体基板を 2 0 O t:以上で熱処理を 施し、前記熱処理中に、前記強誘電体基板の焦電電荷の発生を抑制する。 それにより、 電界印加により形成した分極反転領域の安定性が向上し、 かつ分極反転による散乱が低減される。
好ましくは、 前記熱処理中に、 前記強誘電体基板の表面と裏面を電気 的に短絡させる。 また、 前記熱処理における昇温速度が 1 o °cz分以下 であることが好ましい。
本発明の分極反転構造の形成方法は、 前記強誘電体基板の分極反転電 界が 5 k V/mm以下である場合に適している。 また、 前記強誘電体基 板の結晶をほぼストイキオメトリック組成とすることができる。
また、 本発明の分極反転構造の形成方法において好ましくは、 前記主 面に、 前記第一電極の複数の電極指の先端と間隔をもって対向するよう に第二電極を設ける。 第二電極は、 第一電極の先端に電界が集中するの を補助する役目を果たす。 第一電極の先端に電界が集中することで反転 核が形成され、 分極反転の成長が速やかに開始される。
好ましくは、 前記電極指の先端と前記第二電極間の最短距離 Lと、 前 記強誘電体基板の厚み Tの関係が、 L < TZ 2を満足するように設定す る。 それにより、 第二電極の効果を十分に得ることができる。 電極間距 離 Lと基板厚み Tの関係は、 電極指の先端の電界分布に影響を与え、 電 極間距離 Lがこれ以上になると第二電極の影響が小さくなり過ぎる。 好ましくは、 前記第一電極と前記対向電極の間に電圧を印加すること により、 前記第一および第二電極下に分極反転領域を形成する。 同一平 面内における電極を別々に印加することで、 それぞれの隣の電極下に分 極反転領域が形成される。 そのため、 広範囲の分極反転領域の形成には 非常に有効である。
また好ましくは、 前記第一電極と前記対向電極の間に電圧を印加する 第一の電界印加工程と、 前記第二電極と前記対向電極の間に電圧を印加 する第二の電界印加工程とを有する。 また、 前記第一の電界印加工程と 前記第二の電界印加工程により、 第一および第二電極下に分極反転領域 を形成することが好ましい。 また好ましくは、 前記第一の電界印加工程 と、 前記第二の電界印加工程を、 それぞれ別々に行う。
前記第二電極は、 先端が前記第一電極の電極指の先端と対向する複数 の電極指を有し、 前記第二電極の電極指は、 その基部から先端に向かう 方向が前記強誘電体基板の結晶の Y軸方向に沿うように配置されてもよ い。
前記第一電極と前記第二電極の距離 Lを、 5 0 m≤L≤ 2 0 0 とすることが好ましい。
また好ましくは、 前記強誘電体基板の自発分極を P s、 所望の分極反 転領域面積を Aで表したとき、 前記第一の電界印加工程、 または第二の 電界印加工程のいずれか一方により、 2 P s Aの 1 00倍以上の電荷量 を印加する。 また好ましくは、 前記第一の電界印加工程では、 電界強度 E l、 パルス幅 τ≤ 10ms e cのパルス電圧を印加し、 前記第二の電 界印加工程では、 電界強度 E 2、 パルス幅て≥1 s e cの直流電圧を印 加し、 E 1 >E 2である。
また好ましくは、前記強誘電体基板に電界を印加する工程を、 10 o°c 以上の絶縁溶液中で行う。 また好ましくは、 前記主面と、 前記 Z軸で形 成される角度 0は、 80° ≤ 0≤ 1 00° 範囲内にある。 また好ましく は、 前記強誘電体基板の厚み Tが lmm以上であり、 周期 Λが 2 z/m以 下の分極反転領域を作製する。 また好ましくは、 前記分極反転領域の深 さ Dが、 基板厚み Tに対し、 D<Tの関係を満たすように作製する。 また好ましくは、 前記強誘電体基板の厚み Tを T≥ lmmとし、 前記 対向電極と前記強誘電体基板の間に絶縁皞を形成し、 前記第一電極と前 記対向電極の間にパルス幅が 1ms e c〜 50ms e cのパルス電圧を 印加する。 前記絶縁膜は、 S i 02膜、 T i 02膜、 または T a 205膜と することができる。 あるいは、 前記強誘電体基板の厚み Tを T≥ 1 mm とし、 前記対向電極と前記強誘電体基板の間に半導体膜を形成し、 前記 第一電極と前記対向電極の間にパルス幅が 1 m s e c〜 50ms e cの パルス電圧を印加してもよい。 前記半導体膜は、 S i膜、 Z n S e膜、 または G a P膜とすることができる。
本発明の光学素子によれば、 分極反転領域の全体の面積に対する、 強 誘電体基板の表面から裏面に貫通している分極反転領域の面積の割合が、 50 %以下であるか、 または分極反転領域の平均深さが、 強誘電体基板 の厚みの 40〜95 %の範囲内であることにより、 微細な分極反転構造 を均一に形成することが可能となる。 結晶の Z軸が基板平面とほぼ垂直 な強誘電体基板において、 分極反転領域が基板を貫通して電極間を短絡 すると、 分極反転領域の広がりが貫通した反転領域に集中して、 均一な 分極反転の形成を妨げる。 従って、 この様な貫通する分極反転領域の面 積を抑制することが、 分極反転構造の均一性を確保するのに効果的であ る。
好ましくは、前記強誘電体基板が Mgドープ L i T a (1_x) Nbx03 ( 0≤ x≤ l ) である。 また好ましくは、 前記分極反転領域の周期が 4 m以下である。 また好ましくは、 前記強誘電体基板の厚みが lmm以 上である。 また好ましくは、 前記強誘電体基板の基板厚み Tが lmmで あり、前記分極反転領域の周期 Λが 2 H m以下である。また好ましくは、 前記分極反転領域の深さ Dが、 基板厚み Tに対し、 D<Tの関係を満た す。 また好ましくは、 前記主面と、 前記 Z軸で形成される角度 0が、 8 0 ° ≤ 0≤ 1 00 ° の範囲内にある。
以下、 本発明の実施の形態について、 図面を参照して具体的に説明す る。
(実施の形態 1)
図 1 Aは、 本発明の実施の形態 1における分極反転構造の形成方法を 実施するための電極構造を示す平面図、 図 1 Bは断面図である。
Mg LN基板 1の主面 2に、 櫛形のパターンを有する第一電極 3が形 成されている。 第一電極 3を構成する複数の電極指 5は、 細長いストラ イブ状を有し、 周期的に配列されている。 それにより、 電極指 5の微細 な先端 5 aが周期的に配列されている。 第一電極 3の先端 5 aから所定 の間隔を設けて主面 2に、 第二電極 4が形成されている。 第一電極 3と 第二電極 4は、 電気的に絶縁されている。 Mg LN基板 1の裏面には、 第一電極 3と第二電極 4に対向するように対向電極 6が設けられている c 対向電極 6は、 第一電極 3と第二電極 4に対応する領域を含むように、 例えば矩形の平面形状を有し、 特別なパターンを有する必要はない。 第一電極 3を形成する複数の電極指 5は各々、ストライプの対称軸を、 MgLN基板 1の結晶の Y軸方向に沿わせて配置されている。 言い換え れば、 先端 5 aが、 電極指 5の基部から Y軸方向方向に向かって延びて いる。
第一電極 3と対向電極 6の間に、 パルスジェネレータ 7により、 制御 された電圧を MgLN基板 1に印加することにより、 電極間の強誘電体 に分極反転領域が形成される。 制御された電圧とは、 具体的には後述す るが、 所定の電圧レベルあるいは持続時間を有する、 パルス電圧または 直流電圧である。
電圧印加時の放電の発生を避けるために、 基板 1を絶縁液または真空 中 (1 0_6To r r以下) に配置して、 直流電圧を印加する。 分極反転 が生じると、 第一電極 3と第二電極 4との間に、 強誘電体の自発分極の 大きさと電極面積とに比例した電流(「反転電流」 と称する)が流れる。 従来の電極構成で、 パルスのみ、 直流電圧のみ、 また直流電圧にパル スを重畳した電圧を印加しても、 Z板の MgLNに再現性よく分極反転 領域を形成することは困難であった。 これに対して、 本実施の形態によ れば、 以下に述べる条件を適用することにより、 短周期で均一な分極反 転構造を形成できる。
ここで、 分極反転の周期構造の均一性とは、 周期またはデューティ比 の安定性を意味する。 均一性は、 分極反転構造を波長変換に用いた場合 に、 変換効率に影響する。 例えば、 周期的な分極反転構造を 1 0mm程 度の長さに渡り形成した場合、 部分的に周期構造が乱れた部分が形成さ れる。不均一の主たる原因は、部分的に分極反転領域の横方向が拡大し、 デューティ比が大きく乱れた部分が局所的に形成されることである。 こ の様な不均一部分が、 従来の方法では反転構造の 10mm当たり数十力 所形成されており、 周期 3 im以下の場合では殆ど前面に亘り、 不均一 な部分で占められていた。 このため、 変換効率は理論値の数%〜5 0 % 程度しか得られなかった。 これに対して、 本実施の形態において均一性 がよいとは、 例えば不均一部分が 1 0 mm長に渡り数個以下であること を意味する。 また、 それにより、 波長変換に用いた場合の変換効率が理 論値の 9 0 %以上という、 理論値に近い非常に高い効率が得られること を意味する。
本実施の形態における条件とは、 主として、
( a ) 電極形状
( b ) 電極の方向と結晶軸の関係
( c ) 印加パルス波形
に関するものである。 これらが特定の条件を充足した場合に、 微細な分 極反転構造が均一に形成される。
最初に、 (a ) 電極形状について述べる。 図 2 A、 2 Bを参照して、 微細な先端を有する第一電極 3により電圧を印加したときの、 強誘電体 に形成される分極反転領域の形状について説明する。電圧を印加すると、 第一電極 3の先端部分に分極反転領域 8が形成される。 その際には、 電 極の微細な先端 5 aに電界が集中するため、 まずこの部分に分極反転核 が形成され、 分極反転領域が広がる。
理想的な分極反転構造とは、 分極反転領域の幅 Wが狭く、 反転領域の 長さ L rが長いものである。 幅 Wが小さいほど、 分極反転領域を微細に 制御することが容易になる。 例えば幅 Wが小さければ、 短周期の分極反 転構造の形成が可能になる。 また、 長さ L rが長いほど、 広い分極反転 領域の形成が可能になる。
先端が微細ではなく幅広なパターン電極では、 分極反転領域は均一に 形成できない。 電極下に電界が一様に形成されるため、 分極反転核が至 るところに発生し、 この核を中心に分極反転領域が広がってしまうため である。 本実施の形態の電極構造によれば、 分極反転核の形成領域を電 極の先端に特定して形成できるため、 分極反転領域形成の制御性が向上 し、 均一な分極反転構造の形成が可能となる。 この方法は、 Mgドープ L i Nb03、 Mgド一プ L i T a03または、 その混合物である Mgド ープ L i Ta (1_x) Nbx03 (0≤x≤ 1) 基板に特に有効である。 特に、 Mgド一プ L i T a ( Nbx03 (0≤x≤ 1) 結晶は、 形 成された分極反転領域が整流特性を有することが知られている。 そのた め、分極反転領域が形成されるとその部分に電流が流れる。したがって、 分極反転領域が一度形成されてしまうと、 反転部分を中心に分極反転領 域が広がっていく。 一方、 分極反転が形成されない部分では、 分極反転 領域の整流作用により印加電圧が低下するので、 逆に反転が形成され難 くなる。 このため、 分極反転領域の不均一性が増大して、 均一な分極反 転構造の形成が困難になる。 この傾向は特に、 微細な形状において顕著 である。
