WO2004048034A1 - Outil rotatif pour le faconnage d'une forme dans un materiau mineral, tel le saphir, notamment pour le faconnage d'une surface optique dans une glace de montre - Google Patents

Outil rotatif pour le faconnage d'une forme dans un materiau mineral, tel le saphir, notamment pour le faconnage d'une surface optique dans une glace de montre Download PDF

Info

Publication number
WO2004048034A1
WO2004048034A1 PCT/EP2003/012837 EP0312837W WO2004048034A1 WO 2004048034 A1 WO2004048034 A1 WO 2004048034A1 EP 0312837 W EP0312837 W EP 0312837W WO 2004048034 A1 WO2004048034 A1 WO 2004048034A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
mineral material
shape
head
shaping
Prior art date
Application number
PCT/EP2003/012837
Other languages
English (en)
Inventor
Ruy Blas MÉNART
Original Assignee
Comadur S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Comadur S.A. filed Critical Comadur S.A.
Priority to EP03779955.8A priority Critical patent/EP1567305B1/fr
Priority to AU2003288087A priority patent/AU2003288087A1/en
Priority to JP2004554371A priority patent/JP4851713B2/ja
Publication of WO2004048034A1 publication Critical patent/WO2004048034A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/02Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor by means of tools with abrading surfaces corresponding in shape with the lenses to be made
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/02Wheels in one piece

