WO2004039494A1 - 複合吸着材とその製造方法、並びに浄水材及び浄水器 - Google Patents

複合吸着材とその製造方法、並びに浄水材及び浄水器 Download PDF

Info

Publication number
WO2004039494A1
WO2004039494A1 PCT/JP2003/013759 JP0313759W WO2004039494A1 WO 2004039494 A1 WO2004039494 A1 WO 2004039494A1 JP 0313759 W JP0313759 W JP 0313759W WO 2004039494 A1 WO2004039494 A1 WO 2004039494A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite
composite adsorbent
powder
compound
adsorbent
Prior art date
Application number
PCT/JP2003/013759
Other languages
English (en)
French (fr)
Inventor
Shuji Kawasaki
Haruo Nakada
Yasuhiro Tajima
Hiroe Yoshinobu
Erika Maeda
Kiyoto Otsuka
Original Assignee
Kuraray Chemical Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co.,Ltd. filed Critical Kuraray Chemical Co.,Ltd.
Priority to US10/532,499 priority Critical patent/US20060163151A1/en
Priority to JP2004548047A priority patent/JP4361489B2/ja
Priority to AU2003275700A priority patent/AU2003275700A1/en
Publication of WO2004039494A1 publication Critical patent/WO2004039494A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered

Definitions

  • the present invention relates to a composite adsorbent, a method for producing the same, a water purification material and a water purifier. More specifically, it relates to a composite adsorbent from which fine powder does not flow out during use, a method for producing the same, and a water purification material and a water purifier.
  • Adsorbent composed of an adsorbent substance (d), and a particulate compound (a) and at least one adsorbent substance (d) selected from powder, granules and fibrous substances are added to a plastic powder (b) ) Is applied to a water purifier as a water purification material, it has low permeation resistance, excellent removal performance of free chlorine, THM, heavy metals, etc., and extremely good permeation water clarity. It is suitable for water purifier applications. Background art
  • Activated carbon has an excellent ability to adsorb various pollutants, and has been used as an adsorbent in various fields, whether domestic or industrial. In recent years, there has been a demand for delicious water free of chlorine and mold odors, and various water purifiers have been proposed to meet this demand. However, recently, there has been a growing interest in safety and health related to water quality, such as trimethane (hereinafter abbreviated as THM), environmental hormones, and heavy metals. Activated carbon alone is not sufficient to meet these demands. With a unique adsorption capacity It is necessary to use another adsorbent such as an inorganic compound having the same.
  • THM trimethane
  • the applicant of the present invention has proposed an activity obtained by molding a mixture comprising fibrous activated carbon, titanium dioxide, silicon dioxide, and a binder as a water purification material having an excellent performance of removing free chlorine, moldy odor, THM and heavy metals in drinking water.
  • a charcoal molding and applied for a patent Patent Document 1.
  • the activated carbon molded body disclosed herein is an activated carbon molded body formed by molding a mixture of fibrous activated carbon, titanium dioxide, silicon dioxide and a binder, and comprises a granular material and a fiber mainly composed of titanium dioxide and silicon dioxide.
  • the molded body obtained by wet molding of activated carbon has an excellent effect in removing heavy metals such as lead ions in water.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-2506999 Further, the present applicant has excellent adsorption performance for heavy metals, and can adsorb and remove free chlorine and THM in a well-balanced manner.
  • an activated carbon molded body with low liquid permeation resistance Patent Document 2.
  • the activated carbon molded body proposed here is a granular activated carbon that carries fine particle compounds mainly composed of titanium dioxide and silicon dioxide entangled with fibrillated fibers, without impairing the original performance of activated carbon. It is a molded body with low flow resistance and excellent removal of heavy metals while maintaining a good balance of removal performance for free chlorine and THM.
  • Patent Literature 2 International Publication WO 03020 2 4 25 A1
  • turbidity may occur very slightly, especially at the beginning of water flow.
  • Such a phenomenon can be solved by using a water purifier in combination with other filtration means such as a hollow fiber membrane.However, even when the water purifier is used alone, water without turbidity is required. That is the fact. Turbidity itself is due to the shedding of fine particles and is not harmful, but clarity is an important point, especially when used as drinking water.
  • an object of the present invention to provide a low liquid permeation resistance, excellent removal of heavy metals while maintaining good removal performance of free chlorine, THM, heavy metals, and the like, and fine powder of fine particle compounds flowing out when water is passed.
  • Adsorbent that exhibits extremely good permeation water clarity and is less likely to cause variations in the performance difference between water purifiers due to classification, and a method for producing the same, and the adsorbent
  • An object of the present invention is to provide a water purification material and a water purifier using the water purification material. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and (1) a composite powder (c) obtained by adhering a plastic powder (b) to a fine particle compound (a), and powdery, granular materials and fibers.
  • Composite adsorbent composed of at least one adsorbent (d) selected from particulate matter; (2) particulate compound (a) Composite adsorbents in which plastic powder (b) is attached to at least one adsorbent (d) selected from powder, granular, and fibrous materials, a method for producing them, and a water purification material.
  • the present inventors have found that the above-mentioned object can be achieved by a water purifier, and have reached the present invention.
  • the first invention of the present invention relates to a composite powder (c) obtained by adhering a plastic powder (b) to a fine particle compound (a), and at least one selected from powder, granules and fibrous materials. It is a composite adsorbent composed of one kind of adsorbent (d).
  • a plastic powder (b) is attached to a particulate compound (a) and at least one adsorbent substance (d) selected from powders, granules and fibrous materials. It is a composite adsorbent.
  • a third invention of the present invention is a composite powder (c) in which a plastic powder (b) is adhered to a fine particle compound (a).
  • a composite obtained by uniformly mixing a plastic powder and a particulate compound is heated to a temperature equal to or higher than the melting point of the plastic powder, cooled, sieved, and mixed with an adsorptive substance. This is the method of manufacturing the adsorbent.
  • a mixture obtained by uniformly mixing a plastic powder, a fine particle compound, and an adsorbent substance is heated to a temperature higher than the melting point of the plastic powder, cooled, then crushed and sieved. This is a method for producing a composite adsorbent.
  • a sixth invention of the present invention is a water purification material comprising the composite adsorbent as described above.
  • the seventh invention of the present invention is a water purifier using the water purifying material.
  • FIG. 1 is an electron micrograph (at a magnification of 180 times) of the composite powder obtained in Example 1.
  • FIG. 2 is an electron micrograph (magnification: 6500 times) of the composite powder obtained in Example 1.
  • FIG. 3 is an electron micrograph (2500 times) of the composite powder obtained in Example 1.
  • FIG. 4 is a graph showing the relationship between the lead removal rate (%) and the flow rate (L) measured in Example 1 and Comparative Example 1 using the composite adsorbent as a water purification material.
  • FIG. 5 is an electron micrograph (magnification: 60 times) of the composite powder obtained in Example 11;
  • FIG. 6 is an electron micrograph (magnification: 200 times) of the composite powder obtained in Example 11.
  • FIG. 7 is a graph showing the relationship between the lead removal rate (%) and water flow rate (L) measured in Example 11 and Comparative Example 3 using the composite adsorbent as a water purification material.
  • the feature of the composite adsorbent in the first invention of the present invention resides in that a composite powder (c) obtained by adhering a plastic powder (b) to a particulate compound (a) is used.
  • a water-purifying material as a composite adsorbent composed of at least one adsorbent (d) selected from the group consisting of granular materials and fibrous materials, low flow resistance, free chlorine, THM, and heavy metals It is possible to provide a water purifier that can sufficiently exhibit any removal performance and that has extremely good permeated water permeability.
  • the composite adsorbent according to the second invention of the present invention is characterized in that the particulate compound (a) and at least one adsorbent substance (d) selected from powder, granules and fibrous substances are added to a plastic powder (b). )
  • a water purification material that is less likely to cause variations in the adsorption performance of each water purifier due to classification can be provided.
  • the fine particle compound preferably used for water purification include a compound having an ion exchange function that is excellent in the adsorption performance of a soluble heavy metal.
  • the compound having an ion exchange function refers to a compound capable of releasing ions into a solution by contact with an aqueous solution of a salt and taking ions in the solution into the solution.
  • Examples of such a fine particle compound (a) include aluminosilicate, titanosi U-kate, titanium dioxide, silicon dioxide, hydroxyapatite, bone-ion exchange resin and the like represented by zeolite. Can be. Of these, titanosilicate-based compounds, organic compounds, and aluminosilicate-based inorganic compounds having a large ion exchange capacity and high selectivity to heavy metals are preferred.
  • Titanosilicate-based inorganic compounds from Engelhard
  • the A-type or X-type zeolite has a large ion exchange capacity. It is preferred to use
  • plastic powder (b) used in the present invention examples include polyethylene, polypropylene, polystyrene, ethylene vinyl acetate copolymer, acrylonitrile butadiene styrene, polyethylene terephthalate, polybutylene terephthalate, and polymethyl methacrylate.
  • plastic powder (b) used in the present invention examples include powders of various thermoplastic resins such as polyamides such as nylon, and thermosetting resins such as furan resins and phenol resins. Among them, thermoplastic resin powder is preferred.
  • melt flow rate (MFR) of the thermoplastic resin powder is too small, the particulate compound will adhere to the surface of the thermoplastic resin. On the other hand, if an excessively large material is used, heating it above its melting point may cause the thermoplastic resin to flow without retaining the shape of the particles. It is preferable to use one having a content of not less than 2 g ZIO and not more than 410 minutes.
  • the MFR is the outflow rate of a thermoplastic resin extruded from an orifice of a specified diameter and length at a constant temperature and pressure, and is measured in accordance with JISK 720. . Of the thermoplastic resins, polyethylene is most preferred.
  • the particle size of the plastic powder used in the present invention is ultimately related to the size of the particles of the composite adsorbent, which is ultimately large.
  • a large composite adsorbent is to be produced, a large plastic powder is mixed with a small composite adsorbent.
  • a smaller plastic powder may be selected. From such a viewpoint, the average particle diameter (diameter) of the plastic powder is 0.1 to 1.0 nm, preferably 1 to 10 nm. It is better to use a thing of 0 m
  • the composite adsorbent according to the first aspect of the present invention comprises:
  • a composite powder (c) must be obtained by attaching a plastic powder (b) to (a).
  • the fine particle compound may be in the form of powder or granule, but if the particle size is too large, the adsorption speed of the composite adsorbent tends to be slow. It is preferable that ⁇ is 100 m or less. It is preferable to use a spherical material having a diameter of 3 m to 80 from the viewpoint of holding and supporting properties.
  • adhesion refers to not only adhesion using an adhesive or the like, but also heat-sealing such as melting and heating. It means all of the fixed state, but it is preferable to use heat fusion because it can be surely fixed.
  • a composite powder (c) by adhering a plastic powder to the fine particle compound.
  • 100 parts by weight of the fine particle compound is mixed uniformly with 5 parts by weight to 50 parts by weight of a plastic powder to form a mixture, and the mixture is heated to a temperature higher than the melting point of the plastic powder, cooled, and then sieved. It can be obtained by dividing.
  • the attached amount of the fine particle compound is preferably 50 to 95% by weight of the composite powder from the viewpoint of the effect of the present invention.
  • the amount of the fine particle compound in the composite powder can also be estimated by measuring the volatile content.
  • Volatile components are measured by placing the sample in a magnetic rutupo, covering it, leaving it in a furnace at 90 ° C for 7 minutes, cooling, and weighing the remaining sample.
  • Thermally fusible polymers such as polyethylene decompose and volatilize at this temperature, and the volatile content roughly corresponds to the proportion of the thermoplastic resin in the composite adsorbent.
  • the mixture be lightly crushed and then sieved. This is because the particles are easily crushed because their surfaces are covered with ion-adsorbing fine particles.
  • the mixture can be placed on a vibrating sieve and crushed by vibrating the sieve. If the particles are strongly bonded to each other, they may be crushed once with a crusher, crushed, and then sieved.
  • the average particle size of the composite powder is preferably not less than 75 zm (200 mesh) and not more than 1 mm (16 mesh) in view of pressure loss and handleability.
  • the composite adsorbent in the first invention of the present invention is preferably a composite powder obtained in this manner, which will be described later. It can be obtained by the fourth invention in which the adsorptive substance is uniformly mixed.
  • the composite adsorbent according to the second invention of the present invention is characterized in that the fine particle compound (a) and at least one adsorbent substance (d) selected from powder, granular and fibrous substances Plastic powder (b) is attached to the composite adsorbent, and the amount of the particulate compound attached is preferably 1 to 20% by weight of the composite adsorbent from the viewpoint of the effect.
  • the composite adsorbent according to the second aspect of the present invention is characterized in that a mixture obtained by uniformly mixing a particulate compound, plastic powder, and an adsorbent substance described below is heated to a temperature equal to or higher than the melting point of the plastic powder, cooled, and then dissolved. It can be obtained preferably by the fifth invention of crushing and sieving.
  • the adsorptive substance (d) examples include activated carbon, alumina, silica-alumina, and natural mordenite in various forms such as powder, granules, and fibers.
  • Activated carbon is preferred because of its excellent performance.
  • the activated carbon may be any one that can be activated carbon by carbonizing and activating a carbonaceous material, and preferably has a specific surface area of several 100 m 2 / g or more.
  • carbonaceous material examples include wood, sawdust, charcoal, fruit shells such as coconut shells and walnut shells, fruit seeds, pulp production by-products, lignin, plant molasses and the like, peat, peat, lignite, lignite, Lek blue coal, anthracite, coke, coal tar, coal pitch, oil distillation residue, oil pitch W
  • Examples include mineral materials such as 10; synthetic materials such as phenol, Saran, and acrylic resin; and natural materials such as recycled fiber (rayon). Among them, it is preferable to use plant-based coconut shell activated carbon.
  • 77 mesh more preferably 100 ⁇ m to 200 m (150 mesh to 9 mesh).
  • 75 ⁇ ! 1.1.7 mm (200 mesh to 10 mesh) is preferred, and 100 mm to 1.4 mm (150 mesh to 12 mesh) is more preferred.
  • a fibrous adsorptive substance it is preferable to cut it to about 1 to 5 mm from the viewpoint of moldability, and use fibrous activated carbon ⁇ , iodine from the viewpoint of removing yuka It is preferable to use one with an adsorption amount of 1200 to 300 mg / g.
  • the composite adsorbent according to the first aspect of the present invention preferably comprises 100 to 300 parts by weight of an adsorbent substance represented by the above-mentioned activated carbon, based on 100 parts by weight of the composite powder.
  • the mixing method is not particularly limited, and a known method can be employed.
  • This mixture can be used as it is as a water purification material by automatically filling it as it is, but more preferably, it is heated to above the melting point of the plastic powder and pressurized to form a molded body in the form of a power cartridge. It can also be used.
  • silver-carrying activated carbon or silver-carrying zeolite can be added to the mixture of the composite adsorbent and the activated carbon to provide antibacterial properties.
