WO2004027520A1 - 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法 - Google Patents

電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法 Download PDF

Info

Publication number
WO2004027520A1
WO2004027520A1 PCT/JP2003/011890 JP0311890W WO2004027520A1 WO 2004027520 A1 WO2004027520 A1 WO 2004027520A1 JP 0311890 W JP0311890 W JP 0311890W WO 2004027520 A1 WO2004027520 A1 WO 2004027520A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
irradiation
rotating
beam irradiation
disk
Prior art date
Application number
PCT/JP2003/011890
Other languages
English (en)
French (fr)
Inventor
Mamoru Usami
Kazushi Tanaka
Kenji Yoneyama
Yukio Kaneko
Takeshi Umega
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002274121A external-priority patent/JP2004110968A/ja
Priority claimed from JP2002274120A external-priority patent/JP2004110967A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to AU2003264485A priority Critical patent/AU2003264485A1/en
Priority to US10/528,518 priority patent/US7193956B2/en
Publication of WO2004027520A1 publication Critical patent/WO2004027520A1/ja

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers

Definitions

  • the present invention relates to an electron beam irradiation apparatus, an electron beam irradiation method, a disk-shaped body manufacturing apparatus, and a disk-shaped body manufacturing method.
  • the present invention relates to an electron beam irradiation device for electron beam irradiation, an electron beam irradiation method, a disk-shaped body manufacturing apparatus, and a disk-shaped body manufacturing method.
  • optical discs such as CDs (compact discs) and DVDs (digital versatile discs) have been put into practical use as optical information recording media, but recently a blue-violet semiconductor laser with an oscillation wavelength of about 400 nm has been developed.
  • high-density optical discs such as high-density DVD capable of recording at higher density than DVD using such a blue-violet semiconductor laser is being developed.
  • Fig. 12 shows an example of the currently considered layer structure of the next generation high-density optical disk.
  • This high-density optical disk has a recording layer 91 for recording information and a laser beam for recording and reproduction incident on the recording layer 91 on a substrate 90 made of a resin material such as polycarbonate.
  • a light transmitting layer 92 that transmits light and a lubricating layer 93 that considers contact with members on the optical pickup side are sequentially laminated.
  • the light transmitting layer 92 and the lubricating layer 93 are irradiated with ultraviolet rays after being applied for curing during their formation.
  • the lubricating layer is formed of a silicone compound and a fluorine compound having a radical polymerizable double bond.
  • the properties as a lubricating layer may be inferior when formed from the above materials. In such a case, if the reaction initiator is not added, it is difficult to perform hardening by irradiation with ultraviolet light. A quality lubrication layer cannot be formed.
  • the present invention can easily cure at least a part of a resin layer such as a surface layer and / or a light-transmitting layer under the material that is difficult to cure by ultraviolet irradiation.
  • An object is to provide an electron beam irradiation device and an electron beam irradiation method.
  • a disk-shaped body in which at least a part of a resin layer such as a surface layer and / or a light-transmitting layer below the surface layer made of a material that is difficult to cure by ultraviolet irradiation can be efficiently formed on the disk-shaped body. It is an object of the present invention to provide an apparatus and a method for manufacturing a disc-shaped body.
  • An object of the present invention is to provide an electron beam irradiation apparatus and an electron beam irradiation method that can be easily executed.
  • a first electron beam irradiation apparatus includes: a rotation driving unit that rotationally drives an object to be rotated; a shielding container that rotatably houses the object to be rotated; An electron beam irradiator provided in the shielding container so that an electron beam is radiated from the irradiation window to the surface of the rotating object. Irradiating an electron beam from the irradiation window.
  • the first electron beam irradiation apparatus since the surface of the rotating object is irradiated with the electron beam, the surface of the rotating object can be efficiently irradiated with the electron beam having energy larger than that of ultraviolet rays. Can be. For this reason, for example, at least a part of a surface layer and / or an underlayer such as a light transmission layer thereunder that can be hardened by ultraviolet irradiation can be easily hardened.
  • the light transmitting layer is made of resin as a main component, and corresponds to a shelf layer in the present invention.
  • This resin layer may be formed of a plurality of layers.
  • a hard coat layer may be provided on the surface side of the layer mainly composed of resin, and these may be combined with a layer mainly composed of resin. I do.
  • the surface layer may be formed of a material different from the resin-based layer, for example, a lubricating layer forming material or a water-repellent or oil-repellent material. Good.
  • the lubricating layer is one form of the surface layer in the present invention. In the following, the terms resin layer and lubrication layer are used in the same sense as described above.
  • the electron beam irradiation section In the first electron beam irradiation apparatus, it is preferable that the electron beam irradiation section generates an electron beam with a low acceleration voltage, and it is particularly preferable that the acceleration voltage is 20 to 100 kV. Thereby, particularly, the electron beam energy is efficiently applied to, for example, the lubricating layer in a thin range from the surface, and the base material and the like existing thereunder are not affected by the electron beam.
  • the inside of the shielding container is made to have an atmosphere of an inert gas such as a nitrogen gas, an argon gas, or a mixed gas thereof, and the gas inlet and the gas outlet are shielded so that the inert gas flows near the irradiation window.
  • an inert gas such as a nitrogen gas, an argon gas, or a mixed gas thereof
  • the gas inlet and the gas outlet are shielded so that the inert gas flows near the irradiation window.
  • it is provided in a container.
  • the irradiation window can be cooled by the flow of the inert gas.
  • the vicinity of the irradiation window can be controlled to a certain temperature or lower.
  • an oxygen concentration meter for measuring the oxygen concentration in the shielding container. Is preferred. This makes it possible to confirm that the oxygen concentration in the shielding container is lower than a certain level.For example, it is difficult for the radical reaction to be inhibited by oxygen near the irradiated surface of the rotating body to be irradiated with the electron beam, and good curing is achieved. Reaction can be secured. Further, it is preferable that a vacuum device for reducing the pressure inside the shielding container is provided. This makes it possible to irradiate the electron beam in the shielding container reduced to a predetermined pressure, and to easily and efficiently replace the inside of the shielding container with an inert gas atmosphere.
  • the rotating member has a disk shape, and can irradiate an electron beam to at least a region of the surface extending in a radial direction. For this reason, by simply arranging the electron beam irradiating section in one radial direction, it is possible to easily and efficiently irradiate the entire rotating disk-shaped rotating object with the electron beam. Note that a plurality of electron beam irradiation units may be arranged to irradiate an electron beam at a plurality of radial positions.
  • the rotating object has a disk shape
  • the electron beam irradiation unit includes a plurality of electron beam irradiation tubes, and each of the electron beam irradiation tubes irradiates a plurality of regions on the surface with an electron beam.
  • a plurality of electron beam irradiation tubes may be arranged so as to be arranged on the same straight line in one radial direction, and at least one may be arranged at a position deviated from the same straight line in one radial direction. All of them may be arranged so as not to be on the same straight line in one radial direction.
  • a shirt member is disposed between the irradiation window and the surface of the rotating member, and the shutter member is moved between an open position where the electron beam from the irradiation window is transmitted and a closed position where the electron beam is blocked. It is preferable to perform control so that the surface of the rotating object is switched between irradiation and non-irradiation of the electron beam by being moved by the shutter driving mechanism. This makes it easy to control the irradiation of the electron beam.
  • the shielding container is openable and closable, is made of a metal material such as steel or stainless steel, and has a shielding structure for shielding electron beams from the irradiation window.
  • the electron beam and the secondary X-ray can be shielded, and the electron beam and the secondary X-ray do not leak to the outside, which is preferable in terms of safety measures against exposure.
  • a second electron beam irradiation apparatus includes: a rotation driving unit that rotationally drives a rotating body; a shielding container that rotatably houses the rotating body; and an electron beam that is directed to a surface of the rotating body.
  • An electron beam irradiator provided in the shielding container so as to be radiated from the irradiation window; and an electron beam irradiator disposed between the irradiation window and the surface of the rotator, and transmitting the electron beam from the irradiation window.
  • a shuttable member movable between an open position to open and a closed position to close so as to block, and the shutoff member to switch between irradiation and non-irradiation of the electron beam during rotation of the rotating body.
  • a rotating mechanism for moving the rotating body wherein the rotating body has a disk shape, and is configured to irradiate an electron beam from the irradiation window to a region extending in one radial direction of the surface.
  • the second electron beam irradiation apparatus since the surface of the rotating object is irradiated with the electron beam, the surface of the rotating object can be efficiently irradiated with the electron beam having energy larger than that of ultraviolet rays. Can be. Therefore, for example, a layer having lubricity (a lubricating layer) made of a material that is difficult to cure by ultraviolet irradiation can be easily cured.
  • the control of switching between irradiation and non-irradiation of the electron beam can be easily performed by the shutter member, and since there is no need to control the power supply of the electron beam irradiation unit to be turned on / off, the startup time of the electron beam irradiation unit is unnecessary. It is efficient when electron beam irradiation is repeated.
  • the rotating object has a disk shape, and irradiates the region extending in the radial direction of the surface with the electron beam from the irradiation window. Electron beam easily and efficiently over the entire disk-shaped rotating object Can be irradiated.
  • the electron beam irradiation unit includes a plurality of electron beam irradiation tubes arranged in the radial direction.
  • the radial direction in this case may be either a direction extending radially from the rotation center of the rotated object or a direction extending from the point eccentric to the rotation center of the rotated object toward the outer periphery of the rotated object: the vertical direction.
  • the plurality of electron beam irradiation tubes can be arranged so that the distribution of the irradiation beam intensity of the electron beam becomes substantially uniform in the radial direction.
  • the time of the electron beam irradiation it is preferable to control the time of the electron beam irradiation according to the radial position of the rotating body so that the distribution of the integrated irradiation dose by the electron beam irradiation becomes substantially uniform in the radial direction. .
  • the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation due to the difference in the speed at the radial position on the surface of the rotating body can be corrected to be uniform.
  • the shut-off member when the shut-off member is opened, it starts to open at the outer peripheral position on the surface of the rotating body and gradually opens to the inner peripheral position, thereby increasing the irradiation time on the outer peripheral side where the peripheral speed is high, Since the irradiation time can be shortened on the inner peripheral side where the peripheral speed is slow, the above-mentioned uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be corrected to be substantially uniform.
  • the shirt member be closed by moving in the direction opposite to the opening direction.
  • the irradiation time refers to the time during which the rotating object is actually irradiated with the electron beam as described above.
  • an opening is provided so as to extend in the radial direction, and the opening and closing of the opening is performed by moving the shirt material to switch between irradiation and non-irradiation of the electron beam.
  • the time of the electron beam irradiation is controlled in accordance with the relative position of the rotating member and the moving speed of the shutter member in accordance with the relative position of the electron beam and the moving speed of the shutter member.
  • the irradiation time can be shortened on the inner circumference side where the speed is slow, the radius of the integrated
  • the non-uniform distribution in the directions can be corrected to be substantially uniform.
  • the plurality of electron beam irradiation tubes can be arranged such that the irradiation beam intensity of the electron beam in the radial direction has a distribution such that it is large on the outer periphery and smaller on the inner periphery.
  • the irradiation line intensity is increased on the outer peripheral side where the peripheral speed is high, and is decreased on the inner peripheral side where the peripheral speed is low, so that the radial position on the surface of the rotating object can be reduced.
  • the uneven distribution in the radial direction of the integrated irradiation dose of electron beam irradiation caused by the difference in speed can be corrected to be almost uniform.
  • the shutter member by configuring the shutter member to open and close at a relatively high speed higher than the rotation speed of the object to be rotated, the difference in irradiation time when opening and closing the shutter member can be ignored.
  • electron beam irradiation can be performed so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the rotating body, and the entire irradiated surface of the rotating body is almost uniformly irradiated. Since energy is given by the electron beam, for example, the resin layer can be uniformly and instantly and efficiently cured.
  • an opening is provided so as to extend in the radial direction, and the opening and closing of the opening is performed by moving the shutter member, so that irradiation and non-irradiation of the electron beam are performed. It can be configured to switch.
  • the opening is preferably formed in at least one of the shirt member and another member provided between the irradiation window and the surface of the rotating member.
  • an object to be rotated housed in a hermetically sealable shielding container is driven to rotate, and an electron beam is irradiated on a rotating surface of the object to be rotated by an electron beam irradiation unit. Irradiation is performed from an irradiation window.
  • the surface of the rotating object to be rotated is irradiated with the electron beam, so that the object to be rotated can be efficiently irradiated with an electron beam having energy larger than that of ultraviolet rays. it can. Therefore, for example, a lubricating layer or the like made of a material that is difficult to harden by ultraviolet irradiation can be easily hardened.
  • the electron beam irradiation unit generates an electron beam having an acceleration voltage of 20 to 10 OkV. Thereby, particularly, the electron beam energy is efficiently applied to, for example, the lubricating layer in a thin region from the surface, and the base material and the like existing thereunder are not affected by the electron beam.
  • the inside of the shielding container can be easily and efficiently made to have an inert gas atmosphere. it can.
  • the flow rate of the inert gas while measuring the oxygen concentration in the shielding container, and to pass the inert gas from the gas inlet to the gas outlet through the vicinity of the irradiation window. It is preferable to cool the vicinity of the irradiation window by flowing.
  • the cooling temperature is controlled by adjusting the flow rate of the inert gas based on a temperature measured by a temperature sensor provided near the irradiation window.
  • the rotating body has a disk shape, and irradiates an electron beam to at least a region of the surface extending in a radial direction.
  • the rotating member has a disk shape, and a plurality of electron beam irradiation tubes of the electron beam irradiation unit irradiate a plurality of regions on the surface with electron beams.
  • the cover member is moved. It is preferable to switch between irradiation and non-irradiation of the electron beam on the rotating body. This makes it easy to control the irradiation of the electron beam, and there is no need to control the power of the electron beam irradiator on and off.
  • the electron beam irradiation method is accommodated in a sealable container.
  • the method includes a step of irradiating an electron beam from the irradiation window, and a step of stopping the electron beam irradiation by interrupting the electron beam by moving the shutter member after the irradiation of the electron beam for a predetermined time.
  • the surface of the rotating object since the surface of the rotating object is irradiated with the electron beam, the surface of the rotating object can be efficiently irradiated with an electron beam having energy larger than that of ultraviolet rays. Can be.
  • a lubricating layer made of a material that is difficult to cure by ultraviolet irradiation can be easily cured.
  • switching control of electron beam irradiation / non-irradiation can be easily performed by the shutter member, and there is no need to control the power of the electron beam irradiation unit, so there is no need to start up the electron beam irradiation unit. This is efficient when electron beam irradiation is repeated.
  • the electron beam irradiation unit has an acceleration voltage of 200 kV to 100 kV.
  • the electron beam energy is efficiently applied to, for example, the resin layer in a thin range from the surface, and the base material and the like located thereunder are not affected by the electron beam.
  • the inside of the shielding container can be easily and efficiently made to have an inert gas atmosphere. it can.
  • the inert gas it is preferable to introduce the inert gas while measuring the oxygen concentration in the shielding container, and to flow the inert gas from the gas inlet to the gas outlet through the vicinity of the irradiation window. It is preferable to cool the vicinity of the irradiation window.
  • the cooling temperature is controlled by adjusting the flow rate of the inert gas based on a temperature measured by a temperature sensor provided near the irradiation window.
  • the rotating object has a disk shape, and a region extending in a radial direction of the surface.
  • the region is irradiated with an electron beam from the irradiation window.
  • a plurality of electron beam irradiators may be arranged to irradiate electron beams at a plurality of radial locations.
  • the electron beam irradiation can be performed by a plurality of electron beam irradiation tubes arranged in a radial direction of the surface as the electron beam irradiation unit.
  • the plurality of electron beam irradiation tubes are arranged so that the distribution of the irradiation intensity of the electron beam in the radial direction is substantially uniform, and the distribution of the integrated irradiation dose by the electron beam irradiation is the radius. It is preferable that the time of the electron beam irradiation is controlled in accordance with the radial position of the rotating body so as to be substantially uniform in the direction. Thereby, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation caused by the difference in the speed at the radial position on the surface of the rotating body can be corrected so as to be substantially uniform.
  • the irradiation time is increased on the outer circumferential side having a faster circumferential speed, and Since the irradiation time can be shortened on the slow inner circumference side, the above-described uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be corrected to be substantially uniform.
  • the shirt member be closed by moving the shirt member in a direction opposite to the opening direction.
  • the plurality of electron beam irradiation tubes are arranged in such a manner that the irradiation beam intensity of the electron beam in the radial direction is large on the outer side and smaller on the inner side, so that the rotation speed is constant.
  • the irradiation beam intensity is increased on the outer peripheral side where the peripheral speed is high, and is decreased on the inner peripheral side where the peripheral speed is low.
  • the uneven distribution of the integrated irradiation dose in the radial direction can be corrected to be almost uniform.
  • the shutter member by configuring the shutter member to open and close at a relatively high speed higher than the rotation speed of the object to be rotated, the difference in irradiation time when opening and closing the shutter member can be ignored.
  • the integrated irradiation dose of electron beam irradiation in the radial direction of the Electron beam irradiation can be performed so as to be evenly distributed, and the entire surface to be irradiated of the rotating object is uniformly irradiated with the electron beam energy.
  • the lubricating layer is uniformly and instantaneously and efficiently cured. it can.
  • a first disk-shaped body manufacturing apparatus includes the above-described first or second electron beam irradiation device, wherein the rotating object is a disk-shaped body, and a translation layer formed thereon is provided. Z or a layer having lubricity is cured by the electron beam irradiation.
  • the disk-shaped body manufacturing apparatus since the rotating disk-shaped body is irradiated with the electron beam, the disk-shaped body is efficiently irradiated with the electron beam having energy larger than that of the ultraviolet light. can do. For this reason, the resin layer and the Z or lubricating layer made of a material that is difficult to cure by ultraviolet irradiation can be easily cured and can be efficiently formed on the disk-shaped body.
  • a first method for manufacturing a disk-shaped body according to the present invention uses the above-described electron beam irradiation apparatus, or uses the above-described electron beam irradiation method, and forms the object to be rotated as a disk-shaped body thereon.
  • the cured resin layer and z or lubricating layer are cured by the electron beam irradiation.
  • the disk-shaped object since the rotating disk-shaped object is irradiated with an electron beam, the disk-shaped object has more energy than ultraviolet light. Can be efficiently irradiated. Therefore, a resin layer, a lubricating layer, and the like made of a material that is difficult to cure by ultraviolet irradiation can be easily cured, and can be efficiently formed on a disk-shaped body.
  • an electron beam having an acceleration voltage of 20 to 100 kV is used to efficiently apply electron beam energy to the resin layer in a thin range from the surface. It does not affect the underlying substrate and the like by the electron beam.
  • the method of manufacturing the disk-shaped body further includes a step of forming a lubrication layer on the disk-shaped body before the irradiation, which is performed before the electron beam irradiation step. It can be hardened by electron beam irradiation.
