WO2004040042A1 - Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication - Google Patents

Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication Download PDF

Info

Publication number
WO2004040042A1
WO2004040042A1 PCT/CN2003/000867 CN0300867W WO2004040042A1 WO 2004040042 A1 WO2004040042 A1 WO 2004040042A1 CN 0300867 W CN0300867 W CN 0300867W WO 2004040042 A1 WO2004040042 A1 WO 2004040042A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
twin
nano
ultra
copper
Prior art date
Application number
PCT/CN2003/000867
Other languages
English (en)
Chinese (zh)
Inventor
Lei Lu
Xiao Si
Yongfeng Shen
Ke Lu
Original Assignee
Institute Of Metal Research Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Metal Research Chinese Academy Of Sciences filed Critical Institute Of Metal Research Chinese Academy Of Sciences
Priority to JP2004547350A priority Critical patent/JP4476812B2/ja
Priority to US10/532,674 priority patent/US7736448B2/en
Priority to EP03757640A priority patent/EP1567691B1/fr
Priority to AU2003275517A priority patent/AU2003275517A1/en
Publication of WO2004040042A1 publication Critical patent/WO2004040042A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys

Definitions

  • the invention relates to a nano-crystalline metal material, in particular to an ultra-high-strength, ultra-high-conductivity nano-twin copper material and a preparation method thereof.
  • Copper and its alloys are one of the earliest and most widely used non-ferrous metals. China is one of the earliest countries to use copper alloys. In the Yin and Zhou dynasties more than 3,700 years ago, bronzes were used to manufacture bell jars and weapons. Until now, copper and its alloys are still the most widely used metal materials. The main characteristics of copper and its alloys are electrical conductivity, good thermal conductivity, good corrosion resistance in the atmosphere, sea water and many media, and good plasticity and wear resistance. It is suitable for various plastic processing and casting methods. This product is an indispensable metal material for industrial sectors such as electricity, electrical engineering, thermal engineering, chemical industry, instrumentation, shipbuilding and machinery manufacturing.
  • Fe and Ni has an influence on the magnetic properties of Cu, which is not good for the manufacture of compasses and aviation instruments; Cd, Zn, Sn, Pb, etc. It is volatile in vacuum, and it is restricted in the manufacture of tube parts.
  • Nanocrystalline materials refer to a class of single-phase or multi-phase solid materials composed of extremely fine grains with a characteristic dimension ranging from 1 to 100 nanometers. Due to its extremely fine grains and a large number of interface densities, and a large number of grain boundaries and grains In terms of physical and chemical properties, nano-materials exhibit huge differences in physical and chemical properties from ordinary micron-sized polycrystalline materials, and have peculiar mechanical, electrical, magnetic, optical, thermal, and chemical properties.
  • the strengthening method using solid solution strengthening and adding a second phase is also effective in blocking the movement of lattice dislocations, thereby strengthening the material.
  • the cold working method (or plastic deformation method) is also used to hinder the further movement of dislocations through a large number of dislocations generated during the deformation process. Therefore, all strengthening methods are based on introducing a large number of defects (such as grain boundaries, dislocations, point defects, second phases, etc.) to hinder the movement of dislocations. These defects, while hindering the movement of dislocations, also increase the scattering effect on the electrons, thus leading to a decrease in the conductive properties of the material.
  • the tensile strength (o y ) of ordinary coarse crystalline pure copper at room temperature is only 0.035 GPa, which is about two orders of magnitude lower than the theoretical prediction and the elongation is about 60%. After cold working (cold-rolled), the strength of the Cu material increased, and ⁇ ⁇ was about 250 GPa.
  • the yield strength of nano-copper materials has been greatly improved compared to coarse crystalline copper.
  • American scientist JR Weertman et al. Document 1: Sanders, PG, Eastman, JA & Weertman, JR, Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater.
  • the nanocrystalline copper material with a grain size of about 30 nm prepared by an inert gas condensation method has a yield strength of 365 MPa when stretched at room temperature.