  • plastic In order to obtain the composite adsorbent according to the second aspect of the present invention, it is necessary to use plastic. Can be obtained by uniformly mixing the powder (b), the fine particle compound (a) and the adsorptive substance (d), heating the mixture above the melting point of the plastic powder, and pressing and molding. It is preferable that plastic powder (b) is attached to compound (a) and adsorbent substance (d) to form a composite adsorbent, heated to above the melting point of the plastic powder, cooled, unframed and sieved. Can be manufactured. For that purpose, first, it is necessary to attach a plastic powder (b) to the particulate compound (a) and the adsorbent substance (d) to form a composite adsorbent.
  • the amount of the fine particle compound to be attached is preferably 1 to 20% by weight of the composite adsorbent from the viewpoint of the effect of the present invention.
  • the mixture When the mixture is heated and cooled, if the plastic powder and the particulate compound and the adsorbent are in a state of being lightly bonded, it is recommended that the mixture be lightly crushed and then sieved.
  • the mixture can be placed on a vibrating sieve and crushed by vibrating the sieve.
  • the particles When the particles are strongly bonded to each other, the particles may be preheated to 60 ° C to 110 ° C, pulverized by a pulverizer, crushed, and then sieved.
  • the obtained composite adsorbent can be used as an adsorbent in the form of granules as it is, but may be further used by mixing with an adsorbent substance.
  • This composite adsorbent is used as water purification However, it can be molded by heating and used as a cartridge-shaped molded body. Also, silver-bearing activated carbon or silver-exchanged zeolite can be added to impart antibacterial properties to the composite adsorbent.
  • the composite adsorbent of the present invention When the composite adsorbent of the present invention is used as a water purification material, a high adsorption speed can be exhibited despite its granular shape, and fine powder does not flow out at the time of passing water.
  • the cause cannot always be clearly explained, it is presumed to be due to the adhesion structure between the plastic particles and the fine particle compound.
  • a part of each fine particle compound is fixed by plastic particles such as polyethylene, and the whole is in a granular form, but the surface opposite to the side where the fine particle compound is fixed to the plastic particles is It is not covered by the particles, and maintains its surface state as it is, so that the adsorption performance inherent in the fine particle compound works effectively, and that the plastic particles and the fine particle compound are firmly fixed. However, it is possible that it will not leak.
  • the plastic particles and the fine particle compound are also fixed to the adsorbent substance, so that the structure is less likely to be classified.
  • the water flow conditions are not particularly limited. However, to prevent the pressure loss from becoming too large, for example, 50 to 200 hr— 1 It is performed at the space velocity (SV). Since the composite adsorbent of the present invention has a high adsorption rate, it exhibits performance even at a flow rate of 100 hr 1 or more, and even 1000 r- 1 or more. Can be.
  • the composite adsorbent of the present invention is filled in a container as a water purification material, and is directly purified.
  • the water container can be used alone, it may be used in combination with a known nonwoven fabric, various adsorbents, ceramic filtration materials, hollow fiber membranes, and the like.
  • the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
  • a titanosilicate-based lead-removing material of ATS (average particle diameter of 20 m) manufactured by Engelwald, average particle diameter of 40 ⁇ m, MFR of 2.010 minutes, melting point 150 g of polyethylene powder at 120 ° C (Sumitomo Seika Co., Ltd.) was uniformly mixed. The mixture was heated at a temperature of 16 ot using a heat dryer for 1 hour and then cooled to room temperature.
  • the mass of the mixture was sieved on a vibrating sieve to remove the mesh, and a 30/150 mesh (the upper sieve was 30 mesh, 0.5 mesh, the lower sieve was 150 mesh, 0 mesh). 1 mm) to obtain a composite powder.
  • Particles having a particle size of 150 mesh or more and 30 mesh or less accounted for 65% of the whole.
  • 5% was obtained with a mesh of 30 mesh or more, and 30% was obtained with a mesh of 150 mesh or less.
  • Those with a mesh of 150 or less were reused, and those with a mesh of 30 or more were adjusted to 30/150 by crushing again and reused.
  • the volatile content of the 30/150 mesh was 25%.
  • FIGS. 1 to 3 show electron micrographs of the obtained composite powder.
  • 1 is ATS
  • 2 is molten polyethylene. Since polyethylene is molten, it is difficult to distinguish polyethylene, but from Fig. 1 (magnification: 180x) and Fig. 2 (magnification: 650x), the surface of the composite powder of the present invention is spherical ATS. It is covered.
  • Fig. 3 shows a photo taken at 250 ⁇ magnification. True, it is possible to observe how the ATS particles are thermally fused to the polyethylene particles by melting the polyethylene particles. In Fig. 3, the flat part that appears to have once melted is polyethylene.
  • the polyethylene portion has a structure that is difficult to observe because it is located inside the composite particles, a flat portion (polyethylene portion) can be partially observed in FIG.
  • Figure 4 shows the relationship between the flow rate and the lead removal rate.
  • the lead ion removal rate is calculated by [(lead concentration on the inlet side of the power ram – lead concentration on the outlet side) ⁇ lead concentration on the inlet side].
  • the lead removal performance was evaluated from the relationship. The point at which the removal rate was 80% was defined as the life of the adsorbent. From the results in Fig. 4, it can be seen that the life of lead removal is 370 L, and the column (filled with the blended product) has a removal capacity of 61 L per lcc. Table 1 shows the results.
  • the free chlorine removal performance and THM removal performance were also measured (not shown).
  • the free chlorine removal performance was 600 liters at a concentration of 2 ppm at the inlet (100 liters per cc of column).
  • L) and trihalomethane removal performance were as follows: 100 pPb at inlet, 50 ppb of chloroform in tap water, 30 ppb of bromodichloromethane, 20 ppb of dibromochloromethane and 5 ppb of bromoform. (Adjusted in addition), the performance was 800 L (13 L per column lcc).
  • the composite adsorbent of the present invention had excellent performance for water purifiers.
  • granular activated carbon [Kuraray Co., Ltd. Kuraray Coal GW 60/150 (particle size: 0.1 mm to 0.25 mm, specific surface area: 800 m 2 / g)] 15 kg, and the mixture was stirred uniformly, solids were separated by filtration, and the solids were further centrifugally dehydrated with a filter cloth to remove surface water. 15 kg of the same GW60 / 150 as the dried activated carbon was newly added and mixed, and then dried at 120 ° C for 12 hours to obtain a composite granular material.
  • This composite granule was filled into the same container as that used in Example 1 at a packing density of 0.50 g ZmL to form a water purifier, and the same raw water as in Example 1 was passed through for 1.0 L / Z.
  • the lead removal performance measured in the same manner as in Example 1 was 32 L / cc (activated carbon), and the trichloromethane removal performance was almost the same, but slight turbidity was observed at the beginning of water passage.
  • Example 1 10 g of a sulfonic acid type ion exchange fiber (diameter: 30 im, ion exchange capacity: 2 meq / g), 1 g, and 90 g of the activated carbon used in Example 1 were uniformly mixed. This is the same 60 cc force as used in Example 1. The ram was filled and water was passed under the same conditions as in Example 1. As a result, the life of lead was 1500 L, and the removal capacity per unit volume was 25 L. The removal performance of free chlorine and THM was the same as in Example 1, but the lead removal performance was 40% of that of Example 1, and the lead removal performance was inferior.
  • a composite adsorbent was prepared in the same manner as in Example 1 except that the ratio of the polyethylene particles to be mixed was changed, and the adsorption performance of soluble lead was evaluated in the same manner as in Example 1.
  • the volatile content of the composite adsorbent is related to the amount of polyethylene as described above, and was measured as a reference value.
  • Table 1 shows the relationship between the mixing ratio of polyethylene powder and lead removal performance. The clarity of the permeated water flowing out was observed using a colorimetric tube.
  • thermoplastic resin was polypropylene (PP).
  • MFR of PP was 1.0, and the particle size was 40 ⁇ m.
  • the volatile content of the obtained composite adsorbent was 30%.
  • the adsorption performance of soluble lead measured in the same manner as in Example 1 was 58 L / cc, indicating a good performance. No turbidity was observed in the early stage of water flow.
  • Silica-alumina-based zeolite particles were used as the ion-adsorbing fine particles.
  • This zeolite was a spherical zeolite with an average particle size of 3.
  • thermoplastic resin particles the same polyethylene as in Example 1 was used, and a composite adsorbent was produced in the same manner as in Example 1 except that the blending amount of polyethylene was set to 20%.
  • the volatile content of the obtained composite adsorbent was 37%, and the adsorption performance for soluble lead was 4 lL / cc. No turbidity was observed at the beginning of the passage.
  • Activated carbon manufactured by Kuraray Chemical Co., Ltd. GW 60/150 (activated carbon particle size: 60 to 150 mesh) lkg, 100 g of the composite powder produced in Example 1, MFR 0.50 Min, melting point is 130 ° C, average particle size is 30 Am polyethylene powder was mixed at a rate of 100 g. Next, the activated carbon was filled in a cylindrical frame having an outer diameter of 42 mm, an inner diameter of 25 mm, and a height of 95 mm, and heated and pressed at 160 ° C. for 17 minutes using a heating press. (IMPa) and molded into a cartridge.
  • the cartridge was mounted on a housing to form a water purifier, and water adjusted to a free chlorine concentration of 2 ppm and a soluble lead concentration of 50 ppm was supplied at 2 L / min. No turbidity was observed in the early stage of water passage.
  • the performance of removing the soluble lead of the activated carbon molded product was 480 L (56 L per column lcc).
  • the free chlorine removal performance (up to the life of 80% removal) was 450 thousand L (53 L per column lcc), which was sufficient for practical use.
  • titanosilicate lead remover ATS (average particle size 20 zm) manufactured by Engel Haldo 540 g, average particle size 40 im, MFR 1.5 g 10 min , 180 g of polyethylene powder with melting point of 120 ° C (Sumitomo Seika Chemical Co., Ltd. UF-1.5), granular activated carbon [GW 1032 (Kurare Chemical Co., Ltd., particle size 1.7 mm) 00.5 mm, specific surface area 800 m 2 Z g)] 222 g.
  • the mixture was heated at a temperature of 150 ° C. for 1 hour using a heating dryer, and then crushed using a crusher.
  • FIGS. 1 is ATS
  • 2 is molten polyethylene
  • 3 is activated carbon. Since polyethylene is molten, it is difficult to distinguish polyethylene, but from Fig. 5 (magnification: 60x) and Fig. 6 (magnification: 200x), the surface of the composite adsorbent of the present invention is partially spherical. You can see that it is covered by ATS.
  • 150 g of the composite adsorbent obtained as described above was packed in a 300 cc column, and 50 ppb of soluble lead (adjusted to a lead ion concentration of 5 O ppb by adding lead nitrate) was passed through at a flow rate of 0.75 LZ (SV 150 hr- 1 ), and the lead ion removal rate was measured.
  • Figure 7 shows the relationship between the flow rate and the lead removal rate.
  • the removal rate of lead ions is
  • the lead removal performance is determined from the relationship between the removal rate and the flow rate. evaluated. The point at which the removal rate was 80% was taken as the adsorbent life. From the results in Fig. 7, it can be seen that the life of lead removal is 9600, and the column has a removal capacity of 32 L per 1 cc of column.
  • the free salt removal performance and total THM removal performance were also measured (not shown).
  • the free chlorine removal performance was determined at a concentration of 2 ⁇ pm at the inlet.
  • a titanosilicate lead remover ATS (average particle diameter 20 m) manufactured by Engelhard Co., Ltd. 0 tm, 1.5 g MFR, 10 minutes, polyethylene powder with a melting point of 120 ° C (Frick UF—1.5, manufactured by Sumitomo Seika) 300 g, granular activated carbon [GW 1 manufactured by Kuraray Chemical Co., Ltd. 0 Z 3 2 (particle size 1. 7 mm ⁇ 0. 5 mm, specific surface area 8 0 0 m 2 / g) ] and were uniformly mixed 1 7 0 0 g. The mixture was heated at a temperature of 150 ° C. for 1 hour using a heating dryer, and then crushed using a crusher.
  • the mass of the mixture was sieved through a vibrating sieve to a mesh of 130 mesh (the upper sieve was 10 mesh, the mesh size was 1.7 mm, the lower sieve was 30 mesh, and the mesh size was 0.5 mm).
  • a composite adsorbent was obtained. Particles having a particle size of 30 mesh or more and 10 mesh or less accounted for 80% of the whole. The percentage of meshes with a mesh size of 10 mesh or more was 5%, and those with a mesh size of 30 mesh or less was 15%.
  • Example 2 The same measurement as in Example 1 was performed, and it was found that the life of lead removal was 360 liters, and the column had a removal capacity of 12 liters per 1 cc of column.
  • the free chlorine removal performance and the total THM removal performance were also measured (not shown).
  • the free chlorine removal performance was 300 000 L (1 per column lcc). 0 L), removal of total trihalomethane Performance was 1200 L (4 L per cc column).
  • the composite adsorbent of the present invention had excellent performance for water purifiers.
  • granular activated carbon [Kuraray Chemical stocks meeting ne earth made Kurareko Ichiru GW 1 0 Z 3 2 (particle size 1. 7 mm ⁇ 0. 5 mm, the area ratio table 8 0 0 m 2 Z g) ] 1 5 kg was charged and the mixture was stirred uniformly, the solid was filtered off, and the solid was further centrifugally dehydrated with a filter cloth to remove surface water. Newly, 22.5 kg of the same GW10 / 32 as the dried activated carbon was added, mixed, and dried at 120 ° C for 12 hours to obtain a composite granular material.
  • This composite granular material was filled into the same container as that used in Example 1 at a packing density of 0.50 gZmL to form a water purifier, and the same raw water as in Example 1 was passed at 0.75 L / min. .
  • the lead removal performance measured in the same manner as in Example 1 was 5 L / cc (activated carbon), and the total trihalomethane removal performance was almost the same, but slight turbidity was observed at the beginning of water passage.
  • a composite adsorbent was prepared in the same manner as in Example 11 except that the ratio of the polyethylene particles to be mixed was changed, and the adsorption performance of soluble lead was evaluated in the same manner as in Example 2.
  • Table 3 shows the relationship between the mixing ratio of polyethylene powder and lead removal performance. In addition, a colorimetric tube is used Observed using.
  • thermoplastic resin was polypropylene (PP).
  • MFR of the PP was 1.0, and the particle size was 40 m.
  • Soluble lead measured in the same manner as in Example 2. Had an adsorption performance of 11.5 L / cc, indicating a good performance. No turbidity was observed in the early stage of water flow.
  • Silica-alumina-based zeolite fine particles were used as the ion-exchangeable fine particles.
  • This zeolite was a spherical zeolite having an average particle diameter of 3.
  • a composite adsorbent was produced in the same manner as in Example 12 except that the same polyethylene as in Example 12 was used as the thermoplastic resin particles, and the amount of polyethylene was changed to 100 g.
  • the adsorption performance of soluble lead measured in the same manner as in Example 12 was 7.5 L / cc. No turbidity was observed at the beginning of the water flow.
  • Activated carbon GW 10/32 (Kuraray Chemical Co., Ltd.) (particle size 1.7 mm to 0.5 mm, specific surface area 800 m 2 / g) lkg, composite powder 200 produced in Example 1 g, average particle size: 40 m, MFR: 1.5 g, Z lOmin, melting point: 120 ° C, polyethylene powder (Sumitomo Seika Florisene UF—1.5), 200 g ratio And mixed.
  • the activated carbon was filled in a cylindrical frame having an outer diameter of 42 mm, an inner diameter of 25 mm, and a height of 95 mm, and was heated at 125 with a heating press for 80 minutes and pressurized (IMP a) Then, it was molded into a power grid.
  • the cartridge was mounted on a housing to form a water purifier, and water adjusted to a free chlorine concentration of 2 ppm and a soluble lead concentration of 50 ppb was supplied in 2 L portions. No turbidity was observed at the beginning of water passage.
  • the activated carbon molded product had a removal capacity of 480 L (56 L per column lcc) for free lead and a removal efficiency of free chlorine (up to 80% removal life) of 450 L (per cc column). 5 3 L), which was sufficient for practical use.
  • the composite adsorbent of the present invention is excellent in the adsorption performance of heavy metals such as trichloromethane (THM), free chlorine and lead, as well as being able to adsorb and remove these in a well-balanced manner. Since the compound fine powder does not flow out, it is suitably used especially for water purification. In addition, since the adsorption performance of each water dispenser hardly varies due to the occurrence of classification, it can be supplied stably.
  • heavy metals such as trichloromethane (THM), free chlorine and lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本発明の課題は、通液抵抗が低く、遊離塩素、THM、重金属などの除去性能に優れ、しかも透過水の良好な清透度を与え、さらに浄水器ごとの性能差のばらつきが発生しにくい吸着材とその製造方法、並びに浄水材及び浄水器を提供することにあり、かかる課題は、(1)微粒子化合物(a)にプラスチック粉末(b)を付着させた複合粉末体(c)と、粉末状、粒状物及び繊維状物から選ばれた少なくとも1種の吸着性物質(d)とからなる複合吸着材、(2)微粒子化合物(a)と粉末状、粒状物及び繊維状物から選ばれた少なくとも1種の吸着性物質(d)にプラスチック粉末(b)を付着させた複合吸着材によって上記課題を達成することができる。

