WO2004034758A1 - セラミック多層基板の製造方法 - Google Patents

セラミック多層基板の製造方法 Download PDF

Info

Publication number
WO2004034758A1
WO2004034758A1 PCT/JP2003/010609 JP0310609W WO2004034758A1 WO 2004034758 A1 WO2004034758 A1 WO 2004034758A1 JP 0310609 W JP0310609 W JP 0310609W WO 2004034758 A1 WO2004034758 A1 WO 2004034758A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
multilayer substrate
shrinkage
green sheet
ceramic green
Prior art date
Application number
PCT/JP2003/010609
Other languages
English (en)
French (fr)
Inventor
Yoshifumi Saito
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to DE10393466T priority Critical patent/DE10393466T5/de
Priority to JP2004542808A priority patent/JP3649246B2/ja
Priority to US10/530,374 priority patent/US7148136B2/en
Priority to AU2003257659A priority patent/AU2003257659A1/en
Publication of WO2004034758A1 publication Critical patent/WO2004034758A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4803Insulating or insulated parts, e.g. mountings, containers, diamond heatsinks
    • H01L21/481Insulating layers on insulating parts, with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4864Cleaning, e.g. removing of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/025Abrading, e.g. grinding or sand blasting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0736Methods for applying liquids, e.g. spraying
    • H05K2203/0746Local treatment using a fluid jet, e.g. for removing or cleaning material; Providing mechanical pressure using a fluid jet
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Definitions