これに対して、 微細な先端を有する電極の優位性について説明する。 図 3Aに示すように、 Mg LN基板 1 0の + Z面に櫛形電極 1 1を、 ― Z面に平面電極 1 2を形成し、 電極間に電圧を印加すると、 電界 1 3が 櫛形電極 1 1の先端部に集中するため、 先端部の電界強度が他の部分よ り大きくなる。 そのため分極反転核が発生し、 それをトリガーとして、 反転核を中心に分極反転領域 14が広がる。 ところが、 先端が平坦な電 極構造では、 分極反転核は結晶の不均一性やマイクロドメィンの存在に よりランダムな位置に発生するため、 制御が難しい。 一方、 本実施の形 態のように、 微細な先端部を有する電極構造を用いることで、 電極先端 部に電界を集中させることができる。 この部分の電界強度が局所的に強 くなることで、 分極反転核の発生位置を制御することが可能となる。 図 3 Bに示すように、 櫛形電極 1 1先端部に分極反転核を発生させると、 この核を中心に分極反転領域は電極に沿って成長し、 分極反転領域の長 さ L rが増大する。 このようにして、 微細な先端を有する電極を用いる ことで、 分極反転核の発生領域を制御し、 均一な分極反転構造の形成が 可能になる。
微細な先端を持たない電極形状、 例えば梯子状の電極や平面電極の場 合、 先端部への電界収集が起きないため、 分極反転核が電極下のランダ ムな場所に発生する。 したがって、 分極反転の制御が不能であり、 必要 な均一形状の形成が困難である。 したがって、 電極指の先端が微細であ るとは、 電極により印加される電界を十分に集中させることができる程 度に、 先端における幅が小さい状態を意味する。 電界を十分に集中させ るとは、 分極反転構造を均一に形成するために必要な程度を意味する。 通常、 先端の幅は、 5 x m以下が望ましく、 2 m以下であれば、 形成 される分極反転構造の均一性が向上するため、 より好ましかった。 先端 が 1 m以下になると、 微細な分極反転構造の形成が可能となるためさ らに好ましい。
M g L Nにおいては、 前述したように、 分極反転領域の電気抵抗が大 きく低下する。 このため、 分極反転領域の拡大と共に抵抗が低下する。 したがって、 印加パルスの電流量を一定にしておくと、 分極反転領域の 拡大とともに、 図 3 Cに示すように、 印加電圧が低下してくる。 印加電 圧が低下して、 分極反転電圧 V c以下になると、 自動的に分極反転領域 の成長が低下する。
分極反転領域の更なる拡大を実現するには、 上記の分極反転領域の電 気特性の変化を考慮する必要がある。 図 4 A、 4 B、 図 5 A、 5 Bを参 照して、 さらに分極反転領域を拡大するための分極反転方法について述 ベる。 前述したように、 分極反転領域 1 4はそれが拡大するのに従って 停止する。 これを避けるため電流値を大きく設定すると、 初期の抵抗が 高い状態において、 分極反転領域に大電流が流れ、 温度上昇による絶縁 破壊や、 分極反転領域の急激な横方向拡大が生じる。 これを防止するた めには、 次のようにする。 まず、 比較的低電流、 例えば、 0 . 1 mA程 度に最大電流量を流して、 図 4 A、 4 Bに示すように分極反転領域を形 成する。 その後、 分極反転の成長が停止したら、 さらに電流の最大値を 上げて、 図 5 A、 5 Bに示すように、 分極反転領域の成長を促進する。 これを繰り返すことで、 長さ L rの拡大を図ることが可能となる。 分極反転領域の長さ L rを長くする方法として、 第二電極 4を設ける ことが有効である。 第二電極 4は第一電極 3の先端から距離 Lだけ離間 した位置に形成されている。 第二電極 4は、 第一電極 3の先端 5 aに電 界が集中するのを補助する役目を果たす。 前述したように分極反転領域 の形成に際しては、 第一電極 3の先端に電界が集中することで反転核が 形成され、 分極反転の成長が開始される。 第一電極 3の先端における電 界分布は、 対向電極 6と第二電極 4により影響を受ける。 第一電極 3と 第二電極 4の電極間距離 Lと基板厚み Tは、 電極指 5の先端 5 aの電界 分布に影響を与えるため、 形成される分極反転領域の長さ L rに大きく 影響を与える。
実験の結果によれば、 電極間距離 Lが基板厚み Tより短い場合に、 均 一な分極反転が形成され易い。 これ以上離れると第二電極 4の影響が小 さくなり過ぎて、 第二電極 4による長さ L rの増大効果が得られない。 また電極間距離 Lをあまり短くすると第一および第二の電極 1 0 3、 1 0 4間で放電が起こるため、 電極間距離 Lの大きさは 5 m以上が望ま しい。 さらに L < T Z 2の場合には、 分極反転領域の長さ L rを長くす るためにさらに好ましい。
次に、 (b ) 電極と結晶軸の関係について述べる。 電極指 5の方向と 分極反転領域の長さ L rの関係を調べた。 M g L Nは 1軸性の結晶であ り、 z軸に垂直な面では結晶は対称構造と思われていた。 特に分極反転 の特性に関しては、 X、 Y軸方向には依存性がないと思われていた。 し かしながら、 Z板の基板における分極反転特性は、 結晶の X、 Y軸に大 きく依存することが明らかになった。 図 6は、 形成される分極反転領域 の長さ L rの、結晶軸依存性を示したものである。電極指 5の方向を X、 Y軸の方向に回転させて、 各方向の場合に形成される分極反転の長さ L rを、 原点からの距離で示したものである。 Y軸方向に電極指 5の先端 を向け、 電極指 5の軸方向を Y軸方向に揃えると、 分極反転領域の長さ L rは非常に長くなる。 これに対して、 X軸方向に電極指 5を沿わせる と、 長さ L rは半分以下に低下した。
また、 電極指 5を X軸方向に形成した場合は、 Y軸方向に形成した場 合に比べて、 分極反転の大きさの不均一性が大きくなる。 Y軸方向に形 成した場合は、 形成される分極反転領域の大きさのバラツキは数%以下 であり、 実用的に均一な分極反転構造が得られる。 電極指 5の方向とし ては、 Y軸に対して ± 1 0 ° 以下の傾きであれば、 長さ L rが比較的長 く、 実用的に満足できる程度に均一な分極反転構造が得られる。 ± 5 ° 以下であれば、 均一性はより良好である。 Y軸に対して ± 1 0 ° を超え ると、 長さ L rは大幅に低下してしまい、 同時に不均一性が増大するこ とが分かった。
以上のとおり、 微細な先端を有する電極指を、 その軸方向を結晶の Y 軸方向に揃えて形成することが、 均一な分極反転構造を形成するための 重要な条件である。 分極反転領域形成の過程としては、 電極指の先端に 電界が集中して、 この部分の表面電界が他の部分より高くなり、 まず分 極反転核が形成される。 その後、 核を中心に電極指下に分極反転領域が 広がって分極反転が形成される。 この際に、 電極指の軸方向が Y軸方向 に向いていることにより、 分極反転の広がりが結晶の Y軸方向に広がり やすい特性が活かされ、 均一な分極反転が形成される。 微細な先端を有 さない場合、 分極反転核が不規則に形成されるため、 分極反転領域が不 規則に広がり、 微細な分極反転形状、 特に 1 0 m以下の反転構造を均 一に形成することが難しい。 また、 先端を X軸方向に向けて形成した場 合は、 十分な長さ L rを確保して、 微細な構造を均一に形成するのは難 しい。
第一電極の周期的形状のパターンとして、 櫛形電極のストライプ形状 以外に、 図 7 A、 7 Bに示すような三角形状を用いることができる。 こ の第一電極 3 aにより、 三角形の分極反転領域 9を周期的に形成するこ とができる。 三角形の周期的分極反転領域はプリズム、 偏向器等への応 用が可能である。 三角形の場合も、 対称軸を基板結晶の Y軸方向に沿わ せることで、 分極反転領域を大きくすることが可能となる。 その場合、 三角形の頂点が先端となり、 その頂点を中心に分極反転が発生し、 成長 する。
次に、 (c ) 電界印加波形が分極反転に与える影響について述べる。 電極間に直流電圧を印加すると、 形成しょうとする分極反転領域が数 mの微細なものである場合、 形成された分極反転領域は非常に不均一で あった。 つまり、 電極の所々に分極反転核が形成され、 かつ各々の分極 反転核から分極が大きく広がってしまい、 近接する電極指により形成さ れた分極反転領域と接触してしまった。 このため、 分極反転領域を微細 に制御することはできなかった。 次に、 パルス幅が 0 . l m s〜 1 0 0 m sで、印加電圧が約 8 k VZmmのパルス状の電圧を印加したところ、 微細な分極反転構造を均一に形成できた。 印加電界は、 パルス幅て≤1 0 m s e cのパルス電界が好ましかった。 さらに、 複数のパルス列を印 加することで、 均一な分極反転構造の形成が可能となる。 印加電圧が 6 k VZmm以下では、 分極反転領域が形成されなかった。 パルス列を印加することで分極反転構造の形成は可能になったが、 形 成される分極反転領域は電極指の先端近傍に限られ、 電極指に沿って延 びた長さ L rの大きい分極反転領域を形成するには至らなかった。 パル ス波形、 パルス回数を変えても、 同様の結果であった。 最適なパルス回 数は、 オシロスコープに示される電圧波形を観測しながら、 決定するこ とができる。 まず、 電圧印加開始時の電圧振幅をモニターし、 パルス印 加を追加していく dパルス回数の増加に伴い、電圧振幅が減少していき、 ある回数に到達すると電圧振幅の低下が止まる。 電圧振幅の飽和と最低 印加パルス数とは相関があり、 電圧振幅の低下量をモニターすることで 印加パルス数を決定することが出来る。 それ以上のパルス回数を与えて も反転領域は拡大しなかった。最低印加パルス数は、設定電流に依存し、 電流値が大きいほど、 その回数は減少する。 すなわち、 同一周期の分極 反転構造を形成する場合、 電流値が高いほど、 少ないパルス回数で分極 反転の成長が止まり、 それ以上のパルス印加をおこなっても分極反転領 域は拡大しない。
そこで、 パルス電圧の印加に直流電圧の印加を加えてみた。 印加時間 は 1〜 1 0 0 s e c程度である。 直流印加のみでは均一な分極反転構造 の形成は難しかったが、 パルス列印加に続けて直流電圧を印加すると、 分極反転領域が電極に沿って拡大し、 長さ rがパルス印加のみの場合 に比べて数倍に増大した。 即ち、 パルス列を印加した後、 直流印加の電 圧を加えることで、 均一で広い領域に渡る微細な分極反転構造の形成が 可能となった。 印加電界パルスは、 例えば、 パルス幅 0 . 5 m s、 パル ス回数は 2 0 0〜5 0 0 0回程度、 印加電圧は、 基板厚さが 2 mmのと きに 5〜6 k Vとすれば、 良好な結果が得られた。 電流の最大値は 0 . 2〜 1 mA程度とする。 直流電圧の大きさは、 パルス電圧に比べてかな り小さく、 0 . 2〜4 k V/mm以下とした場合に良好な結果が得られ た。 非常に低い電圧で分極反転が形成されるのは、 パルス列印加で分極 反転核が形成されており、 直流電圧の印加は、 分極反転核を中心に分極 反転領域を拡大させる作用に寄与するためと考えられる。 パルス印加後 に 5 k V以上の直流電圧を印加すると、 分極反転領域が広がり過ぎて、 微細な反転領域を形成するのが難しくなつた。
