WO2004041581A1 - 機械式変速機の変速制御方法及び装置 - Google Patents

機械式変速機の変速制御方法及び装置 Download PDF

Info

Publication number
WO2004041581A1
WO2004041581A1 PCT/JP2003/014180 JP0314180W WO2004041581A1 WO 2004041581 A1 WO2004041581 A1 WO 2004041581A1 JP 0314180 W JP0314180 W JP 0314180W WO 2004041581 A1 WO2004041581 A1 WO 2004041581A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
engine
shift
mechanical transmission
torque
Prior art date
Application number
PCT/JP2003/014180
Other languages
English (en)
French (fr)
Inventor
Kouichi Ikeya
Kazunobu Eritate
Toshikuni Shirasawa
Original Assignee
Mitsubishi Fuso Truck And Bus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck And Bus Corporation filed Critical Mitsubishi Fuso Truck And Bus Corporation
Priority to DE10393681T priority Critical patent/DE10393681T5/de
Priority to US10/533,448 priority patent/US20060047395A1/en
Publication of WO2004041581A1 publication Critical patent/WO2004041581A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/42Changing the input torque to the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/46Uncoupling of current gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/50Coupling of new gear

Definitions

  • the present invention relates to a shift control method and apparatus for a mechanical transmission, and more particularly, to a technique for shifting gears without the operation of connecting and disconnecting a friction clutch.
  • This mechanical transmission is configured so that gear shifting and gear shifting are automatically performed to achieve gear shifting, and the friction clutch is also automatically engaged and disengaged in accordance with shifting or stopping of the vehicle. It is configured to be.
  • Patent Document 1 A technique for performing the method has been devised (see, for example, Japanese Patent Application Laid-Open No. 1-164463 (Patent No. 28874841); hereinafter, referred to as Patent Document 1). Considering Patent Document 1 above, cutting a friction clutch in a mechanical transmission A shift can be achieved without any change.
  • Patent Document 1 the fuel supply to the internal combustion engine is simultaneously increased or decreased while urging the meshing clutch in the disengaging direction. It is not clear what will be done.
  • the gear release timing is not constant, and depending on the engine torque of the internal combustion engine that fluctuates due to the increase and decrease of the fuel supply, the gear release is performed even when the transmission torque is not completely interrupted. It is often considered that this is done.
  • the present invention has been made in order to solve such a problem, and an object of the present invention is to provide a shift control method and apparatus for a mechanical transmission which can shorten a shift time without a shock due to gear removal. Is to do.
  • the present invention relates to a shift control method for a mechanical transmission capable of automatically shifting the output of an internal combustion engine in multiple stages via a friction clutch and transmitting the output to wheels.
  • A controlling the engine torque generated by the internal combustion engine so that the transmission torque in the friction clutch is at or near the value 0 in accordance with the shift request of (a), and the engine torque is controlled and transmitted by the step (a).
  • the engine torque is controlled in accordance with the shift request, and as a result, when the transmission torque in the friction clutch becomes a value of 0 or near the value, the clutch is Since the gears are disengaged and engaged while the gears are connected, the gears can be shifted in a short time without causing any shock due to the disengagement.
  • the step (C) includes a sub-step (cl) of changing the engine speed of the internal combustion engine after the gear is released while the clutch is connected, and a gear step after the engine speed is changed.
  • a sub-step (c2) of shifting to a gear after the gear shift with the clutch connected may be included.
  • the gear when the gear is disengaged, the engine rotational speed is changed and synchronized with the gear rotational speed in the gear after the gear shift, and the gear can be engaged without a clutch connection / disconnection operation with no rotational speed difference. It is implemented smoothly.
  • the shift control method of the present invention is applicable to a mechanical transmission in which a friction clutch is configured to be able to automatically connect and disconnect, and in the step (C), after a gear disengagement command is issued, When disengagement is not performed, the friction clutch can be automatically disengaged to perform gear disengagement and gear shift.
  • the gear release command is not issued and the gear release is not performed, the gear release and the gear engagement are reliably performed with the friction clutch disconnected, and the speed change is reliably performed.
  • a first equation of motion from the internal combustion engine to the friction clutch and a second equation of motion from the friction clutch to the wheels and on the axle shaft of the vehicle are used. It is also possible to determine the engine torque after the change such that the transmission torque is at or near the value 0, indicate the engine torque after the change, and control the internal combustion engine to generate the engine torque after the change. Further, the first and second equations of motion are modified under the condition that the engine rotational angular acceleration on the axle shaft is equal to the axle shaft rotational angular acceleration on the axle shaft, and the first and second equations after the deformation are modified. The engine torque after the change such that the transmission torque takes the value 0 may be obtained based on the equation of motion.
  • the friction clutch includes a flywheel and a clutch plate that can be connected to and detached from the flywheel
  • the equation of motion from the internal combustion engine to the flywheel is used as the first equation of motion
  • the equation of motion from to the wheels and on the axle shaft of the vehicle can be used as the second equation of motion.
  • the transmission torque may be regarded as being at or near the value 0 when a predetermined period has elapsed since the instruction of the engine torque after the change.
  • the internal combustion engine may include a fuel injection pump unit having a control rack for adjusting a fuel injection amount.
  • the control rack may be controlled to control engine torque.
  • it can be determined whether or not the transmission torque has reached the value 0 or its vicinity based on the control rack position.
  • the internal combustion engine may have an auxiliary brake.
  • the sub-step the sub-step
  • the auxiliary brake when the engine speed of the internal combustion engine is higher than an upper limit value of a predetermined speed range including a target engine speed corresponding to the gear speed, the auxiliary brake may be activated. it can.
  • the target engine rotation speed corresponding to the gear rotation speed may be corrected according to the characteristics of the internal combustion engine.
  • step (C) an instruction to return the engine torque is given after a predetermined period has elapsed since the start of gear shifting. You may do it.
  • a shift control device for a mechanical transmission includes a mechanical transmission capable of automatically shifting the output of an internal combustion engine in multiple stages via a friction clutch and transmitting the output to wheels.
  • An engine torque control unit that controls an engine torque generated by the internal combustion engine such that a transmission torque in the friction clutch is equal to or near a value 0 when there is a shift request of the mechanical transmission;
  • a shift permitting means for permitting a shift of the mechanical transmission;
  • a shift executing means for shifting the gears and shifting the gears while the clutch is connected is provided.
  • the engine torque generated by the internal combustion engine is controlled by the engine torque control means so that the transmission torque in the friction clutch is at or near the value 0, and the transmission torque is 0 or
  • the shift is permitted by the shift permitting means, and the gear shift and gear shift are performed by the shift executing means with the clutch connected.
  • the shift control device for a mechanical transmission further includes: an engine rotation speed detecting means for detecting an engine rotation speed of the internal combustion engine; and a gear rotation speed detection for detecting a gear rotation speed at a gear after the shift.
  • the shift execution means changes the engine speed of the internal combustion engine after performing gear removal while the clutch is connected, and the engine speed changes to a gear position after the shift.
  • the gear is substantially synchronized with the gear rotation speed in the above, the gear is shifted to the gear after the speed change while the clutch is connected.
  • the gear when the gear is disengaged, the engine rotation speed of the internal combustion engine is changed and synchronized with the gear rotation speed in the shifted gear stage, and the clutch connection / disconnection operation is performed in a state where there is no rotation speed difference. Gears can be shifted smoothly.
  • the friction clutch may be configured to be automatically connected / disconnected.
  • the shift executing means automatically disconnects the friction clutch and performs gear disengagement and gear engagement when gear disengagement is not performed after the gear disengagement command is issued.
  • gear shifting and gear shifting are performed with the friction clutch cut. It is performed reliably, and the shift is executed reliably.
  • the friction clutch may include a flywheel and a clutch plate that can be connected to and disengaged from the flywheel, and in this preferred embodiment, the engine torque control means is provided for the first stage from the internal combustion engine to the flywheel. Based on the equation of motion 1 and the second equation of motion from the clutch plate to the wheel and on the axle shaft of the vehicle, the engine torque after change is determined so that the transmission torque is at or near the value 0, The internal combustion engine can be controlled to generate engine torque.
  • the internal combustion engine may include a fuel injection pump unit having a control port rack for adjusting the fuel injection amount.
  • the engine torque control means controls the control port rack to control the engine torque. Can be controlled.
  • the internal combustion engine may have an auxiliary brake.
  • the speed change executing means is configured so that the engine rotation speed of the internal combustion engine falls within a predetermined rotation speed range including a target engine rotation speed corresponding to the gear rotation speed. Activate the auxiliary brake if the upper limit is exceeded.
  • FIG. 1 is a schematic configuration diagram of a drive system of a vehicle (such as a bus) to which a shift control device for a mechanical transmission according to the present invention is applied;
  • FIG. 2 is a part of a flowchart showing a control routine of the clutchless shift control according to the first embodiment of the present invention
  • FIG. 3 is the remaining part of the flowchart showing the control routine of the clutchless shift control according to the present invention, following FIG.
  • FIG. 4 is a flowchart showing a control routine of the Ne-FZB control of FIG. 2
  • FIG. 5 is a remaining part of the flowchart showing a control routine of the clutchless shift control according to the present invention, following FIG. 3, and
  • FIG. 6 is a control routine of the clutchless shift control according to the second embodiment of the present invention.
  • FIG. 1 shows the overall configuration of a drive system of a vehicle (a bus or the like) to which a shift control device for a mechanical transmission according to the present invention is applied.
  • a configuration of a drive system of a vehicle including a shift control device for a mechanical transmission according to the present invention will be described with reference to FIG.
  • a diesel engine hereinafter, referred to as an engine 1 is provided with a fuel injection pump unit (hereinafter, referred to as an injection pump) 6 for supplying fuel.
  • This injection pump 6 is a device for injecting fuel by operating the pump by the output of the engine 1 transmitted via a pump input shaft (not shown).
  • the injection pump 6 is provided with a control rack (not shown) for adjusting a fuel injection amount, and further detects a rack position of the control port 1 rack (control port 1 rack position) SRC.
  • a rack position sensor 9 is provided. In the vicinity of the pump input shaft, the number of revolutions of the pump input shaft is detected, and the number of revolutions of the engine output shaft 2, that is, the engine speed Ne is detected based on the number of revolutions. Means) 8 is attached.
  • An engine output shaft 2 extends from the engine 1.
  • the engine output shaft 2 is connected to an input shaft 20 of a gear transmission (hereinafter simply referred to as a transmission) 4 via a clutch device 3. .
  • a gear transmission hereinafter simply referred to as a transmission
  • the transmission 4 is a mechanical transmission having, for example, five forward gears (first to fifth gears) in addition to the reverse gear, and can perform not only automatic gear shifting but also manual gear shifting.
  • the clutch device 3 is configured to automatically control the connection and disconnection of the transmission 4 when the vehicle stops and starts. Note that the clutch device 3 may be automatically connected / disconnected when the automatic transmission is shifted as described later.
  • the clutch device 3 is configured such that the clutch plate 12 is pressed into contact with the flywheel 10 by the pressurizing spring 11 to establish a connection state, while the clutch plate 12 is separated from the flywheel 10 to establish a disconnection state. This makes it possible to automatically perform normal mechanical friction clutch operation. That is, the clutch plate 12 can be automatically operated by the clutch actuating mechanism 16 for connecting and disconnecting the clutch via the gas reservoir 12a.
  • an air tank 34 is connected to the clutch work 16 via an air passage 30 which is an air supply passage. Accordingly, when the working air is supplied from the air tank 34 through the air passage 30, the clutch work 16 is automatically operated. As a result, the clutch plate 12 is moved, and the clutch device 3 is automatically connected and disconnected.
  • the air passage 30 is provided with an electro-pneumatic proportional control valve 31 that is driven in accordance with a signal from an electronic control unit (ECU) 80 to perform the flow and cutoff of the working air.
  • ECU electronice control unit
  • a drive signal is supplied from the ECU 80 to the electropneumatic proportional control valve 31
  • working air is supplied from the air tank 34 to the clutch actuator 16 via the electropneumatic proportional control valve 31, and the clutch is operated.
  • Actuator 16 is activated, and clutch device 3 is disconnected.
  • the supply of the drive signal is stopped, the supply of the operating air from the air tank 34 to the clutch actuator 16 is cut off, and the operating air in the clutch actuator 16 is discharged to the atmosphere.
  • the clutch device 3 is brought into the connected state by the action of the pressure spring 11.
  • the clutch stroke sensor 16 is provided with a clutch stroke sensor 17 for detecting a movement amount of the clutch plate 12, that is, a clutch stroke amount.
  • the change lever 60 is a select lever of the transmission 4 and is provided with an N (neutral) range, an R (reverse) range, and a D (drive) range corresponding to an automatic shift mode.
  • the change lever 60 has a select position sensor 62 for detecting each range position.
  • the select position sensor 62 is connected to the ECU 80.
  • the ECU 80 is connected to a gear shift unit 64 for meshing gears of the transmission 4, that is, for switching gear positions. Therefore, when a position signal is supplied from the select position sensor 62 to the ECU 80, a drive signal is output from the ECU 80 to the gear shift unit 64 in accordance with the position signal. 6 4 is operated, and the gear position of the transmission 4 is switched to the selected select range.
  • the select position is in the D range, automatic shift control is performed according to the driving state of the vehicle, and the gear position is switched based on the automatic shift control, as described in detail later. become.
  • the gear shift unit 64 has an electromagnetic valve 66 that is activated by an activation signal from the ECU 80 and a power cylinder (not shown) that activates a shift fork (not shown) in the transmission 4.
  • the power cylinder is connected to the air passage 30 via the electromagnetic valve 66 and the air passage 67. That is, when an operation signal is given from the ECU 80 to the solenoid valve 66, the solenoid valve 66 opens and closes in accordance with the operation signal, and the power cylinder is operated by supplying the operating air from the air tank 34. Operate.
  • the meshing state of the gears of the transmission 4 is appropriately changed, for example, via the idle gear.
  • solenoid valve 66 Although only one solenoid valve 66 is shown here, in practice, there are a plurality of shift forks, and a plurality of power cylinders are provided corresponding to the plurality of shift forks. Also, a plurality of power cylinders are provided corresponding to the plurality of power cylinders.
  • a gear position sensor 68 for detecting each shift speed is attached and electrically connected to the ECU 80.
  • a current gear position signal, that is, a gear position signal is output to the ECU 80.
  • the accelerator pedal 70 is provided with an accelerator opening sensor 72, which is also electrically connected to the ECU 80. From the accelerator opening sensor 72, The depression amount of the cell pedal 70, that is, accelerator opening degree information 0 acc is output.