  • a second apparatus for manufacturing a disk-shaped object according to the present invention includes a disk-shaped object housed in a first rotating portion provided in an openable and closable shielding container, and an electron beam is applied to the disk-shaped object.
  • An electron beam irradiator that irradiates from the irradiation window of the beam irradiator, and a replacement room that can accommodate the disk-shaped body in the second rotating unit and that can be independently sealed and opened and closed with respect to the shielding container.
  • a rotating unit configured to rotate the first rotating unit in the shielding container and the second rotating unit in the replacement chamber to exchange the two rotating units with each other. It is characterized by doing.
  • the disk-shaped body is irradiated with an electron beam having energy larger than that of ultraviolet rays.
  • a lubricating layer or the like made of a material that is difficult to harden can be easily cured.
  • the disc-shaped body after irradiation is discharged, and the disk-shaped body before irradiation is supplied. Since the discs can be replaced efficiently, productivity is improved.
  • a third apparatus for manufacturing a disk-shaped body according to the present invention is arranged such that the disk-shaped body is accommodated in a first rotating portion provided in an openable and closable shielding container, is driven to rotate, and the disk-shaped body is being rotated.
  • An electron beam irradiator that irradiates the surface with an electron beam from the irradiation window of the electron beam irradiator, and a disk-shaped body that can be accommodated in the second rotating part and that is independently sealed and sealed with respect to the shielding container.
  • the disk-shaped body can be efficiently irradiated with the electron beam having energy larger than that of the ultraviolet light.
  • a lubricating layer or the like made of a material that is difficult to cure by ultraviolet irradiation can be easily hardened.
  • the disc-shaped body after irradiation is discharged and the disk-shaped body before irradiation is supplied. Since both discs can be exchanged efficiently, productivity is improved.
  • the electron beam irradiation unit generates an electron beam having an acceleration voltage of 20 to 100 kV.
  • the electron beam energy is efficiently applied to, for example, the lubricating layer in a thin region from the surface, and the base material and the like located thereunder are not affected by the electron beam.
  • the surface of the disc-shaped body moved into the shielding container is irradiated with an electron beam from the electron beam irradiating portion.
  • the first rotating portion of the shielding container accommodating the disc-shaped body is moved to the replacement room by rotating.
  • the shielding container forms a first sealed space together with the first or second rotating part, and includes a fixing part provided with the electron beam irradiation part
  • the replacement chamber includes the second or first part.
  • a third rotating portion that forms a second sealed space together with the rotating portion and to which a disk-shaped body can be attached / detached, wherein the first rotating portion is fixed to the fixed portion with the chamber sealed.
  • the disc-shaped body is replaced by moving the second rotating part with respect to the third rotating part, while the third rotating part holds the disk-shaped body.
  • the disc-shaped body after irradiation is ejected, and another fourth rotating unit is rotated toward the second rotating unit and irradiated before irradiation. It is preferable to perform the replacement so that the disk-shaped member is supplied to the second rotating portion.
  • an electron beam irradiation is performed from the electron beam irradiation unit in the first closed space during the replacement of the disk-shaped body by the third and fourth rotating units.
  • a shutter member is disposed between an irradiation window of the electron beam irradiation unit and the surface of the disk-shaped body, and a position where the electron beam from the irradiation window is transmitted and a position where the electron beam is blocked from the irradiation member are defined. It is preferable to perform control so as to switch between irradiation and non-irradiation of the electron beam on the surface of the disk-shaped body by moving the disk-shaped member between them by a shutter drive mechanism.
  • the pressure in the replacement chamber is reduced before the atmosphere is replaced with an inert gas atmosphere. Further, it is preferable that the irradiation window is cooled by allowing an inert gas to flow near the irradiation window.
  • the shielding container is made of a metal material, and is provided with a shielding portion for shielding an electron beam at a portion where the first rotating portion and the fixed portion are joined.
  • an acceleration voltage is applied to a rotating surface of a disk-shaped object housed in a rotating part in an enclosed space while rotating the disk-shaped object. Irradiating an electron beam of up to 100 kV; opening the sealed space, rotating the rotating portion, and interlocking with this operation, another rotating portion accommodating another disk-shaped body. Rotating the disk to exchange the disk-shaped body after irradiation with the disk-shaped body before irradiation.
  • the surface of the rotating disk-shaped object is irradiated with the electron beam, so that the disk-shaped object is efficiently irradiated with the electron beam having energy larger than that of the ultraviolet light. Therefore, for example, a lubricating layer or the like made of a material that is difficult to cure by ultraviolet irradiation can be easily cured.
  • the disc-shaped body after irradiation is discharged and the disk-shaped body before irradiation is supplied and both discs are supplied. Since the shapes can be exchanged efficiently, productivity is improved.
  • the electron beam energy is efficiently applied to a thin layer from the surface, for example, to a lubricating layer, and the electron beam is applied to a base material and the like below the surface. Has no effect.
  • the second method for manufacturing a disk-shaped body further includes a step of forming a resin layer and / or a lubricating layer on the disk-shaped body before the irradiation, wherein the resin layer and / or the lubricating layer is formed by the electron beam. It can be cured by irradiation.
  • FIG. 1 is a side sectional view schematically showing an electron beam irradiation apparatus according to the first embodiment.
  • FIG. 2 is a plan view schematically showing a shutter member and a shutter drive mechanism of the electron beam irradiation apparatus of FIG.
  • FIG. 3 is a block diagram showing a control system of the electron beam irradiation apparatus of FIG.
  • FIG. 4 is a flowchart showing the operation of the electron beam irradiation apparatus of FIG.
  • FIG. 5 is a side view schematically showing an apparatus for manufacturing a disk-shaped medium according to the second embodiment.
  • FIG. 4 is a cross-sectional view illustrating a step immediately before electron beam irradiation for forming a lubricating layer and the like on a disk-shaped medium.
  • FIG. 6 is a side sectional view similar to FIG. 5, and illustrates electron beam irradiation for forming a lubricating layer and the like on a disk-shaped medium and a process of replacing the disk-shaped medium with the outside.
  • FIG. 7 is a side sectional view similar to FIG. 5 and illustrates a process of irradiating an electron beam for forming a lubricating layer or the like on the disk-shaped medium and replacing the disk-shaped medium with the outside.
  • FIG. 8 is a side sectional view similar to FIG. 5, showing a preparation process of a replacement process inside the disc-shaped medium for forming a lubricating layer or the like on the disc-shaped medium (decompression and nitrogen gas replacement in the replacement chamber).
  • FIG. 8 is a side sectional view similar to FIG. 5, showing a preparation process of a replacement process inside the disc-shaped medium for forming a lubricating layer or the like on the disc-shaped medium (decompression and nitrogen gas replacement in the replacement chamber).
  • FIG. 9 is a side sectional view similar to FIG. 5, and is a view for explaining a replacement process inside a disk-shaped medium for forming a lubricating layer and the like on the disk-shaped medium.
  • FIG. 10 is an enlarged cross-sectional view showing the shielding portion 55 in the manufacturing apparatus shown in FIGS.
  • FIG. 11 is a flowchart showing each step of irradiating the disk-shaped medium with the electron beam and each step of discharging and supplying the disk-shaped medium in the manufacturing apparatus of FIGS. 5 to 9.
  • FIG. 12 is a diagram illustrating an example of a layer configuration of an optical disc that can be manufactured by the manufacturing apparatus in FIGS. 5 to 9.
  • FIG. 13 is a plan view showing a modified example in which a plurality of electron beam irradiation tubes are arranged on the rotating body in FIG.
  • FIG. 14A, FIG. 14B, and FIG. 14C are plan views showing another modified example in which a plurality of electron beam irradiation tubes are arranged on the rotating body in FIG.
  • FIG. 15 is a plan view schematically showing a shutter member and a shutter drive mechanism of the electron beam irradiation apparatus according to the third embodiment.
  • 16 is a partial plan view schematically showing a first arrangement example of the electron beam irradiation tube with respect to the rotating body in the electron beam irradiation apparatus of FIG. 15, and FIG. 16B is an electron beam in the first arrangement example.
  • FIG. 4 is a distribution diagram schematically showing an irradiation intensity distribution of FIG.
  • FIG. 17A is a partial plan view schematically showing a second arrangement example of the electron beam irradiation tubes 31 to 33 with respect to the rotating body 2 in the electron beam irradiation apparatus of the third embodiment.
  • FIG. 9 is a distribution diagram schematically showing an electron beam irradiation line intensity distribution in a second arrangement example.
  • FIG. 18 is a partial plan view similar to FIG. 17A showing a modified example of a shirt member preferably applied to a case having an electron beam irradiation intensity distribution as shown in FIG. 17B.
  • FIG. 19A is a partial plan view showing a modification of the first arrangement example of the electron beam irradiation tube with respect to the rotating body in the electron beam irradiation apparatus of the third embodiment, and FIG. 19B is a modification of the modification.
  • FIG. 3 is a distribution diagram schematically showing an irradiation intensity distribution of an electron beam.
  • FIG. 20 is a plan view of the shirt member of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a side view schematically showing an electron beam irradiation apparatus according to an embodiment of the present invention
  • FIG. 2 is a plan view schematically showing a shutter member and a shutter drive mechanism of the electron beam irradiation apparatus in FIG.
  • FIG. 3 is a block diagram showing a control system of the electron beam irradiation apparatus of FIG. 1
  • FIG. 4 is a flowchart showing an operation of the electron beam irradiation apparatus of FIG.
  • the electron beam irradiation device 1 includes a shielded container 10 made of stainless steel for rotatably housing the rotating body 2 and shielding the electron beam, and a center of the rotating body 2. The rotating body 2 held by engaging the hole with the engaging portion 4 is moved through the rotating shaft 3.
  • a motor 17 rotates by rotating the rotating body 2, an electron beam irradiating section 11 irradiates an electron beam from the irradiation window 11 a with a low acceleration voltage in a radial direction to the rotating body 2, and a voltage is applied to the electron beam irradiating section 11
  • the electron beam irradiator 1 includes an oxygen concentration meter 16 that measures the oxygen concentration in a closed space inside the shielding container 10 and a vacuum device that exhausts and depressurizes the shielding container 10 through a valve 19. 18, a nitrogen gas source 14 for supplying nitrogen gas to replace the inside of the shielding container 10 with a nitrogen gas atmosphere, and an irradiation window where nitrogen gas is introduced from the nitrogen gas source 14 through the gas inlet 25. And a gas flow control valve 15 capable of controlling a gas flow when flowing so as to be discharged from the gas discharge port 26 through the vicinity of 11 a.
  • the gas outlet 26 is provided with a valve (not shown).
  • the electron beam irradiator 1 further includes a disc 2 1 with an opening which is larger in diameter than the rotator 2 and is disposed between the rotator 2 and the irradiation window 11 a of the electron beam irradiator 11. And a shirt driving mechanism 20 having a shutter member 22 disposed between the disk 21 and the irradiation window 11a and a slider 23 for driving the shutter member 22.
  • the disc 21 has a fan-shaped opening 21a, and the electron beam from the electron beam irradiation unit 11 passes through the fan-shaped opening 21a in the radial direction of the rotating body 2. Irradiation is performed on a radial region 2a formed between the inner peripheral side and the outer peripheral side.
  • the shirt member 22 is formed in a rectangular shape from steel or stainless steel that shields an electron beam, and when driven in the sliding direction H of FIG. 2 by the slider 23, as shown by the broken line in FIG. Moved to the closed position to completely cover and close the fan-shaped opening 2 1a of the disk 2 1 and block the electron beam from the electron beam irradiator 11 1, and the electron beam enters the radial area 2 a of the rotating body 2 Not irradiated.
  • the opening 21a is completely retracted from the opening 21a and the opening 21a opens as shown by the solid line in FIG. Move to the open position and irradiate the electron beam 1
  • the electron beam from 1 is passed, and the electron beam is applied to the radial region 2 a of the rotating body 2.
  • the electron beam irradiation unit 11 includes columnar electron beam irradiation tubes 31, 32, and 33 arranged in the radial direction of the rotating body 2, and each electron beam irradiation tube 31, Each of 32, 33 has an elongated rectangular irradiation window 31b, 32b, 33b. Each of the irradiation windows 3 lb, 32b, 33b is arranged along a plurality of straight lines extending in the radial direction of the rotating body 2.
  • the outer peripheral end of the irradiation window 31b and the inner peripheral end of the irradiation window 32b are located on concentric circles, and similarly, the outer peripheral end of the irradiation window 32b and the irradiation window 33b are The inner peripheral end is located on a concentric circle, and the irradiation windows 31b, 32b, 33b are radially continuous with the surface of the rotating body 2.
  • a voltage is applied from the power supply 12 to each of the electron beam irradiation tubes 31 to 33, and an electron beam having an acceleration voltage of 20 to 100 kV is applied to each of the irradiation windows 31b, 32b, 33b in the radial direction of the rotating body 2.
  • Area 2a is irradiated.
  • the electron beam irradiation apparatus 1 shown in FIGS. 1 and 2 performs the electron beam irradiation while the whole is controlled by the control unit 30 as shown in FIG. 3, but each step of the operation of the electron beam irradiation apparatus 1 is performed. S01 to S11 will be described with reference to FIG.
  • the vacuum device 18 is operated to depressurize the inside of the shielding container 10 (S01), and the valve 19 is closed.
  • the gas is introduced from the source 14 into the shielding container 10 via the gas flow control valve 15 (S02). This makes it possible to easily replace the inside of the shielding container 10 with a nitrogen atmosphere.
  • the oxygen concentration meter 16 detects that the inside of the shielding vessel 10 has decreased to a predetermined oxygen concentration (S03), and drives the motor 17 to rotate the rotating body 2 at a predetermined rotation speed (S03). S 04).
  • a voltage is applied from the power supply 12 to the electron beam irradiation unit 11 (SO5) to generate an electron beam (SO6).
  • SO5 electron beam irradiation unit 11
  • SO6 electron beam
  • the shutter member 22 in the closed position indicated by the broken line in FIG. 2 is moved in the sliding direction H by operating the shutter drive mechanism 20 and driving the slider 23, and the opening 21a is opened and opened.
  • the position (S07) the amount of generation of the electron beam is controlled to be large, and the electron beam is irradiated on the surface of the rotating body 2 in the radial region 2a (SO8). Since the electron beam is irradiated in the radial direction of the rotating member 2 thus rotated, the entire surface of the rotating member 2 can be irradiated with the electron beam.
  • the shirt evening driving mechanism 20 is similarly operated to move the shirt evening member 22 in the sliding direction H to close and close the opening 21 a.
  • the electron beam irradiation on the object to be rotated 2 ends.
  • the nitrogen gas from the nitrogen gas source 14 passes through the vicinity of the irradiation window 1 1a from the gas inlet 25 and the gas outlet 2.
  • the irradiation window 11a whose temperature rises when an electron beam is generated, can be cooled, and the shirt member 22 can also be cooled.
  • the temperature near the irradiation window 11a is measured by the temperature sensor 24 and the temperature measuring device 13, and the flow rate of the nitrogen gas is controlled by the gas flow control knob 15 based on the measured temperature (S1). 1). Thereby, the temperature near the irradiation window 11a can be controlled to a certain temperature or lower.
  • the surface of the rotating object 2 is irradiated with the electron beam, so that the surface of the rotating object 2 has an energy larger than that of the ultraviolet light. Can be efficiently irradiated.
  • a lubricating layer or the like made of a material that is difficult to harden by ultraviolet irradiation can be easily cured.
  • the electron beam is irradiated at a low accelerating voltage having an accelerating voltage of 20 to 100 kV, electron beam energy is efficiently applied to, for example, a lubricating layer in a thin range from the surface of the rotator 2.
  • the lower substrate and the like are not affected by the electron beam, so that the substrate and the like can be prevented from being deteriorated.
  • the electron beam is irradiated after the inside of the shielding container 10 has decreased to a predetermined oxygen concentration, the inhibition of the radical reaction by oxygen near the surface of the rotating body 2 to which the electron beam is irradiated hardly occurs. Good curing reaction can be ensured in the lubricating layer and the like.
  • FIG. 5 to FIG. 9 are side views of a manufacturing apparatus for explaining respective steps for forming a lubricating layer and the like on a disk-shaped medium in the present embodiment.
  • a disk-shaped medium manufacturing apparatus (hereinafter simply referred to as “manufacturing apparatus”) 50 uses a low acceleration voltage having an acceleration voltage of 20 to 100 kV.
  • An electron beam irradiator 1 that generates an electron beam and irradiates the surface of the disc-shaped medium 49, and a disc-shaped medium 49 that supplies the disc-shaped medium 49 before irradiation to the electron beam irradiator 1 and irradiates it.
  • a rotating unit 54 rotated by a rotating shaft 53 for exchanging the disk-shaped medium before irradiation with the disk-shaped medium after irradiation.
  • a sealable chamber 51 Provided in a sealable chamber 51.
  • the manufacturing apparatus 50 further supplies a disk medium before irradiation to the replacement chamber 52 and transports the disk medium so as to discharge the disk medium after irradiation.
  • a transport device 60 is provided.
  • the shielding container 10 of FIG. 1 is a lower rotating tray portion 10 a configured in a tray shape so as to rotatably accommodate the disk-shaped medium 49, and an electronic device. It is divided into an upper fixed part 10b provided with a line irradiation part 11 and a shirt driving mechanism 20 and the like, and a rotating tray part 10a is a fixed part 10 as a first rotating part. It can be moved up and down and rotated by the rotating portion 54 with respect to b, and can be moved to the replacement room 52 side.
  • FIG. 10 is an enlarged sectional view showing the shielding portion 55.
  • a convex portion 55a is formed on the mating surface 10c of the rotating tray portion 10a on the entire circumference, and a mating surface 10c 'of the fixing portion 10b is formed on the mating surface 10c'.
  • a concave portion 55b is formed on the entire periphery so that the convex portion 55a can enter.
  • a depression 55c is further formed at the bottom of the concave portion 55b constituting the shielding portion 55, and the o-ring 56a is accommodated in the depression 55c to form a sealing portion 56.
  • the tightness of the hermetically sealed space 1a formed by combining the rotating tray portion 10a and the fixed portion 10b can be enhanced by the sealed portion 56.
  • the exchange chamber 52 is moved up and down and rotated by the rotating portion 54, moved to the electron beam irradiation device 1 side, and can be replaced with the rotating tray portion 10a, and is configured in a tray shape.
  • the rotating tray portion 52 a as a second rotating portion, and a transport rotating so as to receive the disk-shaped medium before irradiation by the disk transfer device 60 and discharge the disk-shaped medium after irradiation to the outside.
  • a rotating tray section 52b as a second rotating portion, and a transport rotating so as to receive the disk-shaped medium before irradiation by the disk transfer device 60 and discharge the disk-shaped medium after irradiation to the outside.
  • the chamber 51 has an end 51 a and a connecting part 51 b which constitute a part of the replacement room 52.
  • the end 5 1 a and the connecting portion 5 1 b are interposed between the rotating tray portion 5 2 a of the replacement room 52 and the transport rotating tray portion 5 2 b to form a mating surface, and the inside of the replacement room 52 is formed.
  • a closed space 52 c is formed in the chamber 51, and the transport rotation tray section 52 b constitutes a part of the chamber 51.
  • the mating surface between the end portion 51a and the transport rotation tray portion 52b and the mating surface between the connecting portion 51b and the transport rotation tray portion 52b are sealed with O-rings. Section 57 is provided. Also, the mating surface between the end portion 51a and the rotating tray portion 52a and the mating surface between the connecting portion 51b and the rotating tray portion 52a are respectively shown in FIG. The same shielding part 55 and sealing part 56 are provided.
  • the chamber 51 is connected to the fixed portion 10b on the end side of the electron beam irradiation device 1, the connecting portion 51b is connected to the fixed portion 10b near the center, and the transport rotating tray portion 5 2 Since b is sealed by the end portion 51a and the connecting portion 51b, it is possible to seal as a whole. Further, the chamber 51, the transfer rotating tray section 52b (62), the rotating tray section 10a, the fixed section 10b, and the like are made of steel or stainless steel, and shield the electron beam. The wires are not leaked to the outside.
  • Nitrogen gas can be introduced into the chamber 51 from the nitrogen gas inlet 58, and the sealed space 52c in the replacement room 52 can be depressurized by the vacuum device 59. With the entire chamber 51 sealed as shown in Fig. 9, the rotating part 54 moves downward with the rotating tray parts 10a and 52a in the figure, and the sealed spaces 1a and 52c are opened. In this case, since the replacement room 52 is in a state of being replaced with nitrogen gas, the inside of the chamber 51 does not affect the nitrogen gas atmosphere in the closed space 1 a of the electron beam irradiation device 1.
  • nitrogen gas can be introduced into the replacement room 52 from the nitrogen gas inlet port 59b. Further, the nitrogen gas in the chamber 51 can be discharged from the gas discharge port 58a.
