CN108326069B - 一种高强度微米、纳米级孪晶铜合金丝材的制备方法 - Google Patents

一种高强度微米、纳米级孪晶铜合金丝材的制备方法 Download PDF

Info

Publication number
CN108326069B
CN108326069B CN201711434765.6A CN201711434765A CN108326069B CN 108326069 B CN108326069 B CN 108326069B CN 201711434765 A CN201711434765 A CN 201711434765A CN 108326069 B CN108326069 B CN 108326069B
Authority
CN
China
Prior art keywords
copper alloy
silk material
temperature
preparation
alloy silk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711434765.6A
Other languages
English (en)
Other versions
CN108326069A (zh
Inventor
梁学民
孙克强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUNAN ZHONGDA METALLURGICAL DESIGN CO Ltd
Original Assignee
HUNAN ZHONGDA METALLURGICAL DESIGN CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUNAN ZHONGDA METALLURGICAL DESIGN CO Ltd filed Critical HUNAN ZHONGDA METALLURGICAL DESIGN CO Ltd
Priority to CN201711434765.6A priority Critical patent/CN108326069B/zh
Publication of CN108326069A publication Critical patent/CN108326069A/zh
Application granted granted Critical
Publication of CN108326069B publication Critical patent/CN108326069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Abstract

本发明公开了一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体为:(1)将铜合金铸锭在960‑980℃进行1‑2h固溶处理,固溶后冷却至室温,然后进行热挤压处理,得到铜合金棒材;(2)对铜合金棒材进行冷拔,得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温;(3)将铜合金丝材温度冷却至‑30~‑50℃,保温20‑40min,然后进行扭转处理,扭转处理温度为‑30~‑50℃,扭转速度为200‑500r/min;(4)将铜合金丝材进行时效处理。本发明方法能够获得微米、纳米级孪晶铜合金,大幅度提高了铜合金强度,同时不牺牲铜合金导电性。