Definitions

  • the present invention relates generally to the machining of shapes in mineral materials, in particular hard materials such as sapphire, corundum or spinel. More particularly, the present invention relates to a rotary tool for machining such mineral materials, in particular suitable for shaping an optical surface in a watch crystal.
  • a method for forming an optical surface in the form of a converging lens included in the thickness of a plate of a transparent mineral material is known from document EP 0 123 891, in the name of the present Applicant and which is incorporated here by reference in its entirety.
  • This process essentially consists in rotating the plate around a first axis perpendicular to the area where the lens is to be formed and in machining the desired area by means of an abrasive wheel driven in rotation around a second axis distinct from the first axis and intersecting this first axis at the center of curvature of the desired lens.
  • An oscillating movement of the tool or of the plate around a third axis perpendicular to the plane containing the first and second axes of rotation and distant from the zone by a value equal to the desired radius of curvature of the lens is preferably set work, this oscillating movement ensuring self-sharpening of the grinding wheel.
  • the rotary tool used for shaping the lens is an essentially cylindrical grinding wheel (even frustoconical) carrying, at its active end, abrasive material preferably constituted by powder of diamond.
  • abrasive material preferably constituted by powder of diamond.
  • the cost of this tool is relatively high taking into account the material to be machined (in particular in the case of a hard mineral material such as sapphire), the corresponding abrasive material necessarily having to be incorporated on the head of the tool. (typically a diamond powder or a carbide-based compound for machining sapphire), and the complexity of manufacturing this tool.
  • the life of such a tool is relatively short and that its replacement must be carried out. periodically. The above points therefore weigh significantly on the manufacturing costs of the shaped object.
  • the object of the present invention is to propose such a solution, namely a rotary tool for machining hard materials, in particular suitable for shaping a lens, or other optical surface, in a watch crystal made of hard mineral material ( sapphire, corundum, spinel or the like).
  • the present invention also aims to provide a solution having both a low cost and a great simplicity of implementation.
  • the present invention thus relates to a rotary tool for shaping a shape in a mineral material, in particular a hard mineral material, the characteristics of which are set out in claim 1.
  • the present invention also relates to a method for shaping a deforming optical surface in a transparent mineral material, in particular sapphire, corundum or spinel, using a rotary tool of the above-mentioned type and the characteristics of which are set out in the claim 8.
  • Another subject of the present invention is an installation for machining a mineral material, in particular a hard mineral material, comprising in particular such a tool and the characteristics of which are set out in claim 12.
  • the tool comprises a body terminated by a head comprising an active surface intended to come into contact with an area of the mineral material where it is desired to shape the desired shape, the head of the tool having at least a first slot, preferably several, opening onto the active surface to form an opening allowing abrasive particles conveyed over the area where the desired shape is to be formed to lodge on the active surface and form, all along the opening or openings formed on this active surface, one or more cutting edges contributing to the shaping of the desired shape.
  • the rotary tool does not strictly speaking constitute an abrasive tool for the mineral material considered.
  • the abrasive power of the tool is created jointly by the tool (in particular by the slot (s) made on the head of the tool and the corresponding openings on the active surface of the head) and the abrasive particles conveyed. on the machining area.
  • Each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge there and accumulate therein to form, on the active surface of the head of the tool, a outgrowth with high abrasive power having the function of a cutting edge.
  • the rotary tool itself thus constitutes a matrix making it possible to fix or freeze the abrasive particles in an adequate configuration allowing the abrasion of the mineral material to be shaped.
  • the head of the tool is advantageously formed of a material which is non-abrasive for the mineral material considered and which exhibits a compromise between hardness and softness in order to maintain and guarantee the shape of the head and, respectively, allow the abrasive particles to get there implanted.
  • This material can for example be a metal selected from the group comprising copper Cu, zinc Zn, tin Sn and iron Fe (or a metal alloy comprising at least one of these metals).
  • the arrangement of the slots openings on the active surface of the tool head can follow any suitable geometric arrangement, the simplest being an arrangement of one or more slots of essentially rectilinear geometry. Slots forming diametric or parallel openings on the active surface of the tool head can be provided in adequate numbers on the tool head.
  • each slot it is preferable to arrange each slot so that, during a rotation of the tool, the cutting edge thus formed covers a surface of revolution delimited only by a contour. external, that is to say a solid surface having no central recess.
  • a considerable advantage of the present invention lies in the fact that the rotary tool is very simple and very inexpensive to manufacture, in particular because of the type of material which can be used for the manufacture of the tool and because of the absence of any abrasive incorporated on the head of the tool, this abrasive being conveyed directly to the machining area in the form of abrasive particles conveyed by a fluid or a liquid.
  • an advantageous variant consists in providing at least one slot so that it also acts as a channel for conveying the abrasive particles.
  • the costs associated with shaping the desired shape in the mineral material considered can thus be reduced very substantially.
  • This advantage is particularly decisive in the context of the shaping of hard mineral materials, such as sapphire, corundum or spinel, used in particular in the watch industry for the manufacture of watch glass.
  • the present invention is therefore particularly suitable for the shaping of optical surfaces, or dioptres, (in particular deforming optical surfaces such as magnifying lenses) in transparent mineral materials having a high hardness, including sapphire.
  • FIG. 1 shows a machining installation specifically adapted to the shaping of a deforming optical surface (for example a lens with a convex spherical surface) in a hard and transparent mineral material, in particular in a watch crystal, this installation using a rotary tool according to the present invention;
  • a deforming optical surface for example a lens with a convex spherical surface
  • - Figure 2 is a perspective view of the terminal part, or head, of a rotary tool according to an embodiment of the present invention
  • - Figure 3 is a front view of the active surface of the head of the rotary tool of Figure 2;
  • FIG. 4 is a sectional view of the rotary tool, taken along line A-A in Figure 3;
  • FIG. 5 is an example of implementation of the rotary tool according to the invention for the machining of a convex spherical lens with circular periphery in a plate of transparent mineral material.
  • the machining installation illustrated in FIG. 1 is essentially similar to the installation presented in the document EP 0 123 891 mentioned above. It comprises a support frame 10 on which are mounted a bracket 12 and a headstock 14.
  • the bracket 12 carries a spindle 16 at the end of which is a rotary tool 20, of the same axis, designated 42, as the spindle, comprising an essentially cylindrical body terminated by a head 20a intended to come into contact with an area of the mineral material to be machined.
  • a pulley 18, mounted on the spindle 16 makes it possible to drive the latter in rotation about the axis 42 by means of a motor not shown.
  • the bracket 12 further comprises slides 22, 24 and 26 allowing, in a completely conventional manner, the movement of the tool 20 along three orthogonal axes. More specifically, the slide 22 allows, using a micrometric screw 23, to move the tool vertically along its axis of rotation, while the slides 24 and 26 allow, using the micrometric screws 25 and 27, respectively, to move the tool 20 in a horizontal plane in two perpendicular directions.
  • the headstock 14 carries a spindle 28 whose end 28a adjacent to the bracket 12 is, by virtue of an elbow 28b, offset downward relative to the axis of rotation, designated 44, of the spindle 28.
  • a table 30 is mounted on a shaft 32 which is perpendicular to the axis 44 of the spindle 28 and which pivots in the end 28a.
  • This shaft carries a pulley 34 which makes it possible to drive it in rotation about an axis of rotation, designated 40, by virtue of a motor not shown in the figure.
  • a fitting 36, integral with the table 30, makes it possible to fix a plate 38 made of mineral material.