  • Professor R. Suryanarayana et al. Reference 2: Suryanarayana, R. et al., Mechanical properties of nanocrystalline copper produced by solution-phase synthesis, J. Mater. Res. 11, 439-448 (1996)
  • Heij was prepared by ball milling After the nano-copper powder is purified and cold-pressed, the yield strength of nano-copper with a grain size of about 26 nm is about 400 MPa, and the elongation of these two samples is very small about 1 ⁇ 2. %.
  • the grain size prepared by the severe plastic deformation method is about Room temperature compression experiments of a copper material at 109 nm show that its yield strength is about 400 MPa, and its room temperature (293K) resistivity is as high as 2.46 ⁇ 1 ( ⁇ 8 ⁇ ⁇ ⁇ (only 68% IACS)) [Reference 5: RK Islamgaliev, K. Pekala , M. Pekala and RZ Valiev., Phys. Stat. Sol "(a). 559-566, 162 (1997).] Summary of the Invention
  • the object of the present invention is to provide a nano-twin copper material with ultra-high strength and ultra-high conductivity and a preparation method thereof.
  • the technical solution of the present invention is as follows-ultra-high-strength ultra-high-conductivity nano-twin copper material, the microstructure of which is composed of sub-micron grains that are nearly equiaxed, and there are high-density different orientations inside the grains
  • the structure of the twin layer, the twin layers with the same orientation are parallel to each other, the thickness of the twin layer ranges from a few nanometers to 100 nm, and the length is 100 ⁇ 500 nm ;
  • the electrolyte is selected from electronic pure high-purity copper CuS0 4 solution, plus high-purity ion-exchanged water or high-purity distilled water, PH value is 0.5 1.5, 99.99% pure copper plate is used as the anode, and the surface of the cathode is plated with Iron plate or low carbon steel plate with Ni-P amorphous layer;
  • Electrolysis process parameters pulse current density is 40 ⁇ 100A / cm 2 , pulse plating is used; on time (t. N ) is 0.01 ⁇ 0.05s, off time (t. Ff ) is l ⁇ 3s, cathode anode distance 50 150 nun, anode-cathode area ratio 30 ⁇ 50: 1, electrolyte temperature 15 ⁇ 30 ° C; electrolyte adopts electromagnetic stirring method; additives: 0.02 ⁇ 0.2ml / l 5 ⁇ 25% strength gelatin aqueous solution and 0.2 ⁇ 1.0 ml / 1 5 ⁇ 25% high purity NaCl aqueous solution.
  • the invention uses the reasonable process and process parameters in the electrolytic deposition technology to prepare a copper material with a nano-scale twin wafer layer structure under the action of pulse current.
  • the thickness of the twin wafer layer ranges from a few nanometers to 100 nm. Its length is about 100 ⁇ 500 nm, and it has a unique microstructure;
  • the material of the present invention has a very high yield strength at room temperature, which can reach 900 MPa, which is much higher than the yield strength of nano-copper samples of comparable grain size prepared by other traditional methods. And this sample has very good conductivity, and the conductivity at room temperature (293K) can reach 96% ICAS.
  • the copper material in the present invention has a special nano-scale twin wafer layer structure, the material has very high strength, and also has very high electrical conductivity (because the twin boundary is a very stable interface structure) and Thermal stability. Therefore, this ultra-high-strength and ultra- ⁇ conducting nano-twin copper material is of great value to the rapid development of the computer industry, the wireless communication industry, and the printing industry.
  • the preparation method is simple.
  • the present invention utilizes the traditional electrolytic deposition technology, and it is only necessary to improve the process conditions and control the appropriate deposition parameters to obtain such a nano twin copper material with ultra-high strength and high conductivity with a nano twin structure.
  • Figure 1-1 is a bright-field observation image of a TEM image of the twins of the electrolytically deposited nano-twin copper material of the present invention.
  • Figure 1-2 is a statistical distribution of the grain size of the TEM photograph of the twins of the electrolytically deposited nanotwinned copper material of the present invention.
  • Figure 1-3 is the statistical distribution of the thickness of the twin layer of the TEM photograph of the twins of the electrolytically deposited nano-twin copper material of the present invention.
  • Figure 2 -1 is an HRTEM photograph of the twins of the electrolytically deposited nanocrystalline copper material of the present invention
  • Figure 2-2 is an electron diffraction pattern of an HRTEM photograph of the twins of electrolytically deposited nanocrystalline copper material of the present invention.