  • the output shaft 76 of the transmission 4 is provided with a rotation speed sensor 78 for detecting and outputting the rotation speed of the output shaft 76.
  • the rotation speed sensor 78 is also electrically connected to the ECU 80. ing. Then, based on the information from the rotation speed sensor 78, the ECU 80 calculates the vehicle speed V.
  • Reference numeral 82 in FIG. 1 indicates an engine control unit provided separately from the ECU 80.
  • the engine control unit 82 is a device that supplies a signal from the ECU 80 to the electronic governor (not shown) in the injection pump 6 according to information from each sensor and accelerator opening information 0acc.
  • the drive control is performed. That is, when a command signal is supplied from the engine control unit 82 to the electronic governor, the control rack operates to increase or decrease the fuel, and the increase or decrease of the engine torque Te or the engine speed Ne is controlled.
  • the detection information from the rack position sensor 9 and the engine rotation sensor 8 is supplied to the ECU 80 via the engine control unit 82.
  • an exhaust pipe 52 extending from the exhaust manifold 7 of the engine 1 is provided with an exhaust brake 52.
  • the exhaust brake 52 includes a butterfly valve 54 and is connected to the ECU 80.
  • the exhaust brake 52 is configured so that the exhaust flow rate can be adjusted by closing the butterfly valve 54 based on a command from the ECU 80. As a result, the engine output and the engine speed Ne are reduced, and the braking force is applied to the vehicle.
  • the ECU 80 includes a microcomputer (CPU), a memory, and an interface that performs input / output signal processing.
  • the input interface of the ECU 80 includes the clutch stroke sensor 17 and the select position as described above.
  • a sensor 62, a gear position sensor 68, an accelerator opening sensor 72, a rotational speed sensor 78, an engine control unit 82, and the like are connected to each other.
  • step S10 in FIG. 2 an instruction to change the engine torque Te is issued based on the shift command from the ECU 80 (engine torque control means). More specifically, here, the engine 1 is controlled so that the transmission torque in the clutch device 3, that is, the clutch torque Tel between the flywheel 10 and the clutch plate 12 is at or near the value 0, and the engine torque Te is changed.
  • the engine torque Te to be changed is determined by the equation of motion from the engine 1 to the flywheel 10 (Equation (1)), the equation of motion from the clutch plate 12 to the wheels and on the vehicle's axle shaft (Equation (1)). Based on (2)), the clutch torque Tel is calculated as follows so that the value becomes, for example, 0.
  • the control rack is controlled so as to obtain the engine torque Te, and the fuel injection amount is changed.
  • the clutch torque Tel has reached or is close to the value 0 (zero).
  • the rack position sensor 9 it is determined whether or not the rack position SRC has reached a desired rack position.
  • a torque sensor may be provided to directly detect that the clutch torque Tel is at or near the value 0 (zero).
  • step S12 If the determination result of step S12 is true (Y es), it is determined that the rack position SRC has reached the desired rack position, and the clutch torque Tel has reached or is close to the value 0, step S1 Go to step 6. On the other hand, the determination result in step S12 is false (No), it is determined that the rack position SRC is not at the desired rack position, and the clutch torque Tel is not yet at or near the value 0. In this case, the process proceeds to step S14, and the change of the fuel injection amount is continued until a predetermined period tl has elapsed from the instruction to change the engine torque Te.
  • step S14 the predetermined period tl is, for example, a time corresponding to a response delay of the control rack. If the predetermined period tl has elapsed, it can be considered that the clutch torque Tel has already reached the value 0 or its vicinity. . Therefore, if the determination result of step S14 is true (Yes) and it is determined that the predetermined period tl has elapsed, the process proceeds to step S16 in the same manner as described above.
  • step S16 an instruction to shift out of the transmission 4 is issued (shift execution means).
  • the clutch torque Tel is at or near the value 0
  • step S18 it is determined whether the gear has been disengaged.
  • the gear position Based on the information from the sensor 68, it is determined whether the gear is disengaged and the transmission 4 is in the neutral state. If the result of the determination is false (No) and it is determined that the gear is not disengaged, the flow proceeds to step S30 in FIG.
  • step S30 it is determined whether or not a predetermined period t3 has elapsed after the instruction to disengage the gear.
  • the predetermined period t3 is, for example, a period of time exceeding the response delay of the shift fork, and the gear should normally be disengaged before the predetermined period t3 elapses. Therefore, until the determination result is false (No) and the predetermined period t3 elapses, the determination in step S18 is continued and the gear is disengaged.
  • step S30 determines whether the predetermined period t3 has elapsed. If the determination result in step S30 is true (Yes) and it is determined that the predetermined period t3 has elapsed, the gear is not disengaged while the clutch device 3 is connected for some reason. It is considered a situation. As such a situation, for example, it is conceivable that the parameter is not accurate and the engine torque Te is not correctly obtained in the above equation (5), or that the rack position sensor 9 is abnormal. . Accordingly, in this case, the process proceeds to step S32, in which the clutch device 3 is operated to automatically disengage the clutch device 3 (automatic clutch disengagement), and then proceed to step S34.
  • step S34 it is determined whether or not a predetermined period t4 has elapsed after the clutch device 3 was automatically disengaged.
  • the predetermined period t4 is, for example, a time that exceeds the response delay of the clutch actuator 16 and the clutch device 3 is normally disconnected until the predetermined period t4 elapses, and the gear is disengaged. Should be. Therefore, until the determination result is false (No) and the predetermined period t4 has elapsed, the determination in step S18 is continued and the gear is disengaged and waited.
  • step S34 determines whether the transmission 4 is out of order. If the result of the determination in step S34 is true (Yes) and it is determined that the predetermined period t4 has elapsed, it is considered that gear removal itself cannot be achieved due to some factor. Therefore, in this case, it is determined that the transmission 4 is out of order, the process proceeds to step S36, all the automatic transmission control is stopped, and the warning lamp 83 is turned on. And inform the driver of the malfunction.
  • step S18 If the result of the determination in step S18 is true (Yes) and it is determined that the gear has been disengaged, the process proceeds to step S20.
  • step S20 it is determined whether or not the clutch device 3 is automatically disengaged. If the result of the determination is false (No) and the clutch device 3 has not been automatically disengaged, the flow proceeds to step S24. On the other hand, if the clutch device 3 is automatically disconnected as described above, the determination result is true (Yes), and in this case, the connection operation of the clutch device 3 is performed in step S22. Thereafter, the process proceeds to step S24.
  • step S24 the process waits for a predetermined period t2 to elapse, and then in step S26, the engine speed Ne feedback control (Ne-FZB control) is performed.
  • the engine speed Ne feedback control (Ne-FZB control) is performed.
  • the engine rotational speed Ne is substantially synchronized with the gear rotational speed at the gear after the shift.
  • step S40 it is determined whether or not within a predetermined period t5 after the start of the Ne-FZB control. Immediately after the Ne—F / B control is started, the determination result is true (Y e s), and the process proceeds to step S42.
  • the gear rotation speed in the gear after the gear shift, that is, the target Ne is a rotation speed sensor.
  • step S44 It is easily calculated from the rotation speed of the output shaft 76 and the gear ratio detected by the gear 78 (gear rotation speed detecting means). If the result of the determination is false (No) and it is determined that the engine speed Ne is not at or near the target Ne after shifting, the flow proceeds to step S44.
  • step S44 it is determined whether or not the engine rotation speed Ne is within a range of a rotation speed higher than the target Ne after the shift by a predetermined value N2 (Ne ⁇ target Ne + N2). If the determination result is false (No), it can be determined that the engine speed Ne is too high. In this case, the process proceeds to step S46, and the auxiliary brake is turned on. Specifically, the exhaust brake 52 is closed to lower the engine speed Ne.
  • step S44 determines whether the engine speed Ne is not so high. In this case, the process proceeds to step S48, the auxiliary brake is turned off, and the Go to S50.
  • step S50 When controlling the engine speed Ne to be the target Ne, if this target Ne is instructed directly to the engine 1, depending on the engine characteristics, it may take time for the engine speed Ne to reach the target Ne, The deviation between the speed Ne and the target Ne may remain. Therefore, in step S50, a target Ne correction instruction is issued, and engine control is performed so that the corrected target Ne is obtained. As a result, the engine speed Ne can be controlled to the target Ne in a short time without deviation.
  • step S42 determines whether or not. If the result of the determination in step S42 is true (Yes) and it is determined that the engine speed Ne is at or near the target Ne after the shift, that is, if the engine speed Ne is the gear position after the shift, If it is determined that the target Ne is substantially synchronized with the target Ne in step S52, the process proceeds to step S52 to turn off the auxiliary brake, and in step S54, a predetermined period t6 has elapsed after the start of the Ne-FZB control. It is determined whether or not.
  • step S54 determines whether the determination result in step S54 is false (No) and the predetermined period t6 has not yet elapsed
  • the target Ne is instructed in step S56, and if the determination result is true (Yes) and the predetermined period t6 If the time has elapsed, or if the determination result in step S40 is false (No) and the predetermined period t5 has elapsed, the Ne-FZB control ends, and the flow advances to step S28 in FIG.
  • step S28 the auxiliary brake is turned off again, and the process proceeds to step S60 in FIG.
  • step S60 the engine speed Ne is changed to the target Ne in the gear stage after the shift.
  • a gear shift (gear shift) instruction is given. If the engine speed Ne is substantially synchronized with the target Ne in the gear position after the gear change, the gears should enter smoothly without disengaging the clutch device 3. Therefore, here, the gear shift (gear engagement) is performed by the gear shift unit 64 while the flywheel 10 and the clutch plate 12 are connected without disconnecting the clutch device 3.
  • step S62 it is determined whether the gear shift has been completed.
  • the process proceeds to step S64 to determine whether or not a predetermined period t7 has elapsed after instructing the gear shift.
  • the predetermined period t7 is a time exceeding the response delay of the shift fork, for example, similarly to the above-mentioned predetermined period t3, and the gear should normally be engaged before the predetermined period t7 elapses. Therefore, until the determination result is false (No) and the predetermined period t7 elapses, the determination in step S62 is continued and the gear is turned on.
  • step S64 determines whether the transmission 4 is out of order. If the determination result of step S64 is true (Yes) and it is determined that the predetermined period t7 has elapsed, it is considered that the gear shift itself cannot be achieved due to some factor. Therefore, in this case, it is determined that the transmission 4 is out of order, the process proceeds to step S66, the shift instruction is stopped, the warning lamp 83 is turned on, and the driver is notified of the outage.
  • step S62 determines whether the gear shift has been completed. If the result of the determination in step S62 is true (Y e s) and it is determined that the gear shift has been completed, the flow proceeds to step S68.
  • step S68 it is determined whether or not a predetermined period t8 has elapsed in the case of a shift down. If the determination result is false (No), the process waits for a predetermined period t8 to elapse. On the other hand, when the result of the determination is true (Y es), the process proceeds to step S70.
  • step S70 the gearshift is completed, and the gearshift is carried out without any problem, so that the warning lamp 83 is kept off.
  • step S72 in response to the completion of the gear shift, an instruction to return the engine torque Te changed in step S10 is issued, and the engine control is returned to the normal control state and the engine is returned to the normal control state. Restore the torque Te.
  • step S68 it is determined whether or not the predetermined period 8 has elapsed in step S68, and after the determination result is true (Y es) and the predetermined period t8 has elapsed, step S68 is performed. After step S70, an instruction to return the engine torque Te is issued in step S72. As a result, a sudden change in the engine torque Te is suppressed, and the gear is prevented from coming off.
  • the process proceeds to step S72 without waiting for the predetermined period t8 to elapse, and the return instruction of the engine torque Te is immediately issued.
  • FIG. 6 a control routine of clutchless shift control according to a second embodiment of the present invention is shown by a flowchart, and the second embodiment will be described below based on the flowchart. I do.
  • the same steps as those in the first embodiment are denoted by the same step numbers, and the description thereof will be omitted. I will explain only.
  • step S12 ' it is determined whether or not a predetermined period to has elapsed after changing the engine torque Te based on the speed change command. That is, when the engine torque Te is obtained, and the control rack is controlled to change the fuel injection amount so that the engine torque Te is obtained, the clutch torque Tel becomes 0 (zero) after a predetermined period t0 has elapsed. Or it can be considered that it has become near. Therefore, if the result of the determination is true (Yes) and it is determined that the predetermined period to has elapsed, the process proceeds to step S16 to instruct gear removal. Also in this case, the gear should be easily disengaged without a shock without operating the clutch device 3. On the other hand, if the determination result of step S12 ′ is false (No) and it is determined that the predetermined period tO has not elapsed, the process waits for the predetermined period tO to elapse.
  • step S26 simple F-NOB control is performed instead of the Ne-F NO-B control in FIG.
  • the auxiliary brake is turned on in step S26, and in step S27, the engine rotational speed Ne is set at a predetermined value N3 from the target Ne in the gear position after shifting. It is determined whether the rotation speed is within the range of high rotation speed (Ne ⁇ target Ne + N3). If the determination result is false (No), it can be determined that the engine rotation speed Ne is too high. In this case, the process returns to step S26 'via step S29', and continues to turn on the auxiliary brake. That is, the exhaust brake 52 is closed and the engine speed Ne is continuously reduced.
  • step S27 'or step S29' determines whether the engine speed Ne falls within the range of the rotation speed that is higher than the target Ne in the gear position after the shift by a predetermined value N3. Then, it is determined that the engine speed Ne is substantially synchronized with the target Ne in the gear position after the shift, the auxiliary brake is turned off, and the process proceeds to step S30 and subsequent steps in FIG.
  • the clutch device 3 The engine torque Te is calculated from the above equation (5) so that the latch torque Tel is at or near the value 0 (zero), and the gear is disengaged without operating the clutch device 3 under the engine torque Te. I have to. Therefore, the shift time can be shortened and the shift can be promptly achieved without occurrence of a shock due to gear disengagement.
  • the gear is engaged while the engine rotational speed Ne is substantially synchronized with the target Ne in the gear after the shift, so that the clutch device 3 can be connected and disconnected without operation.
  • the gear can be smoothly shifted.
  • the clutchless shift control is performed in response to a shift command in the automatic shift mode.
  • the present invention is not limited to this.
  • the clutch shift control is output in response to a shift operation by the driver.
  • Clutchless shift control may be performed in response to a shift command. In this case, when the driver performs the clutch pedal operation, the clutch operation may be disengaged by giving priority to this pedal operation.
  • a diesel engine is used as the engine type, and a configuration in which the fuel injection amount is controlled by the injection pump 6 as the control means of the engine torque Te and the engine rotation speed Ne is adopted.
  • the engine type may be a gasoline engine, and the engine torque Te and the engine speed Ne may be adjusted by adjusting the intake air amount, the fuel injection amount by the fuel injection valve, the ignition timing, and the like. May be configured to be controllable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