Description

一种高强度微米、纳米级孪晶铜合金丝材的制备方法
技术领域
本发明涉及铜合金加工技术领域,具体涉及一种高强度微米、纳米级孪晶铜合金丝材的制备方法。
背景技术
高强高导铜合金(具有高强度和高导电性的铜合金又称为高强高导铜合金。)作为一种综合性能优良的结构功能材料,被广泛应用于大规模集成电路引线框架、电气工程开关触桥、连铸机结晶器内衬、高脉冲磁场导体、大功率异步牵引电动机转子和电气化铁路接触导线等。近些年来,以固溶时效强化铜合金为主,主要有Cu~Ni系列和Cu~Cr系列为典型,应用领域广泛。
一般情况下铜合金的强度和导电率两者是一对矛盾的存在,不论采用哪种方法提高铜合金的强度,其导电率都会有一定程度的下降,因此,制造高强高导的铜合金在技术上有很大难度。高强高导铜合金的强化机制合金强化法是指通过在铜基体中加入一定的合金元素,形成固溶体或过饱和固溶体,再通过机械加工或热处理的方法使其微观组织结构发生变化,从而获得高强度和高导电性兼备的铜合金。目前的铜合金主要通过冷变形的方法获得强化,主要是在塑性变形过程中由于位错的交互作用,形成割阶和胞状结构等阻碍,使位错运动阻力增大而产生硬化。这种加工硬化虽可以提高强度,但是由于冷变形时,合金内部会形成大量的缺陷,这些缺陷增加对电子的散射,增大电阻,合金强度虽有提升,但导电率大幅度下降。根本无法同时满足高强度和高导电的性能要求。
发明内容
针对现有技术中存在的问题,本发明提供一种高强度微米、纳米级孪晶铜合金丝材的制备方法。该制备方法将铜合金材料微米级的晶粒转化为微米、纳米级的孪晶结构,这种微米、纳米级的孪晶结构可以在提高铜合金材料强度的同时,不牺牲铜合金的导电性。
为实现发明目的,本发明采用的技术方案如下:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将铜合金铸锭在960~980℃条件下进行1~2h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;
(2)对铜合金棒材进行冷拔处理,得到铜合金丝材,所述冷拔处理的减面率为45%~50%,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为680~800℃;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-30℃~-50℃,保温20min~40min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-30℃~-50℃,扭转速度为200~500r/min(转/分钟),扭转角度为10~40r/米铜合金丝材(即每米铜合金丝材的扭转角度为10~50r);
(4)将经过步骤(3)处理后的铜合金丝材进行时效处理,即得到高强度微米、纳米级孪晶铜合金丝材。
根据上述的制备方法,优选地,步骤(1)中所述热挤压处理的温度为700℃~820℃。
根据上述的制备方法,优选地,步骤(1)中所述热挤压处理的挤压比为10:1~15:1。
根据上述的制备方法,优选地,步骤(2)中所述高温感应退火处理过程铜合金丝材的走线速度为200~400m/min。
根据上述的制备方法,优选地,步骤(4)中所述时效处理为真空时效处理;更优选地,所述真空时效处理的温度为450~480℃,时间为1.5~3h,然后充入氮气冷却至室温。
根据上述的制备方法,优选地,步骤(1)中所述铜合金铸锭为市售的铜合金铸锭或通过熔炼、铸造得到的铜合金铸锭。
根据上述的制备方法,优选地,步骤(1)中所述铜合金铸锭为铬锆铜合金铸锭,更优选地,所述铜合金铸锭为C18150铬锆铜合金铸锭;所述高强度微米、纳米级孪晶铜合金丝材的抗拉强度≥650MPa,电导率≥80%。
本发明制备方法的原理是:
本发明通过固溶处理,使得铜合金中的合金元素充分溶解,为合金的时效处理做准备,同时消除加工应力,改善合金塑性,便于后续加工成型;通过热挤压处理获得了组织均匀,晶粒细小的铜合金,提高了铜合金的综合力学性能;通过冷拔处理实现铜合金的减径,通过高温感应退火处理不仅消除了加工应力,而且进一步细化晶粒,为微米和纳米级别的孪晶形成做准备;通过低温下高速扭转处理,使铜合金产生扭转塑性形变(剪切变形),铜合金的晶粒转变为微米、纳米级的孪晶,大量的孪晶对合金产生一次强化贡献,同时因为孪晶界面造成的畸变能远小于位错胞和晶界的畸变能,这样就大大减少了电子的散射,从而保持高的电导率,同时,由于大量的孪晶界的存在,合金中的溶质原子会在孪晶界偏聚,这为第二相颗粒的形核析出和弥散分布创造了有利条件,时效处理带来了合金的二次强化;通过时效处理从铜合金基体中析出弥散分布的第二相粒子,实现铜合金强化的目的的同时由于第二相粒子的析出使铜合金基体纯净,提高电导率。因此,采用本发明的制备方法最终获得性能优异的高强度和高导电性铜合金丝材。
本发明的方法对于其它FCC结构(面心立方结构)合金制备微米、纳米孪晶丝材同样适用。
本发明取得的积极有益效果:
(1)本发明通过在低温下通过高速扭转处理的获得微米、纳米级孪晶铜合金,大幅度提高了铜合金的强度,同时不牺牲铜合金的导电性;采用本发明制备方法得到的铬锆铜合金丝材性能优异,其抗拉强度为650MPa~680MPa、导电率达到了80%~83%IACS,优于目前其它加工方法获得的铬锆铜合金。