  • the present invention relates to a method for manufacturing a ceramic multilayer substrate for mounting a semiconductor device, a chip capacitor, and the like.
  • an unfired ceramic laminate is formed by laminating ceramic green sheets for a substrate, and firing the laminate.
  • the unfired ceramic laminate is fired as it is, the unfired ceramic laminate shrinks during firing, resulting in dimensional errors.
  • sintering is not performed on both main surfaces of the unfired ceramic laminate at the firing temperature of the unfired ceramic laminate.
  • the ceramic for shrinkage suppression Green sheets After arranging ceramic green sheets for shrinkage suppression and firing at a temperature higher than the sintering temperature of the unfired ceramic laminate and lower than the sintering temperature of the ceramic green sheet for shrinkage suppression, the ceramic for shrinkage suppression Green sheets have been removed.
  • a specific method for removing the shrinkage-suppressing ceramic green sheet a method described in WO 956510 is known.
  • the first method is to spray ceramic powder with compressed air
  • the second method is to spray water with compressed air
  • the third method is to mix ceramic powder and water with compressed air. A method of spraying a mixture is mentioned.
  • the spraying spot of the ceramic powder is small, the processing ability for removing the green sheet is low, and the positional accuracy with respect to the processing range is not high, so that processing unevenness may occur. As a result, it becomes difficult to uniformly remove the shrinkage suppressing ceramic green sheets. Furthermore, the equipment for collecting the dust of the ceramic powder to be sprayed and the powder of the removed ceramic green sheet for suppressing shrinkage is large and requires large-scale equipment, which increases the cost.
  • the second method by using the second method, most of the ceramic green sheets for shrinkage suppression are removed. It is possible to do.
  • this method may not be able to remove the shrinkage suppressing ceramic green sheet in the following cases.
  • the firing when glass is contained in the unfired ceramic laminate, the firing combines the glass component of the unfired ceramic laminate with the ceramic component of the shrinkage suppressing ceramic green sheet to form a reaction layer. Sometimes. Simply spraying water with compressed air cannot sufficiently remove such a reaction layer.
  • the green sheet can be removed more uniformly than the method of spraying the ceramic powder together with the compressed air. Also, its removal ability is higher than the method of spraying only water with compressed air.
  • the ceramic powder to be sprayed in order to reuse the ceramic powder to be sprayed, the ceramic powder to be sprayed must have an average particle diameter close to or equal to the ceramic powder of the ceramic green sheet for shrinkage suppression. You need to use If the particle size of the ceramic powder to be sprayed is larger than the particle size of the ceramic powder of the ceramic green sheet for shrinkage suppression, it becomes difficult to remove the ceramic powder of the ceramic green sheet for shrinkage suppression with a filter. This is because the average particle size of the ceramic powder to be sprayed changes over time.
  • the state of removal of the shrinkage-suppressing ceramic green sheet changes, making uniform processing difficult.
  • the ceramic powder to be sprayed is smaller than the particle size of the ceramic powder of the ceramic green sheet for shrinkage suppression, the ceramic powder of the ceramic green sheet for shrinkage suppression can be removed with a filter.
  • ceramic powder having an extremely different average particle size is used, a part of the sprayed ceramic powder will be removed by the filter, and the average particle size of the sprayed ceramic powder will increase over time. The diameter changes. As a result, the state of removal of the shrinkage-suppressing ceramic green sheet changes, making uniform processing difficult.
  • the present invention has been made in view of the above-described conventional situation, and has been made to uniformly remove the shrinkage-suppressing ceramic green sheet when manufacturing a ceramic multilayer substrate using the shrinkage-suppressing ceramic green sheet.
  • the purpose is to provide a method that can be used. Disclosure of the invention
  • the present invention provides an unfired ceramic laminated body formed by laminating a plurality of ceramic green sheets for a substrate, and at least one principal surface of the unfired ceramic laminated body, A ceramic green sheet for suppressing shrinkage that does not substantially sinter at the firing temperature of the body; and a step of preparing a composite laminate comprising: A step of firing the layer body at a temperature at which the unfired ceramic laminate is sintered, which is lower than a temperature at which the shrinkage-suppressing ceramic green sheet is sintered; and Removing a ceramic green sheet for shrinkage suppression after firing from the body, a method for manufacturing a ceramic multilayer substrate, comprising: removing the ceramic green sheet for shrinkage suppression after the firing.
  • the method for manufacturing a ceramic multilayer substrate of the present invention may further include a step of ultrasonically cleaning the ceramic multilayer substrate as a third removing step following the first removing step and the second removing step. Is desirable.
  • the method further includes, as a third removing step following the first removing step and the second removing step, a step of spraying a liquid material (particularly water) and a compressed gas (particularly air) onto the main surface of the ceramic multilayer substrate. Desirable.
  • the ceramic multilayer sheet for shrinkage suppression is mainly formed by the first removing step of spraying a liquid substance and a compressed gas onto the shrinkage suppression ceramic green sheet.
  • the portion that has not reacted with the glass component of the first removal process can be removed, and then most of the residue that could not be removed in the first removal process can be removed by the second removal process in which the ceramic powder, liquid material and compressed gas are sprayed. Can be removed.
  • the second removal process in which the ceramic powder, liquid material and compressed gas are sprayed.
  • FIG. 1 is a schematic sectional view showing a ceramic multilayer substrate according to the present invention.
  • FIG. 2 is a schematic process diagram illustrating a method for manufacturing a ceramic multilayer substrate according to the present invention.
  • FIG. 3 is a schematic process diagram illustrating a method for manufacturing a ceramic multilayer substrate according to the present invention.
  • FIG. 4 is a schematic sectional view showing a comb-shaped electrode on a ceramic multilayer substrate according to the present invention.
  • FIG. 5 is a schematic diagram showing migration at an electrode on a ceramic multilayer substrate.
  • the composite laminate 1 has ceramic green sheets 2 for shrinkage suppression on both main surfaces of an unfired ceramic laminate 4 formed by laminating a plurality of ceramic green sheets 2 for a substrate and a conductor layer 3.
  • Sheet 5 is laminated and crimped.
  • via conductors 6 are formed inside the composite laminate 1 and connect the conductor layers 3 having different height positions.
  • the shrinkage suppression ceramic green sheet 5 may be provided only on one main surface.
  • the ceramic green sheet 2 for a substrate is prepared, for example, by adding a binder, a plasticizer, and a solvent to a ceramic powder and mixing the resulting mixture with a ball mill or an attractor to form a slurry.
  • a sheet shaped into about 200 / m can be used.
  • LTCC Low Temperature Co-Fi red Ceram ic
  • the binder for example, polyvinyl butyral, methacrylic polymer, acrylic polymer and the like can be used.
  • the plasticizer for example, a derivative of phthalic acid can be used.
  • solvent for example, alcohols, ketones, and chlorinated organic solvents can be used.
  • the conductor layer 3 includes a so-called surface conductor layer and an inner conductor layer.
  • a conductor paste containing a metal powder such as Ag or Cu is printed on the ceramic green sheet 2 for a substrate by screen printing. It is formed by this.
  • the via conductor 6 provided in the composite laminate 1 is formed, for example, by filling a via hole provided in the ceramic green sheet 2 for a substrate with the conductor paste.
  • the shrinkage-suppressing ceramic green sheet 5 is manufactured by the same manufacturing method as that of the ceramic green sheet 2 for a substrate.
  • the sintering temperature is higher than the temperature at which the ceramic green sheet for a substrate 2 sinters.
  • the ceramic powder contained in the shrinkage suppressing ceramic green sheet 5 may be, for example, aluminum powder. , Zirconium oxide, aluminum nitride, boron nitride, mullite, magnesium oxide, and silicon carbide can be used.
  • the average particle size of these ceramic powders is preferably 0.5 to 4 im. If the particle size is coarse, the force of controlling shrinkage of the ceramic green sheet for a substrate may be weak, and the surface of the obtained ceramic multilayer substrate may be rough.
  • the pressure for pressure contact is 10 to 20 OMPa, and the temperature is The temperature is preferably from 40 ° C to 90 ° C.
  • the firing temperature at this time is a temperature at which the unfired ceramic laminate 4, that is, the ceramic green sheet for a substrate, is sintered, and must be lower than the sintering temperature of the shrinkage suppressing ceramic green sheet 5.