ギヤ抜きによるショックなく変速時間を短くすることのできる機械式変速機の変速制御方法及びその装置が提供される。変速制御装置は、機械式変速機の変速要求があるとき、摩擦クラッチにおける伝達トルクが値0又はその近傍となるよう、内燃機関の生ずる機関トルクを制御する機関トルク制御手段と(S10)、機関トルク制御手段により機関トルクが制御され、伝達トルクが値0又はその近傍となったとき、機械式変速機の変速を許容する変速許容手段と(S12)、変速許容手段により変速が許容されると、クラッチを接続した状態のままギヤ抜き及びギヤ入れを行う変速実行手段(S16)とを備えている。

Description

明 細 書 機械式変速機の変速制御方法及び装置 技術分野
本発明は、 機械式変速機の変速制御方法及び装置に係り、 詳しくは、 摩擦クラ ツチの断接操作なく変速を行う技術に関する。 背景技術
車両用の変速機として、 変速切換操作を自動化した変速機が多用されているが、 バスやトラック等の大型車にあっては、 駆動トルクの伝達量が大きいため、 トル クコンバ一夕ではその駆動トルクを充分に伝達するのが困難であり、 例えば手動 式機械式変速機の変速切換操作を自動化した構成の機械式変速機が採用されてい る。
この機械式変速機は、 ギヤ抜きとギヤ入れとが自動的に実施されて変速が達成 されるよう構成されており、 摩擦クラッチについても、 変速或いは車両の停止に 合わせて自動的に断接操作されるように構成されている。
しかしながら、 機械式変速機において変速に合わせて自動的に摩擦クラッチを 制御する場合、 半クラッチ状態での微妙な制御が困難であり、 故に摩擦クラッチ を切断して駆動力が車輪に伝達されなくなる時間が長くなり、 変速を実施してい る時間が長く感じられるという問題がある。
一方、 変速機の嚙み合いクラッチを離脱させる際に併せて内燃機関への燃料供 給を反復して増減するようにし、 これにより嚙み合いクラッチの離脱に十分なよ うに伝達トルクの遮断を行う技術が考案されている (例えば、 特開平 1— 1 6 4 6 3 3号 (特許第 2 8 8 7 4 8 1号) 公報を参照。 以下、 特許文献 1という) 。 上記特許文献 1を考慮すれば、 機械式変速機において摩擦クラツチを切断する ことなく変速を達成することが可能となる。
しかしながら、 上記特許文献 1では、 嚙み合いクラッチを離脱させる方向に付 勢しながら同時に内燃機関への燃料供給を増減するようにしており、 嚙み合いク ラッチの離脱、 即ちギヤ抜きがどの時点で行われるのかは明確となっていない。 つまり、 上記特許文献 1では、 ギヤ抜きのタイミングが一定ではなく、 燃料供給 の増減により変動する内燃機関の機関トルク次第では、 伝達トルクが完全に遮断 されていないような状況であってもギヤ抜きが行われてしまう場合が多いと考え られる。
このように、 伝達トルクが完全に遮断されていないような状況でギヤ抜きが行 われることになると、 伝達トルクが比較的高い場合には、 ギヤ抜きによるショッ クが発生し、 乗員が違和感を感じることになり好ましいことではない。 発明の開示
本発明はこのような問題点を解決するためになされたもので、 その目的とする ところは、 ギヤ抜きによるショックなく変速時間を短くすることのできる機械式 変速機の変速制御方法および装置を提供することにある。
上記目的を達成するため、 本発明は、 内燃機関の出力を摩擦クラッチを介して 自動的に多段階に変速して車輪に伝達可能な機械式変速機の変速制御方法におい て、 機械式変速機の変速要求に応じて、 摩擦クラッチにおける伝達トルクが値 0 又はその近傍となるよう、 内燃機関の生ずる機関トルクを制御する工程 (a ) と、 前記工程 ( a) により機関トルクが制御されて伝達トルクが値 0又はその近傍と なったとき、 機械式変速機の変速を許容する工程 (b ) と、 前記工程 (b ) によ り変速が許容されると、 クラッチを接続した状態のままギヤ抜き及びギヤ入れを 行う工程 (c ) とを備えたことを特徴とする。
本発明の変速制御方法によれば、 変速要求に応じて機関トルクが制御され、 そ の結果、 摩擦クラッチにおける伝達トルクが値 0又はその近傍となると、 クラッ チを接続した状態のままギヤ抜き及びギヤ入れが行われるので、 ギヤ抜きによる ショックが発生することもなく変速が短時間で達成される。
本発明において、 前記工程 (C ) は、 クラッチを接続した状態のままギヤ抜き を行った後、 内燃機関の機関回転速度を変更する副工程 (c l ) と、 機関回転速 度が変速後のギヤ段におけるギヤ回転速度と略同期すると、 クラッチを接続した 状態のまま変速後のギヤ段へのギヤ入れを行う副工程 ( c 2 ) とを含むものでよ い。 この好適態様では、 ギヤ抜きが行われると、 機関回転速度が変更されて変速 後のギヤ段におけるギヤ回転速度と同期させられ、 回転速度差のない状態でクラ ツチの断接操作なくギヤ入れがスムーズに実施される。
また、 本発明の変速制御方法は、 摩擦クラッチを自動的に断接可能に構成して なる機械式変速機に適用可能であり、 前記工程 (C ) において、 ギヤ抜き指令を 行った後、 ギヤ抜きが実行されないときには、 摩擦クラッチを自動的に切断して ギヤ抜き及びギヤ入れを行うことができる。 この好適態様では、 ギヤ抜き指令を 行ってもギヤ抜きが実行されなければ、 摩擦クラッチを切断した状態でギヤ抜き 及びギヤ入れが確実に行われ、 変速が確実に実行される。
本発明の変速制御方法において、 前記工程 (a ) で、 内燃機関から摩擦クラッ チまでの第 1の運動方程式と摩擦クラツチから車輪までと車両のアクスルシャフ 卜上における第 2の運動方程式に基づいて伝達トルクが値 0又はその近傍となる ような変更後の機関トルクを求め、 この変更後の機関トルクを指示し、 変更後の 機関トルクが生じるように内燃機関を制御するようにしても良い。 更に、 アクス ルシャフト上における機関回転角加速度がアクスルシャフト上におけるアクスル シャフト回転角加速度と等しいとの条件下で前記第 1及び第 2の運動方程式を変 形し、 前記変形後の第 1及び第 2の運動方程式に基づいて伝達トルクが値 0とな るような変更後の機関トルクを求めても良い。 そして、 摩擦クラッチがフライホ ィールとこれに離接可能なクラッチ板とを有する好適態様では、 内燃機関からフ ライホイールまでの運動方程式を前記第 1の運動方程式として用い、 クラッチ板 から車輪までと車両のアクスルシャフト上における運動方程式を前記第 2の運動 方程式として用いることができる。
また、 前記工程 (a ) において、 前記変更後の機関トルクを指示してから所定 期間が経過したときに伝達トルクが値 0又はその近傍になったとみなすようにし ても良い。
内燃機関は燃料噴射量を調節するコントロールラックを有した燃料噴射ポンプ ユニットを含むもので良く、 この好適態様では、 前記工程 (a ) において、 コン トロールラックを制御して機関トルクを制御することができ、 また、 前記工程 ( b ) において、 コントロールラック位置に基づいて伝達トルクが値 0又はその 近傍になつたか否かを判別することができる。
内燃機関は補助ブレーキを有するもので良く、 この好適態様では、 前記副工程
( c 1 ) において、 内燃機関の機関回転速度が、 前記ギヤ回転速度に対応する目 標機関回転速度を含む所定回転速度範囲の上限値を上回っている場合に、 補助ブ レーキを作動させることができる。
また、 前記副工程 (C 1 ) において、 前記ギヤ回転速度に対応する目標機関回 転速度を内燃機関の特性に応じて補正するようにしても良い。
更に、 変速要求により機械式変速機における高速段から低速段への変速が要求 された場合、 前記工程 (C ) において、 ギヤ入れを開始してから所定期間が経過 した後に機関トルクの復帰を指示するようにしても良い。
上記目的を達成するため、 本発明の機械式変速機の変速制御装置では、 内燃機 関の出力を摩擦クラッチを介して自動的に多段階に変速して車輪に伝達可能な機 械式変速機の変速制御装置において、 前記機械式変速機の変速要求があるとき、 前記摩擦クラツチにおける伝達トルクが値 0又はその近傍となるよう、 前記内燃 機関の生ずる機関トルクを制御する機関トルク制御手段と、 前記機関トルク制御 手段により機関トルクが制御され、 前記伝達トルクが値 0又はその近傍となった とき、 前記機械式変速機の変速を許容する変速許容手段と、 前記変速許容手段に より変速が許容されると、 前記クラッチを接続した状態のままギヤ抜き及びギヤ 入れを行う変速実行手段とを備えたことを特徴としている。
従って、 機械式変速機の変速要求があるときには、 摩擦クラッチにおける伝達 トルクが値 0又はその近傍となるように、 機関トルク制御手段によって内燃機関 の生ずる機関トルクが制御され、 伝達トルクが値 0又はその近傍となると、 変速 許容手段により変速が許容されて変速実行手段によりクラツチを接続した状態の ままギヤ抜き及びギヤ入れが行われる。
これにより、 伝達トルクが確実に値 0又はその近傍となったときに、 クラッチ の断接操作なくギヤ抜きが行われることになり、 ギヤ抜きによるショックが発生 することもなく変速が変速時間短く速やかに達成される。
また、 本発明の機械式変速機の変速制御装置は、 さらに、 前記内燃機関の機関 回転速度を検出する機関回転速度検出手段と、 変速後のギヤ段におけるギヤ回転 速度を検出するギヤ回転速度検出手段とを有するもので良い。 この好適態様にお いて、 前記変速実行手段は、 前記クラッチを接続した状態のままギヤ抜きを行つ た後、 前記内燃機関の機関回転速度を変更し、 該機関回転速度が変速後のギヤ段 におけるギヤ回転速度と略同期すると、 前記クラッチを接続した状態のまま該変 速後のギヤ段へのギヤ入れを行う。
上記好適態様では、 ギヤ抜きが行われると、 内燃機関の機関回転速度が変更さ れて変速後のギヤ段におけるギヤ回転速度と同期させられ、 回転速度差のない状 態でクラッチの断接操作なくギヤ入れがスムーズに実施される。
また、 本発明の機械式変速機の変速制御装置では、 前記摩擦クラッチを自動的 に断接可能に構成しても良い。 この好適態様において、 前記変速実行手段は、 ギ ャ抜き指令を行った後、 ギヤ抜きが実行されないときには、 前記摩擦クラッチを 自動的に切断してギヤ抜き及びギヤ入れを行う。
上記好適態様では、 変速実行手段がギヤ抜き指令を行ってもギヤ抜きが実行さ れないような場合には、 摩擦クラツチを切断した状態でギヤ抜き及びギヤ入れが 確実に行われ、 変速が確実に実行される。
