WO2004025782A1 - アンテナ構造体及び電波修正時計 - Google Patents

アンテナ構造体及び電波修正時計 Download PDF

Info

Publication number
WO2004025782A1
WO2004025782A1 PCT/JP2003/011650 JP0311650W WO2004025782A1 WO 2004025782 A1 WO2004025782 A1 WO 2004025782A1 JP 0311650 W JP0311650 W JP 0311650W WO 2004025782 A1 WO2004025782 A1 WO 2004025782A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna structure
antenna
magnetic path
coil
value
Prior art date
Application number
PCT/JP2003/011650
Other languages
English (en)
French (fr)
Inventor
Takashi Ihara
Shigeyuki Takahashi
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002264985A external-priority patent/JP3512782B1/ja
Priority claimed from JP2002297095A external-priority patent/JP3975250B2/ja
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to CN038127601A priority Critical patent/CN1659742B/zh
Priority to DE60330977T priority patent/DE60330977D1/de
Priority to US10/511,912 priority patent/US7170462B2/en
Priority to EP03795403A priority patent/EP1548875B1/en
Publication of WO2004025782A1 publication Critical patent/WO2004025782A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G21/00Input or output devices integrated in time-pieces
    • G04G21/04Input or output devices integrated in time-pieces using radio waves
    • GPHYSICS
    • G04HOROLOGY
    • G04RRADIO-CONTROLLED TIME-PIECES
    • G04R60/00Constructional details
    • G04R60/06Antennas attached to or integrated in clock or watch bodies
    • G04R60/10Antennas attached to or integrated in clock or watch bodies inside cases
    • G04R60/12Antennas attached to or integrated in clock or watch bodies inside cases inside metal cases

Definitions

  • the present invention relates to an antenna structure and a radio-controlled timepiece using the antenna structure, and more particularly, in the case of a resonant antenna, even when the antenna structure is disposed in the vicinity of a metal object, the radio wave of the antenna structure.
  • the present invention relates to an antenna structure configured so as not to degrade the reception performance of the antenna, and to a radio-controlled timepiece using the antenna structure.
  • a radio-equipped wristwatch that adds a radio function to the inside of a watch to receive radio waves for broadcasting and obtain predetermined information, or receives a standard radio wave with a time code, and is in use.
  • a radio-controlled watch, a remote control watch, etc. are known that automatically adjust the time of a watch to the time of the standard time.
  • the antenna that greatly affects the radio wave reception performance has a considerable size compared with other parts of the conventional wristwatch, and the arrangement performance restriction from the relation of the reception performance.
  • various methods such as built-in type, exterior type, telescopic type, and cord type have been adopted.
  • a bar antenna consisting of a magnetic core and a winding wire is mainly used, but when built into a watch, the reception performance of the antenna is not reduced by devising the case material and structure or design. You need to do so.
  • the reception characteristics are determined by the antenna characteristics and the reception circuit characteristics.
  • the lower limit of the input signal of the receiving circuit or receiving IC is at present about 1 ⁇ V of signal amplitude, and 40 to 50 d B as a receiving antenna to obtain practical receiving performance, z V / m An output of about 1 V in signal amplitude must be obtained at electric field strength (radio wave strength).
  • a type of receiving antenna it is common to use a bar antenna in which a conducting wire is wound around a magnetic core because the wavelength of radio waves is long.
  • the output of the receiving antenna is extremely reduced when it is housed in a metal sheath. Therefore, in order to use radio waves in a wristwatch, it is necessary to have a component configuration or design that is completely different from the conventional watch component configuration and design, and also to take care not to impair the reception performance.
  • the mounting method of the antenna or the built-in method is mainly used.
  • Watch back cover ⁇ If the material on the side is metal, generally cover the receiving antenna.
  • the case of the receiving antenna uses non-metal such as plastic so as not to reduce the receiving performance, so it has a shape that protrudes greatly, and the small size, thin shape, and the portability are impaired. The degree of freedom in design is significantly impaired.
  • an antenna with a coil wound on its core is disposed between the dial and the windshield, and it is made of metal that blocks radio waves.
  • Case A watch of a configuration in which an antenna is attached to the side of the watch case of the watch is disclosed in International Publication WO 95/2792 8 as having a unique design as well as being separated from the case body. ing.
  • metal bands that interfere with radio waves can not be used, and watch bands must be used, such as rubber bands, etc., and there are restrictions in terms of materials and design.
  • the thickness or size of the entire watch is increased or the design constraints are set to separate the antenna from the metal part of the watch main body. There is a problem that you receive.
  • the coil is disposed in the Dfl recess provided at the peripheral portion of the circuit board and at the same time the core is arranged in a curved shape along the circumferential direction of the circuit board.
  • a wristwatch has been disclosed, there is a problem that the manufacturing process becomes complicated and the assembly and operation of the manufacturing process become complicated.
  • glass or In the middle part of the watch is shown a wristwatch constructed so that sufficient radio waves reach the antenna using a conventional metal material.
  • the output of the receiving antenna is based on the fact that the output of the receiving antenna is extremely reduced when stored in a metal outer case, and the material of the back cover is made nonmetallic to reduce the output reduction.
  • the purpose is to use the high-quality metal side.
  • a large size, high sensitivity antenna structure can be used, or it can be used only in a region where the electric field strength of the radio wave is strong, thus impairing the convenience of the radio clock and designing the design. Including this, the manufacturing cost of the antenna structure is necessarily high.
  • the back cover is thinly coated with a metallic tone and as if using a metal material.
  • the receiving antenna is built in the metal side, the output of the antenna is lowered and the receiving performance is lowered.
  • the background of the invention described above is that when the antenna is built in the watch, the back cover is made of a metal material, so that it is electrically conductive. Even as radio waves reaches, Mai and is flux absorbed in the back cover portion, c thus Telecommunications to the antenna unit is based on the idea to say not reach, it is at the conventional, high-sensitivity Since the antenna structure can be used or can be used only in a region where the electric field strength of the radio wave is strong, the convenience of the radio-controlled watch is impaired and the manufacturing cost of the antenna structure including the design of the design is inevitable. It is getting higher.
  • the back cover is metal-plated as if it were metal. It gives the user an impression as if they are using materials, but from the appearance there was a problem that there was no feeling of weight or texture, and the image as a luxury item was lost.
  • the object of the present invention is to solve the above-mentioned conventional problems, to provide an antenna structure which can be used in a metal sheath which has good radio wave reception performance and is not subject to material restrictions and design restrictions. It is an object of the present invention to provide a radio wave correction watch of a completely metal outer cover using an antenna structure.
  • the present invention when the present invention is applied to a wristwatch, it is an object of the present invention to provide a wristwatch antenna device that prevents the thickness of the wristwatch from being increased and bulky in addition to the above object, and that the wearing feeling on the arm is also good. Do.
  • the present invention basically adopts the technical configuration as described below.
  • an antenna structure for receiving radio waves used inside a metal sheath wherein the antenna structure has a structure in which a coil is wound around a magnetic core.
  • the antenna structure is characterized in that it can receive magnetic flux from the outside of the metal sheath, and more specifically, as a second aspect of the present invention, an antenna structure for receiving radio waves used inside the metal sheath.
  • the antenna structure includes a main magnetic path in which a coil is wound around a magnetic core and a sub magnetic path in which a coil is not wound on the magnetic core, and along the magnetic core
  • the formed magnetic path forms a closed loop, and a part of the magnetic path of the antenna structure constituting the closed loop is provided with a gap, and the gap portion Part of the magnetic Or permeability and is configured so as to be different magnetic resistance or permeability
  • the antenna structure is further configured such that the magnetic resistance of the auxiliary magnetic path becomes larger than the magnetic resistance of the main magnetic path. It is a body.
  • the gap is an antenna structure which is an air gap.
  • an antenna structure for receiving a radio wave comprising at least a magnetic core and a coil provided in at least a part of the magnetic core.
  • the antenna structure includes a main magnetic path in which a coil is wound on a magnetic core and a sub magnetic path in which a coil is not wound on the magnetic core, and is formed along the magnetic core. Magnetic path forms a closed loop, and the Q factor retention rate R q defined in the present invention when the metallic object is present in the vicinity of the antenna structure is 10 0% or more.
  • an antenna structure having the same configuration as that of the fifth aspect, wherein the antenna structure is provided in the vicinity of the antenna structure. Suitable for use in environments where metal objects are And it has, and a antenna structure and wherein the maximum gain reduction rate metal object near the antenna structure is defined in the present invention if there is 6 0% or less.
  • a main magnetic path in which a coil is wound on a magnetic core and a secondary magnetic path in which a coil is not wound on a magnetic core and
  • the present invention provides an antenna structure It consists of a main magnetic path where the coil is wound around the core and an auxiliary magnetic path where the coil is not wound around the core, and the magnetic path formed along the core forms a closed loop.
  • the antenna structure receiving capable radio waves or is placed in the watch is made of a metal, wind-line resistance of the antenna, 1 kappa Omega below It is an antenna structure characterized by a certain thing.
  • a main magnetic path in which a coil is wound on a magnetic core and a secondary magnetic path in which a coil is not wound on a magnetic core The antenna structure, wherein a magnetic path formed along the magnetic core forms a closed loop, and at least one of the side portion and the back cover is made of metal.
  • a radio correction clock composed of a structure
  • a reference signal generating means for outputting a reference signal
  • a clocking means for outputting clocking information based on the reference signal
  • a display means for displaying a time based on the clocking information
  • the radio wave correction watch has at least a side.
  • any one of the back cover parts is made of metal
  • the receiving means is a radio wave correction watch made of any of the antenna structures shown in the above-mentioned respective aspects.
  • the radio wave correction watch having the antenna structure of the present invention adopts the above-described technical configuration, it has a simple structure without significantly changing the structure, design, etc. of the conventional radio wave use watch.
  • the antenna structure is adopted, the reception efficiency is good, the size and thickness of the watch itself are not different from those of the conventional ones, the freedom of design is enhanced, and the manufacturing cost can be reduced at a low cost.
  • a radio correction clock using the antenna structure can be easily obtained.
  • FIG. 1 is a view showing the configuration of one specific example of the antenna structure according to the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of a conventional example of the antenna structure.
  • FIG. 3 is a graph showing the decay rate of the Q factor due to the influence of the metal plate of the antenna structure in the present invention and the prior art.
  • FIG. 4 is a graph showing a change in gain due to the influence of the metal plate of the antenna structure in the present invention and the prior art.