Description

明 細 書 複合吸着材とその製造方法、 並びに浄水材及び浄水器 技術分野
本発明は、 複合吸着材とその製造方法、 並びに浄水材及び浄水器 に関する。 さらに詳しくは、 使用中に微粉が流出しない複合吸着材と その製造方法、 並びに浄水材及び浄水器に関する。 本発明により提供 される、 微粒子化合物 ( a ) にプラスチック粉末 ( b ) を付着させた 複合粉末体 ( c ) と、 粉末状、 粒状物及び繊維状物から選ばれた少な く とも 1種の吸着性物質 ( d ) とからなる複合吸着材、 及び微粒子化 合物 ( a ) と粉末状、 粒状物及び繊維状物から選ばれた少なく とも 1 種の吸着性物質 ( d ) にプラスチック粉末 ( b ) を付着させた複合吸 着材を浄水材として浄水器に使用すると、通液抵抗が低く、遊離塩素、 THM、 重金属などの除去性能に優れ、 しかも透過水の清透度が極め て良好となるので、 浄水器用途に好適である。 背景技術
活性炭は各種汚染物質の吸着能に優れており、 従来から家庭用、 工業用を問わず種々の分野で吸着材として使用されている。 近年、 塩 素臭、 カビ臭の無いおいしい水が要望されており、 この要望に対して これまで種々の浄水器が提案されている。 しかしながら、 最近では、 ト リ Λロメタン (以下、 THMと略称する) 、 環境ホルモン、 重金属 など、 水質に関する安全衛生上の関心がさらに高まっており、 これら の要望に応えるには、 活性炭のみでは不十分であり、 特異な吸着能を 有する無機化合物など他の吸着材を併用する必要がある。
とくに浄水の分野において、 重金属のうちでも鉛イオンは、 内分 泌撹乱作用を疑われる物質として環境庁により定められている。 そし て、 飲料水中に含まれる鉛イオン濃度は、 2 0 0 3年には現行の規制 値 5 0 p p b以下から 1 0 p p b以下に強化されることになつている ことを考えると、 有効な浄水材の開発は急務である。
これまで、 本出願人は、 飲料水中の遊離塩素、 黴臭、 T H M及び 重金属の除去性能に優れる浄水材として、 繊維状活性炭、 二酸化チタ ン、 二酸化ケイ素及びバインダ一からなる混合物を成型せしめた活性 炭成型体を開発し、 特許出願した (特許文献 1 ) 。 ここに開示された 活性炭成型体は、 繊維状活性炭、 二酸化チタン、 二酸化ケイ素及びバ インダ一からなる混合物を成型せしめた活性炭成型体であり、 二酸化 チタン及び二酸化ケイ素を主成分とする粒状体と繊維活性炭を湿式成 型して得られる成型体が水中の鉛イオンなどの重金属を除去するのに 優れた効果を発揮する。
【特許文献 1】 特開 2 0 0 0— 2 5 6 9 9 9号公報 さらに、 本出願人は、 重金属の吸着性能に優れ、 かつ遊離塩素及 び T H Mをバランスよく吸着除去することができ、 しかも通液抵抗が 低い活性炭成型体を提案した (特許文献 2 ) 。 ここに提案された活性 炭成型体は、 粒状活性炭に、 フィブリル化繊維に絡ませた二酸化チタ ン及ぴ二酸化ケイ素を主成分とする微粒子化合物を担持したもので、 活性炭本来の性能を損なう ことなく、 通液抵抗を低く、 遊離塩素、 T H Mなどの除去性能をバランスよく維持しながら、 重金属の除去にも 優れた成型体である。
【特許文献 2】 国際公開 W O 0 3 0 2 2 4 2 5 A 1 しかしながら、 浄水器を単独で使用する場合、 とくに通水初期 に極めてわずかではあるが濁りが発生することがある。 かかる現象は 浄水器と中空糸膜など他の濾過手段と組み合わせて使用することによ つて解決することができるが、浄水器単独で使用するときであっても、 濁りのない水が求められているのが事実である。 濁り 自体は微粒子化 合物の脱落によるもので有害性のないものではあるが、 とく に飲料水 として使用される場合、 清透性は重要なポイントとなる。
また、 吸着材を净水器に充填する場合、 吸着材の充填比重の違い により分級が発生し、 各诤水器への吸着材の配合量が異なることによ り、 浄水器ごとに吸着性能のばらつきが発生することがある。 特に比 較的大きな粒子径を有する吸着材を使用する場合、 浄水器ごとの吸着 性能のばらつきが顕著に発生する傾向にある。
したがって、 本発明の目的は、 通液抵抗が低く、 遊離塩素、 T H M、 重金属などの除去性能をパランスよく維持しながら、 重金属の除 去にも優れ、 しかも通水時に微粒子化合物の微粉が流出することがな く、 極めて良好な透過水の清透度を示し、 さ らに分級の発生による浄 水器ごとの性能差のばらつきが発生しにくい吸着材とその製造方法、 並びに該吸着材からなる浄水材及び該浄水材を用いた浄水器を提供す ることにある。 発明の開示
本発明者らは、 前記課題を達成するため鋭意検討を重ね、 ( 1 ) 微粒子化合物 ( a ) にプラスチック粉末 ( b ) を付着させた複合粉末 体 ( c ) と、 粉末状、 粒状物及び繊維状物から選ばれた少なく とも 1 種の吸着性物質 ( d ) とからなる複合吸着材、 ( 2 )微粒子化合物 ( a ) と粉末状、 粒状物及び繊維状物から選ばれた少なく とも 1種の吸着性 物質 ( d ) にプラスチック粉末 ( b ) を付着させた複合吸着材、 それ らの製造方法、 並びに浄水材及ぴ浄水器によって上記課題を達成する ことができることを見出し、 本発明に至った。 すなわち、 本発明の第 1 の発明は、 微粒子化合物 ( a ) にプラスチック粉末 ( b ) を付着さ せた複合粉末体 ( c ) と、 粉末状、 粒状物及び繊維状物から選ばれた 少なく とも 1種の吸着性物質 ( d ) とからなる複合吸着材である。
本発明の第 2の発明は、 微粒子化合物 ( a ) と粉末状、 粒状物 及び繊維状物から選ばれた少なく とも 1種の吸着性物質 ( d ) にプ ラスチック粉末 ( b ) を付着させた複合吸着材である。
本発明の第 3の発明は、 微粒子化合物 ( a ) にプラスチック粉 末 ( b ) を付着させた複合粉末体 ( c ) である。
本発明の第 4の発明は、 プラスチック粉末と微粒子化合物を均 一に混合して得た混合物を、 該プラスチック粉末の融点以上に加熱 して冷却した後篩い分けし、 吸着性物質と混合する複合吸着材の製 造方法である。
本発明の第 5の発明は、 プラスチック粉末、 微粒子化合物及び 吸着性物質を均一に混合して得た混合物を該プラスチック粉末の融 点以上に加熱して冷却した後、 解砕して篩い分けする複合吸着材の 製造方法である。
本発明の第 6 の発明は、 上記したような複合吸着材からなる浄 水材である。
本発明の第 7の発明は、 この浄水材を用いた浄水器である。 図面の簡単な説明 第 1図は、 実施例 1で得た複合粉末体の電子顕微鏡写真 (倍率 1 8 0倍) である。 第 2図は、 実施例 1で得た複合粉末体の電子顕微鏡 写真 (倍率 6 5 0倍) である。 第 3図は、 実施例 1で得た複合粉末体 の電子顕微鏡写真 ( 2 5 0 0倍) である。 第 4図は、 実施例 1及び比 較例 1 において、 複合吸着材を浄水材として使用して測定した鉛除去 率 (%) と通水量 ( L) との関係を示すグラフである。 第 5図は、 実 施例 1 1で得た複合粉末体の電子顕微鏡写真 (倍率 6 0倍) である。 第 6図は、 実施例 1 1で得た複合粉末体の電子顕微鏡写真 (倍率 2 0 0倍) である。 第 7 図は、 実施例 1 1及び比較例 3 において、 複合吸 着材を浄水材として使用して測定した鉛除去率 (% ) と通水量 ( L ) との関係を示すグラフである。 発明を実施するための最良の形態
本発明の第 1 の発明における複合吸着材の特徴は、 微粒子化合物 ( a ) にプラスチック粉末 ( b ) を付着させた複合粉末体 ( c ) を用 いることにあり、 該粉末体と、 粉末状、 粒状物及ぴ繊維状物から選ば れた少なく とも 1種の吸着性物質 ( d ) とからなる複合吸着材を浄水 材とすることにより、 通液抵抗が低く、 遊離塩素、 THM、 重金属な どの除去性能を十分に発揮することができ、 しかも透過水の透過度が 極めて良好な浄水器を提供することができる。
また、 本発明の第 2の発明における複合吸着材は、 微粒子化合物 ( a ) と粉末状、 粒状物及び繊維状物から選ばれた少なく とも 1種の 吸着性物質 ( d ) にプラスチック粉末 ( b ) を付着させたものであり、 分級の発生による浄水器ごとの吸着性能にばらつきをより生じにくい 浄水材を提供することができる。 浄水用途に好ましく使用される微粒子化合物としては、 溶解性 重金属の吸着性能に優れるイオン交換機能を有する化合物を挙げる ことができる。 イオン交換機能を有する化合物とは、 塩類の水溶液 に接触してイオンを溶液中に出し、 溶液中のイオンを中に取り込む ことができる化合物をいう。
このような微粒子化合物 ( a ) としては、 ゼォライ トに代表さ れるアルミノシ ケ一 ト、 チタノシ Uケ一ト、 二酸化チタン、 二酸 化ケィ素 、 ヒ ドキシァパタイ ト 、 骨灰 ィオン交換樹脂などを例示 することができる 。 なかでも、 ィォン交換容量が大きく、 重金属に 対して選択性が高いチタノシリケ 卜系ハ、、機化合物又はアルミ ノシ リケ一卜系無機化合物が好ましい。
チタノシリケート系無機化合物としては、 エンゲルハルド社から
A T Sの商品名で市販されている非晶質チタノシリケ一 トを使用する のが効率的であり、 アルミノシリケ一卜系無機化合物を使用する場合 は、 イオン交換容量が大きい点で A型又は X型ゼォライ トを使用する のが好ましい。
本発明に用いられるプラスチック粉末 ( b ) としては、 ポリェチ レン、 ポリプロピレン、 ポリスチレン、 エチレン酢酸ビニル共重合体、 アクリロニトリルブタジエンスチレン、ポリエチレンテレフタレ一 ト、 ポリブチレンテレフタレート、 ポリメチルメタクリ レー 卜などのポリ エステル、 ナイロンなどのポリアミ ドなどの各種熱可塑性樹脂、 フラ ン樹脂、 フエノール樹脂などの熱硬化性樹脂の粉末を挙げることがで きる。 なかでも、 熱可塑性樹脂の粉末が好ましい。