次に、 実用上、 電圧を印加する際の電流、 電圧の最大値を制限する必 要性について説明する。 M g L N等を分極反転させる際、 前述したよう に基板の電気抵抗が大幅に低下するため、 分極反転した部分に大きな電 流が流れる。 通常の強誘電体では、 流れる電荷量は分極反転領域の面積 に規制されるわずかな量であるが、 M g L Nにおいては、 連続的な電流 が流れるため、印加する電圧回路に特別な配慮が必要となる。すなわち、 電界を印加する回路に流れる最大電流を制御する機能が必要となる。 M g L Nの場合、 電流値を制御しないと、 大電流が流れることで結晶破壊 を生じる。 これを防ぐには、 電流の値が設定した最大値を超えないよう に、 自動的に印加電圧を下げるように制御する機構が必要である。 実際 の M g L Nの場合、電極の面積にも依存するが、最大の電流量としては、 1 0 mA以下が望ましい。 周期 3 m以下の短周期構造の場合は、 5 m A以下に制御する必要がある。
また、 連続パルスを印加する際に、 それぞれのパルスの最大電流量が 異なるパルス電圧を印加することは有効である。 パルス電界を複数印加 して分極反転を形成する際、 初期は分極反転部の抵抗が高いため、 少な い電流量で高電圧を印加できる。 また初期に電流量を大きくすると分極 反転部が不均一になるため、 分極反転が形成される初期には 1 mA以下 の低電流に最大電流を設定する必要がある。 ところが、 分極反転領域が 拡大すると共に、 分極反転部の抵抗が大幅に低下するため、 電流量の最 大値を限定していると、 分極反転に必要な電圧に達しなくなる。 このた め、 分極反転領域の拡大とともに、 印加電流の最大値を増大させること が有効である。
本実施の形態の分極反転構造の形成方法において、 MgLNの基板厚 みは lmm以上のものが、 好ましかった。 基板厚み lmm以上の場合、 分極反転構造の均一性、 および分極反転領域の電極下の長さ L rについ て、 良好な結果が得られた。 この理由は、 厚い基板を用いることで、 分 極反転領域が基板を貫通するのを防止できるからである。 後述するよう に、 分極反転領域が基板を貫通すると、 分極反転領域の不均一性が増大 して微細な分極反転構造の形成が難しくなる。 基板の厚みを厚くするこ とで、 分極反転領域の貫通を抑制して、 均一な分極反転構造の形成が可 能になった。 従来は、 基板厚みを 0. 5 mm以下に薄くすることで分極 反転領域の形成を容易にし、 さらに微細な反転構造の形成を可能にして きた。 基板を厚くすることで反転領域の均一化および微細化が可能にな る現象は、 Mgド一プ L i T a (1_x) N b x03 (0≤x≤ 1) 基板にお いて特に顕著である。 また Mgド一プ L i T a (1_x) Nbx03 (0≤x ≤ 1) 基板は反転電圧が、 通常の LNの 1 Z4以下である。 通常の LN 等では基板を厚くした場合に反転電圧による絶縁破壊が生じるが、 反転 電圧が低い分絶縁破壊を起こすことなく分極反転電圧の印加が可能とな る。
以上の本実施の形態の説明は、 Z板の Mg LNを用いた場合における 分極反転構造の形成方法を例とした。 Z板基板は結晶の C軸が基板に垂 直な方向にあるため、 電気光学効果を利用する電界印加を効率良く行え る。また分極反転領域の深さが深くなる等の有利な点を持っているため、 バルク型の光学素子としては理想的な基板である。 しかしながら、 同様 な効果は、 Z板に近いオフカット基板でも観測された。 オフカット角と して、 基板平面の垂線と結晶の C軸のなす角度が 0 ° 以上の場合につい て検討したところ、 オフカット角度が ± 1 0 ° 以下の場合、 Z板と同様 に均一な分極反転構造が形成できることを確認できた。 オフカツト角度 が ± 1 0 ° を超えると、 同様の方法では均一で微細な分極反転構造の形 成は困難であった。
なお、 本実施の形態の分極反転構造の形成方法は、 コンダルェント組 成の MgLN以外、 Mgドープ L i T a (1_x) Nbx3 (0≤x≤ 1) 基板、 ストイキォ組成の Mgド一プ L i T a (1_x) Nbx3 ( 0≤ x≤ 1) 基板に対しても適用可能である。
コングルェント組成の Mg LNについて、 Mgのドープ量と分極反転 特性を評価した。 基板の厚みは lmmとした。 Mgのドープ量は分極反 転特性に大きく影響した。 分極反転に伴う電気抵抗の変化は、 Mgのド ープ量に依存して増大し、 短周期の分極反転構造の形成も Mgのドープ 量に依存する。 周期 3 im以下の短周期構造は、 Mgのドープ量が 4〜 5. 5 zmの範囲でしか形成されなかった。 周期 1 0 /zm以上の大きな 周期構造は、 Mgのドープ量 2〜7mo 1 %の材料でも形成可能であつ た。 またド一プ量が 7mo 1 %を越えると結晶性が悪くなるため分極反 転は形成され難くなる。 また 2mo 1 %未満では、 分極反転の横方向の 拡大が大きくなり、 周期構造を形成し難くなる。 従って、 周期構造を形 成するには mo 1濃度 2〜 7 mo 1 %が好ましい。 短周期構造を実現す るには 4〜 5. 5mo 1 %がより好ましい。
なお、 基板の組成に関しては、 コンダルェント組成とストィキオメト リック組成を比較したが、 M gのドープ量と分極反転特性の関係には大 きな差はなかった。 ストィキオメトリック組成の Mg LN、 MgLTお よびその混合物である Mgド一プの L i T a (1_x) Nbx03 (0≤x≤ 1 )においても、 M gのドープ量と分極反転特性の関係は同様であった。 また、 形成される分極反転領域の深さは、 分極反転領域の均一性に大 きく影響を与えることが判明した。 従来の Z板の M g L N基板における 分極反転構造の形成方法の場合、 分極反転領域は表面から裏面にかけて 貫通して形成される。 しかしながら、 同様の構成で分極反転領域を形成 すると、 短周期、 特に 4 m以下の周期構造をもつ分極反転構造を形成 する場合に、 不均一性が大幅に増大する。 M g L Nにおいて、 形成され た分極領域は整流特性を持ち、 分極反転が発生する電圧以下の印加電圧 で電流が流れる。 このため、 電極間に電圧を印加して分極反転を形成す る場合、 一部の分極が反転して基板間を貫通すると、 分極反転領域を通 して電流が電極間に流れてしまう。 この結果、 この部分の分極は大きく 成長するのに対して、 他の部分は先行して分極反転が貫通した部分に電 流を食われて、 分極反転の成長が止まってしまう。 この結果、 分極反転 領域は非常に不均一に形成される。
直流印加による分極反転の場合に微細な分極反転領域の形成が難しい のも、同様の理由による。本実施の形態の分極反転構造の形成方法では、 パルス印加によって分極反転を起こさせるため、 分極反転深さ Dを、 基 板厚み Tに達しないように制御することが可能である。 すなわち、 パル ス印加回数を制御して、 分極反転深さ Dが基板厚み Tに達しないように 制御することができ、 それにより分極反転領域が裏面まで貫通する割合 を制限して、 分極反転の均一性を向上できる。 実験では、 形成された分 極反転領域全体の面積のうち、 裏面まで貫通している分極反転領域の面 積の割合を 1 %以上 5 0 %以下に抑えることで、 均一な分極反転構造の 形成が可能であった。 同割合を 2 0 %以下に抑えると、 4 ^ m以下の微 細な構造の形成も容易となる。 パルス印加後に印加する直流電圧は、 非 常に低電圧とすることにより、 パルス印加で形成された分極反転核を中 心に電極に沿って拡大するため、 分極反転深さは増大せず、 最終的に分 極反転深さ Dを基板厚み Tより小さく維持できる。 以上のとおり、 T > Dの関係を保って分極反転領域を形成することで、 均一で微細な分極反 転構造の形成が可能である。
貫通する分極反転領域の成長を抑制することで、 微細な分極反転領域 を均一に形成するための方法としては、 分極反転深さ Dの平均値が、 基 板厚み Tの 4 0〜9 5 %になるように制御することが効果的である。 分 極反転深さ Dの平均値が 9 5 %を越えると、 分極反転領域の貫通する割 合が 5 0 %を越え、 反転の不均一性が大幅に増加した。 一方 4 0 %を下 回ると、 分極反転領域が形成されない部分が多くなり、 結果的に不均一 な分極反転構造となる。 分極反転深さ Dの平均値を基板厚み Tの 5 0〜 8 0 %に抑えると、 より均一性が向上する。
また、 M g L N基板の表面にイオン交換を施し、 結晶性を変化させる ことが、 分極反転を微細に制御するために有効である。 M g L Nにパタ ーン電極により電界を印加する際に、 基板の表面状態は反転特性に大き く影響を与える。 電極により電圧を印加する場合、 電極直下に分極反転 領域を成長させるが、 同時に横方向にも拡大する。 横方向の分極反転領 域の拡大は、 分極反転領域を微細に形成するのを難しくする。 例えば、 周期的な分極反転構造を形成する場合、 分極反転領域の横方向拡大は、 短周期の反転構造の形成を難しくする。 これを防止するには、 分極反転 核の発生を抑圧するのが有効である。 分極反転核は結晶表面の電極直下 およびその周辺に形成され、 反転核を中心に分極反転部は成長する。 こ の反転核の発生は、 結晶表面のイオン交換を行い結晶の強誘電性を劣化 させることにより、 低減可能である。 例えば、 イオン交換の一種である プロトン交換を施すことで、 分極反転領域の横方向拡大が抑制され、 短 周期の分極反転構造の形成が可能となる。 しかしながら、 イオン交換深 さが深くなり過ぎると分極反転領域の形成が困難になるため、 換深さは 0 . 5 m以下が望ましい。 さらに、 図 8 A、 8 Bに示すように、 第二電極 4に櫛形の電極指 1 5 を形成すると、 分極反転領域形成の歩留まりが向上した。 第一電極 3と 対向電極 6間に電圧を印加したとき、 第一電極 3と第二電極 4間で放電 が発生し、 分極反転が起こらない場合が生じ、 これが、 分極反転領域形 成の歩留まりを低下させる原因であった。 一方、 第二電極 4に第一電極 3と同様の櫛形電極を形成することで、 電極間の放電を防止でき、 歩留 まりが向上した。
また、 第二電極 4と対向電極 6間に電圧を印加することで、 第一電極 3下部に分極反転が起こることが分かった。 第二電極 4と第一電極 3の 間隔を小さくし、 第二電極 4にパルス電圧を印加することで、 第一電極 3の下部に分極反転領域が形成される。 このようにして形成された分極 反転領域は均一であり、 分極反転領域が基板を貫通して不均一になるこ とがないので、 微細な分極反転構造が均一に形成された。 また第一電極 3と第二電極 4にそれぞれ電圧を印加を繰り返すことで、 より均一で長 い分極反転構造の形成が可能になった。