  • the shrinkage suppressing ceramic green sheet does not sinter during firing, that is, the shrinkage suppressing ceramic green sheet does not shrink during firing, so that shrinkage of the ceramic laminate in the plane direction is suppressed. This is considered to be due to the fact that the glass component that oozes out of the ceramic laminate during firing and the ceramic green sheet for suppressing shrinkage react with each other to form a reaction layer at the interface. Therefore, even if the conductor pattern provided on the ceramic laminate is subjected to the firing treatment, the positional accuracy is maintained, and the disconnection hardly occurs.
  • a liquid material is sprayed on the ceramic green sheet for suppressing shrinkage together with the compressed gas.
  • the ceramic green sheet for shrinkage suppression is in a porous state because organic components such as a binder have been burned off.
  • the liquid material an acidic aqueous solution, an alkaline aqueous solution, an organic solvent, or the like can be used, but water is particularly preferable in consideration of environmental resistance and cost efficiency.
  • Nitrogen gas can also be used as the compressed gas, but compressed air is particularly desirable in view of cost efficiency.
  • a method using a blast nozzle can be mentioned. That is, first, the ceramic multilayer substrate 24 having undergone the firing step is placed on the support 7. Next, the enclosure 8 (here, water) is sprayed onto the ceramic green sheet 25 for shrinkage suppression provided on one main surface of the ceramic multilayer substrate 24 while being accelerated by a compressed gas 9. At this time, a mixture 11 of water 8 and compressed gas 9 is discharged from nozzle 10 which is a discharge port of the blast nozzle. Next, the mixture 11 is sprayed continuously while the nozzle 10 is sequentially scanned in the direction of arrow A in the figure.
  • the enclosure 8 here, water
  • the pressure of the compressed gas is desirably 1 47 to 539 kPa. If the treatment is performed at a pressure of less than 147 kPa, the spraying pressure is too low, and the processing ability for removing the ceramic green sheet for suppressing shrinkage is inferior, leading to a decrease in productivity. Conversely, if the treatment is performed at a pressure of 539 kPa or more, the pressure will accelerate the deterioration of the nozzle 10, increase the consumption of the compressed gas 9, increase the running cost, and reduce the ceramic multilayer substrate 24. May be damaged.
  • the pressure of the compressed gas is the pressure in the pipe before spraying.
  • the first removing step When the first removing step is performed, a portion of the ceramic green sheet 25 for suppressing shrinkage that is not mainly reacted with the glass component of the ceramic multilayer substrate 24 is removed by the pressure of the mixture 11. You. As a result, at the stage after the first removal step, both the main surfaces of the ceramic multilayer substrate 24 mainly react with the ceramic green sheet 25 for suppressing shrinkage and the glass component of the ceramic multilayer substrate 24. The remaining reaction layer remains as a residue. Further, the unreacted portion of the shrinkage suppressing ceramic green sheet 25 that has not reacted with the glass component of the ceramic multilayer substrate 24 may not be removed in the first removing step and may remain as a residue. In FIG. 2, the state in which the shrinkage-reducing ceramic green sheet 25 has been removed is exaggerated, and the residue of the shrinkage-reducing ceramic green sheet 25 is not shown.
  • the powder to be recovered in the first removal step is substantially only the ceramic powder of the ceramic green sheet for suppressing shrinkage, so that the powder is efficiently recovered, and particularly, as the ceramic powder used for the ceramic green sheet for suppressing shrinkage, Can be reused.
  • a ceramic powder and a liquid material are sprayed together with the compressed gas on both main surfaces of the ceramic multilayer substrate having undergone the first removing step.
  • this method for example, there is a method of spraying using a blast nozzle as in the method described in the description of the first removing step.
  • a mixture of ceramic powder and water is injected as an enclosure 8, and a mixture of ceramic powder, water and compressed air is discharged from a nozzle 10.
  • the liquid substance an acidic aqueous solution, an alkaline aqueous solution, an organic solvent and the like can be used, but water is particularly preferable in consideration of environmental resistance and cost efficiency.
  • the compressed gas nitrogen gas or the like can be used, but compressed air is particularly preferable in consideration of cost efficiency.
  • the pressure of the compressed gas at this time is desirably 98 to 343 kPa. If the treatment is performed at 98 kPa or less, the spray pressure is too low, and the ability to remove the shrinkage-suppressing ceramic green sheet is inferior, leading to a decrease in productivity. If the treatment is carried out at more than 3 4 3 kPa, cracks are likely to occur at the interface between the surface conductor layer and the ceramic multilayer substrate, causing a decrease in the adhesive strength between the conductor layer and the composite laminate. Problems such as peeling May occur. Further, it is desirable that the pressure at this time be lower than the pressure at the time of the first removal step.
  • the ceramic powder is used as abrasive grains in the second removal step, if the pressure of the compressed air here is higher than the pressure in the first removal step, the surface properties of the ceramic multilayer substrate, especially However, the surface property of the surface conductor layer of the ceramic multilayer substrate may be deteriorated.
  • the average particle size of the ceramic powder to be sprayed is preferably 9.5 to 40 jUm. If a ceramic powder having an average particle size of less than 9.5 ⁇ m is used, the productivity of the ceramic green sheet for suppressing shrinkage may be reduced, resulting in a reduction in productivity. Conversely, if a ceramic powder with an average particle size of more than 4 Om is used, the impact force at the time of spraying will be large, and cracks will easily occur at the interface between the conductor layer and the composite laminate. This may cause problems such as peeling of the conductor layer in the plating process. In addition, the large particle size also causes problems such as an uneven processing of the wiring, particularly in a portion having a narrow wiring interval.
  • the first removal step of both main surfaces of the ceramic multilayer substrate is performed by the physical action of the liquid material (particularly water), ceramic powder and compressed gas (particularly compressed air). Most of the trace residues that could not be removed are removed. Since the powder recovered in the second removal step is substantially only the ceramic powder sprayed with water, the powder can be efficiently recovered and reused particularly as the ceramic powder for spraying. it can.
  • the ceramic multilayer substrate that has been subjected to the first and second removal steps is subjected to ultrasonic cleaning.
  • a cleaning liquid 13 is put into a cleaning tank 12
  • a ceramic multilayer substrate 24 to be cleaned is put into a cleaning basket 14 provided in the cleaning tank 12
  • Ultrasonic waves are irradiated into the cleaning liquid 13 using the ultrasonic vibrator 16 connected to the ultrasonic wave oscillator 15.
  • the washing liquid include an aqueous methylene chloride solution and an aqueous trichloroethylene solution.
  • the ceramic multilayer substrate 24 be stored in the cleaning basket 14 in a standing state, since both sides can be processed simultaneously. In this step, residues that could not be completely removed in the first and second removal steps and ceramic powder that was sprayed and remained on the surface in the second removal step are removed.
  • the vibrator frequency at the time of performing ultrasonic cleaning is desirably 40 to 100 kHz.
  • the cavitation force is strong, so that the substrate may have a large deflection during processing, and the substrate may be broken if the substrate is thin.
  • the portion close to the oscillator oscillating portion has a large damage to the conductor layer, and the conductor layer may be destroyed.
  • the cavity force increases, the ability to remove the ceramic powder that has entered the porous portions of the ceramic layer and the conductor layer is reduced, which may cause problems such as nonuniform plating and abnormal deposition. 1
  • the cavitation force will be extremely weak, and the effect of removing ceramic powder (sprayed ceramic powder) remaining on the surface of the ceramic multilayer substrate will be weak. May lead to a decline.
  • the output per unit area of the ultrasonic vibrator is 0.2 to 2. It is desirable that the O WZ cm 2. If the treatment is performed at 0.2 W / cm 2 or less, the effect of removing ceramic powder (sprayed ceramic powder) remaining on the surface of the ceramic multilayer substrate is weakened, which may lead to a reduction in productivity. Conversely, when processing is performed at 2. O WZ cm 2 or more, the substrate may have a large deflection during processing, and may be broken if the substrate becomes thin. In addition, the portion close to the vibrator oscillation portion is greatly damaged to the conductor layer, and the conductor layer may be destroyed in some cases. In addition, the ability to remove ceramic powder that has entered the porous portions of the ceramic and conductor layers is reduced, which may cause problems such as non-uniform plating and abnormal deposition.
  • the ceramic powder sprayed in the removing step is removed.
  • a composite laminate having ceramic green sheets for suppressing shrinkage on both main surfaces is prepared, and the first and second removal steps are performed.
  • a liquid material is sprayed together with the compressed gas on the ceramic multilayer substrate that has undergone the first and second removal steps.
  • a method using a blast nozzle performed in the first removal step of the first embodiment may be mentioned.