本発明の変速制御装置において、 摩擦クラッチはフライホイールとこれに離接 可能なクラッチ板とを有するもので良く、 この好適態様では、 機関トルク制御手 段は、 内燃機関からフライホイ一ルまでの第 1の運動方程式とクラッチ板から車 輪までと車両のアクスルシャフト上における第 2の運動方程式に基づいて伝達ト ルクが値 0又はその近傍となるような変更後の機関トルクを求め、 変更後の機関 トルクが生じるように内燃機関を制御することができる。
また、 内燃機関は燃料噴射量を調節するコント口一ルラックを有した燃料噴射 ポンプユニットを含むもので良く、 この好適態様では、 機関トルク制御手段は、 コント口一ルラックを制御して機関トルクを制御することができる。
そして、 内燃機関は補助ブレーキを有するもので良く、 この好適態様では、 変 速実行手段は、 内燃機関の機関回転速度が、 ギヤ回転速度に対応する目標機関回 転速度を含む所定回転速度範囲の上限値を上回っている場合に、 補助ブレーキを 作動させる。 図面の簡単な説明
第 1図は、 本発明に係る機械式変速機の変速制御装置が適用される車両 (バス 等) の駆動系の概略構成図、
第 2図は、 本発明の第 1実施例に係るクラツチレスシフト制御の制御ルーチン を示すフローチャートの一部、
第 3図は、 第 2図に続く、 本発明に係るクラッチレスシフト制御の制御ルーチ ンを示すフローチャートの残部、
第 4図は、 第 2図の Ne—FZB制御の制御ルーチンを示すフローチャート、 第 5図は、 第 3図に続く、 本発明に係るクラッチレスシフト制御の制御ルーチ ンを示すフローチャートの残部、 および
第 6図は、 本発明の第 2実施例に係るクラッチレスシフト制御の制御ルーチン を示すフローチャートの一部である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明の一実施形態を説明する。
第 1図には、 本発明に係る機械式変速機の変速制御装置の適用される車両 (バ ス等) の駆動系の全体構成が示されている。 以下、 第 1図に基づき、 本発明に係 る機械式変速機の変速制御装置を含む車両の駆動系の構成を説明する。
同図に示すように、 ディーゼルエンジン (以下、 エンジンという) 1には、 '燃 料を供給するための燃料噴射ポンプユニット (以下、 噴射ポンプという) 6が設 けられている。 この噴射ポンプ 6は、 ポンプ入力軸 (図示せず) を介して伝達さ れるエンジン 1の出力によりポンプを作動させ、 燃料を噴射する装置である。 こ の噴射ポンプ 6には、 燃料噴射量を調節するためのコントロールラック (図示せ ず) が備えられており、 さらに、 コント口一ルラックのラック位置 (コント口一 ルラック位置) S RCを検出するラック位置センサ 9が設けられている。 また、 ポンプ入力軸近傍には、 ポンプ入力軸の回転数を検出し、 この回転数に基づきェ ンジン出力軸 2の回転数、 即ちエンジン回転速度 Neを検出するエンジン回転セ ンサ (機関回転速度検出手段) 8が付設されている。
エンジン 1からは、 エンジン出力軸 2が延びており、 このエンジン出力軸 2は、 クラッチ装置 3を介して歯車式変速機 (以下、 単に変速機という) 4の入力軸 2 0に接続されている。 これにより、 エンジン 1の出力がクラッチ装置 3を介して 変速機 4に伝達され、 該変速機 4において変速が実施される。 変速機 4は、 後退 段の他に例えば前進 5段の変速段 (1速段〜 5速段) を有した機械式変速機であ り、 自動変速のみならず手動変速も可能である。 そして、 クラッチ装置 3は、 変 速機 4が車両の停止発進時において自動的に断接制御されるように構成されてい る。 なお、 クラッチ装置 3は、 後述するように自動変速される際に自動的に断接 制御される場合もある。 クラッチ装置 3は、 フライホイール 1 0にクラッチ板 1 2をプレツシヤスプリ ング 1 1により圧接させて接続状態とする一方、 フライホイール 1 0からクラッ チ板 1 2を離間させることで切断状態とするような通常の機械摩擦式クラッチの 操作を自動で実施可能としたものである。 つまり、 クラッチ板 1 2は、 ァゥタレ バー 1 2 aを介してクラッチ断接用のクラッチァクチユエ一夕、 即ちクラッチァ クチユエ一夕 1 6によって自動操作可能である。
詳しくは、 クラッチァクチユエ一夕 1 6には、 エア供給通路であるエア通路 3 0を介してエアタンク 3 4が接続されている。 従って、 エア通路 3 0を介してェ ァタンク 3 4から作動エアが供給されることにより、 クラッチァクチユエ一夕 1 6が自動的に作動する。 これにより、 クラッチ板 1 2が移動し、 クラッチ装置 3 が自動的に断接操作されることになる。
実際には、 エア通路 3 0には電子コントロールユニット (E C U) 8 0からの 信号に応じて駆動し、 作動エアの流通と遮断とを行う電空比例制御弁 3 1が介装 されており、 駆動信号が E C U 8 0から電空比例制御弁 3 1に供給されると該電 空比例制御弁 3 1を介して作動エアがエアタンク 3 4からクラッチァクチユエ一 タ 1 6に供給されてクラッチァクチユエ一夕 1 6が作動し、 クラッチ装置 3が切 断状態とされる。 一方、 駆動信号の供給が停止されると、 エアタンク 3 4からク ラッチァクチユエ一夕 1 6への作動エアの供給が遮断されるとともにクラッチァ クチユエ一夕 1 6内の作動エアが大気中に排出され、 プレツシヤスプリング 1 1 の作用によりクラッチ装置 3が接続状態とされる。
なお、 クラッチァクチユエ一夕 1 6には、 クラッチ板 1 2の移動量、 即ちクラ ツチストローク量を検出するクラッチストロークセンサ 1 7が取付けられている。 チェンジレバー 6 0は、 変速機 4のセレクトレバーであり、 N (ニュートラ ル) レンジ、 R (リバース) レンジ及び自動変速モードに相当する D (ドライ ブ) レンジが設けられている。
チェンジレバ一 6 0には、 各レンジ位置を検出するセレクト位置センサ 6 2が 設けられており、 このセレクト位置センサ 6 2は E C U 8 0に接続されている。 一方で、 E C U 8 0は、 変速機 4のギヤの嚙み合い、 即ちギヤ位置を切換えるた めのギヤシフトユニット 6 4に接続されている。 従って、 セレクト位置センサ 6 2から位置信号が E C U 8 0に供給されると、 該位置信号に応じて E C U 8 0か らギヤシフトユニット 6 4に駆動信号が出力されることになり、 これによりギヤ シフトュニット 6 4が作動して変速機 4のギヤ位置が選択された所望のセレクト レンジに切換えられる。 そして、 セレクト位置が Dレンジである場合にあっては、 詳細は後述するように、 車両の運転状態に応じて自動変速制御が実施され、 該自 動変速制御に基づいてギヤ位置が切換えられることになる。
ギヤシフトユニット 6 4は、 E C U 8 0からの作動信号により作動する電磁弁 6 6と、 変速機 4内のシフトフォ一ク (図示せず) を作動させるパワーシリンダ (図示せず) とを有している。 そして、 該パワーシリンダは、 上記電磁弁 6 6、 エア通路 6 7を介して前述のエア通路 3 0に接続されている。 つまり、 上記電磁 弁 6 6に E C U 8 0から作動信号が与えられると、 電磁弁 6 6が作動信号に応じ て開閉弁することになり、 パワーシリンダがエアタンク 3 4からの作動エアの供 給によって作動する。 これにより、 変速機 4のギヤの嚙み合い状態が例えば遊転 ギヤを介して適宜変更される。 なお、 ここでは電磁弁 6 6を一つのみ示したが、 実際にはシフトフォークは複数からなり、 該複数のシフトフォークに対応して複 数のパワーシリンダが設けられており、 電磁弁 6 6も該複数のパワーシリンダに 対応して複数設けられている。
変速機 4のギヤシフトュニット 6 4近傍には、 各変速段を検出するギヤ位置セ ンサ 6 8が付設されて E C U 8 0に電気的に接続されており、 このギヤ位置セン サ 6 8からは E C U 8 0に向けて現在のギヤ位置信号、 即ち変速段信号が出力さ れる。
アクセルペダル 7 0にはアクセル開度センサ 7 2が備えられており、 やはり E C U 8 0に電気的に接続されている。 このアクセル開度センサ 7 2からは、 ァク セルペダル 70の踏込量、 即ちアクセル開度情報 0 accが出力される。
また、 変速機 4の出力軸 76には、 出力軸 76の回転速度を検出し出力する回 転速度センサ 78が設けられており、 この回転速度センサ 78もやはり ECU 8 0に電気的に接続されている。 そして、 回転速度センサ 78からの情報に基づき、 ECU 80において車速 Vが演算される。
第 1図中符号 82は、 ECU80とは別に設けられたエンジンコントロールュ ニットを示している。 エンジンコントロールユニット 82は、 噴射ポンプ 6内の 電子ガバナ (図示せず) に対し、 各センサからの情報やアクセル開度情報 0acc 等に応じた E C U 80からの信号を供給する装置であり、 エンジン 1の駆動制御 を行うものである。 即ち、 エンジンコントロールユニット 82から電子ガバナに 指令信号が供給されると、 コントロールラックが作動して燃料の増減操作が実施 され、 エンジントルク Te或いはエンジン回転速度 Neの増減が制御される。 なお、 上記ラック位置センサ 9及びエンジン回転センサ 8からの検出情報は該ェンジン コントロールュニット 82を介して ECU 80に供給される。
また、 エンジン 1の排気マ二ホールド 7から延びる排気管 50には排気ブレー キ 52が設けられている。 排気ブレーキ 52は、 バタフライバルブ 54から構成 されるとともに ECU80に接続されており、 ECU80からの指令に基づきバ 夕フライバルブ 54を閉操作することで排気流量を調節可能に構成されている。 これにより、 エンジン出力及びエンジン回転速度 Neが減操作され、 車両に制動 力が付与される。
ECU80は、 マイクロコンピュータ (CPU) 、 メモリ及び入力出力信号処 理を行うインタフェイス等で構成されており、 該 ECU 80の入力側インタフエ イスには、 上述したように、 クラッチストロークセンサ 17、 セレクト位置セン サ 62、 ギヤ位置センサ 68、 アクセル開度センサ 72、 回転速度センサ 78及 びエンジンコントロールュニット 82等がそれぞれ接続されている。