(2)本发明的制备方法简单,生产成本低,效率高,稳定性好,而且可以推广应用于至其他FCC结构(面心立方结构)合金微米、纳米孪晶线材的制备。
附图说明
图1为本发明实施例1制备的高强度微米、纳米级孪晶铜合金丝材低倍显微镜下的微观组织结构。
具体实施方式
以下通过具体的实施例对本发明做进一步详细说明,但并不限制本发明的范围。
实施例1:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将市售的C18150铬锆铜合金铸锭在960℃条件下进行1.5h真空固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;其中,所述热挤压处理的温度为820℃,所述热挤压处理的挤压比为12:1;
(2)对铜合金棒材进行冷拔处理,所述冷拔处理的减面率为48%,冷拔后得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为780℃,所述高温感应退火处理过程铜合金丝材的走线速度为200m/min;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-31℃,保温20min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-40℃,扭转速度为500r/min,扭转角度为40r/米铜合金丝材(即每米铜合金丝材的扭转角度为40r);
(4)将经过步骤(3)处理后的铜合金丝材进行真空时效处理,所述真空时效处理的温度为480℃,时间为2h,然后充入氮气冷却至室温,即得到高强度微米、纳米级孪晶铜合金丝材(其微观组织结构见图1)。
实施例2:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将市售的C18150铬锆铜合金铸锭在960℃条件下进行1.5h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;其中,所述热挤压处理的温度为810℃,所述热挤压处理的挤压比为12:1;
(2)对铜合金棒材进行冷拔处理,所述冷拔处理的减面率为45%,冷拔后得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为800℃,所述高温感应退火处理过程铜合金丝材的走线速度为250m/min;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-38℃,保温30min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-33℃,扭转速度为400r/min,扭转角度为30r/米铜合金丝材(即每米铜合金丝材的扭转角度为30r);
(4)将经过步骤(3)处理后的铜合金丝材进行真空时效处理,所述真空时效处理的温度为480℃,时间为1.5h,然后充入氮气冷却至室温,即得到高强度微米、纳米级孪晶铜合金丝材。
实施例3:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将通过熔炼、铸造得到的C18150铬锆铜合金铸锭在980℃条件下进行1h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;其中,所述热挤压处理的温度为700℃,所述热挤压处理的挤压比为10:1;
(2)对铜合金棒材进行冷拔处理,所述冷拔处理的减面率为50%,冷拔后得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为680℃,所述高温感应退火处理过程铜合金丝材的走线速度为300m/min;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-50℃,保温20min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-50℃,扭转速度为300r/min,扭转角度为20r/米铜合金丝材(即每米铜合金丝材的扭转角度为20r);
(4)将经过步骤(3)处理后的铜合金丝材进行真空时效处理,所述真空时效处理的温度为450℃,时间为3h,然后充入氮气冷却至室温,即得到高强度微米、纳米级孪晶铜合金丝材。
实施例4:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将通过熔炼、铸造得到的C18150铬锆铜合金铸锭在960℃条件下进行2h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;其中,所述热挤压处理的温度为760℃,所述热挤压处理的挤压比为15:1;
(2)对铜合金棒材进行冷拔处理,所述冷拔处理的减面率为48%,冷拔后得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为700℃,所述高温感应退火处理过程铜合金丝材的走线速度为300m/min;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-40℃,保温25min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-45℃,扭转速度为450r/min,扭转角度为35r/米铜合金丝材(即每米铜合金丝材的扭转角度为35r);