  • the disk transport device 60 includes another transport rotation tray portion 62 that can be replaced with the transport rotation tray portion 52 b constituting the exchange chamber 52, and a transport rotation tray portion. And a rotating portion 64 that rotates the 5 2 b and 62 through the rotating shaft 63.
  • Each of the transport rotation tray sections 52b and 62 has a suction section 61 for vacuum-sucking the disk medium 49 near the center hole of the disk medium 49.
  • the rotating capital 64 transports the disk-shaped medium between the exchange chamber 52 and the external disk delivery unit 70 by vertical movement and rotation.
  • the disc-shaped medium 49 supplied from the disc delivery unit 70 to the replacement chamber 52 has an external spin coater on which a light-transmitting layer containing a resin material is formed and a lubricating layer made of lubricant is formed on it. Have been.
  • An active energy ray-curable compound is used as a material for forming the light transmitting layer. It is not particularly limited as long as it has, but it preferably has at least one reactive group selected from a (meth) acryloyl group, a pinyl group and a mercapto group. In addition, it may contain a known photopolymerization initiator.
  • Examples of the material for forming the lubricating layer include, but are not limited to, a silicone compound having a radical polymerizable double bond and a fluorine compound. These lubricating layer forming materials are generally difficult to harden by ultraviolet rays when they do not contain a photopolymerization initiator, but can be instantaneously cured by electron beams.
  • electron beam irradiation to the disk-shaped medium and discharge and supply of the disk-shaped medium will be described separately with reference to FIGS. 5 to 9 and the flowcharts of FIGS. Will be explained.
  • the entire chamber 51 is sealed, and the rotating shaft 53 and the rotating part 54 are moved together with the rotating tray parts 10a and 52a in the lower part of the figure.
  • the closed space la, 52c is opened, nitrogen gas is introduced into the chamber 51 from the nitrogen gas inlet 58, and the inside is replaced with a nitrogen gas atmosphere (S21). .
  • the nitrogen gas can be replaced while the oxygen concentration in the chamber 51 is measured by the oxygen concentration meter 16.
  • the disk-shaped medium 49 is rotated by the motor 17 in the enclosed space 1a (S22), and the electron beam irradiation unit 11 generates a predetermined amount of electron beams. (S23), the nitrogen gas flows from the gas inlet 25 to the gas outlet 26 while passing near the irradiation window 11a.
  • the shutter member 22 by opening the shutter member 22 by the shirt driving mechanism 20 (S24), the light transmission layer of the rotating disk-shaped medium 49 from the electron beam irradiation unit 11 is opened.
  • the surface on which the lubricating layer is formed is irradiated with an electron beam (S25).
  • the shutter member 22 is closed by the shutter drive mechanism 20 (S26) as shown in FIG.
  • the irradiation ends.
  • This makes it possible to obtain a disk-shaped medium 49a having a lubricating layer fixed to the surface of the light-transmitting layer of the disk-shaped medium 49. This is probably because the reactive group of the lubricant is bonded (hardened) with the reactive group of the lubricant and the surface of the light transmitting layer as the light transmitting layer is cured.
  • the disk transport device 60 moves the rotating shaft 63 and the rotating portion 64 upward in FIG.
  • the disc-shaped medium 49a is lifted from the rotating tray section 52a together with 2b, and at the same time, the disc-shaped medium 49 together with the suction section 61 and the transport rotating tray section 62 is transferred from the disc transfer section 70. lift.
  • the position of the transport rotation tray portions 52b and 62 is switched by rotating the rotation portion 64 around the rotation shaft 63 (S33).
  • the disk transport device 60 moves the rotating shaft 63 and the rotating part 64 downward in FIG. Put it in the tray section 52a (S34).
  • the disk-shaped medium 49a is transferred to the disk transfer unit 70 (S35), and the suction units 61 stop the suction of the S-disk media 49, 49a and move upward in the figure.
  • the disc-shaped medium 4 9a is outside the disc delivery section 70 (S36).
  • the irradiated disk-shaped medium 49a is transported from the replacement room 52 to the disk transfer unit 70, and at the same time, the disk-shaped medium 49 before irradiation is transferred from the disk transfer unit 70 to the replacement room.
  • the disk medium 49 can be exchanged by one rotation of the rotation shaft 63 and the rotation part 64.
  • the operation of exchanging the disk-shaped medium between the exchange room 52 and the electron beam irradiation apparatus 1 will be described. That is, as shown in FIG. 8 described above, the disk-shaped medium 49 before irradiation is accommodated in the rotating tray portion 52 a of the exchange room 52, and the electron beam irradiation device 1 rotates by the motor 17.
  • the disk-shaped medium 49a which has been stopped and the electron beam irradiation has been completed, is accommodated in the rotating tray unit 10a, the rotating shaft 53 and the rotating unit 54 are arranged as shown in FIG. By moving downward, the rotating tray portions 52a and 10a are moved downward to open the closed spaces 52c and la.
  • the exchange of the disk-shaped media 49, 49a between the exchange room 52 and the electron beam irradiation apparatus 1 is performed by one rotation of the rotation shaft 53 and the rotation part 54. Can do Wear. Then, as the rotating shaft 53 and the rotating portion 54 move upward in the figure, the rotating tray portions 52a and 10a are moved upward, and as shown in FIG. , 1a are formed again, and the electron beam irradiation apparatus 1 returns to the above-described step S22, and the replacement room 52 returns to the above-described step S30, and the same operation can be repeated.
  • the rotating shaft 3 of the motor 17 is retracted downward from the rotating portion 54 and the rotating tray portion 10a when the rotating shaft 53 and the rotating portion 54 are rotated. And the rotating portion 54 can rotate.
  • the disk-shaped medium 49 having a surface on which a lubricating layer or the like is formed is rotated, and the acceleration voltage is applied on the rotating disk-shaped medium. Is irradiated with an electron beam at a low acceleration voltage of 20 to 100 kV, so that a disk-shaped medium can be instantaneously and efficiently irradiated with an electron beam having energy larger than that of ultraviolet rays.
  • the lubricating layer, etc. which is difficult to harden, can be easily cured and fixed, the lubricating layer, etc. can be formed instantaneously, and the productivity of forming the lubricating layer, etc. can be improved, contributing to the improvement of the productivity of the disk-shaped medium. .
  • the rotation tray sound and the other rotation tray unit are interlocked with each other by one rotation of the rotation tray unit, so that both rotation tray sounds are exchanged with each other, so that after irradiation, Since the disc-shaped medium 49a can be discharged and the disc-shaped medium 49 before irradiation can be supplied and can be efficiently replaced, the productivity is improved.
  • the electron beam energy is efficiently applied to a lubricating layer or the like in a thin range from the surface, and a base existing thereunder.
  • the material is not affected by the electron beam.
  • electron beam irradiation tubes 31 to 33 for electron beam irradiation at a low accelerating voltage which constitute the electron beam irradiation unit 11 of the electron beam irradiation apparatus 1 are commercially available from Petio Electric Co., Ltd.
  • acceleration voltage of 50 KV, tube current of 0.6 mAZ In this case, it is possible to efficiently apply electron beam energy to the lubricating layer, resin layer, etc. within a depth range of about 10 to 20 m from the surface, and it is possible to cure instantaneously and efficiently in less than one second.
  • the lubricating layer 93 of the optical disc as shown in FIG.
  • the portion of the light transmitting layer 92 which is in contact with the lubricating layer 93 can be simultaneously formed.
  • the base material 90 made of a resin material such as polycarbonate is not damaged and discolored. ⁇ No adverse effects such as deformation and deterioration.
  • the window material for the irradiation windows 3 lb, 32b, and 33b of each electron beam irradiation tube 31, 32, and 33 is preferably a silicon thin film with a thickness of about 3 m, which cannot be taken out with conventional irradiation windows.
  • An electron beam accelerated by a calo with a low accelerating voltage of kV or less can be taken out.
  • the positions of the plurality of electron beam irradiation tubes are not limited to those shown in FIG. 2, and may be arranged so as to be at different relative positions with respect to the rotating body 2.
  • a plurality of electron beam irradiation tubes 31, 32, and 33 may be arranged at substantially equal angular intervals with respect to the rotating body 2 so that the irradiation windows 31b to 33b are concentric.
  • the electron beam irradiation tubes 31, 32, and 33 may be arranged so as to be shifted to the inner side, the middle, and the outer side in order.
  • a plurality of electron beam irradiation tubes 31, 32 may be arranged so as to be arranged on a straight line extending in the radial direction.
  • the plurality of electron beam irradiation tubes 31 and 32 may be arranged on a plurality of straight lines extending separately in the radial direction.
  • a plurality of electron beam irradiation tubes 32 and 33 may be arranged on a straight line extending in the radial direction, and another electron beam irradiation tube 31 may be arranged on another straight line extending in the radial direction.
  • the irradiation windows 31b to 33b are arranged along a straight line in the radial direction radiating from the center of the rotating shaft 3.
  • the present invention is not limited to this. May be arranged.
  • FIG. 15 is a plan view schematically showing a shutdown member and a shutdown drive mechanism of the electron beam irradiation apparatus according to the third embodiment.
  • the electron beam irradiation apparatus has the same configuration as that of FIGS. 1, 2, and 3 except that the arrangement of a plurality of electron beam irradiation tubes is different. The description of the components is omitted.
  • the electron beam irradiation unit 11 in FIG. 1 includes columnar electron beam irradiation tubes 3 1, 3 2, 3 3 arranged in the radial direction of the rotating body 2.
  • the irradiation tube 31 is arranged on the inner peripheral side, and the electron beam irradiation tubes 32 and 33 are arranged so as to be at substantially the same radial position on the outer peripheral side.
  • FIG. 16A is a partial plan view schematically showing a first arrangement example of the electron beam irradiation tube with respect to the rotating body in the electron beam irradiation apparatus of FIG. 15, and FIG. 16B is an electron beam in the first arrangement example.
  • FIG. 3 is a distribution diagram schematically showing an irradiation intensity distribution of a line.
  • the electron beam irradiation tubes 31, 32, and 33 are arranged so as to substantially fit within the opening 21 a of the disk 21, but the electron beam irradiation tubes 32, 3 3 is such that their center positions 3 2a and 3 3a are arranged at substantially the same radial position on the outer peripheral side with respect to the rotating body 2 (the radial distance from the center of the rotating body 2) r 2
  • the center position 31 a of the electron beam irradiation tube 31 is disposed at a radial position r 1 on the inner peripheral side with respect to the rotating body 2.
  • the irradiation intensity of the electron beam is distributed in the direction of the radial position r of the rotating body 2 as shown in Fig. 16B.
  • the distribution is such that the intensity of the irradiation of the electron beam is relatively large on the outer periphery and relatively smaller on the inner periphery.
  • V 1 (2% r l) Zt (1)
  • the peripheral speed differs according to the radial position r of the surface of the rotating body 2 as in Equation (3). Therefore, the electron beam irradiation shows a non-uniform distribution such that the integrated irradiation dose is large on the inner circumference side and smaller on the outer circumference side in the radial region 2a, but the electron beam irradiation tubes 31, 32, By arranging 33, the irradiation intensity of the electron beam is relatively large on the outer periphery and relatively smaller on the inner periphery as shown in Fig. 16B. The distribution can be corrected and relatively uniform.
  • the moving speed when the shutter member 22 is opened and closed by the slider 23 with the drive mechanism 20 is relatively high, and is much higher than the rotation speed of the rotating body.
  • the difference in irradiation time when opening and closing can be ignored.
  • the positions of the electron beam irradiation tubes 31 to 33 in FIG. 16A may be adjusted so that the distribution of the integrated irradiation dose of the electron beam irradiation is made more uniform.
  • the electron beam irradiation apparatus shown in FIGS. 15, 16A, and 16B performs the electron beam irradiation while the whole is controlled by the control unit 30 as shown in FIG. It can operate in the same manner as 01 to S11.
  • the electron beam energy is efficiently applied to, for example, a resin layer in a thin range from the surface of the rotating body 2 and exists below the rotating body.
  • the effect of the electron beam is not exerted on the substrate and the like, and the deterioration of the substrate and the like can be prevented.
  • switching control between irradiation and non-irradiation of the electron beam can be easily executed by the shutter drive mechanism 20 and the shutter member 22.
  • electron beam irradiation can be performed so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the rotator 2, and the irradiating surface of the rotator 2 is uniformly uniform as a whole. Since energy can be given by the electron beam, for example, the resin layer can be uniformly and efficiently cured.
  • FIG. 17A is a partial plan view schematically showing a second arrangement example of the electron beam irradiation tubes 31 to 33 with respect to the rotating body 2 in the electron beam irradiation apparatus according to the third embodiment.
  • B is a distribution diagram schematically showing an electron beam irradiation intensity distribution in the second arrangement example.
  • the electron beam irradiation tubes 31, 32, and 33 have their center positions 31a, 32a, and 33a positioned at the radial position r11 of the rotating body 2.
  • R 12, and r 13 are arranged so as to fit within the opening 21 a of the disk 21 at substantially equal intervals in the radial direction of the rotating body 2.
  • the electron beam irradiation tubes 3 1, 3 2, 3 3 are arranged in this way, the irradiation beam intensity of the electron beam is distributed almost uniformly in the direction of the radial position r of the rotating body 2 as shown in FIG. 17B. .
  • the peripheral speed differs as in Equation (4) depending on the radial position r of the surface of the rotating body 2, and as shown in FIG.
  • the integrated irradiation dose of the irradiation dose in the radial region 2a of the rotating body 2 is large on the inner peripheral side and smaller on the outer peripheral side. Therefore, the distribution of the integrated irradiation dose in the radial region 2a is controlled to be almost uniform by configuring 15 shirt noises as shown in Fig. 18.
  • FIG. 18 is a partial plan view similar to FIG. 17A showing a modification of the shirt member
  • FIG. 20 is a plan view of the shirt member of FIG.
  • the shutter member 28 is formed in a disk shape that can rotate in the opening direction R and the opposite closing direction R ′ around the rotation shaft 29, It is cut out in a substantially semicircular shape, has a cutout 28b as shown by a broken line, and has a linearly formed end 28a.
  • the shutter member 28 may have a substantially three-quarter circle shape or the like as shown by a dashed line in FIG.
  • the rotation shaft 29 of the shut-off member 28 is located at an eccentric position with respect to the rotation center 2 (corresponding to the rotation shaft 3) of the rotating body. Further, the shirt driving mechanism 20 is provided with a motor (not shown) that can be rotated forward and backward, and the rotating shaft 29 is rotated in the opening direction R and the closing direction R ′ to move the shirt member 28 to open and close. I do.
  • the shutter member 28 covers the opening 21a at the closed position of the solid line in FIG. 18 and blocks the electron beam, so that the electron beam is not irradiated. From this state, rotate the shirt evening member 2 8 When turning in the opening direction R around the center 9, the opening 21a is gradually opened from the end 28a of the notch 28b.
  • the shirt member 28 moves, its end 28a reaches the outer peripheral end 2lb of the opening 21a, and after passing the end position 41 (of the end 28a) indicated by a dashed line.
  • the opening 21a is opened from the vicinity of the outer peripheral end 21b.
  • the end member 28a of the shutter member 28 moves through the opening 21a while moving to the end positions 42, 43, and 44 shown by the dashed line in FIG. Open from the outer circumference to the inner circumference.
  • the shirt evening member 28 almost opens the opening 21a at the end position 45.
  • the rotation speed of the shutter member 28 that rotates as described above is set to be the same as or equal to the rotation speed of the rotating body 2 that rotates in the rotation direction S during electron beam irradiation. Therefore, the irradiation dose of the electron beam irradiated while the shirt member 28 is rotating and opening the opening 21a cannot be ignored, but as described above, the opening 21a is moved from the outer circumference to the inner circumference. Side, the electron beam irradiation time in the radial direction region 2a of the rotating body 2 is relatively long on the outer circumference side and relatively short on the inner circumference side. The uneven distribution in the radial direction of the integrated irradiation dose can be corrected and made relatively uniform.
  • the shirt evening member 28 is rotated in the rotation direction R, which is opposite to the rotation direction, at the same rotation speed as when the shirt member 28 is opened, as shown in FIG.
  • the opening 21a is closed while moving to the end positions 45, 44, 43, 42, 41 opposite to the above.
  • the electron beam irradiation time in the radial region 2a of the rotating body 2 is relatively long on the outer peripheral side. Relatively short on the inner circumference side. Therefore, the uneven distribution in the radial direction of the integrated irradiation dose of the electron beam irradiation can be further corrected, and can be made relatively uniform.
  • the position of the rotating shaft 29 of the shutter member 28, the shape of the end 28a, and the shape of the opening 21a are appropriately adjusted so that the total irradiation dose of the electron beam irradiation can be adjusted in the radial direction. Can be made more uniform. Further, the positions of the electron beam irradiation tubes 31 to 33 in FIG. 17A may be finely adjusted so as to make the distribution of the integrated irradiation dose of the electron beam irradiation more uniform.
  • FIG. 19A shows another arrangement example of the electron beam irradiation tubes 31 to 33 in FIG. 16A.
  • the radial position of the electron beam irradiation tube 33 in Fig. 16A is shifted inward from the electron irradiation tube 32, and the electron beam irradiation shown in Fig. 19B is performed.
  • the intensity distribution may be used.
  • the number of the electron beam irradiation tubes is three.
  • the number of the electron beam irradiation tubes may be one or two, or four or more.
  • the required electron beam irradiation intensity distribution can be obtained by adjusting the arrangement interval in the radial direction.
  • the electron beam irradiation apparatus according to the third embodiment can be applied to the disk-shaped medium manufacturing apparatus shown in FIGS. 5 to 10 in the same manner as the electron beam irradiation apparatus shown in FIG.
  • the manufacturing apparatus for the disk-shaped medium irradiates the disk-shaped medium with an electron beam in steps S 21 to S 26, and discharges and supplies the disk-shaped medium from S 30 to S 41. Since the operation can be performed, the same effects as those of the manufacturing apparatus 50 of FIGS. 5 to 9 can be obtained.
  • electron beam irradiation can be performed so that the integrated irradiation dose of electron beam irradiation is distributed almost uniformly in the radial direction of the rotator 2, and the irradiating surface of the rotator 2 is uniformly uniform as a whole. Since the energy can be given by the electron beam, the lubricating layer can be uniformly and efficiently cured.
  • the control of switching between electron beam irradiation and non-irradiation can be easily performed by the shirt driving mechanism 20 and the shirt member 22 shown in FIG. 15, and the power supply 12 of the electron beam irradiation unit 11 is turned on and off. Since there is no need for control, the startup time of the electron beam irradiator 11 is not required, and the disk-shaped media 49 are supplied to the electron beam irradiator one after another, making it possible to efficiently repeat continuous electron beam irradiation. Do it and increase productivity.
  • the term “rotation” does not mean that the object to be rotated continuously rotates in one direction (or the opposite direction) as in the case of rotation, but a predetermined amount in one direction or the opposite direction.
  • the “radial direction” of the rotating body means a direction extending radially from the rotation center of the rotating body and a direction extending from the point eccentric to the rotation center of the rotating body to the outer periphery of the rotating body.
  • the present invention has been described with the embodiments. However, the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention.
  • the present invention may be applied to curing a resin layer other than the lubricating layer. For example, it may be applied to form only the light transmitting layer 92 below the lubricating layer 93 in FIG. 12, which can be cured instantaneously, is efficient, and contributes to an improvement in productivity.
  • the rotating object that can be irradiated with an electron beam by the electron beam irradiation device may be any of various disk-shaped objects.
  • the disk-shaped object that can be manufactured by the manufacturing apparatus 50 may be a disk-shaped medium such as an optical disk.
  • the present invention is, of course, applicable to the case where various resin layers are formed on a disk-shaped body other than a medium.
  • the electron beam irradiation section 11 of the electron beam irradiation section 11 is considered in consideration of the layer thickness on the surface to be irradiated with the electron beam. It is preferable to determine the tube voltage or the like of the tube. Further, the number of electron beam irradiation tubes constituting the electron beam irradiation unit 11 can be appropriately increased or decreased according to the size or area of the surface to be irradiated.
  • the gas for replacing the atmosphere in the chamber or the electron beam irradiation apparatus is not limited to nitrogen gas, and may be an inert gas such as argon gas or helium gas.
  • the mixed gas described above may be used.
  • an electron beam can be efficiently irradiated to a to-be-rotated body, such as a disk-shaped object,
  • An irradiation method can be provided.
  • the present invention provides a disk-shaped body manufacturing apparatus and a disk-shaped body manufacturing method capable of efficiently forming a lubricating layer, a resin layer, and the like made of a material that is difficult to cure by ultraviolet irradiation. it can.
  • a rotating body such as a disk-shaped body
  • an electron beam For example, the material which is difficult to harden by ultraviolet irradiation can be hardened easily. It is possible to provide an electron beam irradiation apparatus and an electron beam irradiation method that can easily switch between irradiation and non-irradiation of a beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