一方、 ECU80の出力側インタフェイスには、 上述したように電磁弁 66、 エンジンコントロールュニット 82、 クラッチァクチユエ一夕 16及び排気ブレ ーキ 52等の他、 警告ランプ 83が接続されている。
以下、 このように構成された本発明の機械式変速機の変速制御装置の変速制御 について説明する。
先ず、 第 1実施例について説明する。
第 2図乃至第 5図を参照すると、 本発明に係るクラッチレスシフト制御の制御 ルーチンがフロ一チャートで示されており、 以下同フローチャートに基づき説明 する。
第 2図のステップ S 10では、 ECU 80からの変速指令に基づき、 エンジン トルク Teの変更指示を行う (機関トルク制御手段) 。 詳しくは、 ここでは、 ク ラッチ装置 3における伝達トルク、 即ちフライホイール 10とクラッチ板 12間 のクラッチトルク Telが値 0又はその近傍となるようにエンジン 1を制御し、 ェ ンジントルク Teを変更する。
具体的には、 変更すべきエンジントルク Teは、 エンジン 1からフライホイ一 ル 10までの運動方程式 (式 (1)) 、 クラッチ板 12から車輪までと車両のァク スルシャフト上における運動方程式 (式 (2)) に基づき、 クラッチトルク Telが例 えば値 0となるよう以下のように求められる。
(Te - Tel) · if if= Ie · it2 · if2 · d20e/dt 2 …ひ)
Tel - it■ if- (W +sin +λ AV2) R 7?
= (W/g - R2+ (Iw + (If+ If it2) · if2) ) · d20 ax/d t 2 〜(2) ここに、 各パラメ一夕は次の通りである。
g:重力加速度
77 :動力伝達効率
:転がり抵抗係数
λ :空気抵抗係数
I e:エンジン入力軸回転部分慣性モ一メント It:変速機慣性モーメント
I f:デフ入力軸回転部分慣性モーメント
I w:車軸及び同一回転部分慣性モーメント
i t:変速機ギヤ比
if:デフギヤ比
W:車両重量
A:前面投影面積
R:車輪半径
Te:エンジントルク (変速機入力軸上)
Tel:クラッチトルク (変速機入力軸上)
V:車速
d2 Θ e/d t 2:エンジン回転角加速度 (アクスルシャフト上)
d2 Θ ax/d t 2:アクスルシャフト回転角加速度 (アクスルシャフト上) ここで、 クラッチトルク Telが例えば値 0となるようにすると、 d20e/dt 2 = d20ax/dt 2であることから、 上記式 (1)、 (2)は次式 (3)、 (4)のように変形できる。
Te - it' if= I 1 · d20e/dt 2 -(3)
- (W ( +sin +λ AV2) R T?= (12+ 13) · d20e/dt 2 …( ここに、 II、 12、 I 3は、 それぞれ I 1= I e · it2 ' if2 (エンジン慣性) 、 12= (Iw+ ( I f + 11 · it2) · if2) (回転部分慣性) 、 l3=W/g - R 2 (車両重量相当慣性) である。
これより、 d20e/dt 2を消去すると、 エンジントルク Teが次式 (5)のように求 まる。
Te= (一 (W (β+sme) +λ AV2) R 7] Ζ ( it · if) )
• I 1/ (12+ 13) ·'·(5)
そして、 このようにエンジントルク Teが求められたら、 当該エンジントルク Teが得られるようにコントロールラックを制御し、 燃料噴射量を変更する。 次のステップ S I 2では、 クラッチトルク Telが値 0 (ゼロ) 又はその近傍に なったか否かを判別する。 ここでは、 実際のエンジントルク Teが上記式 (5)から 求めたエンジントルク Teに略一致したか否かを判別する。 具体的には、 ラック 位置センサ 9からの情報に基づき、 ラック位置 S RCが所望のラック位置となつ たか否かを判別する。 なお、 トルクセンサを設け、 クラッチトルク Telが値 0 (ゼロ) 又はその近傍であることを直接検出するようにしてもよい。
ステップ S 1 2の判別結果が真 (Y e s ) で、 ラック位置 S RCが所望のラッ ク位置となり、 クラッチトルク Telが値 0又はその近傍になったと判定された場 合には、 ステップ S 1 6に進む (変速許容手段) 。 一方、 ステップ S 1 2の判別 結果が偽 (N o ) で、 ラック位置 S RCが所望のラック位置となっておらず、 未 だクラツチトルク Telが値 0又はその近傍になっていないと判定された場合には、 ステップ S 1 4に進み、 エンジントルク Teの変更指示から所定期間 t lが経過 するまで燃料噴射量の変更を継続する。
ステップ S 1 4において、 所定期間 t lは、 例えばコントロールラックの応答 遅れに対応する時間であり、 所定期間 t l経過していれば、 既にクラッチトルク Telが値 0又はその近傍になったとみなすことができる。 従って、 ステップ S 1 4の判別結果が真 (Y e s ) で、 所定期間 t l経過したと判定された場合には、 上記同様にステップ S 1 6に進む。
ステップ S 1 6では、 変速機 4のギヤ抜きの指示を行う (変速実行手段) 。 上 述したように、 クラッチトルク Telが値 0又はその近傍になっていれば、 フライ ホイール 1 0とクラッチ板 1 2間、 ひいては変速機 4のギヤ間においては伝達ト ルクは生じておらず、 クラツチ装置 3を断操作しなくてもギヤはショックなく容 易に抜けるはずである。 従って、 ここでは、 クラッチ装置 3を断操作することな くフライホイール 1 0とクラッチ板 1 2とを接続したまま、 ギヤシフトュニット 6 4によってギヤ抜きを行う。
ステップ S 1 8では、 ギヤが抜けたか否かを判別する。 ここでは、 ギヤ位置セ ンサ 6 8からの情報に基づき、 ギヤが抜けて変速機 4においてニュートラル状態 が成立しているか否かを判別する。 判別結果が偽 (N o ) で、 ギヤが抜けていな いと判定された場合には、 第 3図のステップ S 3 0に進む。
ステップ S 3 0では、 ギヤ抜きの指示後、 所定期間 t 3が経過したか否かを判 別する。 ここに、 所定期間 t 3は、 例えばシフトフォークの応答遅れを越える時 間であり、 通常であれば所定期間 t 3経過するまでにギヤは抜けるはずである。 従って、 判別結果が偽 (N o ) で所定期間 t 3が経過するまでの間はステップ S 1 8の判別を継続してギヤが抜けるのを待つ。
一方、 ステップ S 3 0の判別結果が真 (Y e s ) で、 所定期間 t 3が経過した と判別された場合には、 何らかの要因により、 クラッチ装置 3を接続したままで はギヤが抜けないような状況と考えられる。 このような状況としては、 例えば、 上記式 (5)においてパラメータが正確ではなくエンジントルク Teが正しく求めら れていない場合、 或いはラック位置センサ 9に異常が生じているような場合が考 えられる。 従って、 この場合には、 ステップ S 3 2に進み、 クラッチァクチユエ —夕 1 6を作動させてクラッチ装置 3を自動的に断操作 (自動クラッチ断) し、 ステップ S 3 4に進む。
ステップ S 3 4では、 クラッチ装置 3を自動的に断操作した後、 所定期間 t 4 が経過したか否かを判別する。 ここに、 所定期間 t 4は、 例えばクラッチァクチ ユエ一夕 1 6の応答遅れを越える時間であり、 通常であれば所定期間 t 4経過す るまでにクラッチ装置 3が切断状態とされ、 ギヤは抜けるはずである。 従って、 判別結果が偽 (N o ) で所定期間 t 4が経過するまでの間はステップ S 1 8の判 別を継続してギヤが抜けるのを待つ。
一方、 ステップ S 3 4の判別結果が真 (Y e s ) で、 所定期間 t 4が経過した と判別された場合には、 何らかの要因により、 ギヤ抜き自体が達成できないよう な状況と考えられる。 従って、 この場合には、 変速機 4が故障していると判断し、 ステップ S 3 6に進み、 一切の自動変速制御を中止して警告ランプ 8 3を点灯さ せ、 故障を運転者に知らせる。
ステップ S 1 8の判別結果が真 (Y e s ) で、 ギヤが抜けたと判定された場合 には、 ステップ S 2 0に進む。
ステップ S 2 0では、 クラッチ装置 3が自動的に断操作されているか否かを判 別する。 判別結果が偽 (N o ) であってクラッチ装置 3が自動的に断操作されて いない場合には、 ステップ S 2 4に進む。 一方、 上記のようにクラッチ装置 3を 自動的に断操作したような場合には、 判別結果は真 (Y e s ) であり、 この場合 には、 ステップ S 2 2においてクラッチ装置 3を接続操作した後、 ステップ S 2 4に進む。
ステップ S 2 4では、 一旦所定期間 t 2が経過するのを待ち、 その後、 ステツ プ S 2 6において、 エンジン回転速度 Neのフィードバック制御 (Ne— F ZB制 御) を実施する。 この Ne—F/Β制御は、 第 4図にサブルーチンを示すように、 エンジン回転速度 Neを変速後のギヤ段におけるギヤ回転速度に略同期させるも のである。
Ne— FZB制御では、 ステップ S 4 0において、 Ne— FZB制御の開始後、 所定期間 t 5以内か否かを判別する。 Ne— F/B制御を開始した直後にあって は判別結果は真 (Y e s ) であり、 ステップ S 4 2に進む。
ステップ S 4 2では、 エンジン回転速度 Neが変速後のギヤ段におけるギヤ回 転速度、 即ち目標 Neの近傍にあるか否かを判別する (Ne=目標 Ne土 N1) 。 なお、 変速後のギヤ段におけるギヤ回転速度、 即ち目標 Neは、 回転速度センサ
7 8により検出される出力軸 7 6の回転速度とギヤ比とから容易に算出される (ギヤ回転速度検出手段) 。 判別結果が偽 (N o ) で、 エンジン回転速度 Neが 変速後の目標 Ne或いはその近傍にないと判定された場合には、 ステップ S 4 4 に進む。
ステップ S 4 4では、 エンジン回転速度 Neが変速後の目標 Neよりも所定値 N 2だけ大きい回転速度の範囲内であるか否かを判別する (Ne≤目標 Ne + N2) 。 判別結果が偽 (No) の場合には、 エンジン回転速度 Neが高すぎると判断でき、 この場合にはステップ S 46に進み、 補助ブレーキを ONにする。 具体的には、 排気ブレーキ 52を閉作動させてエンジン回転速度 Neを低下させる。