熱可塑性樹脂粉末のメルトフローレート (M F R ) は、 あまり小 さいものを使用した場合、 微粒子化合物が熱可塑性樹脂の表面に付着 しにくいことがあり、 一方、 あまり大きいものを使用した場合、 融点 以上に加熱すると、 熱可塑性樹脂が、 粒子の形状を保持出来ずに流れ てしまう ことがあるので、 M F Rとしては、 0. 0 2 g Z l O分以上 で 4 0 1 0分以下のものを使用するのが好ましい。 なお、 M F R とは、 一定の温度及び圧力で規定の直径及び長さのオリ フィスから押 出される熱可塑性樹脂の流出速度であり、 具体的には J I S K 7 2 1 0 に従って測定されるものである。 熱可塑性樹脂のなかでもポリ エチレンが最も好ましい。
本 明で使用するプラスチック粉末の粒子径は、 最終的に巨的と する複合吸着材の粒子の大きさと関係し、 大きめの複合吸着材を作る 場合には 、 大きめのプラスチック粉末を、 小さめの複合吸着材を作る 場合には 、 小さめのプラスチック粉末を選定すればよく、 かかる観点 から、 プラスチック粉末の平均粒子径 (直径) は 0. l ^ m〜 2 0 0 n m、 好ましくは 1 m〜 l 0 0 mのものを使用するのがよい
本発明の第 1 の発明における複合吸着材は、 まず微粒子化合物
( a ) にプラスチック粉末 ( b ) を付着させて複合粉末体 ( c ) と する必要がある。 微粒子化合物は粉末状であっても顆粒状であって いが、 あまり '粒子径が大きいと複合吸着材としたときの吸着速 度が遅くなる傾向にあるので、 粒子径として 2 0 0 i m以下、 好ま し <は 1 0 0 m以下のものが好ましい。 3 m~ 8 0 で球状 の のを使用するのが担持保持性の点で望ましい。
微粒子化合物にプラスチック粉末を付着させるには、 例えば、 遠赤外線加熱、 加熱乾燥炉などの手段によることができる。 なお、 本発明における付着とは、 接着剤などによる接着の他、 溶融加熱な どによる熱融着など、 微粒子化合物とプラスチック粉末とが強固に 固着した状態全てを意味するが、 確実に固着できる点で熱融着によ るのが好ましい。
前述したように、 本発明の第 1 の発明における複合吸着材を得 るには、 まず微粒子化合物にプラスチック粉末を付着させて複合粉 末体 ( c ) を得る必要があるが、 かかる複合粉末体は、 例えば、 微 粒子化合物 1 0 0重量部に対してプラスチック粉末 5重量部〜 5 0 重量部を均一に混合して混合物とし、 該混合物をプラスチック粉末 の融点以上に加熱して冷却した後篩い分けすることによって得るこ とができる。 該微粒子化合物の付着量は複合粉末体の 5 0 〜 9 5重 量%とするのが本発明における効果の点で好ましい。 なお、 複合粉 末体中の微粒子化合物量は、 揮発分を測定することでも推定するこ とができる。 揮発分の測定は、 サンプルを磁性のルツポに入れて蓋 をした状態で、 9 3 0 °Cの炉内に 7分間放置し、 冷却後に残存サン プルの重量を測定するという方法で行う。 ポリエチレン等の熱溶融 性のポリマーは、 この温度では分解、 揮発するので、 揮発分は大略 複合吸着材中の熱可塑性樹脂の割合に相当する。
混合物を加熱後冷却した段階で、 プラスチッグ粉末と微粒子化合 物が軽く接合したような状態にあるときは、 軽く解砕した後に、 篩い 分けるのがよい。 互いの粒子は、 表面がイオン吸着性の微粒子で覆わ れているために、 解碎は簡単に行えるからである。 例えば、 振動篩い の上に混合物を載せ、篩いを振動させる程度で解砕することができる。 また、 互いの粒子同士の接合が強い場合には、 一度粉砕機で粉砕し、 解砕した後に、 篩い分ければよい。
篩い分けした結果、 所定の篩い分け基準より小さい粒子は再使用 し、 大きいものは再度粉砕することにより粒度を調整し、 再使用する ことができる。 複合粉末体の平均粒子径としては、 7 5 zm ( 2 0 0 メッシュ) 以上、 1 mm ( 1 6メッシュ) 以下とするのが、 圧力損失 と取扱性の点で好ましい。 得られた複合粉末体はそのまま顆粒状で吸 着材として使用可能であるが、 本発明の第 1の発明における複合吸着 材は、 好ましくは、 このようにして得た複合粉末体と、 後述する吸着 性物質を均一に混合する第 4の発明によって得ることができる。
本発明の第 2の発明における複合吸着材は、. 前述したように、 微 粒子化合物 ( a ) と粉末状、 粒状物及び繊維状物から選ばれた少なく とも 1種の吸着性物質 ( d) にプラスチック粉末 ( b ) を付着させた ものであり、 該微粒子化合物の付着量は複合吸着材の 1〜 2 0重量% とするのが効果の点で好ましい。 本発明の第 2の発明における複合吸 着材は、 微粒子化合物、 プラスチック粉末、 及び後述する吸着性物質 を均一に混合して得た混合物をプラスチック粉末の融点以上に加熱し て冷却した後、 解砕して篩い分けする第 5の発明によって好ましく得 ることができる。
吸着性物質 ( d) としては、 粉状、 粒状、 繊維状など各種形状 の活性炭、 アルミナ、 シリカ一アルミナ、 天然モルデナイ トなどを 挙げることができるが、 遊離塩素、 THM、 カビ臭などの各種吸着 性能に優れる点で活性炭が好ましい。 活性炭としては、 炭素質材料 を炭化、 賦活することによって活性炭となるものであればよく、 数 1 0 0 m2/ g以上の比表面積を有するものが好ましい。
炭素質材料としては、 例えば、 木材、 鋸屑、 木炭、 ヤシ殻、 ク ルミ殻などの果実殻、 果実種子、 パルプ製造副生物、 リグニン、 廃 糖蜜などの植物系、 泥炭、 草炭、 亜炭、 褐炭、 レキ青炭、 無煙炭、 コ一クス、 コールタール、 石炭ピッチ、 石油蒸留残渣、 石油ピッチ W
10 などの鉱物系、 フエノール、 サラン、 アクリル樹脂などの合成素材、 再生繊維 (レーヨン) などの天然素材を例示することができる。 な かでも、 植物系のヤシ殻活性炭を使用するのが好ましい
粉状の吸着性物質を使用する場合、 作業性 、 水との接触効率、 通水抵抗などの点から、 7 5 m〜 2 8 0 0 m ( 2 0 0メッシュ
〜 7メッシュ ) が好ましく、 1 0 0 ^m 〜 2 0 0 0 m ( 1 5 0メ ッシュ〜 9メッシュ) がさらに好ましい 。 粒状の吸着性物質を使用 する場合、 同様の理由から、 7 5 μ π!〜 1. 7 m m ( 2 0 0メッシ ュ〜 1 0メ Vシュ) が好ましく、 1 0 0 m〜 1 . 4 m m ( 1 5 0 メッシュ〜 1 2メッシュ) がさ らに好ましい。 繊維状の吸着性物質 を使用する場合 、 成型性の点から 1〜 5 mm程度に切断して使用す るのがよく 、 繊維状の活性炭を使用する α、 遊 佳 の除去性の 点からヨウ素吸着量が 1 2 0 0〜 3 0 0 0 m g / gのものを 用す るのが好ましい
本発明の第 1の 明における複合吸着材は、 前記した複合粉末 体 1 0 0重量部に対 、 好ましくは上記した活性炭に代表される吸 着性物質 1 0 0重量 〜 3 0 0 0重量部を混合することによって得 られる。 混合方法は く に限定されず、 公知の方法を採用すること ができる。 この混合 は浄水材としてそのまま自動充填して使用す ることができるが、 らに、 好ましくはプラスチック粉末の融点以 上に加熱し、 加圧成 して、 力—ト リ ツジ形態の成型体として使用 することも可能であ 。 また、 複合吸着材と活性炭との混合物に、 抗菌性を与えるため 、 銀担持活性炭あるいは銀担持ゼオライ トを 添加することもでき
本発明の第 2の 明における複合吸着材を得るには、 プラスチッ ク粉末 ( b ) 、 微粒子化合物 ( a ) 及び吸着性物質 ( d ) を均一に混 合し、 混合物をプラスチック粉末の融点以上に加熱し、 加圧して成型 することによって得ることができるが、 微粒子化合物 ( a ) と吸着性 物質 ( d ) にプラスチック粉末 ( b ) を付着させて複合吸着材とし、 プラスチック粉末の融点以上に加熱して冷却した後、 解枠して篩い分 けすることによって好ましく製造することができる。 そのためには、 先ず微粒子化合物 ( a ) と吸着性物質 ( d ) にプラスチック粉末 ( b ) を付着させて複合吸着材とする必要があるが、 かかる複合吸着材は、 例えば、 吸着性物質 1 0 0重量部に対して、 微粒子化合物 1〜 5 0重 量部及ぴプラスチック粉末 5〜 2 0 0重量部を均一に混合して混合物 とし、 該混合物をプラスチック粉末の融点以上に加熱して冷却した後 篩い分けすることによって得ることができる。 該微粒子化合物の付着 量は複合吸着材の 1 ~ 2 0重量%とすると本発明における効果の点で 好ましい。
混合物を加熱後冷却した段階で、 プラスチック粉末と微粒子化合 物及ぴ吸着性物質が軽く接合したような状態にあるときは、 軽く解砕 した後に、 篩い分けるのがよい。 例えば、 振動篩いの上に混合物を載 せ、 篩いを振動させる程度で解砕することができる。 また、 互いの粒 子同士の接合が強い場合には、 6 0 °C〜 1 1 0 °Cに予熱した状態にし て粉砕器で粉砕し、 解砕した後に篩い分ければよい。
篩い分けした結果、 所定の篩い分け基準より小さい粒子は再使 用し、 大きいものは再度粉砕することにより粒度を調整し、 再使用 することができる。 得られた複合吸着材はそのまま顆粒状で吸着材 として使用可能であるが、 さらに吸着性物質と混合して使用しても よい。 この複合吸着材は浄水材としてそのまま自動充填して使用す ることができるが、 さらに加熱して成型し、 カー ト リ ッジ形態の成 型体として使用することも可能である。 また、 複合吸着材に抗菌性 を与えるために、 銀担持活性炭あるいは銀交換ゼォライ トを添加す ることもできる。 . 本発明の複合吸着材を浄水材として使用したとき、 顆粒状という形状 にもかかわらず高い吸着速度を発揮することができ、 しかも通水時におい て微粉が全く流出することがない。 かかる原因を必ずしも明確に説明する ことができないが、 プラスチック粒子と微粒子化合物との付着構造による ものと推定される。 すなわち、 各々の微粒子化合物の一部はポリエチレン などのプラスチック粒子により固着され、 全体としては顆粒状になってい るが、 プラスチック粒子と固着している側と反対側の面は、 微粒子化合物 がプラスチック粒子で覆われることはなく、 そのままの表面状態を保持し ているので、 微粒子化合物が本来有している吸着性能が有効に働いている こと、 及びプラスチック粒子と微粒子化合物は強固に固着されているため、 流出しないことが考えられる。