  • FIG. 5 is a graph showing changes in gap distance and Q value when the antenna structure according to one embodiment of the present invention is used.
  • FIG. 6 is a plan view showing a specific example of the configuration of the antenna structure according to the present invention.
  • FIG. 7 is a view for explaining a configuration example of a gap portion in the antenna structure according to the present invention.
  • FIG. 8 is a block diagram showing an example of the configuration of a radio-controlled timepiece according to the present invention.
  • FIG. 9 is a view showing one specific example of the arrangement configuration of each part in the radio-controlled timepiece according to the present invention.
  • FIG. 10 is a view showing another specific example of the arrangement configuration of each part in the radio wave correction watch according to the present invention.
  • FIG. 11 is a diagram showing another specific example of the arrangement configuration of each part in the radio wave correction watch according to the present invention.
  • FIG. 12 is a graph showing the effect of the metal sheath on the antenna structure.
  • FIG. 13 is a graph showing the effect of the metal sheath on the antenna structure.
  • FIG. 14 is a diagram for explaining a specific example of the method for measuring antenna gain and Q value according to the present invention.
  • FIG. 15 is a diagram for explaining a specific example of the method of measuring the antenna gain and Q factor according to the present invention.
  • FIG. 16 is a diagram for explaining a true example of the method for measuring antenna gain and Q value according to the present invention.
  • FIG. 17 is a view for explaining a specific example of the method of measuring the antenna gain and Q factor according to the present invention.
  • FIG. 18 is a view for explaining an example of the configuration in the antenna structure according to the present invention c
  • FIG. 19 is a diagram showing one specific example of the antenna structure in the second embodiment according to the present invention It is a figure showing composition.
  • FIG. 20 is a graph showing the relationship between the L value and the gain in the antenna structure in the second embodiment according to the present invention.
  • FIG. 21 is a graph showing the relationship between the number of perforations (T) in the antenna structure and the gain in the second embodiment according to the present invention.
  • FIG. 22 is a graph showing the relationship between the piercing line resistance ( ⁇ ) and the gain in the antenna structure in the second embodiment according to the present invention.
  • FIG. 23 is a graph showing the relationship between the piercing line resistance ( ⁇ ) and the gain in the antenna structure in the second embodiment according to the present invention.
  • FIG. 24 is a block diagram showing a circuit configuration used to change the resonant frequency of the antenna structure in the second embodiment of the present invention.
  • FIG. 25 is a graph showing a change in Q value under the influence of the antenna structure according to the third embodiment of the present invention and the metal plate of the antenna structure in the related art.
  • FIG. 26 is a graph showing changes in gain under the influence of the antenna structure according to the third embodiment of the present invention and the metal plate of the antenna structure in the related art.
  • FIG. 27 is a graph showing changes in air gap distance, gain, and Q value when the antenna structure according to one specific example of the third embodiment of the present invention is used.
  • FIG. 28 is a diagram showing the configuration of another embodiment of the antenna structure of the present invention.
  • FIG. 29 is a diagram showing the configuration of another embodiment of the antenna structure of the present invention.
  • FIG. 30 is a characteristic diagram of frequency-one L value in the second embodiment of the present invention.
  • FIG. 31 is a characteristic diagram of the staring resistance-one antenna Q value in the second embodiment of the present invention.
  • the antenna structure 2 in the specific example of the first aspect in the present invention is the antenna structure 2 for receiving radio waves used inside the metal sheath 3, and the antenna structure 2
  • the body 2 is composed of a main magnetic path 2 1 in which a coil is wound around a magnetic core 6 and an auxiliary magnetic path antenna core 9 ′ in which the coil is not wound on the magnetic core
  • the magnetic path 12 formed of the magnetic path 22 and formed along the magnetic core 6 forms a closed loop, and the antenna structure 2 of the closed loop is formed.
  • a gap 10 is provided in a part of the magnetic path 12 and the gap 10 is configured to have a magnetic resistance or magnetic permeability different from the magnetic resistance or magnetic permeability of the other parts.
  • An antenna structure 2 is shown that can receive an external magnetic flux 4 but has a structure in which the magnetic flux 7 generated at the time of resonance is less likely to leak to the outside at the time of resonance.
  • the magnetic resistance of the sub magnetic path 2 2 be further larger than the magnetic resistance of the main magnetic path 21. .
  • a metal sheath 103 having conductivity in the vicinity of the antenna structure 102 for receiving external radio waves or in contact with the antenna structure 102 for example, If the side used as the exterior of the watch such as stainless steel or titanium alloy and / or the back cover (hereinafter referred to as the metal exterior in the present invention including these) is disposed, the external radio wave It is thought that the magnetic flux 104 due to this is absorbed by the metal sheath 103, the external radio wave does not reach the antenna structure 102, and the output of the antenna decreases.
  • the antenna structure 102 may be formed large, or the antenna structure 102 may be provided outside the metal sheath 103, or instead of the metal sheath 103.
  • the said exterior part 103 is plastic There is to improve the simultaneous appearance quality when configured with a ceramic, it was walking painted thin metal plated or metallic in the non-metallic material surface.
  • the problem is that the problem is that the output performance of these devices is reduced and the reception performance is significantly reduced.
  • the exterior part 103 of the watch that is, the side and the back cover part are formed of a metal material, and the antenna structure for receiving radio waves.
  • the flow of the magnetic flux 102 by the external radio wave that tries to enter the inside of the timepiece 101 from the outside is somewhat Is attenuated (for example, about 1 3 d B), but substantially reaches the antenna structure 102 without obstacles, but when the magnetic flux of the radio wave is received and the antenna structure 102 resonates.
  • the resonance output from the end of the magnetic core 1 0 9 in the antenna structure 1 0 2 is generated.
  • the flow of generated magnetic flux 1 0 7 is pulled to the exterior portion 1 0 3 which is the metal material. Then, the eddy current is generated and the energy of the magnetic flux flow 107 generated by the resonance is absorbed, and as a result, the resonance output from the antenna structure 102 is lowered. That is what I found out.
  • the gain and resonance of the antenna in the resonant state and in the non-resonant state, when the antenna is used alone and when the metal sheath is nearby, are used.
  • the following table 1 and 2 show the results of measurement for the Q factor of the antenna in question.
  • the material of the metal sheath is titanium (T i)
  • the antenna structure is a conventional antenna with a conductor wound around 400 turns on the ferrite core, and the operation of resonance or non-resonance is performed.
  • the adjustment was made by performing the operation of adding or removing the resonance capacitance.
  • the resonance frequency in this example is 40 KHz.
  • the presence of the metal sheath also reduces the gain by 32dB, in other words, the output of the antenna is reduced by about 40, and the Q factor is
  • the Q value as a single substance is 1 1 4 while it decreases to 3 and the reduction ratio shows a decrease of 3 1 d B which is about 1 ⁇ 4. I understand.
  • FIG. 17 is a graph showing the relationship between the frequency and the output of the antenna.
  • the highest frequency of the antenna output is the resonance frequency f 0.
  • the level indicated by A is a level that is about 3 dB (1 / f 2) lower than the highest point of the antenna output, and the frequencies giving the output level are f 1 and f 2.
  • Q value is calculated as follows.
  • the Q value indicates the degree of energy loss of the antenna in a resonant state, and the smaller the energy loss, the higher the value of the Q value, and the antenna output is approximately at non-resonance. It is Q times the antenna output.
  • the gain ratio of resonant Z non-resonance is about 40 d B when converted to a Q value of 1 14. Doubled There is.
  • the antenna output is improved and the performance as the antenna structure is judged to be better.
  • Q is also an indicator of the extent of energy loss.
  • raising the value of the Q value makes it possible to remove unnecessary noise from the input external radio wave, thereby improving the sensitivity to a predetermined frequency. It is possible to use a filter function, and from this point it is also desirable that the Q value be high.
  • the antenna when placed in a metal sheath, the antenna receives external radio waves, and when it is in a resonant state, some energy loss is significantly more than that of a single antenna.
  • the present invention when the antenna structure 2 is disposed in contact with a metal material or in the vicinity of the antenna structure, it is sufficient in the present invention.
  • the present invention has been achieved as a result of studying how to prevent a drop in the Q value in order to secure a proper antenna output and to suppress it with a practically acceptable degree of a drop in the antenna output.
  • the antenna structure 2 receives an electric wave, and the antenna structure 2 can receive the magnetic flux 4 generated by an external radio wave, but at the time of resonance, the magnetic flux 7 generated by resonance is an external Magnetism that is hard to leak It has the structure of the path 12 and the magnetic path 12 is wound with the coil soldered portion 21 (main magnetic path) in which the conductor 11 is wound and a coil is formed, and the conductor 11 is wound.
  • the antenna structure composed of a non-coil soldered portion 2 2 (sub magnetic path) the above-described conventional problems are solved, and a compact, thin, and inexpensive device with practically no problems. It is possible to easily manufacture an antenna structure suitable for electronic equipment using radio waves, which is low in cost.
  • the antenna structure 2 when the predetermined radio wave has arrived from the outside, the antenna structure 2 has an external structure.
  • the magnetic flux 4 generated by the radio wave is received, but the magnetic flux 7 generated by the resonance flows in the closed loop loop magnetic path 12, and as a result, the magnetic flux 7 has a structure that does not easily leak to the outside of the antenna structure 2.
  • the antenna structure 2 of the present invention includes: the coil soldered portion (main magnetic path) 21 in the magnetic path 12; and the non-coil soldered portion (sub magnetic path) It is desirable that at least a part of 2 2 be made of different materials.
  • the coil soldered portion 21 in the present invention constitutes a part of the magnetic path 12 described above, and the appropriate core portion (main magnetic path antenna core portion) 9 has a suitable conductor 1 1.
  • the non-coil soldered portion 22 in the present invention is a portion of the magnetic path 12 described above.
  • the sub magnetic path antenna core portion 9 ' is configured with a proper core portion and defines a portion where the coil of the conductor 11 is not attached.
  • the coil welding portion 21 when the antenna receives an external radio wave, the coil welding portion 21 has a function such that the magnetic flux 4 generated by the external radio wave mainly flows to the coil welding portion 21.
  • the magnetic flux 7 generated while the coil brazing part 21 is resonating is mainly the non-coil brazing part. It has a function that flows to 2 2.
  • the portion is non-conductive as long as it exhibits the above function. It is judged as a coil brazing part.