一方、 ステップ S 44の判別結果が真 (Ye s) の場合には、 エンジン回転速 度 Neはそれほど高くない状況と判断でき、 この場合にはステップ S 48に進み、 補助ブレーキを OFFとし、 ステップ S 50に進む。
エンジン回転速度 Neを目標 Neとすべく制御する場合、 エンジン 1に対してこ の目標 Neをそのまま指示すると、 エンジン特性によってはエンジン回転速度 Ne が目標 Neに達するのに時間を要したり、 エンジン回転速度 Neと目標 Neとの間 の偏差が生じたままになったりする。 そこで、 ステップ S 50では、 目標 Ne 補正指示を行い、 当該補正された目標 Neとなるようエンジン制御を行うように する。 これにより、 短い時間で偏差なくエンジン回転速度 Neを目標 Neに制御す ることができる。
一方、 上記ステップ S 42の判別結果が真 (Ye s) で、 エンジン回転速度 N eが変速後の目標 Ne或いはその近傍にあると判定された場合、 即ちエンジン回転 速度 Neが変速後のギヤ段における目標 Neと略同期していると判定された場合に は、 ステップ S 52に進んで補助ブレーキを OFFとし、 ステップ S 54におい て、 Ne— FZB制御の開始後、 所定期間 t 6が経過したか否かを判別する。
そして、 ステップ S 54の判別結果が偽 (No) で、 所定期間 t6が未だ経過 していない間はステップ S 56において目標 Neの指示を行い、 判別結果が真 (Ye s) で所定期間 t 6経過した場合、 或いは、 ステップ S 40の判別結果が 偽 (No) で所定期間 t 5が経過した場合には、 Ne— FZB制御を終了し、 第 2図のステップ S 28に進む。
ステップ S 28では、 改めて補助ブレーキを OFFとし、 第 5図のステップ S 60に進む。
ステップ S 60では、 エンジン回転速度 Neが変速後のギヤ段における目標 Ne 或いはその近傍にあると判定されたことを受けて、 ギヤシフト (ギヤ入れ) の指 示を行う。 エンジン回転速度 Neが変速後のギヤ段における目標 Neと略同期して いれば、 クラッチ装置 3を断操作しなくてもギヤはスムーズに入るはずである。 従って、 ここでは、 クラッチ装置 3を断操作することなくフライホイール 1 0と クラッチ板 1 2とを接続したまま、 ギヤシフトユニット 6 4によってギヤシフト (ギヤ入れ) を行う。
ステップ S 6 2では、 ギヤシフトが完了したか否かを判別する。 ここでは、 ギ ャ位置センサ 6 8からの情報に基づき、 ギヤシフトが達成されてギヤ段が変速後 のギヤ段に切り換わっているか否かを判別する。 判別結果が偽 (N o ) で、 ギヤ シフトが達成されていないと判定された場合には、 ステップ S 6 4に進み、 ギヤ シフトを指示した後、 所定期間 t 7が経過したか否かを判別する。 ここに、 所定 期間 t 7は、 上記所定期間 t 3同様に例えばシフトフオークの応答遅れを越える 時間であり、 通常であれば所定期間 t 7経過するまでにギヤは入るはずである。 従って、 判別結果が偽 (N o ) で所定期間 t 7が経過するまでの間はステップ S 6 2の判別を継続してギヤが入るのを待つ。
一方、 ステップ S 6 4の判別結果が真 (Y e s ) で、 所定期間 t 7が経過した と判別された場合には、 何らかの要因により、 ギヤシフト自体が達成できないよ うな状況と考えられる。 従って、 この場合には、 変速機 4が故障していると判断 し、 ステップ S 6 6に進み、 シフト指示を中止して警告ランプ 8 3を点灯させ、 故障を運転者に知らせる。
一方、 ステップ S 6 2の判別結果が真 (Y e s ) で、 ギヤシフトが完了したと 判定された場合には、 ステップ S 6 8に進む。
ステップ S 6 8では、 シフトダウン時である場合において、 所定期間 t 8が経 過したか否かを判別する。 判別結果が偽 (N o) の場合には、 所定期間 t 8が経 過するのを待つ。 一方、 判別結果が真 (Y e s ) の場合には、 ステップ S 7 0に 進む。 ステップ S 7 0では、 ギヤシフトが完了し、 変速が問題なく実施されたことを 受け、 警告ランプ 8 3を消灯状態に保持する。 そして、 次のステップ S 7 2にお いて、 ギヤシフトが完了したことを受けて、 ステップ S 1 0において変更してい たエンジントルク Teの復帰指示を行い、 エンジン制御を通常の制御状態に戻し てエンジントルク Teを復帰させる。
シフトダウン時 (キックダウンシフト以外のアクセルを踏み込んでいない状態 でのシフトダウン時) には、 エンジン回転速度 Neを上昇させるためにエンジン トルク Teを増大させた状態にあり、 この状態でギヤシフト (ギヤ入れ) を行つ た後直ぐにエンジントルク Teの復帰指示を行うと、 エンジントルク増大制御が 停止されてエンジントルク Teが急変動することになり、 ギヤが抜ける可能性が ある。 そこで、 シフトダウン時である場合には、 ステップ S 6 8において所定期 間 8が経過したか否かを判別し、 判別結果が真 (Y e s ) で所定期間 t 8が経 過した後、 ステップ S 7 0を経てステップ S 7 2においてエンジントルク Teの 復帰指示を行うようにする。 これにより、 エンジントルク Teの急変動が抑制さ れ、 ギヤ抜けが防止される。
なお、 シフトアップ時にあっては、 エンジン回転速度 Neが減少されるために エンジントルク Teを増大することはなく、 ギヤシフト (ギヤ入れ) を行った後 即座にエンジントルク Teの復帰を行ってもギヤが抜けるおそれはない。 従って、 シフトアツプ時には、 所定期間 t 8が経過するのを待つことなくステップ S 7 2 に進み、 即座にエンジントルク Teの復帰指示を行うようにする。
このようにして一連のクラッチレスシフト制御が終了する。
次に、 第 2実施例について説明する。
第 6図を参照すると、 本発明の第 2実施例に係るクラッチレスシフト制御の制 御ルーチンがフ口一チヤ一卜で示されており、 以下同フローチヤ一トに基づき第 2実施例について説明する。 なお、 上記第 1実施例と同一部分については同一の ステップ符号を付して説明を省略し、 ここでは第 1実施例と異なる部分について のみ説明する。
ステップ S I 0を経て、 ステップ S 12' では、 変速指令に基づきエンジント ルク Teを変更してから所定期間 toが経過したか否かを判別する。 つまり、 ェ ンジントルク Teが求められ、 当該エンジントルク Teが得られるようにコント口 ールラックを制御して燃料噴射量を変更すると、 その後所定期間 t0も経過すれ ば、 クラッチトルク Telは値 0 (ゼロ) 又はその近傍になったとみなすことがで きる。 従って、 判別結果が真 (Ye s) で、 所定期間 toが経過したと判定され た場合には、 ステップ S 16に進んでギヤ抜きの指示を行う。 この場合にも、 ク ラッチ装置 3を断操作しなくてもギヤはショックなく容易に抜けるはずである。 一方、 ステップ S 12' の判別結果が偽 (No) で、 所定期間 tOが経過して いないと判定された場合には、 所定期間 tOが経過するのを待つ。
ステップ S 16以降ステップ S 24までを実行した後、 ステップ S 26, では、 上記第 4図の Ne— Fノ B制御に代えて簡易的な Fノ B制御を行う。
具体的には、 シフトアップ時にあっては、 ステップ S 26, において補助ブレ ーキを ONとし、 ステップ S 27, において、 エンジン回転速度 Neが変速後の ギヤ段における目標 Neよりも所定値 N3だけ大きい回転速度の範囲内であるか 否かを判別する (Ne≤目標 Ne + N3) 。 判別結果が偽 (No) の場合には、 ェ ンジン回転速度 Neが高すぎると判断でき、 この場合にはステップ S 29 ' を経 てステップ S 26' に戻り、 補助ブレーキを ONにし続ける。 つまり、 排気ブレ ーキ 52を閉作動させてエンジン回転速度 Neを低下させ続ける。
一方、 ステップ S 27' 或いはステップ S 29' の判別結果が真 (Ye s) の 場合には、 エンジン回転速度 Neが変速後のギヤ段における目標 Neよりも所定値 N3だけ大きい回転速度の範囲内であり、 エンジン回転速度 Neが変速後のギヤ 段における目標 Neと略同期していると判定し、 補助ブレーキを OFFとし、 第 3図のステップ S 30以降に進む。
このように、 本発明の機械式変速機の変速制御装置では、 クラッチ装置 3のク ラッチトルク Telが値 0 (ゼロ) 又はその近傍になるようにエンジントルク Te を上記式 (5)から求め、 当該エンジントルク Teのもとで、 クラッチ装置 3の断接 操作なくギヤ抜きを行うようにしている。 従って、 ギヤ抜きによるショックの発 生もなく変速時間を短く変速を速やかに達成させることができる。
さらに、 ギヤ抜き後、 エンジン回転速度 Neが変速後のギヤ段における目標 Ne と略同期している状態でギヤ入れを行うようにしており、 これにより、 併せてク ラツチ装置 3の断接操作なくギヤ入れをスムーズに実施することができる。
また、 式 (5)においてエンジントルク Teが正しく求められていない場合、 或い はラック位置センサ 9に異常が生じているような場合には、 通常通りクラッチ装 置 3を切断して変速を行うようにしており、 これによりギヤ抜き及びギヤ入れを 確実に行うことができる。
なお、 上記実施形態では、 自動変速モードでの変速指令に対応してクラッチレ スシフト制御を行うようにしたが、 これに限定されるものではなく、 例えば、 運 転者の変速操作に応じて出力される変速指令に応じてクラッチレスシフト制御を 行うようにしてもよい。 この場合、 運転者によってクラッチペダル操作が行われ るときには、 このペダル操作を優先してクラッチが断接作動されるようにすれば よい。
また、 上記実施形態では、 エンジン形式としてディーゼルエンジンを用い、 ェ ンジントルク Te及びエンジン回転速度 Neの制御手段として噴射ポンプ 6により 燃料噴射量を制御する構成を採用するようにしたが、 これらに限定されるもので はなく、 例えば、 エンジン形式としてはガソリンエンジンであってもよく、 また、 吸入空気量、 燃料噴射弁による燃料噴射量、 点火時期等を調整することによりェ ンジントルク Te及びエンジン回転速度 Neを制御可能に構成するようにしてもよ い。