さらに図 9 A、 9 Bに示すように、 第一電極 3および第二電極 4の少 なくとも一方を、 金属 1 6と誘電体 1 7の多層構造にすることで、 分極 反転の均一性の増大、 および電極下に形成される分極反転領域の拡大が 可能となる。 これは、 電極間にパルス電圧を印加する際に、 電極の容量 の増大によりパルス波形の過渡特性が変化することに起因する。 容量増 大の方法として、電極を金属と誘電体の多層膜にすることが有効である。 誘電体としては、 誘電率の大きな S i〇2、 T a 25、 N b 2 0 5、 その 他の高誘電率の材料が好ましい。
(実施の形態 2 )
実施の形態 2における分極反転構造の形成方法は、 分極反転を安定化 させるための改善に関する。 まず、 M g L Nの分極反転の不安定性を確 認した実験結果について説明する。
実験は、 Mg 5mo 1 ドープの Z板 L i Nb〇3基板を用いた。 1 m m厚の基板の士 Z面に電極を形成し、 10 kV程度のパルス電圧を印加 して、 電極下に分極反転領域を形成した。 HF溶液で基板エッチングす ることにより、 土 Z面のエッチングレ一卜の違いにより、 分極反転領域 を観測できる状態にした。
次に、 分極反転領域が形成された基板を 1 00°C程度で 30分間熱処 理した後、 再度 HFエッチング処理して分極反転部分を観測すると、 先 に形成された分極反転領域の面積が半分近くに減少しているのが観測さ れた。 その他、 観察された現象は、 以下のとおりである。
(1) 80°C程度の低温の熱処理によっても反転領域は減少する。
(2) 熱処理の温度、 時間に依存して反転領域は減少する。
( 3 ) 低電圧の電界印加によっても反転領域は減少する。
(4) 反転領域の減少は不均一に発生する。
(5) 基板表面の法線に対し、 結晶の C軸がわずかに傾いたオフカツ 卜基板においても、 同様の現象が観測される。
以上のように、 Mg LNの Z板においては、 電界印加により形成され た分極反転構造が非常に不安定であることが判る。 このことは以下のよ うな問題を生じる。
まず、 非常に低温でも分極反転領域の減少が発生するため、 分極反転 を形成した基板に、 加熱を伴うプロセスによる加工ができない。 また、 分極反転が経時変化で変化するため、 素子特性が時間と共に変化する。 本実施の形態における分極反転構造の形成方法は、 上記問題を解決す るものである。 この方法の特徴は、 基板および電極の構造として例えば 実施の形態 1と同様のものを用い、 電圧印加により分極反転領域を形成 した後、 ァニール処理を施すことである。 分極反転領域形成後のァニー ル処理の条件を適切に設定することにより、 分極反転領域の減少を抑制 することができる。
適切なァニール条件について検討を行った結果、 分極反転領域の減少 が、 ァニール処理の昇温速度に大きく依存することが判った。 図 10A は、 ァニール処理の温度プロファイルを示す。 昇温速度一定でァニール 温度に達した後、 ァニールを 100°C 1時間行い、 さらに降温速度一定 で室温まで冷却する。 図 1 0 Bは、 ァニール処理の昇温速度と反転領域 の減少率の関係について測定した結果を示す。 図 1 0 Bから分かるよう に、 昇温速度が速くなる程、 反転領域の減少が大きくなり、 昇温速度が 20°C/分を超えると、反転領域は 50 %以上減衰する。これに対して、 昇温速度が 10°C/分以下になると減衰率は 1 0 %以下になり、 昇温速 度が 5 °C/分以下になれば数%に低減する。 従って、 反転領域の減衰を 抑制するためには、 昇温速度を 1 0°C/分以下に設定することが望まし い。 さらに望ましくは 5°C/分以下とする。 降温速度に関しても同様の 実験を行ったが、 降温速度の影響は、 あまりないことが判明した。 これ は、 昇温時に発生する焦電電荷による電界が、 分極反転の安定性に影響 を与えているためと考えられる。
分極反転領域の不安定性の原因が焦電電荷による分極反転の再反転現 象であることが判明したので、 これを防止する他の方法について検討し た。 Z板基板の場合、 焦電電荷は基板の表裏面に現れ、 Z軸方向の電界 を形成する。 これを防止するには、 基板の表裏面を電気的に短絡すれば よい。 そこで、 分極反転領域を形成した基板の表面と裏面に金属ペース トを塗布し、 さらに表面と裏面を電気的に短絡した。 この状態でァニ一 ル処理を行った。ァニール温度は、 400、 600、 800°Cであった。 MgLNの場合は、 800°Cでは分極反転領域の減少が発生したが、 6 00°C以下では、 いかなる高速熱処理に対しても分極反転の安定性が確 認された。 このように、 基板の表面と裏面を短絡して焦電電荷による電 界を解消することで、 高速のァニール処理が可能となる。
また、 200°C以上でァニール処理を行うことにより、 分極反転構造 の安定性が大幅に改善されることが判った。 200°C以上でァニール処 理を行った後は、 1 00°C以上の高速な昇温、降温実験を繰り返しても、 反転形状は全く変化しなかった。
また 400°C以上で熱処理することで、 基板内に存在した散乱損失が 六幅に低下して、 透明度の高い分極反転構造の形成が可能となった。 こ のため、 例えば、 非線形光学効果を利用した光波長変換素子に適用した 場合、 変換効率が大幅に増大した。 また偏光素子に適用した場合も結晶 内の伝搬損失が 1 / 2以下に低下するため、 ロスの少ない偏光器を実現 できた。
分極反転構造の不安定性の原因は、 Mg LNの分極反転電界が 5 k V Zmm以下であり、 通常の L i Nb03、 L i T a〇3等の 1/4以下と 非常に小さいことである。 分極反転電圧が低いため、 分極反転後の反転 部分が不安定であり、 わずかな焦電効果により再反転を起こす。 ストイ キオメトリック結晶の場合も反転電圧が低いため、 同様の熱処理が必要 となる。また、熱処理温度の上限は、基板のキュリー温度に左右される。 Mg LNの場合キュリー温度が 1 200°C程度であるため、 熱処理温度 は 800°C以下に制限する必要がある。 800°Cを越えると、 分極反転 領域は小さくなつた。 また、 L i T a 03の場合はキュリー温度が 60 (TC程度であるため、 熱処理の上限は 500°C以下である。
本実施の形態の熱処理は、 実施の形態 1における方法により形成され た分極反転構造に対して特に効果的であるが、 他の方法により形成され た分極反転構造を安定化させるために適用することも可能である。
(実施の形態 3) 本実施の形態 3における分極反転構造の形成方法は、 図 1 1Aおよび 1 1 Bに示すような電極構造を用いた場合の電圧印加の方法に特徴を有 する。 本実施の形態では、 Z軸に垂直な主面 2を有する MgLN基板 1 の +Z面に形成された、 第一電極 3および第二電極 4を用いて電圧を印 加する。 すなわち、 いずれか一方の電極に電圧を印加することで、 他方 の電極下にも分極反転領域が形成されることを利用し、 広範囲の分極反 転領域を形成可能とする。 以下の説明では、 1mm厚の Z板 MgLN基 板に分極反転領域を形成する場合を例として説明する。
図 1 1 Aおよび 1 1 Bにおいて、 実施の形態 1と同一の要素には同一 の参照番号を付して説明の繰り返しを省略する。 本実施の形態において も、 櫛形の第一電極 3を形成する複数の電極指 5は、 各々の細長い形状 の対称軸を、 MgLN基板 1の結晶の Y軸方向に沿わせて、 所定の周期 で配置され、 したがって、 先端 5 aが、 電極指 5の基部から Y軸方向に 向かって延びている。 第二電極 4も櫛形の電極指 1 5を有し、 その先端 1 5 aは、 基部から Y軸方向に向かって延びている。
第一電極 3と他の面に形成された対向電極 6の間に、 パルスジエネレ 一夕 7で制御した電圧を印加することで、 電極間に分極反転領域が形成 される。 所定の電圧レベルを有し、 必要に応じてパルス電圧または直流 電圧を、 MgLN基板 1に印加することができる。 電圧印加時の放電発 生を避けるために、 Mg LN基板 1を絶縁液または真空中 (10— 6To r r以下) に配置して電圧を印加する。
本実施の形態に特有の電圧の印加方法について説明する。 まず、 第二 電極 4と対向電極 6の間にパルス電圧を印加したあと、 直流電圧を印加 する。 次に、 第一電極 3と対向電極 6の間に同様に、 パルス電圧を印加 したあと、 直流電圧を印加する。 これにより、 第一電極 3、 および第二 電極 4の先端 5 a、 1 5 aの下に分極反転核が生じ、 分極反転が形成さ れる。
ここで、 第一電極 3、 または第二電極 4の一方に電圧を印加すること により、 他方の第二電極 4、 または第一電極 3の電極下にも分極反転が 形成されることについて説明する。
第二電極 4に電圧を印加したときの第一電極 3の下における影響を調 ベるために、 第一電極 3には電圧を印加せず、 第二電極 4と対向電極 6 の間にパルス電圧を印加した後の、 強誘電体基板における分極反転の状 況を調べた。 第一電極 3の先端 5 aと、 第二電極 4の先端 1 5 aの間隔 は、 4 0 0 mとした。 電圧印加後、 熱フッ硝酸溶液のエッチングを行 い、 第一電極 3の下の分極反転の観測をおこなった。 その結果、 電圧を 印加していない第一電極 3の電極下に、 分極反転領域が形成されている ことを確認した。 同様に、 第一電極 3に電圧を印加し、 第二電極 4に電 圧を印加しない場合には、 第二電極 4の電極下にも分極反転領域が形成 されることを確認した。
図 1 2を参照して、 さらに詳しく説明する。 図 1 2は分極反転領域形 成の様子を示す断面図である。まず、第二電極 4に電圧を印加した場合、 第二電極 4の電極下、 および第一電極 3の電極下に分極反転領域 R 2が 形成される。 次に、 第一電極 3に電圧を印加すると、 両電極下に形成さ れた分極反転領域がさらに成長し、 分極反転領域 R 1が形成される。 こ れにより、 分極反転領域を拡大するには、 同一平面上に形成された他方 の電極により電圧を印加することが有効であることが判る。
次に、 第一電極 3の下に形成された分極反転領域を拡大することを目 的として、 以下の条件を変えて検討を行った結果について説明する。
( a ) 電圧印加方法
( b ) 電極間隔
( c ) 電極方向と結晶軸 ( d ) 電圧波形、 および電荷量
( e ) 第二電極 4の形状
( f ) 絶縁溶液の温度
最初に、 (a ) 電圧印加方法について説明する。 電圧の印加方法とし て、第一電極 3および第二電極 4への同時印加と、それぞれの電極に別々 に印加する個別印加について検討した。 同時印加では、 + Z面付近を流 れる電流が多くなり、 第一電極 3および第二電極 4の同一平面内に大き な電流が流れやすくなるため、 放電の発生する率が非常に高くなつた。 したがって、 電圧の印加方法としては個別印加の方が好ましい。 これに ついて、 以下に詳細に説明する。