  • the said coil brazing part 21 in the present invention is not limited to one coil, but a plurality of coils. It may be the case where individual coils are arranged.
  • the non-coil soldered portion is more than the effective permeability of the coil soldered portion 21.
  • the magnetic path in the air through which the magnetic flux generated when the coil soldered part 21 resonates when the effective permeability of the coil 22 is small and the non-coil soldered part 22 does not exist.
  • the magnetic flux of the external radio wave that has entered the coil brazing part 2 1 and the non-coil brazing part 2 2 mainly flows on the side of the coil brazing part 2 1 where the effective permeability is large.
  • an electromotive force is generated in the coil unit 8
  • resonance occurs by the electromotive force
  • the magnetic flux generated by the resonance is in the air rather than flowing from the coil brazing unit 21 into the air.
  • the non-coil soldered part 22 having an effective permeability larger than the effective permeability the magnetic flux leaking to the outside of the antenna structure is reduced as a result.
  • a part of the magnetic path of the antenna structure constituting the closed loop includes a portion whose permeability is different from the permeability of the other portion. It is also possible to configure such that, in a part of the magnetic path of the antenna structure constituting the closed loop, a portion whose magnetic resistance is different from the magnetic resistance of the other portion is It is also possible to configure it to be included.
  • the magnetic resistance of the sub magnetic path 22 is configured to be larger than the magnetic resistance of the main magnetic path 21.
  • the magnetic path 12 corresponding to the non-coil soldered portion 22 of the antenna structure 2 in the present invention is provided in part to form a magnetic gap, thereby reducing the effective permeability of the non-coil welded portion 22.
  • the gain and Q value of the antenna are as shown in Table 3 below. Become.
  • the characteristic (gain / output) level of the practical antenna at the conventional level is, for example, attenuating from about 31 d B to about 40 d B in gain. It is necessary to compare the antenna characteristics of a watch using a metal sheath using various metal materials in the invention with that of this to determine whether the antenna characteristics of the watch according to the present invention are within the practical range. is there.
  • the practical receiving performance target of the output of the antenna is not the gain of one antenna alone but the time of mounting the watch.
  • the level is about 40 dB and the level is set as the reference target.
  • Figures 3 and 4 show the antenna characteristics of the conventional antenna and the antenna characteristics of the antenna in the present application measured for various metal materials and compared.
  • the attenuation factor of the Q factor is shown, and
  • FIG. 4 shows the results of measuring and comparing the gain as the antenna characteristics of the conventional antenna and the respective antennas in the present application.
  • FIGS. 3 and 4 As the conventional antenna shown in FIGS. 3 and 4, a linear ferrite core having a conductor wound around 400 turns is used, and the structure of the antenna of the present invention is shown in FIG.
  • the coil soldered portion 21 with a conductor wound on a straight ferrite core as in the above, and a non-coiled soldered portion 2 2 not wound with a coil is joined to the core of the coil soldered portion 21 and closed.
  • a magnetic path is formed, and a gap of 200 m is formed in a part of the non-coil welded portion 22.
  • the antenna is placed on a plate made of a metal material of
  • the Q factor is measured for each of the cases, and the attenuation rate is indicated by DB.
  • Figure 4 measures the gain and the DB value for the same class as Figure 3. It is shown by the reverse bar graph.
  • the damping factor of the Q factor is about 6 dB smaller than that of the case of using a metal sheath because of the plate material.
  • the antenna gain (output) in the present invention is improved by about 10 d B (about 3 times) in this evaluation sample for each material.
  • FIG. 5 is a graph showing the relationship between the antenna characteristics and the gap, and shows the relationship between the gap of the gap and the Q value.
  • the Q factor of the antenna can be improved by adjusting the gap, and therefore the gain of the antenna can also be improved. ing.
  • the number of turns (number of turns) of the conductor can be optimized. It is possible to improve further.
  • the antenna structure 2 according to the present invention is in contact with the metal material 3 or the metal material 3 is present in the vicinity thereof, the reduction rate of the Q value is significantly large.
  • the antenna structure 2 which can be suppressed and which can exhibit good reception performance can be obtained easily and at low cost, regardless of the presence or absence of the metal material.
  • the metallic material when the metallic material is in contact with the antenna structure or exists in the vicinity of the antenna structure, specifically, by increasing the Q value, By suppressing the rate of decrease of the Q value, the gain of the antenna structure is improved, and by suppressing the rate of decrease of the gain value, the reception characteristics of the antenna structure can be significantly improved.
  • the reduction factor of the gain value of the antenna structure ie, the antenna in the case where the metal material is not in contact with the antenna structure or the metal material is not present in the vicinity of the antenna structure
  • the reduction ratio of the gain value when the metallic material is in contact with the antenna structure with respect to the gain value of the structure or in the vicinity of the antenna structure is 65% or more
  • the reduction rate of the gain value of the antenna structure is suppressed to 60% or less, and it has a remarkable effect as compared with the conventional antenna structure. so is there.
  • another specific example of the antenna structure according to the present invention is an antenna structure that receives a radio wave, and a gain indicated by the antenna structure when a metal object is present in the vicinity of the antenna structure.
  • the value is configured to show a characteristic value in which the maximum gain reduction rate with respect to the gain value indicated by the antenna structure in the absence of a metallic object in the vicinity of the antenna structure is 60% or less.
  • the metal object is disposed at a distance to which the magnetic flux output from the antenna structure can reach when the antenna structure receives the radio wave and resonates, and the magnetic object absorbs the magnetic flux at the same time. It is desirable to have
  • the antenna structure according to the present invention can It is used efficiently in the environment where a generic object exists.
  • the gain reduction rate of the antenna structure in the present invention is determined by bringing a plurality of metal objects made of different metal materials into contact with the antenna structure or in the vicinity of the antenna structure. It is desirable to select the gain reduction rate that shows the largest value among the individually measured gain reduction rates under the same conditions.
  • the metal object used in the present invention is at least a metal object comprising a metal material of stainless steel (SUS), brass (BS), titanium (T i) or titanium (T i) alloy. Is used individually to measure the gain value of the antenna structure individually, and the maximum gain reduction rate is calculated therefrom.
  • the maximum gain reduction rate of the gain value of the antenna structure is a predetermined metal object, for example, s U S or
  • the permeability of the part of the magnetic path 12 of the antenna structure 2 constituting the closed loop is the permeability of the other part. It is a preferable specific example that a different part is included.
  • a part of the magnetic path 12 of the antenna structure 2 constituting the closed loop includes a portion whose magnetic resistance is different from the magnetic resistance of the other portion. Is also a desirable example.
  • the effective permeability of the non-coil welded portion 22 is smaller than the effective permeability of the coil welded portion 21.
  • the gap 10 corresponds to the main magnetic path 21 and the auxiliary magnetic path. It is desirable that the gap be formed at least at one of the junctions of the two, or that the gap 10 be formed at a part of the sub magnetic path.
  • the gap 10 is between the end faces of the main magnetic path 21 and the auxiliary magnetic path 22 or Between the end faces 1 3 and 1 3 provided in the sub magnetic path 2 2, or as shown in FIG.
  • each magnetic field in the portion 2 7 other than the end faces 1 3 of the sub magnetic path 2 2 The surfaces of the paths 12 may be formed in the gap portions formed facing each other, and at least a part of the main magnetic path 21 and the auxiliary magnetic path 22 may be mutually formed. It may be arranged close to and in parallel.
  • the joint surface between each other may be formed in a tapered shape as illustrated in FIG.
  • the gap 10 is provided in the portion of the magnetic path 12 other than the vicinity of the coil winding portion 8 of the main magnetic path 21. It may be.
  • the gap in the present invention it is desirable that a material different from the material constituting the magnetic core 12 be disposed.
  • the gap 10 may be filled with a material different from the material of the magnetic core 12 or the gap 10 may be in the form of being filled with air. You may use an air gap.
  • the gap 10 of the antenna structure in the present invention is an air gap
  • the air gap may be formed with a spacer interposed.
  • the gap 10 is provided in the non-coil welded portion 22. As shown in FIG. 18 (A) or (B), at least one joint of the coil crimped portion 21 and the non-coil crimped portion 22 is carried out. Part 1 5 may have gap 10 formed.
  • the gap 10 may be provided in the portion of the magnetic path 12 other than the vicinity of the coil brazing part 21.
  • FIG. 18 (D) it is not preferable that at least a part of the gap 10 exists on the surface of the antenna structure 2 to which the external radio wave reaches. Therefore, it is desirable that the gap 10 is formed on the side opposite to the surface to which the external radio wave of the coil brazing part 21 reaches as shown in FIGS. 18 (A) to (C). .
  • FIG. 18 (D) it is not preferable that at least a part of the gap 10 exists on the surface of the antenna structure 2 to which the external radio wave reaches. Therefore, it is desirable that the gap 10 is formed on the side opposite to the surface to which the external radio wave of the coil brazing part 21 reaches as shown in FIGS. 18 (A) to (C). .
  • FIG. 18 (D) it is not preferable that at least a part of the gap 10 exists on the surface of the antenna structure 2 to which the external radio wave reaches. Therefore, it is desirable that the
  • the antenna core is joined to a part of the face opposite to the face where the external radio wave reaches the central axis at a position separated by the length of the radius of It is desirable that the gap 10 be formed in the configuration.
  • At least a part of the non-coil soldered portion 22 or the coil soldered portion 21 has a magnetically degenerated layer, a nonmagnetic layer, or It is also preferable that a film layer 80 consisting of a layer with low magnetic permeability be formed.
  • the gap 10 is composed of only the film layer without the air layer.
  • the gap in the present invention is composed of a nonmagnetic material or a nonmagnetic material having a low magnetic permeability and a low magnetic permeability, and at least its main magnetic path. Is made of a soft magnetic material.
  • the soft magnetic material for example, a composite composite of ferrite, an amorphous metal soft magnetic material, and a composite material in which cobalt or cobalt alloy soft magnetic powder is mixed with a resin are used.
  • the width of the gap is an important point.
  • the width of the gap is too wide or too narrow, the characteristics of the antenna structure will be adversely affected, causing inconvenience as a product.
  • the main magnetic flux and the secondary magnetic path are as small as possible with infinitely small gap width, that is, when the soft magnetic bodies constituting the main magnetic path and the secondary magnetic path are wound in a ring, the main magnetic path and Since the auxiliary magnetic path forms a magnetically perfect closed loop, leakage of magnetic flux generated at resonance is eliminated, but in the case of the effective magnetic permeability of the antenna (in the example of the antenna used in the present application, the auxiliary magnetic path is not provided) The relative permeability became about 20 to 30.)