紫外線照射では硬化が困難である材料による表面層及び/又はその下の光透過層等の樹脂層の少なくとも一部をも容易に硬化できる電子線照射装置及び電子線照射方法である。紫外線照射では硬化が困難である材料による表面層及び/又はその下の光透過層等の樹脂層の少なくとも一部をディスク状体上に効率よく形成できるようにしたディスク状体の製造装置及びディスク状体の製造方法である。電子線照射装置1は、被回転体2を回転駆動する回転駆動部17と、被回転体を回転可能に収容する遮蔽容器10と、被回転体の表面に対し電子線がその照射窓11aから照射されるように遮蔽容器に設けられた電子線照射部11とを具備し、被回転体の回転中にその表面に電子線照射部の照射窓から電子線を照射する。これにより、回転中の被回転体の表面に対し紫外線よりも大きなエネルギを有する電子線を効率よく照射できる。

Description

明細^ 電子線照射装置、 電子線照射方法、 ディスク状体の製造装置及びディスク状 体の製造方法 技術分野
本発明は、 電子線照射のための電子線照射装置、 電子線照射方法、 ディスク 状体の製造装置及びディスク状体の製造方法に関する。 背景技術
従来、 光情報記録媒体として C D (コンパクトディスク) や D VD (デジ夕 ルバーサタイルディスク) 等の光ディスクが実用化されているが、 最近、 発振 波長が 4 0 0 nm程度の青紫色半導体レーザの開発が進んでおり、 かかる青紫 色半導体レーザを用いて D VDよりも高密度記録の可能な高密度 D VD等の次 世代の高密度光ディスクの開発が行われている。
力、かる次世代の高密度光ディスクの現在考えられている層構成の例を図 1 2 に示す。 この高密度光ディスクは、 ポリカーボネート等の樹脂材料からなる基 材 9 0の上に、 情報記録のための記録層 9 1と、 記録 ·再生のためのレーザ光 が記録層 9 1に入射するように透過する光透過層 9 2と、 光ピックアップ側の 部材との接触を考慮した潤滑層 9 3とが順に積層されている。
これらの光透過層 9 2及び潤滑層 9 3は、 それらの形成時に硬化のために塗 布後に紫外線が照射されるが、 特に潤滑層をラジカル重合性二重結合を有する シリコーン化合物及びフッ素化合物等の材料から形成する場合に、 反応開始剤 を添加すると潤滑層としての特性が劣る場合があり、 このような場合反応開始 剤を添加しないと、 紫外線照射では硬ィ匕が困難であり、 充分な品質の潤滑層を 形成することができない。 (特開平 4— 0 1 9 8 3 9号公報、開平 1 1— 1 6 2 0 1 5号公報、 特開平 7— 2 9 2 4 7 0号公報、 特開 2 0 0 0— 6 4 0 4 2公 報参照) 発明の開示
本発明は、 上述のような従来技術の問題に鑑み、 紫外線照射では硬化が困難 である材料による表面層及び/又はその下の光透過層等の樹脂層の少なくとも 一部をも容易に硬化できる電子線照射装置及び電子線照射方法を提供すること を目的とする。
また、 紫外線照射では硬化が困難である材料による表面層及び/又はその下 の光透過層等の樹脂層の少なくとも一部をディスク状体上に効率よく形成でき るようにしたディスク状体の製造装置及びディスク状体の製造方法を提供する ことを目的とする。
また、 紫外線照射では硬化が困難である材料による表面層及び Z又はその下 の光透過層等の樹脂層の少なくとも一部をも容易に硬化でき、 また、 電子線の 照射 ·非照射の切り換えを簡単に実行できる電子線照射装置及び電子線照射方 法を提供することを目的とする。
更に、 電子線の照射 '非照射の切り換えを簡単に実行でき、 紫外線照射では 硬化が困難である材料による表面層及び Z又はその下の光透過層等の樹脂層の 少なくとも一部をディスク状体上に効率よく形成できるようにしたディスク状 体の製造装置及びディスク状体の製造方法を提供することを目的とする。
【課題を解決するための手段】
上記目的を達成するために、 本発明による第 1の電子線照射装置は、 被回転 体を回転駆動する回転駆動部と、 前記被回転体を回転可能に収容する遮蔽容器 と、 前記被回転体の表面に対し電子線がその照射窓から照射されるように前記 遮蔽容器に設けられた電子線照射部と、 を具備し、 前記被回転体の回転中にそ の表面に前記電子線照射部の照射窓から電子線を照射することを特徴とする。 この第 1の電子線照射装置によれば、 回転中の被回転体の表面に対し電子線 を照射するので、 被回転体の表面に紫外線よりも大きなエネルギを有する電子 線を効率よく照射することができる。 このため、 例えば、 紫外線照射では硬化 が困難である材料による表面層及び/又はその下の光透過層等の翻旨層の少な くとも一部を容易に硬化できる。
なお、 光透過層は主成分として樹脂が用いられ、 本発明における棚旨層に相 当する。 この樹脂層は複数の層から形成されていてもよく、 例えば樹脂を主成 分とする層の表面側にハードコ一ト層を設けてもよく、 これらを合わせて樹脂 を主成分とする層とする。 また、 表面層は、 樹脂を主成分とする層と異なる材 料、例えば潤滑層形成材料や撥水 'I生、撥油性の材料から形成されていてもよく、 また、 単数層でも複数層でもよい。 潤滑層は本発明における表面層の定謹こ含 まれる一形態である。 以下においては、 上述のような意味で樹脂層や潤滑層の 用語を用いる。
上記第 1の電子線照射装置において、 前記電子線照射部は低加速電圧による 電子線を発生することが好ましく、 特に、 その加速電圧が 2 0乃至 1 0 0 k V であることが好ましい。 これにより、 特に、 表面から薄い範囲に例えば潤滑層 に効率よく電子線エネルギを与え、 その下方に存在する基材等に電子線による 影響を与えない。
また、 前記遮蔽容器内を例えば窒素ガスやアルゴンガスやこれらの混合ガス 等の不活性ガスの雰囲気とし、 前記照射窓の近傍に不活性ガスが流れるように ガス導入口及びガス排出口を前記遮蔽容器に設けることが好ましい。 この不活 性ガスの流れにより照射窓を冷却することができる。
この場合、 前記照射窓の近傍に温度センサを設け、 前記温度センサによる測 定温度に基づいて前記不活性ガスの流量を調整することにより、 照射窓の近傍 を一定温度以下に制御できる。
また、 前記遮蔽容器内の酸素濃度を測定するための酸素濃度計が設けられて いることが好ましい。 これにより、 遮蔽容器内が一定の酸素濃度以下であるこ とが確認でき、 例えば、 電子線の照射される被回転体の照射表面近傍での酸素 によるラジカル反応阻害が発生し難くなり、 良好な硬化反応を確保できる。 また、 前記遮蔽容器内を減圧するための真空装置が設けられていることが好 ましい。 これにより、 所定圧力に減圧した遮蔽容器内で電子線照射を行うこと が可能となり、 また、 遮蔽容器内を不活性ガスの雰囲気に置換することを簡単 かつ効率的に行うことができる。
また、 前記被回転体はディスク形状を有し、 前記表面の少なくとも一半径方 向に延びる領域に電子線を照射するようにできる。 このため、 電子線照射部を 一半径方向に配置するだけで、 回転中のディスク状の被回転体の全体に簡単か つ効率的に電子線を照射することができる。 なお、 複数の電子線照射部を配置 し、 複数の半径方向箇所で電子線を照射するようにしてもよい。
また、 前記被回転体はディスク形状を有し、 前記電子線照射部は複数の電子 線照射管を備え、 前記各電子線照射管が前記表面の複数の領域にそれぞれ電子 線を照射するようにしてもよい。 この場合、 複数の電子線照射管を一半径方向 に同一直線上に並ぶように配置してもよく、 また少なくとも 1つを一半径方向 の同一直線から外れた位置に配置してもよく、 また全部を一半径方向の同一直 線上にはないように配置してもよい。
また、 前記照射窓と前記被回転体の表面との間にシャツ夕部材を配置し、 前 記シャッ夕部材を前記照射窓からの電子線が透過する開位置と遮られる閉位置 との間をシャッ夕駆動機構により移動させることで前記被回転体の表面に対す る電子線の照射と非照射とを切り換えるように制御することが好ましい。 これ により、 電子線の照射の制御を簡単に実行できる。
この場合、 前記シャッタ部材が前記開位置のとき前記電子線の発生量を大き くし、 前記シャツ夕部材が前記閉位置のとき前記電子線の発生量を小さくする ように切り換えることが好ましい。 また、 前記遮蔽容器は開閉可能であり、 鉄鋼やステンレス鋼等の金属材料か ら構成されるとともに前記照射窓からの電子線を遮蔽する遮蔽構造を有するこ とが好ましい。 これにより、 電子線及び 2次 X線を遮蔽することができ、 電子 線及び 2次 X線が外部に漏れず、被爆に対する安全性の対策上好ましい。なお、 前記遮蔽構造の近傍に前記遮蔽容器を密閉するための密閉構造を設けることが 好ましく、 これにより、 密閉構造を構成する〇リング等の材料に対して電子線 が遮蔽され、 電子線照射による材料劣化が起きない。
本発明による第 2の電子線照射装置は、 被回転体を回転駆動する回転駆動部 と、 前記被回転体を回転可能に収容する遮蔽容器と、 前記被回転体の表面に対 し電子線がその照射窓から照射されるように前記遮蔽容器に設けられた電子線 照射部と、 前記照射窓と前記被回転体の表面との間に配置され、 前記照射窓か らの電子線を透過するように開く開位置と遮るように閉じる閉位置との間で移 動可能なシャッ夕部材と、 前記被回転体の回転中に前記電子線の照射と非照射 とを切り換えるように前記シャッ夕部材を移動させるシャッ夕駆動機構と、 を 具備し、 前記被回転体はディスク形状を有し、 前記表面の一半径方向に延びる 領域に前記照射窓から電子線を照射するように構成したことを特徴とする。 この第 2の電子線照射装置によれば、 回転中の被回転体の表面に対し電子線 を照射するので、 被回転体の表面に紫外線よりも大きなエネルギを有する電子 線を効率よく照射することができる。 このため、 例えば、 紫外線照射では硬化 が困難である材料による潤滑性を有する層 (潤滑層) 等を容易に硬化できる。 また、 シャッタ部材により電子線の照射 ·非照射の切り換え制御を簡単に実行 でき、 また、 電子線照射部の電源をオンオフ制御する必要がないので、 電子線 照射部の立ち上げ時間が不要であり電子線照射を繰り返すときに効率的である。 また、 前記被回転体はディスク形状を有し、 前記表面の半径方向に延びる領域 に前記照射窓から電子線を照射するため、 電子線照射部を一半径方向に配置す るだけで、 回転中のディスク状の被回転体の全体に簡単かつ効率的に電子線を 照射することができる。
上記第 2の電子線照射装置において、 前記電子線照射部は前記半径方向に配 置された複数の電子線照射管を備えることが好ましい。 なお、 この場合の半径 方向は、 被回転体の回転中心から放射状に延びる方向及び被回転体の回転中心 から偏心した点から被回転体の外周に延びる: ¾向のどちらであってもよい。 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強度の 分布がほぼ均一になるような配置にできる。 この場合、 前記電子線照射による 積算照射線量の分布が前記半径方向においてほぼ均一になるように前記被回転 体の半径位置に応じて前記電子線照射の時間を制御するように構成することが 好ましい。 これにより、 被回転体の表面の半径位置で速度が異なることに起因 する電子線照射の積算照射線量の半径方向における不均一な分布を均一になる ように補正できる。
例えば、 前記シャッ夕部材が開くときに前記被回転体の表面の外周位置で開 き始め次第に内周位置へと開くように構成することで、 周速度の速い外周側で 照射時間を長くし、 周速度の遅い内周側で照射時間を短くできるので、 上述の 電子線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になる ように補正できる。 なお、 この場合、 前記シャツタ部材が開き方向と反対方向 に移動することで閉じられる構成にすることが好ましい。 また、 本発明におい て照射時間とは、 上記のように被回転体に電子線が実際に照射される時間のこ とを指す。
また、 例えば、 前記半径方向に延びるように開口部を設け、 前記シャツ夕部 材の移動により前記開口部を開閉することで前記電子線の照射と非照射とを切 り換えるとともに、 前記シャッタ部材と前記開口部との相対位置及び前記シャ ッタ部材の移動速度により前記被回転体の半径位置に応じて前記電子線照射の 時間を制御することで、 速度の速い外周側で照射時間を長くし、 速度の遅い内 周側で照射時間を短くできるので、 上述の電子線照射の積算照射線量の半径方 向における不均一な分布をほぼ均一になるように補正できる。
また、 前記複数の電子線照射管は前記半径方向において前記電子線の照射線 強度が外周側で大きく内周側で小さくなるような分布となるように配置にでき る。 これにより、 一定の回転速度で回転する被回転体において周速度の速い外 周側で照射線強度を大きくし、 周速度の遅い内周側で小さくするので、 被回転 体の表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量 の半径方向における不均一な分布をほぼ均一になるように補正できる。
この場合、 前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高 速度で開閉するように構成することで、 シャッタ部材を開閉するときの照射時 間の違いを無視できる。
以上のように、 被回転体の半径方向において電子線照射の積算照射線量がほ ぼ均一に分布するように電子線照射を行うことができ、 被回転体の被照射面全 体にほぼ均一に電子線によるエネルギが与えられるので、 例えば、 樹脂層を均 一に瞬時に効率的に硬化できる。
また、 上述の第 2の電子線照射装置では、 前記半径方向に延びるように開口 部を設け、 前記シャッタ部材の移動により前記開口部を開閉することで前記電 子線の照射と非照射とを切り換えるように構成できる。 この場合、 前記開口部 は前記シャツ夕部材及び前記照射窓と前記被回転体の表面との間に設けられた 別部材の少なくとも一方に形成されることが好ましい。
本発明による第 1の電子線照射方法は、 密閉可能な遮蔽容器内に収容された 被回転体を回転駆動し、 前記被回転体の回転中の表面に対し電子線を電子線照 射部の照射窓から照射することを特徴とする。
この第 1の電子線照射方法によれば、 回転中の被回転体の表面に対し電子線 を照射するので、 被回転体上に紫外線よりも大きなエネルギを有する電子線を 効率よく照射することができる。 このため、 例えば、 紫外線照射では硬ィ匕が困 難である材料による潤滑層等を容易に硬ィ匕できる。 上記第 1の電子線照射方法において、 前記電子線照射部は加速電圧が 2 0乃 至 1 0 O k Vである電子線を発生することが好ましい。 これにより、 特に、 表 面から薄い範囲に例えば潤滑層に効率よく電子線エネルギを与え、 その下方に 存在する基材等に電子線による影響を与えない。
また、 前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガ ス雰囲気に置換することで、 遮蔽容器内を簡単かつ効率的に不活性ガスの雰囲 気とすることができる。 ,
また、 前記遮蔽容器内の酸素濃度を測定しながら前記不活性ガスの流量を制 御することが好ましく、 また、 前記不活性ガスをガス導入口からガス排出口に 向けて前記照射窓の近傍を通して流すことにより前記照射窓の近傍を冷却する ことが好ましい。
また、 前記照射窓の近傍に設けた温度センサによる測定温度に基づいて前記 不活性ガスの流量を調整することで冷却温度を制御することが好ましい。 また、 前記被回転体はディスク形状を有し、 前記表面の少なくとも一半径方 向に延びる領域に電子線を照射することが好ましい。 また、 前記被回転体はデ イスク形状を有し、 前記電子線照射部の複数の電子線照射管が前記表面の複数 の領域にそれぞれ電子線を照射することが好ましい。
また、 前記照射窓と前記被回転体の表面との間に配置したシャッ夕部材を前 記照射窓からの電子線が透過する開位置と遮られる閉位置との間を移動させる ことで前記被回転体上に対する電子線の照射と非照射とを切り換えることが好 ましい。 これにより、 電子線の照射の制御を簡単に実行でき、 また、 電子線照 射部の電源をオンオフ制御する必要がない。
この場合、 前記シャッ夕部材が前記開位置のとき前記電子線の発生量を大き くし、 前記シャツタ部材が前記閉位置のとき前記電子線の発生量を小さくする ように切り換えることが好ましい。
本発明による第 2の電子線照射方法は、 密閉可能な遮蔽容器内に収容された 被回転体を回転駆動するステツプと、 前記被回転体の表面と電子線照射部の照 射窓との間に設けられたシャツ夕部材を移動させて前記被回転体の回転中の表 面に対し前記照射窓から電子線を照射するステツプと、 所定時間の電子線照射 後に前記シャッタ部材の移動により前記電子線を遮り前記電子線照射を停止す るステップと、 を含むことを特徴とする。
この第 2の電子線照射方法によれば、 回転中の被回転体の表面に対し電子線 を照射するので、 被回転体の表面に紫外線よりも大きなエネルギを有する電子 線を効率よく照射することができる。 このため、 例えば、 紫外線照射では硬化 が困難である材料による潤滑層を容易に硬化できる。 また、 シャツタ部材によ り電子線の照射 ·非照射の切り換え制御を簡単に実行でき、 また、 電子線照射 部の電源をオンオフ制御する必要がないので、 電子線照射部の立ち上げ時間が 不要であり電子線照射を繰り返すときに効率的である。
上記第 2の電子線照射方法において、 前記電子線照射部は加速電圧が 2 0乃 至 1 0 0 k Vであることが好ましい。 これにより、 特に、 表面から薄い範囲に 例えば樹脂層に効率よく電子線エネルギを与え、 その下方に存在する基材等に 電子線による影響を与えない。
また、 前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガ ス雰囲気に置換することで、 遮蔽容器内を簡単かつ効率的に不活性ガスの雰囲 気とすることができる。
また、 前記遮蔽容器内の酸素濃度を測定しながら前記不活性ガスを導入する ことが好ましく、 また、 前記不活性ガスをガス導入口からガス排出口に向けて 前記照射窓の近傍を通して流すことにより前記照射窓の近傍を冷却することが 好ましい。