  • This plate 38 may for example be made of a hard and transparent mineral material of the sapphire, corundum or spinel type, such as a plate forming a watch crystal which it is desired to provide with a lens or any other deforming optical surface.
  • the tool 20 as well as the setting 36 are both driven in rotation in opposite directions of rotation.
  • the fitting 36 has a thickness here such that the distance between the axis of the spindle 28 and the end point of the spherical surface which it is desired to shape (located on the axis of rotation 40 of the shaft 32 ) is equal to the radius of curvature, designated R, which this spherical surface must have.
  • the spindle 28 can be associated with drive means (not shown) allowing it to impart an oscillating movement of low amplitude or at least adjust its inclination relative to the horizontal plane.
  • the installation has several possibilities for driving and positioning the tool 20 and the plate 38.
  • various operating methods of the installation can be envisaged, these various operating modes all having in common at least the rotation of the tool 20 about its axis of rotation 42.
  • This rotation can, if necessary, be accompanied by a rotation or an oscillating movement of the plate 38 around its axis of rotation 40 and / or an oscillating movement of the plate 38 around the axis of the spindle 28 (this oscillating movement can alternately be printed with the tool 20 if the bracket was fitted 12 adequate means).
  • this oscillating movement can alternately be printed with the tool 20 if the bracket was fitted 12 adequate means.
  • the machining installation includes means for conveying abrasive particles over the zone of the mineral material where the desired shape is to be shaped.
  • These routing means are illustrated schematically in Figure 1 and essentially comprise a reservoir 50 containing a fluid carrying abrasive particles (for example a diamond powder suspended in an oil) and a supply conduit 52 for conveying this fluid to the machining zone. Means not shown make it possible to adjust the quantity of abrasive particles conveyed on the machining zone. It will be understood, in what follows, that the routing of abrasive particles on the machining area as well as the rotary tool according to the invention contribute together to the shaping of the desired shape in the plate of mineral material.
  • Figures 2 to 4 respectively show a perspective view, a front view and a sectional view of the end portion of a rotary tool 20 constituting a particular embodiment of the present invention.
  • the body of the rotary tool 20 is terminated by a head 20a comprising an active surface 200 intended to come into contact with the area of the mineral material where it is desired to shape the shape desired.
  • the active surface 200 of the tool has the form of a concave spherical cap whose radius of curvature corresponds to the radius of curvature R of the shape to be shaped, in this example a convex spherical optical surface.
  • the active surface 200 of the tool 20 could have a shape other than strictly spherical.
  • the active surface 200 of the head 20a could take the form of a torus part, by analogy to the shape of the grinding wheel envisaged as a second variant in document EP 0 123 891 (this particular form then requiring adjustment specific to the installation).
  • the active surface of the tool can take any suitable shape.
  • the shape formed in the mineral material will depend not only on the shape of the active surface of the tool but also on the movement or movements imparted to the tool and / or to the plate. The shape of the active surface of the tool head is therefore not necessarily conform to the shape of the surface to be shaped.
  • the head 20a of the tool has at least one first slot opening onto the active surface 200 to form an opening there.
  • the head 20a of the tool here has a pair of diametrical slots 210, 220, that is to say two substantially straight slots provided according to two diametrical planes passing through the axis of rotation 42 of the tool 20.
  • These diametrical slots 210, 220 which run through the end of the head 20a are here arranged in a substantially perpendicular manner and consequently form a pair of perpendicular openings 210a, 220a on the active surface 200 of the tool.
  • the active surface 200 of the rotary tool 20 is subdivided, in this example, into four separate parts having, here, substantially equal areas.
  • the arrangement as well as the geometry of the slots 210, 220 illustrated in this exemplary embodiment are in no way limiting. A single slot or more than two slots could thus be formed on the head. In addition, these slots, instead of being cut, could be parallel. Finally, the slots and the corresponding openings on the active surface of the tool head may not be rectilinear, this particularly simple geometry being nevertheless the easiest to produce. For example, the head of the tool could only be provided with a single slot, this slot not necessarily covering the entire width of the active surface. It will be noted that it is preferable for the slot to be configured so that, during a rotation of the tool, the cutting edge formed by the corresponding opening in this slot covers a surface of revolution delimited only by a contour.
  • each opening on the active surface formed by the corresponding slot allows the abrasive particles to lodge there and accumulate therein to form, on the active surface of the head of the tool, a strong protrusion abrasive power having the function of a cutting edge, the rotary tool thus constituting a matrix making it possible to fix or freeze the abrasive particles in an adequate configuration allowing the abrasion of the mineral material to be shaped.
  • the tool 20 can advantageously be made of a material which is non-abrasive for the mineral material in question, preferably of a material having a compromise between hardness and softness in order to maintain and guarantee the shape of the head and, respectively, allow abrasive particles to settle there.
  • This material can thus be a metal or a metal alloy comprising at least one metal selected from the group comprising copper Cu, zinc Zn, tin Sn and iron Fe.
  • l 'A slot of the tool can be configured so that it also acts as a channel for conveying the abrasive particles to the machining area. This slot shaped as a conveying channel would, in this case, be an integral part of the means for conveying the abrasive particles and could replace or complete the supply duct 52 of FIG. 1.
  • the tool illustrated in Figures 2 to 4 can be implemented very easily to shape a converging lens in the thickness of a plate of transparent mineral material. To do this, it is for example necessary to tilt the plate 38 by means of the pin 28 of FIG. 1 by a determined angle, designated ⁇ , also corresponding to the angle formed by the axis 42 of the tool 20 relative to the axis of rotation 40 of the plate 38 (that is to say the perpendicular to the zone where the lens must be formed and which passes through the center of this zone), the axes 40, 42 all passing two by the center of curvature C of the spherical surface to be shaped, designated 380 in FIG. 5.
  • the angle formed by the axis 42 of the tool 20 relative to the axis of rotation 40 of the plate 38
  • the reference numeral 500 generally denotes a mixture conveyed on the machining zone containing abrasive particles.
  • the simultaneous rotation of the tool 20 and of the plate 38 around their respective axes of rotation and the adjustment of the angle ⁇ between these axes of rotation ensures that the active surface 200 of the he tool shapes a portion of a convex spherical surface of radius of curvature R having a circular periphery (in other words a convex spherical cap).
  • the diameter of the head of the tool designated d, must have a minimum value which is greater than half the diameter, designated D, of the lens to be shaped.
  • the diameter d of the tool 20, in this particular embodiment, must at least be equal to the diameter D of the desired lens divided by the cosine of the angle ⁇ . It will be noted that the angle ⁇ is in practice less than 20 °, preferably less than 10 °.
  • a movement oscillating around an axis perpendicular to the axes of rotation 42, 40 and passing through the center of curvature C of the lens to be shaped (namely an oscillating movement around the axis 44 of the spindle 28 in FIG. 1) can be printed on the plate 38 (or even with the tool).
  • the maximum angle of inclination of the plate 38 relative to the tool 20, designated ⁇ max can be expressed by the following formula, which is valid for movements of small amplitude (small angles ⁇ ):
  • the active surface of the tool head may have a shape other than spherical insofar as it is not desired to subject the tool to a relative movement relative to the plate of mineral material to be machined. It is thus possible to give the active surface of the tool a non-spherical shape of revolution and to shape a corresponding shape in the mineral material by only rotating the tool (or even also rotating the material plate mineral around an axis coincident with the axis of rotation of the tool).
  • the particularly simple spherical shape of the active surface of the tool head constitutes a particularly simple solution to implement, flexible to use and which makes it possible to shape recesses of various forms in the material.
  • the arrangement of the slot (s) on the active surface of the tool head can follow any suitable geometric arrangement, the simplest of these geometric arrangements being constituted by one or more essentially rectilinear slots. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