  • the liquid material an acidic aqueous solution, an alkaline aqueous solution, an organic solvent, or the like can be used, but water is particularly preferable in consideration of environmental resistance and cost efficiency.
  • Nitrogen gas or the like can be used as the compressed gas, but compressed air is particularly preferable in consideration of cost efficiency.
  • the pressure of the compressed gas is desirably 1 47 to 539 kPa. If the treatment is performed at a pressure of less than 147 kPa, the spraying pressure is too low, and the processing ability for removing the ceramic green sheet for suppressing shrinkage is inferior, leading to a decrease in productivity. Conversely, if the treatment is performed at a pressure of 539 kPa or more, the pressure will accelerate the deterioration of the nozzle 10, increase the consumption of the compressed gas 9, increase the running cost, and reduce the ceramic multilayer substrate 24. May be damaged. Further, it is desired that the pressure at this time is higher than the pressure during the second removal step. That is, If the pressure of the compressed air here is smaller than the pressure in the second removal step, it will be difficult to remove the ceramic powder (sprayed ceramic powder) that has infiltrated the surface of the ceramic multilayer substrate during the second removal step. .
  • the comb-shaped electrode 17 has a first electrode finger 18 a formed on the first terminal 18 and a second electrode finger formed on the second terminal 19. 19a are formed so as to face each other on the ceramic green sheet 2 for a substrate, and the width of the first electrode finger 18a and the second electrode finger 19a is 100 m. The distance between the first electrode finger 18a and the second electrode finger 19a is 100 m.
  • alumina powder having an average particle size of 1.8 m 15 parts by weight of polyvinyl butyral, 40 parts by weight of isopropyl alcohol, and 20 parts by weight of trolley were added, and mixed with a pole mill for 24 hours.
  • a ceramic green sheet having a thickness of 120 ⁇ m was prepared from this slurry by a doctor blade method, and a ceramic green sheet for suppressing shrinkage was prepared.
  • the ceramic green sheet for a substrate was sintered by applying pressure at a temperature of 900 ° C. for 1 hour.
  • a first removal step water was added to the ceramic green sheets for shrinkage suppression provided on both main surfaces of the ceramic multilayer substrate together with each of the compressed air of 147 to 539 kPa shown in Table 1. Spraying was performed for 120 seconds.
  • a second removal step water and each alumina powder having an average particle diameter of 9.5 to 40 ⁇ m shown in Table 1 were added to the residue on the ceramic multilayer substrate having undergone the first removal step for 98 to 343 k. Spraying was performed for 120 seconds together with each compressed air of Pa.
  • the ultrasonic vibrator frequency 40 to 100 kHz shown in Table 1 and the output per unit of the ultrasonic vibrator are applied to the ceramic multilayer substrate having undergone the first and second removing steps.
  • Ultrasonic cleaning was performed at 0.2 to 2. OWZ cm 2 for 300 seconds.
  • ceramic multilayer substrates of sample numbers 1 to 8 were produced.
  • the ceramic green sheets for shrinkage suppression were removed without going through the second removal step.
  • the first removal step water was sprayed onto the ceramic green sheets for shrinkage suppression provided on both main surfaces of the ceramic multilayer substrate for 120 seconds together with 539 kPa compressed air.
  • ultrasonic cleaning was performed for 300 seconds at an ultrasonic oscillator frequency of 40 KHz and an output of 0.2 cm 2 per unit area of the ultrasonic oscillator.
  • a composite laminate was prepared and fired under the same conditions as in Example 1 to prepare 20 samples.
  • the second and third removing steps were performed on the 20 samples to remove the shrinkage-suppressing ceramic green sheets.
  • the second removing step water and alumina powder having an average particle size of 9.5 jum are compressed with compressed air of 98 kPa on both main surfaces of the shrinkage suppressing ceramic green sheets provided on both main surfaces of the ceramic multilayer substrate.
  • 20 substrates were subjected to an ultrasonic oscillator frequency of 40 KHz, an output of the ultrasonic oscillator per unit area of 0.2 / cm 2 of 300/300. Ultrasonic cleaning was performed for 2 seconds.
  • the second and third removal steps were performed one by one from the first to the twentieth.
  • Example Nos. 1 to 8 comparative example 1, comparative examples 2a and 2b
  • Table 1 shows the X with the removal unevenness as X.
  • Example 2 In the same manner as in Example 1, a ceramic multilayer substrate provided with ceramic green sheets for shrinkage suppression on both main surfaces was prepared, and the first and second removal steps were performed under the conditions shown in Table 2. Next, as a third removing step, water shown in Table 2 was sprayed on the ceramic multilayer substrate having undergone the first and second removing steps together with each compressed air of 147 to 539 kPa for 120 seconds.
  • a composite laminate was produced and fired, and then the shrinkage-suppressing ceramic green sheet was removed without going through the second removal step. That is, as the first removal step, water is sprayed on compressed ceramic air at 539 kPa for 120 seconds to the ceramic green sheets for shrinkage suppression provided on both main surfaces of the ceramic multilayer substrate, and then the third removal step is performed. As a process, water was sprayed for 120 seconds together with compressed air of 147 to 539 kPa. Through the above steps, a ceramic multilayer substrate of Comparative Example 3 was produced.
  • Example 2 According to the same manufacturing conditions as those described in the description of Example 2, to produce a composite laminate, by baking, 20 samples were prepared. Without passing through the first removing step, the second and third removing steps were performed on the 20 samples to remove the shrinkage-suppressing ceramic green sheets. In the second removing step, water and alumina powder having an average particle size of 9.5 im of 98 kPa were applied to both main surfaces of the ceramic green sheet for shrinkage suppression provided on both main surfaces of the ceramic multilayer substrate. After spraying with compressed air for 120 seconds, as a third removal step, water is sprayed on 20 substrates with compressed air of 1 47 to 539 kPa for 120 seconds. Was.
  • the second and third removal steps were performed in order from the first to the 20th one by one.
  • a ceramic multilayer substrate of Comparative Example 4a (first) and a ceramic multilayer substrate of Comparative Example 4b (20th) were produced.
  • Example numbers 9 to 14, comparative example 3, comparative examples 4a and 4b The appearance of each sample (sample numbers 9 to 14, comparative example 3, comparative examples 4a and 4b) of each ceramic multilayer substrate manufactured in Example 2 and Comparative Examples 3 and 4 was not removed, and was uniform.
  • Table 2 shows the values as 0 and those with uneven removal as X.
  • a palladium catalyst was applied to each sample of each ceramic multilayer substrate, and then washed to form palladium catalyst nuclei on the comb-shaped electrode portions.
  • the electrode portion was plated with nickel. 8 for comb-shaped electrodes
  • the insulation resistance was measured by applying a voltage of 50 V for 100 hours under the conditions of 5 ° C ⁇ 85 ”1 ⁇ 2RH. Table 2 shows the measurement results.
  • the ceramic green sheet for suppressing shrinkage could be evenly removed, and a good insulation resistance value could be maintained.
  • Comparative Example 1 On the other hand, in Comparative Example 1, there is an appearance of uneven removal, and the insulation resistance value is 5 or less.
  • the first ceramic multilayer substrate did not have the appearance of uneven removal, but the 20th ceramic multilayer substrate had the appearance of uneven removal, and the insulation resistance value was 1 piece.
  • the Log IR was 9 or more for the second ceramic multilayer substrate, but the Log IR was 5 or less for the 20th ceramic multilayer substrate. In other words, it was revealed that the repetition of the second removal step reduced the ability to remove the shrinkage-suppressing ceramic green sheet.
  • the first ceramic multilayer substrate did not have the appearance of uneven removal, but the 20th ceramic multilayer substrate had the appearance of uneven removal, and the insulation resistance value was 1 piece.
  • the Log IR was 9 or more for the second ceramic multilayer substrate, but the Log IR was 5 or less for the 20th ceramic multilayer substrate. In other words, it was clarified that the repetition of the second removal step reduced the ability to remove the shrinkage-reducing ceramic green sheet.
  • the insulation resistance value of the 20th ceramic multilayer substrate of Comparative Examples 1 and 3 and Comparative Examples 2 and 4 was reduced for the following reason.
  • the residue 20 of the ceramic green sheet for suppressing shrinkage is present on the surface of the ceramic multilayer substrate 34, so that the end surface 17a of the electrode 17 of the comb-shaped electrode is used for suppressing shrinkage.
  • the residue 20 is porous, Ag migration occurs in the direction indicated by the arrow in the portion where the plating 21 is not applied, and as a result, the insulation resistance value decreases.
  • the method for manufacturing a ceramic multilayer substrate of the present invention is suitable for efficiently manufacturing a ceramic multilayer substrate having high dimensional accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 未焼成のセラミック積層体4の両主面に、未焼成のセラミック積層体4の焼成温度では焼結しない収縮抑制用セラミックグリーンシート5が備えられた複合積層体1を、未焼成のセラミック積層体4の焼結温度より高く、かつ収縮抑制用セラミックグリーンシート5の焼結温度より低い温度で焼成した後、収縮抑制用セラミックグリーンシート5に水および圧縮空気を吹き付けて未焼成のセラミック積層体4のガラス成分と反応していない部分を除去する第1除去工程と、セラミック粉末、水および圧縮空気を吹き付けて第1除去工程で除去しきれなかった残留物を除去する第2除去工程と、第1、第2除工程を経たセラミック多層基板を超音波洗浄する第3除去工程とにより、収縮抑制層用セラミックグリーンシート5を除去する。

Description

明細書 セラミック多層基板の製造方法 技術分野
本発明は、 半導体デバイスやチップコンデンサ等を実装するためのセラミック多層 基板の製造方法に関する。 背景技術
半導体デバイスゃチップコンデンサ等を実装するためのセラミック多層基板を製造 するには、 基板用セラミックグリーンシートを積層して未焼成のセラミック積層体を 作製し、 これを焼成することが行われている。 しかしながら、 未焼成のセラミック積 層体をそのまま焼成すると、 焼成時に未焼成のセラミック積層体が収縮し、 寸法誤差 が生じてしまう。
そこで、 たとえば、 特開平 4一 2 4 3 9 7 8号公報に記載されているように、 未焼 成のセラミック積層体の両主面に未焼成のセラミック積層体の焼成温度では焼結しな い収縮抑制用セラミックグリーンシートを配置し、 未焼成のセラミック積層体の焼結 温度より高く、 かつ収縮抑制用セラミックグリーンシ一卜の焼結温度よリ低い温度で 焼成した後、 収縮抑制用セラミックグリーンシートを除去することが行われている。 収縮抑制用セラミックグリーンシートを除去する具体的な方法として、 W O 9 9 5 6 5 1 0号公報に記載されている方法が知られている。 ここでは、 第 1の方法とし て、 圧縮空気とともにセラミック粉末を吹き付ける方法、 第 2の方法として、 圧縮空 気とともに水を吹き付ける方法、 第 3の方法として、 圧縮空気とともにセラミック粉 末および水とを混合したものを吹き付ける方法が挙げられている。
しかしながら、 上記の第 1、 2、 3の各方法を個別的に用いると、 以下のような問 題が生じる。
まず、 第 1の方法では、 セラミック粉末の吹き付けスポッ トが小さいため、 グリー ンシートの除去処理能力が低く、 また処理範囲に関する位置精度も高くないため、 処 理むらが発生する可能性がある。 その結果、 収縮抑制用セラミックグリーンシートを 均一に除去することが困難となる。 さらに、 吹き付けられるセラミック粉末および除 去された収縮抑制用セラミックグリーンシー卜の粉末を集塵するための装置が大型と なリ、 大規模な設備が必要となるためコストが高くなる。
次に、 第 2の方法を用いると、 収縮抑制用セラミックグリーンシートの大半を除去 することが可能である。 しかし、 この方法では、 次のような場合に収縮抑制用セラミ ックグリーンシートを除去できないことがある。 つまり、 未焼成のセラミック積層体 にガラスが含まれている場合には、 焼成により、 未焼成のセラミック積層体のガラス 成分と収縮抑制用セラミックグリーンシートのセラミック成分とが結合し、 反応層が 生じることがある。 圧縮空気とともに水を吹き付けるだけでは、 このような反応層は 十分に除去できない。
さらに、 第 3の方法によると、 圧縮空気とともにセラミック粉末を吹き付ける方法 に比べて、 グリーンシートを均一に除去することができる。 また、 圧縮空気とともに 水のみを吹き付ける方法に比べて、 その除去能力は高い。 しかしながら、 この方法に おいては、 吹き付けられるセラミック粉末を再利用するためには、 吹き付けられるセ ラミック粉末として、 収縮抑制用セラミックグリーンシー卜のセラミック粉末と平均 粒径が近いもの、 あるいは同等のものを使用する必要がある。 なぜなら、 吹き付けら れるセラミック粉末の粒径が収縮抑制用セラミックグリーンシートのセラミック粉末 の粒径より大きいと、 収縮抑制用セラミックグリーンシー卜のセラミック粉末をフィ ルターにて除去することが困難となり、 使用時間の経過に従い、 吹き付けられるセラ ミック粉末の平均粒径が変化するからである。 この結果、 収縮抑制用セラミックグリ ーンシートの除去状態が変化するため、 均一な処理が困難となる。 逆に、 吹き付けら れるセラミック粉末が収縮抑制用セラミックグリーンシートのセラミック粉末の粒径 より小さい場合、 フィルターで収縮抑制用セラミックグリーンシー卜のセラミック粉 末を取り除くことはできる。 しかし、 極端に平均粒径の違うセラミック粉末を使用し ないと、 吹き付けられるセラミック粉末の一部もフィルタ一によリ除去されることに なり、 使用時間の経過に従い、 吹き付けられるセラミック粉末の平均粒径が変化する。 この結果、 収縮抑制用セラミックグリーンシートの除去状態が変化するため、 均一な 処理が困難となる。
本発明は、 上述した従来の状況に鑑みてなされたものであり、 収縮抑制用セラミツ クグリーンシートを利用してセラミック多層基板を製造するに際し、 収縮抑制用セラ ミックグリーンシートを均一に除去することができる方法を提供することを目的とし ている。 発明の開示
すなわち、 本発明は、 複数の基板用セラミックグリーンシートを積層してなる未焼 成のセラミック積層体と、 前記未焼成のセラミック積層体の少なくとも一方主面に配 置され、 前記未焼成のセラミック積層体の焼成温度では実質的に焼結しない収縮抑制 用セラミックグリーンシートと、 からなる複合積層体を準備する工程と、 前記複合積 層体を、 前記未焼成のセラミック積層体が焼結する温度であって、 前記収縮抑制用セ ラミックグリーンシートが焼結する温度よリ低い温度で焼成する工程と、 焼成後の前 記複合積層体から、 焼成工程を経た収縮抑制用セラミックグリーンシートを除去する 工程と、 を備えるセラミック多層基板の製造方法であって、 前記収縮抑制用セラミツ クグリーンシートを除去する工程は、 前記焼成工程を経た前記複合積層体の主面上の 収縮抑制用セラミックグリーンシートに、 液状物 (特に水) および圧縮ガス (特に圧 縮空気) を吹き付ける第 1除去工程と、 前記第 1除去工程を経た前記セラミック多層 基板の前記主面に、 セラミック粉末、 液状物 (特に水) および圧縮ガス (特に圧縮空 気) を吹き付ける第 2除去工程と、 を備えるセラミック多層基板の製造方法を提供す るものである。
また、 本発明のセラミック多層基板の製造方法は、 前記第 1除去工程、 前記第 2除 去工程に続く第 3除去工程として、 前記セラミック多層基板を超音波洗浄する工程を さらに備えるものであることが望ましい。 あるいは、 前記第 1除去工程、 前記第 2除 去工程に続く第 3除去工程として、 前記セラミック多層基板の主面に、 液状物 (特に 水) および圧縮ガス (特に空気) を吹き付ける工程をさらに備えるものであることが 望ましい。
本発明にかかるセラミック多層基板の製造方法によれば、 収縮抑制用セラミックグ リーンシートに、 液状物および圧縮ガスを吹き付ける第 1除去工程によって、 主に収 縮抑制用セラミックグリーンシートのうちセラミック多層基板のガラス成分と反応し ていない部分を除去することができ、 次いで、 セラミック粉末、 液状物および圧縮ガ スを吹き付ける第 2除去工程によって、 第 1除去工程で除去しきれなかった残留物の 大半を除去することができる。 さらに、 超音波洗浄を行なう、 あるいは、 液状物およ び圧縮ガスを吹き付ける第 3除去工程によって、 第 2除去工程で除去しきれなかった 残留物、 および第 2除去工程で吹き付けられたセラミック粉末を除去することができ る。 これによつて、 収縮抑制用セラミックグリーンシートを均一に除去することがで さる。 図面の簡単な説明
図 1は、 本発明にかかるセラミック多層基板を示す概略断面図である。
図 2は、 本発明にかかるセラミック多層基板の製造方法を示す概略工程図である。 図 3は、 本発明にかかるセラミック多層基板の製造方法を示す概略工程図である。 図 4は、 本発明にかかるセラミック多層基板上のくし歯型電極を示す概略断面図で ある。
図 5は、 セラミック多層基板上の電極におけるマイグレーションを示す模式図であ る 発明を実施するための最良の形態
以下、 本発明を望ましい実施形態にしたがって説明する。
(第 1の実施形態)
1 . 複合積層体を作製し、 焼成する工程
図 1に示すように、 複合積層体 1は、 複数の基板用セラミックグリーンシート 2お よび導体層 3を積層してなる未焼成のセラミック積層体 4の両主面に、 収縮抑制用セ ラミックグリーンシート 5を積層、 圧着したものである。 また、 複合積層体 1の内部 にはビア導体 6が形成され、 高さ位置の異なる導体層 3を接続している。 なお、 収縮 抑制用セラミックグリーンシート 5は、 一方主面にのみ設けられていてもよい。
基板用セラミックグリーンシート 2は、 たとえば、 セラミック粉末にバインダー、 可塑剤および溶剤を加えて、ボールミルやアトラクターなどで混合してスラリーとし、 そのスラリーをドクターブレード法などの方法によリ 2 5〜2 0 0 / m程度のシート 状に成形したものを用いることができる。
基板用セラミックグリーンシ一卜に用いられるセラミック粉末としては、 いわゆる L T C C (Low Temperature Co-F i red Ceram i c) 粉末を使用することができる。 たと えば、 結晶化温度 6 0 0〜 1 0 0 0 °Cの結晶化ガラス、 あるいはその結晶化ガラスに アルミナ、 ジルコン、 ムライ ト、 コージェライ ト、 ァノーサイ 卜、 シリカなどのセラ ミックフィラーを添加したものを用いることができる。 また、 バインダーとしては、 たとえば、 ポリビニルプチラール、 メタアクリルポリマー、 およびアクリルポリマー などを用いることができる。 可塑剤としては、 たとえば、 フタル酸の誘導体などを用 いることができる。 溶剤としては、 たとえば、 アルコール類、 ケトン類および塩素系 有機溶剤などを用いることができる。
導体層 3は、 いわゆる表面導体層および内部導体層を含むものであり、 たとえば、 A g、 C uなどの金属粉末を含む導体ペーストを、 スクリーン印刷により基板用セラ ミックグリーンシート 2上に印刷することにより形成される。 また、 複合積層体 1に 備えられるビア導体 6は、 たとえば、 基板用セラミックグリーンシート 2に設けられ たビアホールに、 前記導体ペーストを充填することにより形成される。
収縮抑制用セラミックグリーンシート 5は、 基板用セラミックグリーンシート 2と 同様の製造方法により作製される。 ただし、 その焼結温度は、 基板用セラミックグリ ーンシート 2が焼結する温度より高いものである。 たとえば、 基板用セラミックグリ ーンシート 2としてその焼結温度が 1 1 0 0 °C以下のものを用いる場合には、 収縮抑 制用セラミックグリーンシート 5に含まれるセラミック粉末として、 たとえばアルミ ナ、 酸化ジルコニウム、 窒化アルミニウム、 窒化ホウ素、 ムライ卜、 酸化マグネシゥ 厶、炭化ゲイ素などを用いることができる。 これらのセラミック粉末の平均粒径は 0 . 5 ~ 4 i mが好適である。 粒径が粗いと、 基板用セラミックグリーンシートに対する 収縮制御力が弱くなることがあり、 また、 得られるセラミック多層基板の表面が粗く なることがある。
なお、 未焼成のセラミック積層体 4の両主面に、 収縮抑制用セラミックグリーンシ ート 5を両側から加圧密着させる際、 加圧密着させる圧力は 1 0 ~ 2 0 O M P a、 温 度は 4 0 °C~ 9 0 °Cであることが好ましい。
,次に、 複合積層体 1を焼成し、 両主面に収縮抑制用セラミックグリーンシート 5を 備えたセラミック多層基板を作製する。 このときの焼成温度は、 未焼成のセラミック 積層体 4、すなわち基板用セラミックグリーンシートが焼結する温度であって、かつ、 収縮抑制用セラミックグリーンシート 5の焼結温度よリ低い温度である必要がある。 すなわち、 収縮抑制用セラミックグリーンシートは焼成時に焼結しない、 つまり、 収 縮抑制用セラミックグリーンシートは焼成収縮しないので、 セラミック積層体の平面 方向への収縮が抑制される。 これは、 焼成時にセラミック積層体から染み出てきたガ ラス成分と収縮抑制用セラミックグリーンシートとが反応し、 その界面で反応層が形 成されることによるものと考えられる。 したがって、 セラミック積層体に設けられた 導体パターンは、 焼成処理を経ても、 その位置精度が保持され、 また、 その断線が生 じにくい。
2 . 第 1除去工程
次に、 複合積層体を焼成した後、 収縮抑制用セラミックグリーンシートに、 液状物 を圧縮ガスとともに吹き付ける。 なお、 この時点で、 収縮抑制用セラミックグリーン シートは、 バインダー等の有機成分が焼失しており、 ポーラスな状態となっている。 ここで、 液状物としては、 酸性水溶液、 アルカリ水溶液、 有機溶剤なども使用できる が、 耐環境性やコスト効率を考慮すると、 特に水が望ましい。 また、 圧縮ガスとして は、 窒素ガスなども使用できるが、 コスト効率を考慮すると、 特に圧縮空気が望まし い。
液状物を圧縮ガスとともに吹き付ける方法としては、 たとえば、 図 2に示すように、 ブラストノズルを用いた方法が挙げられる。 すなわち、 まず、 支持台 7に焼成工程を 経たセラミック多層基板 2 4を載置する。 次に、 セラミック多層基板 2 4の一方主面 に備えられた収縮抑制用セラミックグリーンシート 2 5に封入物 8 (ここでは水) を 圧縮ガス 9で加速しながら吹き付ける。 この際、 ブラストノズルの吐き出し口である ノズル 1 0からは、 水 8および圧縮ガス 9の混合体 1 1が吐き出される。 次に、 ノズ ル 1 0を図中矢印 A方向に順次走査しながら、 連続して混合体 1 1を吹き付ける。 この際、 圧縮ガスの圧力は 1 4 7〜5 3 9 k P aが望ましい。 1 4 7 k P a以下で 処理すると、 吹き付け圧力が低すぎて、 収縮抑制用セラミックグリーンシートの除去 処理能力が劣り、 生産性の低下につながる。 逆に、 5 3 9 k P a以上で処理すると、 圧力によりノズル 1 0の劣化が早まり、 また圧縮ガス 9の消費量が多くなリ、 ラン二 ングコストが高くなるとともに、 セラミック多層基板 2 4を損傷することがある。 こ こで、 圧縮ガスの圧力とは、 吹き付け前の配管内での圧力である。
なお、 第 1除去工程を実施すると、 混合体 1 1の圧力により、 収縮抑制用セラミツ クグリーンシート 2 5のうち、 主に、 セラミック多層基板 2 4のガラス成分と反応し ていない部分が除去される。 この結果、 第 1除去工程を経た段階においては、 セラミ ック多層基板 2 4の両主面には、 主に、 収縮抑制用セラミックグリーンシート 2 5と セラミック多層基板 2 4のガラス成分とが反応した反応層が残留物として残る。また、 セラミック多層基板 2 4のガラス成分と反応していない収縮抑制用セラミックグリ一 ンシート 2 5の未反応部分が、 第 1除去工程において除去されず、 残留物として残る こともある。 なお、 図 2においては、 収縮抑制用セラミックグリーンシート 2 5が除 去された状態が誇張されて図示されており、 収縮用セラミックグリーンシート 2 5の 残留物は図示されていない。
この第 1除去工程にて回収される粉末は、 実質的に収縮抑制用セラミックグリーン シートによるセラミック粉末だけなので、 これを効率良く回収し、 特に収縮抑制用セ ラミックグリーンシートに用いられるセラミック粉末として、 再利用することができ る。
3 . 第 2除去工程
次に、 第 1除去工程を経たセラミック多層基板の両主面に、 圧縮ガスとともにセラ ミック粉末および液状物を吹き付ける。 この方法としては、 たとえば、 第 1除去工程 の説明箇所で示した方法と同様に、 ブラストノズルを用いて吹き付ける方法が挙げら れる。 図 2において、 封入物 8としてセラミック粉末と水の混合物が注入され、 ノズ ル 1 0からはセラミック粉末、 水および圧縮空気の混合体が吐き出される。 ここでも、 液状物としては、 酸性水溶液、 アルカリ水溶液、 有機溶剤なども使用できるが、 耐環 境性やコスト効率を考慮すると、 特に水が望ましい。 圧縮ガスとしては、 窒素ガスな ども使用できるが、 コスト効率を考慮すると、 特に圧縮空気が望ましい。
この際の圧縮ガスの圧力は 9 8〜3 4 3 k P aが望ましい。 9 8 k P a以下で処理 すると、 吹き付け圧力が低すぎて、 収縮抑制用セラミックグリーンシートの除去処理 能力が劣り、 生産性の低下につながる。 3 4 3 k P a以上で処理すると、 表面導体層 とセラミック多層基板との界面にクラックが発生しやすい状況となり、 導体層と複合 積層体との接着強度の低下を招き、 めっき工程において導体層の剥離などの不具合を 生じることがある。 また、 このときの圧力は、 第 1除去工程時の圧力よりも小さいこ とが望まれる。 すなわち、 第 2除去工程では、 セラミック粉末を砥粒として使用して いるため、 ここでの圧縮空気の圧力が第 1除去工程時の圧力よりも大きいと、 セラミ ック多層基板の表面性、 特に、 セラミック多層基板の表面導体層の表面性を劣化させ ることがある。
また、 吹き付けられるセラミック粉末の平均粒径は 9 . 5〜4 0 jU mが望ましい。 平均粒径が 9 . 5〃mより小さいセラミック粉末を使用すると、 収縮抑制用セラミツ クグリーンシートの除去処理能力が劣るため、 生産性の低下につながることがある。 逆に、 平均粒径が 4 O mより大きいセラミック粉末を使用すると、 吹き付け時の衝 突力が大きく、 導体層と複合積層体との界面にクラックが発生しやすい状況となり、 接着強度の低下を招き、 めっき工程での導体層の剥離などの不具合を生じることがあ る。 さらに、 粒径が大きいために、 特に配線の間隔が狭い部分の処理が不均一となり やすいなどの問題も発生する。
第 2除去工程を実施して、 液状物 (特に水) 、 セラミック粉末および圧縮ガス (特 に圧縮空気) の物理的作用により、 セラミック多層基板の両主面のうち、 第 1除去ェ 程で除去しきれなかった微量の残留物の大半が除去される。 なお、 この第 2除去工程 にて回収される粉末は、 実質的に、 水とともに吹き付けられたセラミック粉末だけな ので、 これを効率良く回収し、 特に吹き付けるためのセラミック粉末として再利用す ることができる。
4 . 第 3除去工程 ,
次に、 第 1、 第 2除去工程を経たセラミック多層基板を超音波洗浄する。
この工程では、 図 3に示すように、 洗浄槽 1 2に洗浄液 1 3を入れ、 洗浄槽 1 2中 に備えられた洗浄カゴ 1 4に被洗浄物であるセラミック多層基板 2 4を入れ、 超音波 発振器 1 5に接続されている超音波振動子 1 6を使用して洗浄液 1 3中に超音波を照 射する。 なお、 洗浄液としては、 メチレンクロライド水溶液やトリクロロエチレン水 溶液等が挙げられる。
この際、 セラミック多層基板 2 4は洗浄カゴ 1 4に立てて収納するほうが、 両面同 時に処理することができるため望ましい。 この工程では、 第 1、 第 2除去工程で除去 しきれなかった残留物、 および第 2除去工程で吹き付けらて表面に残留したセラミツ ク粉末が除去される。
超音波洗浄を行う際の振動子周波数は 4 0 ~ 1 0 0 K H zが望ましい。 4 0 K H z 以下で処理すると、 キヤビテーシヨン力が強いため、 処理中の基板の振れが大きくな リ、 薄い基板になると基板が割れてしまう場合がある。 また、 振動子発振部分に近い 部分では導体層へのダメージも大きく、 導体層が破壊されることもある。 さらに、 キ ャビテーシヨン力が強くなると、 セラミック層および導体層のポーラスな部分に入り 込んでしまったセラミック粉末の除去能力が低下し、 これが原因となり、 めっきの不 均一性や異常析出といった問題が生じることがある。 1 O O K H 2以上で処理すると、 キヤビテ一シヨン力が極端に弱くなリ、 セラミック多層基板の表面に残留したセラミ ック粉末 (吹き付けられたセラミック粉末) 等の除去効果が弱くなリ、 生産性の低下 につながることがある。
また、 超音波振動子の単位面積あたりの出力は 0 . 2 ~ 2 . O WZ c m2であること が望ましい。 0 . 2 W/ c m2以下で処理すると、 セラミック多層基板の表面に残留し たセラミック粉末 (吹き付けられたセラミック粉末) 等の除去効果が弱くなリ、 生産 性の低下につながることがある。 逆に 2 . O WZ c m2以上で処理すると、 処理中の基 板の振れが大きくなリ、 薄い基板になると割れてしまう場合がある。 また、 振動子発 振部分に近い部分では導体層へのダメージも大きく、 導体層が破壊されてしまう場合 もある。 さらに、 セラミック層および導体層のポ一ラス部分に入り込んだセラミック 粉末の除去能力が低下し、 これが原因となり、 めっきの不均一性や異常析出といった 問題が生じることがある。
超音波洗浄を実施して、 キヤビテーシヨンの物理的作用と洗浄剤の化学的作用によ リ、 セラミック多層基板 2 4の主面上において、 第 2除去工程で除去しきれなかった 残留物、 および第 2除去工程で吹き付けられたセラミック粉末が除去される。
(第 2の実施形態)
上述した第 1の実施形態と同様に、 両主面に収縮抑制用セラミックグリーンシート を備えた複合積層体を作製し、 第 1、 第 2除去工程を実施する。
4 ' . 第 3除去工程
第 1、 第 2除去工程を経たセラミック多層基板に、 液状物を圧縮ガスとともに吹き 付ける。 この方法としては、 実施形態 1の第 1除去工程において行われたブラストノ ズルを用いた方法が挙げられる。 ここでも、 液状物としては、 酸性水溶液、 アルカリ 水溶液、 有機溶剤などを使用できるが、 耐環境性やコスト効率を考慮すると、 特に水 が望ましい。 圧縮ガスとしては、 窒素ガスなども使用できるが、 コスト効率を考慮す ると、 特に圧縮空気が望ましい。
この際、 圧縮ガスの圧力は 1 4 7〜5 3 9 k P aが望ましい。 1 4 7 k P a以下で 処理すると、 吹き付け圧力が低すぎて、 収縮抑制用セラミックグリーンシートの除去 処理能力が劣り、 生産性の低下につながる。 逆に、 5 3 9 k P a以上で処理すると、 圧力によりノズル 1 0の劣化が早まり、 また圧縮ガス 9の消費量が多くなリ、 ラン二 ングコストが高くなるとともに、 セラミック多層基板 2 4を損傷することがある。 ま た、 このときの圧力は、 第 2除去工程時の圧力よりも大きいとが望まれる。 すなわち、 ここでの圧縮空気の圧力が第 2除去工程時の圧力よリも小さいと、 第 2除去工程時に セラミック多層基板の表面にめり込んだセラミック粉末 (吹き付けられたセラミック 粉末) を除去することが難しくなる。 実施例
以下、 本発明を具体的な実施例に基づき説明する。
(実施例 1 )
まず、 S i 02、 A I 203、 B 203、 C a Oを含む結晶化ガラス粉末と、 アルミナ粉末 とを等重量比率で混合した混合粉末 1 0 0重量部に、 ポリビニルプチラール 1 5重量 部、 イソプロピルアルコール 4 0重量部、 およびトロール 2 0重量部を加え、 ポール ミルで 2 4時間混合してスラリーとした。 このスラリーをドクターブレード法により、 厚さ 1 2 0 // mのセラミックグリーンシートを作製し、 基板用セラミックグリーンシ ートを作製した。
次に、 所定の位置に A gペーストをスクリーン印刷することにより、 前記基板用セ ラミックグリーンシートに塗布し、 くし歯型電極を形成した。 図 4に示すように、 く し歯型電極 1 7は、 第 1の端子 1 8に形成された第 1の電極指 1 8 aと第 2の端子 1 9に形成された第 2の電極指 1 9 aとが基板用セラミックグリーンシート 2上で対向 するように形成されたものであり、 第 1の電極指 1 8 aと第 2の電極指 1 9 aの幅は 1 0 0 m、 第 1の電極指 1 8 a、 第 2の電極指 1 9 a間の間隔は 1 0 0 mである。 次に、 平均粒径 1 . 8 mのアルミナ粉末 1 0 0重量部に、 ポリビニルブチラール 1 5重量部、 イソプロピルアルコール 4 0重量部、 およびトロール 2 0重量部を加え、 ポールミルで 2 4時間混合してスラリーとした。 このスラリーをドクターブレード法 により、 厚さ 1 2 0〃mのセラミックグリーンシートを作製し、 収縮抑制用セラミツ クグリーンシートを作製した。
次に、 基板用セラミックグリーンシートを 6枚、 基板用セラミックグリーンシート の両主面に収縮抑制用セラミックグリーンシートをそれぞれ 1枚づっ積層し、 圧力 1 5 0 M P a、 温度 6 0 °Cで加圧圧着し、 複合積層体を作製した。
次に、 方向における単位長さあたりの反り量が 0 . 0 5 %以下の平坦度を有する気 孔率 7 0 %のアルミナ基板よりなるトレー上に置き、 温度 6 0 0 °Cで 3時間加熱した 後、 温度 9 0 0 °Cで 1時間加圧することによって、 基板用セラミックグリーンシート を焼結させた。
次に、 第 1除去工程として、 セラミック多層基板の両主面に備えられた収縮抑制用 セラミックグリーンシートに、 水を表 1に示した 1 4 7 ~ 5 3 9 k P aの各圧縮空気 とともに 1 2 0秒間吹き付けを行った。 次に、第 2除去工程として、第 1除去工程を経たセラミック多層基板上の残留物に、 水および表 1に示した平均粒径 9. 5 ~40 <mの各アルミナ粉末を 98〜 343 k P aの各圧縮空気とともに 1 20秒間吹き付けを行った。
次に、 第 3除去工程として、 第 1、 第 2除去工程を経たセラミック多層基板に、 表 1に示した超音波振動子周波数 40~1 00 kH z、 超音波振動子の単位あたりの出 力 0. 2〜2. OWZ cm2で 300秒間超音波洗浄を行った。
以上の工程を経て、 試料番号 1 ~ 8のセラミック多層基板を作製した。
(比較例 1 )
実施例 1における作製条件と同様の条件で、 複合積層体を作製、 焼成した後、 第 2 除去工程を経ないで、 収縮抑制用セラミックグリーンシートの除去を行なった。 すな わち、 第 1除去工程として、 セラミック多層基板の両主面に備えられた収縮抑制用セ ラミックグリーンシートに、 水を 539 k P aの圧縮空気とともに 1 20秒間吹き付 けを行った後、 第 3除去工程として、 超音波振動子周波数 40 KH z、 超音波振動子 の単位面積あたりの出力 0. 2 cm2で 300秒間超音波洗浄を行った。 以上の工程 を経て、 比較例 1のセラミック多層基板を作製した。
(比較例 2)
実施例 1と条件で複合積層体を作製、 焼成して、 20個の試料を準備した。 この 2 0個の試料について、第 1除去工程を経ないで、第 2および第 3除去工程を実施して、 収縮抑制用セラミックグリーンシートの除去を行なった。 第 2除去工程として、 前記 セラミック多層基板の両主面に備えられた収縮抑制用セラミックグリーンシートの両 主面に、 水と平均粒径 9. 5 jumのアルミナ粉を 98 k P aの圧縮空気とともに 1 2 0秒間吹き付けを行った後、 第 3除去工程として、 20個の基板を超音波振動子周波 数 40 KH z、 超音波振動子の単位面積あたりの出力 0. 2/ cm2で 300秒間超音 波洗浄を行った。 20個の試料について、 第 2、 第 3の除去工程を 1個目から 20個 目まで 1個ずつ順番に実施した。 以上の工程を経て、 比較例 2 a (1個目) のセラミ ック多層基板、 比較例 2 b (20個目) のセラミック多層基板を作製した。
実施例 1、 比較例 1、 2において作製された各セラミック多層基板の各試料 (試料 番号 1〜8、 比較例 1、 比較例 2 a、 2 b) の外観について、 除去むらのないものを 〇、 除去むらのあるものを Xとして、 表 1に示す。
次に、 各セラミック多層基板の各試料に、 パラジウム触媒を付与し、 その後洗浄し てくし歯型電極部にパラジウムの触媒核を形成し、 その後無電解ニッケルめっき処理 を行うことにより、 くし歯型電極部にニッケルめっきを施した。 くし歯型電極に 8 5°C - 85 RHの条件下で 1 000時間 50 Vの電圧を印加し、 絶縁抵抗の測定を 行った。 その測定結果を表 1に示す。 表 1
Figure imgf000013_0001
(実施例 2)
前記実施例 1 と同様に、 両主面に収縮抑制用セラミックグリーンシートを備えたセ ラミック多層基板を作製し、 表 2に示した条件で、 第 1、 第 2除去工程を実施した。 次に、 第 3除去工程として、 第 1、 第 2除去工程を経たセラミック多層基板に、 表 2に示した水を 1 47~539 k P aの各圧縮空気とともに 1 20秒間吹き付けを行 つた。
以上の工程を経て、表 2に示す試料番号 9〜 1 4のセラミック多層基板を作製した。 (比較例 3)
前記実施例 2の説明箇所で挙げた作製条件と同様の条件に従い、複合積層体を作製、 焼成した後、 第 2除去工程を経ないで、 収縮抑制用セラミックグリーンシートの除去 を行なった。 すなわち、 第 1除去工程として、 セラミック多層基板の両主面に備えら れた収縮抑制用セラミックグリーンシートに、 水を 539 k P aの圧縮空気とともに 1 20秒間吹き付けを行った後、 第 3除去工程として、 水を 1 47〜 539 k P aの 圧縮空気とともに 1 20秒間吹き付けを行った。 以上の工程を経て、 比較例 3のセラ ミック多層基板を作製した。
(比較例 4)
前記実施例 2の説明箇所で挙げた作製条件と同様の条件に従い、複合積層体を作製、 焼成して、 2 0個の試料を準備した。 この 2 0個の試料について、 第 1除去工程を経 ないで、 第 2、 第 3除去工程を実施して、 収縮抑制用セラミックグリーンシートの除 去を行なった。 第 2除去工程として、 前記セラミック多層基板の両主面に備えられた 収縮抑制用セラミックグリーンシートの両主面に、 水と平均粒径 9 . 5 i mのアルミ ナ粉を 9 8 k P aの圧縮空気とともに 1 2 0秒間吹き付けを行った後、 第 3除去工程 として、 2 0個の基板に水を 1 4 7〜5 3 9 k P aの圧縮空気とともに 1 2 0秒間吹 き付けを行った。 2 0個の試料について、 第 2、 第 3の除去工程を 1個目から 2 0個 目まで 1個ずつ順番に実施した。 以上の工程を経て、 比較例 4 a ( 1個目) のセラミ ック多層基板、 比較例 4 b ( 2 0個目) のセラミック多層基板を作製した。
上記実施例 2、比較例 3、 4において作製された各セラミック多層基板の各試料(試 料番号 9 ~ 1 4、 比較例 3、 比較例 4 a、 4 b ) の外観について、 除去むらのないも のを 0、 除去むらのあるものを Xとして、 表 2に示す。
次に、 各セラミック多層基板の各試料に、 パラジウム触媒を付与し、 その後洗浄し てくし歯型電極部にパラジウムの触媒核を形成し、 その後無電解ニッケルめっき処理 を行うことにより、 くし歯型電極部にニッケルめっきを施した。 く し歯型電極に 8
5 °C · 8 5 "½ R Hの条件下で 1 0 0 0時間 5 0 Vの電圧を印加し、 絶縁抵抗の測定を 行った。 その測定結果を表 2に示す。
表 2
Figure imgf000014_0001
以上のように、 本実施例によれば、 収縮抑制用セラミックグリーンシートをむらな く除去することができ、 かつ、 良好な絶縁抵抗値を維持することができた。
—方、 比較例 1においては、 除去むらの外観があり、 絶縁抵抗値は、 L o g I Rが 5以下となった。
比較例 2においては、 1個目のセラミック多層基板については除去むらの外観はな かったが、 2 0個目のセラミック多層基板については除去むらの外観がみられ、 絶縁 抵抗値は、 1個目のセラミック多層基板では L o g I Rが 9以上となったが、 2 0個 目のセラミック多層基板では L o g I Rが 5以下となった。 すなわち、 第 2除去工程 を繰り返すことにより、 収縮抑制用セラミックグリーンシー卜の除去能力が低下する ことが明らかになった。
比較例 3においては、 除去むらの外観があり、 絶縁抵抗値は、 L o g I Rが 5以下 となった。
比較例 4においては、 1個目のセラミック多層基板については除去むらの外観はな かったが、 2 0個目のセラミック多層基板については除去むらの外観がみられ、 絶縁 抵抗値は、 1個目のセラミック多層基板では L o g I Rが 9以上となったが、 2 0個 目のセラミック多層基板では L o g I Rが 5以下となった。 すなわち、 第 2除去工程 を繰リ返すことによリ収縮抑制用セラミックグリーンシ一卜の除去能力が低下するこ とが明らかになった。
比較例 1、 3および比較例 2、 4の 2 0個目のセラミック多層基板について絶縁抵 抗値が低下したのは以下の理由による。 図 5に示すように、 セラミック多層基板 3 4 の表面に収縮抑制用セラミックグリーンシ一卜の残留物 2 0が存在するため、 くし歯 型電極の電極 1 7の端面 1 7 aに収縮抑制用セラミックグリーンシートの残留物 2 0 に覆われる部分ができる。 その結果、 くし歯型電極の電極 1 7の端面 1 7 aにニッケ ルめっき 2 1が施されない部分が生じる。 残留物 2 0はポーラスであるため、 めっき 2 1が施されない部分で A gのマイグレーションが矢印方向に発生し、 その結果、 絶 縁抵抗値が低下する。 産業上の利用可能性
以上のように、 本発明のセラミック多層基板の製造方法は、 寸法精度の高いセラミ ック多層基板を効率良く製造するのに適している。

Claims

請求の範囲
1. 複数の基板用セラミックグリーンシートを積層してなる未焼成のセラミック積 層体と、 前記未焼成のセラミック積層体の少なくとも一方主面に配置され、 前記未焼 成のセラミック積層体の焼成温度では実質的に焼結しない収縮抑制用セラミックグリ ーンシートと、 からなる複合積層体を準備する工程と、
前記複合積層体を、 前記未焼成のセラミック積層体が焼結する温度であって、 前記 収縮抑制用セラミックグリーンシー卜が焼結する温度よリ低い温度で焼成する工程と 焼成後の前記複合積層体から、 焼成工程を経た収縮抑制用セラミックグリーンシ一 卜を除去する工程と、
を備えるセラミック多層基板の製造方法であって、 前記収縮抑制用セラミックグリー ンシートを除去する工程は、
前記焼成工程を経た前記複合積層体の主面上の収縮抑制用セラミックグリーンシー トに、 液状物および圧縮ガスを吹き付ける第 1除去工程と、
前記第 1除去工程を経た前記セラミック多層基板の前記主面に、 セラミック粉末、 液状物および圧縮ガスを吹き付ける第 2除去工程と、
を備えることを特徴とする、 セラミック多層基板の製造方法。
2. 前記収縮抑制用セラミックグリーンシートを除去する工程は、 前記第 1、 第 2 除去工程を経た前記セラミック多層基板を超音波洗浄する第 3除去工程をさらに備え る、 請求の範囲第 1項に記載のセラミック多層基板の製造方法。
3. 前記収縮抑制用セラミックグリーンシートを除去する工程は、 前記第 1、 第 2 除去工程を経た前記セラミック多層基板の主面に、 液状物および圧縮ガスを吹き付け る第 3除去工程をさらに備える、 請求の範囲第 1項に記載のセラミック多層基板の製 造方法。
4. 前記第 1除去工程における圧縮ガスの圧力を 1 47〜539 k P aとし、 前記 第 2除去工程における圧縮ガスの圧力を 98~343 k P aとする、 請求の範囲第 1 項〜第 3項のいずれかに記載のセラミック多層基板の製造方法。
5. 前記第 2除去工程における前記セラミック粉末の平均粒径を 9. 5-40 im とする、 請求の範囲第 1項〜第 3項のいずれかに記載のセラミック多層基板の製造方 法。
6. 前記第 3除去工程において、 前記セラミック多層基板を、 周波数: 40~ 1 0 O KH z、 出力: 0. 2~2. OW/ cm2の条件下で超音波洗浄する、請求の範囲第 2項に記載のセラミック多層基板の製造方法。
7. 前記第 3除去工程における圧縮空気のガスを 1 47〜539 k P aとする、 請 求の範囲第 3項に記載のセラミック多層基板の製造方法。
PCT/JP2003/010609 2002-10-10 2003-08-22 セラミック多層基板の製造方法 WO2004034758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10393466T DE10393466T5 (de) 2002-10-10 2003-08-22 Verfahren zum Erzeugen eines Keramik-Mehrschicht-Substrats
JP2004542808A JP3649246B2 (ja) 2002-10-10 2003-08-22 セラミック多層基板の製造方法
US10/530,374 US7148136B2 (en) 2002-10-10 2003-08-22 Method of producing ceramic multi-layer substrate
AU2003257659A AU2003257659A1 (en) 2002-10-10 2003-08-22 Process for producing ceramic multilayer board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002297837 2002-10-10
JP2002-297837 2002-10-10

Publications (1)

Publication Number Publication Date
WO2004034758A1 true WO2004034758A1 (ja) 2004-04-22

Family

ID=32089284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010609 WO2004034758A1 (ja) 2002-10-10 2003-08-22 セラミック多層基板の製造方法

Country Status (6)

Country Link
US (1) US7148136B2 (ja)
JP (1) JP3649246B2 (ja)
AU (1) AU2003257659A1 (ja)
DE (1) DE10393466T5 (ja)
TW (1) TWI226815B (ja)
WO (1) WO2004034758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102107985B1 (ko) * 2019-06-05 2020-05-07 주식회사 케이에스엠컴포넌트 플라즈마 처리 장치용 세라믹 구조체 및 그의 제조방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926481B2 (ja) * 2006-01-26 2012-05-09 共立エレックス株式会社 発光ダイオード用パッケージ及び発光ダイオード
TW200932081A (en) * 2008-01-11 2009-07-16 Murata Manufacturing Co Multilayer ceramic substrate, method for manufacturing multilayer ceramic substrate and method for suppressing warpage of multilayer ceramic substrate
WO2009110338A1 (ja) * 2008-03-03 2009-09-11 株式会社村田製作所 セラミック基板の製造方法およびセラミック基板
KR101004942B1 (ko) * 2008-08-29 2010-12-28 삼성전기주식회사 다층 세라믹 기판 제조방법
CN110545924A (zh) 2017-04-13 2019-12-06 康宁股份有限公司 涂覆带材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993242A1 (en) * 1998-04-24 2000-04-12 Matsushita Electric Industrial Co., Ltd. Method of producing ceramic multilayer substrate
JP2000277914A (ja) * 1999-03-23 2000-10-06 Murata Mfg Co Ltd 多層セラミック基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5254191A (en) 1990-10-04 1993-10-19 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of ceramic bodies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0993242A1 (en) * 1998-04-24 2000-04-12 Matsushita Electric Industrial Co., Ltd. Method of producing ceramic multilayer substrate
JP2000277914A (ja) * 1999-03-23 2000-10-06 Murata Mfg Co Ltd 多層セラミック基板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102107985B1 (ko) * 2019-06-05 2020-05-07 주식회사 케이에스엠컴포넌트 플라즈마 처리 장치용 세라믹 구조체 및 그의 제조방법
US11456158B2 (en) 2019-06-05 2022-09-27 Ksm Component Co., Ltd. Ceramic structure for plasma processing apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
JP3649246B2 (ja) 2005-05-18
TW200420214A (en) 2004-10-01
US20050269012A1 (en) 2005-12-08
JPWO2004034758A1 (ja) 2006-02-09
DE10393466T5 (de) 2005-10-13
US7148136B2 (en) 2006-12-12
AU2003257659A1 (en) 2004-05-04
TWI226815B (en) 2005-01-11

Similar Documents

Publication Publication Date Title
US8756775B2 (en) Method for smoothing a surface of an electrode
WO2002045470A1 (en) Substrate and production method therefor
WO2004034758A1 (ja) セラミック多層基板の製造方法
JP2003082134A (ja) 樹脂物質にテクスチャーを付け、樹脂物質をデスミアリングおよび除去するための複素環式窒素化合物およびグリコールを含む組成物
JP4059063B2 (ja) セラミック多層基板およびその製造方法
JP2784527B2 (ja) ガラスセラミックス基板の製造方法
JP2007318173A (ja) 多層セラミック基板および多層セラミック基板の製造方法
JP4467171B2 (ja) セラミック配線基板の製造方法
JP2006044980A (ja) 窒化アルミニウム焼結体
JP4623433B2 (ja) 多層セラミック基板の製造方法及びそれによる多層セラミック基板
JP4715414B2 (ja) 窒化珪素配線基板及びその製造方法
JP4081771B2 (ja) 多層セラミック基板および多層セラミック基板の製造方法
US8241449B2 (en) Method for producing ceramic body
JP3860709B2 (ja) ガラスセラミック基板の製造方法
JP2005247689A (ja) セラミック基板の製造方法
WO1999056510A1 (fr) Procede servant a fabriquer un substrat en ceramique possedant des couches multiples
JP3872284B2 (ja) ガラスセラミック基板の製造方法
JP2000277914A (ja) 多層セラミック基板の製造方法
JP4475365B2 (ja) セラミック基板の製造方法およびセラミック基板
JP4513932B2 (ja) 積層セラミック電子部品の製造方法
JP2005089265A (ja) 窒化アルミニウム−金属接合基板の製造方法
JP2001044605A (ja) 薄膜付き配線基板の製造方法
JP3460155B2 (ja) 窒化アルミニウム基板及び回路基板
JP2853551B2 (ja) セラミック配線板の製法
JP4987345B2 (ja) 窒化アルミニウム基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004542808

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10530374

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 10393466

Country of ref document: DE

Date of ref document: 20051013

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393466

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607