  • T is twin
  • A is matrix
  • a and T are twins.
  • FIG. 3 is a tensile curve of the nano-twin copper material and the coarse-grained copper material according to the present invention at room temperature.
  • Figure 4 is a comparison of the low-temperature resistance (4K-296K) of the nano-twin copper material and the ordinary coarse-grain copper material of the present invention. detailed description
  • Electrolytic deposition equipment single pulse electrolytic deposition equipment
  • the anode is a pure copper plate with a purity higher than 99.99%, and the cathode is an iron plate with an Ni-P amorphous layer on the surface.
  • Electrolysis process parameters pulse current density is 50 A / cm 2 , pulse plating; on-time (t. N ) is 0.02s, off-time (t. Ff ) is 2s, cathode-anode pole distance is 100 mm, The anode and cathode area ratio is 50:
  • the electrolysis temperature is 20 ⁇ , and the electrolyte is electromagnetically stirred.
  • Gelatin 0.1 ml / 1 (15% strength gelatin water solution);
  • FIG. 3 shows the true stress-strain curve of the electrolytically deposited nano-crystalline Cu sample at room temperature.
  • Figure 4 shows the nano twin of the present invention.
  • the low-temperature resistance (4K ⁇ 296K) of crystalline copper material and ordinary coarse-grained copper material is compared. It can be seen that the room temperature resistivity of Cu material with nano-twin structure is only 1.75 ⁇ 0.02 ⁇ 10 ⁇ 8 ⁇ ⁇ ⁇ , which is similar to ordinary coarse crystal
  • the room temperature resistivity of Cu materials is comparable.
  • Embodiment 1 The difference from Embodiment 1 lies in:
  • Electrolytic process parameters Pulse current density is 80 A / cm 2 , and the conduction time (t. N ) is 0.05s, turn-off time (t. Ff ) is 3s ; cathode and anode pole distance is 50mm, electrolyte temperature is 15 ° C;
  • high-purity, high-density, lamellar twin nanocrystalline Cu materials can also be prepared. It is observed by transmission electron microscope that the nanocrystalline Cu materials are also composed of sub-micron grains that are nearly equiaxed, and are inside the grains. There are high-density twin wafer layers with different orientations. The average thickness of the twin wafer layers is about 30 nm, and the dislocation density in the sample is also very small. The yield strength of the nanocrystalline Cu material at room temperature is 810 MPa, and the room temperature resistivity is 1.927 ⁇ 0 ⁇ 02 ⁇ 10 -8 ⁇ ⁇ ⁇ .
  • Embodiment 1 It differs from Embodiment 1 in that-
  • cathode and anode electrode pitch is 150mm, electrolysis temperature is 25 ° C ;
  • high-purity, high-density, flaky twin nanocrystalline Cu materials can also be prepared.
  • the transmission electron microscope observed that the nanocrystalline Cu material also consists of sub-micron grains that are nearly equiaxed. There are high-density twin wafer layers with different orientations inside the grains. The average thickness of the twin wafer layers is about 43 nm. The dislocation density in the sample was also small.
  • the yield strength of the nanocrystalline Cu material at room temperature is 650 MPa, and the room temperature resistivity is
  • the yield strength reaches the highest value (360 MPa), the grain size continues to decrease, and the yield strength also decreases.
  • the resistivity of the samples prepared by this method will be greatly improved, and the conductivity will be poor.
  • Comparative Example 4 American scientist J. Weertman et al. Used inert gas condensation method to prepare nano powder, and the powder was pressure-molded at 150 ° C (pressure is usually 1.4 GPa) to prepare a solid nanocrystalline copper material with an average grain size of 26 nm. The density of the sample was 99% of the theoretical density.
  • the tensile properties in a very small sample (the entire length of the sample is about 3 mm, and the cross-sectional area of the tensile section is 200 ⁇ 200 ⁇ m) show that the sample has a high yield strength, which can reach 535 MPa.
  • the mechanical property results obtained in small samples are difficult to represent the mechanical property results of macro samples.
  • Plys. Stat. Sol. (A) 162, 559 (1997)) used a severe plastic deformation method to obtain a sub-micron grade pure copper material with an average grain size of 210 nm.
  • the sample has good compactness but high residual stress. . Stretched at room temperature, the ultimate breaking strength can reach 500MPa and the elongation is about 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Conductive Materials (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