II est décrit un outil rotatif (20) pour le façonnage d'une forme dans un matériau minéral, notamment un matériau minéral dur, comportant un corps terminé par une tête (20a) comprenant une surface active (200) destinée à venir en contact avec une zone du matériau minéral où l'on désire façonner la forme. La tête de l'outil présente au moins une première fente (210, 220) débouchant sur la surface active pour former sur cette surface active une ouverture (210a, 220a) permettant à des particules abrasives acheminées sur la zone de se loger sur la surface active et former, le long de cette ouverture sur la surface active, une arête de coupe contribuant au façonnage de la forme désirée. Cet outil est en particulier adapté pour permettre le façonnage d'une surface optique déformante (par ex. une lentille) dans un matériau minéral dur et transparent tel le saphir, le corindon ou le spinelle, par exemple dans une glace de montre. II est également décrit un procédé de façonnage d'une forme dans un matériau minéral au moyen de cet outil, ainsi qu'une installation d'usinage comportant un tel outil.

Description

OUTIL ROTATIF POUR LE FAÇONNAGE D'UNE FORME DANS UN MATÉRIAU
MINÉRAL. TEL LE SAPHIR. NOTAMMENT POUR LE FAÇONNAGE D'UNE
SURFACE OPTIQUE DANS UNE GLACE DE MONTRE
DOMAINE TECHNIQUE
La présente invention concerne de manière générale l'usinage de formes dans des matériaux minéraux, notamment des matériaux durs tel le saphir, le corindon ou le spinelle. Plus particulièrement, la présente invention concerne un outil rotatif pour l'usinage de tels matériaux minéraux notamment adapté pour le façonnage d'une surface optique dans une glace de montre.
ARRIERE-PLAN TECHNOLOGIQUE
Un procédé pour former une surface optique se présentant sous la forme d'une lentille convergente comprise dans l'épaisseur d'une plaque d'un matériau minéral transparent est connu du document EP 0 123 891 , au nom du présent Déposant et qui est incorporé ici par référence dans sa totalité. Ce procédé consiste essentiellement à mettre en rotation la plaque autour d'un premier axe perpendiculaire à la zone où doit être formée la lentille et à usiner la zone désirée au moyen d'une meule abrasive entraînée en rotation autour d'un second axe distinct du premier axe et coupant ce premier axe au centre de courbure de la lentille désirée. Un mouvement oscillant de l'outil ou de la plaque autour d'un troisième axe perpendiculaire au plan contenant les premier et second axes de rotation et distant de la zone d'une valeur égale au rayon de courbure désiré de la lentille est préférablement mis en œuvre, ce mouvement oscillant assurant un auto-affûtage de la meule.
Selon le procédé résumé ci-dessus, on notera que l'outil rotatif utilisé pour le façonnage de la lentille est une meule essentiellement cylindrique (voire tronconique) portant, à son extrémité active, de la matière abrasive constituée de préférence par de la poudre de diamant. On comprendra aisément que le coût de cet outil est relativement élevé compte tenu de la matière à usiner (notamment dans le cas d'un matériau minéral dur tel le saphir), du matériau abrasif correspondant devant nécessairement être incorporé sur la tête de l'outil (typiquement une poudre de diamant ou un composé à base de carbures pour l'usinage du saphir), et de la complexité de la fabrication de cet outil. On notera encore que la durée de vie d'un tel outil est relativement courte et que son remplacement doit être effectué périodiquement. Les points susmentionnés pèsent en conséquence de manière sensible sur les coûts de fabrication de l'objet façonné.
RÉSUMÉ DE L'INVENTION
Une solution plus simple à mettre en œuvre et plus rentable doit donc être recherchée. La présente invention a pour but de proposer une telle solution, à savoir un outil rotatif pour l'usinage de matériaux durs, en particulier adapté au façonnage d'une lentille, ou autre surface optique, dans une glace de montre en matériau minéral dur (saphir, corindon, spinelle ou analogue). La présente invention a également pour but de proposer une solution présentant à la fois un coût de revient faible et une grande simplicité de mise en œuvre.
La présente invention a ainsi pour objet un outil rotatif pour le façonnage d'une forme dans un matériau minéral, notamment un matériau minéral dur, dont les caractéristiques sont énoncées dans la revendication 1.
La présente invention a également pour objet un procédé pour le façonnage d'une surface optique déformante dans un matériau minéral transparent, notamment le saphir, le corindon ou le spinelle, employant un outil rotatif du type susmentionné et dont les caractéristiques sont énoncées dans la revendication 8. La présente invention a encore pour autre objet une installation d'usinage d'un matériau minéral, notamment un matériau minéral dur, comportant notamment un tel outil et dont les caractéristiques sont énoncées dans la revendication 12.
On notera ainsi que l'outil comporte un corps terminé par une tête comprenant une surface active destinée à venir en contact avec une zone du matériau minéral où l'on désire façonner la forme souhaitée, la tête de l'outil présentant au moins une première fente, préférablement plusieurs, débouchant sur la surface active pour y former une ouverture permettant à des particules abrasives acheminées sur la zone où doit être façonnée la forme souhaitée de se loger sur la surface active et former, tout au long de la ou des ouvertures formées sur cette surface active, une ou plusieurs arêtes de coupe contribuant au façonnage de la forme désirée.
On comprendra ainsi que l'outil rotatif ne constitue pas à proprement parler un outil abrasif pour le matériau minéral considéré. Au contraire, le pouvoir abrasif de l'outil est créé conjointement par l'outil (en particulier par la ou les fentes ménagées sur la tête de l'outil et les ouvertures correspondantes sur la surface active de la tête) et les particules abrasives acheminées sur la zone d'usinage. Chaque ouverture sur la surface active formée par la fente correspondante permet aux particules abrasives de s'y loger et s'y accumuler pour former, sur la surface active de la tête de l'outil, une excroissance à fort pouvoir abrasif ayant la fonction d'une arête de coupe. L'outil rotatif lui-même constitue ainsi une matrice permettant de fixer ou figer les particules abrasives dans une configuration adéquate permettant l'abrasion du matériau minéral à façonner. La tête de l'outil est avantageusement formée d'un matériau non abrasif pour le matériau minéral considéré et présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux particules abrasives de s'y implanter. Ce matériau peut par exemple être un métal sélectionné dans le groupe comprenant le cuivre Cu, le zinc Zn, l'étain Sn et le fer Fe (ou un alliage de métaux comprenant au moins l'un des ces métaux).
La disposition des ouvertures des fentes sur la surface active de la tête de l'outil peut suivre tout agencement géométrique adéquat, le plus simple étant un agencement d'une ou plusieurs fentes de géométrie essentiellement rectiligne. Des fentes formant des ouvertures diamétrales ou parallèles sur la surface active de la tête de l'outil peuvent être ménagées en nombre adéquat sur la tête de l'outil.
Pour obtenir de meilleurs résultats en termes de qualité de surface, il est préférable de ménager chaque fente de sorte que, lors d'une rotation de l'outil, l'arête de coupe ainsi formée couvre une surface de révolution délimitée uniquement par un contour externe, c'est-à-dire une surface pleine ne comportant pas d'évidement central.
Un avantage considérable de la présente invention réside dans le fait que l'outil rotatif est d'une grande simplicité et très peu coûteux à fabriquer, notamment en raison du type de matériau pouvant être utilisé pour la fabrication de l'outil et en raison de l'absence d'un quelconque abrasif incorporé sur la tête de l'outil, cet abrasif étant acheminé directement sur la zone d'usinage sous forme de particules abrasives véhiculées par un fluide ou un liquide. A ce titre, une variante avantageuse consiste à ménager au moins une fente de sorte qu'elle joue en outre le rôle de canal d'acheminement des particules abrasives.
Grâce à l'invention, les coûts liés au façonnage de la forme désirée dans le matériau minéral considéré peuvent ainsi être réduits de manière très substantielle. Cet avantage est particulièrement déterminant dans le cadre du façonnage de matériaux minéraux durs, tel le saphir, le corindon ou le spinelle, utilisés notamment dans l'industrie horlogère pour la fabrication de glaces de montre. La présente invention est donc particulièrement adaptée pour le façonnage de surfaces optiques, ou dioptres, (notamment des surfaces optiques déformantes telles des lentilles grossissantes) dans des matériaux minéraux transparents présentant une grande dureté, dont le saphir. DESCRIPTION SOMMAIRE DES DESSINS
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée qui suit d'un mode de réalisation préféré de l'invention, donné uniquement à titre d'exemple non limitatif et illustré par les dessins annexés où :
- la figure 1 représente une installation d'usinage adaptée spécifiquement au façonnage d'une surface optique déformante (par exemple une lentille à surface spherique convexe) dans un matériau minéral dur et transparent, en particulier dans une glace de montre, cette installation utilisant un outil rotatif selon la présente invention ;
- la figure 2 est une vue en perspective de la partie terminale, ou tête, d'un outil rotatif selon un mode de réalisation de la présente invention ; - la figure 3 est une vue de face de la surface active de la tête de l'outil rotatif de la figure 2 ;
- la figure 4 est une vue en coupe de l'outil rotatif, prise selon la ligne A-A dans la figure 3 ; et
- la figure 5 est un exemple de mise en œuvre de l'outil rotatif selon l'invention pour l'usinage d'une lentille spherique convexe à pourtour circulaire dans une plaque de matériau minéral transparent.
MODES DE RÉALISATIONS
L'installation d'usinage illustrée dans la figure 1 est essentiellement similaire à l'installation présentée dans le document EP 0 123 891 mentionné plus haut. Elle comprend un bâti-support 10 sur lequel sont montées une potence 12 et une poupée 14. La potence 12 porte une broche 16 à l'extrémité de laquelle se trouve un outil rotatif 20, de même axe, désigné 42, que la broche, comportant un corps essentiellement cylindrique terminé par une tête 20a destinée à venir en contact avec une zone du matériau minéral à usiner. Une poulie 18, montée sur la broche 16, permet d'entraîner celle-ci en rotation autour de l'axe 42 au moyen d'un moteur non représenté. La potence 12 comporte en outre des coulisses 22, 24 et 26 permettant, d'une manière tout à fait classique, le déplacement de l'outil 20 selon trois axes orthogonaux. De manière plus précise, la coulisse 22 permet, à l'aide d'une vis micrométrique 23, de déplacer l'outil verticalement selon son axe de rotation, tandis que les coulisses 24 et 26 permettent, à l'aide des vis micrométriques 25 et 27, respectivement, de déplacer l'outil 20 dans un plan horizontal selon deux directions perpendiculaires.
La poupée 14 porte une broche 28 dont l'extrémité 28a voisine de la potence 12 est, grâce à un coude 28b, décalée vers le bas par rapport à l'axe de rotation, désigné 44, de la broche 28. Une table 30 est montée sur un arbre 32 qui est perpendiculaire à l'axe 44 de la broche 28 et qui pivote dans l'extrémité 28a. Cet arbre porte une poulie 34 qui permet de l'entraîner en rotation autour d'un axe de rotation, désigné 40, grâce à un moteur non représenté dans la figure. Un posage 36, solidaire de la table 30, permet de fixer une plaque 38 en matériau minéral. Cette plaque 38 peut par exemple être constituée d'un matériau minéral dur et transparent du type saphir, corindon ou spinelle, telle une plaque formant glace de montre que l'on désire munir d'une lentille ou de toute autre surface optique déformante.
On notera que l'outil 20 ainsi que le posage 36 sont tous deux entraînés en rotation selon des sens de rotation opposés. De plus, le posage 36 a ici une épaisseur telle que la distance entre l'axe de la broche 28 et le point extrême de la surface spherique que l'on désire façonner (situé sur l'axe de rotation 40 de l'arbre 32) soit égale au rayon de courbure, désigné R, que doit présenter cette surface spherique. Enfin, la broche 28 peut être associée à des moyens d'entraînement non représentés permettant de lui imprimer un mouvement oscillant de faible amplitude ou tout du moins régler son inclinaison par rapport au plan horizontal.
De ce qui précède, on aura compris que l'installation présente plusieurs possibilités d'entraînement et de positionnement de l'outil 20 et de la plaque 38. On verra par la suite que divers modes opératoires de l'installation peuvent être envisagés, ces divers modes opératoires ayant tous pour point commun au moins la mise en rotation de l'outil 20 autour de son axe de rotation 42. Cette rotation peut, le cas échéant, s'accompagner d'une rotation ou d'un mouvement oscillant de la plaque 38 autour de son axe de rotation 40 et/ou d'un mouvement oscillant de la plaque 38 autour de l'axe de la broche 28 (ce mouvement oscillant pouvant alternativement être imprimé à l'outil 20 si l'on équipait la potence 12 de moyens adéquats). En ce qui concerne des détails touchant au mode de mise en œuvre particulier consistant à simultanément entraîner en rotation l'outil 20 et la plaque 38, et à imprimer un mouvement oscillant à cette plaque, on pourra se référer au procédé décrit dans le document EP 0 123 891 déjà mentionné.
Outre les moyens d'entraînement et de positionnement susmentionnés, on notera encore que l'installation d'usinage comporte des moyens d'acheminement de particules abrasives sur la zone du matériau minéral où doit être façonnée la forme désirée. Ces moyens d'acheminement sont illustrés schématiquement sur la figure 1 et comprennent essentiellement un réservoir 50 contenant un fluide porteur de particules abrasives (par exemple une poudre de diamant en suspension dans une huile) et un conduit d'amenée 52 pour acheminer ce fluide sur la zone d'usinage. Des moyens non représentés permettent de régler la quantité de particules abrasives acheminées sur la zone d'usinage. On comprendra, dans ce qui va suivre, que l'acheminement de particules abrasives sur la zone d'usinage ainsi que l'outil rotatif selon l'invention contribuent ensemble au façonnage de la forme désirée dans la plaque de matériau minéral.
Les figures 2 à 4 montrent respectivement une vue en perspective, une vue de face et une vue en coupe de la partie terminale d'un outil rotatif 20 constituant un exemple de réalisation particulier de la présente invention. Comme on peut le voir dans les figures 2 à 4, le corps de l'outil rotatif 20 est terminé par une tête 20a comprenant une surface active 200 destinée à venir en contact avec la zone du matériau minéral où l'on désire façonner la forme souhaitée. Dans cet exemple particulier, la surface active 200 de l'outil présente la forme d'une calotte spherique concave dont le rayon de courbure correspond au rayon de courbure R de la forme à façonner, dans cet exemple une surface optique spherique convexe. Dans ce cas, la mise en œuvre de l'outil dans l'installation illustrée dans la figure 1 implique que l'axe 40 de l'arbre 32, l'axe 42 de la broche 16 et l'axe 44 de la broche 28 se coupent en un point C correspondant au centre de courbure de la surface spherique convexe à façonner dans la plaque 38 de matériau minéral (comme illustré plus en détail dans la figure 5).
On notera que la surface active 200 de l'outil 20 pourrait présenter une forme autre que strictement spherique. Ainsi, la surface active 200 de la tête 20a pourrait prendre la forme d'une partie de tore, par analogie à la forme de la meule envisagée au titre de deuxième variante dans le document EP 0 123 891 (cette forme particulière nécessitant alors un réglage spécifique de l'installation). De manière générale, la surface active de l'outil peut prendre toute forme adéquate. On comprendra en tout état de cause que la forme façonnée dans le matériau minéral dépendra non seulement de la forme de la surface active de l'outil mais également du ou des mouvements imprimés à l'outil et/ou à la plaque. La forme de la surface active de la tête de l'outil n'est donc pas nécessairement conformée à la forme de la surface à façonner.
Selon l'invention, la tête 20a de l'outil présente au moins une première fente débouchant sur la surface active 200 pour y former une ouverture. Dans l'exemple illustré dans les figures 2 à 4, la tête 20a de l'outil présente ici une paire de fentes diamétrales 210, 220, c'est-à-dire deux fentes sensiblement rectilignes ménagées selon deux plans diamétraux passant par l'axe de rotation 42 de l'outil 20. Ces fentes diamétrales 210, 220 qui parcourent l'extrémité de la tête 20a sont ici agencées de manière sensiblement perpendiculaires et forment en conséquence une paire d'ouvertures perpendiculaires correspondantes 210a, 220a sur la surface active 200 de l'outil. On aura noté que la surface active 200 de l'outil rotatif 20 est subdivisée, dans cet exemple, en quatre parties distinctes présentant, ici, des superficies sensiblement égales.
On insistera sur le fait que la disposition ainsi que la géométrie des fentes 210, 220 illustrées dans cet exemple de réalisation ne sont nullement limitatives. Une seule fente ou plus de deux fentes pourraient ainsi être ménagées sur la tête. De plus, ces fentes, au lieu de se couper, pourraient être parallèles. Enfin, les fentes et les ouvertures correspondantes sur la surface active de la tête de l'outil pourraient ne pas être rectilignes, cette géométrie particulièrement simple étant néanmoins la plus aisée à réaliser. A titre d'exemple, la tête de l'outil ne pourrait être munie que d'une unique fente, cette fente ne parcourant pas nécessairement toute la largeur de la surface active. On notera qu'il est préférable que la fente soit configurée de sorte que, lors d'une rotation de l'outil, l'arête de coupe formée par l'ouverture correspondante de cette fente couvre une surface de révolution délimitée uniquement par un contour externe, c'est-à-dire une surface pleine sans évidement central, cette configuration étant préférable du point de vue de la qualité de surface de la forme façonnée. On aura compris qu'une configuration de fente diamétrale, comme cela est illustré dans les figures 2 à 4, répond à cette définition.