また、 第 2の発明による複合吸着材においては、 プラスチック粒 子と微粒子化合物が吸着性物質にも固着しているため、 さらに分級を 起こしにくい構造になっていることが考えられる。
诤水材を容器 (カラム) に充填して浄水器として使用する場合 の通水条件はとく に限定されないが、 圧力損失があまり大きくなら ないように、 例えば 5 0 〜 2 0 0 0 h r— 1の空間速度 ( S V ) で実 施される。 本発明の複合吸着材は、 吸着速度が速いので、 ¥を 1 0 0 h r 1以上、さらに 1 0 0 0 r— 1以上の流速でも性能を発揮 するので、 浄水器カラムを大幅に小型することができる。
本発明の複合吸着材は浄水材として容器に充填し、 そのまま浄 水器単独で使用することができるが、 公知の不織布、 各種吸着材、 セラミック濾過材、 中空糸膜などと組み合わせて使用してもよい。 以下、 実施例により本発明をさらに詳細に説明するが、 本発明はこ れらに限定されるものではない。
実施例 1
微粒子化合物として、 エンゲル Λルド社製 AT S (平均粒子径 2 0 m) のチタノシリケート系鉛除去材 1 k gと、 平均粒子径が 4 0 ^m、 M F Rが 2. 0 1 0分間、 融点 1 2 0 °Cのポリエチレン粉末 (住友精化 株式会社製フ口一セン) 1 5 0 gとを均一に混合した。 この混合物を 1 6 ot の温度で、 加熱乾燥機を使用して 1時間加熱した後、 室温まで冷却し た。
次いで、 混合物の塊を振動篩いにかけて解枠し、 3 0 / 1 5 0メッシ ュ (上の篩いが 3 0メッシュ、 目開き 0. 5 mm、 下の篩いが 1 5 0メッ シュ、 目開き 0. 1 mm) に篩い分けて複合粉末体を得た。 1 5 0メッシ ュ以上、 3 0メッシュ以下の粒度のものは、 全体の 6 5 %であった。 また、 3 0メッシュ以上のものが 5 %であって、 1 5 0メッシュ以下のものは 3 0 %であった。 なお、 1 5 0メッシュ以下のものは、 再使用し、 3 0メッ シュ以上のものは、 再度粉砕することにより 3 0 / 1 5 0に調整し、 再使 用した。 3 0/ 1 5 0メッシュのものについて揮発分を測定したところ 2 5 %であった。
得られた複合粉末体の電子顕微鏡写真を図 1〜図 3 に示す。 1 は A T S、 2は溶融したポリエチレンである。 ポリエチレンは溶融してい るため、 ポリエチレンは判別しにくいが、 図 1 (倍率 1 8 0倍) 及び 図 2 (倍率 6 5 0倍) から、 本発明の複合粉末体の表面は、 球状の A T Sで覆われて.いることがわかる。 また、 図 3は倍率 2 5 0 0倍の写 真であるが、 ポリエチレン粒子が溶融することにより、 AT Sの粒子 がポリエチレン粒子に熱融着されている様子を観察することができる。 図 3において、 一度溶融したように見える平坦な部分がポリエチレン である。 なお、 ポリエチレン部分は、 複合粒子の内部に位置するため に観察しにくい構造になっているが、 図 2においても、 一部に平坦な 部分 (ポリエチレンの部分) を観察することができる。
以上のようにして得た複合粉末体 ( 3 0/ 1 5 0メッシュ) 1 0 gと 粒状活性炭 [クラレケミカル株式会社製クラレコール GW48ノ 1 0 0 (粒 子径 0. 3 mn!〜 0. 1 5 mm, 比表面積 8 0 0m2 Zg) ] 9 0 gとを均 一に混合し、 複合吸着材とした。 これを 6 0 c cのカラムに充填し、 5 0 P P bの溶解性鉛 (硝酸鉛を加えて鉛イオン濃度が 5 0 p p bになるよう に調整した) を含む原水を 1. 0リットル (L) /分 (SV l O O O h r - M の流速で通水し、 鉛イオンの除去率を測定した。
通水量と鉛除去率の関係を図 4に示す。 鉛イオンの除去率は、 〔 (力 ラムの入口側鉛濃度一出口側鉛濃度) Ζ入口側鉛濃度〕 によって算出され るものであり、 各通水量の経過時点で、 除去率と通水流量の関係から鉛の 除去性能を評価した。 除去率が 8 0 %の時点を吸着材のライフとした。 図 4の結果から、 鉛除去のライフは 3 7 0 0 Lであり、 カラム (ブレンド品 を充填) l c cあたり 6 1 Lの除去能力を有していることがわかる。 結果 を表 1に示す。
なお、 遊離塩素の除去性能と THMの除去性能も併せて測定した結果 (図示省略) 、 遊離塩素の除去性能は、 入口 2 p pmの濃度で 6 0 0 0 L (カラム 1 c cあたり 1 0 0 L) 、 トリハロメタンの除去性能は、 入口 1 0 0 p P b (水道水にクロ口ホルム 4 5 p p b、 プロモジクロロメタン 3 0 p p b、 ジプロモクロロメタン 2 0 p p b及びプロモホルム 5 p p bを 加えて調整した) の濃度で 8 0 0 L (カラム l c cあたり 1 3 L) の性能 であった。 以上のように、 本発明の複合吸着材は、 浄水器用として優れた 性能を有していた。
比較例 1
ミクロフイ ブリル化繊維として、 リ ファイナ一で C S F = 5 0 m Lまで叩解した市販のアクリル繊維 (日本ェクスラン工業株式会社製 R 5 6 D) 2 0 0 gを使用し、 これと微粒子化合物としてチタノシリ ケート (エンゲルハルド社製 AT S、 平均粒子径 3 0 111、 球形状) 1 5 0 0 gを水 4 5 Lに分散し、 スラリー状の固液混合水溶液を調製 した。
該スラリー状水溶液に、 粒状活性炭 [クラレケミカル株式会社製 クラレコール GW 6 0 / 1 5 0 (粒子径 0. 1 mm〜 0. 2 5 mm、 比表面積 8 0 0 m2/ g ) ] 1 5 k gを投入して均一に攪拌し、 固形物 を濾別し、 該固形物をさらに濾布で遠心脱水し、 表面水を除去した。 新たに、 乾燥した上記活性炭と同じ G W 6 0 / 1 5 0を 1 5 k g追加 し、 混合した後、 1 2 0 °Cで 1 2時間乾燥して複合粒状体を得た。
この複合粒状体を充填密度 0. 5 0 g ZmLで実施例 1で使用し たものと同じ容器に充填して浄水器とし、 実施例 1 と同じ原水を 1 . 0 L Z分で通水した。 実施例 1 と同様にして測定した鉛除去性能は 3 2 L / c c (活性炭) であり、 ト リ八ロメタン除去性能は同程度であ つたが、 通水初期に若干の濁りが認められた。
比較例 2
スルホン酸型のイオン交換繊維 (直径 3 0 im、 イオン交換容量 2m e q/ g) の 1 mm力ット品 1 0 gと、 実施例 1で使用した活性炭 9 0 g とを均一に混合した。 これを実施例 1で使用したものと同じ 6 0 c cの力 ラムに充填し、 実施例 1と同じ条件で通水を行ったところ、 鉛のライフは 1 5 0 0 L、 単位体積あたりの除去能力は、 2 5 Lであった。 遊離塩素と T H Mの除去性能は実施例 1 と同じであつたが、 鉛の除去性能は実施例 1 の 4 0 %であり、 鉛の除去性能は劣っていた。
実施例 2〜 4
混合するポリエチレンの粒子の割合を変化させた以外は、 実施例 1 と 同様にして、 複合吸着材を調製し、 実施例 1 と同様にして溶解性鉛の吸着 性能を評価した。 複合吸着材の揮発分は、 前述のとおりポリエチレン量に 関係しており、 参考値として測定した。 ポリエチレン粉末の混合割合と鉛 の除去性能の関係を表 1に示す。 また、 流出する透過水の清透度を比色管 を使用して観察した。
ポリエチレン粉末の混合割合と溶解性鉛の除去性能
Figure imgf000018_0001
実施例 5〜 7
平均粒子径が 4 O i mで M F Rの異なるポリエチレンを使用して幾つ かの複合吸着材を作り、 M F Rと複合吸着材の性能との関係を測定した。 結果を表 2に示す。 樹脂粒子の混合量は 1 3 %とした。 ポリエチレンの MF Rと溶解性鉛の除去性能
Figure imgf000019_0001
実施例 8
熱可塑性樹脂をポリプロピレン (P P) とした以外は実施例 1 と同様 にして複合吸着材を作製した。 P Pの MF Rは 1. 0であって、 粒子径は 4 0 ^mであった。 得られた複合体吸着材の揮発分は 3 0 %であった。 実 施例 1 と同様にして測定した溶解性鉛の吸着性能は 5 8 L/ c cであって、 良好な性能を有していた。 また、 通水初期に濁りは見られなかった。
実施例 9
ィォン吸着性微粒子としてシリカアルミナ系のゼォライ トの微 子を 使用した。 このゼォライ トは平均粒子径が 3 の球状のゼォライ トであ つた。 熱可塑性樹脂の粒子として、 実施例 1 と同様なポリエチレンを使用 し、 ポリエチレンの配合量を 2 0 %とする以外は実施例 1と同様にして複 合吸着材を作製した。 得られた複合吸着材の揮発分は 3 7 %、 溶解性鉛の 吸着性能は 4 l L/ c cであった。 通水初期において濁りは全く見られな かった。
実施例 1 0
クラレケミカル株式会社製の活性炭 GW 6 0 / 1 5 0 (活性炭粒子径 6 0〜 1 5 0メッシュ) l k g、実施例 1で作製した複合粉末体 1 0 0 g、 MF Rが 0. 5 1 0分、 融点が 1 3 0°Cであって、 平均粒子径が 3 0 ; amのポリエチレン粉末を 1 0 0 gの割合で混合した。 次いで、 該活性炭 を、 外径 4 2 mm、 内径 2 5 mm、 高さ 9 5 mmの円筒型の枠に充填し、 加熱プレスを使用して 1 6 0 °Cで 1 7分間加熱、 加圧 ( I MP a) して力 ートリッジに成型した。
該カートリッジをハウジングに装着して浄水器とし、 遊離塩素濃度 2 p pm、 溶解性鉛濃度 5 0 p p bに調整した水を 2 L/分で供給した。 通 水初期に濁りはみられなかった。 該活性炭成形体の溶解性鉛の除去性能は 4 8 0 0 L (カラム l c cあたり 5 6 L) 。 遊離塩素除去性能 ( 8 0 %除 去のライフまで) は 4 5 0 0 L (カラム l c cあたり 5 3 L) であり、 実 用上十分な性能を有していた。
実施例 1 1
