WO2004030124A1 - 電池用正極活物質並びにその製造方法及びそれを用いた電池 - Google Patents

電池用正極活物質並びにその製造方法及びそれを用いた電池 Download PDF

Info

Publication number
WO2004030124A1
WO2004030124A1 PCT/JP2003/006377 JP0306377W WO2004030124A1 WO 2004030124 A1 WO2004030124 A1 WO 2004030124A1 JP 0306377 W JP0306377 W JP 0306377W WO 2004030124 A1 WO2004030124 A1 WO 2004030124A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
positive electrode
electrode active
active material
titanium
Prior art date
Application number
PCT/JP2003/006377
Other languages
English (en)
French (fr)
Inventor
Munetoshi Yamaguchi
Naoki Kumada
Takeshi Nagaishi
Yasuhiro Ochi
Takeshi Asanuma
Koichi Numata
Shigeo Hirayamama
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to EP03730565A priority Critical patent/EP1544929A1/en
Priority to CA002467709A priority patent/CA2467709A1/en
Priority to US10/496,768 priority patent/US20060019165A1/en
Priority to AU2003242387A priority patent/AU2003242387A1/en
Publication of WO2004030124A1 publication Critical patent/WO2004030124A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte

Definitions

  • the present invention relates to a positive electrode active material for a battery containing manganese diacid as a main component, a method for producing the same, and a battery using the same.
  • manganese dioxide As a positive electrode active material for batteries such as manganese batteries, alkaline manganese batteries, and lithium batteries, manganese dioxide has been conventionally used as a typical material. Manganese dioxide used in such a positive electrode active material for batteries is produced by electrolytic deposition of an electrolytic solution containing manganese sulfate and sulfuric acid, but various improvements have been made to improve performance. Has been done.
  • Japanese Patent Application Laid-Open No. 2-57673 discloses that manganese dioxide having a higher specific surface area can be produced by electrolyzing an electrolytic solution containing manganese sulfate, sulfuric acid, and phosphoric acid. Has been described.
  • Japanese Patent Application Laid-Open No. 5-21062 discloses that an electrolytic solution containing manganese sulfate, sulfuric acid, and an ammonium salt is electrolyzed to obtain an ⁇ -type manganese dioxide containing ammonia. It is described that the discharge capacity of a battery can be increased by neutralizing with a lithium salt aqueous solution or by mixing a lithium salt and using the mixture as a positive electrode active material of a lithium secondary battery.
  • Japanese Patent No. 3065630 discloses that manganese dioxide obtained by electrolysis or the like is reduced with a hydrazine compound and immersed in a lithium salt aqueous solution to form a positive electrode active material of a lithium secondary battery. It is described that the reproducibility of the charge / discharge cycle of the battery can be improved by using it.
  • U.S. Patent No. 5,344,712 discloses manganese dioxide.
  • JP2003 / 006377 describes that the life of a battery can be improved by mixing anatase titanium oxide and graphite with a mechanical mixer and using the mixture as a positive electrode active material of the battery. Disclosure of the invention
  • the present invention provides a positive electrode active material for a battery and a method for producing the same, which can achieve higher performance such as pulse characteristics by increasing the specific surface area as much as possible and further increasing the reaction area. And a battery using the same.
  • the positive electrode active material for a battery according to the first invention is a positive electrode active material for a battery mainly containing manganese dioxide, and is characterized by containing 5 to 400 ppm of magnesium.
  • the positive electrode active material for a battery according to the second invention is characterized in that, in the first invention, the specific surface area is 10 to 65 m 2 / g. ⁇ - ⁇
  • the positive electrode active material for a battery according to the third invention is the deposit according to the first or second invention, which is formed by electrolysis of an electrolytic solution containing manganese sulfate, sulfuric acid, and magnesium sulfate. I do.
  • the positive electrode active material for a battery according to a fourth aspect is the third aspect, wherein the concentration of magnesium in the electrolytic solution is 0.1 to 40 gZL.
  • the positive electrode active material for a battery according to the fifth invention is a cathode active material for a battery as a main component of manganese dioxide, characterized by 0.0 0 1 to 3.0 wt 0/0 containing titanium .
  • the positive electrode active material for a battery according to a sixth aspect is the fifth aspect, wherein the specific surface area is 40 to 150 m 2 / g.
  • the positive electrode active material for a battery according to the seventh invention is the deposit according to the fifth or sixth invention, which is formed by electrolysis of an electrolytic solution containing manganese sulfate, sulfuric acid, and a titanium compound. I do.
  • the positive electrode active material for a battery according to the eighth invention is characterized in that, in any of the third, fourth, and seventh inventions, the precipitate is calcined.
  • a method for producing a battery positive electrode active material according to a ninth invention is a method for producing a battery positive electrode active material containing manganese dioxide as a main component, comprising: an electrolytic solution containing manganese sulfate, sulfuric acid, and magnesium sulfate. Is electrolyzed to generate a precipitate.
  • a method for producing a positive electrode active material for a battery according to a tenth invention is characterized in that, in the ninth invention, the concentration of magnesium in the positive electrode active material for a battery is 5 to 400 p: m.
  • a method for producing a positive electrode active material for a battery according to a twelfth invention is the method according to any one of the ninth to eleventh inventions, wherein the concentration of magnesium in the electrolyte is 0.1 to 40 g ZL.
  • a method for producing a positive electrode active material for a battery according to a thirteenth invention is a method for producing a positive electrode active material for a battery comprising manganese dioxide as a main component, the electrolytic solution comprising manganese sulfate, sulfuric acid, and a titanium compound. Is electrolyzed to generate a precipitate.
  • a method for producing a positive electrode active material for a battery according to a fourteenth aspect is the thirteenth aspect, wherein the titanium compound is at least one selected from the group consisting of titanium sulfate, titanium nitrate, and titanium chloride.
  • the method for producing a positive electrode active material for a battery according to a fifteenth invention in the thirteenth or fourteenth invention, the concentration of titanium in the positive electrode active material in a battery 0.0 0 1 to 3.0 weight 0 / A value of 0 is a special feature.
  • the method for producing a positive electrode active material for a battery according to the sixteenth invention is directed to the thirteenth to fifteenth inventions.
  • the specific surface area of the positive electrode active material for a battery is set to 40 to 15 OrnVg.
  • a method for producing a positive electrode active material for a battery according to a seventeenth invention is characterized in that, in any one of the ninth to sixteenth inventions, the produced precipitate is calcined.
  • a battery according to an eighteenth invention is characterized in that it uses the positive electrode active material for a battery according to any one of the first to eighth inventions.
  • FIG. 1 is a sectional view of an embodiment of a lithium primary battery according to the present invention.
  • FIG. 2 is a sectional view of an embodiment of the alkaline manganese battery according to the present invention.
  • FIG. 3 is a graph showing the measurement results of X-ray diffraction of the specimen No. 2 and the comparative specimen No. 3 before firing.
  • Embodiments of a positive electrode active material for a battery according to the present invention, a method for producing the same, and a battery using the same will be described below, but the present invention is not limited to the following embodiments.
  • the positive electrode active material for batteries according to the present invention is a positive electrode active material for batteries containing manganese dioxide as a main component and containing magnesium.
  • the positive electrode active material for a battery according to the present invention is manganese dioxide with electrical conductivity produced by an electrolysis method and contains magnesium when produced by electrolysis.
  • magnesium is not added to manganese dioxide produced by electrolysis, but magnesium is physically contained inside manganese dioxide during electrolysis. More specifically, for example, manganese dioxide containing magnesium in a state where magnesium is not removed even when washed with diluted sulfuric acid or the like cannot be confirmed. man Suspected to be cancer.