On notera également que la manière avec laquelle les fentes se prolongent dans la tête de l'outil n'a que relativement peu d'importance. En effet, l'essentiel réside surtout dans la manière avec laquelle ces fentes débouchent sur la surface active de la tête de l'outil. C'est en effet par le biais de la surface active de l'outil, et de l'apport de particules abrasives sur cette surface active lors de l'usinage, que le matériau minéral peut être façonné. Comme déjà mentionné plus haut, chaque ouverture sur la surface active formée par la fente correspondante permet aux particules abrasives de s'y loger et s'y accumuler pour former, sur la surface active de la tête de l'outil, une excroissance à fort pouvoir abrasif ayant la fonction d'une arête de coupe, l'outil rotatif constituant ainsi une matrice permettant de fixer ou figer les particules abrasives dans une configuration adéquate permettant l'abrasion du matériau minéral à façonner.
L'outil 20 peut avantageusement être réalisé dans un matériau non abrasif pour le matériau minéral considéré, préférablement en un matériau présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux particules abrasives de s'y implanter. Ce matériau peut ainsi être un métal ou un alliage de métaux comprenant au moins un métal sélectionné dans le groupe comprenant le cuivre Cu, le zinc Zn, l'étain Sn et le fer Fe. Au titre de variante avantageuse, on notera encore que l'on peut configurer une fente de l'outil de sorte qu'elle joue en outre le rôle de canal d'acheminement des particules abrasives sur la zone d'usinage. Cette fente conformée en canal d'acheminement ferait, dans ce cas, partie intégrante des moyens d'acheminement des particules abrasives et pourrait remplacer ou compléter le conduit d'amenée 52 de la figure 1.
Un mode de mise en œuvre de l'invention, pour l'usinage d'une lentille convergente (c'est-à-dire une surface spherique convexe à pourtour circulaire) va maintenant brièvement être présenté en référence à la figure 5.
L'outil illustré dans les figures 2 à 4 peut être mis en œuvre de manière très aisée pour façonner une lentille convergente dans l'épaisseur d'une plaque de matériau minéral transparent. Pour ce faire, il convient par exemple d'incliner la plaque 38 au moyen de la broche 28 de la figure 1 d'un angle déterminé, désigné α, correspondant également à l'angle que forme l'axe 42 de l'outil 20 par rapport à l'axe de rotation 40 de la plaque 38 (c'est-à-dire la perpendiculaire à la zone où doit être formée la lentille et qui passe par le centre de cette zone), les axes 40, 42 passant tous deux par le centre de courbure C de la surface spherique à façonner, désignée 380 dans la figure 5. Il convient ensuite de mettre en rotation l'outil 20 et la plaque 38 autour de leurs axes respectifs 42 et 40 (au moyen de la broche 16, de l'arbre 32 et des moyens d'entraînement associés) et d'amener la surface active 200 de la tête de l'outil 20 au contact de la plaque 38. Dans la figure 5, on notera que la référence numérique 500 désigne globalement un mélange acheminé sur la zone d'usinage contenant des particules abrasives.
Comme schématisé dans la figure 5, la mise en rotation simultanée de l'outil 20 et de la plaque 38 autour de leurs axes de rotation respectifs et le réglage de l'angle α entre ces axes de rotation assure que la surface active 200 de l'outil façonne une portion de surface spherique convexe de rayon de courbure R présentant un pourtour circulaire (en d'autres termes une calotte spherique convexe). Dans la mesure où aucun mouvement oscillant n'est imprimé à l'outil ou à la plaque, on comprendra que le diamètre de la tête de l'outil, désigné d, doit présenter une valeur minimale qui est supérieure à la moitié du diamètre, désigné D, de la lentille à façonner. Plus précisément, le diamètre d de l'outil 20, dans ce mode de mise en œuvre particulier, doit au moins être égal au diamètre D de la lentille désirée divisé par le cosinus de l'angle α. On notera que l'angle α est en pratique inférieur à 20°, préférablement inférieur à 10°.
Comme mentionné dans le document EP 0 123 891 , plutôt que de fixer une inclinaison déterminée de la plaque par rapport à l'outil, un mouvement oscillant autour d'un axe perpendiculaire aux axes de rotation 42, 40 et passant par le centre de courbure C de la lentille à façonner (à savoir un mouvement oscillant autour de l'axe 44 de la broche 28 dans la figure 1) peut être imprimé à la plaque 38 (voire à l'outil). Dans ce cas, l'angle maximal d'inclinaison de la plaque 38 par rapport à l'outil 20, désigné αmax, peut être exprimé par la formule suivante, qui est valable pour des mouvements de faible amplitude (angles α faibles) :
tan αmax ≈ [2R (D - d)]/[4R2 + D d] (1 )
Cette relation (1) est également valable pour le mode de mise en œuvre précédent à inclinaison fixe.
Au moyen de l'outil représenté dans les figures 2 à 4, on notera qu'il est possible de façonner des surfaces sphériques convexes ne présentant pas nécessairement un pourtour circulaire.
Ainsi, en se référant à la figure 5, il est parfaitement envisageable de soumettre la plaque 38 à un mouvement répété oscillant autour de l'axe 40, plutôt qu'à une rotation complète autour de cet axe. En limitant l'amplitude maximale de ce mouvement oscillant autour de l'axe 40, par exemple en soumettant la plaque à un mouvement angulaire oscillant de 180° environ, on peut façonner une portion d'une calotte spherique présentant une forme générale en « C » dans le plan de la plaque. De même, il est parfaitement envisageable de ne pas mettre la plaque 38 en rotation autour de l'axe 40 et de soumettre uniquement cette plaque 38 à un mouvement oscillant autour d'un axe perpendiculaire à l'axe 42 de l'outil et passant par le centre de courbure C de la surface spherique (par exemple un mouvement oscillant autour de l'axe 44 de la broche 28). De la sorte, on obtient une surface spherique convexe de forme allongée ou oblongue.
Concernant ce dernier exemple, il est envisageable d'incliner en outre l'outil rotatif 20 dans un plan contenant l'axe 44 autour duquel oscille la plaque 38 et de sorte que l'axe de rotation 42 de l'outil 20 coupe l'axe 44 au centre de courbure C de la surface spherique à façonner. Ceci revient à incliner l'outil 20 dans le plan de la figure 1 et nécessite donc des moyens de positionnement non représentés dans la figure pour permettre ce réglage angulaire. De la sorte, on obtient une surface spherique convexe également de forme allongée mais qui est toutefois inclinée dans le sens de la largeur par rapport au plan moyen de la plaque 38, au lieu d'une surface totalement symétrique comme dans l'exemple précédent.
Dans les trois exemples susmentionnés, on aura donc compris que le mouvement de rotation de l'outil 20 autour de son axe 42 s'accompagne d'un mouvement relatif répété (ou oscillant) entre l'outil 20 et la plaque 38 pour façonner une surface optique spherique présentant un pourtour non circulaire. Des formes plus compliquées pourraient être obtenues en synchronisant plusieurs mouvements oscillants autour de divers axes passant tous par le centre de courbure de la surface spherique, on des axes non concourants si l'on désirait façonner une surface torique, par exemple.
On comprendra de manière générale que diverses modifications et/ou améliorations évidentes pour l'homme du métier peuvent être apportées au mode de réalisation décrit dans la présente description sans sortir du cadre de l'invention défini par les revendications annexées. En particulier, la surface active de la tête de l'outil peut présenter une forme autre que spherique dans la mesure où l'on ne désire pas soumettre l'outil à un mouvement relatif par rapport à la plaque de matériau minéral à usiner. Il est ainsi possible de donner à la surface active de l'outil une forme de révolution non spherique et de façonner une forme correspondante dans le matériau minéral en ne mettant en rotation que l'outil (voire en mettant également en rotation la plaque de matériau minéral autour d'un axe confondu à l'axe de rotation de l'outil). La forme spherique particulièrement simple de la surface active de la tête de l'outil, telle qu'elle a été présentée plus haut, constitue toutefois une solution particulièrement simple à mettre en œuvre, flexible d'utilisation et qui permet de façonner de évidements de formes variées dans le matériau. On insistera enfin à nouveau sur le fait que la disposition de la ou des fentes sur la surface active de la tête de l'outil peut suivre tout agencement géométrique adéquat, le plus simple de ces agencements géométriques étant constitué par une ou plusieurs fentes essentiellement rectilignes.

Claims

REVENDICATIONS
1. Outil rotatif (20) pour le façonnage d'une forme dans un matériau minéral, notamment un matériau minéral dur, comportant un corps terminé par une tête (20a) comprenant une surface active (200) destinée à venir en contact avec une zone du matériau minéral où l'on désire façonner ladite forme, caractérisé en ce que ladite tête (20a) de l'outil présente au moins une première fente (210, 220) débouchant sur ladite surface active (200) pour y former une ouverture (210a, 220a) permettant à des particules abrasives (500) acheminées sur ladite zone de se loger sur la surface active (200) et former, le long de ladite ouverture (210a, 220a) sur la surface active, une arête de coupe contribuant au façonnage de la forme désirée, et en ce que ladite tête (20a) est formée d'un matériau non abrasif pour le matériau minéral considéré et présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux dites particules abrasives de s'y implanter.
2. Outil selon la revendication 1 , caractérisé en ce que la ou les fentes
(210, 220) sont configurées de sorte que, lors d'une rotation de l'outil, l'arête ou les arêtes de coupe ainsi formées couvrent une surface de révolution délimitée uniquement par un contour externe.
3. Outil selon la revendication 2, caractérisé en ce que ladite surface active (200) est subdivisée en au moins deux parties.
4. Outil selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite tête (20a) de l'outil présente au moins une paire de fentes (210, 220) formant des ouvertures (210a, 220a) diamétrales ou parallèles sur ladite surface active (200).
5. Outil selon la revendication 1 , caractérisé en ce que ledit matériau formant la tête (20a) est un métal ou un alliage de métaux comprenant au moins un métal sélectionné dans le groupe comprenant le Cu, le Zn, le Sn et le Fe.
6. Outil selon l'une quelconque des revendications précédentes pour le façonnage d'une surface optique spherique convexe dans une plaque (38) d'un matériau minéral transparent, notamment le saphir, le corindon ou le spinelle, caractérisé en ce que la surface active (200) de l'extrémité de ladite tête présente essentiellement la forme d'une calotte spherique concave dont le rayon de courbure (R) correspond au rayon de courbure de la surface optique à façonner.
7. Outil selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins une fente joue en outre le rôle de canal d'acheminement desdites particules abrasives au niveau de ladite zone.
8. Procédé pour le façonnage d'une surface optique dans une plaque (38) d'un matériau minéral transparent, notamment le saphir, le corindon ou le spinelle, caractérisé en ce qu'il comprend les opérations simultanées suivantes : mettre en rotation un outil (20) selon l'une quelconque des revendications 1 à
7 autour d'un premier axe de rotation (42) ; mettre en contact la surface active (200) de la tête de l'outil avec la plaque (38) dans une zone du matériau minéral où l'on désire façonner ladite surface optique ; acheminer des particules abrasives (500) au niveau de ladite zone ; et déplacer l'outil (20) et/ou la plaque (38) l'un par rapport à l'autre.
9. Procédé selon la revendication 8, caractérisé en ce que ledit outil est un outil selon la revendication 6 pour le façonnage d'une surface optique spherique convexe, et en ce que le procédé comprend en outre une opération simultanée consistant à effectuer un mouvement relatif répété dudit outil (20) par rapport à ladite plaque (38) pour façonner une surface optique spherique présentant un pourtour non circulaire.
10. Procédé selon la revendication 9, caractérisé en ce que ledit mouvement relatif répété est un mouvement oscillant de ladite plaque (38) ou dudit outil (20) autour d'un axe (40 ; 44) distinct dudit premier axe (42) et coupant ce premier axe au centre de courbure (C) de la surface spherique convexe à façonner.
11. Procédé selon la revendication 8, caractérisé en ce que ledit outil est un outil selon la revendication 6 pour le façonnage d'une surface optique spherique convexe, et en ce que le procédé comprend en outre une opération simultanée consistant à mettre en rotation ladite plaque (38) autour d'un second axe de rotation (40) qui est perpendiculaire à la zone où l'on désire façonner ladite surface optique et qui passe par le centre de cette zone, lesdits premier et second axes de rotation (42, 40) passant par le centre de courbure (C) de la surface spherique convexe à façonner.
12. Installation d'usinage d'un matériau minéral, notamment un matériau minéral dur, comprenant : un outil rotatif (20) pour le façonnage d'une forme dans ledit matériau minéral, cet outil rotatif comportant un corps terminé par une tête (20a) comprenant une surface active (200) destinée à venir en contact avec une zone du matériau minéral où l'on désire façonner ladite forme ; des moyens d'entraînement (16, 18) pour entraîner en rotation ledit outil rotatif
(20) autour d'un premier axe de rotation (42) ; des moyens (12, 14, 28a, 28b, 30, 36) pour positionner ledit matériau minéral en regard dudit outil rotatif ; et des moyens (28, 32, 34) pour produire un déplacement relatif entre ledit outil rotatif et ledit matériau minéral, caractérisée en ce que l'installation d'usinage comporte en outre des moyens d'acheminement (50, 52) de particules abrasives (500) sur ladite zone où l'on désire façonner ladite forme, en ce que ledit outil est un ladite tête (20a) de l'outil présente au moins une première fente (210, 220) débouchant sur ladite surface active (200) pour y former une ouverture (210a, 220a) permettant aux dites particules abrasives (500) acheminées sur la zone de se loger sur la surface active (200) et former, le long de ladite ouverture (210a, 220a) sur la surface active, une arête de coupe contribuant au façonnage de la forme désirée et en ce que ladite tête (20a) est formée d'un matériau non abrasif pour le matériau minéral considéré et présentant un compromis entre dureté et mollesse afin de maintenir et garantir la forme de la tête et, respectivement, permettre aux dites particules abrasives de s'y implanter.
13. Installation selon la revendication 12, caractérisée en ce que ledit outil est un outil selon l'une quelconque des revendications 2 à 6.
14. Installation selon la revendication 12, caractérisée en ce qu'au moins une fente dudit outil joue en outre le rôle de canal d'acheminement desdites particules abrasives au niveau de ladite zone et fait partie intégrante desdits moyens d'acheminement.
PCT/EP2003/012837 2002-11-26 2003-11-17 Outil rotatif pour le faconnage d'une forme dans un materiau mineral, tel le saphir, notamment pour le faconnage d'une surface optique dans une glace de montre WO2004048034A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03779955.8A EP1567305B1 (fr) 2002-11-26 2003-11-17 Procede pour le faconnage d une surface optique
AU2003288087A AU2003288087A1 (en) 2002-11-26 2003-11-17 Rotary tool for shaping a form in a mineral material, such as sapphire, and, in particular, for shaping an optical surface in a watch crystal
JP2004554371A JP4851713B2 (ja) 2002-11-26 2003-11-17 鉱物材料例えばサファイアの形状を形成する整形する、特に時計用クリスタルの光学表面を整形する回転ツール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02079950.8 2002-11-26
EP02079950A EP1424163A1 (fr) 2002-11-26 2002-11-26 Outil rotatif pour le façonnage d'une forme dans un matériau minéral, tel le saphir, notamment pour le façonnage d'une surface optique dans une glace de montre

Publications (1)

Publication Number Publication Date
WO2004048034A1 true WO2004048034A1 (fr) 2004-06-10

Family

ID=32241332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/012837 WO2004048034A1 (fr) 2002-11-26 2003-11-17 Outil rotatif pour le faconnage d'une forme dans un materiau mineral, tel le saphir, notamment pour le faconnage d'une surface optique dans une glace de montre

Country Status (5)