微粒子化合物として、 エンゲル八ルド社製のチタノシリケ一ト系 鉛除去剤 A T S (平均粒子径 2 0 z m) 5 4 0 gと、 平均粒子径が 4 0 i m, M F Rが 1 . 5 gノ 1 0分間、 融点 1 2 0 °Cのポリエチレン 粉末 (住友精化製フ口一セン U F— 1 . 5 ) 1 8 0 g、 粒状活性炭 [ク ラレケミカル株式会社製 G W 1 0 3 2 (粒子径 1 . 7 mm〜 0 . 5 mm, 比表面積 8 0 0 m 2 Z g ) ] 2 2 8 0 gとを均一に混合した。 この混合物を 1 5 0 °Cの温度で加熱乾燥機を使用して 1時間加熱した 後、 解砕器を使用して解砕した。
次いで、混合物の塊を振動篩い機にかけて 1 0 Z 3 0メッシュ(上 の篩いが 1 0メッシュ、 目開き 1 . 7 m m、 下の篩いが 3 0メッシュ、 目開き 0 . 5 mm) に篩い分けて複合吸着材を得た。 3 0メッシュ以 上、 1 0メッシュ以下の粒度のものは、 全体の 7 5 %であった。 また、 1 0メッシュ以上のものは 5 %であって、 3 0メッシュ以下のものは 2 0 %であった。 得られた複合吸着材の顕微鏡写真を図 5〜図 6 に示す。 1 は AT S、 2は溶融したポリエチレン、 3は活性炭である。 ポリエチレンは溶融 しているため、 ポリエチレンは判別しにくいが、 図 5 (倍率 6 0倍) 及び図 6 (倍率 2 0 0倍) から、 本発明の複合吸着材の表面は、 部分 的に、 球状の A T Sで覆われていることがわかる。
以上のようにして得た複合吸着材 1 5 0 gを 3 0 0 c cのカラム に充填し、 5 0 p p bの溶解性鉛 (硝酸鉛を加えて鉛イオン濃度が 5 O p p bになるように調整した) を含む原水を 0. 7 5 LZ分 ( S V 1 5 0 h r - 1 ) の流速で通水し、 鉛イオンの除去率を測定した。
通水量と鉛除去率の関係を図 7 に示す。 鉛イオンの除去率は、
[ (カラムの入口側鉛濃度一出口側鉛濃度) /入口側濃度] によって 算出されるものであ Ό 、 各通水量の経過時点で、 除去率と通水量の関 係から鉛の除去性能を評価した。 除去率が 8 0 %の時点を吸着材のラ ィフとした。 図 7の 果から、 鉛除去のライフは 9 6 0 0 しであり、 カラム 1 c c あたり 3 2 Lの除去能力を有していることがわかる。
なお、 遊離塩 の除去性能と総 T H Mの除去性能も併せて測定し た結果 (図示省略 ) 、 遊離塩素の除去性能は、 入口 2 ρ p mの濃度で
2 4 0 0 0 L (力ラム 1 c cあたり 8 0 L ) 、 総ト リ八ロメタンの除 去性能は、 入口 1 0 0 P P b (水道水にクロ口ホルム 4 5 ρ p b、 ブ ロモジクロ口メタン 3 0 P ρ b , ジブ口モクロロメタン 2 0 ρ p b及 びブロモホルム 5 P P bを加えて調整した) の濃度で 9 0 0 L (カラ ム l c c あたり 3 L ) の性能であった。
実施例 1 2
微粒子化合物として 、 エンゲルハルド社製のチタノシリケート系 鉛除去剤 AT S (平均粒子径 2 0 m) 8 5 O gと、 平均粒子径が 4 0 t m、 M F Rが 1 . 5 gノ 1 0分間、 融点 1 2 0 °Cのポリエチレン 粉末 (住友精化製フローセン U F— 1 . 5 ) 3 0 0 g、 粒状活性炭 [ク ラレケミカル株式会社製 GW 1 0 Z 3 2 (粒子径 1. 7 mm〜 0. 5 mm、 比表面積 8 0 0 m 2 / g ) ] 1 7 0 0 g とを均一に混合した。 この混合物を 1 5 0 °Cの温度で加熱乾燥機を使用して 1時間加熱した 後、 解砕器を使用して解砕した。
次いで、混合物の塊を振動篩い機にかけて 1 0 3 0メッシュ(上 の篩いが 1 0メッシュ、 目開き 1. 7 m m、 下の篩いが 3 0メッシュ、 目開き 0. 5 mm) に篩い分けて複合吸着材を得た。 3 0メッシュ以 上、 1 0 メッシュ以下の粒度のものは、 全体の 8 0 %であった。 また、 1 0 メッシュ以上のものは 5 %であって、 3 0メッシュ以下のものは 1 5 %であった。
以上のようにして得た複合吸着材 2 0 0 gと粒状活性炭粒状活性 炭 [クラレケミカル製 GW 1 0 / 3 2 (粒子径 1. 7 mm~ 0. 5 m m、 比表面積 8 0 0 m2/ g ) ] 1 0 0 0 gとを均一に混合し、 希釈 した複合吸着材を調製した。 該複合吸着材 1 5 0 gを 3 0 0 c cの力 ラムに充填し、 5 0 p p bの溶解性鉛 (硝酸鉛を加えて訛イオン濃度 が 5 O p p bになるように調整した) を含む原水を 0. 7 5 LZ分( S V 1 5 0 h r - 1 ) の流速で通水し、 鉛イオンの除去率を測定した。
実施例 1 と同様の測定を行なったところ、 鉛除去のライフは 3 6 0 0 Lであり、 カラム 1 c c あたり 1 2 Lの除去能力を有しているこ とがわかった。
なお、 実施例 1 と同様に遊離塩素の除去性能と総 T HMの除去性 能も併せて測定した結果 (図示省略) 、 遊離塩素の除去性能は、 3 0 0 0 0 L (カラム l c c あたり 1 0 0 L) 、 総ト リハロメタンの除去 性能は、 1 2 0 0 L (カラム 1 c c あたり 4 L ) の性能であった。 以 上のように、 本発明の複合吸着材は、 浄水器用として優れた性能を有 していた。
比較例 3
ミクロフイブリル化繊維として、 リ ファイナ一で C S F = 5 0 m Lまで叩解した市販のアク リル繊維(日本ェクスラン工業製 R 5 6 D) 2 0 0 gを使用し、 これと微粒子化合物としてチタノシリケー ト (ェ ンゲル八ルド社製 A T S、 平均粒子径 2 0 ^ m、 球形状) 1 5 0 0 g を水 4 5 Lに分散し、 スラリー状の固液混合水溶液を調製した。
該スラリー状水溶液に、 粒状活性炭 [クラレケミカル株式会ネ土製 クラレコ一ル GW 1 0 Z 3 2 (粒子径 1 . 7 mm〜 0. 5 mm、 比表 面積 8 0 0 m2 Z g ) ] 1 5 k gを投入して均一に撹拌し、 固形物を 濾別し、 該固形物をさ らに濾布で遠心脱水し、 表面水を除去した。 新 たに、 乾燥した上記活性炭と同じ GW 1 0 / 3 2 を 2 2. 5 k g追加 し、 混合した後、 1 2 0 °Cで 1 2時間乾燥して複合粒状体を得た。
この複合粒状体を充填密度 0. 5 0 gZmLで実施例 1で使用し たものと同じ容器に充填して浄水器とし、 実施例 1 と同じ原水を 0. 7 5 L /分で通水した。 実施例 1 と同様にして測定した鉛除去性能は 5 L / c c (活性炭) であり、 総ト リハロメタン除去性能は同程度で あつたが、 通水初期に若干の濁りが認められた。
実施例 1 3〜 1 6
混合するポリエチレンの粒子の割合を変化させた以外は、 実施例 1 1 と同様にして、 複合吸着材を調製し、 実施例 2 と同様にして溶解 性鉛の吸着性能を評価した。 ポリエチレン粉末の混合割合と鉛の除去 性能の関係を表 3に示す。 また、 流出する透過水の清透度を比色管を 使用して観察した。
ポリエチレン粉末の混合割合と溶解性鉛の除去性能
Figure imgf000024_0001
実施例 1 7〜 1 9
平均粒子径が 4 0 // mで M F Rの異なるポリエチレンを使用して 幾つかの複合吸着材を作り、 M F Rと複合吸着材の性能の関係を測定 した。 結果を表 4に示す。 樹脂粒子の混合量は 1 0 %とした。
ポリエチレン粉末の M F Rと溶解性鉛の除去性能
Figure imgf000024_0002
実施例 2 0
熱可塑性樹脂をポリプロピレン ( P P ) とした以外は実施例 1 2 と同様にして複合吸着材を作製した。 P Pの M F Rは 1. 0であって、 粒子径は 4 0 mであった。 実施例 2 と同様にして測定した溶解性鉛 の吸着性能は 1 1. 5 L / c cであって、 良好な性能を有していた。 また、 通水初期に濁りはみられなかった。
実施例 2 1
ィオン交換性微粒子としてシリカアルミナ系のゼォライ トの微粒 子を使用した。 このゼォライ トは平均粒子径が 3 の球状ゼォライ 卜であった。 熱可塑性樹脂の粒子として、 実施例 1 2 と同様なポリエ チレンを使用し、 ポリエチレンの配合量を 1 0 0 gとする以外は実施 例 1 2 と同様にして複合吸着材を作製した。 実施例 1 2 と同様にして 測定した溶解性鉛の吸着性能は 7. 5 L / c cであった。 また、 通水 初期に濁りはみられなかった。
実施例 2 2
クラレケミカル株式会社製の活性炭 GW 1 0 / 3 2 (粒子径 1. 7 mm〜 0. 5 mm、 比表面積 8 0 0 m2/ g ) l k g、 実施例 1で 作製した複合粉末体 2 0 0 g、 平均粒子径が 4 0 m、 M F Rが 1. 5 g Z l O分間、 融点 1 2 0 °Cのポリエチレン粉末 (住友精化製フロ 一セン U F— 1 . 5 ) 2 0 0 gの割合で混合した。 次いで、 該活性炭 を外径 4 2 mm、内径 2 5 mm、高さ 9 5 mmの円筒型の枠に充填し、 加熱プレスを使用して 1 2 5でで 8 0分加熱、 加圧 ( I M P a ) して 力一 トリ ッジに成型した。
該カート リ ッジをハウジングに装着して浄水器とし、 遊離塩素 濃度 2 p p m、 溶解性鉛濃度 5 0 p p bに調整した水を 2 L 分で 供給した。 通水初期に濁りはみられなかった。 該活性炭成型体の溶 解性鉛の除去性能は 4 8 0 0 L (カラム l c cあたり 5 6 L) 遊離 塩素除去性能 ( 8 0 %除去のライフまで) は 4 5 0 0 L (カラム 1 c c あたり 5 3 L) であり、 実用上十分な性能を有していた。 産業上の利用可能性
本発明の複合吸着材は、 ト リ八ロメタン (T H M ) 、 遊離塩素及 び鉛などの重金属の吸着性能に優れることは勿論、 これらをバランス よく吸着、 除去することができ、 しかも通水時に微粒子化合物の微粉 が流出することがないので、 とく に浄水用途に好適に使用される。 ま た、 分級の発生による净水器ごとの吸着性能にばらつきを生じにく い ので安定に供給することができる。