第一、 および第二電極 3、 4に同時に電界を印加すると、 それぞれの 電極先端に集中する電界が減少するため、 分極反転領域の成長が阻害さ れる。 このため初期の電界印加においては、 電界を別々に印加する方が 効果的である。 さらに、 隣接する電極により印加される電界により、 電 圧が印加されていない電極下にも分極反転が生じる作用により、 隣接す る電極を交互に用いて電界を印加することで、 互いの電極下に形成され る分極反転領域がより大きく拡大する効果が得られる。 また、 交互に電 界を印加することで、 単一電極で電界を印加する場合よりも、 反転領域 を長くする効果が得られる。 実験では、 例えば電極間隔が 2 0 0 z mの 場合、第一および第二電極 3、 4に同時に電圧を印加した場合に比べて、 一方の電極だけに電界を印加した場合は、 約 2倍に反転領域の長さが成 長し、 さらに交互に電界を印加することで約 1 . 5倍、 同時印加の 3倍 の反転領域の長さ L rが得られた。
この様に第一および第二電極に交互に電界を印加するのは、 パルス電 界を印加する場合により有効であった。 また、 最初に電界を印加した電 極に対し、 後で電界を印加した電極に形成される分極反転領域の長さ L rが増大する傾向にある。 従って、 主たる電極には後で電界を印加する ことが効果的である。
一方、 パルス電界を印加後、 直流電界を印加する場合は、 交互に電界 を印加する効果は見られなかった。 隣接する電極に同時に電界を印加す ることで、 プロセスの短縮化が可能になる。 また全体的に形成される分 極反転構造が均一になるという効果もある。 パルス電界印加後の直流電 界印加においては、 複数の電極に同時に印加する方法が効果的である。
したがって、 好ましい一例としては、 第一電極 3と対向電極 6の間に 電圧を印加する第一の電界印加工程と、 第二電極 4と対向電極 6の間に 電圧を印加する第二の電界印加工程とにより電界を印加する。 そして、 第一の電界印加工程では、 電界強度 E l、 パルス幅て≤ 1 0 m s e cの パルス電圧を印加し、 第二の電界印加工程では、 電界強度 E 2、 パルス 幅て≥ 1 s e cの直流電圧を印加し、 E 1 > E 2に設定する。
次に、 (b ) 電極間隔について説明する。 図 1 3は、 同一印加条件下 における、第一電極 3の先端 5 aと第二電極 4の先端 1 5 aの間隔 Lと、 第一電極 3の下に形成される分極反転領域の長さ L rの関係を示した図 である。 同図から判るように、 電極間隔 Lが小さくなるに伴い長さ L r は増大する。 また、 電極間隔 Lが 2 0 0 m付近から長さ L rは飽和し 始めるため、 2 0 0 以下が望ましい。 一方、 電極間隔 Lが近づきす ぎる (L≤ 5 0 z m) と、 放電の発生する率が高くなつた。 本実施の形 態では、 第一電極 3と第二電極 4の電極間隔 Lを、 し= 2 0 0 111に設 定して、 良好な結果を得ることができた。
( c ) 電極方向と結晶軸については、 実施の形態 1において説明した とおりである。
次に、 (d ) 電圧波形、 および電荷量について説明する。 電圧波形に ついては、 実施の形態 1において説明した内容と同様である。 電極に印 加する電荷量についての検討結果は以下のとおりである。 第一電極 3下 における分極反転領域を拡大するためには、 第二電極 4に過剰な電荷量 を与えることが有効である。 第二電極 4において、 自発分極を P s、 分 極反転面積を Aとすると、 適正電荷量 Cは、 C = 2 P s X Aである。 適 正電荷量 Cの 1 0 0倍以上の電荷量を印加することで、 第一電極 3下の 分極反転領域は拡大し、 長さ L rが大きく増大した。 この時、 第二電極 4には過剰な電荷量が印加されているため、 第二電極 4の下では全面に 渡り分極反転が形成されており、 櫛形形状による周期的な分極反転は失 われていた。
次に、 (e ) 第二電極 4の形状について説明する。 第二電極 4の形状 としては、 電極指 1 5の基部から先端 1 5 aが Y軸方向に延びる形状が 有効である。 但し、 第二電極 4は第一電極下の分極反転領域拡大のため のダミー電極として使用されるため、 電界印加により第一電極 3下の分 極反転領域が拡大するものであれば、 他の電極形状であってもよい。 実 際、 第二電極 4として、 長方形の電極を使用した場合でも、 第二電極 4 への電界印加により、 第一電極 3の反転領域は拡大した。
次に、 ( f ) 絶縁溶液の温度について説明する。 電界印加時の絶縁破 壊防止のため、 絶縁溶液中での電界印加を行うことが望ましい。 図 1 4 は、絶縁溶液の温度と分極反転領域の長さ L rの関係を示した図である。
8 0 °C付近から分極反転領域の増大が確認され、 1 0 0 °C以上の温度で 反転領域の長さ L rが飽和していることがわかる。 M g L N基板の温度 が上昇することで、 反転電界が減少し、 分極反転が成長し易くなるため と考えられる。 また、 1 5 0 °C以上では周期方向の分極反転成長が著し くなり、 短周期 (5 m以下) の均一な分極反転構造形成が困難となつ た。したがって、短周期分極反転の形成には、絶縁溶液の温度を 1 5 0 以下とすることが好ましい。 この条件は、 実施の形態 1における方法に ついても同様に適用される。
以上に説明した条件を考慮した分極反転構造の形成方法により、 lm m厚の Z板 MgLN基板において、 周期 1 0 以下の短周期分極反転 構造が均一かつ、 広い反転面積で得られた。 本実施の形態の分極反転構 造の形成方法においては、 MgLNの基板厚みは lmm以上のものの場 合に良好な結果が得られた。 すなわち、 分極反転領域の均一性、 分極反 転部の電極下の広がり L rが、 基板厚み lmm以上の場合に良好であつ た。 この理由は、 厚い基板を用いることで、 分極反転領域が基板を貫通 することを防止できるからである。
図 1 5は、 基板厚み Tと分極反転形成が可能となる分極反転周期入の 関係を示したものである。 0. 5 mm厚基板では、 7 m以下の周期状 の分極反転は非常に困難である。 厚板化することで、 微細な分極反転形 成が可能となる。 これは後述するように、 分極反転領域が基板を貫通す ると、 分極反転領域の不均一性が増大して、 微細な分極反転構造の形成 が難しくなることに起因する。 基板の厚みを厚くすることで、 分極反転 領域の貫通を抑圧して、 均一な分極反転領域の形成が可能になる。 従来 は、 基板厚みを 0. 5 mm以下に薄くすることで分極反転領域の形成を 可能とし、 さらに微細な反転構造の形成を可能にしてきた。 基板を厚く することで反転領域の均一化微細化を容易にするのは、 Mgドープ L i T a (1_x) NbxOs ( 0≤ x≤ 1 ) 基板の場合に特に効果的である。
(実施の形態 4)
実施の形態 4における分極反転構造の形成方法について、 図16八ぉ よび 1 6 Bを参照して説明する。 本実施の形態における電極構造は、 大 略、 実施の形態 3の場合と同様である。 相違点は、 MgLN基板 1の一 Z面と対向電極 6の間に絶縁膜 1 8として S i〇2膜を挟むことである, また、 電極間に低周波のパルス電圧を印加することで、 +Z面に形成し た電極下に広範囲の分極反転領域を形成する。
実施の形態 3でも述べたように、 M g L Nは特有の整流特性を持つて おり、 一部の分極が反転して M g L N基板 1間を貫通すると、 その部分 に電流が流れ、 この部分の分極は他の部分に比べて大きく成長する。 そ の結果、 M g L N基板 1全体に所望の電圧が印加されずに反転領域の伸 びが止まったり、 反転が不均一になったりする。 特に 4 z m以下の周期 構造をもつ分極反転構造を形成する場合に不均一性が大幅に増大する。
M g L N基板 1の上下面間の分極の貫通を防ぎ、 短周期の分極反転領 域の均一化、 あるいは分極反転領域の拡大を得るために、 本実施の形態 では、 一 Z面と対向電極 6の間に絶縁膜 1 8として S i 0 2膜を挟む。 絶縁体を電極で挟み込む構造にすることで、 電極の容量を増大させ、 分 極反転の均一性の増大および電極下に形成される分極反転領域の拡大が 可能となる。 絶縁体を電極で挟み込む構造については、 特開平 7— 2 8 1 2 2 4号公報に記載されている。 同文献には、 厚さ 0 . 3 mmの基板 に、 周期 5 / mの分極反転領域を基板の表裏面において貫通させるため に、 印加時間を 3秒と設定することが記載されている。
一方、 1 mm以上の厚さの基板に短周期の分極反転構造を形成するた めには、 基板間の分極の貫通を防ぐことが非常に重要になる。 分極の貫 通は、 印加するパルス電圧のパルス幅依存性が大きい。 したがって、 印 加するパルス波形について検討した。 まず、 パルス幅てが 1 0〜 1 0 0 s e cのパルス波形を印加したが、 電流値を低く設定しても周期状の分 極反転は得られず、 放電するか、 あるいは全面で分極反転を生じる現象 が見られた。 これは、 印加パルス幅が長いことによる影響であると考え られる。 一方、 従来と同様の 1 m s e cのパルス幅を持つパルス波形を 印加したが、 パルス回数、 および電流を増大させても反転領域は拡大し なかった。 そこでパルス幅の最適化を行ったところ、 図 1 7に示すように、 ノ \°ル ス幅てが 1 m s e c〜 50 m s e cの範囲で反転領域が拡大することが わかった。 特に、 10ms e c〜 50ms e cでは反転領域の拡大が顕 著に現れた。 さらに分極反転幅 Wがおよそ 0. 5Λ (Λは分極反転周期) でデューティ比が 50 %近くとなり、 効率が最も高くなる。 パルス幅が 1 s e c以上では、分極反転が幅方向に過剰に成長し、 W=Aとなって、 分極反転領域の幅が周期より大きくなつてしまい、 周期構造が得られな い。
また、 2 mm厚の MgLN基板を用いた場合の反転領域の拡大検討を 行ったところ、 同様にパルス幅による反転特性依存性を確認できた。 す なわち、 パルス幅が 10ms e c〜2 s e cの領域において、 周期 4 mの反転領域の拡大が確認された。
なお、 本実施の形態では、 絶縁膜として、 S i〇2膜以外にも、 T i 02膜、 Ta25膜、 Nb 205膜等を用いることができる。
(実施の形態 5)
実施の形態 5における分極反転構造の形成方法は、 実施の形態 4の電 極構造において絶縁膜 1 8として用いた S i 02膜に代えて、 半導体膜 として S i膜を用いる。 一 Z面と対向電極 6の間に半導体膜である S i 膜を挟み込んだ構造にすることで、 電極の容量を増大させて、 基板間の 分極の貫通を防ぎ、 分極反転の均一性の改善および電極下に形成される 分極反転領域の拡大が可能となる。
本実施の形態に基づき半導体膜を用いた場合における、 印加するパル ス波形の検討を行った。 まず、 パルス幅てが 1 0〜 1 00 s e cのパル ス波形を印加したが、 電流値を低く設定しても周期状の分極反転は得ら れず、 放電するか、 あるいは全面で分極反転する現象が見られた。 これ は、 印加パルス幅が長いことによる影響である。 一方、 従来と同様の 1 ms e cのパルス幅を持つパルス波形を印加したが、 パルス回数、 およ び電流を増大させても反転領域は拡大しなかった。 そこで、 パルス幅の 最適化を行ったところ、 パルス幅が 1 0ms e c〜 l s e cの範囲で反 転領域が拡大することがわかった。 特に、 2 0ms e c〜 50ms e c では反転領域の拡大が顕著に現れた。
また、 2 mm厚の M g L N基板を用いた場合の反転領域の拡大検討を 行ったところ、 同様にパルス幅による反転特性依存性が確認できた。 す なわち、 パルス幅が 1 0m s e c〜 2 s e cの領域において、 周期 4 mの反転領域の拡大を確認した。
本実施の形態では、 半導体膜として、 S i膜以外に、 Z n S e膜、 G a P膜などを用いることができる。
(実施の形態 6)
実施の形態 6における光学素子は、 上述の実施の形態における分極反 転構造の形成方法を利用して作製することができる。 本実施の形態の光 学素子の一例である波長変換素子について、図 1 8を参照して説明する。 図 1 8は、 波長変換素子の斜視図である。 Z板の Mg LN基板 2 0に、 周期的な分極反転領域 2 1が形成されている。 波長 λの基本波を、 周期 的な分極反転構造により波長変換して、 波長 λΖ2の高調波に変換する ことができる。 分極反転周期は、 例えば 4 mとすることができ、 波長 9 0 0 nmの光を波長 45 0 n mの光に波長変換できる。 基板 2 0の厚 みは例えば lmm、 分極反転領域 2 1の深さは 0. 8mm程度である。 分極反転領域 2 1は、 基板結晶の Y軸に沿って延びている。 分極反転領 域 2 1はまた、 基板 2 0の + Z面から— Z面側に向かって形成されてい る。 分極反転領域 2 1の深さは、 複数の分極反転領域 2 1の大部分が基 板 20の厚みより浅くなるように形成されている。 一部の分極反転領域 2 1は、 基板 2 0を貫通して形成されているが、 貫通している分極反転 領域 2 1の面積は、全体の分極反転領域面積の 5 0 %以下となっている。 分極反転領域 2 1を X軸方向に 1 0 mmの長さに渡って形成し、 レン ズで 9 0 0 n mの光を入射したところ、 変換効率 5 %ZWで波長変換さ れ、 4 5 0 n mの高調波が得られた。 均一な分極反転領域が形成され、 高効率の波長変換が行われていることが判る。 また、 基板 2 0厚みを 1 mm以上とすることで、 基本波、 高調波のビームウェストを大きくとれ る。 それにより、 光のパワー密度を低減でき、 高出力が得られる。 0 . 5 mm厚さの基板に分極反転領域を形成した場合に比べ、 1 mm厚の基 板を利用した場合には出力を 4倍に高めることが可能である。
また、 分極反転領域 2 1を Y軸方向に形成することにより、 均一で短 周期の分極反転構造を形成することが可能である。 周期 2 ^ m以下の分 極反転構造の形成が可能であり、 それにより波長 4 0 0 n m以下の紫外 光発生が可能である。 分極反転領域 2 1を Y軸方向に形成することで、 短波長光の発生が可能となる。 これに対して、 分極反転領域 2 1を X軸 方向に形成した場合、 短周期の分極反転構造の形成が困難であり、 波長 5 0 0 n m以上の光しか得られなかった。 ·
また、 分極反転領域の深さを基板の厚みより浅く形成し、 貫通する分 極反転領域の面積を 5 0 %以下に抑えることで、 均一な分極反転構造の 形成が可能である。 貫通した分極反転領域の割合が 1 %〜 5 0 %の範囲 の場合に、 均一な分極反転領域が得られた。 分極反転領域が 1 %未満で あると、 分極反転構造の不安定性が増して、 作製した反転領域が経時変 化を起こす現象が観測された。 分極反転領域が 5 0 %以上になると、 短 周期の分極反転構造の形成が困難になる。 そのため、 作製された波長変 換素子により波長 5 0 0 n m以下の第二高調波を発生することが困難で あった。 以上のように貫通する分極反転領域の割合を制限することによ り、 分極反転周期 3 以下で均一な分極反転領域が得られ、 波長 4 0 0 nm以下の紫外光発生が可能となる。
分極反転構造を利用した光学素子としては、 上述の光波長変換素子以 外に、 例えば分極反転構造をプリズム形状やグレーティング形状に形成 することで、 偏光器を構成できる。 その他、 位相シフタ、 光変調器、 レ ンズ等に応用できる。 また分極反転領域に電圧を印加することで、 電気 光学効果による屈折率変化を制御できるため、 これを利用した光学素子 として、 スィッチ、 偏光器、 変調器、 位相シフ夕、 ビーム整形等を構成 できる。 本実施の形態の方法は、 微細な分極反転構造の形成を可能とす るため、 これらの光学素子の高性能化を可能にする。
図 1 9A、 1 9 Bに、 プリズム形状の分極反転を利用した光偏向器を 示す。 強誘電体基板 22に、 周期的なプリズム形状の分極反転領域 23 が形成されている。 分極反転領域 23の上下に電極 24、 25が形成さ れている。 電極 24、 25に電界を印加することで、 屈折率変化を生じ させ、 ビーム 26の方向を制御 (例えば角度 する事が可能である。 電界印加により屈折率が変化する電気光学効果は分極方向に依存するた め、 図のように電界を印加すると、 分極反転領域 23と非反転領域で屈 折率変化の符号が逆転し、 プリズム部での光の屈折方向を制御すること が可能である。
なお、 以上の実施の形態の説明では、 強誘電体基板として MgOドー プ L i Nb03基板を用いた場合を例としたが、 その他に、 Mg〇ドー プ L i T a03基板、 Ndドープ L i Nb〇3基板、 KTP基板、 KNb 〇3基板、 Ndと Mg〇とをドープした L i Nb〇3基板、 あるいは Nd と MgOとをドープした L i T a〇3基板、 ストイキォ組成の同様の基 板などの場合であっても同様に、本実施の形態を適用できる。このうち、 Ndをドープした結晶からなる基板はレーザ発振が可能であるので、 レ 一ザ発振による基本波の発生とその波長変換による第 2高調波の発生と を同時に行うことができる。 そのため、 高効率で安定した動作特性を有 する短波長光源を構成できる。 産業上の利用の可能性
本発明によれば、 強誘電体基板に、 短周期で幅の広い分極反転構造を 深く均一に形成することが可能となり、 優れた特性を有する光波長変換 素子等の光学素子の製造が可能となる。 '

Claims

請 求 の 範 囲
1. 結晶の Z軸にほぼ垂直な主面を有する強誘電体基板を用い、 前記 強誘電体基板の主面に、 周期的に配列された複数の電極指が形成された パターンを有する第一電極を設け、 前記強誘電体基板の他の面に前記第 一電極に対向する対向電極を設け、 前記第一電極と前記対向電極を介し 前記強誘電体基板に電界を印加して、 前記強誘電体基板に前記第一電極 のパターンに対応した分極反転領域を形成する分極反転構造の形成方法 において、
前記第一電極の電極指の基部から先端に向かう方向が前記強誘電体基 板の結晶の Y軸方向に沿うように、 前記各電極指を配置することを特徴 とする分極反転構造の形成方法。
2. 前記分極反転領域の全体の面積に対し、 前記強誘電体基板の表面 から裏面に貫通している前記分極反転領域の面積の割合が 50 %以下に 抑制されるように、 前記強誘電体基板に電界を印加する請求項 1に記載 の分極反転構造の形成方法。
3. 前記強誘電体基板の厚み丁が 1 mm以上である請求項 2に記載の 分極反転構造の形成方法。
4. 前記分極反転領域の深さ Dの平均値が、 前記強誘電体基板の厚み の 40 %〜 9 5 %になるように前記強誘電体基板に電界を印加する請求 項 1に記載の分極反転構造の形成方法。
5. 前記強誘電体基板が Mgドープの L i T a (1_x) Nbx03 (0 ≤ 1 ) である請求項 1に記載の分極反転構造の形成方法。
6 . 前記第一電極が櫛形電極であり、 前記電極指がストライプ状であ る請求項 1に記載の分極反転構造の形成方法。
7 . 前記第一電極の電極指が三角形であり、 電極指の先端が三角形の 頂点により形成されている請求項 1に記載の分極反転構造の形成方法。
8 . 前記電極指がその基部から先端に向かう方向の軸に対して対称な 形状を有し、 その対称軸が前記強誘電体基板の結晶の Y軸方向に沿うよ うに、前記電極指を配置する請求項 1に記載の分極反転構造の形成方法。
9 . 前記電極指の先端の幅を、 5 / m以下とする請求項 1〜8のいず れかに記載の分極反転構造の形成方法 ώ
1 0 . 前記強誘電体基板に電界を印加する工程は、 電界強度 Ε 1のパ ルス電圧を印加する工程と、 電界強度 Ε 2の直流電圧を印加する工程と を含み、 Ε 1 > Ε 2を満足するように行う請求項 1〜 9のいずれかに記 載の分極反転構造の形成方法。
1 1 . 前記電界 Ε 1を 6 k VZmmより大とし、 前記電界 E 2を 5 k VZmmより小とする請求項 1 0記載の分極反転構造の形成方法。
1 2 . 前記パルス電圧が 2つ以上の複数のパルス列からなる請求項 0記載の分極反転構造の形成方法。
13. 前記分極反転領域を形成した後、 前記強誘電体基板を 200°C 以上で熱処理を施し、 前記熱処理中に、 前記強誘電体基板の焦電電荷の 発生を抑制する請求項 1〜 12のいずれかに記載の分極反転構造の形成 方法。
14. 前記熱処理中に、 前記強誘電体基板の表面と裏面を電気的に短 絡させる請求項 13記載の分極反転構造の形成方法。
15. 前記熱処理における昇温速度が 10°CZ分以下である請求項 1 3記載の分極反転構造の形成方法。
16. 前記強誘電体基板の分極反転電界が 5 kVZmm以下である請 求項 1または 13に記載の分極反転構造の形成方法。
17. 前記強誘電体基板の結晶がほぼストィキオメトリック組成であ る請求項 1に記載の分極反転構造の形成方法。
18. 前記主面に、 前記第一電極の複数の電極指の先端と間隔をもつ て対向するように第二電極を設ける請求項 1に記載の分極反転構造の形 成方法。
19. 前記電極指の先端と前記第二電極間の最短距離 Lと、 前記強誘 電体基板の厚み Tの関係が、 L<Tノ 2を満足するように設定する請求 項 18に記載の分極反転構造の形成方法。
20. 前記第一電極と前記対向電極の間に電圧を印加することにより、 前記第一および第二電極下に分極反転領域を形成する請求項 1 8または 1 9記載の分極反転構造の形成方法。
2 1 . 前記第一電極と前記対向電極の間に電圧を印加する第一の電界 印加工程と、 前記第二電極と前記対向電極の間に電圧を印加する第二の 電界印加工程とを有する請求項 2 0に記載の分極反転構造の形成方法。
2 2 . 前記第一の電界印加工程と前記第二の電界印加工程により、 第 一および第二電極下に分極反転領域を形成する請求項 2 1記載の分極反 転構造の形成方法。 ·
2 3 . 前記第一の電界印加工程と、 前記第二の電界印加工程を、 それ ぞれ別々に行う請求項 2 2記載の分極反転構造の形成方法。
2 4 . 前記第二電極は、 先端が前記第一電極の電極指の先端と対向す る複数の電極指を有し、 前記第二電極の電極指は、 その基部から先端に 向かう方向が前記強誘電体基板の結晶の Y軸方向に沿うように配置され る請求項 1 8記載の分極反転構造の形成方法。
2 5 . 前記第一電極と前記第二電極の距離 Lが 5 0 m≤L≤ 2 0 0 Z/ mである請求項 1 8記載の分極反転構造の形成方法。
2 6 . 前記強誘電体基板の自発分極を P s、 所望の分極反転領域面積 を Aで表したとき、 前記第一の電界印加工程、 または第二の電界印加工 程のいずれか一方により、 2 P s Aの 1 0 0倍以上の電荷量を印加する 請求項 2 1記載の分極反転構造の形成方法。
27. 前記第一の電界印加工程では、 電界強度 E l、 パルス幅て i 0ms e cのパルス電圧を印加し、 前記第二の電界印加工程では、 電界 強度 E 2、 パルス幅て≥ 1 s e cの直流電圧を印加し、 E 1>E 2であ る請求項 2 1記載の分極反転構造の形成方法。
28. 前記強誘電体基板に電界を印加する工程を、 100°C以上の絶 縁溶液中で行う請求項 1または 18に記載の分極反転構造の形成方法。
29. 前記主面と、 前記 Z軸で形成される角度 0は、 80° ≤0≤ 1 00 ° 範囲内にある請求項 1記載の分極反転構造の形成方法。
30. 前記強誘電体基板の厚み Tが lmm以上であり、 周期 Λが 2 m以下の分極反転領域を作製する請求項 1記載の分極反転構造の形成方 法。
3 1. 前記分極反転領域の深さ Dが、 基板厚み Tに対し、 D<Tの関 係を満たすように作製することを特徴とする請求項 30記載の分極反転 構造の形成方法。
32. 前記強誘電体基板の厚み Tが T≥ lmmであり、
前記対向電極と前記強誘電体基板の間に絶縁膜を形成し、
前記第一電極と前記対向電極の間にパルス幅が 1 m s e c〜50ms e cのパルス電圧を印加する請求項 1記載の分極反転構造の形成方法。
33. 前記絶縁膜が S i〇2膜、 T i〇2膜、 または T a25膜である 請求項 3 2記載の分極反転構造の形成方法。
34. 前記強誘電体基板の厚み Tが T≥ 1mmであり、
前記対向電極と前記強誘電体基板の間に半導体膜を形成し、
前記第一電極と前記対向電極の間にパルス幅が 1 m s e c〜5 0ms e cのパルス電圧を印加する請求項 1記載の分極反転構造の形成方法。
3 5. 前記半導体膜が S i膜、 Z n S e膜、 または G a P膜である請 求項 34記載の分極反転構造の形成方法。
3 6. 結晶の Z軸にほぼ垂直な平面を有する強誘電体基板と、 前記強 誘電体基板に周期的に形成された複数の分極反転領域とを備え、 前記分 極反転領域は、 各々軸対称な平面形状を有し、 その対称軸が互いに平行 になるように配置された光学素子において、
前記分極反転領域は、 前記対称軸の方向が前記強誘電体基板の結晶の Y軸に沿うように形成され、
前記分極反転領域は、 + Z面から一 Z面に向かって延びた形状を有し、 前記分極反転領域の全体の面積に対する、 前記強誘電体基板の表面から 裏面に貫通している前記分極反転領域の面積の割合が、 5 0 %以下であ るか、 または前記分極反転領域の平均深さが、 前記強誘電体基板の厚み の 40〜 9 5 %の範囲内であることを特徴とする光学素子。
3 7. 前記強誘電体基板が Mgド一プ L i T a (1_x) Nbx03 ( ≤ x≤ 1) である請求項 3 6に記載の光学素子。
3 8. 前記分極反転領域の周期が 4 m以下である請求項 3 6に記載 の光学素子。
39. 前記強誘電体基板の厚みが lmm以上である請求項 36記載の 光学素子。
40. 前記強誘電体基板の基板厚み Tが lmmであり、 前記分極反転 領域の周期 Λが 2 以下である請求項 38記載の光学素子。
41. 前記分極反転領域の深さ Dが、 基板厚み Tに対し、 D<Tの関 係を満たす請求項 40記載の光学素子。
42. 前記主面と、 前記 Z軸で形成される角度 0が、 80° ≤0≤1 00° の範囲内にある請求項 36記載の光学素子。
PCT/JP2003/014952 2002-11-25 2003-11-21 分極反転構造の形成方法および分極反転構造を有する光学素子 WO2004049055A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003284646A AU2003284646A1 (en) 2002-11-25 2003-11-21 Polarization reversal structure constructing method and optical device having polarization reversal structure
EP03774164.2A EP1566689B1 (en) 2002-11-25 2003-11-21 Polarization reversal structure constructing method
US10/535,975 US7230753B2 (en) 2002-11-25 2003-11-21 Method for forming domain-inverted structure and optical element with domain-inverted structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002340590 2002-11-25
JP2002-340590 2002-11-25
JP2003-14573 2003-01-23
JP2003014573 2003-01-23

Publications (1)

Publication Number Publication Date
WO2004049055A1 true WO2004049055A1 (ja) 2004-06-10

Family

ID=32396254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014952 WO2004049055A1 (ja) 2002-11-25 2003-11-21 分極反転構造の形成方法および分極反転構造を有する光学素子

Country Status (4)

Country Link
US (1) US7230753B2 (ja)
EP (1) EP1566689B1 (ja)
AU (1) AU2003284646A1 (ja)
WO (1) WO2004049055A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7583710B2 (en) * 2001-01-30 2009-09-01 Board Of Trustees Operating Michigan State University Laser and environmental monitoring system
US7973936B2 (en) * 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US7450618B2 (en) * 2001-01-30 2008-11-11 Board Of Trustees Operating Michigan State University Laser system using ultrashort laser pulses
US8208505B2 (en) * 2001-01-30 2012-06-26 Board Of Trustees Of Michigan State University Laser system employing harmonic generation
US7567596B2 (en) * 2001-01-30 2009-07-28 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US8633437B2 (en) 2005-02-14 2014-01-21 Board Of Trustees Of Michigan State University Ultra-fast laser system
US7349609B1 (en) * 2005-02-17 2008-03-25 The Board Of Trustees Of The Leland Stanford Junior University Terahertz radiation generation and methods therefor
US8618470B2 (en) 2005-11-30 2013-12-31 Board Of Trustees Of Michigan State University Laser based identification of molecular characteristics
US9018562B2 (en) * 2006-04-10 2015-04-28 Board Of Trustees Of Michigan State University Laser material processing system
JP5158319B2 (ja) * 2007-03-26 2013-03-06 株式会社リコー 波長変換素子、レーザ装置、画像形成装置及び表示装置
JP5274888B2 (ja) * 2007-05-15 2013-08-28 パナソニック株式会社 レーザ波長変換装置、分極反転構造の形成方法及び画像表示装置
US7474458B1 (en) * 2007-09-21 2009-01-06 Hc Photonics Corp. Method for preparing a poled structure with inhibition blocks
US20090080062A1 (en) * 2007-09-26 2009-03-26 Hc Photonics Corp. Method for preparing a poled structure by using double-sided electrodes
US7502163B1 (en) * 2007-11-12 2009-03-10 Hc Photonics Corp. Method for preparing a poled structure by using leakage and tunnel effects
US20090141274A1 (en) * 2007-11-29 2009-06-04 Bogdan Szafraniec Polarization Dependent Loss Analyzer
WO2009086122A2 (en) 2007-12-21 2009-07-09 Board Of Trustees Of Michigan State University Control in ultrashort laser systems by a deformable mirror in the stretcher
US7492507B1 (en) * 2008-08-15 2009-02-17 Corning Incorporated Wavelength conversion devices and fabrication methods for the same
EP2211430A3 (en) * 2009-01-23 2015-05-27 Board of Trustees of Michigan State University Laser autocorrelation system
WO2010141128A2 (en) 2009-03-05 2010-12-09 Board Of Trustees Of Michigan State University Laser amplification system
US8630322B2 (en) * 2010-03-01 2014-01-14 Board Of Trustees Of Michigan State University Laser system for output manipulation
CN102116789B (zh) * 2011-01-05 2014-04-02 复旦大学 一种铁电畴运动速度可调的脉冲电压测量法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066652A (ja) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd 分極反転構造の形成方法並びにそれを利用した波長変換素子の製造方法
JP2001242498A (ja) * 2000-02-28 2001-09-07 Fuji Photo Film Co Ltd 強誘電体の分極反転方法、並びに光波長変換素子およびその作製方法
JP2004020876A (ja) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc 強誘電体結晶の分極形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0409104B1 (en) * 1989-05-18 1996-05-01 Sony Corporation Method of controlling the domain of a nonlinear ferroelectric optics substrate
JP2969787B2 (ja) * 1990-05-15 1999-11-02 ソニー株式会社 非線形強誘電体光学材料に対するドメイン制御方法
JPH06242478A (ja) * 1993-02-18 1994-09-02 Fuji Photo Film Co Ltd 強誘電体のドメイン反転構造形成方法
JP3318058B2 (ja) * 1993-07-09 2002-08-26 富士写真フイルム株式会社 強誘電体のドメイン反転構造形成方法
JPH07281224A (ja) 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd 強誘電体のドメイン反転構造形成方法
DE69531917T2 (de) * 1994-08-31 2004-08-19 Matsushita Electric Industrial Co., Ltd., Kadoma Verfahren zur Herstellung von invertierten Domänen und eines optischen Wellenlängenkonverters mit denselben
JP3199305B2 (ja) 1995-12-08 2001-08-20 富士写真フイルム株式会社 光波長変換素子およびその作成方法並びに光波長変換モジュール
US6002515A (en) * 1997-01-14 1999-12-14 Matsushita Electric Industrial Co., Ltd. Method for producing polarization inversion part, optical wavelength conversion element using the same, and optical waveguide
JPH11258646A (ja) 1998-03-16 1999-09-24 Sony Corp 分極反転ドメイン及び光学素子、並びにこれらの作製方法
JP3375930B2 (ja) * 2000-03-06 2003-02-10 日本ピラー工業株式会社 チェックバルブ
JP4257716B2 (ja) * 2000-07-14 2009-04-22 日本碍子株式会社 分極反転部の製造方法
JP3838910B2 (ja) * 2001-12-25 2006-10-25 富士写真フイルム株式会社 強誘電体の分極反転方法および光波長変換素子の作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066652A (ja) * 1999-08-27 2001-03-16 Matsushita Electric Ind Co Ltd 分極反転構造の形成方法並びにそれを利用した波長変換素子の製造方法
JP2001242498A (ja) * 2000-02-28 2001-09-07 Fuji Photo Film Co Ltd 強誘電体の分極反転方法、並びに光波長変換素子およびその作製方法
JP2004020876A (ja) * 2002-06-14 2004-01-22 Mitsui Chemicals Inc 強誘電体結晶の分極形成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARUYAMA M. ET AL: "LiNb03 no Bunkyoku Hanten ni Okeru Sentakuteki Kaku Seichoho V Tanshuki Bunkyoku Hanten ni Okeru Kaku Seicho Joken", DAI 63 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU, no. 3, September 2002 (2002-09-01), pages 27P-B-3, XP002994492 *
NAGAYOSHI S. ET AL: "LiTa03 no Bunkyoku Hanten no Kento III Hantenkaku no Shugo Ichi to Kakuhassei no Ichi Kankei", DAI 63 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU, no. 3, September 2002 (2002-09-01), pages 27A-B-3, XP002994493 *

Also Published As

Publication number Publication date
US7230753B2 (en) 2007-06-12
US20060051025A1 (en) 2006-03-09
EP1566689A4 (en) 2007-10-10
AU2003284646A1 (en) 2004-06-18
EP1566689A1 (en) 2005-08-24
EP1566689B1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
WO2004049055A1 (ja) 分極反転構造の形成方法および分極反転構造を有する光学素子
US5652674A (en) Method for manufacturing domain-inverted region, optical wavelength conversion device utilizing such domain-inverted region and method for fabricating such device
JP4926700B2 (ja) 光学素子ならびに分極反転領域の形成方法
JP2000066254A (ja) 分極反転構造の形成方法
US8064129B2 (en) Process for poling a ferroelectric material doped with a metal
JPH06242478A (ja) 強誘電体のドメイン反転構造形成方法
JP2001066652A (ja) 分極反転構造の形成方法並びにそれを利用した波長変換素子の製造方法
JP2004246332A (ja) 分極反転構造の形成方法および分極反転構造を有する光学素子
CN100390651C (zh) 光学元件的制造方法和具有极化反转结构的光学元件
JP2000066050A (ja) 光導波路部品の製造方法及び光導波路部品
EP1172687B1 (en) A method for forming a polarization-inverted portion on a substrate
JP3277515B2 (ja) 分極反転制御方法
EP1801644B1 (en) Method of producing a substrate comprising a polarization domain reversal structure and substrate comprising such a polarization domain reversal structure
US20050084199A1 (en) Ferroelectric substrate period polarization structure manufacturing method
JP4081398B2 (ja) 光波長変換素子
JP2000029086A (ja) 周期的分極反転構造を有する強誘電体結晶の製造方法
RU2411561C1 (ru) Способ формирования доменной структуры в монокристаллической пластине нелинейно-оптического сегнетоэлектрика
JP2001330866A (ja) 光波長変換素子の製造方法
CN114836837B (zh) 一种改变磷酸钛氧钾晶体材料反转畴宽度的方法
JP2002277915A (ja) 分極反転形成方法および光波長変換素子
JP3526206B2 (ja) 光波長変換素子の作製方法
JP2002196381A (ja) 光波長変換素子およびその製造方法
JP3991107B2 (ja) 格子点の秩序性制御による分極反転法および光波長変換素子
JP3429502B2 (ja) 分極反転領域の製造方法
JP3398144B2 (ja) 分極反転領域の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006051025

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535975

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A4116X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003774164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003774164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535975

Country of ref document: US