Claims

請 求 の 範 囲
1 . 内燃機関の出力を摩擦クラッチを介して自動的に多段階に変速して車輪に伝 達可能な機械式変速機の変速制御方法において、
前記機械式変速機の変速要求に応じて、 前記摩擦クラッチにおける伝達トルク が値 0又はその近傍となるよう、 前記内燃機関の生ずる機関トルクを制御するェ 程 ) と、
前記工程 (a) により機関トルクが制御されて前記伝達トルクが値 0又はその 近傍となったとき、 前記機械式変速機の変速を許容する工程 (b ) と、
前記工程 ( b) により変速が許容されると、 前記クラッチを接続した状態のま まギヤ抜き及びギヤ入れを行う工程 (c ) とを備えたことを特徴とする。
2 . 前記工程 (c ) は、 前記クラッチを接続した状態のままギヤ抜きを行った後、 前記内燃機関の機関回転速度を変更する副工程 ( c 1 ) と、 該機関回転速度が変 速後のギヤ段におけるギヤ回転速度と略同期すると、 前記クラッチを接続した状 態のまま該変速後のギヤ段へのギヤ入れを行う副工程 (c 2 ) とを含むことを特 徴とする請求の範囲第 1項記載の機械式変速機の変速制御方法。
3 . 前記摩擦クラッチを自動的に断接可能に構成してなる機械式変速機に適用さ れ、 前記工程 ( C ) において、 ギヤ抜き指令を行った後、 ギヤ抜きが実行されな いときには、 前記摩擦クラッチを自動的に切断してギヤ抜き及びギヤ入れを行う ことを特徴とする請求の範囲第 1項または第 2項記載の機械式変速機の変速制御 方法。
4. 前記工程 (a ) において、 前記内燃機関から前記摩擦クラッチまでの第 1の 運動方程式と前記摩擦クラッチから車輪までと車両のアクスルシャフト上におけ る第 2の運動方程式に基づいて前記伝達トルクが値 0又はその近傍となるような 変更後の機関トルクを求め、 この変更後の機関トルクを指示し、 前記変更後の機 関トルクが生じるように前記内燃機関を制御することを特徴とする請求の範囲第 1項記載の機械式変速機の変速制御方法。
5 . 前記アクスルシャフト上における機関回転角加速度が前記アクスルシャフト 上におけるアクスルシャフト回転角加速度と等しいとの条件下で前記第 1の運動 方程式を変形し、 前記工程 (a ) において、 前記変形後の第 1の運動方程式に基 づいて前記伝達トルクが値 0となるような前記変更後の機関トルクを求めること を特徴とする請求の範囲第 4項記載の機械式変速機の変速制御方法。
6 . 前記アクスルシャフト上における機関回転角加速度が前記アクスルシャフト 上におけるアクスルシャフト回転角加速度と等しいとの条件下で前記第 2の運動 方程式を変形し、 前記工程 (a) において、 前記変形後の第 2の運動方程式に基 づいて前記伝達トルクが値 0となるような前記変更後の機関トルクを求めること を特徴とする請求の範囲第 4項記載の機械式変速機の変速制御方法。
7 . 前記摩擦クラッチは、 フライホイールとこれに離接可能なクラッチ板とを有 し、
前記内燃機関から前記フライホイールまでの運動方程式を前記第 1の運動方程 式として用い、 前記クラッチ板から車輪までと車両のアクスルシャフト上におけ る運動方程式を前記第 2の運動方程式として用いることを特徴とする請求の範囲 第 4項記載の機械式変速機の変速制御方法。
8 . 前記工程 (a) において、 前記変更後の機関トルクを指示してから所定期間 が経過したときに前記伝達トルクが値 0又はその近傍になつたとみなすことを特 徴とする請求の範囲第 4項記載の機械式変速機の変速制御方法。
9 . 前記内燃機関は、 燃料噴射量を調節するコント口一ルラックを有した燃料噴 射ポンプュニットを含み、
前記工程 (a) において、 前記コントロールラックを制御して前記機関トルク を制御することを特徴とする請求の範囲第 1項記載の機械式変速機の変速制御方 法。
1 0 . 前記工程 (b) において、 コントロールラック位置に基づいて前記伝達ト ルクが値 0又はその近傍になったか否かを判別することを特徴とする請求の範囲 第 9項記載の機械式変速機の変速制御方法。
1 1 . 前記内燃機関は補助ブレーキを有し、
前記副工程 (c 1 ) において、 前記内燃機関の機関回転速度が、 前記ギヤ回転 速度に対応する目標機関回転速度を含む所定回転速度範囲の上限値を上回ってい れば、 前記補助ブレーキを作動させることを特徴とする請求の範囲第 2項記載の 機械式変速機の変速制御方法。
1 2 . 前記副工程 (c l ) において、 前記ギヤ回転速度に対応する目標機関回転 速度を前記内燃機関の特性に応じて補正することを特徴とする請求の範囲第 2項 記載の機械式変速機の変速制御方法。
1 3 . 前記変速要求により前記機械式変速機における高速段から低速段への変速 が要求された場合、 前記工程 (C ) において、 ギヤ入れを開始してから所定期間 が経過した後に機関トルクの復帰を指示することを特徴とする請求の範囲第 1項 記載の機械式変速機の変速制御方法。
1 4. 前記内燃機関は補助ブレーキを有し、
前記変速要求により前記機械式変速機における低速段から高速段への変速が要 求された場合、 前記副工程 (c l ) において、 前記内燃機関の機関回転速度が、 前記ギヤ回転速度に対応する目標機関回転速度を含む所定回転速度範囲の上限値 を上回っていれば前記補助ブレーキを作動させることを特徴とする請求の範囲第 2項記載の機械式変速機の変速制御方法。
1 5 . 内燃機関の出力を摩擦クラッチを介して自動的に多段階に変速して車輪に 伝達可能な機械式変速機の変速制御装置において、
前記機械式変速機の変速要求があるとき、 前記摩擦クラツチにおける伝達トル クが値 0又はその近傍となるよう、 前記内燃機関の生ずる機関トルクを制御する 機関トルク制御手段と、
前記機関トルク制御手段により機関トルクが制御され、 前記伝達トルクが値 0 又はその近傍となったとき、 前記機械式変速機の変速を許容する変速許容手段と、 前記変速許容手段により変速が許容されると、 前記クラツチを接続した状態の ままギヤ抜き及びギヤ入れを行う変速実行手段と、
を備えたことを特徴とする機械式変速機の変速制御装置。
1 6 . さらに、 前記内燃機関の機関回転速度を検出する機関回転速度検出手段と、 変速後のギヤ段におけるギヤ回転速度を検出するギヤ回転速度検出手段とを有し、 前記変速実行手段は、 前記クラッチを接続した状態のままギヤ抜きを行った後、 前記内燃機関の機関回転速度を変更し、 該機関回転速度が変速後のギヤ段におけ るギヤ回転速度と略同期すると、 前記クラッチを接続した状態のまま該変速後の ギヤ段へのギヤ入れを行うことを特徴とする、 請求の範囲第 1 5項記載の機械式 変速機の変速制御装置。
1 7 . 前記摩擦クラッチは自動的に断接可能に構成され、 前記変速実行手段は、 ギヤ抜き指令を行った後、 ギヤ抜きが実行されないときには、 前記摩擦クラッチ を自動的に切断してギヤ抜き及びギヤ入れを行うことを特徴とする、 請求の範囲 第 1 5項または第 1 6項記載の機械式変速機の変速制御装置。
1 8 . 前記摩擦クラッチは、 フライホイールとこれに離接可能なクラッチ板とを 有し、
前記機関トルク制御手段は、 前記内燃機関から前記フライホイールまでの第 1 の運動方程式と前記クラッチ板から車輪までと車両のアクスルシャフト上におけ る第 2の運動方程式に基づいて前記伝達トルクが値 0又はその近傍となるような 変更後の機関トルクを求め、 前記変更後の機関トルクが生じるように前記内燃機 関を制御することを特徴とする請求の範囲第 1 5項記載の機械式変速機の変速制 御装置。
1 9 . 前記内燃機関は、 燃料噴射量を調節するコントロールラックを有した燃料 噴射ポンプュニットを含み、
前記機関トルク制御手段は、 前記コントロールラックを制御して前記機関トル クを制御することを特徴とする請求の範囲第 1 5項記載の機械式変速機の変速制 御装置。
2 0 . 前記内燃機関は補助ブレーキを有し、
前記変速実行手段は、 前記内燃機関の機関回転速度が、 前記ギヤ回転速度に対 応する目標機関回転速度を含む所定回転速度範囲の上限値を上回っていれば、 前 記補助ブレーキを作動させることを特徴とする請求の範囲第 1 6項記載の機械式 変速機の変速制御方法。
PCT/JP2003/014180 2002-11-08 2003-11-07 機械式変速機の変速制御方法及び装置 WO2004041581A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10393681T DE10393681T5 (de) 2002-11-08 2003-11-07 Getriebesteuerverfahren und -vorrichtung für ein mechanisches Getriebe
US10/533,448 US20060047395A1 (en) 2002-11-08 2003-11-07 Method and device for controlling gear shift of mechanical transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002325386A JP4099653B2 (ja) 2002-11-08 2002-11-08 機械式変速機の変速制御装置
JP2002-325386 2002-11-08