Claims

請 求 の 範 囲
1. 微粒子化合物 ( a) にプラスチック粉末 (b ) を付着させた複合 粉末体 ( c ) と、 粉末状、 粒状物及び繊維状物から選ばれた少なく と も 1種の吸着性物質 ( d ) とからなる複合吸着材。
2. 微粒子化合物 ( a) と粉末状、 粒状物及び繊維状物から選ばれた 少なく とも 1種の吸着性物質 ( d ) にプラスチック粉末 ( b ) を付着 させた複合吸着材。
3. 該微粒子化合物 ( a ) の平均粒子径が 2 0 0 z^m以下である請求 項 1又は 2記載の複合吸着材。
4. 該微粒子化合物がイオン交換機能をもつ化合物である請求項 1〜 3いずれかに記載の複合吸着材。
5. 該微粒子化合物がチタノシリゲート系の化合物である請求項 1〜 4いずれかに記載の複合吸着材。
6. 該微粒子化合物がアルミノシリケ一ト系の化合物である請求項 1 〜 4いずれかに記載の複合吸着材。
7. 該微粒子化合物の付着量が複合粉末体の 5 0〜 9 5重量%である 請求項 1記載の複合吸着材。
8. 該微粒子化合物の付着量が複合吸着材の 1〜 2 0重量%である請 求項 2記載の複合吸着材。
9. 該プラスチック粉末 ( b) が熱可塑性樹脂である請求項 1〜 8い ずれかに記載の複合吸着材。
1 0. 該熱可塑性樹脂のメルトフローレー トが 0. 0 2 gZ l O分以 上で 4 0 / 1 0分以下である請求項 9記載の複合吸着材。
1 1. 該熱可塑性樹脂がポリエチレンである請求項 9又は 1 0記載の 複合吸着材。
1 2. 該吸着性物質 ( d) が活性炭である請求項 1〜 1 1 いずれかに 記載の複合吸着材。
1 3. 該複合吸着材が成型体である請求項 1〜 1 2いずれかに記載の 複合吸着材。
1 4. 微粒子化合物 ( a ) にプラスチック粉末 ( b ) を付着させた複 合粉末体 ( c:) 。
1 5. 微粒子化合物とプラスチック粉末を均一に混合して得た混合物 を、 該プラスチック粉末の融点以上に加熱して冷却した後篩い分けし て複合粉末体とし、 吸着性物質と混合する複合吸着材の製造方法。
1 6. さらに加圧し成型する請求項 1 5記載の複合吸着材の製造方法。
1 7. 微粒子化合物、 プラスチック粉末及び吸着性物質を均一に混合 して得た混合物を該プラスチック粉末の融点以上に加熱して冷却した 後、 解砕して篩い分けする複合吸着材の製造方法。
1 8. さらに吸着性物質を混合する請求項 1 7記載の複合吸着材の製 造方法。
1 9. 請求項 1〜 1 3いずれかに記載の複合吸着材からなる浄水材。
2 0. 請求項 1 9記載の浄水材を用いた浄水器。
PCT/JP2003/013759 2002-10-29 2003-10-28 複合吸着材とその製造方法、並びに浄水材及び浄水器 WO2004039494A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/532,499 US20060163151A1 (en) 2002-10-29 2003-10-28 Composition adsorbent and method for producing thereof, and water purification material and water purifier
JP2004548047A JP4361489B2 (ja) 2002-10-29 2003-10-28 複合吸着材とその製造方法、並びに浄水材及び浄水器
AU2003275700A AU2003275700A1 (en) 2002-10-29 2003-10-28 Composite adsorbent and method for production thereof, and water purification material and water purifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002314009 2002-10-29
JP2002-314009 2002-10-29