  • the magnetic permeability of the soft magnetic material constituting the main magnetic path and the auxiliary magnetic path in the case of the manganese zinc ferrite used in this embodiment, the relative permeability
  • the magnetic permeability is approximately 100 to 200.), and the inductance of the antenna is proportional to the effective permeability of the antenna, so the inductance becomes extremely large, such as several tens of times to approximately 100.
  • the antenna has a parasitic capacitance in the coil part, so the self-resonant frequency is extremely lowered (down to a frequency of 1 Z 5 to 1/10), and the external resonant capacitance gives the desired frequency.
  • the resonant frequency can not be adjusted to (reception frequency).
  • the coil turn number is reduced to reduce the inductance and raise the self-resonant frequency, it is possible to adjust the resonant local wave number to the desired frequency, but it is necessary to reduce the coil turn number to about one tenth.
  • the antenna output voltage which is proportional to the number of coil turns, decreases.
  • the flux of external radio waves entering the antenna will flow more to the side of the non-coiling side of the coil, resulting in a reduction in the amount of flux contributing to the antenna output voltage.
  • the antenna output voltage drops. Also in this case, the effects of the present invention can not be exhibited sufficiently.
  • the width of the gap needs to be controlled to have an appropriate value.
  • the antenna output voltage reduction due to the installation of the antenna in the metal sheath is reduced to 50% or less as a standard), and at the same time, the external resonance capacity is set to the desired frequency (reception frequency) So that the self-resonant frequency is higher than the desired frequency (reception frequency), so that the flux of the external radio wave entering the antenna flows more to the main magnetic path side where the coil is wound. It is necessary to set it.
  • the magnetic resistance of the auxiliary magnetic path including the gap is adjusted and set large within an appropriate range.
  • this setting indicates that the effective magnetic permeability of the antenna is 2 to 10 times that of the antenna without the auxiliary magnetic path, and preferably 4 to 8 by providing the auxiliary magnetic path. It turned out that it is necessary to set to double. In other words, it is necessary to adjust the inductance of the antenna by 2 to 10 times, preferably 4 to 8 times, by providing the auxiliary magnetic path with respect to the inductance of the antenna when the auxiliary magnetic path is not provided.
  • the shape of the main magnetic path or the shape of the part of the sub magnetic path or the shape of the gap provided between the sub magnetic path and the main magnetic path or the magnetic characteristics of the members constituting the gap It can set by adjusting.
  • the effective permeability or inductance of the antenna of the present invention is adjusted and set, so that the effective permeability or inductance of the antenna is sufficiently exhibited. In order to make it happen, it will be made moderately large.
  • this method it is necessary to increase the size of the main magnetic path in which the coil is open or to increase the number of turns of the coil, or, from the viewpoint of magnetoresistance, to increase the shape of the gap or the area of the gap Reduce the width of the gap, or change the material properties of the members that make up the gap, and in particular, change the material of the members within the range below the magnetic permeability of the soft magnetic material that makes up the main and sub magnetic paths.
  • the effective permeability or inductance of the antenna can be adjusted and set large.
  • the gap width is 1 when the opposing area is about several square mm. It is necessary to make stable adjustment setting to dimensions of less than mm, preferably less than 0.2 mm, and simultaneously hold. If the gap width can not be adjusted and held stably, manufacturing characteristics of the reception characteristics (voltage output) of the antenna will increase or cause changes over time.
  • the positions of the main magnetic path and the auxiliary magnetic path are determined by an appropriate jig, the width of the gap is set, and the adhesive is poured into the gap portion in that state and fixed.
  • an appropriate adhesive or an appropriate fiber-like thread is formed in the gap between one or both of the junctions 15 and 5 'between the main magnetic path and the auxiliary magnetic path.
  • PAPER It is possible to form a gap 10 by intermittently bonding an adhesive made of a mixture of first grade etc., a double-sided adhesive tape, etc.
  • Adhesives that can be used in the present invention include, for example, organic adhesives generally used, such as epoxy adhesives, urethane adhesives, silicone adhesives, acrylic adhesives, nylon adhesives It is possible to use an adhesive, silicone acrylate adhesive, rubber adhesive, urea resin adhesive, melamine resin adhesive, vinyl adhesive and the like.
  • an adhesive in which glass or resin beads having a uniform diameter or short-cut fiber-like spacer fillers are mixed is used. Apply to the surface of the main magnetic path and auxiliary magnetic path that forms the gap 15 and / or 15 'and then press and bond to set the width of the gap approximately equal to the diameter of the spacer used and fix it It is a method of unifying.
  • a resin film with a constant thickness is sandwiched as a spacer in the cap portion, and the main magnetic path and the auxiliary magnetic field are screwed at the antenna installation position of the radio wave correction watch.
  • This is a method of setting the width of the gap by fixing it in a state where it abuts on the road with a spacer.
  • the main magnetic path and the auxiliary magnetic path are respectively protuberant portions using the antenna structure as the protrusion 17 formed on the support bobbin 16 as a spacer.
  • double-sided adhesive tape coated with adhesive or adhesive on both sides the main magnetic path and the auxiliary magnetic path may be bonded and fixed to each other by sandwiching the main magnetic path and the auxiliary magnetic path, and the width of the gap may be set by the thickness of the double-sided tape.
  • the gap 10 is a main magnetic path and a sub-path of the gap.
  • the opposing surfaces of the magnetic paths may be tapered, or the gap 10 may be provided at both of the two connection portions of the main magnetic path and the auxiliary magnetic path.
  • a ferrite-based sintered material such as a manganese zinc ferrite is used as a soft magnetic material for forming the main magnetic path and the auxiliary magnetic path when forming the gap, the main magnetic path and Even if the auxiliary magnetic path is closely attached, the behavior is different from the case of using a soft magnetic material of metal such as magnetically annealed permalloy, and the relative permeability of the evaluation result of the ring-shaped evaluation sample: 10 0 0 0 2 0 0
  • the effective permeability or inductance of the antenna estimated from about 0, and depending on the shapes of the main magnetic path and the auxiliary magnetic path, the increase in the effective permeability or inductance is only about several to ten times.
  • the surface of the member does not exhibit the original magnetic properties for some reason such as a deviation from the chemical equivalent during sintering, and the magnetic property is not low. It is considered that a layer is formed, and this altered layer is considered to act as a gap in the present invention.
  • the main magnetic path 21 and the auxiliary magnetic path 22 are brought into close contact as shown in FIG. Even though the appearance does not form a gap, magnetically the main magnetic path 2 1 and the auxiliary magnetic path 2 2 are connected via the magnetically affected layer 300 on the surface, and as a result, The magnetically degenerate layer 300 has set the width of the gap 10. Therefore, when a ferrite base sintered material is used to form the main magnetic path and the auxiliary magnetic path, the main magnetic path and the auxiliary magnetic path are closely adhered without forming a gap on the appearance, and the main magnetic path and the auxiliary magnetic path are adhered. By adjusting the area to be adjusted, adjustment setting of the above-mentioned effective permeability or inductance can be performed.
  • the cross-sectional areas of the coil brazing part 21 and the non-coil welding part 22 may be configured to be different from each other, and the coil brazing part 21 and The non-coil crimped portion 22 forms a structure independent of each other, and after the conductor 11 is wound around the coil crimped portion 21, the coil crimped portion 2 is formed. It is also possible to adopt a configuration in which 1 and the non-coil brazing part 22 are integrated.
  • the reduction rate of the Q value and the gain value is An antenna structure 2 which can be well suppressed and which can exhibit good reception performance can be easily obtained at low cost, practically regardless of the presence or absence of the metal material.
  • the frequency of the target radio wave that can be received by the antenna structure 2 is a radio wave including a long wave equal to or less than 2 0 0 0 k H z, preferably, the number 1 0 k H z It is a long wave of z to several hundred kHz.
  • the metal sheath 3 has a structure including a side portion and a back cover portion made of a metal material capable of housing the antenna structure 2 therein, or the antenna structure 2 It is desirable to be composed of at least one member selected from a structure in which the side portion and the back cover portion which are made of metal material which can be stored inside are formed as a unit.
  • the metal sheath 3 used in the present invention is, specifically, SUS, BS, Ti, Ti alloy, or gold, silver, platinum, nickel, copper, chromium, aluminum or their.
  • a metal sheath material having conductivity such as an alloy is used.
  • specific examples of the metal outer cover 3 disposed in the vicinity of the antenna structure 2 include, for example, an outer cover of a watch including a back cover and a side, a dial, a motor, and a move member.
  • These include batteries, batteries, solar cells (especially SUS substrate solar cells), arm bands, heat sinks and so on.
  • the antenna evaluation circuit is configured by connecting the transmit antennas (test loops 7 5 Q and VQ-0 5 5 F) as shown in Figure 14 and the transmit antennas (test loops 7 5 Q and VQ-0).
  • the RF probe (85024 A) connecting the antenna under test and the sample support are arranged in the vicinity of 8 5 F), and after the predetermined antenna under test is set on the sample support, A predetermined radio wave is transmitted from the transmitting antenna (test loop 75 Q, VQ-08 5 F), the output of the antenna under test is detected by the high frequency probe (850 24 A), and the corresponding network is detected. Perform predetermined antenna evaluation with the network analyzer (4 1 9 5 A) It was constructed in
  • the distance between the antenna structure under test 2 and the transmitting antenna (test loop 75 Q, VQ-0 85 F) is shown from the lower end of the transmitting loop antenna as shown in Fig. 15 1
  • the measurement receiving antenna was placed at a distance of 1 cm for measurement, and at the same time, as shown in FIG. 16, the measurement was made by bringing the measured antenna structure 2 and the metal sheath 3 into contact with each other.
  • metal sheath 3 used in this specific example, a 5 mm thick plate material of S U S, T i, T i alloy, B S was used as the metal material.
  • the frequency of the radio wave transmitted from the transmitting antenna is 2 when measuring a resonant antenna for 40 KHz. It was changed in the range of 0 to 60 KHz and measured.
  • the frequency is swept with 20 to 60 KHz from the network analyzer (4 1 9 5 A) to the transmitting antenna (test loop 7 5 Q, VQ-0 5 5 F) at a constant output,
  • the output of measurement antenna 2 is monitored through a high frequency probe (850A) to obtain the output shown in Fig. 17.
  • the gain of the antenna is represented by the ratio of the input voltage amplitude to the transmitting antenna to the output voltage amplitude of the antenna to be measured.
  • the frequency with the highest antenna output is the resonant frequency (f 0).
  • the above ratio value at the time when the antenna output is highest is It was a gain.
  • f 1 and f 2 were obtained from the measurement results to calculate the Q value.
  • Figure 3 shows the measurement results using the attenuation factor (indicated by dB) with the Q value of the conventional antenna alone as a reference.
  • the antenna structure 2 according to the present invention is a useful invention that clearly ameliorates the conventional problems.
  • FIG. 4 shows the gain when the antenna structure according to the present invention and the conventional antenna structure shown in FIG. 2 are measured in the same environment as FIG. 3 by d B. Even when using any metallic material, the gain shows a better value than that of the conventional antenna.
  • the improvement in Q factor has a gap dependency, and the narrower the gap, the larger the effective permeability of the non-coil soldered part 22 and the leakage flux decreases.
  • the narrower the gap the better the Q factor.
  • the antenna structure 2 in the present invention preferably has a configuration as shown in FIG. 1, for example.
  • a magnetic core ⁇ core portion> 2 is extended and bent from both end portions, and the end portions 1 3 and 1 3 ′ are made to be close to each other to form a loop-like magnetic path.
  • a minute gap that is, a gap 10 be provided in the facing portion 14 of the ends of the magnetic core 6.
  • the gap 10 may be air intervened as described above, or may be intervened by an appropriate filler such as a resin film layer or the like.
  • an appropriate spacer may be interposed, the magnetic resistance of the gap 10 portion becomes larger than the magnetic resistance in the magnetic path, and hence the magnetic resistance.
  • the magnetic resistance in part of the closed loop of the path (core 6) 12 a portion with different magnetic resistance will be formed.
  • the antenna structure 2 of the present invention since the above-mentioned antenna 10 has the substantially loop shape in which the gap 10 exists, the magnetic flux coming from the outside enters from both ends of the antenna. However, the magnetic flux does not flow in the direction in which there is a gap 1 0 (in the middle of the magnetic resistance), but flows in the winding 1 1 with small magnetic resistance.
  • the winding line section 11 affected by magnetism converts a change in magnetic flux into a voltage, causes a resonance phenomenon by the L value of the antenna and the tuning capacitor capacity, and generates a magnetic flux by resonance. At this time, the magnetic flux generated by the resonance of the antenna does not leak into the air, but flows through the gap with a small magnetic resistance.
  • the resonance is output from the antenna structure 2 when the antenna structure 2 is resonating. Since the flow of the generated magnetic flux 7 mainly flows along the closed loop type magnetic path 12 as shown in FIG. 1, for example, an exterior portion made of the metal material from the antenna structure 2, for example Leakage of the magnetic flux is avoided in (3). Therefore, the magnetic flux leaked to the metal sheath 3 does not generate an eddy current to reduce the energy of the magnetic flux.
  • the magnetic path 1 2 (core 6) in the antenna structure 2 is made up of the main magnetic path antenna core portion 9 and the non-coil soldered portion 2 2 of the crimped portion 21.
  • both of the magnetic path antenna core portion 9 'are integral with each other when producing the antenna, the main magnetic path constituting the coil brazing portion 21 through the gap of the winding wire 1 1 when producing the antenna.
  • the coil winding portion 21 is constructed by utilizing a closed space formed between the coil welding portion 21 and the non-coil welding portion 2 2 by using a force to stick to the antenna core portion 9. It is necessary to tap the main magnetic circuit antenna core 9 and the productivity is degraded.
  • the coil soldering is performed.
  • the sub magnetic path antenna core part 9 ′ of the non-coll welding part 22 is not attached, and the winding operation is completed.
  • attach the auxiliary magnetic path antenna core 9 'of the non-coil brazing part 22 By doing this, it is possible to dramatically improve the production efficiency of the winding line. That is, as shown in FIG.
  • the main magnetic path antenna core portion 9 of the coil welding portion 21 and the sub magnetic path antenna core portion 9 'of the non-coil welding portion 22. are constructed separately, and are configured to join the two after the winding operation is completed.
  • the magnetic resistance of the non-coil welded portion 22 according to the present invention is one of the preferable embodiments configured to be larger than the magnetic resistance of the coil welded portion 21. .
  • the gap 10 may be formed in the non-coil welded portion 22 or, as shown in FIG. 6, the non-coil welded portion A gap 10 may be provided between at least one of the joints 15 and 15 'between the coil 22 and the coil brazing part 21, that is, at least one of the joints 15 and 15'.
  • the cross-sectional areas of the coil soldered part 2 1 and the non-coil wound part 22 are different from each other. That is, as shown in FIG. 6, the cross-sectional area of the coil brazing part 21 is configured to be smaller than the cross-sectional area of the corresponding non-coil brazing part 22.
  • the coil soldered portion 21 and the non-coil soldered portion 22 form mutually independent structures. After the coil 11 is wound on the coil crimped portion 21, the coil crimped portion 21 and the non-coil wound portion 22 are joined and integrated. It has a structure.
  • the gap 10 is formed at at least one joint portion 15 of the coil brazing part 21 of the antenna structure 2 and the non-coil brazing part 22 in the present invention.
  • the gap 10 formed between the coil brazing part 2 1 and the non-coil brazing part 2 2 is the coil brazing part 2 1 and the non-coil rib 2. It is possible to fix a predetermined gap by inserting an appropriate spacer 17 into the joint portion 15 of the attachment portion 22 and the end face.
  • the spacer 17 may use a foreign substance such as a bead, or may use a projection 17 formed on a bobbin 16 supporting the antenna structure 2. You may
  • the gap length of the bobbin 16 is positioned through a projection 17 previously formed on the bobbin 16 or a spacer 17 disposed separately to improve the gap accuracy of the gap. is there.
  • a bobbin, a spacer 17, or the like may be provided in the gap between the main magnetic path antenna core portion 9 of the coil and the auxiliary magnetic path antenna core portion 9 'of the non-coil brazed portion 22.
  • E by interposing an appropriate film layer 80, etc., the error in the distance accuracy between the gaps 10 will be the error in the dimensional accuracy of foreign matter such as the protrusion or the spacer of the bobbin. , It becomes possible to stabilize the gain of the antenna.
  • the joint surface 15 of the end faces 19 formed between the coil brazing part 2 1 and the non-coil brazing part 2 2 is -It is desirable to be formed in a par shape.
  • the joint surface 15 of the end faces 19 forming the gap 10 formed between the coil crimped portion 21 and the non-coil crimped portion 22 is the winding line portion 1 1
  • the area of the gap 10 will be increased.
  • adjustment of the gap distance of the gap 10 can be performed by, for the main magnetic path antenna core portion 9 of the coil brazing portion, the sub magnetic path antenna core portion of the non-coil brazing portion. Adjustment can be made easily by moving the 9 'in a pushing or pulling direction.
  • FIG. 6 18 indicates a winding frame when winding the winding wire 11 to the main magnetic path antenna core portion 9 of the coil brazing portion 21 and 20 indicates the coil winding An insulating material interposed between the main magnetic path antenna core portion 9 and the winding wire 1 1 when the antenna core of the attachment portion 21 is conductive is shown.
  • the end face of the coil crimped part 21 and the non-coil crimped part 22 or a portion other than the end faces of the non-coil crimped part 22 may be formed to face each other.
  • the gap 10 is between the end face 19 of the antenna core 9 of the coil soldered part 21 and the end face 19 'of the auxiliary magnetic path antenna core 9' of the non-coil soldered part 22.
  • the end portions 19 are made to face each other, and at least a part of the end portions are overlapped with each other, and a portion other than the end face 19 'of the non-coil brazing part 22
  • the part 27 ' may be formed to face the part 27 other than the end face 19 of the coil brazing part 21.
  • a coil 100 formed on an air core coil or bobbin and two antenna cores 200 formed in an L shape are opposed to each other to form the air core. It may be configured to be inserted separately from both ends of the coil 100 formed on the coil or the bobbin into the central part thereof, and to be disposed so that a part of the both may be opposed to each other.
  • Both side portions 23 of the portion constituting the main magnetic path antenna core portion 9 may form a tapered shape or a curved surface formed by an appropriate curve or a broken line as shown in FIG.
  • both side portions 23 are adapted to the outer peripheral shape of the watch as much as possible, and the coil brazing part 21 of the antenna structure 2 can be disposed on the outer peripheral portion of the watch as far as possible. You can do it.
  • the cross-sectional area or thickness of the auxiliary magnetic path antenna core 9 'of the non-coil soldered portion in the antenna structure is the same as that of the main magnetic path antenna core 9 in the coil soldered portion. It is also a preferred embodiment to be configured to be larger or thicker than the area or thickness.
  • the thickness or the cross-sectional area of the main magnetic path antenna core portion 9 of the part and the sub magnetic path antenna core portion 9 'of the non-coil soldered part be thick or large. Since the winding portion 11 is provided in 9, if the cross-sectional area of the main magnetic path antenna core portion 9 or the thickness thereof is large or thick, the thickness of the antenna structure 2 is correspondingly increased. Increase.
  • the auxiliary magnetic path antenna core portion 9 'of the non-coil soldered portion does not have the winding wire portion 11, and therefore, the main magnetic path antenna core portion 9 of the coil soldered portion has a winding portion It is possible to increase the thickness or to increase the cross-sectional area.
  • the magnetic resistance value between the main magnetic path antenna core portion 9 of the coil brazing portion and the sub magnetic path antenna core portion 9 'of the non-coil winding portion is reduced to generate resonance. More magnetic flux can be introduced to the sub-magnetic path antenna core portion 9 'of the non-coil brazed portion, and variations in antenna gain can be suppressed.
  • the sub magnetic path antenna core portion 9 'of the non-coil brazing portion is disposed inside the main magnetic path antenna core portion 9 of the coil brazing portion with respect to the traveling direction of the electric wave.
  • the main magnetic path antenna core portion 9 of the coil bonding portion covers the sub magnetic path antenna core portion 9 of the non-coil bonding portion, and the radio wave is directly transmitted to the auxiliary magnetic field of the non-coil bonding portion. It is configured not to reach the road antenna core 9 '. That is, in this specific example, the coil brazing part of the antenna structure It is desirable that the non-coil crimped portion be disposed at the outer peripheral edge of the radio-wave correction watch, and the non-coil crimped portion be disposed inside the coil crimped portion with respect to the outer circumferential edge of the radio-wave corrected watch.
  • the main magnetic path antenna core portion 9 of the coil winding portion constituting the antenna structure 2 is mounted on a wristwatch or the like, it is disposed at a portion where the clock is likely to directly receive radio waves on average.
  • the sub magnetic path antenna core portion 9 'of the non-coil soldered portion is disposed on the side opposite to the surface of the coil soldered portion main magnetic path antenna core portion 9 to which the radio wave is applied.
  • the magnetic flux that has entered the main magnetic path antenna core portion 9 of the coil brazing portion does not flow in the direction of the sub magnetic path antenna core portion 9 'of the non-coil brazing portion where the gap 10 exists.
  • the magnetic flux that has entered the auxiliary magnetic path antenna core 9 'of the non-coil soldered part also passes through the auxiliary magnet of the non-coil soldered part where the gap 10 is present. It does not flow to the road antenna core 9 '.
  • the antenna it is preferable to adopt a configuration in which the magnetic flux enters the main magnetic path antenna core portion 9 of the coil brazing portion.
  • the specific configuration of the antenna structure 2 in the antenna structure 2 according to the present invention described above is as shown in FIG. 6, and the main magnetic path antenna core portion 9 of the coil bonding portion is the whole. In particular, it is designed to cover the sub-magnetic path antenna core portion 9 'of the non-coil soldered portion.
  • another aspect of the antenna structure in the present invention is, for example, an antenna structure that receives radio waves, and the antenna structure is in the vicinity of the antenna structure.
  • the antenna structure is suitable for use in an environment where a metal object is present, and the antenna structure has a structure that receives an external magnetic flux but does not leak the magnetic flux to the outside at the time of resonance.
  • the gain value indicated by the antenna structure has a maximum gain reduction ratio with respect to the gain value indicated by the antenna structure when the metal object is not present near the antenna structure.
  • the antenna structure preferably has a characteristic of 60% or less.
  • the display means 33 for displaying the time based on the time information
  • the receiving means 34 for receiving a standard wave having reference time information
  • the reception means 34 concerned is a radio wave comprised of any of the antenna structures 2 having the configuration described above. It is a correction clock 1.
  • the radio wave correction watch 1 receives a standard radio wave loaded with a time code, and automatically adjusts the time of the watch in use to the time of the standard time. Is included.
  • the radio wave correction watch 1 concerned is provided with an antenna structure 2 having a configuration as shown in FIG. Position the antenna core portion 9 of the main magnetic path of the coil winding portion of the antenna structure 2 in the vicinity of the outer edge portion 51 in the vicinity of the auxiliary magnetic path antenna core of the non-coil brazing portion.
  • a configuration is shown in which the portion 9 'is disposed on the side opposite to the outer edge portion 5 1 of the watch with respect to the main magnetic path antenna core portion 9 of the coil brazing portion.
  • the numeral 57 is a back rotation mechanism
  • the numeral 58 is a first converter (motor)
  • the numeral 59 is a battery
  • the numeral 40 is a microcomputer constituting an arithmetic processing unit including timekeeping means or time correction means. .
  • FIG. 10 shows another specific example of the radio-controlled timepiece 1 of the present invention in which the configuration of FIG. 9 is partially changed, and the difference from FIG. 9 is in FIG.
  • the second converter (motor 1) 41 is provided separately.
  • the radio wave correction watch 1 has a metallic exterior portion 42, and the antenna structure 2 is also disposed in the exterior portion 42 depending on cases. At least a part of the antenna structure 2 may be in contact with the exterior part 42.
  • the arrangement configuration example of the radio wave correction watch 1 shown in FIG. 9 and FIG. 10 shows an example, and as described above, the antenna structure 2 according to the present invention is conductive by the metal material. Since the relationship with the arrangement configuration of other parts is flexible because the influence of the presence of the object is small, many variations are conceivable.
  • the antenna structure 2 is provided with a windshield 43 with respect to the dial 46 of the radio-controlled timepiece 1. It is also a desirable mode that it is provided on the side opposite to the side where it is used.
  • reference numeral 44 denotes a conductive exterior part made of a metal material
  • reference numeral 45 denotes an hour and minute hands constituting a display means.
  • the problems of the above-described prior art are solved, and the structure of the conventional radio-controlled timepiece, the exterior material, or The antenna structure with a simple configuration is adopted without changing the design etc. significantly, the reception efficiency is good, and the size and thickness of the watch itself are not different from those of the conventional one, and the degree of freedom in design Thus, it is possible to easily obtain an antenna structure and a radio-controlled timepiece using the antenna structure, which can reduce the manufacturing cost at a low cost.
  • the antenna when the antenna is disposed inside a watch case having a side or a lid made of a metal material, the Q factor is lowered and, as a result, the output from the antenna structure
  • the antenna has a special structure that reduces the antenna performance by significantly reducing the reception performance and the gain as well, thereby reducing the Q factor or gain of the antenna structure as much as possible and reducing the reception performance of the antenna. Try to prevent
  • An antenna structure for increasing the L value of the antenna will be described below as a second embodiment of the present application as a structure for preventing a decrease in the reception performance of the antenna with a structure different from the first embodiment. .
  • the L value of the antenna which is the antenna structure of the second embodiment of the present invention is added to the antenna structure of the first embodiment by the main magnetic path and the auxiliary magnetic path.
  • a radio wave disposed in a watch in which at least one of the side portion and the back cover portion is made of metal is received.
  • the structure is an antenna structure in which the feedthrough resistance of the antenna is 1 1 ⁇ or less.
  • the main magnetic path whose coil is wound around the magnetic core and the auxiliary magnetic path whose coil is not wound around the magnetic core are used.
  • the antenna structure is configured, and the magnetic path formed along the magnetic core forms a closed loop, and the number of winding lines of the antenna is not less than 100 times.
  • an antenna structure comprising: a main magnetic path in which a coil is wound around the magnetic core; and an auxiliary magnetic path in which the coil is not wound around the magnetic core.
  • the antenna structure in which the magnetic path formed along the magnetic core forms a closed loop, and the antenna structure is used in an environment where a metal object is present in the vicinity of the antenna structure.
  • the Q factor retention rate R q is the force at which the antenna structure is not in contact with the metal object, or the antenna structure when the metal object is not present in the vicinity of the antenna structure.
  • Q of the body Q The antenna structure measured when the antenna structure is in contact with the metal object or in an environment in which the metal object is disposed in the vicinity of the antenna structure.
  • the minimum value Q NI _ of the Q value of the antenna structure is a Q value obtained by measuring a plurality of types of metal objects made of different metal materials under the same conditions. The Q value that shows the smallest value among is selected.
  • a metal object made of stainless steel (SS) or titanium or a titanium alloy may be used as the antenna structure. It is also possible to represent with the value measured in the environment placed in contact with or in the vicinity of the antenna structure.
  • the structure, the material, the design, etc. of the conventional watch are greatly increased.
  • the antenna structure with a simple configuration is adopted without changing it, and the reception performance is good.
  • the size and thickness of the radio-controlled timepiece itself including the watch type is not different from the conventional one. It is easy to obtain an antenna structure with a design that has a high degree of freedom and a highly textured exterior, and a radio wave correction clock using the antenna structure.
  • FIG. 19 is a schematic plan view showing one specific example of the antenna structure 2 according to the present invention, in which at least one of the side portion 4 and the back cover 3 is made of metal.
  • the antenna structure 2 that can receive radio waves placed inside a watch, and the L value of the antenna structure 2 is less than or equal to 1 600 m H is shown. ⁇
  • the antenna when the antenna is inserted and disposed in the metal side or in the metal exterior portion such as the lid, the antenna receives radio waves and the magnetic flux generated by resonance resonates and is disposed around the periphery.
  • the energy loss increases due to the interaction with the metal coating, specifically, the eddy loss, and the resonance phenomenon (magnetic force ⁇ power ⁇ magnetic force ⁇ ⁇ ⁇ ⁇ ) generated by the antenna is blocked by the metal coating. That is, specifically, the magnetic force generated by the resonance phenomenon is attracted to the metal part, causing an eddy current phenomenon, and most of the magnetic force is consumed (due to the influence of iron loss).
  • the gain and Q factor are greatly reduced, the The wave correction watch had a problem in practical use.
  • the antenna gain is composed of two components: the gain due to the magnetic flux of the transmission signal and the output due to the magnetic flux increased by the resonance phenomenon of the antenna.
  • the main component of the output of the antenna is the gain due to the magnetic flux increased by the resonance phenomenon of the antenna. It is made up.
  • the resonance phenomenon of the antenna is prevented and the Q value is greatly reduced, so the gain is also greatly reduced.
  • the Q factor is significantly reduced and the gain is also significantly reduced because the iron loss (metal sheath) has a large effect.
  • the inventor of the present application converts the conventional way of thinking, and when using the antenna structure in a metal outer casing, the reduction of the Q value can not be avoided, on the premise that this Q value can not be avoided.
  • the present inventors diligently studied a method of improving the gain of the antenna structure.
  • the inventors of the present invention first set the L value ( ⁇ ⁇ ) of a predetermined antenna structure as shown in FIG. 20 and the gain (d B) of the antenna structure. An experiment was conducted to measure the relationship.
  • the L value and the gain (d B) when receiving a radio wave of 77.5 KHz while the predetermined antenna structure is not inserted into the metal outer part The relationship is shown in graph A, and the relationship between the L value and the gain (d B) when receiving an electric wave of 77.5 KHz while the antenna structure of the same structure is inserted in the metal sheath is shown in graph B. It was shown to. In this experiment, the winding was wound around the normal linear core in the usual way, and the change in L value was adjusted by changing the number of winding wires.
  • the gain is linearly improved as the L value increases. It is considered desirable to increase the L value by increasing the number of winding lines. However, since there is a capacitance between winding wires used for the coil of the antenna. The upper limit is inevitably determined because a restriction occurs with respect to the resonance point of the antenna.
  • the line-to-line capacitance of the antenna is determined by the number of winding lines and the type of winding line, but realistically assuming that the thickness of the watch is 10 mm in diameter and 30 mm in diameter, it has a space like antenna core
  • the winding width of the antenna is 12 mm
  • the thickness of the antenna is 5.5 mm when assuming the thickness of the outer surface of the base plate of the movement
  • the thickness of the winding core that can obtain sufficient strength of the inexpensive ferrite core is 3
  • sufficient performance can be obtained as a radio-controlled watch.
  • the conductor diameter is 100 ⁇ and the conductor diameter is 1 10 m. The resistance can be minimized.
  • the parasitic capacitance of the mounting substrate and the receiving IC is included in addition to the feed-through capacitance of the antenna, the parasitic is considered to be about 20 p F. Under such circumstances, the L value is 79 2 Therefore, it is desirable to use antenna structure 1 whose L value is 800 mH or less.
  • the highest frequency band currently in use is 77.5 KH z (Germany), and it is assumed that it is assumed that this frequency band is used. If the L value of the antenna structure 2 in question is determined based on the above capacitance and frequency, it becomes approximately 21 1 to 2 20 ⁇ 11, and the L value is 220 mH or less. Antenna structure 1 is used It is desirable to do.
  • the lower limit value of the L value in the antenna structure 2 in the present invention is preferably about 20 mH.
  • the field strength of at least 50 dB Vzm should be sufficient to ensure that the radio clock can be received sufficiently in all areas of the sending country. It is necessary to be able to receive.
  • the minimum gain required for the antenna varies depending on the capability of the receiving IC, considering the current capability of the receiving IC, at least one antenna gain of at least 5 1 dB is required, and one may take into account variations in antenna performance.
  • one or more 4 d b or more, more preferably one or more 7 d B or more including the performance variation of the receiving IC is required.
  • the lower limit value of the L value is also 2 OmH or more corresponding to one 51 d B of the antenna gain, preferably 25 mH or more equivalent to one 50 d B of the antenna gain, more preferably It is considered desirable that the gain is 33 mH or more, which corresponds to one antenna gain of 4 9 d B, and most preferably, 4 OmH or more, which corresponds to 1 4 7 dB of antenna gain.
  • the value of the L value determined to be preferable in the present invention described above is extremely unusual considering that the L value of the antenna structure in the conventional radio wave correction timepiece is at most 2 to 13 mH. It is understood that the value is
  • FIG. 2 the present inventors examined the relationship between the number of winding lines (T) of the winding line and the gain (d B) in the antenna structure, and the result is shown in FIG. That, in FIG. 2. 1, similar to the experiment of FIG. 2 0, in a state where no ⁇ predetermined antenna structure gold Shokugaiso unit, 7 7. 5 KH Z the the time of receiving radio waves The relationship between the number of turns (T) of the antenna structure 2 and the gain (d B) is shown in graph C, and with the antenna structure of the same structure inserted in the metal sheath, 77.5 KHz radio waves Graph D shows the relationship between the number of winding lines (T) and the gain (d B) when
  • the gain increases as the number of winding wires (T) increases, but the number of winding wires increases.
  • T saturates gradually when it exceeds 1 000, but for antenna structures inserted in the metal sheath, there is no such saturation phenomenon as described above, and the gain is the increase in the number of winding wires (T). It can be seen that it increases proportionally.
  • a radio-controlled timepiece in which at least one of the side portions or the lid of the exterior is metal or a radio-controlled timepiece in which the side and the lid of the exterior are metal It is determined that it is desirable to set the number of turns (T) of the antenna structure 2 to 1000 T or more.
  • 400 T is desirable.
  • antenna gain must be at least _ 5 1 d B or more, and in Fig. 2 1, since 1 4 0 OT corresponds to-5 1 d B, at least In the radio-controlled timepiece in which one side is metal, it is judged that it is effective that the number of turns (T) of the antenna structure 2 is 1 400 or more.
  • the number of winding wires (T) is at least 1,500 and the gain is more than 1,500. If the rate of increase is saturated but the antenna structure 2 is placed in the metal sheath, it indicates that even if the number of turns (T) is more than 1,500, the gain is increased in the recovery. From the above, in the radio-controlled timepiece in which at least one of the side part of the exterior part or the lid part is metal, it is more effective that the number of winding lines (T) of the antenna structure 2 is 150 or more. It is determined that the
  • the number of winding wires (T) of the antenna increases, the winding resistance of the antenna increases, so the number of winding wires (T) also has its upper limit.
  • FIG. 22 similar to the experiment of FIG. 20, when the predetermined antenna structure is not inserted into the metal exterior, the radio wave of 77.5 ⁇ ⁇ is received.
  • the relationship between the winding resistance ( ⁇ ) and the gain (d B) of the antenna structure 2 is shown in graph E, and with the antenna structure of the same structure inserted in the metal sheath, 77.5 KH z Graph F shows the relationship between the feedthrough resistance ( ⁇ ) of the antenna and the gain (d B) when radio waves are received.
  • the antenna structure 2 is selected. It can be understood that there is no change in the difference in gain between when the metal sheath is not used and when used inside the metal sheath, and the gain difference becomes constant around 3 to 4 dB. This is because, in the conventional case, when the conductive metal object is disposed in the vicinity of the antenna for receiving the radio wave or in contact with the antenna, the radio wave is absorbed by the metal object. As radio waves do not reach the antenna, the resonant output of the antenna is reduced.
  • FIG. 31 similarly to the experiment of FIG. 22, the antenna structure when receiving a radio wave of 77.5 KHz without inserting the predetermined antenna structure into the metal outer package.
  • the relationship between the winding resistance ( ⁇ ) of 2 and the Q value is shown in graph L, and when the antenna structure of the same structure is inserted in the metal sheath, it receives 7 7.5 KHz radio waves.
  • the relationship between the winding resistance ( ⁇ ) of the antenna structure 2 and the Q value is shown in graph N.
  • the Q factor is significantly reduced with the use of the antenna structure 2 alone without the metal sheath along with the increase of the winding resistance ( ⁇ ) of the antenna. If the antenna structure 2 is placed in a metal sheath, the Q value is stable at around 5 to a winding resistance of the antenna of up to 100 ⁇ . It is thought that it is possible to narrow the line, increase the number of winding lines, and increase the L value to improve the antenna gain.
  • the winding resistance ( ⁇ ) of the antenna is 1 ⁇ or less, the contribution of the effect to the gain of the antenna structure 2 used in the metal sheath is the metal sheath of the antenna structure 2 It is desirable that the winding resistance ( ⁇ ) of the antenna structure 2 according to the present invention is less than or equal to 1 ⁇ , because it is considered to be larger than the contribution of the effect to the gain when not using.
  • the thickness of the watch is considered to be about 10 mm, and the width of the winding wire of the antenna is 20 mm, the thickness of the winding core is 1 mm, the thickness of the winding is 60 m, the wire diameter 6 Assuming that the winding resistance of the antenna is 5 mm and 1 ⁇ ⁇ , the number of winding turns is limited to 2 5 000 T.
  • the space between the antenna core and the thickness of the antenna should be 12 mm.
  • the winding core thickness is 1 mm, and in order to make the winding resistance of the antenna about 1 ⁇ ⁇ in this space, the conductor diameter is 45 rri and the conductor diameter is 50 m.
  • the number of possible windings is 1 2 00 T.
  • the ideal core thickness is 2 mm, and in order to make the winding resistance of the antenna in this space about 1 ⁇ ⁇ , the conductor diameter 4 5
  • the number of winding wires that can be generated most with ⁇ ⁇ and a wire diameter of 50 m is 9 0 0 0 T.
  • a winding core thickness of 3 mm is ideal, and in order to make the winding resistance about 1 ⁇ ⁇ in this space, With a conductor diameter of 45 ⁇ m and a conductor diameter of 50 ⁇ m, the number of winding wires that can be wound most is 7 000 T.
  • FIG. 20 shows the number of winding lines in the data of FIG. 20 when a radio wave of 77.5 KHz is received without inserting 2 into the metal sheath.
  • the graph shows the relationship between the winding resistance ( ⁇ ) and the gain (d B) of the antenna when receiving an electric wave of 77.5 KHz while the antenna structure of the same structure is inserted in the metal sheath. I indicated.
  • Such graphs H and I are substantially the same as graph E and graph F in FIG.
  • the graph J in FIG. 23 is an antenna structure having the same structure as the above, and the case where the number (T) is changed from 100 to 200 T and the metal sheath is With the radio wave of 7 7.5 KH z in the state of inserting into the part
  • a graph K is an approximate curve of the above graph J.
  • the graph M shows the ratio of the gain which is decreased by the increase of the winding resistance ( ⁇ ) and the increase of the winding resistance J due to the increase of the number of turns (T). It is a graph which shows the balance with the gain which increases by doing.
  • the balance between the increase and the decrease in the gain is saturated as the hot wire resistance ( ⁇ ) of the antenna becomes higher than around 3 9 6 ⁇ . Therefore, it can be seen that no effect can be obtained by executing a winding line such that the antenna winding resistance ( ⁇ ) is more than 400 ⁇ . Therefore, it is desirable that the winding resistance ( ⁇ ) of the antenna structure 2 in the present invention be 400 ⁇ or less.
  • the antenna structure 2 in the case of using a metal sheath 2, it is considered that using the antenna structure 2 in a region where the gain of the antenna structure 2 is high and in which the change is small is the most efficient method. As understood from the graph F in Fig. 2, it is considered preferable to use the antenna structure 2 with the hot wire resistance ( ⁇ ) of 100 ⁇ or less.
  • the lower limit value of the winding resistance ( ⁇ ) in the antenna structure 2 in the present invention is preferably about 18 ⁇ .
  • the conductor diameter of 130 ⁇ m and the conductor diameter of 140 wm can minimize the resistance value, and the value is 1 8 ⁇ .
  • the core thickness is 2 mm, and in order to secure 140 0 T in this space, conductor diameter 110 m, conductor diameter 1
  • the resistance value can be minimized by 20 m, which is 2 7 ⁇ 6 ⁇ .
  • the number of winding wires is 1 500 T, conductor diameter 110 ⁇ m, conductor diameter 120 ⁇ m the smallest resistance value The value is 3 0 ⁇ .
  • the number of winding wires is 16 50 T, conductor diameter 10 0 ⁇ m, conductor diameter 1 10 m the smallest resistance value The value is 3 8 ⁇ .
  • the number of winding wires is 1900 T, conductor diameter 95 ⁇ m, conductor diameter 105 ⁇ m is the smallest resistance value The value is 5 3 ⁇ .
  • the winding core thickness is 3 mm, securing 1 400 T of winding wire to obtain the minimum antenna gain in this space.