  • the content of magnesium is preferably from 5 to 400 ppm.
  • the reason is that if the magnesium content is less than 5 ppm, the pulse characteristics and the like cannot be remarkably improved, and if the magnesium content exceeds 400 ⁇ , the pulse characteristics and the like deteriorate. Because.
  • the above-mentioned positive electrode active material for a battery has a specific surface area of 10 to 6 It is preferable that Because the specific surface area is 1 If the specific surface area is smaller than 65 m 2 / g, the amount of gas generated will increase.
  • the positive electrode active material for a battery as described above can be obtained by electrolyzing an electrolytic solution containing manganese sulfate, sulfuric acid, and magnesium sulfate to generate a precipitate.
  • manganese dioxide containing magnesium integrally therein can be easily produced.
  • the concentration of magnesium in the electrolyte is preferably 0.1 to 40 gZL. This is because if the concentration of magnesium in the electrolyte is outside the above range, it becomes difficult to make the amount of magnesium integrally contained in manganese dioxide in the range of 5 to 400 ppm. It is.
  • conditions for electrolysis may be general conditions conventionally applied.
  • the manganese concentration in the electrolyte is 20 to 50 g / L
  • the sulfuric acid concentration in the electrolyte is 30 to 80 g / L
  • titanium or the like is used for the anode
  • carbon or the like is used for the cathode.
  • the replenishing method of magnesium sulfate to the electrolytic solution the magnesium sulfate was dissolved in the electrolyte
  • the state is not particularly limited as long as it is in a state, and examples thereof include a method of dissolving and adding to a manganese sulfate solution to be replenished into an electrolytic solution.
  • a positive electrode active material suitable for use in a lithium battery can be obtained.
  • the firing conditions are particularly limited However, if heat treatment is performed at a temperature of 300 to 470 ° C. for about 1 to 5 hours, for example, a positive electrode active material suitable for a lithium battery can be obtained.
  • the positive electrode active material for a battery manufactured as described above has a magnesium concentration of 5 to 400 ppm and a specific surface area of 10 to 65 m 2 / g. Batteries using substances can exhibit high-performance pulse characteristics and the like. .
  • an alkaline manganese battery using the above-described battery positive electrode active material has a higher manganese dioxide content, which does not contain magnesium at a concentration of 5 to 400 ppm, than an alkaline lithium manganese battery that uses manganese dioxide as the battery positive electrode active material. Since pulse characteristics and the like can be improved by about 3 to 10%, it can be suitably used for digital cameras and the like.
  • the lithium battery using the above-mentioned battery positive electrode active material is compared with a lithium battery using magnesium oxide containing no magnesium at a concentration of 5 to 400 ppm as the battery positive electrode active material. Since the pulse characteristics at low temperatures can be improved by about 5 to 10%, it can be suitably used even in a low-temperature environment such as a cold region. It is possible to improve the pulse characteristics at high temperatures by about 10 to 20 ° / 0, so that it is suitable even when used under high temperature conditions such as for automobiles. Can be used for ⁇
  • the negative electrode active material used in the battery is not particularly limited, and may be a general one that has been conventionally applied.
  • a manganese battery or an alkaline manganese battery zinc or the like may be used.
  • lithium or the like lithium or the like can be used.
  • the electrolyte used for the battery is not particularly limited and may be a general electrolyte conventionally used.
  • a manganese battery zinc chloride, ammonium chloride, etc.
  • potassium hydroxide or the like can be used.
  • an organic solvent solution of a lithium salt or the like can be used.
  • the battery positive electrode active material according to the present invention is a battery positive electrode active material containing manganese dioxide as a main component and containing titanium.
  • the positive electrode active material for a battery according to the present invention is electrolytic manganese dioxide produced by an electrolytic method, which contains titanium when produced by electrolysis.
  • titanium is not added to the manganese dioxide produced by electrolysis, but titanium is contained in the manganese dioxide during electrolysis. More specifically, for example, manganese dioxide containing titanium in a state where titanium peaks cannot be detected by X-ray diffraction measurement, and manganese dioxide in which titanium is integrally dissolved. It has been speculated.
  • the content of titanium is preferably from 0.001 to 3.0% by weight. If the titanium content is less than 0.001% by weight, the specific surface area cannot be remarkably improved, and if the titanium content is more than 3.0% by weight, the specific surface area decreases. Because it will do. ⁇
  • the positive electrode active material for a battery preferably has a specific surface area of 40 to 150 ra 2 Z g. If the specific surface area is smaller than 4 O m 2 / g, the pulse characteristics cannot be remarkably improved, and if the specific surface area is larger than 15 O m S / g, the amount of generated gas is large. Because it becomes.
  • the positive electrode active material for a battery as described above can be obtained by electrolyzing an electrolytic solution containing manganese sulfate, sulfuric acid, and a titanium compound to generate a precipitate.
  • manganese dioxide containing titanium integrally therein can be easily produced.
  • the titanium compound include titanium sulfate, titanium nitrate, titanium chloride and the like.
  • the amount of the titanium compound in the electrolytic solution is adjusted so that the content of titanium in the precipitate is 0.001 to 3.0 wt / 0 .
  • Other conditions for electrolysis may be general conditions conventionally applied, as described above.
  • the method of replenishing the titanium compound in the electrolyte is not particularly limited as long as the titanium compound is dissolved in the electrolyte.
  • a manganese sulfate solution to be replenished in the electrolyte is used. And adding it after dissolving it.
  • the precipitate thus obtained When the precipitate thus obtained is calcined and dehydrated, it can be used as a positive electrode active material particularly preferable for use in a lithium battery.
  • the sintering conditions are not particularly limited.For example, heat treatment at a temperature of 350 to 470 ° C. for about 1 to 5 hours can provide a positive electrode active material suitable for a lithium battery. Can be.
  • the positive electrode active material for a battery manufactured as described above has a titanium content of 0.001 to 3.0% by weight and a specific surface area of 40 to 15 Om 2 / g. Therefore, a battery using the positive electrode active material for a battery can exhibit high-performance pulse characteristics and the like.
  • Al-manganese batteries using the above-mentioned battery positive electrode active material have a pulse characteristic of about 10 to 20% compared to alkaline manganese batteries using manganese dioxide containing no titanium as the battery positive electrode active material. Since it can be improved, it can be suitably used for digital cameras and the like.
  • the lithium battery using the above-mentioned battery positive electrode active material has 10 to 25% lower pulse characteristics at low temperature than the lithium battery using manganese dioxide containing no titanium as the battery positive electrode active material. It can be used suitably even in cold regions, etc., and can improve pulse characteristics at high temperatures by about 5 to 15%. Even when used under the following conditions, it can be suitably used.
  • the negative electrode active material used in the above battery is not particularly limited, and may be a general one that has been conventionally applied.
  • a manganese battery or an alkaline manganese battery zinc is used.
  • a lithium battery lithium or the like can be used.
  • the Q is not particularly limited and may be a general one that has been conventionally applied.
  • zinc chloride, ammonium chloride, or the like can be used.
  • potassium hydroxide or the like can be used.
  • an organic solvent solution of a lithium salt or the like can be used.
  • the positive electrode active material for a battery according to the present invention a method for producing the same, and examples performed for confirming the effects of the battery using the same will be described below, but the present invention is not limited to the following examples. Absent.
  • a heating device is provided in a beaker (5 liters), and the anode (titanium plate) and the cathode (black bell) are alternately suspended, and a tube for introducing the electrolytic solution (manganese sulfate) is placed at the bottom of the beaker.
  • the electrolytic solution manganese sulfate
  • test pieces A1 to A5 and the comparative pieces A1 to A4 were fired in an electric furnace at a temperature shown in Table 1 below for 3 hours. ⁇ table 1 ⁇
  • A4 200 5 5 As can be seen from Table 2, in test samples No. 1 to No. 5 (magnesium sulfate concentration during electrolysis: 0.1 to 40 g / L, firing temperature: 300 to 470 ° C), the magnesium content was low. The specific surface area was 5 to 400 ppm, and the specific surface area was 10 to 65 m 2 / g. On the other hand, in Comparative A1 to A4 (magnesium sulfate concentration during electrolysis: less than 0.1 g ZL or more than 40 g / L, firing temperature: less than 300 ° C or more than 470 ° C), At least one of the content and the specific surface area was out of the above range for the test pieces A1 to A5.
  • Alkaline manganese batteries (model "LR6" (AA)) using the test specimens A1 to A5 and the comparative specimens A1 to A4 before firing as positive electrode active materials were produced.
  • the battery electrolyte was mixed with an aqueous solution of potassium hydroxide (concentration 40%) so that zinc oxyzinc was saturated, and a gelling agent (a mixture of carboxymethylcellulose and sodium polyacrylate) was added. (Approximately 1.0%) was used.
  • Zinc powder was used as the negative electrode active material.
  • Fig. 2 shows a vertical cross-sectional view of the Al-Li-manganese battery fabricated in this manner.
  • the alkaline manganese battery according to the present invention includes a positive electrode active material 12 composed of electrolytic manganese dioxide disposed inside a positive electrode can 11 and a separator 13 disposed inside the positive electrode active material 12 with a separator 13 interposed therebetween. And a negative electrode material 14 made of the gelled sub-complex powder thus obtained.
  • a negative electrode current collector 15 is inserted into the negative electrode material 14, and the negative electrode current collector 15 penetrates a sealing body 16 closing the lower portion of the positive electrode can 11 and a negative electrode provided below the sealing body 16. It is joined to the bottom plate 17.
  • a cap 18 serving as a positive electrode terminal is provided above the positive electrode can 11.
  • Insulating rings 19, 20 sandwiching the cap 18 and the negative electrode bottom plate 17 from above and below are provided.
  • the cap 18 and the negative electrode bottom plate 17 are fixed via these insulating rings 19, 20, and the outer periphery of the positive electrode can 11 is covered.
  • a heat-shrinkable resin tube 21 and an outer can 22 covering the same are provided.
  • the current collector 2 also made of stainless steel is spot-welded inside the positive electrode case 1 made of organic electrolyte resistant stainless steel and also made of stainless steel.
  • a positive electrode active material 3 made of electrolytic manganese diacid is pressed onto the upper surface of the body 2.
  • a separator 4 made of a polypropylene resin impregnated with the above-described battery electrolyte is disposed.
  • a sealing plate 6 with a negative electrode 5 made of metallic lithium joined thereto is disposed with a gasket 7 made of polypropylene interposed therebetween, thereby sealing the battery.
  • the diameter of the battery is 2 Omin and the total height of the battery is 3.2 mm.
  • the alkaline lithium manganese batteries using specimens A1 to A5 were compared with the alkaline manganese batteries using comparative magnesium A1 (1 ppm), which had a low magnesium content.
  • the pulse characteristics of the lithium primary batteries with improved pulse characteristics of 5 to 10% and the use of specimens A1 to A5 are lower than those of the lithium primary batteries using the comparator A1 (1 ppm) with low magnesium content. It is clear that the pulse characteristics at low temperatures are improved by 5 to 15%, and the pulse characteristics at high temperatures are improved by 10 to 20 ° / 0 .
  • the lithium primary battery using the comparative A2 (600 ppm) with a high magnesium content has further reduced pulse characteristics at both high and low temperatures than the lithium primary battery using the comparative A1. Became clear. Moreover, when compared with lithium primary battery using a too large compared body A 3 of the specific surface area (7 OmVg), it is clear that the pulse characteristics at high temperatures significantly improved, small compared body having specific surface area A4 (5 m 2 / g), it was found that the pulse characteristics at low temperatures were significantly improved. [Second embodiment: containing titanium]
  • An electrolytic replenisher (manganese sulfate and 30% by weight titanium sulfate) was used using the same electrolytic cell as in the first embodiment described above, so that the electrolytic solution in the electrolytic cell had the composition shown in Table 4 below. While adjusting the electrolyte by injecting the amount shown in Table 4 below, maintaining the electrolyte at a temperature of 95 to 98 ° C, and maintaining the electrolyte at a current density shown in Table 4 below for 20 days. After electrolysis, the anode is taken out of the electrolytic cell, and the electrodeposited precipitate is subjected to post-treatment according to a conventional method, thereby producing test specimens B1 to B3 and comparative specimens B1 to B5, respectively. However, in Comparative Example B3, titanium oxide was mixed with the precipitate after electrolysis. Thereafter, the test pieces B1 to B3 and the comparative pieces B1 to B5 are fired in an electric furnace (400 ° C. for 4 hours).
  • the first embodiment described above was directed to an alkaline manganese battery (type “LR6” (AA)) using the test specimens B 1 to B 3 and the comparative specimens B 1 to B 5 before firing as a positive electrode active material. Were prepared in the same manner as in the above case.
  • the lithium primary battery (model number “CR2032” (coin type)) using the fired test specimens B1 to B3 and the comparative specimens B1 to B5 as the positive electrode active material was the first type described above. Each was produced in the same manner as in the example.
  • the specimens B1 to B3 and the comparative specimens B1 to B5 before firing were each used as a positive electrode active material.
  • the pulse characteristics at low temperature ( ⁇ 20 ° C.) and high temperature (60 ° C.) were measured in the same manner as in the first embodiment described above. Table 6 shows these results.
  • the pulse characteristics of the alkaline manganese batteries using the specimens B1 to B3 before firing were 10 to 10 compared to the alkaline manganese batteries using the comparative specimen B1 before firing.
  • the pulse characteristics at low temperatures were lower than that of the lithium primary battery using the fired comparative specimen B 1. It was found that the pulse characteristics at high temperatures were improved by 10 to 25% and the pulse characteristics at high temperatures were improved by 5 to 15%.
  • the alkaline manganese battery and the lithium primary battery using the comparative B4 (4.5% by weight) containing a large amount of titanium are the alkaline manganese battery and the lithium primary battery using the comparative B1 containing no titanium.
  • the pulse characteristics were further reduced as compared with the case of FIG. (Comparative) Further, the comparative B2 obtained by performing electrolysis while increasing the current density without adding titanium sulfate has a larger specific surface area than the comparative B1, but has a larger specific surface area than the comparative B1. The pulse characteristics are almost the same as the pulse characteristics of the battery using the comparative body B1. On the other hand, the battery using the test sample B1 containing titanium and having a specific surface area almost the same as that of the comparative sample B2 has a significantly larger pulse characteristic than the above-described battery using the comparative sample B1. It became clear that it could be improved.
  • Comparative B3 in which titanium was simply mixed with diacid manganese had almost the same specific surface area as Comparative B1, and the above-mentioned battery using Comparative B3 also exhibited Comparative B1.
  • the pulse characteristics hardly change as compared with the above-mentioned battery using.
  • the specimen B2 produced so as to integrally contain the same amount of titanium as the specimen B3 during the electrolytic production has a significantly larger specific surface area than the specimen B1, and the specimen The battery using B2 also has significantly improved pulse characteristics as compared to the battery using Comparative Example B1.
  • a positive electrode active material for a battery which can further improve the performance such as the lubricating property, a method for producing the same, and a battery using the same can be provided, and can be used extremely effectively in industry.

Abstract

二酸化マンガンを主成分とする電池用正極活物質において、マグネシウムを5~400ppm含有させるか、又は、チタンを0.001~3.0重量%含有させることにより、電池のパルス特性等のさらなる高性能化を図るようにした。

Description

^ 6377 明 細 書 電池用正極活物質並びにその製造方法及ぴそれを用いた電池 技術分野
本発明は、 二酸ィヒマンガンを主成分とする電池用正極活物質並びにその製造方 法及びそれを用いた電池に関する。 背景技術 ·
マンガン電池やアルカリマンガン電池やリチウム電池等の電池用正極活物質と しては、 二酸化マンガンが代表的な物質として従来から使用されている。 このよ うな電池用正極活物質に使用される二酸化マンガンは、 硫酸マンガン及び硫酸を 含有する電解液を電解して析出させることにより製造されているが、 高性能化を 図るため、 各種の改良がなされている。
例えば、 特開平 2— 5 7 6 9 3号公報等には、 硫酸マンガンと硫酸とリン酸と を含有する電解液を電解することにより、 従来よりも高比表面積を有する二酸化 マンガンを製造できることが記載されている。
また、 例えば、 特開平 5— 2 1 0 6 2号公報等には、 硫酸マンガンと硫酸とァ ンモニゥム塩とを含有する電解液を電解して、 アンモニアを有する α型二酸化マ ンガンを得た後に、 リチウム塩水溶液で中和処理、 又は、 リチウム塩を混合して、 リチウム二次電池の正極活物質に使用することにより、 電池の放電容量を増大で きることが記載されている。
また、 例えば、 特許第 3 0 6 5 6 3 0号公報等には、 電解等により得られた二 酸化マンガンをヒドラジン化合物で還元しリチウム塩水溶液に浸漬してリチウム 二次電池の正極活物質に使用することにより、 電池の充放電サイクルの再現性を 向上できることが記載されている。
また、 例えば、 米国特許第 5 3 4 2 7 1 2号明細書等には、 二酸化マンガンに JP2003/006377 アナターゼチタン酸化物及びグラフアイトをメカニカルミキサで混合して、 電池 の正極活物質に使用することにより、 電池の寿命を向上できることが記載されて いる。 発明の開示
ところで、 上述したような電池においては、 パルス特性等のさらなる高性能化 が求められている。 このため、 上述したような正極活物質においては、 比表面積 をできるだけ大きくして、 反応面積をさらに大きくすることが求められている。 このようなことから、 本発明は、 比表面積をできるだけ大きくして、 反応面積' をさらに大きくすることにより、 パルス特性等のさらなる高性能化を図ることが できる電池用正極活物質並びにその製造方法及びそれを用いた電池を提供するこ とを目的とする。
第一の発明による電池用正極活物質は、 二酸化マンガンを主成分とする電池用 正極活物質であって、 マグネシウムを 5〜4 0 0 p p m含有することを特徴とす る。
第二の発明による電池用正極活物質は、 第一の発明において、 比表面積が 1 0 〜6 5 m2/ gであることを特徴とする。 · - ·
第三の発明による電池用正極活物質は、 第一又は第二の発明において、 硫酸マ ンガンと、 硫酸と、 硫酸マグネシウムとを含有する電解液の電解により生成した 析出物であることを特徴とする。
第四の発明による電池用正極活物質は、 第三の発明において、 前記電解液中の マグネシウムの濃度が 0 . 1〜4 0 g Z Lであることを特徴とする。
第五の発明による電池用正極活物質は、 二酸化マンガンを主成分とする電池用 正極活物質であって、 チタンを 0 . 0 0 1 ~ 3 . 0重量0 /0含有することを特徴と する。
第六の発明による電池用正極活物質は、 第五の発明において、 比表面積が 4 0 〜1 5 0 m 2/ gであることを特徴とする。 第七の発明による電池用正極活物質は、 第五又は第六の発明において、 硫酸マ ンガンと、 硫酸と、 チタン化合物とを含有する電解液の電解により生成した析出 物であることを特徴とする。
第八の発明による電池用正極活物質は、 第三、 第四、 第七の発明のいずれかに おいて、 前記析出物を焼成したものであることを特徴とする。
第九の発明による電池用正極活物質の製造方法は、 二酸化マンガンを主成分と する電池用正極活物質の製造方法であって、 硫酸マンガンと、 硫酸と、 硫酸マグ ネシゥムとを含有する電解液を電解して、 析出物を生成させることを特徴とする。 第十の発明による電池用正極活物質の製造方法は、 第九の発明において、 電池 用正極活物質中のマグネシウムの濃度を 5 ~ 4 0 0 p: mとすることを特徴とす る。
第 -—の発明による電池用正極活物質の製造方法は、 第九又は第十の発明にお いて、 電池用正極活物質の比表面積を 1 0〜6 5 m2Z gとすることを特徴とす る。
第十二の発明による電池用正極活物質の製造方法は、 第九から第十一の発明の いずれかにおいて、 前記電解液中のマグネシウムの濃度が 0 . l〜4 0 g ZLで あることを特徴とする。 ·
第十三の発明による電池用正極活物質の製造方法は、 二酸化マンガンを主成分 とする電池用正極活物質の製造方法であって、 硫酸マンガンと、 硫酸と、 チタン 化合物とを含有する電解液を電解して、 析出物を生成させることを特徴とする。 第十四の発明による電池用正極活物質の製造方法は、 第十三の発明において、 前記チタン化合物が、 硫酸チタン、 硝酸チタン、 塩化チタンからなる群から選択 される少なくとも一種であることを特徴とする。
第十五の発明による電池用正極活物質の製造方法は、 第十三又は第十四の発明 において、 電池用正極活物質中のチタンの濃度を 0 . 0 0 1〜3 . 0重量0 /0とす ることを特徼とする。
第十六の発明による電池用正極活物質の製造方法は、 第十三から第十五の発明 のいずれかにおいて、 電池用正極活物質の比表面積を 4 0〜1 5 O rnV gとす ることを特徴とする。
第十七の発明による電池用正極活物質の製造方法は、 第九から第十六の発明の いずれかにおいて、 生成した前記析出物を焼成することを特徴とする。
第十八の発明による電池は、 第一から第八の発明のいずれかの電池用正極活物 質を用いていることを特 ί敷とする。 図面の簡単な説明
第 1図は、 本発明に係るリチウム一次電池の実施の形態の断面図である。
第 2図は、 本発明に係るアルカリマンガン電池の実施の形態の断面図である。 第 3図は、 焼成前の試験体 Β 2及び比較体 Β 3の X線回折の測定結果を表すグ ラフである。 発明を実施するための最良の形態
本発明による電池用正極活物質並びにその製造方法及びそれを用いた電池の実 施の形態を以下に説明するが、 本発明は以下の実施の形態に限定されるものでは ない。
〔第一の実施の形態:マグネシウム含有〕
本努明に係る電池用正極活物質は、 二酸化マンガンを主成分とする電池用正極 活物質であって、 マグネシウムを含有するものである。
具体的には、 本発明に係る電池用正極活物質は、 電解法により製造された電角军 二酸化マンガンであって、 電解により製造された時点でマグネシウムを含有する ものである。 すなわち、 電解製造された二酸化マンガンに事後的にマグネシウム が添加されたものではなく、 電解製造時に二酸化マンガンの内部にマグネシウム がー体的に含有されたものなのである。 より具体的には、 例えば希硫酸等で洗浄 してもマグネシゥムが除去されるのを確認できなレ、状態でマグネシゥムを含んで いる二酸化マンガンであり、 マグネシウムが一体的に固溶した状態の二酸化マン ガンであると推測されている。
このような電池用正極活物質においては、 マグネシウムの含有量が 5〜400 p pmであると好ましい。 なぜなら、 マグネシウムの含有量が 5 p pmよりも小 さいと、 パルス特性等を顕著に向上させることができず、 マグネシウムの含有量 が 400 ρ ρπιよりも大きくなると、 パルス特性等が低下してしまうからである。 また、 上記電池用正極活物質は、 比表面積が 10〜6
Figure imgf000006_0001
であると好ま しい。 なぜなら、 比表面積が 1
Figure imgf000006_0002
よりも小さいと、 パルス特性等を顕著 に向上させることができず、 比表面積が 65 m2/gよりも大きいと、 ガス発生 量が多くなってしまうからである。
上述したような電池用正極活物質は、 硫酸マンガンと、 硫酸と、 硫酸マグネシ ゥムとを含有する電解液を電解して、 析出物を生成させることにより得ることが できる。 これにより、 マグネシウムを内部に一体的に含有する二酸化マンガンを 容易に製造することができる。
ここで、 前記電解液中のマグネシウムの濃度が 0. l〜40 gZLであると好 ましい。 なぜなら、 電解液中のマグネシウムの濃度が上記範囲以外であると、 二 酸化マンガン中に一体的に含有されるマグネシウムの量を 5〜400 p pmの範 囲にすることが困難となってしまうからである。
また、 電解の他の条件は、 従来から適用されている一般的なものでよい。 具体 的には、 例えば、 電解液中のマンガン濃度を 20〜50 g/Lとし、 電解液中の 硫酸濃度を 30〜80 g/Lとし、 陽極にチタン等を使用し、 陰極にカーボン等 を使用し、 液温を 90〜100°Cとし、 電流密度を 50〜100A "m2とする とよい。 なお、 電解液中への硫酸マグネシウムの補給方法は、 硫酸マグネシウム が電解液中に溶解した状態となるのであれば、 特に限定されることはなく、 例え ば、 電解液中へ補給する硫酸マンガン溶液に溶解して添加するなどの方法を挙げ ることができる。
このようにして得られた上記析出物を焼成して脱水すると、 リチウム電池への 使用に好ましい正極活物質とすることができる。.この焼成条件は、 特に限定され ることはないが、 例えば、 3 0 0〜 4 7 0 °Cの温度で 1〜 5時間程度熱処理する と、 リチウム電池に好適な正極活物質とすることができる。
上述したようにして製造された電池用正極活物質は、 マグネシウムの濃度が 5 〜4 0 0 p p mとなると共に、 比表面積が 1 0〜6 5 m2/ gとなるので、 当該 電池用正極活物質を使用した電池は、 高性能なパルス特性等を発現することがで きる。.
例えば、 上記電池用正極活物質を使用したアルカリマンガン電池は、 マグネシ ゥムを 5〜4 0 0 p p mの濃度で含有しない二酸化マンガンを電池用正極活物質 に使用したアル力リマンガン電池に比べて、 パルス特性等を 3〜 1 0 %程度向上 させることができるので、 デジタルカメラ等に好適に使用することができる。 ま た、 上記電池用正極活物質を使用したリチウム電池は、 マグネシウムを 5〜4 0 0 p p mの濃度で含有しない二酸ィ匕マンガンを電池用正極活物質に使用したリチ ゥム電池に比べて、 低温でのパルス特性等を 5〜 1 0 %程度向上させることがで きるので、 寒冷地等のような低温環境となる条件下で使用される場合であっても、 好適に使用することができると共に、 高温でのパルス特性等を 1 0〜 2 0 °/0程度 向上させることができるので、 車载用等のような高温環境となる条件下で使用さ れる場合であっても、 好適に使用することができる。 ·
なお、 上記電池に使用される負極活物質としては、 特に限定されることはなく 従来から適用されている一般的なものでよく、 例えば、 マンガン電池やアルカリ マンガン電池の場合には、 亜鉛等を使用することができ、 リチウム電池の場合に は、 リチウム等を使用することができる。 また、 上記電池に使用される電解液と しては、 特に限定されることはなく従来から適用されている一般的なものでよく、 例えば、 マンガン電池の場合には、 塩化亜鉛、 塩化アンモニゥム等を使用するこ とができ、 アルカリマンガン電池の場合には、 水酸化カリウム等を使用すること ができ、 リチウム電池の場合には、 リチウム塩の有機溶媒溶液等を使用すること ができる。
〔第二の実施の形態 ·.チタン含有〕 また、 本発明に係る電池用正極活物質は、 二酸化マンガンを主成分とする電池 用正極活物質であって、 チタンを含有するものである。
具体的には、 本発明に係る電池用正極活物質は、 電解法により製造された電解 二酸化マンガンであって、 電解により製造された時点でチタンを含有するもので . ある。 すなわち、 電解製造された二酸化マンガンに事後的にチタンが添加された ものではなく、 電解製造時に二酸化マンガンの内部にチタンが一体的に含有され たものなのである。 より具体的には、 例えば、 X線回折を測定してもチタンのピ ークを検出できない状態でチタンを含んでいる二酸化マンガンであり、 チタンが 一体的に固溶した状態の二酸化マンガンであると推測されている。 したがって、 詳細は後述するが、 本発明に係る電池用正極活物質の二酸化マンガンと、 電解製 造後にチタン (酸化チタン) を添カ卩した二酸化マンガンとは、 X線回折の測定結 果が明らかに異なり、 その構造がまったく違うのである。
このような電池用正極活物質においては、 チタンの含有量が 0 . 0 0 1〜3 . 0重量%であると好ましい。 なぜなら、 チタンの含有量が 0 . 0 0 1重量%より も小さいと、 比表面積を顕著に向上させることができず、 チタンの含有量が 3 . 0重量%よりも大きくなると、 比表面積が低下してしまうからである。 ·
また、 上記電池用正極活物質は、 比表面積が 4 0〜1 5 0 ra 2Z gであると好 ましい。 なぜなら、 比表面積が 4 O m 2 / gよりも小さいと、 パルス特性等を顕 著に向上させることができず、 比表面積が 1 5 O m S/ gよりも大きいと、 ガス 発生量が多くなってしまうからである。
上述したような電池用正極活物質は、 硫酸マンガンと、 硫酸と、 チタン化合物 とを含有する電解液を電解して、 析出物を生成させることにより得ることができ る。 これにより、 チタンを内部に一体的に含有する二酸化マンガンを容易に製造 することができる。 上記チタン化合物としては、 例えば、 硫酸チタン、 硝酸チタ ン、 塩化チタン等を挙げることができる。 なお、 前記電解液におけるチタン化合 物の量は、 析出物中のチタンの含有量が 0 . 0 0 1〜3 . 0重量 °/0となるように 調整する。 また、 電解の他の条件は、 先に説明したように、 従来から適用されている一般 的なものでよい。 なお、 電解液中へのチタン化合物の補給方法は、 チタン化合物 が電解液中に溶解した状態となるのであれば、 特に限定されることはなく、 例え ば、 電解液中へ補給する硫酸マンガン溶液に溶解して添加するなどの方法を挙げ ることができる。
このようにして得られた上記析出物を焼成して脱水すると、 特に、 リチウム電 池への使用に好ましい正極活物質とすることができる。 この焼成条件は、 特に限 定されることはないが、 例えば、 3 5 0〜4 7 0 °Cの温度で 1〜 5時間程度熱処 理すると、 リチウム電池に好適な正極活物質とすることができる。
上述したようにして製造された電池用正極活物質は、 チタンの含有量が 0 . 0 0 1〜3 . ◦重量%となると共に、 比表面積が 4 0〜 1 5 O m 2/ gとなるので、 当該電池用正極活物質を使用した電池は、 '高性能なパルス特性等を発現すること ができる。
例えば、 上記電池用正極活物質を使用したアル力リマンガン電池は、 チタンを 含有しない二酸化マンガンを電池用正極活物質に使用したアルカリマンガン電池 に比べて、 パルス特性等を 1 0〜 2 0 %程度向上させることができるので、 デジ タルカメラ等に好適に使用することができる。 また、 上記電池用正極活物質を使 用したリチウム電池は、 チタンを含有しない二酸化マンガンを電池用正極活物質 に使用したリチウム電池に比べて、 低温でのパルス特性等を 1 0〜 2 5 %程度向 上させることができるので、 寒冷地等でも好適に使用することができると共に、 高温でのパルス特性等を 5〜1 5 %程度向上させることができるので、 車載用等 のような高温環境となる条件下で使用される場合であつても、 好適に使用するこ とができる。 . なお、 上記電池に使用される負極活物質としては、 特に限定されることはなく 従来から適用されている一般的なものでよく、 例えば、 マンガン電池やアルカリ マンガン電池の場合には、 亜鉛等を使用することができ、 リチウム電池の場合に は、 リチウム等を使用することができる。 また、 上記電池に使用される電解液と Q しては、 特に限定されることはなく従来から適用されている一般的なものでよく、 例えば、 マンガン電池の場合には、 塩化亜鉛、 塩化アンモニゥム等を使用するこ とができ、 アルカリマンガン電池の場合には、 水酸化カリウム等を使用すること ができ、 リチウム電池の場合には、 リチウム塩の有機溶媒溶液等を使用すること ができる。
〔他の実施の形態:マグネシゥム及びチタン含有〕
なお、 前述した実施の形態では、 マグネシウム又はチタンを含有する場合につ いて説明したが、 マグネシウム及びチタンの両者を共に含有することも可能であ る。 実施例
本発明による電池用正極活物質並びにその製造方法及びそれを用いた電池の効 果を確認するために行った実施例を以下に説明するが、 本発明は以下の実施例に 限定されるものではない。
〔第一の実施例:マグネシウム含有〕
〈試験体及び比較体の作製〉
ビーカー (5リットル) に加温装置を設けると共に、 陽極 (チタン板) 及び陰 極 (黒鈴板) をそれぞれ交互に懸吊し、 当該ビーカーの底部に電解捕強液 (硫酸 マンガン) の導入管を設けて電解槽を構成した。
この電解槽内の電解液が下記の表 1に示した組成となるように上記電解捕給液 を注入して当該電解液を調整しながら、 電解液を 9 0 °Cの温度に保ちつつ、 3 5 AZm2の電流密度で 2 0日間にわたって電解した後、 電解槽から陽極を取り出 して、 電着した析出物を常法に従って後処理することにより、 試験体 A 1〜A 5 及び比較体 A 1〜A 4を作製する。
その後、 上記試験体 A 1〜A 5及び比較体 A 1〜A 4を電気炉中で下記の表 1 に示した温度で 3時間焼成した。 {表 1}
Figure imgf000011_0001
〈実験 A1 :マグネシウム含有量及び比表面積の測定〉
上記試験体 A 1〜 A 5及び比較体 A 1〜 A 4の焼成前(
び比表面積並びに焼成後の比表面積をそれぞれ測定した。 マグネシゥム含有量は、 一般的な I CP発光分光分析法により求めた。 比表面積は、 窒素気流中で加熱処 理して (250°CX 20分間) 細孔内の水分を除去した後、 BET 1点法により 求めた。 その結果を下記の表 2に示す。
{表 2} マグネシウム含有量 比表面積 (m2/g)
P P m) 焼成 ¾ 焼成後
A 1 5 40 30
A2 200 45 30
A 3 400 50 30
体 A4 200 70 65
A5 200 20 10
比 Al 1 40 30
較 A2 600 50 30
体 A3 200 90 70
A4 200 5 5 , 表 2からわかるように、 試験体 Α1〜Α5 (電解時の硫酸マグネシウムの濃 度: 0. 1〜40 g/L, 焼成温度: 300〜470°C) においては、 マグネシ ゥム含有量が 5 ~400 p pm、 比表面積が 10〜65m2/gとなった。 一方、 比較体 A 1〜 A 4 (電解時の硫酸マグネシゥムの濃度: 0. 1 g Z L未満又は 4 0 g/L超、 焼成温度: 300°C未満又は 470°C超) においては、 マグネシゥ ム含有量及び比表面積の少なくとも一方が、 試験体 A 1〜A 5の上記範囲外とな つた。
〈アル力リマンガン電池の作製〉
焼成前の前記試験体 A 1〜A 5及び前記比較体 A 1〜 A 4を正極活物質に使用 したアルカリマンガン電池 (形式 「LR6」 (単 3型) ) をそれぞれ作製した。 なお、 電池の電解液には、 水酸化カリウム水溶液 (濃度 40%) に酸ィヒ亜鉛を飽 和させるように混合すると共に、 ゲル化剤(カルボキシメチルセルロースとポリ アクリル酸ソーダとの混合物)を添加 (1. 0%程度) したものを用いた。 また、 負極活物質には、 亜鉛粉末を用いた。 この負極活物質 (3. 0 g) と上記電解液 (1. 5 g) とを混合してゲル化させたものを負極材に用いた。 このように作製 したアル力リマンガン電池の縦断面図を図 2に示す。
図 2に示すように、 本発明にかかるアルカリマンガン電池は、 正極缶 11の内 側に配置された電解二酸化マンガンからなる正極活物質 12と、 正極活物質 12 の内側にセパレータ 13を介して配置されたゲル状化亜錯粉末からなる負極材 1 4とを具備する。 負極材 14内には負極集電体 1 5が挿入され、 この負極集電体 15が正極缶 1 1の下部を塞ぐ封口体 16を貫通して当該封口体 16の下方に設 けられた負極底板 17と接合されている。 一方、 正極缶 1 1の上側には正極端子 となるキャップ 18が設けられている。 キャップ 18及び負極底板 17を上下か ら挟む絶縁リング 1 9, 20が設けられ、 これら絶縁リング 1 9, 20を介して キャップ 18及び負極底板 17を固定すると共に、 正極缶 1 1の外周を覆うよう に熱収縮性樹脂チューブ 21及びこれを覆う外装缶 22が設けられている。
〈リチウム一次電池の作製〉 ^ ^ 焼成後の試験体 A 1〜 A 5及ぴ比較体 A 1〜 A 4を正極活物質に使用したリチ ゥム一次電池 (形式 「CR 2032」 (コイン型) ) をそれぞれ作製した。 なお、 電池の電解液には、 プロピレンカーボネート及び 1, 2—ジメトキシェタンを等 量混合すると共に、 lmo 1/Lの濃度となるように過塩素酸リチウムを溶解し た溶液を用いた。 また、 負極活物質には、 金属リチウムを用いた。 このように作 製したリチウム一次電池の縦断面図を図 1に示す。
図 1に示すように、 本発明にかかるリチウム一次電池では、 耐有機電解液性の ステンレス鋼製の正極ケース 1の内側、 同じくステンレス鋼製の集電体 2がスポ ット溶接され、 集電体 2の上面に電解二酸ィヒマンガンからなる正極活物質 3が圧 着されている。 また、 正極活物質 3の上面には、 上述の電池の電解液を含浸した ポリプロピレン樹脂製のセパレーター 4が配置されている。 正極ケース 1の開口 部には、 下側に金属リチウムからなる負極 5を接合した封口板 6力 ポリプロピ レン製のガスケット 7を挟んで配置されており、 これにより電池が密封されてい る。 なお、 電池の直径は 2 Omin、 電池総高 3. 2mmである。
〈実験 A 2 :パルス特性の測定〉
焼成前の前記試験体 A 1〜A 5及び比較体 A 1〜 A 5を正極活物質にそれぞれ 使用したアルカリマンガン電池の常温 (20°C) でのパルス特性並びに焼成後の 試験体 A 1〜A 5及び比較体 A 1-A4を正極活物質にそれぞれ使用したリチウ ム一次電池の低温 (一 20°C) 及び高温 (60°C) でのパルス特性を各々測定し た。
具体的には、 上記アルカリマンガン電池においては、 20°Cの環境下、 放電電 流 100 OmAで 10秒 ON、 50秒 O F Fのパルス繰り返し放電を行い、 カツ ト電圧 (終止電圧) 1. OVまでのパルス回数を測定し、 焼成前の比較体 A 1を 用いたアル力リマンガン電池の値を 100 %とした場合の相対値を求めてパルス 特性を評価した。 他方、 上記リチウム一次電池においては、 ー20°〇及び60 の環境下、 放電電流 1 0111 で1 5秒 ON、 45秒 OFFのパルス繰り返し放電 を行い、 カット電圧 (終止電圧) 2. 0Vまでのパルス回数を測定し、 焼成後の 比較体 A 1を用いたリチウム一次電池の値を 100 °/。とした場合の相対値を求め てパルス特性の評価を行った。 これらの結果を表 3に示す。
{表 3}
Figure imgf000014_0001
表 3からわかるように、 試験体 A 1〜A 5を使用したアル力リマンガン電池に おいては、 マグネシウム含有量の少ない比較体 A 1 (1 p pm) を使用したアル カリマンガン電池と比較すると、 パルス特性が 5〜 10 %向上し、 試験体 A 1〜 A 5を使用したリチウム一次電池においては、 マグネシウム含有量の少ない比較 体 A 1 ( 1 p p m) を使用したリチゥム一次電池と比較すると、 低温でのパルス 特性が 5〜 15 %向上し、 高温でのパルス特性が 10〜 20 °/0向上することが明 らかとなつた。 なお、 マグネシウム含有量の多い比較体 A 2 (600 p pm) を 使用したリチウム一次電池は、 比較体 A 1を使用したリチウム一次電池よりも、 高温及び低温の両方でパルス特性がさらに低下することが明らかとなった。 また、 比表面積の大き過ぎる比較体 A 3 (7 OmVg) を使用したリチウム一次電池 と比較すると、 高温でのパルス特性が著しく向上することが明らかとなり、 比表 面積の小さい比較体 A4 (5m2/g) を使用したリチウム一次電池と比較する と、 低温でのパルス特性が著しく向上することが明らかとなつた。 〔第二の実施例:チタン含有〕
〈試験体及び比較体の作製〉
前述した第一の実施例と同様な電解槽を用い、 電解槽内の電解液が下記の表 4 に示した糸且成となるように電解補給液 (硫酸マンガン及び 3 0重量%硫酸チタン ) を下記の表 4に示す量で注入して当該電解液を調整しながら、 電解液を 9 5 ~ 9 8 °Cの?显度に保ちつつ、 下記の表 4に示す電流密度で 2 0日間にわたって電解 した後、 陽極を電解槽から取り出して、 電着した析出物を常法に従って後処理す ることにより、 試験体 B 1〜B 3及び比較体 B 1〜B 5をそれぞれ作製する。 ただし、 比較体 B 3においては、 電解後の析出物に酸化チタンを混合した。 その後、 上記試験体 B 1〜B 3及び比較体 B 1〜B 5を電気炉中で焼成する ( 4 0 0 °C X 4時間) 。
{表 4 }
Figure imgf000015_0001
〈実験 B 1 :チタン含有量及び比表面積の測定〉
上記試験体 B 1〜: B 3及び比較体 B 1〜B 5の焼成前のチタン含有量及び比表 面積並びに焼成後の比表面積を前述した第 1の実施例の場合と同様にしてそれぞ れ測定した。 その結果を下記の表 5に示す。 {表 5
Figure imgf000016_0001
表 5からわかるように、 チタンを含有する試験体 B 1〜B 3においては、 チタ ンを含有しない比較体 B 1及び電解時の電流密度を大きくした比較体 B 2と比べ ると、 比表面積が大きくなることが明らかとなった。 また、 チタン含有量が 0 . 0 0 1〜3 . 0重量%の試験体 B 1〜B 3においては、 チタンの含有量が増える ほど比表面積も大きくなるが、 チタン含有量が多過ぎる比較体 B 4 ( 4 . 5重量 %) においては、 比表面積が試験体 B 1〜B 3よりもむしろ小さくなつてしまう ことが明らかとなった。
〈アル力リマンガン電池の作製〉
焼成前の前記試験体 B 1〜B 3及び前記比較体 B 1〜B 5を正極活物質に使用 したアルカリマンガン電池 (形式 「L R 6」 (単 3型) ) を前述した第 1の実施 例の場合と同様にしてそれぞれ作製した。
〈リチウム一次電池の作製〉
焼成後の前記試験体 B 1〜B 3及び前記比較体 B 1〜B 5を正極活物質に使用 したリチウム一次電池 (型番 「C R 2 0 3 2」 (コイン型) ) を前述した第 1の 実施例の場合と同様にしてそれぞれ作製した。
〈実験 B 2 :パルス特性の測定〉
焼成前の前記試験体 B 1〜B 3及び比較体 B 1〜B 5を正極活物質にそれぞれ 使用したアルカリマンガン電池の常温 (2 0 °C) でのパルス特性並びに焼成後の 前記試験体 B 1〜B 3及び比較体 B 1〜B 5を正極活物質にそれぞれ使用したリ チウム一次電池の低温 (― 2 0 °C) 及び高温 (6 0 °C) でのパルス特性を前述し た第 1の実施例の場合と同様にして測定した。 これらの結果を表 6に示す。
{表 6 }
Figure imgf000017_0001
表 6からわかるように、 焼成前の試験体 B 1〜B 3を使用したアルカリマンガ ン電池においては、 焼成前の比較体 B 1を使用したアルカリマンガン電池と比較 すると、 パルス特性が 1 0〜 2 0 %向上し、 焼成後の試験体 B 1 - B 3を使用し たリチウム一次電池においては、 焼成後の比較体 B 1を使用したリチウム一次電 池と比較すると、 低温でのパルス特性が 1 0〜2 5 %向上し、 高温でのパルス特 性が 5〜1 5 %向上することが明らかとなった。 なお、 チタン含有量の多い比較 体 B 4 ( 4 . 5重量%) を使用したアルカリマンガン電池及びリチウム一次電池 は、 チタンを含有しない比較体 B 1を使用したアル力リマンガン電池及びリチウ ム一次電池に比べてパルス特性がさらに低下してしまうことが明らかとなった。 工ァ さらに、 硫酸チタンを添加せずに電流密度を大きくして電解を行って得られた 比較体 B 2は、 比較体 B 1よりも比表面積が大きくなるものの、 上記電池に用い た場合のパルス特性が、 比較体 B 1を用いた上記電池のパルス特性とほとんど変 わらない。 これに対し、 比較体 B 2とほぼ同じ大きさの比表面積を有してチタン を含有する試験体 B 1を用いた上記電池は、 比較体 B 1を用いた上記電池よりも パルス特性を大幅に向上できることが明らかとなつた。
また、 二酸ィ匕マンガンにチタンを単に混合した比較体 B 3は、 比較体 B 1と比 ベて比表面積がほとんど変わらず、 当該比較体 B 3を用いた上記電池も、 比較体 B 1を用いた上記電池と比べてパルス特性がほとんど変わらない。 これに対し、 電解製造時に比較体 B 3と同量のチタンを一体的に含有するように製造した試験 体 B 2は、 比較体 B 1と比べて比表面積が著しく大きくなると共に、 当該試験体 B 2を用いた上記電池も、 比較体 B 1を用いた上記電池と比べてパルス特性が著 しく向上する。
このようなことから、 電解して得られたニ酸化マンガンに後から酸化チタンを 混合してチタンを含有させた場合と、 本発明のように、 電解液にチタン化合物を 混合して電解することにより電解製造時に二酸化マンガン中にチタンを一体的に 含有させる場合とでは、 その作用効果がまったく異なると 、—'える。
〈実験 B 3 : X線回折の測定〉
電解製造時に二酸化マンガン中にチタンを一体的に含有させるように製造した 焼成前の試験体 B 2と、 当該試験体 B 2と同量のチタンを二酸化マンガンに単に 混合した焼成前の比較体 B 3との X線回折を測定した。 その結果を図 3に示す。 図 3からわかるように、 上記比較体 B 3においては、 二酸化チタンのピークが 検出されたことから、 二酸化チタンの成分が二酸化チタンの結晶構造を維持した ままの状態で二酸化マンガン中に混在しているといえる。 これに対し、 上記試験 体 B 2においては、 チタンのピークが検出されなかったことから、 チタン成分が イオンの状態となって二酸化マンガン中に一体的に固溶して存在していると推測 される。 1 0
丄 ¾
産業上の利用の可能性
本発明によれば、 比表面積をできるだけ大きくして、 反応面積をさらに大きく することにより、 ノ、。ルス特性等のさらなる高性能化を図ることができる電池用正 極活物質並びにその製造方法及びそれを用いた電池を提供することができ、 産業 上、 極めて有効に利用することができる。

Claims

請求の範囲
1. 二酸化マンガンを主成分とする電池用正極活物質であって、
マグネシウムを 5〜400 p pm含有する
ことを特徴とする電池用正極活物質。
2. 請求の範囲 1において、
比表面積が 10〜65m2/gである
ことを特徴とする電池用正極活物質。
3. 請求の範囲 1又は 2において、
硫酸マンガンと、 硫酸と、 硫酸マグネシゥムとを含有する電解液の電解により 生成した析出物である
ことを特徴とする電池用正極活物質。
4. 請求の範囲 3において、
前記電解液中のマグネシゥムの濃度が 0. '•40 g ' L-である
ことを特徴とする電池用正極活物質。
5. 二酸化マンガンを主成分とする電池用正極活物質であって、
チタンを 0. 001〜3. 0重量%含有する
'ことを特徴とする電池用正極活物質。
6. 請求の範囲 5において、
比表面積が 40~150m2/gである
ことを特徴とする電池用正極活物質。
7. 請求の範囲 5又は 6において、
硫酸マンガンと、 硫酸と、 チタン化合物とを含有する電解液の電解により生成 した析出物である
ことを特徴とする電池用正極活物質。
8. 請求の範囲 3, 4, 7のいずれかにおいて、
前記析出物を焼成したものである
ことを特徴とする電池用正極活物質。
9. 二酸化マンガンを主成分とする電池用正極活物質の製造方法であって、 硫酸マンガンと、 硫酸と、 硫酸マグネシウムとを含有する電解液を電解して、 析出物を生成させる
ことを特徴とする電池用正極活物質の製造方法。
10. 請求の範囲 9において、
電池用正極活物質中のマグネシウムの濃度を 5〜400 p pmとする
• 'ことを特徵とする電池用正極活物質の製造方法。 · ■ . '" ·
11. 請求の範囲 9又は 10において、
電池用正極活物質の比表面積を 10〜65m2/gとする
ことを特徴とする電池用正極活物質の製造方法。
12. 請求の範囲 9から 11のいずれかにおいて、
前記電解液中のマグネシゥムの濃度が 0. l〜40gZLである
ことを特徴とする電池用正極活物質の製造方法。
13. 二酸化マンガンを主成分とする電池用正極活物質の製造方法であって、 硫酸マンガンと、 硫酸と、 チタン化合物とを含有する電解液を電解して、 析出 物を生成させる
ことを特徴とする電池用正極活物質の製造方法。
14. 請求の範囲 13において、
前記チタン化合物が、 硫酸チタン、 硝酸チタン、 塩ィヒチタンからなる群から選 択される少なくとも一種である
ことを特徴とする電池用正極活物質の製造方法。
5 · 請求の範囲 13又は 14において、
電池用正極活物質中のチタンの濃度を 0. 00 1 3. 0重量 °/0とする ことを特徴とする電池用正極活物質の製造方法。
16. 請求の範囲 13から 15のいずれかにおいて、
電池用正極活物質の比表面積を 40〜 150m 2Zgとする
ことを特徴とする電池用正極活物質の製造方法。
17. 請求の範囲 9から 16のいずれかにおいて、
生成した前記析出物を焼成する
ことを特徴とする電池用正極活物質の製造方法。
18. 請求の範囲 1から 8のいずれかの電池用正極活物質を用いている ことを特徴とする電池。
PCT/JP2003/006377 2002-09-26 2003-05-22 電池用正極活物質並びにその製造方法及びそれを用いた電池 WO2004030124A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03730565A EP1544929A1 (en) 2002-09-26 2003-05-22 Active substance of positive electrode for battery, process for producing the same and battery therefrom
CA002467709A CA2467709A1 (en) 2002-09-26 2003-05-22 Active substance of positive electrode for battery, process for producing the same and battery therefrom
US10/496,768 US20060019165A1 (en) 2002-09-26 2003-05-22 Active substance of postitive electrode for battery, process for producing the same and battery therefrom
AU2003242387A AU2003242387A1 (en) 2002-09-26 2003-05-22 Active substance of positive electrode for battery, process for producing the same and battery therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-280139 2002-09-26
JP2002280139A JP2004119167A (ja) 2002-09-26 2002-09-26 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池

Publications (1)

Publication Number Publication Date
WO2004030124A1 true WO2004030124A1 (ja) 2004-04-08

Family

ID=32040477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006377 WO2004030124A1 (ja) 2002-09-26 2003-05-22 電池用正極活物質並びにその製造方法及びそれを用いた電池

Country Status (9)

Country Link
US (1) US20060019165A1 (ja)
EP (1) EP1544929A1 (ja)
JP (1) JP2004119167A (ja)
KR (1) KR20050054870A (ja)
CN (1) CN1610981A (ja)
AU (1) AU2003242387A1 (ja)
CA (1) CA2467709A1 (ja)
WO (1) WO2004030124A1 (ja)
ZA (1) ZA200403761B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043547A (ja) * 2007-08-08 2009-02-26 Fdk Energy Co Ltd 電池用電解二酸化マンガン、正極合剤およびアルカリ電池
CN103014800B (zh) * 2012-12-29 2016-06-01 北京化工大学 铈掺杂的石墨基二氧化铅催化电极的制备方法
KR102196363B1 (ko) 2013-10-29 2020-12-30 삼성전자주식회사 마그네슘 전지용 전극 활물질, 이를 포함하는 전극 및 마그네슘 전지, 및 마그네슘 전지용 전극 활물질의 제조방법
CN108793256B (zh) * 2018-06-26 2022-10-11 普瑞斯矿业(中国)有限公司 一种电解二氧化锰粉末及其制备方法
CN109509889B (zh) * 2018-10-19 2020-10-27 安徽正熹标王新能源有限公司 一种锌锰电池的正极粉环管制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367463A (ja) * 1989-08-07 1991-03-22 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09153358A (ja) * 1995-11-30 1997-06-10 Yuasa Corp 有機電解質電池
EP0789410A1 (en) * 1996-02-02 1997-08-13 Matsushita Electric Industrial Co., Ltd. Batteries and a manufacturing method of postitive active material for the batteries
JP2003163003A (ja) * 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
JP7105233B2 (ja) * 2017-06-15 2022-07-22 株式会社Nttドコモ 端末及び無線通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585881B2 (en) * 2001-02-20 2003-07-01 The Gillette Company Process for manufacture and improved manganese dioxide for electrochemical cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367463A (ja) * 1989-08-07 1991-03-22 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09153358A (ja) * 1995-11-30 1997-06-10 Yuasa Corp 有機電解質電池
EP0789410A1 (en) * 1996-02-02 1997-08-13 Matsushita Electric Industrial Co., Ltd. Batteries and a manufacturing method of postitive active material for the batteries
JP2003163003A (ja) * 2001-11-26 2003-06-06 Mitsui Mining & Smelting Co Ltd 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
JP7105233B2 (ja) * 2017-06-15 2022-07-22 株式会社Nttドコモ 端末及び無線通信方法

Also Published As

Publication number Publication date
JP2004119167A (ja) 2004-04-15
KR20050054870A (ko) 2005-06-10
ZA200403761B (en) 2004-11-23
AU2003242387A1 (en) 2004-04-19
EP1544929A1 (en) 2005-06-22
CN1610981A (zh) 2005-04-27
CA2467709A1 (en) 2004-04-08
US20060019165A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US7501208B2 (en) Doped manganese dioxides
CN1176507C (zh) 锂化二氧化锰
US9246164B2 (en) Protected transition metal hexacyanoferrate battery electrode
US20100221613A1 (en) Coated positive electrode active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and their production methods
JP7121219B1 (ja) リチウム金属複合酸化物の製造方法
CN1816925A (zh) 具有钒酸铜阴极的锂电池
KR101746188B1 (ko) 이차 전지용 전극 합제 첨가제, 이의 제조 방법, 이를 포함하는 이차 전지용 전극 및 이차 전지
JPH11224664A (ja) 高耐湿性、高安全性リチウムイオン二次電池
EP1297581B1 (en) Doped manganese dioxides
JP2014216077A (ja) 非水電解質リチウムイオン二次電池用正極材料およびその正極材料を用いた非水電解質リチウムイオン二次電池
JP2004186127A (ja) 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
JP3712259B2 (ja) アルカリマンガン電池用正極活物質及び電池
JP3590178B2 (ja) 電解二酸化マンガンおよびその製造方法、並びにマンガン乾電池
JP2003017077A (ja) 密閉型アルカリ亜鉛一次電池
WO2014178170A1 (en) Protected transition metal hexacyanoferrate battery electrode
WO2004030124A1 (ja) 電池用正極活物質並びにその製造方法及びそれを用いた電池
JP3553541B2 (ja) 電池用正極活物質及び電解二酸化マンガンの製造方法並びに電池
Lu et al. Hollow Nanostructured MoO2 Electrode Materials for Supercapacitors
CN1305644A (zh) 锂化氧化锰
JP4843842B2 (ja) リチウム2次電池用正極板の製造方法
CN114830375A (zh) 正极活性物质及其制备方法、包括该物质的锂二次电池
JP2021140974A (ja) 電池の負極材料とその製造方法
JP3353588B2 (ja) 電池および電池用マンガン酸化物の製造法
EP3757256B1 (en) Electrodeposited copper foil
KR101973003B1 (ko) 수계 전해액 리튬 이차전지용 음극 소재 및 이의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003242387

Country of ref document: AU

Ref document number: 2003730565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004/03761

Country of ref document: ZA

Ref document number: 200403761

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2467709

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038018845

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047010445

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006019165

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10496768

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003730565

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10496768

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003730565

Country of ref document: EP