(4)将经过步骤(3)处理后的铜合金丝材进行真空时效处理,所述真空时效处理的温度为460℃,时间为2h,然后充入氮气冷却至室温,即得到高强度微米、纳米级孪晶铜合金丝材。
实施例5:
一种高强度微米、纳米级孪晶铜合金丝材的制备方法,具体包括以下步骤:
(1)将市售的C18150铬锆铜合金铸锭在970℃条件下进行1.5h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;其中,所述热挤压处理的温度为800℃,所述热挤压处理的挤压比为14:1;
(2)对铜合金棒材进行冷拔处理,所述冷拔处理的减面率为46%,冷拔后得到铜合金丝材,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为760℃,所述高温感应退火处理过程铜合金丝材的走线速度为400m/min;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-30℃,保温40min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-30℃,扭转速度为200r/min,扭转角度为10r/米铜合金丝材(即每米铜合金丝材的扭转角度为10r);
(4)将经过步骤(3)处理后的铜合金丝材进行真空时效处理,所述真空时效处理的温度为460℃,时间为3h,然后充入氮气冷却至室温,即得到高强度微米、纳米级孪晶铜合金丝材。
以上实施例仅用以说明本发明的技术实施方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,但是,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高强度微米、纳米级孪晶铜合金丝材的制备方法,其特征在于,包括以下步骤:
(1)将铜合金铸锭在960~980℃条件下进行1~2h固溶处理,固溶处理后将铜合金铸锭冷却至室温,然后对铜合金铸锭进行热挤压处理,得到铜合金棒材,并将铜合金棒材冷却至室温;
(2)对铜合金棒材进行冷拔处理,得到铜合金丝材,所述冷拔处理的减面率为45%~50%,将铜合金丝材进行高温感应退火处理,然后水冷至室温,其中,所述高温感应退火的温度为680~800℃;根据实际生产的铜合金产品线径要求,重复上述操作步骤,直至得到符合目标铜合金产品线径要求的铜合金丝材;
(3)将经过步骤(2)处理后的铜合金丝材的温度冷却至-30℃~-50℃,保温20min~40min,然后对铜合金丝材进行扭转处理,使其产生扭转塑性形变;其中,所述扭转处理的温度为-30℃~-50℃,扭转速度为200~500r/min,扭转角度为10~40r/米铜合金丝材;
(4)将经过步骤(3)处理后的铜合金丝材进行时效处理,即得到高强度微米、纳米级孪晶铜合金丝材。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述热挤压处理的温度为700℃~820℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述热挤压处理的挤压比为10:1~15:1。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述高温感应退火处理过程铜合金丝材的走线速度为200~400m/min。
5.根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述时效处理为真空时效处理。
6.根据权利要求5所述的制备方法,其特征在于,步骤(4)中所述时效处理的温度为450~480℃,时间为1.5~3h。
7.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述铜合金铸锭为市售的铜合金铸锭或通过熔炼、铸造得到的铜合金铸锭。
8.根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述铜合金铸锭为铬锆铜合金铸锭。
9.根据权利要求8所述的制备方法,其特征在于,所述高强度微米、纳米级孪晶铜合金丝材的抗拉强度≥650MPa,导电率≥80%IACS。
CN201711434765.6A 2017-12-26 2017-12-26 一种高强度微米、纳米级孪晶铜合金丝材的制备方法 Active CN108326069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711434765.6A CN108326069B (zh) 2017-12-26 2017-12-26 一种高强度微米、纳米级孪晶铜合金丝材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711434765.6A CN108326069B (zh) 2017-12-26 2017-12-26 一种高强度微米、纳米级孪晶铜合金丝材的制备方法