Country Link
EP (2) EP1424163A1 (fr)
JP (1) JP4851713B2 (fr)
CN (1) CN1732067A (fr)
AU (1) AU2003288087A1 (fr)
WO (1) WO2004048034A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198623A (zh) * 2011-05-09 2011-09-28 苏州大学 用于非球面零件的弹性细磨装置
CN102554762B (zh) * 2012-02-13 2014-04-30 江苏智邦精工科技有限公司 一种精密球形零件的加工方法
CN108620995B (zh) * 2017-03-24 2020-05-15 蓝思科技(长沙)有限公司 一种凹晶孔加工方法
CN110026877A (zh) * 2018-01-11 2019-07-19 昆山瑞咏成精密设备有限公司 一种抛光机及抛光方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1792800A (en) * 1930-03-15 1931-02-17 Conrad F Birgbauer Lapping device
US1897546A (en) * 1930-03-15 1933-02-14 Cemented Tungsten Tool Company Cutting device
US4114322A (en) * 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
JPH04111766A (ja) * 1990-08-31 1992-04-13 Canon Inc 研磨工具
JP2000334648A (ja) * 1999-05-28 2000-12-05 Canon Inc 研削・研磨用工具および研削・研磨方法
JP2001001262A (ja) * 1999-06-22 2001-01-09 Olympus Optical Co Ltd 総型工具のツルーイング方法およびツルアー
JP2002205254A (ja) * 2001-01-10 2002-07-23 Canon Inc 光学素子研削・研磨工具の形状製作方法および研削・研磨工具の形状製作用摺り合わせ工具
US20020137433A1 (en) * 2001-03-26 2002-09-26 Lee Lawrence K. Abrasive drill bit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1515681A (en) * 1919-05-02 1924-11-18 American Optical Corp Lens grinder
CH651773A5 (fr) * 1983-03-31 1985-10-15 Comadur Sa Procede pour former une lentille convergente dans une plaque d'un materiau mineral transparent.
JPS59201763A (ja) * 1983-04-28 1984-11-15 Matsushita Electric Works Ltd 自動研磨装置の工具
JPS59188143U (ja) * 1983-05-31 1984-12-13 遠州光学精機株式会社 レンズ研摩用研摩皿
JPS62114866A (ja) * 1985-11-08 1987-05-26 Matsushita Electric Ind Co Ltd 非球面加工機
JPS63232946A (ja) * 1987-03-19 1988-09-28 Canon Inc 研摩方法及び研摩工具
JPH0181271U (fr) * 1987-11-18 1989-05-31
JPH04171168A (ja) * 1990-11-01 1992-06-18 Canon Inc 回転研磨装置及びそれに用いる砥石
JP3096342B2 (ja) * 1992-01-10 2000-10-10 オリンパス光学工業株式会社 電解ドレッシング研削方法および装置
JP3651527B2 (ja) * 1996-11-20 2005-05-25 日本電気硝子株式会社 ガラス物品の曲面研磨装置
JP2001025949A (ja) * 1999-07-13 2001-01-30 Canon Inc 研磨工具
DE10006052C2 (de) * 2000-02-10 2002-04-18 Zeiss Carl Körper und Verfahren zur abtragenden Oberflächenbearbeitung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1792800A (en) * 1930-03-15 1931-02-17 Conrad F Birgbauer Lapping device
US1897546A (en) * 1930-03-15 1933-02-14 Cemented Tungsten Tool Company Cutting device
US4114322A (en) * 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
JPH04111766A (ja) * 1990-08-31 1992-04-13 Canon Inc 研磨工具
JP2000334648A (ja) * 1999-05-28 2000-12-05 Canon Inc 研削・研磨用工具および研削・研磨方法
JP2001001262A (ja) * 1999-06-22 2001-01-09 Olympus Optical Co Ltd 総型工具のツルーイング方法およびツルアー
JP2002205254A (ja) * 2001-01-10 2002-07-23 Canon Inc 光学素子研削・研磨工具の形状製作方法および研削・研磨工具の形状製作用摺り合わせ工具
US20020137433A1 (en) * 2001-03-26 2002-09-26 Lee Lawrence K. Abrasive drill bit

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 359 (M - 1289) 4 August 1992 (1992-08-04) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 15 6 April 2001 (2001-04-06) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 16 8 May 2001 (2001-05-08) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 11 6 November 2002 (2002-11-06) *

Also Published As

Publication number Publication date
EP1424163A1 (fr) 2004-06-02
JP4851713B2 (ja) 2012-01-11
AU2003288087A1 (en) 2004-06-18
JP2006507136A (ja) 2006-03-02
EP1567305A1 (fr) 2005-08-31
EP1567305B1 (fr) 2014-04-16
CN1732067A (zh) 2006-02-08

Similar Documents

Publication Publication Date Title
EP0123891B1 (fr) Procédé pour former une lentille convergente dans une plaque d'un matériau minéral transparent
EP0947895B1 (fr) Glace de montre comprenant une lentille et procédé de fabrication d'une telle lentille
EP2117773B1 (fr) Machine de détourage d'une lentille de lunettes, pourvue d'un porte- outils tournant sur lequel sont montés plusieurs outils de travail
EP2076358B1 (fr) Dispositif d'usinage de lentilles ophtalmiques comprenant une pluralité d'outil d'usinage disposés sur un module orientable
FR2690639A1 (fr) Dispositif pour le travail de finition du pourtour de verres de lunettes.
EP1175280B1 (fr) Procede de fabrication d'une surface d'une lentille ophtalmique et installation de mise en oeuvre du procede
FR2617424A1 (fr) Procede pour traiter la rotondite de la semelle d'un culbuteur de moteur, et son dispositif d'execution
EP2760634B1 (fr) Dispositif de polissage de lentilles optiques
CH697657B1 (fr) Machine et procédé pour angler ou guillocher.
EP1567305B1 (fr) Procede pour le faconnage d une surface optique
FR2463751A1 (fr) Generateur de surface torique, en particulier pour lentilles ophtalmiques
EP1984147B1 (fr) Procede de satinage d'un materiau dur
CH693983A5 (fr) Outil rotatif pour le façonnage d'une forme dans un matériau minéral, tel le saphir, notamment pour le façonnage d'une surface optique dans une glace de montre.
FR2847684A3 (fr) Glace de montre avec une lentille non circulaire et procede pour faconner une telle lentille
FR2741560A1 (fr) Meule perfectionnee pour verres ophtalmiques, et machine de meulage correspondante
FR2887168A1 (fr) Procede et dispositif de detourage biseaute d'une lentille ophtalmique de lunettes
EP3889688A1 (fr) Organe moteur pour pièce d'horlogerie
EP1801627A2 (fr) Ensemble comportant une lentille optique et un support, ainsi que procede les mettant en oeuvre
FR2764835A1 (fr) Dispositif de polissoir
EP2686134B1 (fr) Système de polissage d'une pièce d'habillage pour une pièce d'horlogerie
CH696906A5 (fr) Procédé de satinage d'un matériau dur et pièce d'ornement en matériau dur satinée.
FR2764834A1 (fr) Dispositif de polissoir
FR3017813A1 (fr) Dispositif de taillage de meule pour rectifieuse
CH704656A2 (fr) Système de polissage d'une pièce d'habillage pour une pièce d'horlogerie.
FR2489959A1 (fr) Procede et dispositif de polissage d'un echantillon solide, et echantillon poli selon ce procede

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003779955

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004554371

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A74676

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003779955

Country of ref document: EP