Publications (1)

Publication Number Publication Date
WO2004039494A1 true WO2004039494A1 (ja) 2004-05-13

Family

ID=32211598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013759 WO2004039494A1 (ja) 2002-10-29 2003-10-28 複合吸着材とその製造方法、並びに浄水材及び浄水器

Country Status (7)

Country Link
US (1) US20060163151A1 (ja)
JP (1) JP4361489B2 (ja)
KR (1) KR100985429B1 (ja)
CN (1) CN100528338C (ja)
AU (1) AU2003275700A1 (ja)
TW (1) TWI248378B (ja)
WO (1) WO2004039494A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082898A1 (ja) * 2005-02-02 2006-08-10 Kuraray Chemical Co., Ltd 複合吸着材とその製造方法、並びに浄水材及び浄水器
JP2012508646A (ja) * 2008-11-14 2012-04-12 ブリュッヒャー ゲーエムベーハー 吸着性構造体とその使用
JP2015017003A (ja) * 2013-07-09 2015-01-29 富士チタン工業株式会社 セシウムとストロンチウムの両方の吸着能力に優れた人工ゼオライトとその製造方法
JP2017127860A (ja) * 2016-01-20 2017-07-27 三ツ星ベルト株式会社 フィルター成形体の製造方法
KR20190132389A (ko) 2017-03-30 2019-11-27 미즈자와 가가꾸 고교오 가부시기가이샤 중금속 흡착제
JP2020018971A (ja) * 2018-07-31 2020-02-06 Dic株式会社 吸着材造粒体、吸着材造粒体の製造方法、及び放射性ストロンチウムを含む水溶液の浄化方法
JP2020163270A (ja) * 2019-03-29 2020-10-08 株式会社クラレ 重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器
WO2020203587A1 (ja) * 2019-03-29 2020-10-08 株式会社クラレ 複合凝集体粒子、並びに、それを用いた吸着材、成形体および浄水器
JP2020163269A (ja) * 2019-03-29 2020-10-08 株式会社クラレ 吸着材、並びにそれを用いた成形体および浄水器
WO2020203588A1 (ja) * 2019-03-29 2020-10-08 株式会社クラレ 吸着材、重金属除去剤、並びにそれらを用いた成形体および浄水器
KR20220070208A (ko) 2019-09-24 2022-05-30 디아이씨 가부시끼가이샤 황화몰리브덴 분체 및 그 제조 방법, 중금속 흡착제, 광열변환 재료, 증류 방법, 산소 환원 촉매, 그리고 촉매 잉크

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4664926B2 (ja) * 2003-12-22 2011-04-06 ドナルドソン カンパニー,インコーポレイティド シール構造を備えるフィルタエレメントおよびその製造方法
US20080047902A1 (en) * 2006-08-28 2008-02-28 Basf Catalysts Llc Media for the removal of heavy metals and volatile byproducts from drinking water
DE202010009493U1 (de) * 2010-02-15 2011-04-07 BLüCHER GMBH Agglomerate von Adsorberpartikeln
US8419946B2 (en) 2010-04-13 2013-04-16 King Abdulaziz City For Science And Technology Method for removing heavy metals from contaminated water
CN103517759B (zh) * 2011-05-16 2015-09-16 3M创新有限公司 多孔复合块、过滤器组件以及其制备方法
KR101464830B1 (ko) * 2012-11-30 2014-11-25 인더스트리얼 테크놀로지 리서치 인스티튜트 제습장치 및 그 통전형 탈리장치
RU2617775C1 (ru) * 2016-05-20 2017-04-26 Закрытое Акционерное Общество "Аквафор Продакшн" (Зао "Аквафор Продакшн") Фильтрующий модуль устройства очистки жидкости
CN106044926A (zh) * 2016-07-20 2016-10-26 苏州腾纳环保科技有限公司 一种具有强吸附力的净水滤料
CN108786718A (zh) * 2017-05-03 2018-11-13 钱李潜馨 一种饮用水快速灭菌的载银沸石及其制备方法
CN107903014B (zh) * 2017-11-14 2019-07-09 山东大学 一种无机-有机复合多孔陶瓷滤料及其制备方法
JP6965117B2 (ja) * 2017-11-16 2021-11-10 フタムラ化学株式会社 金属イオン吸着材及びこれを用いた複合吸着材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233140A (ja) * 1989-03-06 1990-09-14 Kuraray Chem Corp 吸着材
JPH04126154A (ja) * 1990-09-15 1992-04-27 Kuraray Chem Corp 複合吸着剤
WO2000035580A1 (en) * 1998-12-11 2000-06-22 Mazda Motor Corporation Composition for use in adsorption treatment, products formed with the same, and a method for producing adsorbent using the same
JP2003334543A (ja) * 2002-05-16 2003-11-25 Kuraray Chem Corp 活性炭成型体、その製造方法及びそれを用いた浄水器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829299A4 (en) * 1995-05-26 1999-02-10 Hitachi Chemical Co Ltd MATERIAL TO CLEAN THE AMBIENT AIR
US5639550A (en) * 1995-06-21 1997-06-17 Specialty Media Corporation Composite particulate material and process for preparing same
US6395190B1 (en) * 1996-02-26 2002-05-28 Kx Industries, L.P. Process employing thin-walled, extruded activated carbon filter
US5904854A (en) * 1997-01-31 1999-05-18 Electrophor, Inc. Method for purifying water
JP3596334B2 (ja) * 1999-02-26 2004-12-02 マツダ株式会社 吸着処理剤の製造方法
US6274041B1 (en) * 1998-12-18 2001-08-14 Kimberly-Clark Worldwide, Inc. Integrated filter combining physical adsorption and electrokinetic adsorption
JPWO2003022425A1 (ja) * 2001-09-10 2004-12-24 クラレケミカル株式会社 複合粒状体及びその製造方法
CN1315568C (zh) * 2002-03-23 2007-05-16 奥美尼纯化过滤公司 含有结块的结合剂活性组分颗粒的过滤介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02233140A (ja) * 1989-03-06 1990-09-14 Kuraray Chem Corp 吸着材
JPH04126154A (ja) * 1990-09-15 1992-04-27 Kuraray Chem Corp 複合吸着剤
WO2000035580A1 (en) * 1998-12-11 2000-06-22 Mazda Motor Corporation Composition for use in adsorption treatment, products formed with the same, and a method for producing adsorbent using the same
JP2003334543A (ja) * 2002-05-16 2003-11-25 Kuraray Chem Corp 活性炭成型体、その製造方法及びそれを用いた浄水器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082898A1 (ja) * 2005-02-02 2006-08-10 Kuraray Chemical Co., Ltd 複合吸着材とその製造方法、並びに浄水材及び浄水器
JP2012508646A (ja) * 2008-11-14 2012-04-12 ブリュッヒャー ゲーエムベーハー 吸着性構造体とその使用
JP2012508645A (ja) * 2008-11-14 2012-04-12 ブリュッヒャー ゲーエムベーハー 吸着性成形品及びその使用
JP2015017003A (ja) * 2013-07-09 2015-01-29 富士チタン工業株式会社 セシウムとストロンチウムの両方の吸着能力に優れた人工ゼオライトとその製造方法
JP2017127860A (ja) * 2016-01-20 2017-07-27 三ツ星ベルト株式会社 フィルター成形体の製造方法
KR20190132389A (ko) 2017-03-30 2019-11-27 미즈자와 가가꾸 고교오 가부시기가이샤 중금속 흡착제
JP2020018971A (ja) * 2018-07-31 2020-02-06 Dic株式会社 吸着材造粒体、吸着材造粒体の製造方法、及び放射性ストロンチウムを含む水溶液の浄化方法
WO2020203587A1 (ja) * 2019-03-29 2020-10-08 株式会社クラレ 複合凝集体粒子、並びに、それを用いた吸着材、成形体および浄水器
JP2020163270A (ja) * 2019-03-29 2020-10-08 株式会社クラレ 重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器
JP2020163269A (ja) * 2019-03-29 2020-10-08 株式会社クラレ 吸着材、並びにそれを用いた成形体および浄水器
WO2020203588A1 (ja) * 2019-03-29 2020-10-08 株式会社クラレ 吸着材、重金属除去剤、並びにそれらを用いた成形体および浄水器
JP6856824B2 (ja) * 2019-03-29 2021-04-14 株式会社クラレ 複合凝集体粒子、並びに、それを用いた吸着材、成形体および浄水器
JPWO2020203587A1 (ja) * 2019-03-29 2021-04-30 株式会社クラレ 複合凝集体粒子、並びに、それを用いた吸着材、成形体および浄水器
JP7264692B2 (ja) 2019-03-29 2023-04-25 株式会社クラレ 重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器
JP7264691B2 (ja) 2019-03-29 2023-04-25 株式会社クラレ 吸着材、並びにそれを用いた成形体および浄水器
KR20220070208A (ko) 2019-09-24 2022-05-30 디아이씨 가부시끼가이샤 황화몰리브덴 분체 및 그 제조 방법, 중금속 흡착제, 광열변환 재료, 증류 방법, 산소 환원 촉매, 그리고 촉매 잉크

Also Published As

Publication number Publication date
KR100985429B1 (ko) 2010-10-05
AU2003275700A1 (en) 2004-05-25
JPWO2004039494A1 (ja) 2006-02-23
CN1708356A (zh) 2005-12-14
KR20050072120A (ko) 2005-07-08
CN100528338C (zh) 2009-08-19
TWI248378B (en) 2006-02-01
TW200415123A (en) 2004-08-16
US20060163151A1 (en) 2006-07-27
JP4361489B2 (ja) 2009-11-11

Similar Documents

Publication Publication Date Title
WO2004039494A1 (ja) 複合吸着材とその製造方法、並びに浄水材及び浄水器
US5904854A (en) Method for purifying water
WO2006082898A1 (ja) 複合吸着材とその製造方法、並びに浄水材及び浄水器
MXPA06013601A (es) Filtro polimerico poroso para gas y metodos de fabricacion del mismo.
JP4210001B2 (ja) 濾過フィルタおよび浄水器
JP5745865B2 (ja) 浄水用活性炭シート及び浄水フィルター
JP5933771B2 (ja) 浄水用活性炭シート及び浄水フィルター
JP5429931B2 (ja) 吸着剤及びこれを用いた浄水器
JP2000342917A (ja) 濾過フィルタおよび浄水器
JP2002273417A (ja) 水処理用フィルター
JP2003010614A (ja) 浄水器フィルター
JP6965117B2 (ja) 金属イオン吸着材及びこれを用いた複合吸着材
JP2003190942A (ja) 浄水器用吸着材及びその製造方法、並びにこれを用いた浄水器
JP2005125199A (ja) 吸着剤及びその製造方法並びにこれを用いた浄水器
CN113631259B (zh) 吸附材料、重金属去除剂、以及使用它们的成形体和净水器
JP7264692B2 (ja) 重金属除去剤、並びに、それを用いた吸着材、成形体および浄水器
JP2002263637A (ja) 浄水ユニット
KR102238210B1 (ko) 복합 응집체 입자, 그리고, 그것을 사용한 흡착재, 성형체 및 정수기
JP2003190941A (ja) 浄水器用吸着材及びその製造方法、並びにこれを用いた浄水器
JP2010269225A (ja) 陰イオン吸着剤成型体およびそれを用いた浄水器
JP5261784B2 (ja) 水処理用フィルター

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004548047

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057007299

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A25580

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057007299

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006163151

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532499

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10532499

Country of ref document: US