Publications (1)

Publication Number Publication Date
WO2004041581A1 true WO2004041581A1 (ja) 2004-05-21

Family

ID=32310472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014180 WO2004041581A1 (ja) 2002-11-08 2003-11-07 機械式変速機の変速制御方法及び装置

Country Status (6)

Country Link
US (1) US20060047395A1 (ja)
JP (1) JP4099653B2 (ja)
KR (1) KR20050061602A (ja)
CN (1) CN100497058C (ja)
DE (1) DE10393681T5 (ja)
WO (1) WO2004041581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699750B2 (en) * 2005-01-13 2010-04-20 Zf Friedrichshafen Ag Method for controlling a manual transmission in the event of a disorderly engine behavior

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634724B2 (ja) * 2004-02-12 2011-02-16 Udトラックス株式会社 自動変速装置
CN1926019B (zh) 2004-07-01 2012-02-29 雅马哈发动机株式会社 跨骑式车辆
WO2006003879A1 (ja) 2004-07-01 2006-01-12 Yamaha Hatsudoki Kabushiki Kaisha 作動力伝達機構および鞍乗型車両
US8403093B2 (en) 2004-07-26 2013-03-26 Yamaha Hatsudoki Kabushiki Kaisha Speed change controller for saddle-ride type vehicles
JP4608298B2 (ja) 2004-12-10 2011-01-12 ヤマハ発動機株式会社 変速制御装置、変速制御方法及び鞍乗型車両
GB0609333D0 (en) 2006-05-11 2006-06-21 Zeroshift Ltd Engagement member actuator control
GB0510129D0 (en) * 2005-05-18 2005-06-22 Zeroshift Ltd Sequential hub layout
JP5089056B2 (ja) 2006-02-24 2012-12-05 ヤマハ発動機株式会社 クラッチ異常検出装置、自動クラッチ装置および鞍乗型車両
ES2389050T3 (es) * 2006-02-24 2012-10-22 Yamaha Hatsudoki Kabushiki Kaisha Controlador de transmisión automática, vehículo que incluye el controlador de transmisión automática y proceso de cambio de marchas
JP4931464B2 (ja) 2006-04-18 2012-05-16 ヤマハ発動機株式会社 クラッチ制御装置および車両
JP4873543B2 (ja) 2006-04-18 2012-02-08 ヤマハ発動機株式会社 自動変速制御装置および車両
JP5121159B2 (ja) 2006-04-18 2013-01-16 ヤマハ発動機株式会社 自動変速制御装置および車両
TWI293603B (en) 2006-04-18 2008-02-21 Yamaha Motor Co Ltd Shift actuator, vehicle, and method of integrating vehicle
DE102006054602A1 (de) * 2006-11-20 2008-05-21 Robert Bosch Gmbh Verfahren zum Wechsel eines Betriebsmodus einer Brennkraftmaschine in einem Fahrzeug
GB0623292D0 (en) * 2006-11-22 2007-01-03 Zeroshift Ltd Transmission system
DE102007010295B4 (de) * 2007-03-02 2020-09-03 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Antriebsstrangs eines Kraftfahrzeugs
JP5186960B2 (ja) * 2008-03-14 2013-04-24 トヨタ自動車株式会社 車両の制御装置
CN101725708B (zh) * 2008-10-24 2013-09-04 通用汽车环球科技运作公司 一种用于在机电式变速器内控制液压控制系统的液压管线压力的方法
DE112009004440B4 (de) 2009-03-05 2015-02-19 Toyota Jidosha Kabushiki Kaisha Gangwechsel-Steuervorrichtung für ein Fahrzeug
US8255133B2 (en) * 2009-06-05 2012-08-28 Toyota Motor Engineering & Manufacturing North America, Inc. Shift timing indicator system for vehicular manual transmission
GB201109100D0 (en) 2011-05-27 2011-07-13 Zeroshift Ltd Transmission system
CN104246317B (zh) * 2012-04-25 2016-02-24 本田技研工业株式会社 自动变速器的控制装置
WO2014102869A1 (ja) * 2012-12-27 2014-07-03 川崎重工業株式会社 電動車両
FR3018551B1 (fr) * 2014-03-14 2022-04-15 Renault Sas Procede de controle de l'arret d'un moteur thermique
EP3350485B1 (en) * 2015-09-16 2020-07-22 Volvo Truck Corporation A vehicle powertrain and a method for gear upshifting
DE102016001399B4 (de) * 2016-02-06 2020-09-17 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Antriebsvorrichtung, Antriebsvorrichtung
JP6822307B2 (ja) * 2017-05-12 2021-01-27 いすゞ自動車株式会社 変速制御装置
FR3073479B1 (fr) * 2017-11-15 2021-11-12 Renault Sas Procede et systeme de commande d'une transmission automatique sans embrayage pour vehicule automobile a propulsion hybride
JP2020097963A (ja) * 2018-12-17 2020-06-25 日野自動車株式会社 車両制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204358A (en) * 1981-06-09 1982-12-15 Mazda Motor Corp Speed change controller of gear speed changer for vehicle
JPS57204359A (en) * 1981-06-09 1982-12-15 Mazda Motor Corp Speed change controller of gear speed changer for vehicle
JPS6353410B2 (ja) * 1981-06-09 1988-10-24 Matsuda Kk
JPH0422130Y2 (ja) * 1984-07-30 1992-05-20
JPH0447479Y2 (ja) * 1985-03-29 1992-11-10
JP3109037B2 (ja) * 1992-06-19 2000-11-13 本田技研工業株式会社 変速機の変速制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856628A (en) * 1987-11-17 1989-08-15 Hino Jidosha Kogyo Kabushiki Kaisha Automated mechanical transmission system for use in commercial vehicles
EP0573901B1 (en) * 1992-06-10 1996-04-17 Honda Giken Kogyo Kabushiki Kaisha System for controlling automobile transmission
SE502807C2 (sv) * 1994-05-13 1996-01-22 Scania Cv Ab Förfarande för styrning av motormomentet vid växling
SE9600454L (sv) * 1996-02-07 1997-04-14 Scania Cv Ab Förfarande för korrigering av motormomentet vid växling
DE19646069A1 (de) * 1996-11-08 1998-05-14 Zahnradfabrik Friedrichshafen Verfahren zum Betrieb einer Antriebseinheit für Kraftfahrzeuge
CN1091416C (zh) * 1997-01-29 2002-09-25 倪高松 汽车自动变速方法及装置
SE9702611L (sv) * 1997-07-07 1998-06-08 Scania Cv Ab Förfarande vid växling i ett motorfordon
GB2329713A (en) * 1997-09-30 1999-03-31 Ford Global Tech Inc IC engine net torque calculator
US6379283B1 (en) * 2000-04-18 2002-04-30 Ford Global Technologies, Inc. Torque estimation method for an internal combustion engine
JP3931033B2 (ja) * 2000-12-01 2007-06-13 株式会社日立製作所 自動変速機の制御装置および制御方法
DE10116545B4 (de) * 2001-04-03 2005-04-21 Siemens Ag Verfahren zum Steuern eines automatischen Getriebes und für ein solches Verfahren geeignete Steuerung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204358A (en) * 1981-06-09 1982-12-15 Mazda Motor Corp Speed change controller of gear speed changer for vehicle
JPS57204359A (en) * 1981-06-09 1982-12-15 Mazda Motor Corp Speed change controller of gear speed changer for vehicle
JPS6353410B2 (ja) * 1981-06-09 1988-10-24 Matsuda Kk
JPH0422130Y2 (ja) * 1984-07-30 1992-05-20
JPH0447479Y2 (ja) * 1985-03-29 1992-11-10
JP3109037B2 (ja) * 1992-06-19 2000-11-13 本田技研工業株式会社 変速機の変速制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7699750B2 (en) * 2005-01-13 2010-04-20 Zf Friedrichshafen Ag Method for controlling a manual transmission in the event of a disorderly engine behavior

Also Published As

Publication number Publication date
KR20050061602A (ko) 2005-06-22
US20060047395A1 (en) 2006-03-02
JP2004155387A (ja) 2004-06-03
CN100497058C (zh) 2009-06-10
DE10393681T5 (de) 2005-10-27
JP4099653B2 (ja) 2008-06-11
CN1711183A (zh) 2005-12-21

Similar Documents

Publication Publication Date Title
WO2004041581A1 (ja) 機械式変速機の変速制御方法及び装置
JP3823728B2 (ja) 自動変速システム
JP4461997B2 (ja) エンジンの制御装置
JP2000158976A (ja) 車両の駆動系システムの制御方法、車両のマスタ―摩擦クラッチの制御方法、および車両の駆動系システム
US8260510B2 (en) Control apparatus and control method for transmission
JPH0754877A (ja) クラッチの切り離しを制御する装置および方法
EP1747958B1 (en) Preventing over-rotation of a vehicle engine during gear shift
JP4171684B2 (ja) 車両用自動変速機の変速制御装置
JP2000205400A (ja) 自動変速装置の自動アップシフト操作の制御方法及び制御システム
JP2000205397A (ja) 自動ダウンシフト制御方法およびそのための制御装置
WO2005075239A1 (ja) 車両用動力伝達装置のエンジン制御装置
JP2001304305A (ja) 機械式自動変速機の変速制御装置
US20040087413A1 (en) Automatic transmission control method and automatic transmission controller
JP2001271684A (ja) エンジン速度の制御方法及び制御システム
JPH08184368A (ja) 車両用油圧作動式変速機の油圧制御装置
JP2004125001A (ja) 車両用自動変速機のクラッチ制御装置
JP2006521519A (ja) クラッチの係合を制御するためのシステムと方法
EP2565429B1 (en) Vehicle engine controller
JP3752959B2 (ja) 機械式自動変速機の変速制御装置
JP3142171B2 (ja) 車両用自動変速機の変速制御方法
JP4078700B2 (ja) 車両におけるクラッチの制御方法
JP3620356B2 (ja) 車両制御装置とそれに用いるエンジン制御用マイクロコンピュータ
JP2001304002A (ja) 機械式自動変速機の変速制御装置
JP3591382B2 (ja) 車両制御装置とそれに用いるエンジン制御用マイクロコンピュータ
JP2022007780A (ja) 車両の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR US

ENP Entry into the national phase

Ref document number: 2006047395

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533448

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057008052

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A27355

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008052

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 10393681

Country of ref document: DE

Date of ref document: 20051027

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393681

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10533448

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 1020057008052

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607