Publications (2)

Publication Number Publication Date
CN108326069A CN108326069A (zh) 2018-07-27
CN108326069B true CN108326069B (zh) 2019-08-20

Family

ID=62924490

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711434765.6A Active CN108326069B (zh) 2017-12-26 2017-12-26 一种高强度微米、纳米级孪晶铜合金丝材的制备方法

Country Status (1)

Country Link
CN (1) CN108326069B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111250560B (zh) * 2020-01-21 2022-01-28 中国科学院电工研究所 一种Cu-Ag合金线材的制备方法
CN113174550B (zh) * 2021-03-12 2022-05-20 江苏大学 一种超高强高韧纳米梯度孪晶镁合金的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505101A (ja) * 2002-11-01 2006-02-09 中国科学院金属研究所 超高強度及び導電率を有するナノ結晶銅材料ならびにその製造方法
KR20130024603A (ko) * 2011-08-31 2013-03-08 신덕수 이중구조의 봉재를 제조하는 방법 및 이로써 제조된 용접용 팁
CN104060120A (zh) * 2014-07-03 2014-09-24 兰宝琴 高强度铜合金线材的制备方法
JP2015028903A (ja) * 2012-10-25 2015-02-12 住友電気工業株式会社 銅線材、銅伸線材、銅平角線、被覆銅線、銅線材の製造方法、銅伸線材の製造方法、及び銅平角線の製造方法
CN104726803A (zh) * 2015-02-16 2015-06-24 燕山大学 一种制备晶内含纳米尺寸析出相的纳米晶金属材料的方法
CN107326215A (zh) * 2017-08-15 2017-11-07 徐高杰 一种槽楔用铜合金的加工方法
CN107502777A (zh) * 2017-09-13 2017-12-22 临沂市科创材料有限公司 一种原位增强铜铬锆合金高温抗氧化性的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505101A (ja) * 2002-11-01 2006-02-09 中国科学院金属研究所 超高強度及び導電率を有するナノ結晶銅材料ならびにその製造方法
KR20130024603A (ko) * 2011-08-31 2013-03-08 신덕수 이중구조의 봉재를 제조하는 방법 및 이로써 제조된 용접용 팁
JP2015028903A (ja) * 2012-10-25 2015-02-12 住友電気工業株式会社 銅線材、銅伸線材、銅平角線、被覆銅線、銅線材の製造方法、銅伸線材の製造方法、及び銅平角線の製造方法
CN104060120A (zh) * 2014-07-03 2014-09-24 兰宝琴 高强度铜合金线材的制备方法
CN104726803A (zh) * 2015-02-16 2015-06-24 燕山大学 一种制备晶内含纳米尺寸析出相的纳米晶金属材料的方法
CN107326215A (zh) * 2017-08-15 2017-11-07 徐高杰 一种槽楔用铜合金的加工方法
CN107502777A (zh) * 2017-09-13 2017-12-22 临沂市科创材料有限公司 一种原位增强铜铬锆合金高温抗氧化性的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高强高导Cu_Cr_Ti合金及复合材料的组织性能研究;郑碰菊;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20160215;第15-19页

Also Published As

Publication number Publication date
CN108326069A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
Huang et al. Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment
CN109022896B (zh) 一种具有电磁波屏蔽性能的高强高导耐热Cu-Fe-Y-Mg合金材料及其制备方法
CN107805745B (zh) 一种高强耐候铝合金导电轨型材及其制备方法
CN107254608A (zh) 高强度耐高温合金线材
CN111549253B (zh) 一种稀土铜铁合金及制备方法和应用
CN102329999A (zh) 一种导电铝合金型材的制造方法
CN108326069B (zh) 一种高强度微米、纳米级孪晶铜合金丝材的制备方法
CN104946936A (zh) 一种架空导线用高导电率稀土硬铝单丝材料
CN110055479B (zh) 一种800MPa级高导电铜铬锆合金及其制备方法
CN104975211A (zh) 一种高导电率热处理型中强铝合金导电单丝
CN105839038B (zh) 一种高强度高导电率Cu‑Ag‑Fe合金的制备方法
CN103898425A (zh) 一种适用于Cu-Cr-Zr系合金线材的复合形变热处理方法
CN110747365B (zh) 一种高塑性高强度高导电CuCrZr系铜合金及其制备方法
CN107012356A (zh) 一种含石墨烯的高强度高导电铜基合金坯料及其制备方法
CN110863120B (zh) 一种引线框架用铜合金及其制备方法
CN113564409A (zh) 一种稀土铜铬合金线材及其制备方法和应用
CN106191725B (zh) 高强度高导电铜合金纳米相析出工艺方法
CN104911408B (zh) 一种硬铝导线单丝及其制备方法
CN113234966A (zh) 一种铝合金材料、铝合金导线及其制备方法
CN109576516A (zh) 一种电磁波屏蔽用铜铁合金板线材短流程的制备方法
CN101225486A (zh) 一种铜基原位复合材料及其制备方法
CN102392205B (zh) 一种精密铜件制作工艺
CN108611520A (zh) 一种铜基原位复合材料及其制备方法
CN115044788B (zh) 一种有色金属材料的制备方法
CN107828985A (zh) Cu‑Cr‑Zr‑Ni‑Al铜合金、线材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant