WO2004034500A2 - Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen - Google Patents

Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen Download PDF

Info

Publication number
WO2004034500A2
WO2004034500A2 PCT/EP2003/010905 EP0310905W WO2004034500A2 WO 2004034500 A2 WO2004034500 A2 WO 2004034500A2 EP 0310905 W EP0310905 W EP 0310905W WO 2004034500 A2 WO2004034500 A2 WO 2004034500A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polymer
membrane
membrane according
aromatic
Prior art date
Application number
PCT/EP2003/010905
Other languages
English (en)
French (fr)
Other versions
WO2004034500A3 (de
Inventor
Oemer Uensal
Joachim Kiefer
Gordon Calundann
Michael Sansone
Brian Benicewicz
Eui Wong Choe
Original Assignee
Pemeas Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pemeas Gmbh filed Critical Pemeas Gmbh
Priority to CA002500792A priority Critical patent/CA2500792A1/en
Priority to US10/530,226 priority patent/US7736779B2/en
Priority to JP2004542402A priority patent/JP2006502266A/ja
Priority to EP03775168.2A priority patent/EP1559164B1/de
Publication of WO2004034500A2 publication Critical patent/WO2004034500A2/de
Publication of WO2004034500A3 publication Critical patent/WO2004034500A3/de
Priority to US12/776,489 priority patent/US8142917B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1034Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having phosphorus, e.g. sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/06Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a proton-conducting polymer electrolyte membrane comprising polyazole blends which, owing to their outstanding chemical and thermal properties, can be used in a variety of ways and is particularly suitable as a polymer electrolyte membrane (PEM) in so-called PEM fuel cells.
  • PEM polymer electrolyte membrane
  • a fuel cell usually contains an electrolyte and two electrodes separated by the electrolyte.
  • one of the two electrodes is supplied with a fuel, such as hydrogen gas or a methanol-water mixture, and the other electrode with an oxidizing agent, such as oxygen gas or air, and chemical energy from the fuel oxidation is thereby converted directly into electrical energy.
  • a fuel such as hydrogen gas or a methanol-water mixture
  • an oxidizing agent such as oxygen gas or air
  • the electrolyte is for hydrogen ions, i.e. Protons, but not permeable to reactive fuels such as hydrogen gas or methanol and oxygen gas.
  • a fuel cell typically includes a plurality of single cells, so-called MEA 's (membrane electrode assembly), each of which contains an electrolyte and two electrodes separated by the electrolyte.
  • MEA 's membrane electrode assembly
  • Solids such as polymer electrolyte membranes or liquids such as phosphoric acid are used as the electrolyte for the fuel cell.
  • Polymer electrolyte membranes have recently attracted attention as electrolytes for fuel cells. In principle, one can differentiate between two categories of polymer membranes.
  • the first category includes cation exchange membranes consisting of one
  • Polymer structure which contains covalently bonded acid groups, preferably sulfonic acid groups.
  • the sulfonic acid group changes into an anion with the release of a hydrogen ion and therefore conducts protons.
  • the mobility of the proton and thus the proton conductivity is directly linked to the water content. Due to the very good miscibility of methanol and water, such cation exchange membranes have a high
  • Methanol permeability and are therefore unsuitable for applications in a direct methanol fuel cell. Dries the membrane, e.g. As a result of high temperature, the conductivity of the membrane and consequently the performance of the fuel cell decrease drastically. The operating temperatures of fuel cells containing such cation exchange membranes is thus limited to the boiling point of the water.
  • the humidification of the fuels represents a major technical challenge for the Use of polymer electrolyte membrane fuel cells (PEMBZ), in which conventional, sulfonated membranes such as Nafion are used.
  • PEMBZ polymer electrolyte membrane fuel cells
  • perfluorosulfonic acid polymers are used as materials for polymer electrolyte membranes.
  • the perfluorosulfonic acid polymer (such as Nafion) generally has a perfluorocarbon backbone, such as a copolymer
  • Tetrafluoroethylene and trifluorovinyl and a side chain having a sulfonic acid group attached thereto, such as a side chain having a sulfonic acid group attached to a perfluoroalkylene group.
  • the cation exchange membranes are preferably organic
  • cation exchange membranes listed commercial for use in fuel cells have gained importance: The most important representative is the perfluorosulfonic Nafion ® (US 3,692,569). This polymer can be brought into solution as described in US Pat. No. 4,453,991 and then used as an ionomer. Cation exchange membranes are also obtained by filling a porous support material with such an ionomer. Expanded Teflon is preferred as the carrier material (US 5635041).
  • Another perfluorinated cation exchange membrane can be prepared as described in US5422411 by copolymerization from trifluorostyrene and sulfonyl-modified trifuorostyrene.
  • Composite membranes consisting of a porous carrier material, in particular expanded Teflon, filled with ionomers consisting of such sulfonyl-modified trifluorostyrene copolymers are described in US5834523.
  • US6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for the production of cation exchange membranes for fuel cells.
  • Another class of partially fluorinated cation exchange membranes can be
  • Radiation plugging and subsequent sulfonation can be produced.
  • a grafting reaction is preferably carried out on a previously irradiated polymer film, preferably with styrene.
  • the sulfonation of the side chains then takes place in a subsequent sulfonation reaction.
  • crosslinking can also be carried out and thus the mechanical
  • cation exchange membrane can be mixed with a high temperature stable polymer.
  • the production and properties of cation exchange membranes consisting of blends of sulfonated PEK and a) polysulfones (DE4422158), b) aromatic polyamides (42445264) or c) polybenzimidazole (DE19851498) are described.
  • Solvent dissolved and then reacted with an aggressive sulfonating reagent, such as oleum or chlorosulfonic acid.
  • an aggressive sulfonating reagent such as oleum or chlorosulfonic acid.
  • This reaction is relatively critical, since the sulfonating reagent is a strong oxidizing agent, so that degradation of the PEK cannot be ruled out, the mechanical properties of the polymer in particular being adversely affected.
  • the sulfonated polymer is isolated in a further process step and converted into the neutral form. The polymer is then brought back into solution. Among other things, a polymer film can be cast from this solution.
  • the solvent used for this purpose for example N-dimethylacetamide, must then be removed. Accordingly, the process for producing such membranes is complex and therefore expensive.
  • Sulfonated polybenzimidazoles are also known from the literature. Thus US-A-4634530) describes sulfonation of an undoped polybenzimidazole film with a sulfonating agent such as sulfuric acid or oleum in the temperature range up to
  • the polymer precipitates sulfonating agent to the PBI / DMAc solution.
  • a PBI film was first produced and this was immersed in a dilute sulfuric acid. to The samples were then sulfonated at temperatures of approximately 475 ° C. for 2 minutes.
  • the sulfonated PBI membranes only have a maximum conductivity of 7.5 * 10 "5 S / cm at a temperature of 160 ° C.
  • the maximum ion exchange capacity is 0.12 meq / g. It has also been shown that such sulfonated PBI membranes are not are suitable for use in a fuel cell.
  • Membranes is 10 "3 S / cm and is therefore too low for applications in fuel cells in which 0.1 S / cm are aimed for.
  • Membranes have a high methanol permeability.
  • the cause of these disadvantages is the conductivity mechanism of the membrane, in which the transport of the protons is coupled to the transport of the water molecule. This is called the "vehicle mechanism" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • polymer electrolyte membranes with complexes of basic polymers and strong acids have been developed.
  • WO96 / 13872 and the corresponding US Pat. No. 5,525,436 describe a process for producing a proton-conducting polymer electrolyte membrane, in which a basic polymer, such as polybenzimidazole, is treated with a strong acid, such as phosphoric acid, sulfuric acid, etc.
  • the polymer serves as a carrier for the electrolyte consisting of the highly concentrated phosphoric acid.
  • the polymer membrane fulfills further essential functions, in particular it must have high mechanical stability and as
  • CO is produced as a by-product in the reforming of the hydrogen-rich gas from carbon-containing compounds, e.g. Natural gas, methanol or gasoline or as an intermediate in the direct oxidation of methanol.
  • carbon-containing compounds e.g. Natural gas, methanol or gasoline or as an intermediate in the direct oxidation of methanol.
  • the CO content of the fuel must be less than 100 ppm at temperatures ⁇ 100 ° C. at
  • temperatures in the range of 150-200 ° can also be tolerated to 10,000 ppm CO or more (N.J. Bjerrum et. Al. Journal of Applied Electrochemistry, 2001, 31, 773-779). This leads to significant simplifications of the upstream reforming process and thus to cost reductions for the entire fuel cell system.
  • a great advantage of fuel cells is the fact that the energy of the fuel is converted directly into electrical energy and heat during the electrochemical reaction. Water forms as a reaction product on the cathode. Heat is therefore a by-product of the electrochemical reaction.
  • electricity is used to drive electric motors, e.g.
  • the heat must be dissipated to prevent the system from overheating. Additional, energy-consuming devices are then required for cooling, which further reduce the overall electrical efficiency of the fuel cell.
  • the heat can be efficiently used using existing technologies such as Use heat exchanger. High temperatures are aimed at to increase efficiency. If the operating temperature is above 100 ° C and the temperature difference between the ambient temperature and the operating temperature is large, then it becomes possible to cool the fuel cell system more efficiently or to use small cooling surfaces and to dispense with additional devices compared to fuel cells which, due to the membrane humidification, are below 100 ° C must be operated.
  • such a fuel cell system also has disadvantages.
  • the durability of membranes doped with phosphoric acid is relatively limited.
  • the service life is significantly reduced, in particular by operating the fuel cell below 100 ° C., for example at 80 ° C. In this context, however, it should be noted that when the fuel cell is started up and shut down, the cell must be operated at these temperatures.
  • the present invention is therefore based on the object of providing a novel polymer electrolyte membrane which achieves the objects set out above.
  • a membrane according to the invention should be able to be produced inexpensively and simply.
  • the conductivity should be achieved without additional humidification, especially at high temperatures.
  • the membrane should have a high mechanical stability in relation to its performance.
  • a membrane according to the invention exhibits a high conductivity over a wide temperature range, which is also achieved without additional moistening.
  • a membrane according to the invention shows a relatively high mechanical stability.
  • a membrane according to the invention can be produced simply and inexpensively. Large quantities of expensive solvents such as dimethylacetamide can thus be dispensed with.
  • membranes have a surprisingly long service life.
  • a fuel cell that is equipped with a membrane according to the invention can also be operated at low temperatures, for example at 80 ° C., without the service life of the fuel cell being greatly reduced thereby.
  • the present invention relates to a proton-conducting polymer membrane containing polyazole blends obtainable by a process comprising the steps A) preparation of a mixture comprising polyphosphoric acid, at least one polyazole (polymer A) and / or at least one or more compounds which are suitable for the formation of polyazoles under the action of heat in accordance with step B),
  • step B) heating the mixture obtainable according to step A) under inert gas to temperatures of up to 400 ° C.
  • step C) applying a layer using the mixture according to step A) and / or B) on a carrier, D) treating the membrane formed in step C) until it is self-supporting, the layer obtainable according to step A) and / or step B) At least one further polymer (polymer B), which is not a polyazole, is added to the composition, the weight ratio of polyazole to polymer B being in the range from 0.1 to 50.
  • polymer B which is not a polyazole
  • the composition produced according to step B) comprises polyazoles. These polymers can already be added in step A). Furthermore, these polymers can also be obtained from the monomers, oligomers and / or prepolymers on which the polymer is based during the heating according to step B).
  • Polymers based on polyazole contain repeating azole units of the general type
  • Ar are the same or different and for a tetra-bonded aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 1 are the same or different and for a divalent aromatic or heteroaromatic group, which can be mono- or polynuclear
  • Ar 2 are the same or different are and for a two or three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear
  • Ar 3 are the same or different and for a three-membered aromatic or heteroaromatic group, which may be mono- or polynuclear,
  • Ar 4 are identical or different and, the one for a trivalent aromatic or heteroaromatic group, or may be polynuclear
  • Ar 5 are identical or different and for a tetravalent aromatic or heteroaromatic group, which may be mono- or polynuclear
  • Ar 6 are identical or are different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 7 are the same or different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear
  • Ar 8 are the same or different and for a three-membered aromatic or heteroaromatic group, which can be mononuclear or polynuclear
  • Ar 9 are the same or different and for a two- or three- or four-membered aromatic or heteroaromatic group, which may be mono- or polynuclear
  • Ar 10 are the same or different and for a bi- or triple-bonded aromatic or heteroaromatic group which or may be polynuclear
  • Ar 11 are the same or different and for a divalent aromatic or heteroaromatic group which may be mono- or polynuclear
  • X is the same or different and for oxygen, sulfur or an amino group which has a hydrogen atom, a 1-20 Group having carbon atoms, preferably a branched or unbranched alkyl or alkoxy group, or an aryl group as a further radical
  • R is the same or different for hydrogen, an alkyl group and an aromatic group
  • Aromatic or heteroaromatic groups preferred according to the invention are derived from benzene, naphthalene, biphenyl, diphenyl ether, diphenylmethane, diphenyldimethylmethane,
  • Pyrazinopyrimidine carbazole, aciridine, phenazine, benzoquinoline, phenoxazine, phenothiazine, acridizine, benzopteridine, phenanthroline and phenanthrene, which can optionally also be substituted.
  • the substitution pattern of Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 is arbitrary, in the case of phenylene, for example, Ar 1 , Ar 4 , Ar 6 , Ar 7 , Ar 8 , Ar 9 , Ar 10 , Ar 11 are ortho-, meta- and para-phenylene. Particularly preferred groups are derived from benzene and biphenylene, which may also be substituted.
  • Preferred alkyl groups are short-chain alkyl groups with 1 to 4 carbon atoms, such as.
  • Preferred aromatic groups are phenyl or naphthyl groups.
  • the alkyl groups and the aromatic groups can be substituted.
  • Preferred substituents are halogen atoms such as. B. fluorine, amino groups, hydroxyl groups or short-chain alkyl groups such as. B. methyl or ethyl groups.
  • the polyazoles can also have different recurring units which differ, for example, in their X radical. However, it preferably has only the same X radicals in a recurring unit.
  • polyazole polymers are polyimidazoles, polybenzthiazoles, polybenzoxazoles, polyoxadiazoles, polyquinoxalines, polythiadiazoles poly (pyridines), poly (pyrimidines), and poly (tetrazapyrenes).
  • the polymer containing recurring azole units is a copolymer or a blend which contains at least two units of the formulas (I) to (XXII) which differ from one another.
  • the polymers can be present as block copolymers (diblock, triblock), statistical copolymers, periodic copolymers and / or alternating polymers.
  • the polymer containing recurring azole units is a polyazole which contains only units of the formula (I) and / or (II).
  • the number of repeating azole units in the polymer is preferably an integer greater than or equal to 10.
  • Particularly preferred polymers contain at least 100 repeating azole units.
  • polymers containing recurring benzimidazole units are preferred.
  • Some examples of the extremely useful polymers containing recurring benzimidazole units are represented by the following formulas:
  • n and m is an integer greater than or equal to 10, preferably greater than or equal to 100.
  • the polyazoles used in step A), but especially the polybenzimidazoles, are distinguished by a high molecular weight. Measured as intrinsic viscosity, this is preferably in the range from 0.3 to 10 dl / g, in particular 1 to 5 dl / g.
  • the polyazoles can also be prepared in step B) by heating. For this purpose, one or more compounds can be added to the mixture in step A) which are suitable for the formation of polyazoles under the action of heat in step B).
  • Mixtures are suitable for this purpose which comprise one or more aromatic and / or heteroaromatic tetra-amino compounds and one or more aromatic and / or heteroaromatic carboxylic acids or their derivatives which comprise at least two acid groups per carboxylic acid monomer. Furthermore, one or more aromatic and / or heteroaromatic diaminocarboxylic acids can be used for the production of polyazoles.
  • aromatic and heteroaromatic tetra-amino compounds include, inter alia, 3,3 ', 4,4'-tetraaminobiphenyl, 2,3,5,6-tetraaminopyridine, 1, 2,4,5-tetraaminobenzene,
  • Tetraaminodiphenyldimethylmethane and their salts especially their mono-, di-, tri- and tetrahydrochloride derivatives.
  • Tetraaminobenzene is particularly preferred.
  • Mixture A) may further comprise aromatic and / or heteroaromatic carboxylic acids.
  • aromatic and / or heteroaromatic carboxylic acids are dicarboxylic acids and tricarboxylic acids and tetracarboxylic acids or their esters or their anhydrides or their acid halides, in particular their acid halides and / or acid bromides.
  • aromatic dicarboxylic acids are preferably isophthalic acid, terephthalic acid, phthalic acid, 5-hydroxyisophthalic acid, 4-hydroxyisophthalic acid, 2-hydroxyterephthalic acid, 5-aminoisophthalic acid, 5-N, N-dimethylaminoisophthalic acid, 5-N, N-diethylaminoisinoophosphoric acid -Dihydroxy terephthalic acid, 2,6-dihydroxyisophthalic acid,
  • Diphenyl ether-4,4'-dicarboxylic acid benzophenone-4,4'-dicarboxylic acid, diphenyl sulfone-4,4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, 4-trifluoromethylphthalic acid, 2,2-bis (4-carboxyphenyl) hexafluoropropane, 4,4'-stilbenedicarboxylic acid, 4-carboxycinnamic acid, or their C1-C20-alkyl esters or C5-C12-aryl esters, or their acid anhydrides or their acid chlorides.
  • aromatic tricarboxylic acids or their C1-C20 alkyl esters or C5-C12 aryl esters or their acid anhydrides or their acid chlorides are preferably 1,3,5-benzene-tricarboxylic acid (trimesic acid), 1,2 , 4-benzene-tricarboxylic acid (trimellitic acid), (2-carboxyphenyl) iminodiacetic acid, 3,5,3'-biphenyltricarboxylic acid, 3,5,4'-biphenyltricarboxylic acid.
  • aromatic tetracarboxylic acids or their C1-C20-alkyl esters or C5-C12-aryl esters or their acid anhydrides or their acid chlorides are preferably 3,5,3 ', 5'-biphenyltetracarboxylic acid, 1, 2.4 , 5-benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, 3,3 ', 4,4'-biphenyltetracarboxylic acid, 2,2', 3,3'-
  • Biphenyltetracarboxylic acid 1, 2,5,6-naphthalenetetracarboxylic acid, 1, 4,5,8-naphthalenetetracarboxylic acid.
  • heteroaromatic carboxylic acids are heteroaromatic dicarboxylic acids and tricarboxylic acids and tetracarboxylic acids or their esters or their
  • Heteroaromatic carboxylic acids are understood to mean aromatic systems which contain at least one nitrogen, oxygen, sulfur or phosphorus atom in the aromatic system. It is preferably pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine-2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-pyridinedicarboxylic acid, 3.5 -Pyrazole dicarboxylic acid, 2,6-pyrimidine dicarboxylic acid, 2,5-
  • Dicarboxylic acid is between 0 and 30 mol%, preferably 0.1 and 20 mol%, in particular 0.5 and 10 mol%.
  • Mixture A can also contain aromatic and heteroaromatic diaminocarboxylic acids. These include diaminobenzoic acid,
  • Mixing ratio of aromatic carboxylic acids to heteroaromatic carboxylic acids is between 1:99 and 99: 1, preferably 1:50 to 50: 1.
  • mixtures are in particular mixtures of N-heteroaromatic dicarboxylic acids and aromatic dicarboxylic acids. Not limiting
  • dicarboxylic acids are isophthalic acid, terephthalic acid, phthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-dihydroxyisophthalic acid, 4,6-dihydroxyisophthalic acid, 2,3- Dihydroxyphthalic acid, 2,4-dihydroxyphthalic acid.
  • the molar ratio is from
  • the mixture produced in step A) preferably comprises at least 0.5% by weight, in particular 1 to 30% by weight and particularly preferably 2 to 15% by weight, of monomers for the production of polyazoles.
  • the polyazoles are prepared directly from the monomers in the polyphosphoric acid, the polyazoles are distinguished by a high molecular weight. This applies in particular to the polybenzimidazoles. Measured as intrinsic viscosity, this is in the range from 0.3 to 10 dl / g, preferably 1 to 5 dl / g.
  • step A) also contains tricarboxylic acids or tetracarboxylic acids, branching / crosslinking of the polymer formed is achieved in this way. This contributes to the improvement of the mechanical property.
  • the mixture produced in step A) comprises compounds which, under the action of heat, according to step B)
  • Formation of polyazoles are suitable, these compounds being reacted by reacting one or more aromatic and / or heteroaromatic tetraamino compounds with one or more aromatic and / or heteroaromatic carboxylic acids or their derivatives which contain at least two acid groups per carboxylic acid monomer, or of one or more aromatic and / or heteroaromatic diaminocarboxylic acids in the melt at temperatures of up to 400 ° C., in particular up to 350 ° C., preferably up to 280 ° C.
  • the compounds to be used to prepare these prepolymers have been set out above.
  • the polyphosphoric acid used in step A) is commercially available
  • Polyphosphoric acids such as those available from Riedel-de Haen, for example.
  • the polyphosphoric acids H n + 2 P n ⁇ 3n + . (n> 1) usually have a content calculated as P 2 O 5 (acidimetric) of at least 83%.
  • a dispersion / suspension can also be produced.
  • At least one further polymer which is not polyazole (polymer (B)) is added to the composition produced in step A) and / or step B)
  • polymer can be dissolved, dispersed or suspended.
  • the weight ratio of polyazole to polymer (B) is in the range from 0.1 to 50, preferably from 0.2 to 20, particularly preferably from 1 to 10. If the polyazole is only formed in step B), the weight ratio can be calculated from the weight of the
  • Monomers to form the polyazole are obtained, taking into account the compounds released during the condensation, for example water.
  • the preferred polymers include, inter alia, polyolefins, such as poly (chloroprene), polyacetylene, polyphenylene, poly (p-xylylene), polyarylmethylene, polyarmethylene, polystyrene,
  • polyolefins such as poly (chloroprene), polyacetylene, polyphenylene, poly (p-xylylene), polyarylmethylene, polyarmethylene, polystyrene,
  • Polychlorotrifluoroethylene polyvinyl fluoride, polyvinylidene fluoride, polyacrolein, polyacrylamide, polyacrylonitrile, polycyanoacrylates, polymethacrylimide, cycloolefinic copolymers, in particular from norbomene; Polymers with C-O bonds in the main chain, for example polyacetal, polyoxymethylene, polyether, polypropylene oxide, polyepichlorohydrin,
  • Inorganic polymers for example polysilanes, polycarbosilanes, polysiloxanes, polysilicic acid, polysilicates, silicones, polyphosphazenes and polythiazyl.
  • the polymers (B) also comprise polymers with covalently bonded acid groups.
  • These acid groups include, in particular, sulfonic acid groups.
  • Polymers modified with sulfonic acid groups preferably have a content of Sulphonic acid groups in the range of 0.5 to 3 meq / g. This value is determined via the so-called ion exchange capacity (1EC).
  • the sulfonic acid groups are converted into the free acid.
  • the polymer is treated with acid in a known manner, excess acid being removed by washing.
  • the sulfonated polymer is first treated in boiling water for 2 hours. Excess water is then dabbed off and the
  • the dry weight of the membrane is determined.
  • the polymer dried in this way is then dissolved in DMSO at 80 ° C. for 1 hour.
  • the solution is then titrated with 0.1 M NaOH.
  • the ion exchange capacity (IEC) is then calculated from the consumption of the acid up to the equivalent point and the dry weight.
  • Polymers containing sulfonic acid groups can be prepared, for example, by sulfonating polymers.
  • Non-fluorinated polymers Another class of non-fluorinated polymers was developed by sulfonation of high-temperature stable thermoplastics.
  • sulfonated polyether ketones DE-A-4219077, WO96 / 01177
  • sulfonated polysulfones J. Membr. Sei. 83 (1993) p.211
  • sulfonated polyphenylene sulfide DE-A-19527435
  • US-A-6110616 describes copolymers of butadiene and styrene and their subsequent sulfonation for use in fuel cells.
  • polymers can also be obtained by polyreactions of monomers which comprise acid groups.
  • Perfluorinated polymers such as in
  • the preferred polymers with acid groups include, among others, sulfonated polyether ketones, sulfonated polysulfones, sulfonated polyphenylene sulfides, perfluorinated polymers containing sulfonic acid groups, as described in US-A-3692569, US-A-5422411 and US-A-
  • Polymers (B) which have a glass transition temperature or Vicat softening temperature VST / A / 50 of at least 100 ° C., preferably at least 150 ° C. and very particularly preferably at least 180 ° C. are preferred for use in fuel cells with a continuous use temperature above 100 ° C. to have.
  • polysulfones with a Vicat softening temperature VST / A / 50 of 180 ° C to
  • polymers (B) are preferred which have low solubility and / or degradability in phosphoric acid. According to a particular embodiment of the present invention, the weight increases by treatment with 85%
  • the weight ratio of the plate after the phosphoric acid treatment to the weight of the plate before the treatment is preferably greater than or equal to 0.8, in particular greater than or equal to 0.9 and particularly preferably greater than or equal to 0.95. This value is measured on a plate made of polymer (B), which is 2 mm thick, 5 cm long and 2 cm wide. This plate is placed in phosphoric acid, the
  • Weight ratio of phosphoric acid to plate 10 is. The phosphoric acid is then heated to 100 ° C. with stirring for 24 hours. The plate is then freed from excess phosphoric acid by washing with water and dried. The plate is then weighed again.
  • the preferred polymers include polysulfones, especially polysulfones with aromatics in the main chain.
  • preferred polysulfones and polyether sulfones have a melt volume rate MVR 300/21, 6 is less than or equal to 40 cm 3/10 min, especially less than or equal to 30 cm 3/10 min and particularly preferably less than or equal to 20 cm 3 / 10 min measured according to ISO 1133.
  • step B) the mixture obtained in step A) is heated to a temperature of up to 400 ° C., in particular 350 ° C., preferably up to 280 ° C., in particular 100 ° C. to 250 ° C. and particularly preferably in the range of 200 ° C to 250 ° C heated.
  • An inert gas for example nitrogen or a noble gas, such as neon, argon, is used here.
  • aromatic dicarboxylic acids such as isophthalic acid, terephthalic acid, 2,5-dihydroxyterephthalic acid, 4,6-dihydroxyisophthalic acid, 2,6-dihydroxyisophthalic acid, diphenic acid, 1,8-dihydroxynaphthalene-3, 6-dicarboxylic acid, diphenyl ether 4,4'-
  • Dicarboxylic acid benzophenone-4,4'-dicarboxylic acid, diphenylsulfone-4,4'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, 4-trifluoromethylphthalic acid, pyridine-2,5-dicarboxylic acid, pyridine-3,5-dicarboxylic acid, pyridine -2,6-dicarboxylic acid, pyridine-2,4-dicarboxylic acid, 4-phenyl-2,5-pyridinedicarboxylic acid, 3,5-pyrazole dicarboxylic acid, 2,6-pyrimidinedicarboxylic acid, 2,5-pyrazinedicarboxylic acid, the temperature in step B) im Range of up to 300 ° C, preferably between 100 ° C and 250 ° C, is favorable. In a variant of the method, the heating according to step B) can take place after the formation of a flat structure according to step C).
  • the mixture produced in step A) and / or step B) may additionally contain organic solvents. These can have a positive impact on processability. For example, the rheology of the solution can be improved so that it can be extruded or squeegee more easily.
  • fillers in particular proton-conducting fillers, and additional acids can also be added to the membrane.
  • the addition can take place, for example, in step A), step B) and / or step C).
  • these additives if they are in liquid form, can also be added after the polymerization in step D).
  • Non-limiting examples of proton-conducting fillers are:
  • Sulfates such as: CsHSO 4 , Fe (SO 4 ) 2 , (NH 4 ) 3 H (SO 4 ) 2 , LiHSO 4 , NaHSO 4 , KHSO 4 , RbSO 4 ,
  • HSbWOe H 3 PMo 12 O 40 , HzSb ⁇ n, HTaWO 6 , HNbO 3 , HTiNbO 5 , HTiTaO 5 , HSbTeO 6 , H 5 Ti 4 O 9 , HSbO 3 , H 2 MoO 4 selenites and arsenides such as (NH 4 ) 3 H (SeO 4 ) 2 , UO 2 AsO 4 , (NH 4 ) 3 H (SeO 4 ) 2 , KH 2 AsO 4 , Cs 3 H (SeO 4 ) 2 , Rb 3 H (SeO 4 ) 2)
  • Phosphides such as ZrP, TiP, HfP
  • Oxides such as Al 2 O 3 , Sb 2 O 5 , ThO 2 , SnO 2 , ZrO 2 , MoO 3
  • Silicates such as zeolites, zeolites (NH 4 +), layered silicates, framework silicates, H-natrolites, H-
  • Fillers such as carbides, in particular SiC, Si 3 N 4 , fibers, in particular glass fibers,
  • Glass powders and / or polymer fibers preferably based on polyazoles.
  • additives can be contained in the proton-conducting polymer membrane in conventional amounts, but the positive properties, such as high conductivity, high
  • the membrane after the treatment in step D) comprises at most 80% by weight, preferably at most 50% by weight and particularly preferably at most 20% by weight of additives.
  • this membrane can also contain perfluorinated sulfonic acid additives (preferably 0.1-20% by weight, preferably 0.2-15% by weight, very preferably 0.2-10% by weight). This Additives lead to an improvement in performance, near the cathode to an increase in
  • Phosphoric acid and phosphate to platinum are Phosphoric acid and phosphate to platinum. (Electrolyte additives for phosphoric acid fuel cells.
  • Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M .; Razaq, A .;
  • persulfonated additives are: trifluomethanesulfonic acid, potassium trifluoromethanesulfonate, sodium trifluoromethanesulfonate,
  • Perfluorohexane sulfonic acid potassium nonafluorobutane sulfonate, sodium nonafluorobutane sulfonate, lithium nonafluorobutane sulfonate, ammonium nonafluorobutane sulfonate,
  • step C takes place by means of measures known per se (casting, spraying, knife coating, extrusion) which are known from the prior art
  • Suitable carriers are all carriers which are inert under the conditions. These carriers include, in particular, films made from polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyhexafluoropropylene, copolymers of PTFE with hexafluoropropylene, polyimides, polyphenylene sulfides (PPS) and polypropylene (PP).
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PTFE polyhexafluoropropylene
  • copolymers of PTFE with hexafluoropropylene polyimides
  • PPS polyphenylene sulfides
  • PP polypropylene
  • the solution can optionally be mixed with an easily evaporable organic solvent.
  • the viscosity can be adjusted to the desired value and the formation of the membrane can be facilitated.
  • the thickness of the flat structure according to step C) is preferably between 10 and 4000 ⁇ m, preferably between 15 and 3500 ⁇ m, in particular between 20 and 3000 ⁇ m, particularly preferably between 30 and 1500 ⁇ m and very particularly preferably between 50 and 1200 ⁇ m.
  • the membrane is treated in step D) in particular at temperatures in the range from 0 ° C. to 150 ° C., preferably at temperatures between 10 ° C. and 120 ° C., in particular between room temperature (20 ° C.) and 90 ° C., in the presence of moisture or water and / or water vapor.
  • the treatment is preferably carried out under normal pressure, but can also be carried out under the action of pressure. It is essential that the
  • the partial hydrolysis of the polyphosphoric acid in step D) leads to a solidification of the membrane and to a decrease in the layer thickness and formation of a membrane.
  • the solidified membrane generally has a thickness of between 15 and 3000 ⁇ m, preferably 20 and 2000 ⁇ m, in particular between 20 and 1500 ⁇ m, the membrane being self-supporting.
  • the upper temperature limit of the treatment in step D) is generally 150 ° C.
  • this steam can also be hotter than 150 ° C.
  • the duration of the treatment is essential for the upper temperature limit.
  • the partial hydrolysis (step D) can also take place in climatic chambers in which the hydrolysis can be specifically controlled under the influence of moisture.
  • the humidity can be specifically adjusted by the temperature or saturation of the contacting environment, for example gases such as air, nitrogen, carbon dioxide or other suitable gases, or water vapor.
  • gases such as air, nitrogen, carbon dioxide or other suitable gases, or water vapor.
  • the duration of treatment depends on the parameters selected above.
  • the treatment time depends on the thickness of the membrane.
  • the duration of treatment is between a few seconds to minutes, for example under the action of superheated steam, or up to whole
  • the treatment time is preferably between 10 seconds and 300 hours, in particular 1 minute to 200 hours.
  • Humidity of 40-80% carried out the treatment time is between 1 and 200 hours.
  • the membrane obtained in step D) can be self-supporting, i.e. it can be detached from the carrier without damage and then processed directly if necessary.
  • the concentration of phosphoric acid and thus the conductivity of the polymer membrane according to the invention can be adjusted via the degree of hydrolysis, ie the duration, temperature and ambient humidity.
  • the concentration of phosphoric acid is given as mole of acid per mole of repeating unit of the polymer.
  • a concentration (mol of phosphoric acid based on a Repeating unit of the formula (III), ie polybenzimidazole) between 10 and 80, in particular between 12 and 60, is preferred.
  • concentrations mol of phosphoric acid based on a Repeating unit of the formula (III), ie polybenzimidazole
  • Such high degrees of doping (concentrations) are very difficult or even impossible to obtain by doping polyazoles with commercially available orthophosphoric acid.
  • the membrane can still be crosslinked by exposure to heat in the presence of oxygen.
  • This hardening of the membrane additionally improves the properties of the membrane.
  • the membrane can be heated to a temperature of at least 150 ° C., preferably at least 200 ° C. and particularly preferably at least 250 ° C.
  • the oxygen concentration is at this
  • the method step is usually in the range from 5 to 50% by volume, preferably 10 to 40% by volume, without any intention that this should impose a restriction.
  • IR InfraRot, ie light with a wavelength of more than 700 nm
  • NIR Near IR, ie light with a wavelength in the range from approx. 700 to 2000 nm or an energy in the range of approx. 0.6 to 1.75 eV).
  • Another method is radiation with ⁇ -rays. The radiation dose is between 5 and 200 kGy.
  • the duration of the crosslinking reaction can be in a wide range. In general, this reaction time is in the range from 1 second to 10 hours, preferably 1 minute to 1 hour, without this being intended to impose any restriction.
  • the polymer membrane according to the invention has improved material properties compared to the previously known doped polymer membranes. In particular, they perform better than known doped polymer membranes. This is due in particular to an improved proton conductivity. At temperatures of 120 ° C., this is at least 0.1 S / cm, preferably at least 0.11 S / cm, in particular at least 0.12 S / cm.
  • the membranes according to the invention comprise polymers with sulfonic acid groups, the membranes show a high conductivity even at a temperature of 70 ° C.
  • the conductivity depends, among other things, on the sulfonic acid group content of the membrane. The higher this proportion, the better the conductivity at low temperatures.
  • a membrane according to the invention can be moistened at low temperatures.
  • the compound used as an energy source for example hydrogen
  • the water formed by the reaction is sufficient to achieve humidification.
  • the specific conductivity is measured by means of impedance spectroscopy in a 4-pole arrangement in potentiostatic mode and using platinum electrodes (wire, 0.25 mm diameter). The distance between the current sinking electrodes is 2 cm.
  • the spectrum obtained is evaluated using a simple model consisting of a parallel arrangement of an ohmic resistance and a capacitor.
  • the sample cross-section of the phosphoric acid-doped membrane is measured immediately before the sample assembly. To measure the temperature dependency, the measuring cell is brought to the desired temperature in an oven and immediately in one
  • thermocouple positioned close to the sample controlled. After reaching the temperature, the sample is kept at this temperature for 10 minutes before starting the measurement.
  • the membranes have high mechanical stability. This size results from the hardness of the
  • the membrane which is determined by means of microhardness measurement according to DIN 50539.
  • the membrane is successively loaded with a Vickers diamond within 20 s up to a force of 3 mN and the depth of penetration is determined.
  • the hardness at room temperature is at least 5 mN / mm 2 , preferably at least 50 mN / mm 2 and very particularly preferably at least 200 mN / mm 2 , without any intention that this should impose a restriction.
  • the force is then kept constant at 3 mN for 5 s and the creep is calculated from the penetration depth.
  • the creep C H u 0.003 / 20/5 under these conditions is less than 30%, preferably less than 15% and very particularly preferably less than 5%.
  • the module determined by means of microhardness measurement is YHU at least 0.1 MPa, in particular at least 2 MPa and very particularly preferably at least 5 MPa, without this being intended to impose a restriction.
  • Possible areas of application of the polymer membranes according to the invention include use in fuel cells, in electrolysis, in capacitors and in battery systems.
  • the present invention also relates to a membrane electrode unit which has at least one polymer membrane according to the invention.
  • a membrane electrode unit which has at least one polymer membrane according to the invention.
  • the membrane formation can also take place directly on the electrode instead of on a support.
  • the treatment according to step D) can be shortened accordingly, since the membrane no longer has to be self-supporting.
  • Such a membrane is also the subject of the present invention.
  • Another object of the present invention is an electrode with a proton-conducting polymer coating containing polyazole blends obtainable by a process comprising the steps
  • step B preparation of a mixture comprising polyphosphoric acid, at least one polyazole (polymer A) and / or at least one or more compounds which are suitable for the formation of polyazoles under the action of heat in accordance with step B),
  • step B) heating the mixture obtainable according to step A) under inert gas to temperatures of up to 400 ° C.
  • step C) applying a layer using the mixture according to step A) and / or B) on an electrode
  • step D) Treatment of the membrane formed in step C), wherein at least one further polymer (polymer B), which is not polyazole, is added to the composition obtainable according to step A) and / or step B), the weight ratio of polyazole to polymer B. is in the range of 0.05 to 10.
  • the coating has a thickness between 2 and 3000 ⁇ m, preferably between 2 and 2000 ⁇ m, in particular between 3 and 1500 ⁇ m, particularly preferably 5 to 500 ⁇ m and very particularly preferably between 10 to 200 ⁇ m, without this there should be a restriction.
  • the treatment in step D) leads to a hardening of the coating.
  • the treatment is carried out until the coating has sufficient hardness to be able to be pressed into a membrane electrode assembly.
  • the hardness is sufficient if a membrane treated accordingly is self-supporting. In many cases, however, a lower hardness is sufficient.
  • the hardness determined in accordance with DIN 50539 is generally at least 1 mN / mm 2 , preferably at least 5 mN / mm 2 and very particularly preferably at least 50 mN / mm 2 , without any intention that this should impose a restriction.
  • An electrode coated in this way can be installed in a membrane-electrode unit, which may have at least one polymer membrane according to the invention.
  • a catalytically active membrane can be applied to the membrane according to the invention
  • the membrane according to steps A) to D) can also be formed on a support or a support film which already has the catalyst.
  • the catalyst is on the membrane of the invention. These structures are also the subject of the present invention.
  • the present invention also relates to a membrane-electrode unit which has at least one coated electrode and / or at least one polymer membrane according to the invention in combination with a further polymer membrane based on polyazoles or a polymer blend membrane containing at least one polymer based on polyazoles.
  • Terephthalic acid (12.4598 g, 0.075 mol) and 3,3'-4,4'-tetraaminobiphenyl (16.074 g, 0.075 mol,) were placed in a three-necked flask under N 2 in 650 g polyphosphoric acid (PPA). The reaction mixture was polymerized with stirring at 220 ° C. for 24 hours.
  • Polyether ketone (PEK) (Mw: 144100, Mn: 55000) was dissolved in sulfuric acid and sulfonated by adding oleum at 50 ° C. The reaction mixture was precipitated in water, neutralized, filtered and dried at 100 ° C. in vacuo for 24 hours. Degree of sulfonation of the s-PEK is 57.3%.
  • Apertures and membrane production p-PBI / PPA was heated to 150 ° C. under an N 2 atmosphere.
  • 94.22 g of p-PBI / PPA solution was placed in a three-necked flask and 16.0 g of s-PEK and 95 g of PPA were added to the p-PBI / PPA solution.
  • the blend solution was stirred for 20 hours at 150 ° C. under an N 2 atmosphere.
  • the solution was then worked on a glass plate at an elevated temperature and hydrolyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

Die vorliegende Erfindung betrifft protonenleitende Polymermembran enthaltend Polyazole erhältlich durch ein Verfahren umfassend die Schritt A) Herstellung einer Mischung umfassend Polyphosphorsäure, mindestens ein Polyazol (Polymer A) und/oder mindestens ein oder mehrere Verbindungen, die unter Einwirkung von Wärme gemäss Schritt B) zur Bildung von Polyazolen geeignet sind, B) Erwärmen der Mischung erhältlich gertläss Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäss Schritt A) und/oder B) auf einem Träger, D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist, wobei der in Schritt A) und/oder Schritt B) erhältlichen Zusammensetzung mindestens ein weiteres Polymer (Polymer B), das kein Polyazol darstellt, zugefügt wird, wobei das Gewichtsverhältnis von Polyazol zu Polymer B im Bereich von 0,1 bis liegt.

Description

Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
Die vorliegende Erfindung betrifft eine Protonenleitende Polymerelektrolytmembran umfassend Polyazolblends, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer- Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.
Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas oder ein Methanol-Wasser-Gemisch, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas oder Luft, zugeführt und dadurch chemische Energie aus der Brennstoffoxidation direkt in elektrische Energie umgewandelt.
Bei der Oxidationsreaktion werden Protonen und Elektronen gebildet.
Der Elektrolyt ist für Wasserstoff ionen, d.h. Protonen, aber nicht für reaktive Brennstoffe wie das Wasserstoffgas oder Methanol und das Sauerstoffgas durchlässig.
Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEE's (Membran- Elektroden-Einheit) auf, die jeweils einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden enthalten.
Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für Brennstoffzellen Aufmerksamkeit erregt. Prinzipiell kann man zwischen 2 Kategorien von Polymermembranen unterscheiden.
Zu der ersten Kategorie gehören Kationenaustauschermembranen bestehend aus einem
Polymergerüst welches kovalent gebunden Säuregruppen, bevorzugt Sulfonsäuregruppen enthält. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen. Die Beweglichkeit des Protons und damit die Protonenleitfähigkeit ist dabei direkt an den Wassergehalt verknüpft. Durch die sehr gute Mischbarkeit von Methanol und Wasser weisen solche Kationenaustauschermembranen eine hohe
Methanolpermeabilität auf und sind deshalb für Anwendungen in einer Direkt-Methanol- Brennstoffzelle ungeeignet. Trocknet die Membran, z.B. in Folge hoher Temperatur, aus, so nimmt die Leitfähigkeit der Membran und folglich die Leistung der Brennstoffzelle drastisch ab. Die Betriebstemperaturen von Brennstoffzellen enthaltend solche Kationenaustauschermembranen ist somit auf die Siedetemperatur des Wassers beschränkt.
Die Befeuchtung der Brennstoffe stellt eine große technische Herausforderung für den Einsatz von Polymerelektrolytmembranbrennstoffzellen (PEMBZ) dar, bei denen konventielle, sulfonierte Membranen wie z.B. Nafion verwendet werden. So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere. Das Perfluorsulfonsäurepolymer (wie z.B. Nafion) weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst auf, wie ein Copolymer aus
Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe.
Bei den Kationenaustauschermembranen handelt es sich vorzugsweise um organische
Polymere mit kovalent gebundenen Säuregruppen, insbesondere Sulfonsäure. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science1988, Vol. 38, No 5, 783-792 beschrieben.
Im Folgenden sind die wichtigsten Typen von Kationenaustauschmembranen aufgeführt die zum Einsatz in Brennstoffzellen kommerzielle Bedeutung erlangt haben: Der wichtigste Vertreter ist das Perfluorosulfonsäurepolymer Nafion® (US 3692569). Dieses Polymer kann wie in US 4453991 beschrieben in Lösung gebracht und dann als lonomer eingesetzt werden. Kationenaustauschermembranen werden auch erhalten durch Füllen eines porösen Trägermaterials mit einem solchen lonomer. Als Trägermaterial wird dabei expandiertes Teflon bevorzugt (US 5635041).
Eine weitere perfluorinierte Kationenaustauschermembran kann wie in US5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden. Kompositmembranen bestehend aus einem porösen Trägermaterial, insbesondere expandiertes Teflon, gefüllt mit lonomeren bestehend aus solchen sulfonylmodifizierten Trifluorostyrol-Copolymeren sind in US5834523 beschrieben. US6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Herstellung von Kationenaustauschermembranen für Brennstoffzellen.
Eine weitere Klasse von teilfluorierten Kationenaustauschermembranen kann durch
Strahlenpfropfen und nachfolgende Sulfonierung hergestellt werden. Dabei wird wie in EP667983 oder DE19844645 beschrieben an einem zuvor bestrahlten Polymerfilm eine Pfropfungsreaktion vorzugsweise mit Styrol durchgeführt. In einer nachfolgenden Sulfonierungsreaktion erfolgt dann die Sulfonierung der Seitenketten. Gleichzeitig mit der Pfropfung kann auch eine Vernetzung durchgeführt und somit die mechanischen
Eigenschaften verändert werden.
Neben obigen Membranen wurde eine weitere Klasse nichtfluorierter Membranen durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind Membranen aus sulfonierten Polyetherketonen (DE4219077, EP96/01177), sulfoniertem Polysulfon (J. Membr. Sei. 83 (1993) p.211) oder sulfoniertem Polyphenylensulfid (DE19527435) bekannt, lonomere hergestellt aus sulfonierten Polyetherketonen sind in WO 00/15691 beschrieben. Desweiteren sind Säure-Base-Blendmembranen bekannt, die wie in DE19817374 oder WO 01/18894 beschrieben durch Mischungen von sulfonierten Polymeren und basischen Polymeren hergestellt werden.
Zur weiteren Verbesserung der Membraneigenschaften kann eine aus dem Stand der
Technik bekannte Kationenaustauschermembran mit einem hochtemperaturstabilen Polymer gemischt werden. Die Herstellung und Eigenschaften von Kationenaustauschermembranen bestehend aus Blends aus sulfoniertem PEK und a) Polysulfonen (DE4422158), b) aromatischen Polyamiden (42445264) oder c) Polybenzimidazol (DE19851498) sind beschrieben.
Problematisch an derartigen Membranen ist jedoch deren aufwendige und somit teure Herstellung, da üblich zunächst verschiedene Polymere gebildet werden, welche anschließend häufig mit Hilfe eines Lösungsmittels zu einer Folie gegossen werden. Zur Darstellung der sulfonierten Polymere wird üblicherweise das PEK in einem geeigneten
Lösungsmittel gelöst und anschließend mit einem aggressiven Sulfonierungsreagenz, beispielsweise Oleum oder Chlorsulfonsäure, umgesetzt. Diese Reaktion ist relativ kritisch, da das Sulfonierungsreagenz ein starkes Oxidationsmittel darstellt, so dass ein Abbau des PEK nicht ausgeschlossen werden kann, wobei insbesondere die mechanischen Eigenschaften des Polymers nachteilig beeinflußt werden. Das sulfonierte Polymer wird in einem weiteren Prozeßschritt isoliert und in die neutrale Form überführt. Danach wird das Polymer wieder in Lösung gebracht. Aus dieser Lösung kann unter anderem ein Polymerfilm gegossen werden. Das hierzu verwendete Lösungsmittel, beispielsweise N- Dimethylacetamid muß anschließend entfernt werden. Dementsprechend ist das Verfahren zur Herstellung derartiger Membranen aufwendig und somit teuer.
Bei diesen Sulfonierungsverfahren unter dem Einsatz sehr starker Sulfonierungsagenzien findet eine unkontrollierte Sulfonierung an einer Vielzahl an Stellen des Polymers statt. Die Sulfonierung kann auch zu Kettenbruch und somit zu einer Verschlechterung der mechanischen Eigenschaften und schließlich zum vorzeitigen Versagen der Brennstoffzelle führen.
Auch sulfonierte Polybenzimidazole sind bereits aus der Literatur bekannt. So beschreibt US-A-4634530) eine Sulfonierung einer undotierten Polybenzimidazol-Folie mit einem Sulfonierungsmittel wie Schwefelsäure oder Oleum im Temperaturbereich bis
100°C.
Des weiteren haben Staiti et al (P. Staiti in J. Membr. Sei. 188 (2001) 71) die Herstellung und Eigenschaften von sulfoniertem Polybenzimidazole beschrieben. Dazu war es nicht möglich die Sulfonierung an dem Polymer in der Lösung vorzunehmen. Bei Zugabe des
Sulfonierungsmittels zu der PBI/DMAc Lösung fällt das Polymer aus. Zur Sulfonierung wurde zunächst ein PBI-Film hergestellt und dieser in eine verdünnte Schwefelsäure getaucht. Zur Sulfonierung wurden die Proben dann bei Temperaturen von ca. 475°C während 2 Minuten behandelt. Die sulfonierten PBI Membranen besitzen nur eine maximale Leitfähigkeit von 7,5*10"5 S/cm bei einer Temperatur von 160°C. Die maximale lonenaustauschkapazität beträgt 0,12 meq/g. Es wurde ebenfalls gezeigt, dass solchermaßen sulfonierte PBI Membranen nicht für den Einsatz in einer Brennstoffzelle geeignet sind.
Die Herstellung von sulfoalkylierten PBI Membranen durch die Umsetzung eines hydroxyethyl-modifizierten PBI mit einem Sulton ist in US-A-4997892 beschrieben. Basierend auf dieser Technologie können sulfopropylierte PBI Membranen hergestellten werden (Sanui et al in Polym. Adv. Techn. 11 (2000) 544). Die Protonenleitfähigkeit solcher
Membranen liegt bei 10"3 S/Cm und ist somit für Anwendungen in Brennstoffzellen, bei denen 0,1 S/cm angestrebt sind, zu niedrig.
Nachteil all dieser Kationenaustauschermembranen ist die Tatsache, dass die Membran befeuchtet werden muss, die Betriebstemperatur auf 100°C beschränkt ist, und die
Membranen eine hohe Methanolpermeabilität aufweisen. Ursache für diese Nachteile ist der Leitfähigkeitsmechanismus der Membran, bei der der Transport der Protonen an den Transport des Wassermoleküls gekoppelt ist. Dies bezeichnet man als „Vehicle- Mechanismus" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
Als zweite Kategorie sind Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazol, mit einer starken Säure, wie Phosphorsäure, Schwefelsäure usw., behandelt wird.
In J. Electrochem. Soc, Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung eines Polybenzimidazols in Phosphorsäure beschrieben.
Bei den im Stand der Technik bekannten basischen Polymermembranen wird die - zum
Erzielen der erforderlichen Protonenleitfähigkeit - eingesetzte Mineralsäure (meist konzentrierte Phosphorsäure) üblicherweise nach der Formgebung der Polyazolfolie beigefügt. Das Polymer dient dabei als Träger für den Elektrolyten bestehend aus der hochkonzentrierten Phosphorsäure. Die Polymermembran erfüllt dabei weitere wesentliche Funktionen insbesondere muss sie eine hohe mechanische Stabilität aufweisen und als
Separator für die beiden eingangs genannten Brennstoffe dienen.
Wesentliche Vorteile einer solchen Phosphorsäure dotierten Membran ist die Tatsache, dass eine Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, bei Temperaturen oberhalb 100°C ohne eine sonst notwendige Befeuchtung der Brennstoffe betrieben werden kann. Dies liegt in der Eigenschaft der Phosphorsäure begründet die Protonen ohne zusätzliches Wasser mittels des sog. Grotthus Mechanismus transportieren zu können (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C ergeben sich weitere Vorteile für das Brennstoffzellensystem. Zum Einen wird die Empfindlichkeit des Pt-
Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark verringert. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z.B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise muss der CO- Gehalt des Brennstoffes bei Temperaturen <100°C kleiner als 100 ppm sein. Bei
Temperaturen im Bereich 150-200° können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001 ,31, 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems.
Ein großer Vorteil von Brennstoffzellen ist die Tatsache, dass bei der elektrochemischen Reaktion die Energie des Brennstoffes direkt in elektrische Energie und Wärme umgewandelt wird. Als Reaktionsprodukt entsteht dabei an der Kathode Wasser. Als Nebenprodukt bei der elektrochemischen Reaktion entsteht also Wärme. Für Anwendungen bei denen nur der Strom zum Antrieb von Elektromotoren genutzt wird, wie z.B. für
Automobilanwendungen, oder als vielfältiger Ersatz von Batteriesystemen muss die Wärme abgeführt werden, um ein Überhitzen des Systems zu vermeiden. Für die Kühlung werden dann zusätzliche, Energie verbrauchende Geräte notwendig, die den elektrischen Gesamt- Wirkungsgrad der Brennstoffzelle weiter verringern. Für stationäre Anwendungen wie zur zentralen oder dezentralen Erzeugung von Strom und Wärme lässt sich die Wärme effizient durch vorhandene Technologien wie z.B. Wärmetauscher nutzen. Zur Steigerung der Effizienz werden dabei hohe Temperaturen angestrebt. Liegt die Betriebstemperatur oberhalb 100°C und ist die Temperaturdifferenz zwischen der Umgebungstemperatur und der Betriebstemperatur groß, so wird es möglich das Brennstoffzellensystem effizienter zu kühlen beziehungsweise kleine Kühlflächen zu verwenden und auf zusätzliche Geräte zu verzichten im Vergleich zu Brennstoffzellen, die aufgrund der Membranbefeuchtung bei unter 100°C betrieben werden müssen.
Neben diesen Vorteilen weist ein solches Brennstoffzellensystem jedoch auch Nachteile auf. So ist die Haltbarkeit von Phosphorsäure dotierten Membranen relativ begrenzt. Hierbei wird die Lebensdauer insbesondere durch einen Betrieb der Brennstoffzelle unterhalb von 100°C, beispielsweise bei 80°C deutlich herabgesetzt. In diesem Zusammenhang ist jedoch festzuhalten, dass beim An- und Herunterfahren der Brennstoffzelle die Zelle bei diesen Temperaturen betrieben werden muss.
Des weiteren ist die Herstellung von Phosphorsäure dotierten Membranen relativ teuer, da üblich zunächst ein Polymer gebildet wird, welches anschließend mit Hilfe eines Lösungsmittels zu einer Folie gegossen wird. Nach der Trocknung der Folie wird diese in einem letzten Schritt mit einer Säure dotiert. So haben die bislang bekannten Polymermembranen einen hohen Gehalt an Dimethylacetamid (DMAc), der mittels bekannter Trocknungsmethoden nicht vollständig entfernt werden kann.
Darüber hinaus ist die Leistungsfähigkeit, beispielsweise die Leitfähigkeit von bekannten Membranen noch zu verbessern.
Weiterhin ist die mechanische Stabilität von bekannten Hochtemperaturmembranen mit hoher Leitfähigkeit noch zu verbessern.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine neuartige Polymerelektrolytmembran bereitzustellen, die die zuvor dargelegten Aufgaben löst. Insbesondere soll eine erfindungsgemäße Membran kostengünstig und einfach hergestellt werden können. Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung
Polymerelektrolytmembranen zu schaffen, die eine hohe Leistungsfähigkeit, insbesondere eine hohe Leitfähigkeit über einen weiten Temperaturbereich zeigen. Hierbei sollte die Leitfähigkeit, insbesondere bei hohen Temperaturen ohne eine zusätzliche Befeuchtung erzielt werden. Hierbei soll die Membran eine, in Relation zur ihrer Leistungsfähigkeit, hohe mechanische Stabilität aufweisen.
Des weiteren soll die Betriebstemperatur von <80°C bis auf 200°C ausgeweitet werden können, ohne dass die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt werden würde.
Gelöst werden diese Aufgaben durch eine protonenleitende Polymermembran umfassend Polyazolblends mit allen Merkmalen des Anspruchs 1.
Eine erfindungsgemäße Membran zeigt über einen großen Temperaturbereich eine hohe Leitfähigkeit, die auch ohne eine zusätzliche Befeuchtung erzielt wird. Hierbei zeigt eine erfindungsgemäße Membran eine relativ hohe mechanische Stabilität. Des weiteren kann eine erfindungsgemäße Membran einfach und kostengünstig hergestellt werden. So kann insbesondere auf große Mengen an teuren Lösungsmitteln, wie Dimethylacetamid verzichtet werden.
Des weiteren zeigen diese Membranen eine überraschend lange Lebensdauer. Des weiteren kann eine Brennstoffzelle, die mit einer erfindungsgemäßen Membran ausgestattet ist, auch bei tiefen Temperaturen, beispielsweise bei 80°C betrieben werden, ohne dass hierdurch die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt wird.
Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran enthaltend Polyazolblends erhältlich durch ein Verfahren umfassend die Schritte A) Herstellung einer Mischung umfassend Polyphosphorsäure, mindestens ein Polyazol (Polymer A) und/oder mindestens ein oder mehrere Verbindungen, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von Polyazolen geeignet sind,
B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C,
C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einem Träger, D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist, wobei der gemäß Schritt A) und/oder Schritt B) erhältlichen Zusammensetzung mindestens ein weiteres Polymer (Polymer B), das kein Polyazol darstellt, zugefügt wird, wobei das Gewichtsverhältnis von Polyazol zu Polymer B im Bereich von 0,1 bis 50 liegt.
Die gemäß Schritt B) hergestellte Zusammensetzung umfasst Polyazole. Diese Polymere können bereits in Schritt A) zugegeben werden. Des weiteren können diese Polymere auch aus dem Polymer zugrundeliegenden Monomeren, Oligomeren und/oder Vorpolymeren während dem Erwärmen gemäß Schritt B) erhalten werden.
Polymere auf Basis von Polyazol enthalten wiederkehrende Azoleinheiten der allgemeinen
Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)
-.-^ ^Ar -Ar1H- (D N X n
_2 -N.
(II)
"X n
Figure imgf000009_0001
N-N
-FAr6-^ -Ar6i- (V)
X n
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0005
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0003
(XIV)
Figure imgf000011_0004
Figure imgf000011_0005
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Figure imgf000012_0005
Figure imgf000012_0006
worin
Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische
Gruppe steht und n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist. Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan,
Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1 ,3,4-Oxadiazol, 2,5-Diphenyl-1 ,3,4-oxadiazol, 1 ,3,4-Thiadiazol, 1 ,3,4- Triazol, 2,5-Diphenyl-1 ,3,4-triazol, 1 ,2,5-Triphenyl-1 ,3,4-triazol, 1 ,2,4-Oxadiazol, 1 ,2,4- Thiadiazol, 1 ,2,4-Triazol, 1 ,2,3-Triazol, 1 ,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol,
Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Bipyridin, Pyrazin, Pyrazol, Pyrimidin, Pyridazin, 1 ,3,5- Triazin, 1 ,2,4-Triazin, 1 ,2,4,5-Triazin, Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1 ,8-Naphthyridin, 1 ,5-Naphthyridin, 1 ,6-Naphthyridin, 1 ,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder Chinolizin, 4H-Chinolizin, Diphenylether, Anthracen, Benzopyrrol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzotriazin, Indolizin, Pyridopyridin, Imidazopyrimidin,
Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren ab, die gegebenenfalls auch substituiert sein können.
Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z.
B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).
In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0004
Figure imgf000016_0005
10
Figure imgf000017_0001
10
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000018_0003
Figure imgf000018_0004
wobei n und m eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist.
Die in Schritt A) eingesetzten Polyazole, insbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als Intrinsische Viskosität liegt diese vorzugsweise im Bereich von 0,3 bis 10 dl/g, insbesondere 1 bis 5 dl/g. Des weiteren können die Polyazole auch in Schritt B) durch Erwärmen hergestellt werden. Hierzu können der Mischung gemäß Schritt A) ein oder mehrere Verbindungen beigefügt werden, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von Polyazolen geeignet sind.
Hierzu sind Mischungen geeignet, die ein oder mehreren aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen und eine oder mehrere aromatische und/oder heteroaromatische Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer umfassen. Des weiteren können ein oder mehrere aromatische und/oder heteroaromatische Diaminocarbonsäuren zur Herstellung von Polyazolen eingesetzt werden.
Zu den aromatischen und heteroaromatischen Tetra-Amino-Verbindungen gehören unter anderem 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin, 1 ,2,4,5-Tetraaminobenzol,
3,3',4,4'-Tetraaminodiphenylsulfon, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-
Tetraaminobenzophenon, 3,3',4,4'-Tetraaminodiphenylmethan und 3,3',4,4'-
Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate. Hiervon sind 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin und 1 ,2,4,5-
Tetraaminobenzol besonders bevorzugt.
Des weiteren kann die Mischung A) aromatische und/oder heteroaromatische Carbonsäuren umfassen. Hierbei handelt es sich um Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Estern oder deren Anhydride oder deren Säurehalogenide, insbesondere deren Säurehalogenide und/oder Säurebromide. Vorzugsweise handelt es sich bei den aromatischen Dicarbonsäuren um Isophthalsäure, Terephthalsäure, Phthalsäure, 5- Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5- Aminoisophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N- Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure,
4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4- Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure,1 ,4- Naphthalindicarbonsäure, 1 ,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7- Naphthalindicarbonsäure, Diphensäure, 1,8-dihydroxynaphthalin-3,6-dicarbonsäure,
Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'- dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis(4- carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4-Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride. Bei den aromatischen Tricarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl- Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 1 ,3,5-Benzol-tricarbonsäure (Trimesic acid), 1 ,2,4-Benzol-tricarbonsäure (Trimellitic acid), (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure, 3,5,4'- Biphenyltricarbonsäure.
Bei den aromatischen Tetracarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl- Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 3,5,3',5'-biphenyltetracarbonsäure, 1 ,2,4,5-Benzoltetracarbonsäure, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-
Biphenyltetracarbonsäure, 1 ,2,5,6-Naphthalintetracarbonsäure, 1 ,4,5,8- Naphthalintetracarbonsäure.
Bei den heteroaromatischen Carbonsäuren handelt es sich um heteroaromatischen Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Estern oder deren
Anhydride. Als heteroaromatische Carbonsäuren werden aromatische Systeme verstanden welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten. Vorzugsweise handelt es sich um Pyridin-2,5-dicarbonsäure, Pyridin-3,5- dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5- pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure, 2,5-
Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure. Sowie deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
Der Gehalt an Tricarbonsäure bzw. Tetracarbonsäuren (bezogen auf eingesetzte
Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol %, insbesondere 0,5 und 10 Mol-%.
Des weiteren kann die Mischung A) auch aromatische und heteroaromatische Diaminocarbonsäuren enthalten. Zu diesen gehört unter anderem Diaminobenzoesäure,
4-Phenoxycarbonyl-3,'4'-diaminodiphenylether und deren Mono- und Dihydrochloridderivate.
Bevorzugt werden in Schritt A) Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren einzusetzen. Besonders bevorzugt werden Mischungen eingesetzt, die neben aromatischen Carbonsäuren auch heteroaromatische Carbonsäuren enthalten. Das
Mischungsverhältnis von aromatischen Carbonsäuren zu heteroaromatischen Carbonsäuren beträgt zwischen 1 :99 und 99:1 , vorzugsweise 1 :50 bis 50:1.
Bei diesen Mischungen handelt es sich insbesondere um Mischungen von N- heteroaromatischen Dicarbonsäuren und aromatischen Dicarbonsäuren. Nicht limitierende
Beispiele für Dicarbonsäuren sind Isophthalsäure, Terephthalsäure, Phthalsäure, 2,5- Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3- Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4-Dihydroxyphthalsäure,1 ,4- Naphthalindicarbonsäure, 1 ,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7- Naphthalindicarbonsäure, Diphensäure, 1 ,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'- dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5- dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4- dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 - Pyrimidindicarbonsäure,2,5-Pyrazindicarbonsäure.
Soll ein möglichst hohes Molekulargewicht erzielt werden, so liegt das Molverhältnis von
Carbonsäuregruppen zu Aminogruppen bei der Umsetzung von Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, vorzugsweise in der Nähe von 1 :2.
Die in Schritt A) hergestellte Mischung umfasst vorzugsweise mindestens 0,5 Gew.-%, insbesondere 1 bis 30 Gew.-% und besonders bevorzugt 2 bis 15 Gew.-% Monomere zur Herstellung von Polyazolen.
Werden die Polyazole unmittelbar in der Polyphosphorsäure aus den Monomeren hergestellt, zeichnen sich die Polyazole durch ein hohes Molekulargewicht aus. Dies gilt insbesondere für die Polybenzimidazole. Gemessen als Intrinsische Viskosität liegt diese im Bereich von 0,3 bis 10 dl/g, vorzugsweise 1 bis 5 dl/g.
Insofern die Mischung gemäß Schritt A) auch Tricarbonsäuren bzw. Tetracarbonsäre enthält wird hierdurch eine Verzweigung/ Vernetzung des gebildeten Polymeren erzielt. Diese trägt zur Verbesserung der mechanischen Eigenschaft bei.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung umfasst die in Schritt A) hergestellte Mischung Verbindungen, die unter Einwirkung von Wärme gemäß Schritt B) zur
Bildung von Polyazolen geeignet sind, wobei diese Verbindungen durch Umsetzung von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino- Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure- Monomer enthalten, oder von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren in der Schmelze bei Temperaturen von bis zu 400°C, insbesondere bis zu 350°C, bevorzugt bis zu 280°C erhältlich sind. Die zur Herstellung dieser Präpolymere einzusetzenden Verbindungen wurden zuvor dargelegt.
Bei der in Schritt A) verwendeten Polyphosphorsäure handelt es sich um handelsübliche
Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2Pnθ3n+. (n>1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden.
Erfindungsgemäß wird der in Schritt A) und/oder Schritt B) erzeugten Zusammensetzung mindestens ein weiteres Polymer zugesetzt, das kein Polyazol darstellt (Polymer (B). Diese
Polymer kann unter anderem gelöst, dispergiert oder suspendiert vorliegen.
Hierbei liegt das Gewichtsverhältnis von Polyazol zu Polymer (B) im Bereich von 0,1 bis 50, vorzugsweise von 0,2 bis 20, besonders bevorzugt von 1 bis 10. Falls das Polyazol erst in Schritt B) gebildet wird, kann das Gewichtsverhältnis rechnerisch aus dem Gewicht der
Monomeren zur Bildung des Polyazols erhalten werden, wobei die bei der Kondensation freigesetzten Verbindungen, beispielsweise Wasser zu berücksichtigen sind.
Zu den bevorzugten Polymeren gehören unter anderem Polyolefine, wie Poly(cloropren), Polyacetylen, Polyphenylen, Poly(p-xylylen), Polyarylmethylen, Polyarmethylen, Polystyrol,
Polymethylstyrol, Polyvinylalkohol, Polyvinylacetat, Polyvinylether, Polyvinylamin, Poly(N- vinylacetamid), Polyvinylimidazol, Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid, Polyvinylidenchlorid, Polytetrafluorethylen, Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, mit Perfluorpropylvinylether, mit Trifluoronitrosomethan, mit Sulfonylfluoridvinylether, mit Carbalkoxy-perfluoralkoxyvinylether,
Polychlortrifluorethylen, Polyvinylfluorid, Polyvinylidenfluorid, Polyacrolein, Polyacrylamid, Polyakrylnitril, Polycyanacrylate, Polymethacrylimid, Cycloolefinische Copolymere, insbesondere aus Norbomen; Polymere mit C-O-Bindungen in der Hauptkette, beispielsweise Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin,
Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyester, insbesondere Polyhydroxyessigsäure, Polyethylenterephthalat, Polybutylenterephthalat, Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypivalolacton, Polycaprolacton, Polymalonsäure, Polycarbonat; Polymere C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether,
Polyphenylensulfid, Polyethersulfon; Polymere C-N-Bindungen in der Hauptkette, beispielsweise Polyimine, Polyisocyanide.Polyetherimin, Polyanilin, Polyamide, Polyhydrazide, Polyurethane, Polyimide, Polyazole, Polyazine; Flüssigkristalline Polymere, insbesondere Vectra sowie
Anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane, Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.
Des weiteren umfassen die Polymere (B) auch Polymere mit kovalent gebundenen Säuregruppen. Diese Säuregruppen umfassen insbesondere Sulfonsäuregruppen. Die mit
Sulfonsäuregruppen modifizierten Polymere besitzen vorzugsweise einen Gehalt an Sulfonsäuregruppen im Bereich von 0,5 bis 3 meq/g. Dieser Wert wird über die sog. lonenaustauschkapazität (1EC) bestimmt.
Zur Messung der IEC werden die Sulfonsäuregruppen in die freie Säure überführt. Hierzu wird das Polymere auf bekannte Weise mit Säure behandelt, wobei überschüssige Säure durch Waschen entfernt wird. So wird das sulfonierte Polymer zunächst 2 Stunden in siedendem Wasser behandelt. Anschließend wird überschüssiges Wasser abgetupt und die
Probe während 15 Stunden bei 160°C im Vakkumtrockenschrank bei p<1 mbar getrocknet.
Dann wird das Trockengewicht der Membran bestimmt. Das so getrocknete Polymer wird dann in DMSO bei 80°C während 1h gelöst. Die Lösung wird anschließend mit 0,1 M NaOH titriert. Aus dem Verbrauch der Säure bis zum Equivalentpunkt und dem Trockengewicht wird dann die lonenaustauschkapazität (IEC) berechnet.
Derartige Polymere sind in der Fachwelt bekannt. So können Sulfonsäuregruppen enthaltende Polymere beispielsweise durch Sulfonierung von Polymeren hergestellt werden.
Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science1988, Vol. 38, No 5, 783-792 beschrieben. Hierbei können die Sulfonierungsbedingungen so gewählt werden, dass ein niedriger Sulfonierungsgrad entsteht (DE-A-19959289).
So wurde eine weitere Klasse nichtfluorierter Polymere durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind sulfonierte Polyetherketone (DE- A-4219077, WO96/01177), sulfonierte Polysulfone (J. Membr. Sei. 83 (1993) p.211) oder sulfoniertes Polyphenylensulfid (DE-A-19527435) bekannt.
US-A-6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Verwendung für Brennstoffzellen.
Des weiteren können derartige Polymere auch durch Polyreaktionen von Monomeren erhalten werden, die Säuregruppen umfassen. So können perfluorinierte Polymere wie in
US-A-5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden.
Zu diesen Perfluorosulfonsäurepolymeren gehört unter anderem Nafion® (US-A-3692569). Dieses Polymer kann wie in US-A-4453991 beschrieben in Lösung gebracht und dann als lonomer eingesetzt werden.
Zu den bevorzugten Polymeren mit Säuregruppen gehören unter anderem sulfonierte Polyetherketone, sulfonierte Polysulfone, sulfonierte Polyphenylensulfide, perfluorinierte sulfonsäuregruppenhaltige Polymere, wie in US-A-3692569, US-A-5422411 und US-A-
6110616 beschrieben. Zur Anwendung in Brennstoffzellen mit einer Dauergebrauchstemperatur oberhalb 100°C werden solche Polymere (B) bevorzugt, die eine Glasübergangstemperatur oder Vicat- Erweichungstemperatur VST/A/50 von mindestens 100°C, bevorzugt mindestens 150°C und ganz besonders bevorzugt mindestens 180°C haben. Hierbei sind Polysulfone mit einer Vicat-Erweichungstemperatur VST/A/50 von 180°C bis
230° C bevorzugt.
Darüber hinaus sind Polymere (B) bevorzugt, die eine geringe Löslichkeit und/oder Abbaubarkeit in Phosphorsäure aufweisen. Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung ist nimmt das Gewicht durch eine Behandlung mit 85%iger
Phosphorsäure nur unwesentlich ab. Vorzugsweise ist das Gewichtsverhältnis der Platte nach der Phosphorsäure-Behandlung zum Gewicht der Platte vor der Behandlung größer oder gleich 0,8, insbesondere größer oder gleich 0,9 und besonders bevorzugt größer oder gleich 0,95. Dieser Wert wird an einer Platte aus Polymer (B) gemessen, die 2 mm dick, 5 cm lang und 2 cm breit ist. Diese Platte wird in Phosphorsäure gegeben, wobei das
Gewichtsverhältnis von Phosphorsäure zu Platte 10 beträgt. Anschließend wird die Phosphorsäure unter Rühren 24 Stunden auf 100°C erhitzt. Anschließend wird die Platte durch Waschen mit Wasser von überschüssiger Phosphorsäure befreit und getrocknet. Hiernach wird die Platte erneut gewogen.
Zu den bevorzugten Polymeren gehören Polysulfone, insbesondere Polysulfon mit Aromaten in der Hauptkette. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weisen bevorzugte Polysulfone und Polyethersulfone eine Schmelzvolumenrate MVR 300/21 ,6 kleiner oder gleich 40 cm3/ 10 min, insbesondere kleiner oder gleich 30 cm3/ 10 min und besonders bevorzugt kleiner oder gleich 20 cm3/ 10 min gemessen nach ISO 1133 auf.
Die in Schritt A) erhaltene Mischung wird gemäß Schritt B) auf eine Temperatur von bis zu 400°C, insbesondere 350°C, vorzugsweise bis zu 280°C, insbesondere 100°C bis 250°C und besonders bevorzugt im Bereich von 200°C bis 250°C erhitzt. Hierbei wird ein Inertgas, beispielsweise Stickstoff oder ein Edelgas, wie Neon, Argon, eingesetzt.
Es hat sich weiterhin gezeigt, dass bei Verwendung von aromatischen Dicarbonsäuren (oder heteroaromatischen Dicarbonsäure) wie Isophthalsäure, Terephthalsäure, 2,5- Dihydroxyterephthalsäure, 4,6-Dihydroxyisophthalsäure, 2,6-Dihydroxyisophthalsäure, Diphensäure, 1,8-Dihydroxynaphthalin-3,6-Dicarbonsäure, Diphenylether-4,4'-
Dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl- 2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure,2,5- Pyrazindicarbonsäure, die Temperatur in Schritt B) im Bereich von bis zu 300°C, vorzugsweise zwischen 100°C und 250°C, günstig ist. In einer Variante des Verfahrens kann die Erwärmung gemäß Schritt B) nach der Bildung eines flächigen Gebildes gemäß Schritt C) erfolgen.
Die in Schritt A) und/oder Schritt B) hergestellte Mischung kann zusätzlich noch organische Lösungsmittel enthalten. Diese können die Verarbeitbarkeit positiv beeinflussen. So kann beispielsweise die Rheologie der Lösung verbessert werden, so dass diese leichter extrudiert oder geräkelt werden kann.
Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Membran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden. Die Zugabe kann beispielsweise bei Schritt A), Schritt B) und/oder Schritt C) erfolgen. Des weiteren können diese Additive, falls diese in flüssiger Form vorliegen, auch nach der Polymerisation gemäß Schritt D) beigefügt werden.
Nicht limitierende Beispiele für Protonenleitende Füllstoffe sind
Sulfate wie: CsHSO4, Fe(SO4)2, (NH4)3H(SO4)2, LiHSO4, NaHSO4, KHSO4, RbSO4,
LiN2H5SO4, NH4HSO4, Phosphate wie Zr3(PO4)4, Zr(HPO4)2, HZr2(PO4)3, UO2PO4.3H2O, H8UO2PO4, Ce(HPO4)2, Ti(HPO4)2, KH2PO4, NaH2PO4, LiH2PO4, NH4H2PO4, CsH2PO4, CaHPO4, MgHPO4, HSbP2O8, HSb3P2Oι , HgSbsPaOao,
Polysäure wie H3PW12O40.nH2O (n=21-29), H3SiW12O4o.nH2O (n=21-29), HxWO3,
HSbWOe, H3PMo12O40, HzSb^n, HTaWO6, HNbO3, HTiNbO5, HTiTaO5, HSbTeO6, H5Ti4O9, HSbO3, H2MoO4 Selenite und Arsenide wie (NH4)3H(SeO4)2, UO2AsO4, (NH4)3H(SeO4)2, KH2AsO4, Cs3H(SeO4)2, Rb3H(SeO4)2)
Phosphide wie ZrP, TiP, HfP
Oxide wie AI2O3, Sb2O5, ThO2, SnO2, ZrO2, MoO3
Silikate wie Zeolithe, Zeolithe(NH4+), Schichtsilikate, Gerüstsilikate, H-Natrolite, H-
Mordenite, NH4-Analcine, NH4-Sodalite, NH -Gallate, H-Montmorillonite Säuren wie HClO4, SbF5
Füllstoffe wie Carbide, insbesondere SiC, Si3N4, Fasern, insbesondere Glasfasern,
Glaspulvern und/oder Polymerfasern, bevorzugt auf Basis von Polyazolen.
Diese Additive können in der protonenleitenden Polymermembran in üblichen Mengen enthalten sein, wobei jedoch die positiven Eigenschaften, wie hohe Leitfähigkeit, hohe
Lebensdauer und hohe mechanische Stabilität der Membran durch Zugabe von zu großen Mengen an Additiven nicht allzu stark beeinträchtigt werden sollten. Im allgemeinen umfaßt die Membran nach der Behandlung gemäß Schritt D) höchstens 80 Gew.-%, vorzugsweise höchstens 50 Gew.-% und besonders bevorzugt höchstens 20 Gew.-% Additive.
Als weiteres kann diese Membran auch perfluorierte Sulfonsäure-Additive (vorzugsweise 0,1-20 Gew.-%, bevorzugt 0,2-15 Gew.-%, ganz bevorzugt 0,2- 10 Gew.-%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der
Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Adsorbtion von
Phosphorsäure und Phosphat zu Platin. (Electrolyte additives for phosphoric acid fuel cells.
Gang, Xiao; Hjuler, H. A.; Olsen, O; Berg, R. W.; Bjerrum, N. J.. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc. (1993), 140(4), 896-902 und
Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.;
Yeager, E.; DesMarteau, Darryl D.; Singh, S. Case Cent. Electrochem. Sei., Case West.
Reserve Univ., Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136(2), 385-90.)
Nicht limitierende Beispiele für persulfonierte Additive sind: Trifluomethansulfonsäure, Kaliumtrifluormethansulfonat, Natriumtrifluormethansulfonat,
Lithiumtrifluormethansulfonat, Ammoniumtrifluormethansulfonat,
Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat,
Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat,
Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat,
Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat, Perflurosulfoimide und Nafion.
Die Bildung des flächigen Gebildes gemäß Schritt C) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln, Extrusion) die aus dem Stand der Technik zur
Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zu diesen Trägern gehören insbesondere Folien aus Polyethylenterephthalat (PET), Polytetrafluorethylen (PTFE), Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, Polyimiden, Polyphenylensulfiden (PPS) und Polypropylen (PP).
Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit einem leicht verdampfbaren organischen Lösungsmittel versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.
Die Dicke des flächigen Gebildes gemäß Schritt C) beträgt vorzugsweise zwischen 10 und 4000 μm, vorzugsweise zwischen 15 und 3500 μm, insbesondere zwischen 20 und 3000 μm, besonders bevorzugt zwischen 30 und 1500μm und ganz besonders bevorzugt zwischen 50 und 1200 μm.
Die Behandlung der Membran in Schritt D) erfolgt insbesondere bei Temperaturen im Bereich von 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf. Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, daß die
Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.
Die partielle Hydrolyse der Polyphosphorsäure in Schritt D) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schichtdicke und Ausbildung einer Membran. Die verfestigte Membran hat im allgemeinen eine Dicke zwischen 15 und 3000 μm, vorzugsweise 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm, wobei die Membran selbsttragend ist.
Die obere Temperaturgrenze der Behandlung gemäß Schritt D) beträgt in der Regel 150°C.
Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 150°C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.
Die partielle Hydrolyse (Schritt D) kann auch in Klimakammern erfolgen bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase wie Luft, Stickstoff, Kohlendioxid oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametern.
Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.
In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen
Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10 Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden.
Wird die partielle Hydrolyse bei Raumtemperatur (20°C) mit Umgebungsluft einer relativen
Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.
Die gemäß Schritt D) erhaltene Membran kann selbsttragend ausgebildet werden, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
Über den Grad der Hydrolyse, d.h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der erfindungsgemäßen Polymermembran einstellbar. Erfindungsgemäß wird die Konzentration der Phosphorsäure als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Im Rahmen der vorliegenden Erfindung ist eine Konzentration (Mol Phosporsäure bezogen auf eine Wiederholeinheit der Formel (III), d.h. Polybenzimidazol) zwischen 10 und 80, insbesondere zwischen 12 und 60, bevorzugt. Derartig hohe Dotierungsgrade (Konzentrationen) sind durch Dotieren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich.
Im Anschluss an die Behandlung gemäß Schritt D) kann die Membran durch Einwirken von Hitze in Gegenwart von Sauerstoff noch vernetzt werden. Diese Härtung der Membran verbessert die Eigenschaften der Membran zusätzlich. Hierzu kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200°C und besonders bevorzugt mindestens 250°C erwärmt werden. Die Sauerstoffkonzentration liegt bei diesem
Verfahrensschritt üblich im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit ß-Strahlen. Die Strahlungsdosis beträgt hierbei zwischen 5 und 200 kGy.
Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 120°C mindestens 0,1 S/cm, vorzugsweise mindestens 0,11 S/cm, insbesondere mindestens 0,12 S/cm.
Falls die erfindungsgemäßen Membranen Polymere mit Sulfonsäuregruppen umfassen, zeigen die Membranen auch bei einer Temperatur von 70°C eine hohe Leitfähigkeit. Die Leitfähigkeit ist unter anderem abhängig vom Sulfonsäuregruppengehalt der Membran. Je höher dieser Anteil, desto besser die Leitfähigkeit bei tiefen Temperaturen. Hierbei kann eine erfindungsgemäße Membran bei geringen Temperaturen befeuchtet werden. Hierzu kann beispielsweise die als Energiequelle eingesetzte Verbindung, beispielsweise Wasserstoff, mit einem Anteil an Wasser versehen werden. In vielen Fällen genügt jedoch auch das durch die Reaktion gebildete Wasser, um eine Befeuchtung zu erzielen.
Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol-Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines ohm'schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer
Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weisen die Membranen eine hohe mechanische Stabilität auf. Diese Größe ergibt sich aus der Härte der
Membran, die mittels Mikrohärtemessung gemäss DIN 50539 bestimmt wird. Dazu wird die Membran mit einem Vickersdiamant innerhalb von 20 s sukzessive bis zu einer Kraft von 3 mN belastet und die Eindringtiefe bestimmt. Demnach beträgt die Härte bei Raumtemperatur mindestens 5 mN/mm2, bevorzugt mindestens 50 mN/mm2 und ganz besonders bevorzugt mindestens 200 mN/mm2, ohne dass hierdurch eine Beschränkung erfolgen soll. In der Folge wird die Kraft während 5 s konstant bei 3 mN gehalten und das Kriechen aus der Eindringtiefe berechnet. Bei bevorzugten Membranen beträgt das Kriechen CHu 0,003/20/5 unter diesen Bedingungen weniger als 30%, bevorzugt weniger als 15% und ganz besonders bevorzugt weniger als 5%. Der mittels Mikrohärtemessung bestimmte Modul beträgt YHU mindestens 0,1 MPa, insbesondere mindestens 2 MPa und ganz besonders bevorzugt mindestens 5 MPa, ohne dass hierdurch eine Beschränkung erfolgen soll.
Zu möglichen Einsatzgebieten der erfindungsgemäßen Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen.
Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US- A-4,191 ,618, US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [US-A-4,191 ,618, US-A-4,212,714 und US-A-4,333,805] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran- Elektroden-Einheiten, sowie der zu wählenden Elektroden , Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
In einer Variante der vorliegenden Erfindung kann die Membranbildung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt D) kann hierdurch entsprechend verkürzt werden, da die Membran nicht mehr selbsttragend sein muß. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung. Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode mit einer protonenleitenden Polymerbeschichtung enthaltend Polyazolblends erhältlich durch ein Verfahren umfassend die Schritte
A) Herstellung einer Mischung umfassend Polyphosphorsäure, mindestens ein Polyazol (Polymer A) und/oder mindestens ein oder mehrere Verbindungen, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von Polyazolen geeignet sind,
B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C,
C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einer Elektrode,
D) Behandlung der in Schritt C) gebildeten Membran, wobei der gemäß Schritt A) und/oder Schritt B) erhältlichen Zusammensetzung mindestens ein weiteres Polymer (Polymer B), das kein Polyazol darstellt, zugefügt wird, wobei das Gewichtsverhältnis von Polyazol zu Polymer B im Bereich von 0,05 bis 10 liegt.
Der Vollständigkeit halber sei festgehalten, dass sämtliche bevorzugten Ausführungsformen einer selbsttragenden Membran entsprechend auch für eine unmittelbar auf die Elektrode aufgebrachte Membran gelten.
Gemäß einem besonderen Aspekt der vorliegenden Erfindung hat die Beschichtung eine Dicke zwischen 2 und 3000 μm, vorzugsweise zwischen 2 und 2000 μm, insbesondere zwischen 3 und 1500 μm, besonders bevorzugt 5 bis 500 μm und ganz besonders bevorzugt zwischen 10 bis 200μm, ohne dass hierdurch eine Beschränkung erfolgen soll.
Die Behandlung gemäß Schritt D) führt zu einer Härtung der Beschichtung. Hierbei erfolgt die Behandlung solange, bis die Beschichtung eine genügende Härte aufweist, um zu einer Membran-Elektroden-Einheit verpresst werden zu können. Eine genügende Härte ist gegeben, wenn eine entsprechend behandelte Membran selbsttragend ist. In vielen Fällen genügt jedoch eine geringere Härte. Die gemäß DIN 50539 (Mikrohärtemessung) bestimmte Härte beträgt im allgemeinen mindestens 1 mN/mm2, bevorzugt mindestens 5 mN/mm2 und ganz besonders bevorzugt mindestens 50 mN/mm2, ohne dass hierdurch eine Beschränkung erfolgen soll.
Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.
In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive
Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden. Hierzu wird gemäß den Schritten A) bis D) eine Membran gebildet und der Katalysator aufgebracht. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
Darüber hinaus kann die Bildung der Membran gemäß den Schritten A) bis D) auch auf einem Träger oder einer Trägerfolie erfolgen, die bereits den Katalysator aufweist. Nach
Entfernen des Trägers bzw. der Trägerfolie befindet sich der Katalysator auf der erfindungsgemäßen Membran. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
Ebenfalls Gegenstand der vorliegenden Erfindung ist eine Membran-Elektroden-Einheit, die mindestens eine beschichtete Elektrode und/oder mindestens eine erfindungsgemäße Polymermembran in Kombination mit einer weiteren Polymermembran auf Basis von Polyazolen oder einer Polymerblendmembran enthaltend mindestens ein Polymer auf Basis von Polyazolen aufweist.
Beispiel
Herstellung p-PBI-Lösung
Terephthalsäure (12.4598 g, 0.075mol) and 3,3'-4,4'-Tetraaminobiphenyl (16.074g, 0.075mol,) wurden in einem Dreihalskolben unter N2 in 650 g Polyphosphorsäure (PPA) vorgelegt. Die Reaktionsmischung wurde unter Rühren bei 220 °C 24h lang polymerisiert.
Ein Teil der Lösung wurde in H2O ausgefallen, mit Ammonuimhydroxid und Wasser gewaschen. Anschließend wurde das Polymer unter Vakuum bei 100°C 24 h lang getrocknet. Die inhärente Viskosität von p-PBI beträgt 2,9 g/dL bei
Polymerlösungskonzentration von 0.2 g/dL in konz. Schwefelsäure.
s-PEK
Polyetherketon (PEK) (Mw: 144100, Mn: 55000) wurde in Schwefelsäure gelöst und durch Zugabe von Oleum bei 50°C sulfoniert. Die Reaktionsmischung wurde in Wasser ausgefallen, neutralisiert, filtriert und bei 100°C in Vakuum 24h lang getrocknet. Sulfonierungsgrad des s-PEK beträgt 57.3%.
Blenden und Membranherstellung p-PBI/PPA wurde unter N2 Atmosphäre auf 150°C erwärmt. 94.22 g p-PBI/PPA Lösung wurde in einem Dreihalskolben vorgelegt und 16.0 g s-PEK und 95 g PPA zur p-PBI/PPA Lösung gegeben. Die Blendlösung wurde 20 h lang bei 150°C unter N2-Atmosphäre gerührt. Die Lösung wurde anschließend bei erhöhter Temperatur auf einer Glasplatte geräkelt und hydrolysiert.
Die Leitfähigkeit der so hergestellten Membran wurde bei verschiedenen Temperaturen bestimmt, wobei die erhaltenen Daten in Abbildung 1 dargelegt sind.

Claims

Patentansprüche
1. Protonenleitende Polymermembran enthaltend Polyazolblends erhältlich durch ein
Verfahren umfassend die Schritte A) Herstellung einer Mischung umfassend
Polyphosphorsäure, mindestens ein Polyazol (Polymer A) und/oder mindestens ein oder mehrere
Verbindungen, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von
Polyazolen geeignet sind, B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C,
C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einem Träger,
D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist, wobei der gemäß Schritt A) und/oder Schritt B) erhältlichen Zusammensetzung mindestens ein weiteres Polymer (Polymer B), das kein Polyazol darstellt, zugefügt wird, wobei das Gewichtsverhältnis von Polyazol zu Polymer B im Bereich von 0,1 bis 50 liegt.
2. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung Verbindungen umfasst, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von Polyazolen geeignet sind, wobei diese Verbindungen ein oder mehreren aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen und eine oder mehrere aromatische und/oder heteroaromatische Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer umfassen, und/oder eine oder mehrere aromatischen und/oder heteroaromatischen Diaminocarbonsäuren umfassen.
3. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung Verbindungen umfasst, die unter Einwirkung von Wärme gemäß
Schritt B) zur Bildung von Polyazolen geeignet sind, wobei diese Verbindungen durch Umsetzung von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren in der Schmelze bei Temperaturen von bis zu 400°C erhältlich sind.
4. Membran gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass die zur Bildung von Polyazolen geeigneten Verbindungen als aromatische und/oder heteroaromatische
Tetra-Aminoverbindung Verbindungen umfassen, die ausgewählt sind aus der Gruppe bestehend aus 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin und/oder 1 ,2,4,5-Tetraaminobenzol.
5. Membran gemäß Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass die zur Bildung von Polyazolen geeigneten Verbindungen als aromatische und/oder heteroaromatische
Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, Verbindungen umfassen die ausgewählt sind aus der Gruppe bestehend aus Isophthalsäure, Terephthalsäure, Phthalsäure, 5- Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5- Aminoisophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N-
Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,5- Dihydroxyisophthalsäure, 2,3-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4- Dihydroxyphthalsäure. 3,4-Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5- Fluoroisophthalsäure, 2-Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure, 1 ,4-Naphthalindicarbonsäure,
1 ,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7- Naphthalindicarbonsäure, Diphensäure, 1 ,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon- 4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2- Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4-
Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
6. Membran gemäß Anspruch 2, 3, 4 oder 5, dadurch gekennzeichnet, dass die zur Bildung von Polyazolen geeigneten Verbindungen aromatische Tricarbonsäuren, deren
C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurehalogenide oder Tetracarbonsäuren, deren C1-C20-Alkyl-Ester oder C5-C12- Aryl-Ester oder deren Säureanhydride oder deren Säurehalogenide umfassen.
7. Membran gemäß Anspruch 6, dadurch gekennzeichnet, dass die aromatische
Tricarbonsäuren Verbindungen umfassen, die ausgewählt sind aus der Gruppe bestehend aus 1 ,3,5-Benzoltricarbonsäure (trimesic acid); 2,4,5-Benzoltricarbonsäure (trimellitic acid); (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure; 3,5,4'-Biphenyltricarbonsäure 2,4,6-Pyridintricarbonsäure, Benzol-1 ,2,4,5- tetracarbonsäuren; Naphthalin-1 ,4,5,8-tetracarbonsäuren, 3,5,3',5'-Biphenyl- tetracarbonsäuren, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1 ,2,5,6-Naphthalintetracarbonsäure und/oder 1 ,4,5,8-Naphthalintetracarbonsäure.
8. Membran gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Gehalt an
Tricarbonsäure und/oder Tetracarbonsäuren zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol-%, insbesondere 0,5 und 10 Mol-%, bezogen auf eingesetzte Dicarbonsäure, beträgt.
9. Membran gemäß einem oder mehreren der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass die zur Bildung von Polyazolen geeigneten Verbindungen heteroaromatische Dicarbonsäuren, Tricarbonsäuren und/oder Tetracarbonsäuren umfassen, welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten.
10. Membran gemäß Anspruch 9, dadurch gekennzeichnet, dass Pyridin-2,5- dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4- dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 - Pyrimidindicarbonsäure,2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure, sowie deren C1-C20-Alkyl-Ester oder C5-C12-Aryl- Ester, oder deren Säureanhydride oder deren Säurechloride eingesetzt werden.
11. Membran gemäß Anspruch 2 oder 3, dadurch gekennzeichnet, dass die zur Bildung von Polyazolen geeigneten Verbindungen Diaminobenzoesäure und/oder deren Mono- und Dihydrochloridderivate umfassen.
12. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) in Schritt A) in einer Menge im Bereich von 10 bis 50 Gew.-%, bezogen auf das Gewicht der Mischung A) und/oder B), eingesetzt wird.
13. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) mindestens ein Polyolefin umfasst.
14. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) mindestens ein Polymer C-O-Bindungen umfasst.
15. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) mindestens ein Polymer mit C-S-Bindungen umfasst.
16. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) mindestens ein Polymer mit C-N-Bindungen umfasst.
17. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass das Polymer B) mindestens ein anorganisches Polymer umfasst.
18. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass das Polymer B) mindestens ein sulfoniert.es Polymer umfasst.
19. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erwärmung gemäß Schritt B) nach der Bildung eines flächigen Gebildes gemäß Schritt C) erfolgt
20. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die Behandlung gemäß
Schritt D) bei Temperaturen im Bereich von 0°C und 150°C in Gegenwart von Feuchtigkeit erfolgt.
21. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Behandlung der Membran in Schritt D) zwischen 10 Sekunden und 300 Stunden beträgt.
22. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die nach Schritt D) gebildete Membran durch Einwirkung von Sauerstoff vernetzt wird.
23. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass in Schritt C) eine Schicht mit einer Dicke von 20 und 4000 μm erzeugt wird.
24. Membran gemäß Anspruch 1 , dadurch gekennzeichnet, dass die nach Schritt D) gebildete Membran eine Dicke zwischen 15 und 3000 μm hat.
25. Elektrode mit einer protonenleitenden Polymerbeschichtung enthaltend Polyazolblends erhältlich durch ein Verfahren umfassend die Schritte
A) Herstellung einer Mischung umfassend Polyphosphorsäure, mindestens ein Polyazol (Polymer A) und/oder mindestens ein oder mehrere
Verbindungen, die unter Einwirkung von Wärme gemäß Schritt B) zur Bildung von Polyazolen geeignet sind,
B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder
B) auf einer Elektrode, D) Behandlung der in Schritt C) gebildeten Membran, wobei der gemäß Schritt A) und/oder Schritt B) erhältlichen Zusammensetzung mindestens ein weiteres Polymer (Polymer B), das kein Polyazol darstellt, zugefügt wird, wobei das Gewichtsverhältnis von Polyazol zu Polymer B im Bereich von 0,1 bis
50 liegt.
26. Elektrode gemäß Anspruch 24, wobei die Beschichtung eine Dicke zwischen 2 und 3000 μm hat.
27. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 24.
28. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 25 oder 26 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 24.
29. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 27 oder 28.
PCT/EP2003/010905 2002-10-04 2003-10-02 Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen WO2004034500A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002500792A CA2500792A1 (en) 2002-10-04 2003-10-02 Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
US10/530,226 US7736779B2 (en) 2002-10-04 2003-10-02 Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
JP2004542402A JP2006502266A (ja) 2002-10-04 2003-10-02 ポリアゾールブレンドを含むプロトン伝導性高分子膜および燃料電池におけるその使用
EP03775168.2A EP1559164B1 (de) 2002-10-04 2003-10-02 Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen
US12/776,489 US8142917B2 (en) 2002-10-04 2010-05-10 Proton-conducting polymer membrane comprising polyazole blends and its use in fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10246461A DE10246461A1 (de) 2002-10-04 2002-10-04 Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
DE10246461.8 2002-10-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10530226 A-371-Of-International 2003-10-02
US12/776,489 Division US8142917B2 (en) 2002-10-04 2010-05-10 Proton-conducting polymer membrane comprising polyazole blends and its use in fuel cells

Publications (2)

Publication Number Publication Date
WO2004034500A2 true WO2004034500A2 (de) 2004-04-22
WO2004034500A3 WO2004034500A3 (de) 2005-05-12

Family

ID=32010261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010905 WO2004034500A2 (de) 2002-10-04 2003-10-02 Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen

Country Status (8)

Country Link
US (2) US7736779B2 (de)
EP (1) EP1559164B1 (de)
JP (2) JP2006502266A (de)
KR (1) KR100997003B1 (de)
CN (1) CN100380722C (de)
CA (1) CA2500792A1 (de)
DE (1) DE10246461A1 (de)
WO (1) WO2004034500A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650824A1 (de) * 2004-10-25 2006-04-26 SFC Smart Fuel Cell AG Brennstoffzellenkombination mit geschlossenem Wasserhaushalt
WO2008032228A2 (en) * 2006-09-11 2008-03-20 Advent Technologies High temperature polymer electrolyte membranes comprising blends of aromatic polyethers with pyridine units and membrane electrode assemblies based on them
WO2008090412A3 (en) * 2006-09-11 2009-07-23 Advent Technologies Proton conducting aromatic polyether polymers with pyridinyl side chains for fuel cells
US7736779B2 (en) * 2002-10-04 2010-06-15 Basf Fuel Cell Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
US7786244B2 (en) 2006-09-11 2010-08-31 Advent Technologies Development and characterization of novel proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups
US8202664B2 (en) 2004-07-21 2012-06-19 Sanyo Electric Co., Ltd. Membrane electrode assembly, fuel cell stack and fuel cell system
US8206873B2 (en) 2004-07-21 2012-06-26 Sanyo Electric Co., Ltd. Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell system
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10228657A1 (de) * 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10242708A1 (de) * 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246372A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen
KR100570745B1 (ko) 2003-10-30 2006-04-12 삼성에스디아이 주식회사 폴리(2,5-벤즈이미다졸)의 제조방법
DE10361832A1 (de) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE102004035309A1 (de) * 2004-07-21 2006-02-16 Pemeas Gmbh Membran-Elektrodeneinheiten und Brennstoffzellen mit erhöhter Lebensdauer
EP1624511A1 (de) 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektroden-Einheiten und Brennstoffzellen mit erhöhter Lebensdauer
EP1624512A2 (de) 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektrodeneinheiten mit langer Lebensdauer
EP2218748B1 (de) * 2005-09-03 2012-10-10 Samsung SDI Co., Ltd. Polybenzoxazin Verbindung, Elektrolyt-Membran enthaltend dieser Verbindung und Elektrolyt-Membran benutzende Brenndstofzell
DE102006010705A1 (de) * 2006-03-08 2007-09-13 Sartorius Ag Hybridmembranen, Verfahren zur Herstellung der Hybridmembranen und Brennstoffzellen unter Verwendung derartiger Hybridmembranen
KR100818255B1 (ko) 2006-05-29 2008-04-02 삼성에스디아이 주식회사 폴리벤조옥사진계 화합물, 이를 포함한 전해질막 및 이를채용한 연료전지
KR101386162B1 (ko) * 2006-07-21 2014-04-18 삼성에스디아이 주식회사 연료전지용 전극 및 이를 채용한 연료전지
DE102006036019A1 (de) * 2006-08-02 2008-02-07 Pemeas Gmbh Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung
KR100745741B1 (ko) 2006-08-22 2007-08-02 삼성에스디아이 주식회사 연료전지용 막 전극 접합체 및 이를 채용한 연료전지
DE102006042760A1 (de) * 2006-09-12 2008-03-27 Pemeas Gmbh Verfahren zur Herstellung einer protonenleitenden, Polyazol-enthaltenden Membran
EP2433947B1 (de) * 2007-09-11 2014-05-07 Samsung Electronics Co., Ltd. Phosphor enthaltendes, auf Benzoxazin basierendes Monomer
EP2036910B1 (de) 2007-09-11 2012-06-27 Samsung Electronics Co., Ltd. Auf Benzoxazin basierendes Monomer, entsprechendes Polymer, Elektrode für eine Brennstoffelektrode, die dieses enthält, Elektrolytmembran für eine Brennstoffelektrode, die dieses enthält, und Brennstoffelektrode, die dieses einsetzt
KR101366808B1 (ko) * 2007-10-11 2014-02-25 삼성전자주식회사 폴리벤즈이미다졸-염기 복합체, 이로부터 형성된폴리벤조옥사진계 화합물의 가교체 및 이를 이용한연료전지
EP2058321B1 (de) 2007-11-02 2014-01-08 Samsung Electronics Co., Ltd. Phosphor enthaltendes Monomer, entsprechendes Polymer, Elektrode für eine Brennstoffzelle, die das Polymer enthält, Elektrolytmembran für eine Brennstoffzelle, die das Polymer enthält, und Brennstoffelektrode, die die Elektrode einsetzt
EP2357185B1 (de) 2007-11-02 2014-04-23 Samsung Electronics Co., Ltd. Auf Naphthoxazin/Benzoxazin basierendes Monomer und entsprechendes Polymer
KR101537311B1 (ko) * 2007-11-02 2015-07-17 삼성전자주식회사 연료전지용 전해질막 및 이를 이용한 연료전지
EP2221302B1 (de) * 2007-11-06 2012-03-21 Samsung Electronics Co., Ltd. Auf Benzoxazin basierendes Monomer, entsprechendes Polymer, Elektrode für eine Brennstoffzelle, die das Polymer enthält, Elektrolytmembran für eine Brennstoffzelle, die das Polymer enthält, und Brennstoffzelle, die die Elektrode einsetzt
US8623124B2 (en) * 2008-10-07 2014-01-07 National University Of Singapore Polymer blends and carbonized polymer blends
DE102009001141A1 (de) * 2008-10-29 2010-05-06 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran
EP2366729B1 (de) * 2009-04-24 2015-01-07 Samsung Electronics Co., Ltd. Vernetztes polyazol, verfahren zur herstellung von polyazol, elektrode für brennstoffzellen mit dem vernetzten polyazol, elektrolytmembran für brennstoffzellen mit dem vernetzten polyazol, verfahren zur herstellung der elektrolytmembran und brennstoffzelle mit dem vernetzten polyazol
KR20120047856A (ko) 2009-06-20 2012-05-14 바스프 에스이 고분자량 폴리아졸의 제조방법
WO2010145827A2 (de) 2009-06-20 2010-12-23 Basf Se Polyazol-haltige zusammensetzung
US20120094210A1 (en) 2009-07-07 2012-04-19 Basf Se Ink comprising polymer particles, electrode, and mea
US20120148936A1 (en) 2009-08-21 2012-06-14 Basf Se Inorganic and/or organic acid-containing catalyst ink and use thereof in the production of electrodes, catalyst-coated membranes, gas diffusion electrodes and membrane electrode units
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
US9006339B2 (en) * 2011-05-10 2015-04-14 Basf Se Mechanically stabilized polyazoles comprising at least one polyvinyl alcohol
WO2012153172A1 (de) * 2011-05-10 2012-11-15 Basf Se Mechanisch stabilisierte polyazole enthaltend mindestens einen polyvinylalkohol
CA2843711C (en) 2013-02-22 2021-07-20 National Research Council Of Canada Process for producing ion exchange membranes by melt-processing of acidic pfsa ionomers
EP3850035A1 (de) * 2018-09-14 2021-07-21 University of South Carolina Neues verfahren zur herstellung von pbi-filmen ohne organische lösungsmittel
JP7523808B2 (ja) 2018-09-14 2024-07-29 ユニバーシティー オブ サウス カロライナ レドックスフロー電池膜を形成する方法
JP7410584B2 (ja) 2018-09-14 2024-01-10 ユニバーシティー オブ サウス カロライナ レドックスフロー電池用の低透過性ポリベンズイミダゾール(pbi)膜
CN110380091A (zh) * 2019-08-20 2019-10-25 上海纳米技术及应用国家工程研究中心有限公司 磷酸三钙改性磷酸掺杂聚苯并咪唑型质子交换膜的制备方法
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
KR102543046B1 (ko) * 2020-12-09 2023-06-15 한국과학기술연구원 수산화이온 전도성 pbi 멤브레인의 제조방법
CN112546872B (zh) * 2020-12-31 2023-03-14 山东天维膜技术有限公司 一种单价选择性阳离子交换膜的制备方法
CN113851683B (zh) * 2021-08-27 2023-10-20 重庆大学 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692569A (en) 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US4453991A (en) 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4634530A (en) 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4997892A (en) 1989-11-13 1991-03-05 Hoechst Celanese Corp. Sulfalkylation of hydroxyethylated polybenzimidazole polymers
US5422411A (en) 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
EP0667983A1 (de) 1993-09-06 1995-08-23 Paul Scherrer Institut Elektrochemische zelle mit einem polymerelektrolyten und herstellungsverfahren für diesen polymerelektrolyten
WO1996001177A1 (en) 1994-07-04 1996-01-18 Roger Anthony Ford Improved composite materials and method for making them
WO1996013872A1 (en) 1994-11-01 1996-05-09 Case Western Reserve University Proton conducting polymers
DE19527435A1 (de) 1995-07-27 1997-01-30 Hoechst Ag Polymerelektrolyte und Verfahren zu deren Herstellung
US5635041A (en) 1995-03-15 1997-06-03 W. L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
US5834523A (en) 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
DE19844645A1 (de) 1997-09-30 1999-04-01 Aisin Seiki Festkörper-Polyelektrolytmembran für Brennstoffzellen und Verfahren zu deren Herstellung
DE19817374A1 (de) 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
EP0960117A1 (de) 1996-08-30 1999-12-01 The Johns Hopkins University School Of Medicine ZU FIBROBLASTEN-WACHSTUMSFAKTOR HOMOLOGE FAKTOREN (FHFs) UND VERFAHREN DER ANWENDUNG
WO2000015691A1 (en) 1998-09-11 2000-03-23 Victrex Manufacturing Limited Ion-exchange polymers
US6110616A (en) 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
WO2001018894A2 (en) 1999-09-09 2001-03-15 Danish Power Systems Aps Polymer electrolyte membrane fuel cells
DE19959289A1 (de) 1999-12-09 2001-06-13 Axiva Gmbh Verfahren zur Herstellung von sulfonierten aromatischen Polymeren und Verwendung der Verfahrensprodukte zur Herstellung von Membranen

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2621676C3 (de) * 1976-05-15 1979-01-11 Bayer Ag, 5090 Leverkusen Elektrochemischer Gasdetektor zum Nachweis von Gasspuren
US4191618A (en) 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4212714A (en) 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4333805A (en) 1980-05-02 1982-06-08 General Electric Company Halogen evolution with improved anode catalyst
US4834566A (en) * 1985-12-29 1989-05-30 Brother Kogyo Kabushiki Kaisha Typewriter having means for interruption of automatic erasing operation, and/or automatic suspension thereof at each space between successive words
US4842740A (en) * 1988-08-05 1989-06-27 Hoechst Celanese Corporation Membranes prepared from blend of polybenzimidazole with polyarylates
US5098985A (en) * 1988-10-11 1992-03-24 The Dow Chemical Company Copolymers containing polybenzoxazole, polybenzothiazole and polybenzimidazole moieties
DE4422158A1 (de) 1994-06-24 1996-01-04 Hoechst Ag Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
US6248469B1 (en) * 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
DE19851498A1 (de) 1998-11-09 2000-07-06 Aventis Res & Tech Gmbh & Co Polymerzusammensetzung, Membran enthaltend diese, Verfahren zu deren Herstellung und deren Verwendung
DE60018533T2 (de) * 1999-12-06 2006-04-13 Toyo Boseki K.K. Polybenzazol und Fasern daraus
DE10010001A1 (de) * 2000-03-02 2001-09-06 Celanese Ventures Gmbh Neue Blendpolymermembranen zum Einsatz in Brennstoffzellen
WO2001094450A2 (en) * 2000-06-02 2001-12-13 Sri International Polymer membrane composition
DE10052242A1 (de) 2000-10-21 2002-05-02 Celanese Ventures Gmbh Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung
US7288603B2 (en) * 2000-11-13 2007-10-30 Toyo Boseki Kabushiki Kaisha Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
JP4061522B2 (ja) * 2000-11-16 2008-03-19 東洋紡績株式会社 ポリアゾールポリマー系組成物及びそれを主成分とする膜、並びにポリアゾール系ポリマー組成物の成形方法
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10117687A1 (de) * 2001-04-09 2002-10-17 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10129458A1 (de) 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
DE10140147A1 (de) 2001-08-16 2003-03-06 Celanese Ventures Gmbh Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle
DE10144815A1 (de) * 2001-09-12 2003-03-27 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10209419A1 (de) 2002-03-05 2003-09-25 Celanese Ventures Gmbh Verfahren zur Herstellung einer Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
ATE373690T1 (de) 2002-03-06 2007-10-15 Pemeas Gmbh Protonenleitende elektrolytmembran mit geringer methanoldurchlässigkeit und deren anwendung in brennstoffzellen
DE10213540A1 (de) 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
US20050118478A1 (en) 2002-03-06 2005-06-02 Joachim Kiefer Mixture comprising sulphonic acid containing vinyl, polymer electrolyte membrane comprising polyvinylsulphonic acid and the use thereof in fuel cells
EP1518282B1 (de) 2002-04-25 2010-09-08 BASF Fuel Cell GmbH Mehrschichtige elektrolytmembran
JP4096227B2 (ja) * 2002-05-08 2008-06-04 東洋紡績株式会社 酸性基含有ポリベンズイミダゾール系化合物と酸性基含有ポリマーを含む組成物、イオン伝導膜、接着剤、複合体、燃料電池
DE10220818A1 (de) 2002-05-10 2003-11-20 Celanese Ventures Gmbh Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10220817A1 (de) 2002-05-10 2003-11-27 Celanese Ventures Gmbh Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10228657A1 (de) 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10230477A1 (de) 2002-07-06 2004-01-15 Celanese Ventures Gmbh Funktionalisierte Polyazole, Verfahren zu ihrer Herstellung sowie ihre Verwendung
KR20050036964A (ko) * 2002-08-02 2005-04-20 페메아스 게엠베하 술폰산기를 함유하는 고분자로 이루어진 양성자 전도성고분자막 및 연료전지에서 이의 사용방법
DE10235358A1 (de) 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10239701A1 (de) 2002-08-29 2004-03-11 Celanese Ventures Gmbh Polymerfolie auf Basis von Polyazolen und deren Verwendung
DE10242708A1 (de) * 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246373A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
DE10246372A1 (de) 2002-10-04 2004-04-15 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen
DE10246459A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
DE10331365A1 (de) 2003-07-11 2005-02-10 Celanese Ventures Gmbh Asymmetrische Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
US7834131B2 (en) 2003-07-11 2010-11-16 Basf Fuel Cell Gmbh Asymmetric polymer film, method for the production and utilization thereof
EP1652259A2 (de) 2003-07-27 2006-05-03 Pemeas GmbH Protonenleitende membran und deren verwendung
US20080038624A1 (en) 2003-09-04 2008-02-14 Jorg Belack Proton-conducting polymer membrane coated with a catalyst layer, said polymer membrane comprising phosphonic acid polymers, membrane/electrode unit and use thereof in fuel cells
DE10340928A1 (de) 2003-09-04 2005-04-07 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Phosphonensäuregruppen umfassende Polymere, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
DE102005020604A1 (de) 2005-05-03 2006-11-16 Pemeas Gmbh Brennstoffzellen mit geringerem Gewicht und Volumen

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3692569A (en) 1970-02-12 1972-09-19 Du Pont Surface-activated fluorocarbon objects
US4634530A (en) 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4453991A (en) 1981-05-01 1984-06-12 E. I. Du Pont De Nemours And Company Process for making articles coated with a liquid composition of perfluorinated ion exchange resin
US4997892A (en) 1989-11-13 1991-03-05 Hoechst Celanese Corp. Sulfalkylation of hydroxyethylated polybenzimidazole polymers
EP0667983A1 (de) 1993-09-06 1995-08-23 Paul Scherrer Institut Elektrochemische zelle mit einem polymerelektrolyten und herstellungsverfahren für diesen polymerelektrolyten
US5422411A (en) 1993-09-21 1995-06-06 Ballard Power Systems Inc. Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion-exchange membranes formed therefrom
US5834523A (en) 1993-09-21 1998-11-10 Ballard Power Systems, Inc. Substituted α,β,β-trifluorostyrene-based composite membranes
WO1996001177A1 (en) 1994-07-04 1996-01-18 Roger Anthony Ford Improved composite materials and method for making them
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
WO1996013872A1 (en) 1994-11-01 1996-05-09 Case Western Reserve University Proton conducting polymers
US5635041A (en) 1995-03-15 1997-06-03 W. L. Gore & Associates, Inc. Electrode apparatus containing an integral composite membrane
DE19527435A1 (de) 1995-07-27 1997-01-30 Hoechst Ag Polymerelektrolyte und Verfahren zu deren Herstellung
EP0960117A1 (de) 1996-08-30 1999-12-01 The Johns Hopkins University School Of Medicine ZU FIBROBLASTEN-WACHSTUMSFAKTOR HOMOLOGE FAKTOREN (FHFs) UND VERFAHREN DER ANWENDUNG
DE19844645A1 (de) 1997-09-30 1999-04-01 Aisin Seiki Festkörper-Polyelektrolytmembran für Brennstoffzellen und Verfahren zu deren Herstellung
US6110616A (en) 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
DE19817374A1 (de) 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
WO2000015691A1 (en) 1998-09-11 2000-03-23 Victrex Manufacturing Limited Ion-exchange polymers
WO2001018894A2 (en) 1999-09-09 2001-03-15 Danish Power Systems Aps Polymer electrolyte membrane fuel cells
DE19959289A1 (de) 1999-12-09 2001-06-13 Axiva Gmbh Verfahren zur Herstellung von sulfonierten aromatischen Polymeren und Verwendung der Verfahrensprodukte zur Herstellung von Membranen

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
F. KUCERA, POLYMER ENGINEERING AND SCIENCE, vol. 38, no. 5, 1988, pages 783 - 792
GANG, XIAO; HJULER, H. A.; OLSEN, C.; BERG, R. W.; BJERRUM, N. J.: "Chem. Dep. A, Tech. Univ. Denmark, Lyngby", DEN. J. ELECTROCHEM. SOC., vol. 140, no. 4, 1993, pages 896 - 902
J. ELECTROCHEM. SOC., vol. 142, no. 7, 1995, pages L121 - L123
J. MEMBR. SCI., vol. 83, 1993, pages 211
K.-D. KREUER, CHEM. MATER., vol. 8, 1996, pages 610 - 641
K.-D. KREUER: "Vehicle-Mechanismus", CHEM. MATER., vol. 8, 1996, pages 610 - 641
N. J. BJERRUM, JOURNAL OF APPLIED ELECTROCHEMISTRY, vol. 31, 2001, pages 773 - 779
P. STAITI, J. MEMBR. SCI., vol. 188, 2001, pages 71
RAZAQ, M.; RAZAQ, A.; YEAGER, E.; DESMARTEAU, DARRYL D.; SINGH, S.: "Case Cent. Electrochem. Sci., Case West. Reserve Univ., Cleveland, OH, USA", J. ELECTROCHEM. SOC., vol. 136, no. 2, 1989, pages 385 - 90
SANUI ET AL., POLYM. ADV. TECHN., vol. 11, 2000, pages 544

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736779B2 (en) * 2002-10-04 2010-06-15 Basf Fuel Cell Proton-conducting polymer membrane containing polyazole blends, and application thereof in fuel cells
US8142917B2 (en) 2002-10-04 2012-03-27 Basf Fuel Cell Gmbh Proton-conducting polymer membrane comprising polyazole blends and its use in fuel cells
US8202664B2 (en) 2004-07-21 2012-06-19 Sanyo Electric Co., Ltd. Membrane electrode assembly, fuel cell stack and fuel cell system
US8206873B2 (en) 2004-07-21 2012-06-26 Sanyo Electric Co., Ltd. Electrolyte for fuel cell, membrane electrode assembly, fuel cell stack and fuel cell system
EP1650824A1 (de) * 2004-10-25 2006-04-26 SFC Smart Fuel Cell AG Brennstoffzellenkombination mit geschlossenem Wasserhaushalt
WO2008032228A2 (en) * 2006-09-11 2008-03-20 Advent Technologies High temperature polymer electrolyte membranes comprising blends of aromatic polyethers with pyridine units and membrane electrode assemblies based on them
WO2008032228A3 (en) * 2006-09-11 2008-12-24 Advent Technologies High temperature polymer electrolyte membranes comprising blends of aromatic polyethers with pyridine units and membrane electrode assemblies based on them
WO2008090412A3 (en) * 2006-09-11 2009-07-23 Advent Technologies Proton conducting aromatic polyether polymers with pyridinyl side chains for fuel cells
US7786244B2 (en) 2006-09-11 2010-08-31 Advent Technologies Development and characterization of novel proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime

Also Published As

Publication number Publication date
WO2004034500A3 (de) 2005-05-12
KR100997003B1 (ko) 2010-11-25
CN100380722C (zh) 2008-04-09
CN1742402A (zh) 2006-03-01
US20060078774A1 (en) 2006-04-13
DE10246461A1 (de) 2004-04-15
CA2500792A1 (en) 2004-04-22
US20100216051A1 (en) 2010-08-26
US8142917B2 (en) 2012-03-27
US7736779B2 (en) 2010-06-15
JP2011089123A (ja) 2011-05-06
JP2006502266A (ja) 2006-01-19
KR20050073476A (ko) 2005-07-13
EP1559164B1 (de) 2013-07-17
EP1559164A2 (de) 2005-08-03

Similar Documents

Publication Publication Date Title
EP1559164B1 (de) Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen
EP1552574B1 (de) Protonenleitende polymermembran umfassend sulfonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
EP1518282B1 (de) Mehrschichtige elektrolytmembran
EP1527494B1 (de) Protonenleitende polymembran, welche sulfonsäuregruppen enthaltende polymere umfasst, und deren anwendung in brennstoffzellen
EP1379572B1 (de) Protonenleitende membran und deren verwendung
WO2004033079A2 (de) Protonenleitende polymermembran umfassend phosphonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
EP1519981B1 (de) Protonenleitende membran und deren verwendung
EP1527493B1 (de) Protonenleitende polymermembran, welche phosphonsäuregruppen enthaltende polymere aufweist, und deren anwendung in brennstoffzellen
EP1706442B1 (de) Protonenleitende membran und deren verwendung
EP1559162B1 (de) Mit einer katalysatorschicht beschichtete protonenleitende polymermembran enthaltend polyazole und deren anwendung in brennstoffzellen
WO2005081351A2 (de) Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen
EP1512190A2 (de) Gepfropfte polymerelektrolytmembran, verfahren zu deren herstellung und deren anwendung in brennstoffzellen
DE102006042760A1 (de) Verfahren zur Herstellung einer protonenleitenden, Polyazol-enthaltenden Membran
EP1701995B1 (de) Protonenleitende membran und deren verwendung
WO2004024796A1 (de) Verfahren zur herstellung von protonenleitenden polymermembranen, verbesserte polymermembranen und deren anwendung in brennstoffzellen
DE10361832A1 (de) Protonenleitende Membran und deren Verwendung
DE10235357A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäure- und Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10340929A1 (de) Protonenleitende Polymermembran umfassend mindestens ein poröses Trägermaterial und deren Anwendung in Brennstoffzellen
DE10330461A1 (de) Verfahren zur Herstellung von protonenleitenden Polymermembranen, verbesserte Polymermembranen und deren Anwendung in Brennstoffzellen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR CA CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003775168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2500792

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004542402

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A09164

Country of ref document: CN

Ref document number: 1020057005876

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057005876

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003775168

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006078774

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530226

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10530226

Country of ref document: US