また、 前記照射窓の近傍に設けた温度センサによる測定温度に基づいて前記 不活性ガスの流量を調整することで冷却温度を制御することが好ましい。 また、 前記被回転体はディスク形状を有し、 前記表面の半径方向に延びる領 域に前記照射窓から電子線を照射することが好ましい。 なお、 複数の電子線照 射部を配置し、 複数の半径方向箇所で電子線を照射するようにしてもよい。 この場合、 前記電子線照射は前記電子線照射部として前記表面の半径方向に 配置された複数の電子線照射管により行うことができる。
また、 前記複数の電子線照射管は前記半径方向において前記電子線の照射線 強度の分布がほぼ均一になるように配置されるとともに、 前記電子線照射によ る積算照射線量の分布が前記半径方向においてほぼ均一になるように前記被回 転体の半径位置に応じて前記電子線照射の時間を制御することが好ましい。 これにより、 被回転体の表面の半径位置で速度が異なることに起因する電子 線照射の積算照射線量の半径方向における不均一な分布をほぼ均一になるよう に補正でき、 例えば、 前記シャツ夕部材が開くときに前記被回転体の表面の外 周位置で開き始め次第に内周位置へと開くことにより前記時間を制御すること で、 周速度の速い外周側で照射時間を長くし、 周速度の遅い内周側で照射時間 を短くできるので、 上述の電子線照射の積算照射線量の半径方向における不均 一な分布をほぼ均一になるように補正できる。 なお、 この場合、 前記シャツタ 部材を開き方向と反対方向に移動させることで閉じることが好ましい。 また、 前記複数の電子線照射管は前記半径方向において前記電子線の照射線 強度が外周側で大きく内周側で小さくなるような分布となるように配置される ことにより、 一定の回転速度で回転する被回転体において周速度の速い外周側 で照射線強度を大きくし、 周速度の遅い内周側で小さくするので、 被回転体の 表面の半径位置で速度が異なることに起因する電子線照射の積算照射線量の半 径方向における不均一な分布をほぼ均一になるように補正できる。
この場合、 前記シャッタ部材を前記被回転体の回転速度よりも速い比較的高 速度で開閉するように構成することで、 シャッタ部材を開閉するときの照射時 間の違いを無視できる。
以上のように、 被回転体の半径方向において電子線照射の積算照射線量がほ ぼ均一に分布するように電子線照射を行うことができ、 被回転体の被照射面全 体に均一に電子線によるエネルギが与えられるので、 例えば、 潤滑層を均一に 瞬時に効率的に硬化できる。
本発明による第 1のディスク状体の製造装置は、 上述の第 1または第 2の電 子線照射装置を備え、 前記被回転体をディスク状体として、 その上に形成され た翻旨層及び Z又は潤滑性を有する層を前記電子線照射により硬化させるよう に構成したことを特徴とする。
この第 1のディスク状体の製造装置によれば、 回転中のディスク状体上に対 し電子線を照射するので、 ディスク状体上に紫外線よりも大きなエネルギを有 する電子線を効率よく照射することができる。 このため、 紫外線照射では硬化 が困難である材料による樹脂層及び Z又は潤滑層を簡単に硬化できディスク状 体上に効率よく形成できる。
また、 シャッ夕部材により電子線の照射 ·非照射の切り換え制御を簡単に実 行でき、 また、 電子線照射部の電源をオンオフ制御する必要がないので、 電子 線照射部の立ち上げ時間が不要であり、 潤滑層形成のために多数のディスク状 体に対し電子線照射を効率的に繰り返すことができ、 生産性が向上する。 また、 ディスク状体の半径方向において電子線照射の積算照射線量をほぼ均 一に分布させるように電子線照射を行うことで、 ディスク状体の被照射面に対 し全体的に均一に電子線によるエネルギを与えることができるので、 潤滑層等 を均一に瞬時に効率的に硬ィヒできる。
本発明による第 1のディスク状体の製造方法は、 上述の電子線照射装置を用 いるか、 または、 上述の電子線照射方法を用い、 前記被回転体をディスク状体 として、 その上に形成された樹脂層及び z又は潤滑層を前記電子線照射により 硬化させることを特徴とする。
この第 1のディスク状体の製造方法によれば、 回転中のディスク状体上に対 し電子線を照射するので、 ディスク状体に紫外線よりも大きなエネルギを有す る電子線を効率よく照射することができる。 このため、 紫外線照射では硬化が 困難である材料による樹脂層、 潤滑層等を簡単に硬化できディスク状体上に効 率よく形成できる。
また、 シャッタ部材により電子線の照射 ·非照射の切り換え制御を簡単に実 行でき、 また、 電子線照射部の電源をオンオフ制御する必要がないので、 電子 線照射部の立ち上げ時間が不要であり、 樹脂層等形成のために多数のディスク 状体に対し電子線照射を効率的に繰り返すことができ、 生産性が向上する。 また、 ディスク状体の半径方向において電子線照射の積算照射線量をほぼ均 一に分布させるように電子線照射を行うことで、 ディスク状体の被照射面に対 し全体的に均一に電子線によるエネルギを与えることができるので、 潤滑層等 を均一に瞬時に効率的に硬化できる。
また、 上述のディスク状体の製造方法では、 加速電圧が 2 0乃至 1 0 0 k V である電子線を用いることで、 表面から薄い範囲に樹脂層に効率よく電子線ェ ネルギを与え、 その下方に存在する基材等に電子線による影響を与えない。 なお、 上記ディスク状体の製造方法は、 上記電子線照射ステップの前に実行 される、 前記照射前のディスク状体上に潤滑層を形成するステップを更に含む ことが好ましく、 前記潤滑層を前記電子線照射により硬ィ匕できる。
本発明による第 2のディスク状体の製造装置は、 開閉可能な遮蔽容器内に設 けられた第 1の回動部にディスク状体を収容しかつ前記ディスク状体上に対し 電子線を電子線照射部の照射窓から照射する電子線照射装置と、 ディスク状体 を第 2の回動部に収容できかつ前記遮蔽容器に対し独立して密閉及び開閉可能 な入替室と、 を備える密閉可能なチャンバと、 前記遮蔽容器内の第 1の回動部 と前記入替室内の第 2の回動部とを回動させることで前記両回動部を互いに入 れ替える回動部と、 を具備することを特徴とする。
この第 2のディスク状体の製造装置によれば、 ディスク状体に対し紫外線よ りも大きなエネルギを有する電子線を照射するため、 例えば、 紫外線照射では 硬ィ匕が困難である材料による潤滑層等を容易に硬化できる。 また、 第 1の回動 部と第 2の回動部との回動で両回動部を互いに入れ替えることにより、 照射後 のディスク状体を排出するとともに照射前のディスク状体を供給し両ディスク 状体を効率よく入れ替えることができるので、 生産性が向上する。
本発明による第 3のディスク状体の製造装置は、 開閉可能な遮蔽容器内に設 けられた第 1の回動部にディスク状体を収容し回転駆動しかつ前記ディスク状 体の回転中の表面に対し電子線を電子線照射部の照射窓から照射する電子線照 射装置と、 ディスク状体を第 2の回動部に収容できカゝっ前記遮蔽容器に対し独 立して密閉及び開閉可能な入替室と、 を備える密閉可能なチャンバと、 前記遮 蔽容器内の第 1の回動部と前記入替室内の第 2の回動部とを回動させることで 前記両回動部を互いに入れ替える回動部と、 を具備することを特徴とする。 この第 3のディスク状体の製造装置によれば、 回転中のディスク状体に対し 電子線を照射するので、 ディスク状体に紫外線よりも大きなエネルギを有する 電子線を効率よく照射することができるため、 例えば、 紫外線照射では硬化が 困難である材料による潤滑層等を容易に硬ィ匕できる。 また、 第 1の回動部と第 2の回動部との回動で両回動部を互いに入れ替えることにより、 照射後のディ スク状体を排出するとともに照射前のディスク状体を供給し両ディスク状体を 効率よく入れ替えることができるので、 生産性が向上する。
上記第 2及び第 3のディスク状体の製造装置において、 前記電子線照射部は 加速電圧が 2 0乃至 1 0 0 k Vである電子線を発生することが好ましい。 これ により、 特に、 表面から薄い範囲に例えば潤滑層に効率よく電子線エネルギを 与え、 その下方に存在する基材等に電子線による影響を与えない。
また、 前記入替室の第 2の回動部を回動することで前記遮蔽容器内に移動し たディスク状体の表面に対し前記電子線照射部から電子線を照射し、 前記電子 線照射後のディスク状体を収容した前記遮蔽容器の第 1の回動部を回動するこ とで前記入替室に移すように構成することが好ましい。 また、 前記遮蔽容器は前記第 1または第 2の回動部とともに第 1の密閉空間 を形成しかつ前記電子線照射部が設けられる固定部を備え、 前記入替室は前記 第 2または第 1の回動部とともに第 2の密閉空間を形成しかつディスク状体を 着脱可能な第 3の回動部を備え、 前記チヤンバが密閉された状態で前記第 1の 回動部が前記固定部に対し移動し、 前記第 2の回動部が前記第 3の回動部に対 し移動することで前記ディスク状体の入れ替えを行い、 前記第 3の回動部がデ イスク状体を保持しながら前記第 2の密閉空間を開放し回動することで照射後 のディスク状体を排出するとともに、 別の第 4の回動部が前記第 2の回動部に 向けて回動して照射前のディスク状体を前記第 2の回動部に供給するように入 れ替えを行うことが好ましい。
また、 前記第 3及び第 4の回動部によるディスク状体の入れ替えの間に前記 第 1の密閉空間内で前記電子線照射部から電子線照射を行うように構成するこ とが好ましい。
また、 前記電子線照射部の照射窓と前記ディスク状体の表面との間にシャッ 夕部材を配置し、 前記シャッ夕部材を前記照射窓からの電子線が透過する位置 と遮られる位置との間をシャッ夕駆動機構により移動させることで前記ディス ク状体の表面に対する電子線の照射と非照射とを切り換えるように制御するこ とが好ましい。
また、 前記入替室を減圧してから不活性ガスの雰囲気に置換するように構成 することが好ましい。 また、 前記照射窓の近傍に不活性ガスが流れるようにす ることで前記照射窓を冷却するように構成することが好ましい。
また、 前記遮蔽容器は金属材料から構成されるとともに前記第 1の回動部と 前記固定部との合わせ部分に電子線の遮蔽のための遮蔽部を備えることが好ま しい。
本発明による第 2のディスク状体の製造方法は、 密閉空間内で回動部に収容 されたディスク状体を回転駆動しながらその回転中の表面に加速電圧が 2 0乃 至 1 0 0 k Vである電子線を照射するステップと、 前記密閉空間を開放し前記 回動部を回動するとともにこの動作と連動して別のディスク状体を収容した別 の回動部を回動することで照射後のディスク状体と照射前のディスク状体とを 入れ替るステップと、 を含むことを特徵とする。
この第 2のディスク状体の製造方法によれば、 回転中のディスク状体の表面 に対し電子線を照射するので、 ディスク状体上に紫外線よりも大きなエネルギ を有する電子線を効率よく照射することができるため、 例えば、 紫外線照射で は硬化が困難である材料による潤滑層等を容易に硬化できる。 また、 回動部と 別の回動部との連動した回動で両回動部を互いに入れ替えることにより、 照射 後のディスク状体を排出するとともに照射前のディスク状体を供給し両ディス ク状体を効率よく入れ替えることができるので、 生産性が向上する。 また、 加 速電圧が 2 0乃至 1 0 0 k Vである電子線を用いるので、 表面から薄い範囲に 例えば潤滑層に効率よく電子線エネルギを与え、 その下方に存在する基材等に 電子線による影響を与えない。
上記第 2のディスク状体の製造方法は、 前記照射前のディスク状体上に樹脂 層及び/又は潤滑層を形成するステツプを更に含み、 前記樹脂層及び/又は前 記潤滑層を前記電子線照射により硬化することができる。 図面の簡単な説明
図 1は第 1の実施の形態による電子線照射装置を概略的に示す側断面図であ る。
図 2は図 1の電子線照射装置のシャッタ部材及びシャッ夕駆動機構を概略的 に示す平面図である。
図 3は図 1の電子線照射装置の制御系を示すプロック図である。
図 4は図 1の電子線照射装置の動作を示すフローチャートである。
図 5は第 2の実施の形態によるディスク状媒体の製造装置を概略的に示す側 断面図であり、 ディスク状媒体上に潤滑層等を形成するための電子線照射の直 前の工程を説明する図である。
図 6は図 5と同様の側断面図であり、 ディスク状媒体上に潤滑層等を形成す るための電子線照射及びディスク状媒体の外部との入替工程を説明する図であ る。
図 7は図 5と同様の側断面図であり、 ディスク状媒体上に潤滑層等を形成す るための電子線照射及びディスク状媒体の外部との入替工程を説明する図であ る。
図 8は図 5と同様の側断面図であり、 ディスク状媒体上に潤滑層等を形成す るためのディスク状媒体の内部での入替工程の準備工程 (入替室内の減圧 ·窒 素ガス置換等) を説明する図である。
図 9は図 5と同様の側断面図であり、 ディスク状媒体上に潤滑層等を形成す るためのディスク状媒体の内部での入替工程を説明する図である。
図 1 0は図 5乃至図 9の製造装置における遮蔽部 5 5を示す拡大断面図であ る。
図 1 1は図 5乃至図 9の製造装置におけるディスク状媒体への電子線照射の 各ステップ及びディスク状媒体の排出 ·供給の各ステップを示すフローチヤ一 トである。
図 1 2は図 5乃至図 9の製造装置において製造可能な光ディスクの層構成の 例を示す図である。
図 1 3は図 2において被回転体に対し複数の電子線照射管を配置するときの 変形例を示す平面図である。
図 1 4 A, 図 1 4 B, 図 1 4 Cは図 2において被回転体に対し複数の電子線 照射管を配置するときの別の変形例を示す平面図である。
図 1 5は第 3の実施の形態における電子線照射装置のシャッタ部材及びシャ ッ夕駆動機構を概略的に示す平面図である。 図 1 6八は図1 5の電子線照射装置における被回転体に対する電子線照射管 の第 1の配置例を概略的に示す部分平面図、 図 1 6 Bは第 1の配置例における 電子線の照射線強度分布を概略的に示す分布図である。
図 1 7 Aは第 3の実施の形態の電子線照射装置における被回転体 2に対する 電子線照射管 3 1乃至 3 3の第 2の配置例を概略的に示す部分平面図、 図 1 7 Bは第 2の配置例における電子線の照射線強度分布を概略的に示す分布図であ る。
図 1 8は図 1 7 Bのような電子線の照射線強度分布を有する場合に適用して 好ましいシャツタ部材の変形例を示す図 1 7 Aと同様の部分的平面図である。 図 1 9 Aは第 3の実施の形態の電子線照射装置における被回転体に対する電 子線照射管の第 1の配置例の変形例を示す部分平面図、 図 1 9 Bはその変形例 における電子線の照射線強度分布を概略的に示す分布図である。
図 2 0は図 1 8のシャツタ部材の平面図である。 本発明を実施するための最良の形態
以下、 本発明による第 1の実施の形態及び第 3の実施の形態による各電子線 照射装置及び第 2の実施の形態によるディスク状媒体の製造装置について図面 を用いて説明する。
〈第 1の実施の形態〉
図 1は本発明の実施の形態による電子線照射装置を概略的に示すの側面図で あり、 図 2は図 1の電子線照射装置のシャッタ部材及びシャッ夕駆動機構を概 略的に示す平面図であり、 図 3は図 1の電子線照射装置の制御系を示すプロッ ク図であり、図 4は図 1の電子線照射装置の動作を示すフローチヤ一トである。 図 1に示すように、 電子線照射装置 1は、 被回転体 2を回転可能に収容し電 子線を遮蔽するためにステンレス鋼から構成された遮蔽容器 1 0と、 被回転体 2の中心孔を係合部 4に係合することで保持した被回転体 2を回転軸 3を介し て回転駆動するモータ 1 7と、 被回転体 2に対し半径方向に低加速電圧による 電子線を照射窓 1 1 aから照射する電子線照射部 1 1と、 電子線照射部 1 1に 電圧を印加するための電源 1 2と、 照射窓 1 1 aの近傍に配置された温度セン サ 2 4と、 温度センサ 2 4と接続されて照射窓 1 1 aの近傍の温度を測定する 温度測定装置 1 3と、 を備える。
また、 電子線照射装置 1は、 遮蔽容器 1 0内の密閉空間の酸素濃度を測定す る酸素濃度計 1 6と、 遮蔽容器 1 0内をバルブ 1 9を介して排気し減圧する真 空装置 1 8と、 遮蔽容器 1 0内を窒素ガス雰囲気に置換するために窒素ガスを 供給する窒素ガス源 1 4と、 窒素ガス源 1 4から窒素ガスがガス導入口 2 5か ら導入され照射窓 1 1 aの近傍を通りガス排出口 2 6から排出するように流れ るときのガス流量を制御可能なガス流量制御バルブ 1 5と、 を備える。 また、 ガス排出口 2 6にはバルブ (図示省略) が設けられている。
電子線照射装置 1は、 更に、 被回転体 2よりも直径が大きく被回転体 2と電 '子線照射部 1 1の照射窓 1 1 aとの間に配置された開口付き円板 2 1と、 円板 2 1と照射窓 1 1 aとの間に配置されたシャッ夕部材 2 2とシャッ夕部材 2 2 を駆動するスライダ 2 3とを有するシャツ夕駆動機構 2 0と、 を備える。 図 2のように、 円板 2 1は扇形状の開口 2 1 aを有し、 電子線照射部 1 1か らの電子線が扇形状の開口 2 1 aを通して被回転体 2の半径方向の内周側と外 周側との間に形成される半径方向領域 2 aに照射されるようになつている。 また、 シャツ夕部材 2 2は、 電子線を遮蔽する鉄鋼やステンレス鋼から矩形 状に構成され、 スライダ 2 3により図 2のスライド方向 Hに駆動されると、 図 2の破線で示すように、 円板 2 1の扇形状の開口 2 1 aを完全に覆い閉める閉 位置に移動し、 電子線照射部 1 1からの電子線を遮り、 電子線は被回転体 2の 半径方向領域 2 aに照射されない。 また、 シャツタ部材 2 2がスライダ 2 3に より上述と反対のスライド方向 H' に駆動されると、 図 2の実線のように、 開 口 2 1 aから完全に退避し開口 2 1 aが開く開位置に移動し、 電子線照射部 1 1からの電子線を通過させ、 電子線が被回転体 2の半径方向領域 2 aに照射さ れる。
また、 図 2に示すように、 電子線照射部 11は、 被回転体 2の半径方向に配 列された円柱状の電子線照射管 31, 32, 33を備え、各電子線照射管 31, 32, 33はそれぞれ細長の矩形状の照射窓 31 b, 32 b, 33bを有する。 各照射窓 3 l b, 32b, 33bは、 被回転体 2の半径方向にそれぞれ延びる 複数の直線に沿うように配置される。
また、 図 2の 2点鎖線のように、 照射窓 31bの外周端と照射窓 32 bの内 周端が同心円上に位置し、 同様に、 照射窓 32 bの外周端と照射窓 33 bの内 周端が同心円上に位置しており、 照射窓 31 b, 32b, 33bが被回転体 2 の表面に対し半径方向に連続するようになっている。
各電子線照射管 31乃至 33は電源 12から電圧が印加され、 その加速電圧 が 20乃至 100 k Vである電子線が各照射窓 31 b, 32b, 33b力、ら被 回転体 2の半径方向領域 2 aに照射される。
以上のような図 1, 図 2の電子線照射装置 1は、 図 3に示すように制御部 3 0により全体が制御されながら電子線照射を行うが、 電子線照射装置 1の動作 の各ステップ S 01乃至 S 11を図 4を参照して説明する。
制御部 30の制御により、 まず、 ガス排出口 26のバルブを閉じた後、 真空 装置 18が作動し遮蔽容器 10内を減圧し(S 01)、バルブ 19を閉じてから、 窒素ガスを窒素ガス源 14からガス流量制御バルブ 15を介して遮蔽容器 10 内に導入する (S 02)。 これにより、遮蔽容器 10内を窒素雰囲気に容易に置 換することができる。
そして、 酸素濃度計 16で遮蔽容器 10内が所定の酸素濃度まで低下したこ とを検知し(S 03)、モータ 17を駆動することで被回転体 2を所定の回転速 度で回転させる (S 04)。一方、電源 12から電子線照射部 11に電圧を印加 し (S O 5)、 電子線を発生させる (SO 6)。 このとき、 シャツタ部材 22は 閉位置にあり、 電子線の発生量は小さく制御される。
次に、 図 2の破線の閉位置にあるシャッタ部材 2 2をシャッ夕駆動機構 2 0 を作動しスライダ 2 3を駆動することでスライド方向 H, に移動させて開口 2 1 aを開いて開位置にするとともに(S 0 7 )、電子線の発生量を大きく制御し、 電子線を回転している被回転体 2の半径方向領域 2 aの表面に照射する (S O 8 )。 このように回転している被回転体 2の半径方向に電子線を照射するので、 被回転体 2の表面全体に電子線を照射することができる。
そして、 被回転体 2に電子線を所定時間だけ照射してから、 同様にシャツ夕 駆動機構 2 0を作動しシャツ夕部材 2 2をスライド方向 Hに移動させて開口 2 1 aを閉じて閉位置にすることで( S 0 9 )、その被回転体 2に対する電子線照 射を終了する。
また、 上述の電子線照射部 1 1から電子線が発生している間、 窒素ガス源 1 4からの窒素ガスがガス導入口 2 5力ら照射窓 1 1 aの近傍を通りガス排出口 2 6へと流れるようにすることで(S 1 0 )、電子線発生時に温度上昇する照射 窓 1 1 aを冷却でき、 またシャツ夕部材 2 2も冷却できる。 また、 照射窓 1 1 a近傍の温度を温度センサ 2 4と温度測定装置 1 3とで測定し、 その測定温度 に基づいて窒素ガスの流量をガス流量制御ノ レブ 1 5で制御する(S 1 1 )。こ れにより、 照射窓 1 1 a近傍の温度を一定温度以下に制御できる。
以上のように、 図 1乃至図 4の電子線照射装置によれば、 回転中の被回転体 2の表面に対し電子線を照射するので、 被回転体 2の表面に紫外線よりも大き なエネルギを有する電子線を効率よく照射することができる。 このため、 例え ば、紫外線照射では硬ィ匕が困難である材料による潤滑層等を容易に硬化できる。 また、 加速電圧が 2 0乃至 1 0 0 k Vである低加速電圧による電子線を照射 するので、 被回転体 2の表面から薄い範囲に例えば潤滑層に効率よく電子線ェ ネルギを与え、 その下方に存在する基材等に電子線による影響を与えず、 基材 等の劣ィヒを防止できる。 また、 遮蔽容器 1 0内が所定の酸素濃度まで低下してから電子線を照射する ので、 電子線の照射される被回転体 2の表面近傍での酸素によるラジカル反応 阻害が発生し難くなり、 潤滑層等において良好な硬化反応を確保できる。
〈第 2の実施の形態〉
次に、 第 2の実施の形態としてのディスク状媒体の製造装置について説明す る。 図 5乃至図 9は、 本実施の形態においてディスク状媒体上に潤滑層等を形 成するための各工程を説明する製造装置の側面図である。
図 5乃至図 9に示すように、 ディスク状媒体の製造装置 (以下、 単に 「製造 装置」 という。) 5 0は、加速電圧が 2 0乃至 1 0 0 k Vである低加速電圧によ る電子線を発生しディスク状媒体 4 9の表面に照射する電子線照射装置 1と、 照射前のディスク状媒体 4 9を電子線照射装置 1に供給しかつ照射後のディス ク状媒体 4 9 aを電子線照射装置 1から受け取る入替室 5 2と、 照射前のディ スク状媒体と照射後のディスク状媒体とを入れ替えるために回動軸 5 3により 回動する回動部 5 4と、 を密閉可能なチヤンバ 5 1内に備える。
図 5乃至図 9のように、 製造装置 5 0は、 更に、 照射前のディスク状媒体を 入替室 5 2に供給し照射後のディスク状媒体を排出するようにディスク状媒体 の搬送を行うディスク搬送装置 6 0を備える。
電子線照射装置 1は、 図 1、 図 2とほぼ同様に構成されているので、 図 1 , 図 2と相違する点を説明する。 即ち、 図 1の遮蔽容器 1 0は、 図 5では、 ディ スク状媒体 4 9を回転可能に収容するようにトレイ状に構成された図の下側の 回動トレイ部 1 0 aと、 電子線照射部 1 1やシャツ夕駆動機構 2 0等が設けら れる上側の固定部 1 0 bとに分割され、 回動トレイ部 1 0 aは第 1の回動部と して固定部 1 0 bに対し回動部 5 4により上下動及び回動し入替室 5 2側に移 動可能になっている。
図 5のように、 回動トレイ部 1 0 aの合わせ面 1 0 c及び固定部 1 0 bの合 わせ面 1 0 c ' には電子線が外部に漏れないように電子線を遮蔽する遮蔽部 5 5が設けられている。 図 1 0は遮蔽部 5 5を示す拡大断面図である。 図 1 0に 示すように、 回動トレイ部 1 0 aの合わせ面 1 0 cには凸部 5 5 aが全周に形 成され、 固定部 1 0 bの合わせ面 1 0 c ' には凸部 5 5 aが入り込むことがで きるように凹部 5 5 bが全周に形成されている。
また、 遮蔽部 5 5を構成する凹部 5 5 bの底部には更に窪み 5 5 cが形成さ れ、 窪み 5 5 c内に 0リング 5 6 aを収め密閉部 5 6を形成している。 回動ト レイ部 1 0 aと固定部 1 0 bとを合わせて内部に形成される密閉空間 1 aの密 閉性を密閉部 5 6により高めることができる。
図 1 0において、 密閉部 5 6の〇リング 5 6 aは凹部 5 5 bの更に底部側の 窪み 5 5 c内に位置するので、 電子線が直接に照射されないので、 〇リング 5 6 aの劣化を防止できる。
図 5に示すように、 入替室 5 2は、 回動部 5 4により上下動及び回動し電子 線照射装置 1側に移動し回動トレィ部 1 0 aと入れ替え可能でありトレイ状に 構成された第 2の回動部としての回動トレイ部 5 2 aと、 ディスク搬送装置 6 0により照射前のディスク状媒体を受け取り照射後のディスク状媒体を外部に 排出するように回動する搬送回動トレイ部 5 2 bと、 を備える。
チヤンバ 5 1は入替室 5 2の一部を構成する端部 5 1 aと連結部 5 1 bとを 有する。 端部 5 1 aと連結部 5 1 bが入替室 5 2の回動トレィ部 5 2 aと搬送 回動トレイ部 5 2 bとの間に介在し合わせ面になって、 入替室 5 2内に密閉空 間 5 2 cが形成されるとともに、 搬送回動トレイ部 5 2 bがチャンバ 5 1の一 部を構成する。
また、 端部 5 1 aと搬送回動トレイ部 5 2 bとの間の合わせ面及び連結部 5 1 bと搬送回動トレィ部 5 2 bとの間の合わせ面にはそれぞれ Oリングによる 密閉部 5 7が設けられている。 また、 端部 5 1 aと回動トレイ部 5 2 aとの間 の合わせ面及び連結部 5 1 bと回動トレイ部 5 2 aとの間の合わせ面にはそれ ぞれ図 1 0と同様の遮蔽部 5 5, 密閉部 5 6が設けられている。 チヤンバ 5 1は、 電子線照射装置 1の端部側で固定部 1 0 bと連結し、 中央 部付近で連結部 5 1 bが固定部 1 0 bと連結し、 搬送回動トレイ部 5 2 bが端 部 5 1 a及び連結部 5 1 bで密閉されるので、 全体として密閉可能になってい る。 また、 チャンバ 5 1、 搬送回動トレイ部 5 2 b ( 6 2 )、 回動トレイ部 1 0 a及び固定部 1 0 b等は、鉄鋼やステンレス鋼から構成され、電子線を遮蔽し、 電子線が外部に漏れないようになっている。
チャンバ 5 1には窒素ガス導入口 5 8から窒素ガスが導入でき、 また、 入替 室 5 2内の密閉空間 5 2 cは真空装置 5 9により減圧可能である。 図 9のよう にチヤンバ 5 1全体が密閉された状態で回動部 5 4が回動トレィ部 1 0 a、 5 2 aとともに図の下方に移動し、 密閉空間 1 a、 5 2 cが開放された場合は、 入替室 5 2は窒素ガスで置換された状態であるため、 チャンバ 5 1内が電子線 照射装置 1の密閉空間 1 aの窒素ガス雰囲気に影響を及ぼさない。
また、 入替室 5 2には窒素ガス導入口 5 9 bから窒素ガスが導入可能となつ ている。 また、 チャンバ 5 1内の窒素ガスはガス排出口 5 8 aから排出可能に なっている。
図 5に示すように、 ディスク搬送装置 6 0は、 入替室 5 2を構成する搬送回 動トレイ部 5 2 bと入れ替え可能な別の搬送回動トレイ部 6 2と、 搬送回動ト レイ部 5 2 b, 6 2を回動軸 6 3を介して回動させる回動部 6 4と、を備える。 搬送回動トレイ部 5 2 b , 6 2は、 ディスク状媒体 4 9の中心孔の周囲近傍で ディスク状媒体 4 9を真空吸着する吸着部 6 1をそれぞれ有する。 回動都 6 4 は上下動及び回動によりディスク状媒体を入替室 5 2と外部のディスク受渡部 7 0との間で搬送する。
ディスク受渡部 7 0から入替室 5 2へと供給されるディスク状媒体 4 9は、 外部のスピンコート装置でその表面に樹脂材料を含む光透過層とその上に潤滑 剤からなる潤滑層が形成されている。
かかる光透過層形成のための材料としては活性エネルギー線硬化性化合物で あれば特に限定されないが、 (メタ)ァクリロイル基、ピニル基及びメルカプト 基の中から選択される少なくとも 1つの反応性基を有することが好ましい。 そ の他、 公知の光重合開始剤を含んでいてもよい。
また、 潤滑層形成のための材料としては、 例えば、 ラジカル重合性二重結合 を有するシリコーン化合物及びフッ素化合物があるが、 これらには限定されな い。 これらの潤滑層形成材料は、 一般に、 光重合開始剤を含まない場合には紫 外線による硬ィ匕が困難であるが、電子線により瞬時に硬化させることができる。 次に、 上述の製造装置 5 0の動作についてディスク状媒体への電子線照射及 びディスク状媒体の排出'供給に分けて、 図 5乃至図 9、 及び図 1 1のフロー チヤ一トを参照して説明する。
〈ディスク状媒体への電子線照射〉
図 1 1に示すように、 まず、 図 9のようにチヤンバ 5 1全体が密閉され、 回 動軸 5 3及び回動部 5 4が回動トレィ部 1 0 a、 5 2 aとともに図の下方に移 動し、 密閉空間 l a、 5 2 cが開放してから、 窒素ガス導入口 5 8から窒素ガ スをチャンバ 5 1内に導入し、 内部を窒素ガス雰囲気に置換する (S 2 1 )。 こ のとき、 酸素濃度計 1 6によりチャンバ 5 1内の酸素濃度を測定しながら窒素 ガスの置換を行うことができる。
次に、 回動軸 5 3及び回動部 5 4が回動トレィ部 1 0 a、 5 2 aとともに図 の上方に移動すると、 図 5のように密閉空間 1 a、 5 2 cが形成される。 そし て、 電子線照射装置 1では、 密閉空間 1 a内でモータ 1 7によりディスク状媒 体 4 9が回転し(S 2 2 )、電子線照射部 1 1が所定量の電子線を発生するよう に制御され(S 2 3 )、窒素ガスがガス導入口 2 5からガス排出口 2 6へと照射 窓 1 1 a近傍を通りながら流れる。
次に、 図 6のように、 シャツ夕駆動機構 2 0によりシャッ夕部材 2 2を開く ことで(S 2 4)、電子線照射部 1 1から回転中のディスク状媒体 4 9の光透過 層上に潤滑層の形成された表面に電子線照射を行う (S 2 5 )。図 7のように電 子線照射を所定時間だけ行つてから、 図 8のようにシャッ夕駆動機構 2 0によ りシャツタ部材 2 2を閉じることで(S 2 6 )、そのディスク状媒体 4 9の表面 に対する電子線照射を終了する。 これにより、 ディスク状媒体 4 9の光透過層 の表面に固着された潤滑層を有するディスク状媒体 4 9 aを得ることができる。 これは、 光透過層が硬化するとともに潤滑剤の反応性基が光透過層表面や他の 潤滑剤の反応性基と結合 (硬化) するためと思われる。
〈ディスク状媒体の排出 ·供給〉
図 5のように入替室 5 2内の密閉空間 5 2 cが形成されている状態で、 図 6 のように、 照射後のディスク状媒体 4 9 aが内部にある入替室 5 2の密閉空間 5 2 cを開放バルブ 5 9 c及び開放口 5 9 dを介して大気開放する (S 3 0 )。 そして、 ディスク搬送装置 6 0は回動軸 6 3及び回動部 6 4を介して搬送回 動トレイ部 5 2 b側の吸着部 6 1を図 6の下方に移動させて、 ディスク状媒体 4 9 aを吸着する (S 3 1 )。 これとほぼ同時に、外部のディスク受渡部 7 0に ある表面に潤滑層の形成された照射前のディスク状媒体 4 9を別の搬送回動ト レイ部 6 2側の吸着部 6 1が吸着する (S 3 2 )。
次に、 図 7のように、 ディスク搬送装置 6 0は回動軸 6 3及び回動部 6 4を 図 7の上方に移動させることで、 P及着部 6 1及び搬送回動トレイ部 5 2 bとと もにディスク状媒体 4 9 aを回動トレイ部 5 2 a内から持ち上げ、 同時に吸着 部 6 1及び搬送回動トレィ部 6 2とともにディスク状媒体 4 9をディスク受渡 部 7 0から持ち上げる。 そして、 回動部 6 4が回動軸 6 3を中心にして回動す ることで搬送回動トレイ部 5 2 bと 6 2との位置を入れ替える (S 3 3 )。 次に、 図 8のように、 ディスク搬送装置 6 0が回動軸 6 3及び回動部 6 4を 図 7の下方に移動させることで、 ディスク状媒体 4 9を入替室 5 2の回動トレ ィ部 5 2 a内に収める (S 3 4)。一方、ディスク状媒体 4 9 aをディスク受渡 部 7 0に渡し( S 3 5 )、各吸着部 6 1力 Sディスク状媒体 4 9 , 4 9 aの吸着を 止め図の上方に移動する。 ディスク受渡部 7 0からディスク状媒体 4 9 aが外 部に排出される (S 3 6 )。
そして、 上述のようにして再び形成された入替室 5 2内の密閉空間 5 2 cを 真空装置 5 9により減圧し、 窒素ガス導入口 5 9 bから窒素ガスを導入し窒素 ガス置換をしておく (S 3 7 )。
以上のようにして、 照射後のディスク状媒体 4 9 aを入替室 5 2からディス ク受渡部 7 0まで搬送し、 同時に、 照射前のディスク状媒体 4 9をディスク受 渡部 7 0から入替室 5 2まで搬送することができ、 ディスク状媒体 4 9の交換 を回動軸 6 3及び回動部 6 4の 1回の回動で行うことができる。
また、 上述のディスク状媒体 4 9 , 4 9 aの交換は、 密閉空間 1 aと 5 2 c とが独立しているので、 図 6, 図 7のように、 電子線照射装置 1における電子 線照射中に実行することができ、 効率的である。
次に、 入替室 5 2と電子線照射装置 1との間のディスク状媒体の入れ替え動 作について説明する。 即ち、 上述の図 8のように照射前のディスク状媒体 4 9 が入替室 5 2の回動トレイ部 5 2 a内に収容され、 電子線照射装置 1では、 モ —夕 1 7による回転が停止し(S 3 8 )、電子線照射の終了したディスク状媒体 4 9 aが回動トレイ部 1 0 a内に収容された状態で、 回動軸 5 3及び回動部 5 4が図の下方に移動することで、 回動トレイ部 5 2 a、 1 0 aを下方に移動し て密閉空間 5 2 c、 l aを開放する。 なお、 このとき密閉空間 5 2 c内は窒素 ガス雰囲気に置換されているので、チャンバ 5 1内の他の部分への影響はない。 次に、 図 9のように、 チャンバ 5 1内で回動部 5 4が回動軸 5 3を中心に回 動することで回動トレィ部 5 2 aと 1 0 aとの位置を入れ替える(S 3 9 )。 こ れにより、 回動トレイ部 5 2 aに収容された照射前のディスク状媒体 4 9が電 子線照射装置 1内に移り (S 4 0 )、 これとほぼ同時に、回動トレイ部 1 0 aに 収容されたディスク状媒体 4 9 aが入替室 5 2内に移る (S 4 1 )。
上述のようにして、 入替室 5 2と電子線照射装置 1との間のディスク状媒体 4 9、 4 9 aの交換を回動軸 5 3及び回動部 5 4の 1回の回動で行うことがで きる。 そして、 回動軸 5 3及び回動部 5 4が図の上方に移動することで、 回動 トレィ部 5 2 a、 1 0 aを上方に移動させて図 5のように密閉空間 5 2 c、 1 aを再び形成し、 電子線照射装置 1では上述のステップ S 2 2に戻り、 また、 入替室 5 2では上述のステツプ S 3 0に戻り、 同様の動作を繰り返すことがで きる。
なお、 モ一夕 1 7の回転軸 3は、 回動軸 5 3及び回動部 5 4の回動時には、 回動部 5 4及び回動トレイ部 1 0 aから下方に退避するようになっており、 回 動部 5 4が回動できる。
以上のように、 図 5乃至図 9の製造装置 5 0によれば、 表面に潤滑層等が形 成されたディスク状媒体 4 9を回転させ、 その回転中のディスク状媒体上に加 速電圧が 2 0乃至 1 0 0 k Vである低加速電圧による電子線を照射するので、 ディスク状媒体上に紫外線よりも大きなエネルギを有する電子線を瞬時に効率 よく照射することができるため、 紫外線照射では硬ィ匕が困難である潤滑層等を 容易に硬化 ·固着でき、 潤滑層等を瞬時に形成でき、 潤滑層等形成の生産性が 向上する結果、 ディスク状媒体の生産性向上に寄与できる。
また、 チャンバ 5 1の内部及びディスク搬送装置 6 0において回動トレイ部 と別の回動トレイ部との連動したそれぞれ 1回の回動で両回動トレイ音を互い に入れ替えることにより、 照射後のディスク状媒体 4 9 aを排出するとともに 照射前のディスク状媒体 4 9を供給することができ、 効率よく入れ替えること ができるので、 生産性が向上する。
また、 加速電圧が 2 0乃至 1 0 0 k Vである低加速電圧による電子線を用い るので、 表面から薄い範囲にある潤滑層等に効率よく電子線エネルギを与え、 その下方に存在する基材に電子線による影響を与えない。
例えば、 電子線照射装置 1の電子線照射部 1 1を構成する低加速電圧による 電子線照射のための電子線照射管 3 1乃至 3 3 (図 2 ) は、 ゥシォ電機 (株) から市販されており、 例えば、 加速電圧 5 0 KV、 管電流 0. 6 mAZ本の条 件で、 表面から 10乃至 20 m程度の深さ範囲内の潤滑層 ·樹脂層等に効率 よく電子線エネルギを与えることができ、 1秒未満で瞬時に効率的に硬化させ ることができる。 例えば、 図 12のような光ディスクの潤滑層 93のみならず 光透過層 92の少なくとも潤滑層 93と接する部分をも同時に硬ィ匕できる。 し かも、 例えば図 12のような光ディスクにおいて潤滑層 93の下方にある基材 90には電子線が到達しないので、 ポリ力一ポネート等の樹脂材料からなる基 材 90にダメージを与えず、 変色 ·変形 ·劣化等の悪影響が起きない。
なお、 各電子線照射管 31, 32, 33の照射窓 3 lb, 32 b, 33bを 構成する窓材としては厚さ 3 m程度のシリコン薄膜が好ましく、 従来の照射 窓では取り出すことのできない 100 kV以下の低い加速電圧でカロ速された電 子線を取り出すことができる。
また、 複数の電子線照射管の位置は図 2に限定されずに、 被回転体 2に対し 別の相対位置になるように配置してもよい。 例えば、 図 13のように、 複数の 電子線照射管 31, 32, 33を被回転体 2に対しほぼ等角度間隔に各照射窓 31 b乃至 33 bが同心円上になるように配置してもよい。 この場合、 図 2と 同様に、 各電子線照射管 31, 32, 33を順に内周側、 中間、 外周側にずら して配置するようにしてもよい。
また、 図 14 Aのように複数の電子線照射管 31, 32を半径方向に延びる 直線上に並べるように配置してもよい。 また、 図 14Bのように、 複数の電子 線照射管 31, 32を半径方向に別々に延びる複数の直線上に配置してもよい。 また、 図 14 Cのように、 複数の電子線照射管 32, 33を半径方向に延びる 直線上に並べ、 別の電子線照射管 31を半径方向に延びる別の直線上に配置し てもよい。
また、 図 2, 図 13, 図 14A, 図 14B、 図 14 Cでは、 各照射窓 31 b 乃至 33 bは回転軸 3の中心から放射する半径方向の直線上に沿うように配置 されているが、 これに限定されず、 かかる直線に対し所定角度で傾斜するよう に配置されてもよい。
〈第 3の実施の形態〉
図 1 5は第 3の実施の形態による電子線照射装置のシャッ夕部材及びシャッ 夕駆動機構を概略的に示す平面図である。
第 3の実施の形態による電子線照射装置は、 複数の電子線照射管の配置構成 が異なる以外は図 1、 図 2、 図 3と同様に構成されているので、 図 1乃至図 3 と同様の構成部分の説明は省略する。
図 1 5に示すように、 図 1の電子線照射部 1 1は、 被回転体 2の半径方向に 配列された円柱状の電子線照射管 3 1 , 3 2, 3 3を備え、 電子線照射管 3 1 が内周側に配置され、 電子線照射管 3 2 , 3 3がともに外周側のほぼ同じ半径 位置になるように配置される。
図 1 5の電子線照射管 3 1, 3 2 , 3 3の半径方向における配置の具体例に ついて図 1 6 A, 図 1 6 Bにより説明する。 図 1 6 Aは図 1 5の電子線照射装 置における被回転体に対する電子線照射管の第 1の配置例を概略的に示す部分 平面図、 図 1 6 Bは第 1の配置例における電子線の照射線強度分布を概略的に 示す分布図である。
図 1 6 Aに示すように、 電子線照射管 3 1, 3 2 , 3 3は円板 2 1の開口 2 1 a内にほぼ収まるように配置されているが、 電子線照射管 3 2 , 3 3は、 そ れらの中心位置 3 2 a、 3 3 aが被回転体 2に対し外周側のほぼ同じ半径位置 (被回転体 2の中心から半径方向の距離) r 2に配置されており、 電子線照射 管 3 1は、 その中心位置 3 1 aが被回転体 2に対し内周側の半径位置 r 1に配 置されている。
図 1 6 Aのように電子線照射管 3 1, 3 2, 3 3を配置したとき、 電子線の 照射線強度は図 1 6 Bのように被回転体 2の半径位置 rの方向に分布し、 電子 線の照射線強度が外周側で比較的大きく内周側で比較的小さくなるように分布 する。 図 16 Aにおいて電子線照射時に被回転体 2が回転方向 Sに一定速度で回転 するときの 1回転に要する時間を t秒とすると、 被回転体 2の半径位置 r 1に おける周速度 V 1及び半径位置 r 2における周速度 V 2は、それぞれ次式(1)、 (2) で表すことができる。
V 1 =(2 % · r l)Zt · · · (1)
v 2 = (27C · r 2)/ t · · · (2)
ここで、 r l<r 2であるので、周速度 v 1と周速度 v 2との関係は次式(3) のようになる。
V Kv 2 · · · (3) 上述のように、 一定の回転速度で回転する被回転体 2では、 被回転体 2の表 面の半径位置 rにより式 ( 3 ) のように周速度が異なるため電子線照射の積算 照射線量が半径方向領域 2 aにおいて内周側で大きく外周側で小さくなるよう な不均一な分布を示すのであるが、図 16Aのように電子線照射管 31, 32, 33を配置することで、 図 16Bのように電子線の照射線強度を外周側で比較 的大きく内周側で比較的小さくなるので、 電子線照射の積算照射線量の半径方 向における不均一な分布を補正でき、 比較的均一にできる。
なお、 シャッ夕,駆動機構 20でスライダ 23によりシャッタ部材 22を開閉 するときの移動速度は、 比較的高速であり、 被回転体の回転速度よりもかなり 高速度であるので、 シャツ夕部材 22を開閉するときの照射時間の違いは無視 できる。 また、 電子線照射の積算照射線量の分布を更に均一にするように図 1 6 Aにおける各電子線照射管 31乃至 33の位置を調整してもよい。
以上のような図 15, 図 16 A, 図 16 Bの電子線照射装置は、 図 3に示す ように制御部 30により全体が制御されながら電子線照射を行い、 図 4で説明 した各ステップ S 01乃至 S 11と同様に動作することができる。
以上のように、 第 3の実施の形態の電子線照射装置によれば、 回転中の被回 転体 2の表面に対し電子線を照射するので、 被回転体 2の表面に紫外線よりも 大きなエネルギを有する電子線を効率よく照射することができる。 このため、 例えば、 紫外線照射では硬化が困難である材料による潤滑層を容易に硬化でき る。
また、 カロ速電圧が 2 0乃至 1 0 0 k Vである電子線を照射するので、 被回転 体 2の表面から薄い範囲に例えば樹脂層に効率よく電子線エネルギを与え、 そ の下方に存在する基材等に電子線による影響を与えず、 基材等の劣化を防止で さる。
また、 シャッタ駆動機構 2 0及びシャッタ部材 2 2により電子線の照射 ·非 照射の切り換え制御を簡単に実行できる。
また、 被回転体 2の半径方向において電子線照射の積算照射線量をほぼ均一 に分布させるように電子線照射を行うことができ、 被回転体 2の被照射面に対 し全体的に均一に電子線によるエネルギを与えることができるので、 例えば樹 脂層を均一に効率的に硬化できる。
次に、 図 1 5の電子線照射管 3 1, 3 2 , 3 3の半径方向における第 2の配 置例について図 1 7 A, 図 1 7 Bにより説明する。 図 1 7 Aは第 3の実施の形 態の電子線照射装置における被回転体 2に対する電子線照射管 3 1乃至 3 3の 第 2の配置例を概略的に示す部分平面図、 図 1 7 Bは第 2の配置例における電 子線の照射線強度分布を概略的に示す分布図である。
図 1 7 Aに示すように、 電子線照射管 3 1, 3 2, 3 3は、 それらの中心位 置 3 1 a、 3 2 a , 3 3 aが被回転体 2の半径位置 r 1 1, r 1 2 , r 1 3で 被回転体 2の半径方向にほぼ等間隔に円板 2 1の開口 2 1 a内に収まるように 配置されている。 このように電子線照射管 3 1 , 3 2, 3 3を配置したとき、 電子線の照射線強度は図 1 7 Bのように被回転体 2の半径位置 rの方向にほぼ 均一に分布する。
図 1 7 Aにおいて電子線照射時に被回転体 2が一定速度で'回転するとき、 被 回転体 2の半径位置 r 1 1 , r 1 2 , r 1 3における周速度をそれぞれ v 1 1 , V 1 2 , V 1 3とすると、 上記式 (1 ) 〜 (3 ) と同様に、 r 1 1く r 1 2く r 1 3であるので、 周速度 V 1 1, V 1 2 , v 1 3の関係は次式 (4) のよう になる。
V 1 Kv 1 2 < v 1 3 · · · ( 4 )
上述のように、 一定の回転速度で回転する被回転体 2では、 被回転体 2の表 面の半径位置 rにより式 (4) のように周速度が異なり、 かつ、 図 1 7 Bのよ うに半径位置において照射線強度がほぼ均一な分布を示すので、 被回転体 2の 半径方向領域 2 aにおける照射線量の積算照射線量が内周側で大きく、 外周側 で小さくなつてしまう。 そこで、 図 1 8のようにシャツ夕音 15材を構成すること で半径方向領域 2 aにおける照射線量の積算照射線量の分布をほぼ均一になる ように制御している。
図 1 8はシャツ夕部材の変形例を示す図 1 7 Aと同様の部分的平面図であり、 図 2 0は図 1 8のシャツタ部材の平面図である。図 1 8、図 2 0に示すように、 シャッ夕部材 2 8は、 回動軸 2 9を中心に開方向 R及びその反対の閉方向 R ' に回動可能な円板状に構成され、 略半円状に切り欠かれており、 破線で示すよ うに切り欠き部 2 8 bが形成され、 直線状に形成された端部 2 8 aを有する。 なお、 シャッ夕部材 2 8は図 2 0の一点鎖線で示すような略四分の三円状等で あってもよい。
シャッ夕部材 2 8の回動軸 2 9は、 被回転体の 2の回転中心 (回転軸 3に対 応する) に対して偏心した位置にある。 また、 シャツ夕駆動機構 2 0は正逆回 転可能なモータ (図示省略) を備え、 回動軸 2 9を開方向 R及び閉方向 R ' に 回動しシャツタ部材 2 8を移動させて開閉する。
シャツ夕駆動機構 2 0によるシャツタ部材 2 8の動作について説明する。 ま ず、 シャッ夕部材 2 8は、 図 1 8の実線の閉位置で開口 2 1 aを覆い電子線を 遮り、 電子線非照射の状態である。 この状態からシャツ夕部材 2 8を回動軸 2 9を中心に開方向 Rに回動すると、 切り欠き部 2 8 bの端部 2 8 aから次第に 開口 2 1 aを開いていく。
即ち、 シャツ夕部材 2 8が移動し、 その端部 2 8 aが開口 2 1 aの外周端 2 l bに至り、 一点鎖線で示す (端部 2 8 aの) 端部位置 4 1を過ぎると、 開口 2 1 aを外周端 2 1 bの近傍から開く。 続いて、 シャッ夕部材 2 8は、 その端 部 2 8 aが、 図 1 5のように一点鎖線で示す端部位置 4 2 , 4 3 , 4 4のよう に移動しながら開口 2 1 aを外周側から内周側に開いていく。 そして、 シャツ 夕部材 2 8は、 端部位置 4 5で開口 2 1 aをほぼ開放する。
上述のように回転するシャッタ部材 2 8の回転速度は、 電子線照射時に回転 方向 Sに回転する被回転体 2の回転速度と同じ程度かまたは差がない程度に設 定されている。 従って、 シャツ夕部材 2 8が回動し開口 2 1 aを開放している 間に照射される電子線による照射線量を無視できないが、 上述のように、 開口 2 1 aを外周側から内周側に向けて開放していくので、 被回転体 2における半 径方向領域 2 aにおける電子線照射時間が外周側で比較的長く内周側で比較的 短くなる結果、 上述のような電子線照射の積算照射線量の半径方向における不 均一な分布を補正でき、 比較的均一にできる。
また、 シャツ夕部材 2 8を所定時間の経過後、 図 1 8のように回動方向 と 反対の回動方向 R, に開放時と同じ回動速度で回動すると、 その端部 2 8 aが 上述と反対に端部位置 4 5 , 4 4, 4 3, 4 2 , 4 1と移動しながら開口 2 1 aを閉じる。 このとき、 開口 2 1 aを始めに内周側を閉じてから次第に外周側 へと閉じていくので、 被回転体 2における半径方向領域 2 aにおける電子線照 射時間が外周側で比較的長く内周側で比較的短くなる。 このため、 電子線照射 の積算照射線量の半径方向における不均一な分布を一層補正でき、 更に比較的 均一にできる。
なお、 シャッ夕部材 2 8の回動軸 2 9の位置や端部 2 8 aの形状、 更に開口 2 1 aの形状等を適宜調整することで、 電子線照射の積算照射線量の半径方向 における分布をより均一にできる。 また、 電子線照射の積算照射線量の分布を 更に均一にするように図 1 7 Aにおける各電子線照射管 3 1乃至 3 3の位置を 微調整するようにしてもよい。
また、 図 1 6 Aにおける電子線照射管 3 1乃至 3 3の別の配置例を図 1 9 A に示す。 図 1 9 Aのように、 図 1 6 Aの電子線照射管 3 3の半径方向位置を電 子線照射管 3 2よりも内周側にずらし、 図 1 9 Bのような電子線の照射量強度 分布としてもよい。
また、 第 3の実施の形態では、 電子線照射管の本数を 3本としたが、 単数ま たは 2本であってもよく、 また 4本以上であってもよく、 電子線照射管の半径 方向における配列間隔を調整することで、 必要な電子線の照射量強度分布を得 るようにできる。
また、 上記第 3の実施の形態による電子線照射装置は、 図 1の電子線照射装 置と同様にして図 5乃至図 1 0のディスク状媒体の製造装置に適用することが でき、 このディスク状媒体の製造装置は、 図 1 1と同様にして各ステップ S 2 1乃至 S 2 6のディスク状媒体への電子線照射、 S 3 0乃至 S 4 1のディスク 状媒体の排出 ·供給の各動作を実行できるので、 図 5乃至図 9の製造装置 5 0 と同様の効果を得ることができる。
また、 被回転体 2の半径方向において電子線照射の積算照射線量をほぼ均一 に分布させるように電子線照射を行うことができ、 被回転体 2の被照射面に対 し全体的に均一に電子線によるエネルギを与えることができるので、 潤滑層を 均一に効率的に硬化できる。
また、 図 1 5のシャツ夕駆動機構 2 0及びシャツ夕部材 2 2により電子線の 照射'非照射の切り換え制御を簡単に実行でき、 また、 電子線照射部 1 1の電 源 1 2をオンオフ制御する必要がないので、 電子線照射部 1 1の立ち上げ時間 が不要であり、 電子線照射装置にディスク状媒体 4 9が次々と供給され、 連続 的な電子線照射の繰り返しを効率的に実行でき、 生産性が向上する。 なお、 本明細書において、 「回動」 とは、 回転のように一方向(またはその反 対方向) に連続的に被回転体が回るのではなく、 一方向またはその反対方向に 所定量だけ回りそこで停止するようにして、 その位置を変えるように回ること を意味する。 また、 被回転体の 「半径方向」 とは、 被回転体の回転中心から放 射状に延びる方向及び被回転体の回転中心から偏心した点から被回転体の外周 に延びる方向を意味する。
以上のように本発明を実施の形態により説明したが、 本発明はこれらに限定 されるものではなぐ本発明の技術的思想の範囲内で各種の変形が可能である。 例えば、 本実施の形態のディスク状媒体の製造装置では、 光ディスク等のディ スク状媒体の表面近傍に上述のような材料からなる光透過層及び潤滑層を硬化 して形成する例を説明したが、 本発明はこれに限定されず、 潤滑層以外の樹脂 層等を硬化するのに適用してもよいことは勿論である。 例えば、 図 1 2におい て潤滑層 9 3の下の光透過層 9 2のみを形成するために適用してもよく、 瞬時 に硬化させることができ効率的であり、 生産性向上に寄与できる。
また、 電子線照射装置で電子線を照射可能な被回転体としては各種のデイス ク状体であってよく、 また、 製造装置 5 0で製造可能なディスク状体として、 光ディスク等のディスク状媒体を例にして説明したが、 媒体以外のディスク状 体上に各種の樹脂層を形成する場合にも適用できることは勿論である。
また、 図 1の電子線照射装置及び図 5乃至図 9の製造装置では、 電子線を照 射の対象となる表面における層厚さを考慮して、 電子線照射部 1 1の電子線照 射管の管電圧等を決定することが好ましい。 また、 電子線照射部 1 1を構成す る電子線照射管の数は、 被照射表面の大きさや面積に応じて適宜増減すること ができる。
また、 チヤンバ内や電子線照射装置内の雰囲気を置換するガスとしては窒素 ガスに限定されず、 アルゴンガスやヘリウムガス等の不活性ガスであってもよ く、 また、 これらの 2種またはそれ以上の混合ガスであってもよい。 産業上の利用可能性
本発明によれば、 電子線をディスク状体等の被回転体に効率よく照射するこ とができ、 例えば紫外線照射では硬化が困難である材料をも容易に硬化できる 電子線照射装置及び電子線照射方法を提供できる。
また、 紫外線照射では硬ィ匕が困難である材料による潤滑層 ·樹脂層等をディ スク状体上に効率よく形成できるようにしたディスク状体の製造装置及びディ スク状体の製造方法を提供できる。
本発明によれば、 電子線をディスク状体等の被回転体に効率よく照射するこ とができ、 例えば紫外線照射では硬ィ匕が困難である材料をも容易に硬ィ匕でき、 また電子線の照射 ·非照射の切り換えを簡単に実行できる電子線照射装置及び 電子線照射方法を提供できる。

Claims

請求の範囲
1 . 被回転体を回転駆動する回転駆動部と、 前記被回転体を回転可能に収容す る遮蔽容器と、 前記被回転体の表面に対し電子線がその照射窓から照射される ように前記遮蔽容器に設けられた電子線照射部と、 を具備し、 前記被回転体の 回転中にその表面に前記電子線照射部の照射窓から電子線を照射することを特 徵とする電子線照射装置。
2. 前記電子線照射部は低加速電圧による電子線を発生することを特徴とする 請求の範囲第 1項に記載の電子線照射装置。
3. 前記電子線照射部は加速電圧が 2 0乃至 1 0 0 k Vであることを特徴とす る請求の範囲第 1項または第 2項に記載の電子線照射装置。
4. 前記遮蔽容器内を不活性ガスの雰囲気とし、 前記照射窓の近傍に不活性ガ スが流れるようにガス導入口及びガス排出口を前記遮蔽容器に設けたことを特 徴とする請求の範囲第 1項乃至第 3項のいずれか 1項に記載の電子線照射装置。
5 . 前記照射窓の近傍に温度センサを設け、 前記温度センサによる測定温度に 基づいて前記不活性ガスの流量を調整することを特徴とする請求の範囲第 4項 に記載の電子線照射装置。
6 . 前記遮蔽容器内の酸素濃度を測定するための酸素濃度計が設けられている ことを特徴とする請求の範囲第 1項乃至第 5項のいずれか 1項に記載の電子線 照射装置。
7 . 前記遮蔽容器内を減圧するための真空装置が設けられていることを特徴と する請求の範囲第 1項乃至第 6項のいずれか 1項に記載の電子線照射装置。
8 . 前記被回転体はディスク形状を有し、 前記表面の少なくとも一半径方向に 延びる領域に電子線を照射することを特徴とする請求の範囲第 1項乃至第 7項 のいずれか 1項に記載の電子線照射装置。
9. 前記被回転体はディスク形状を有し、 前記電子線照射部は複数の電子線照 射管を備え、 前記各電子線照射管が前記表面の複数の領域にそれぞれ電子線を 照射することを特徴とする請求の範囲第 1項乃至第 8項のいずれか 1項に記載 の電子線照射装置。
1 0. 前記照射窓と前記被回転体の表面との間にシャツ夕部材を配置し、 前記 シャツ夕部材を前記照射窓からの電子線が透過する開位置と遮られる閉位置と の間をシャッタ駆動機構により移動させることで前記被回転体の表面に対する 電子線の照射と非照射とを切り換えるように制御することを特徴とする請求の 範囲第 1項乃至第 8項のいずれか 1項に記載の電子線照射装置。
1 1 . 前記シャツタ部材が前記開位置のとき前記電子線の発生量を大きくし、 前記シャッタ部材が前記閉位置のとき前記電子線の発生量を小さくするように 切り換えることを特徴とする請求の範囲第 1 0項に記載の電子線照射装置。
1 2. 前記遮蔽容器は開閉可能であり金属材料から構成されるとともに前記照 射窓からの電子線を遮蔽する遮蔽構造を有することを特徴とする請求の範囲第 1項乃至第 1 1項のいずれか 1項に記載の電子線照射装置。
1 3. 密閉可能な遮蔽容器内に収容された被回転体を回転駆動し、 前記被回転 体の回転中の表面に対し電子線を電子線照射部の照射窓から照射することを特 徴とする電子線照射方法。
1 4. 前記電子線照射部は加速電圧が 2 0乃至 1 0 0 k Vである電子線を発生 することを特徴とする請求の範囲第 1 3項に記載の電子線照射方法。
1 5. 前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガス 雰囲気に置換することを特徴とする請求の範囲第 1 3項または第 1 4項に記載 の電子線照射方法。
1 6. 前記遮蔽容器内の酸素濃度を測定しながら前記不活性ガスの流量を制御 することを特徴とする請求の範囲第 1 5項に記載の電子線照射方法。
1 7. 前記不活性ガスをガス導入口からガス排出口に向けて前記照射窓の近傍 を通して流すことにより前記照射窓の近傍を冷却することを特徴とする請求の 範囲第 1 5項または第 1 6項に記載の電子線照射方法。
1 8 . 前記照射窓の近傍に設けた温度センサによる測定温度に基づいて前記不 活性ガスの流量を調整することで冷却温度を制御することを特徴とする請求の 範囲第 1 7項に記載の電子線照射方法。
1 9 . 前記被回転体はディスク形状を有し、 前記表面の少なくとも一半径方向 に延びる領域に電子線を照射することを特徴とする請求の範囲第 1 3項乃至第 1 8項のいずれか 1項に記載の電子線照射方法。
2 0 . 前記被回転体はディスク形状を有し、 前記電子線照射部の複数の電子線 照射管が前記表面の複数の領域にそれぞれ電子線を照射することを特徴とする 請求の範囲第 1 3項乃至第 1 9項のいずれか 1項に記載の電子線照射方法。
2 1 . 前記照射窓と前記被回転体の表面との間に配置したシャツタ部材を前記 照射窓からの電子線が透過する開位置と遮られる閉位置との間を移動させるこ とで前記被回転体の表面に対する電子線の照射と非照射とを切り換えることを 特徴とする請求の範囲第 1 3項乃至第 2 0項のいずれか 1項に記載の電子線照 射方法。
2 2. 前記シャッタ部材が前記開位置のとき前記電子線の発生量を大きくし、 前記シャッタ部材が前記閉位置のとき前記電子線の発生量を小さくするように 切り換えることを特徴とする請求の範囲第 2 1項に記載の電子線照射方法。
2 3 . 被回転体を回転駆動する回転駆動部と、
前記被回転体を回転可能に収容する遮蔽容器と、
前記被回転体の表面に対し電子線がその照射窓から照射されるように前記遮 蔽容器に設けられた電子線照射部と、
前記照射窓と前記被回転体の表面との間に配置され、 前記照射窓からの電子 線を透過するように開く開位置と遮るように閉じる閉位置との間で移動可能な シャツ夕部材と、
前記被回転体の回転中に前記電子線の照射と非照射とを切り換えるように前 記シャツタ部材を移動させるシャツタ駆動機構と、 を具備し、
前記被回転体はディスク形状を有し、 前記表面の半径方向に延びる領域に前 記照射窓から電子線を照射するように構成したことを特徴とする電子線照射装 置。
2 4. 前記電子線照射部は前記表面の半径方向に配置された複数の電子線照射 管を備えることを特徴とする請求の範囲第 2 3項に記載の電子線照射装置。
2 5 . 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強 度の分布がほぼ均一になるように配置されることを特徴とする請求の範囲第 2 4項に記載の電子線照射装置。
2 6. 前記電子線照射による積算照射線量が前記半径方向においてほぼ等しく なるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御する ように構成した特徴とする請求の範囲第 2 5項に記載の電子線照射装置。
2 7. 前記シャツタ部材が開くときに前記被回転体の表面の外周位置で開き始 め次第に内周位置へと開くように構成することを特徴とする請求の範囲第 2 5 項または第 2 6項に記載の電子線照射装置。
2 8. 前記半径方向に延びるように開口部を設け、 前記シャツ夕部材の移動に より前記開口部を開閉することで前記電子線の照射と非照射とを切り換えると ともに、 前記シャッ夕部材と前記開口部との相対位置及び前記シャッ夕部材の 移動速度により前記被回転体の半径位置に応じて前記電子線照射の時間を制御 することを特徴とする請求の範囲第 2 5項乃至第 2 7項のいずれか 1項に記載 の電子線照射装置。
2 9. 前記複数の電子線照射管は前記半径方向において前記電子線の照射泉強 度が外周側で大きく内周側で小さくなるような分布となるように配置されるこ とを特徴とする請求の範囲第 2 4項に記載の電子線照射装置。
3 0 . 前記シャッ夕部材を前記被回転体の回転速度よりも速い比較的高速度で 開閉するように構成することを特徴とする請求の範囲第 2 9項に記載の電子線
3 1 . 前記半径方向に延びるように開口部を設け、 前記シャッ夕部材の移動に より前記開口部を開閉することで前記電子線の照射と非照射とを切り換えるこ とを特徴とする請求の範囲第 1項乃至第 2 7項, 第 2 9項, 第 3 0項のいずれ か 1項に記載の電子線照射装置。
3 2.密閉可能な遮蔽容器内に収容された被回転体を回転駆動するステツプと、 前記被回転体の表面と電子線照射部の照射窓との間に設けられたシャツ夕部 材を移動させて前記被回転体の回転中の表面に対し前記照射窓から電子線を照 射するステップと、
所定時間の電子線照射後に前記シャッ夕部材の移動により前記電子線を遮り 前記電子線照射を停止するステップと、 を含むことを特徴とする電子線照射方 法。
3 3. 前記電子線照射部は加速電圧が 2 0乃至 1 0 0 k Vであることを特徴と する請求の範囲第 3 2項に記載の電子線照射方法。
3 4. 前記遮蔽容器内を減圧してから不活性ガスを導入することで不活性ガス 雰囲気に置換することを特徴とする請求の範囲第 3 2項または第 3 3項に記載 の電子線照射方法。
3 5. 前記不活性ガスをガス導入口からガス排出口に向けて前記照射窓の近傍 を通して流すことにより前記照射窓の近傍を冷却することを特徴とする請求の 範囲第 3 4項に記載の電子線照射方法。
3 6. 前記被回転体はディスク形状を有し、 前記表面の半径方向に延びる領域 に前記照射窓から電子線を照射することを特徴とする請求の範囲第 3 2項乃至 第 3 5項のいずれか 1項に記載の電子線照射方法。
3 7 . 前記電子線照射は前記電子線照射部として前記表面の半径方向に配置さ れた複数の電子線照射管により行うことを特徴とする請求の範囲第 3 6項に記 載の電子線照射方法。
3 8. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線強 度の分布がほぼ均一になるように配置されるとともに、
前記電子線照射による積算照射線量の分布が前記半径方向においてほぼ均一 になるように前記被回転体の半径位置に応じて前記電子線照射の時間を制御す ることを特徴とする請求の範囲第 3 7項に記載の電子線照射方法。
3 9. 前記シャツタ部材を前記被回転体の表面の外周位置で開き始め次第に内 周位置へと開くことにより前記時間を制御することを特徴とする請求の範囲第
3 8項に記載の電子線照射方法。
4 0. 前記複数の電子線照射管は前記半径方向において前記電子線の照射線 強度が外周側で大きく内周側で小さくなるような分布となるように配置される ことを特徴とする請求の範囲第 3 7項に記載の電子線照射方法。
4 1 . 前記シャッ夕部材を前記被回転体の回転速度よりも速い比較的高速度で 開閉することを特徴とする請求の範囲第 4 0項に記載の電子線照射方法。
4 2. 請求の範囲第 1項乃至第 1 2項及び第 2 3項乃至第 3 1項のいずれか 1 項に記載の電子線照射装置を備え、 前記被回転体をディスク状体として、 その 上に形成された樹脂層及び Z又は表面層を前記電子線照射により硬化させるよ うに構成したことを特徴とするディスク状体の製造装置。
4 3. 請求の範囲第 1項乃至第 1 2項及び第 2 3項乃至第 3 1項のいずれか 1 項に記載の電子線照射装置を用いるか、 または、 請求の範囲第 1 3項乃至第 2 2項及び第 3 2項乃至第 4 1項のいずれか 1項に記載の電子線照射方法を用い、 前記被回転体をディスク状体として、 その上に形成された樹脂層及び Z又は表 面層を前記電子線照射により硬化させることを特徴とするディスク状体の製造 方法。
4. 開閉可能な遮蔽容器内に設けられた第 1の回動部にディスク状体を収容 しかつ前記ディスク状体の表面に対し電子線を電子線照射部の照射窓から照射 する電子線照射装置と、 ディスク状体を第 2の回動部に収容できかつ前記遮蔽 容器に対し独立して密閉及び開閉可能な入替室と、 を備える密閉可能なチヤン バと、
前記遮蔽容器内の第 1の回動部と前記入替室内の第 2の回動部とを回動させ ることで前記両回動部を互いに入れ替える回動部と、 を具備することを特徴と するディスク状体の製造装置。
4 5. 開閉可能な遮蔽容器内に設けられた第 1の回動部にディスク状体を収容 し回転駆動し、 前記ディスク状体の回転中の表面に対し電子線を電子線照射部 の照射窓から照射する電子線照射装置と、 ディスク状体を第 2の回動部に収容 できかつ前記遮蔽容器に対し独立して密閉及び開閉可能な入替室と、 を備える 密閉可能なチャンバと、
前記遮蔽容器内の第 1の回動部と前記入替室内の第 2の回動部とを回動させ ることで前記両回動部を互いに入れ替える回動部と、 を具備することを特徴と するディスク状体の製造装置。
4 6. 前記電子線照射部は加速電圧が 2 0乃至 1 0 0 k Vである電子線を発生 することを特徴とする請求の範囲第 4 4項または第 4 5項に記載のディスク状 体の製造装置。
4 7. 前記入替室の第 2の回動部を回動することで前記遮蔽容器内に移動した ディスク状体の表面に対し前記電子線照射部から電子線を照射し、
前記電子線照射後のディスク状体を収容した前記遮蔽容器の第 1の回動部を 回動することで前記入替室に移すように構成したことを特徴とする請求の範囲 第 4 4項、 第 4 5項または第 4 6項に記載のディスク状体の製造装置。
4 8. 前記遮蔽容器は前記第 1または第 2の回動部とともに第 1の密閉空間を 形成しかつ前記電子線照射部が設けられる固定部を備え、
前記入替室は前記第 2または第 1の回動部とともに第 2の密閉空間を形成し かつディスク状体を着脱可能な第 3の回動部を備え、
前記チヤンバが密閉された状態で前記第 1の回動部が前記固定部に対し移動 し、 前記第 2の回動部が前記第 3の回動部に対し移動することで前記ディスク 状体の入れ替えを行い、
前記第 3の回動部がディスク状体を保持しながら前記第 2の密閉空間を開放 し回動することで照射後のディスク状体を排出するとともに、 別の第 4の回動 部が前記第 2の回動部に向けて回動して照射前のディスク状体を前記第 2の回 動部に供給するように入れ替えを行うことを特徴とする請求の範囲第 4 4項乃 至第 4 7項のいずれか 1項に記載のディスク状体の製造装置。
4 9. 前記第 3及び第 4の回動部によるディスク状体の入れ替えの間に前記第 1の密閉空間内で前記電子線照射部から電子線照射を行うことを特徴とする請 求の範囲第 4 8項に記載のディスク状体の製造装置。
5 0. 前記電子線照射部の照射窓と前記ディスク状体の表面との間にシャツ夕 部材を配置し、 前記シャッタ部材を前記照射窓からの電子線が透過する開位置 と遮られる閉位置との間をシャッタ駆動機構により移動させることで前記ディ スク状体の表面に対する電子線の照射と非照射とを切り換えるように制御する ことを特徴とする請求の範囲第 4 4項乃至第 4 9項のいずれか 1項に記載のデ イスク状体の製造装置。
5 1 . 前記入替室内を減圧してから不活性ガスの雰囲気に置換するように構成 することを特徴とする請求の範囲第 4 4項乃至第 5 0項のいずれか 1項に記載 のディスク状体の製造装置。
5 2. 前記照射窓の近傍に不活性ガスが流れるようにすることで前記照射窓を 冷却することを特徴とする請求の範囲第 4 4項乃至第 5 1項のいずれか 1項に 記載のディスク状体の製造装置。
5 3 . 前記遮蔽容器は金属材料から構成されるとともに前記第 1の回動部と前 記固定部との合わせ部分に電子線の遮蔽のための遮蔽部を備える請求の範囲第 4 4項乃至第 5 2項のいずれか 1項に記載のディスク状体の製造装置。
5 4. 密閉空間内で回動部に収容されたディスク状体の表面に加速電圧が 2 0 乃至 1 0 0 k Vである電子線を照射するステップと、
前記密閉空間を開放し前記回動部を回動するとともにこの動作と連動して別 のディスク状体を収容した別の回動部を回動することで照射後のディスク状体 と照射前のディスク状体とを入れ替るステップと、 を含むことを特徴とするデ イスク状体の製造方法。
5 5. 密閉空間内で回動部に収容されたディスク状体を回転駆動しながらその 回転中の表面に加速電圧が 2 0乃至 1 0 0 k Vである電子線を照射するステツ プと、
前記密閉空間を開放し前記回動部を回動するとともにこの動作と連動して別 のディスク状体を収容した別の回動部を回動することで照射後のディスク状体 と照射前のディスク状体とを入れ替るステップと、 を含むことを特徴とするデ イスク状体の製造方法。
5 6. 前記照射前のディスク状体上に樹脂層及び/又は表面層を形成するステ ップを更に含み、
前記樹脂層及び Z又は前記表面層を前記電子線照射により硬化することを特 徴とする請求の範囲第 5 4項または第 5 5項に記載のディスク状体の製造方法。
PCT/JP2003/011890 2002-09-19 2003-09-18 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法 WO2004027520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003264485A AU2003264485A1 (en) 2002-09-19 2003-09-18 Electron beam irradiation device, electron beam irradiation method, disc-like body manufacturing apparatus, and disc-like body manufacturing method
US10/528,518 US7193956B2 (en) 2002-09-19 2003-09-18 Electron beam irradiation apparatus, electron beam irradiation method, and apparatus for and method of manufacturing disc-shaped object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002274121A JP2004110968A (ja) 2002-09-19 2002-09-19 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
JP2002-274120 2002-09-19
JP2002274120A JP2004110967A (ja) 2002-09-19 2002-09-19 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
JP2002-274121 2002-09-19

Publications (1)

Publication Number Publication Date
WO2004027520A1 true WO2004027520A1 (ja) 2004-04-01

Family

ID=32032880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011890 WO2004027520A1 (ja) 2002-09-19 2003-09-18 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法

Country Status (4)

Country Link
US (1) US7193956B2 (ja)
AU (1) AU2003264485A1 (ja)
TW (1) TW200421014A (ja)
WO (1) WO2004027520A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004110969A (ja) * 2002-09-19 2004-04-08 Tdk Corp 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
JP5639816B2 (ja) * 2009-09-08 2014-12-10 東京応化工業株式会社 塗布方法及び塗布装置
JP5469966B2 (ja) * 2009-09-08 2014-04-16 東京応化工業株式会社 塗布装置及び塗布方法
JP5439097B2 (ja) * 2009-09-08 2014-03-12 東京応化工業株式会社 塗布装置及び塗布方法
JP5719546B2 (ja) * 2009-09-08 2015-05-20 東京応化工業株式会社 塗布装置及び塗布方法
CN110196532B (zh) * 2018-02-27 2021-03-16 上海微电子装备(集团)股份有限公司 光刻机安全快门装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288530A (ja) * 1998-03-31 1999-10-19 Sony Corp 電子ビームを用いたパターン描画方法
JP2001202663A (ja) * 2000-01-20 2001-07-27 Sony Corp 光学記録媒体作製用原盤の製造方法、光学記録媒体、および光学記録媒体作製用原盤製造装置
JP2002042384A (ja) * 2000-07-27 2002-02-08 Fujitsu Ltd マスタリング装置及び超音波アクチュエータ
JP2002163845A (ja) * 2000-11-27 2002-06-07 Fujitsu Ltd マスタリング装置及び記憶媒体基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001221899A (ja) * 2000-02-07 2001-08-17 Ebara Corp 電子線照射装置
JP2001308003A (ja) * 2000-02-15 2001-11-02 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
US6686597B2 (en) * 2000-09-04 2004-02-03 Pioneer Corporation Substrate rotating device, and manufacturing method and apparatus of recording medium master

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288530A (ja) * 1998-03-31 1999-10-19 Sony Corp 電子ビームを用いたパターン描画方法
JP2001202663A (ja) * 2000-01-20 2001-07-27 Sony Corp 光学記録媒体作製用原盤の製造方法、光学記録媒体、および光学記録媒体作製用原盤製造装置
JP2002042384A (ja) * 2000-07-27 2002-02-08 Fujitsu Ltd マスタリング装置及び超音波アクチュエータ
JP2002163845A (ja) * 2000-11-27 2002-06-07 Fujitsu Ltd マスタリング装置及び記憶媒体基板の製造方法

Also Published As

Publication number Publication date
US7193956B2 (en) 2007-03-20
AU2003264485A1 (en) 2004-04-08
TW200421014A (en) 2004-10-16
TWI306181B (ja) 2009-02-11
US20060098550A1 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US7205558B2 (en) Electron beam irradiation apparatus, electron beam irradiation method, and apparatus for and method of manufacturing disc-shaped object
US8475870B2 (en) Resin layer formation method, resin layer formation device, disk and disk manufacturing method
JP2003241394A (ja) 電子ビーム描画装置
WO2004027520A1 (ja) 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
KR20010087255A (ko) 전자 빔 조사 장치, 전자 빔 조사 방법, 원 디스크,스탬퍼, 및 기록 매체
WO2004027771A1 (ja) 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
US20060163499A1 (en) Apparatus and method for irradiating electron beam
JP2004110967A (ja) 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
JP2004110968A (ja) 電子線照射装置、電子線照射方法、ディスク状体の製造装置及びディスク状体の製造方法
JP4598577B2 (ja) 樹脂層硬化装置及び樹脂層硬化方法
JP2004110970A (ja) ディスク状記録媒体の製造方法
JP2010067336A (ja) 真空転写装置、真空転写方法
JP2003091888A (ja) 光記録媒体の製造方法および光記録媒体製造装置
JP4421973B2 (ja) 貼合装置及び貼合方法並びに貼合装置制御用プログラム
JP4633515B2 (ja) 貼合装置及び貼合方法
JP4261751B2 (ja) 回転駆動装置及びこれを用いたディスク原盤作成装置
JP4515947B2 (ja) 樹脂層硬化装置
WO2004003902A1 (ja) 光記録媒体、光記録媒体の製造方法及び製造装置
JP2004164801A (ja) 光記録ディスクの製造方法および光記録ディスクの製造システム
JP2006127713A (ja) 放射線照射装置
JPH10320852A (ja) 薄膜形成方法およびそれを用いた光ディスクの製造方法
JPH11288529A (ja) 電子ビーム描画装置
JP2001325754A (ja) コンパクトディスク等の音質改善方法および装置
JP2007237103A (ja) スピン塗布装置及びスピン塗布方法
JP2002197734A (ja) 光ディスク媒体製造装置及び光ディスク媒体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006098550

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10528518

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10528518

Country of ref document: US