La présente invention concerne une matière cristalline métallique nanométrique, notamment, une matière de cuivre à nanobicristaux dotée d'une résistance et d'une conductivité très élevées, ainsi que son procédé de fabrication. La matière de cuivre à polycristaux à pureté élevée est préparée au moyen du procédé de dépôt électrolytique. La microstructure se compose de graines, dont la taille est pratiquement de l'ordre du sousmicron isométrique, à savoir de 300 à 1000 nm. En leur sein, les grains présentent des structures de densité élevée de couches bicristallines orientées différemment, les couches bicristallines orientées de manière similaire sont parallèles entre elles, l'épaisseur des couches bicristallines va de quelques nanomètres à 100 nm, et la longueur correspondante va de 100 à 500 nm. En comparaison à la technique antérieure, la matière de cette invention possède d'excellentes propriétés. Lorsqu'elle est amenée à température ambiante, la matière a une limite d'élasticité allant jusqu'à 900 MPa, et une résistance à la rupture allant jusqu'à 1086 MPa. Cette résistance extrêmement élevée ne peut pas être obtenue dans plusieurs autres procédés à l'aide de la même matière de cuivre. Parallèlement, la conductivité est excellente et elle est presque similaire à celle d'une matière de cuivre traditionnelle à gros cristaux, et la résistance à température ambiante est de 1,75+/-0,02X10-8Φ.m, égale à 96 %IACS.
PCT/CN2003/000867 2002-11-01 2003-10-16 Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication WO2004040042A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004547350A JP4476812B2 (ja) 2002-11-01 2003-10-16 超高強度及び導電率を有するナノ結晶銅材料ならびにその製造方法
US10/532,674 US7736448B2 (en) 2002-11-01 2003-10-16 Nano icrystals copper material with super high strength and conductivity and method of preparing thereof
EP03757640A EP1567691B1 (fr) 2002-11-01 2003-10-16 Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication
AU2003275517A AU2003275517A1 (en) 2002-11-01 2003-10-16 A nano icrystals copper material with super high strength and conductivity and method of preparing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02144519 2002-11-01
CN02144519.2 2002-11-01

Publications (1)

Publication Number Publication Date
WO2004040042A1 true WO2004040042A1 (fr) 2004-05-13

Family

ID=32182023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000867 WO2004040042A1 (fr) 2002-11-01 2003-10-16 Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication

Country Status (5)

Country Link
US (1) US7736448B2 (fr)
EP (1) EP1567691B1 (fr)
JP (1) JP4476812B2 (fr)
AU (1) AU2003275517A1 (fr)
WO (1) WO2004040042A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534703A (zh) * 2012-01-05 2012-07-04 北京工业大学 一种制备纳米/微米晶复合结构纯铜的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315191A1 (en) * 2005-10-13 2010-12-16 Xiao T Danny Patterned magnetic inductors
WO2007131190A2 (fr) 2006-05-05 2007-11-15 Hybir Inc. système de sauvegarde de fichiers informatiques incrémentaUX et complets axé sur le groupe, processus et appareil
US9005420B2 (en) * 2007-12-20 2015-04-14 Integran Technologies Inc. Variable property electrodepositing of metallic structures
US20090250352A1 (en) * 2008-04-04 2009-10-08 Emat Technology, Llc Methods for electroplating copper
US8840735B2 (en) * 2008-09-19 2014-09-23 Fort Wayne Metals Research Products Corp Fatigue damage resistant wire and method of production thereof
JP4505545B1 (ja) * 2009-11-30 2010-07-21 有限会社ナプラ 回路基板及び電子デバイス
JP2012038823A (ja) * 2010-08-04 2012-02-23 Nitto Denko Corp 配線回路基板
KR101255548B1 (ko) * 2011-02-24 2013-04-17 한양대학교 에리카산학협력단 나노쌍정 구조가 형성된 구리재료의 형성방법
EP2574684B1 (fr) 2011-09-29 2014-06-18 Sandvik Intellectual Property AB Acier inoxydable austénitique jumelé TWIP et NANO et son procédé de fabrication
TWI432613B (zh) 2011-11-16 2014-04-01 Univ Nat Chiao Tung 電鍍沉積之奈米雙晶銅金屬層及其製備方法
US9822430B2 (en) * 2012-02-29 2017-11-21 The United States Of America As Represented By The Secretary Of The Army High-density thermodynamically stable nanostructured copper-based bulk metallic systems, and methods of making the same
WO2014030779A1 (fr) * 2012-08-22 2014-02-27 한양대학교 에리카산학협력단 Procédé de formation de matière de cuivre formée de façon à avoir une structure nano-bicristalline, et matière de cuivre ainsi obtenue
US20140271336A1 (en) 2013-03-15 2014-09-18 Crs Holdings Inc. Nanostructured Titanium Alloy And Method For Thermomechanically Processing The Same
US10233934B2 (en) * 2013-08-03 2019-03-19 Schlumberger Technology Corporation Fracture-resistant self-lubricating wear surfaces
CN105177645B (zh) * 2015-07-27 2017-05-31 昆明理工大学 一种多层复合梯度纳米纯铜材料的制备方法
CN107619963B (zh) * 2016-07-15 2020-01-03 中国科学院金属研究所 具备超低摩擦系数的金属或合金以及能够大幅降低金属或合金摩擦系数的方法
CN108326069B (zh) * 2017-12-26 2019-08-20 湖南中大冶金设计有限公司 一种高强度微米、纳米级孪晶铜合金丝材的制备方法
CN108677213B (zh) * 2018-05-31 2021-01-12 中国科学院金属研究所 一种通过改变金属材料梯度纳米孪晶结构提高材料力学性能的方法
US11492725B2 (en) 2018-06-26 2022-11-08 Purdue Research Foundation High-strength single-crystal like nanotwinned nickel coatings and methods of making the same
SG11202104479WA (en) * 2018-10-31 2021-05-28 Lam Res Corp Electrodeposition of nanotwinned copper structures
TWI731293B (zh) 2019-01-18 2021-06-21 元智大學 奈米雙晶結構
TWI686518B (zh) 2019-07-19 2020-03-01 國立交通大學 具有奈米雙晶銅之電連接結構及其形成方法
TWI709667B (zh) 2019-12-06 2020-11-11 添鴻科技股份有限公司 奈米雙晶銅金屬層及其製備方法及包含其的基板
CN112719692B (zh) * 2021-04-01 2021-07-09 四川西冶新材料股份有限公司 一种900MPa级高强钢气保护实心焊丝及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105398A (zh) * 1993-10-22 1995-07-19 古尔德电子有限公司 电解淀积铜箔及其制作方法
CN1337475A (zh) * 2000-08-04 2002-02-27 三井金属鉱业株式会社 电沉积铜箔的制造方法和电沉积铜箔
CN1389597A (zh) * 2001-06-01 2003-01-08 中国科学院金属研究所 一种高强度高导电性纳米晶体铜材料及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6126806A (en) * 1998-12-02 2000-10-03 International Business Machines Corporation Enhancing copper electromigration resistance with indium and oxygen lamination
US20020015833A1 (en) * 2000-06-29 2002-02-07 Naotomi Takahashi Manufacturing method of electrodeposited copper foil and electrodeposited copper foil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105398A (zh) * 1993-10-22 1995-07-19 古尔德电子有限公司 电解淀积铜箔及其制作方法
CN1337475A (zh) * 2000-08-04 2002-02-27 三井金属鉱业株式会社 电沉积铜箔的制造方法和电沉积铜箔
CN1389597A (zh) * 2001-06-01 2003-01-08 中国科学院金属研究所 一种高强度高导电性纳米晶体铜材料及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534703A (zh) * 2012-01-05 2012-07-04 北京工业大学 一种制备纳米/微米晶复合结构纯铜的方法

Also Published As

Publication number Publication date
JP2006505101A (ja) 2006-02-09
EP1567691B1 (fr) 2012-08-22
US7736448B2 (en) 2010-06-15
EP1567691A1 (fr) 2005-08-31
US20060021878A1 (en) 2006-02-02
JP4476812B2 (ja) 2010-06-09
EP1567691A4 (fr) 2010-02-03
AU2003275517A1 (en) 2004-05-25

Similar Documents

Publication Publication Date Title
WO2004040042A1 (fr) Matiere de cuivre a nanocristaux dotee d'une resistance et d'une conductivite tres elevees et son procede de fabrication
CN1234914C (zh) 一种超高强度超高导电性纳米孪晶铜材料及制备方法
CN102400188B (zh) 一种<111>织构纳米孪晶Cu块体材料及制备方法
Lin et al. Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material
CN108149046B (zh) 一种高强、高导石墨烯/铜纳米复合材料及其制备方法和应用
CN110331316B (zh) 一种高强耐热石墨烯铝复合导体材料及制备方法
Wang et al. Preparation of electro-reduced graphene oxide/copper composite foils with simultaneously enhanced thermal and mechanical properties by DC electro-deposition method
Duan et al. Effect of current density on the microstructure and magnetic properties of electrodeposited Co2FeSn Heusler alloy
WO2021027607A1 (fr) Procédé de préparation d'un fil composite de cuivre/aluminium de graphène hautement conducteur
Muxi et al. Research progress on preparation technology of graphene-reinforced aluminum matrix composites
CN1181224C (zh) 一种高强度高导电性纳米晶体铜材料的制备方法
Tang et al. Evolution of microstructure and properties of Cu-4.5 wt.% Ag alloy prepared by vacuum horizontal continuous casting in solid solution and aging treatment
Cong et al. Effect of La2O3 addition on copper matrix composites reinforced with Al2O3 ceramic particles
CN102031490B (zh) 一种高强度高导电性纳米晶体铜材料及制备方法
WO2004094699A1 (fr) Alliages invar de taille nanometrique et procede de fabrication associe
Zhang et al. Introduction of nanotwins into nanoprecipitations strengthened CoCrNiMo0. 2 alloy to achieve strength and ductility trade-off: A comparative research
Tao et al. Effect of high contents of nickel and silicon on the microstructure and properties of Cu–Ni–Si alloys
Zheng et al. Mechanical properties and electrical conductivity of nano-La2O3 reinforced copper matrix composites fabricated by spark plasma sintering
CN101220425A (zh) 一种高强度钠米级晶体镍材料及其制备方法
Xu et al. GO/MgO/Mg interface mediated strengthening and electromagnetic interference shielding in AZ31 composite
CN110408976B (zh) 一种具有组织可控的石墨烯/纳米孪晶复合材料及其制备方法
Ogura et al. Fabrication of defect-free Fe–Mn alloys by using electrodeposition
Ding et al. Microstructure evolution and aging hardening in a Cu-25Ni-25Mn alloy
US20200269314A1 (en) Boron-nitride nanoplatelet(s)/metal nanocomposite powder and preparing method thereof
Chaudhari et al. Structure and properties of dual oxide particles doped Ni-Fe/In2O3-WO3 functional nanocomposite coatings

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006021878

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532674

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004547350

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003757640

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003757640

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10532674

Country of ref document: US