  • Conductor diameter 10 0 m, conductor diameter 1 10 0 ⁇ m is the smallest resistance value, and its value is 4 1 .6 ⁇ .
  • the wire resistance ( ⁇ ) of the antenna of the antenna structure in the conventional radio wave correction watch is at most about 3 to 20 ⁇ , and the wire resistance ( ⁇ ) of the antenna according to the present invention
  • the use of antenna winding resistance ( ⁇ ) is significantly higher than conventional levels.
  • the gain of the antenna of the antenna structure 2 is improved by increasing the number of turns.
  • the antenna structure when the antenna structure is disposed in a metal sheath, it is possible to improve the gain by designing the winding to be thin and to increase the number of turns.
  • the winding diameter of the winding when the diameter of the winding is large, for example, the winding diameter exhibits a low resistance value at 0.1 mm or less.
  • the use of a winding shows better gain characteristics when using a thin winding diameter, for example, using a winding with a winding diameter of 0.6 mm and a high resistance.
  • the antenna structure 2 when the antenna structure 2 is disposed in the metal sheath, no difference in the gain characteristics is observed.
  • the present invention it is desirable to construct the antenna structure 2 using thin windings, which makes it possible to form the antenna structure 2 of smaller dimensions.
  • the winding has a wire diameter of not more than 0. ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , preferably 0.60 ⁇ ⁇ ⁇ , and most preferably 0. 0 4 5 mm ⁇ . It is preferable that
  • the antenna structure 2 according to the present invention described above is based on a shape in which the winding line is wound in a predetermined number (T) of winding lines in a normal linear antenna core portion.
  • the configuration of the antenna structure 2 is not limited to this, and any antenna structure having any form is applicable, and in particular, according to the present invention described above. It is desirable to apply to the configuration of the antenna structure disclosed in the first embodiment.
  • the antenna structure 2 is configured to receive radio waves having the configuration as shown in FIG. 1, and the antenna structure 2 can receive magnetic flux from external radio waves, but the magnetic flux generated in the resonance is external.
  • the antenna characteristics of the antenna structure 2 as shown in FIG. It is designed in various combinations so as to have.
  • the antenna structure in this example is an antenna structure capable of receiving radio waves arranged in a watch in which at least one of the side and the back is made of metal.
  • the L value of the antenna is 160 m H or less, preferably, the L value is 800 m H or less, more preferably, the L value is 220 m H. It is the antenna structure which is the following.
  • an antenna capable of receiving radio waves disposed in a watch in which at least one of the side portion and the back cover portion is made of metal is used. It is a structure, The antenna structure whose winding wire resistance of the antenna of the said antenna is 1 K ohm or less, Preferably, the winding wire resistance of the said antenna is 400 or less ⁇ , More preferably, it is an antenna structure having a winding resistance of 10 10 ⁇ or less.
  • an antenna capable of receiving a radio wave disposed in a watch in which at least one of the side portion and the back cover portion is made of metal is a structure, The antenna structure whose winding number of the said antenna is more than 10000 times, Preferably, the antenna structure whose said winding number is more than 1 500 times It is.
  • the antenna structure for receiving radio waves in the first embodiment, satisfies at least one of the characteristic values described above, and the structure thereof However, it has a magnetic path structure that can receive magnetic flux from external radio waves, but the magnetic flux generated by resonance is unlikely to leak to the outside, and at least one conductor is wound to form a coil. It is desirable that it be composed of a coiled soldered portion and a non-coiled soldered portion where the conductor is not wound. Further, in the above-mentioned specific example, in the component part of the antenna structure, the coil soldered portion in the magnetic path and at least a part of the non-coil soldered portion are mutually different.
  • the magnetic path may be made of different materials, and the magnetic path in the antenna structure through which the magnetic flux generated by resonance forms a closed loop. It is good.
  • a part of the magnetic path of the antenna structure constituting the closed loop includes a portion whose permeability is different from the permeability of the other portion.
  • the magnetic resistance of the part of the magnetic path of the antenna structure constituting the closed loop may be the magnetic resistance of the other part.
  • a portion different from the resistance may be included, and further, the effective permeability of the non-coil soldered portion is configured to be smaller than the effective permeability of the coil soldered portion. You may have something
  • an antenna structure for receiving radio waves in the present embodiment which satisfies at least one of the above-described respective characteristic values, and the structure of the antenna structure satisfies the condition.
  • a gap may be provided in the non-coil brazing part, or a gap may be formed at at least one joint between the coil brazing part and the non-coil brazing part. You may have something
  • the non-coil soldered portion may be made of a magnetic material having a permeability lower than that of the magnetic material constituting the coil soldered portion.
  • a film layer comprising a magnetically degenerated layer, a nonmagnetic layer, or a layer having a low magnetic permeability may be formed on the surface of the coil soldered portion or at least a part of the coil soldered portion.
  • the antenna structure satisfies at least one of the characteristic values described above.
  • the structure may be such that the cross-sectional areas of the coil brazing part and the non-coil welding part are configured to be different from each other, and the coil brazing part and the non-coil welding part may be different.
  • the coiled coiled portion forms a structure independent of each other, and after the conductor is wound around the coiled coiled portion and the coil is formed, the coiled coiled portion and the non-coil coiled portion are integrated.
  • the gap may be provided in the non-coil crimped portion, or may be formed between the coil crimped portion and the non-coil crimped portion.
  • the antenna structure in this example is formed between the joint surface of the gap provided in the non-coil brazing part or the coil brazing part and the non-coil winding part.
  • the joint surface between the end faces may be formed in a tapered shape, and the gap may be an end face of the coil crimped portion and the non-coil wound portion or the non-coil crimped portion.
  • the surfaces of the magnetic paths in portions other than the end faces of the portions may be formed to face each other.
  • the gap may be provided in a portion of the magnetic path other than the vicinity of the coil brazing portion.
  • the reception means 34 concerned has any of the configurations described in the second embodiment of the present invention described above. This is an electric wave correction watch 1 configured of an antenna structure 2 of one.
  • the radio wave correction watch 1 receives a standard radio wave with a time code, and automatically adjusts the time of the watch in use to the time of the standard time. Is included.
  • the radio wave correction watch 1 having the configuration as shown in FIG. 9 to FIG. 10 described above in the detailed specific example of the radio wave correction watch 1 according to the second embodiment of the present invention.
  • Antenna structure 2 having any configuration, the antenna structure The second characteristic is set to any of the above-mentioned characteristics.
  • the antenna structure 2 is provided on the dial 46 of the radio-controlled timepiece 1. On the other hand, it may be provided on the side opposite to the side on which the windshield 43 is provided.
  • a reference signal generating means for outputting a reference signal for outputting a reference signal
  • a clocking means for outputting clocking information based on the reference signal
  • the clocking information there is provided a radio wave correction clock for correcting the output time information of the clocking means on the basis of a display means for displaying the time of day, a receiving means for receiving a standard wave having reference time information,
  • the radio correction clock at least one of the side portion and the back cover is made of metal, and the radio correction including the antenna structure having at least one antenna characteristic value described above.
  • the receiving means disposed at the inner side of the coil brazing part with respect to the outer peripheral edge part of the radio-controlled timepiece according to the present invention further comprises an antenna structure having at least one antenna characteristic value as described above.
  • an antenna structure provided in the radio wave correction watch has at least one of the above-described configuration and antenna characteristics. And at least a portion of a portion of the antenna structure facing the side portion of the radio-controlled timepiece, at least a portion of the portion being covered by the coiled portion. It is.
  • FIG. 24 is a diagram showing an example of a method of adjusting the resonance frequency in the antenna structure used in the present invention
  • FIG. 24 (A) is a diagram showing adjustment of the resonance frequency in the prior art.
  • a method is shown, in which a plurality of capacitors 1 51 to 1 5 3 each having a capacity of 80 p F are attached in parallel and measured at both ends of the winding 150, When changing the resonant frequency of the antenna structure 2, it is necessary to change the capacitance of the capacitor to an appropriate value or to change the number of connected capacitors, which makes the measurement operation complicated. Become.
  • both of the winding lines 150 are A tuning circuit configured to connect in parallel a plurality of adjustment means in which a plurality of capacitors 1 5 1 to 15 n connected to the end and the same number of switch circuits SW 1 to SW n are connected in series
  • An IC circuit 160 is attached, and capacitors of which the capacitances of the plurality of capacitors 151 to 15 n are sequentially doubled from, for example, 125 pF are arranged, and the switch circuit
  • the control terminals of SW 1 to SW n are connected to appropriate control means 1 61, and the desired one is received in response to the signal input to the input terminal of the control means 1 6 1
  • the desired resonance frequency can be easily set by controlling and driving the control terminals of the switching circuits SW 1 to SW n so as to select a plurality of capacitors as appropriate.
  • the problems of the prior art described above are solved, and the structure, exterior material, design or the like of the conventional radio-controlled timepiece
  • the antenna structure with a simple configuration is adopted without major changes in reception, the reception efficiency is good, and the size and thickness of the watch itself are not different from those of the conventional ones, and the degree of freedom in terms of design
  • An antenna structure with a reduction rate of 60% or less is provided, and a new structure has been proposed for the structure of the antenna structure in that case, but the third embodiment of the present invention is Example It is the limited conditions of the Q value regarding the reception characteristics of the antenna structure It is a success in identifying the optimum value and examining it.
  • the antenna structure is an antenna structure for receiving radio waves, and a metal object is present in the vicinity of the antenna structure.
  • the antenna structure is characterized in that the Q value retention ratio R q defined below in the case is 10% or more.
  • the Q factor retention rate R q in this specific example is in the case where the antenna structure is not in contact with a metal object or in an environment in which no metal object is present in the vicinity of the antenna structure.
  • Q factor of the antenna structure concerned The antenna structure measured when the antenna structure is in contact with the metal object or in an environment in which the metal object is disposed in the vicinity of the antenna structure. If the lowest value among the corresponding Q values Q N at is denoted by Q NL , then
  • the antenna structure can effectively receive the external magnetic flux, as described in the first embodiment.
  • the antenna structure has a structure in which magnetic flux does not easily leak to the outside, and as one of the specific examples, the antenna structure is configured such that the magnetic path forms a closed loop.
  • the antenna structure has a configuration that satisfies the above-mentioned characteristic condition of Q value.
  • a reference signal generating means for outputting a reference signal
  • a clocking means for outputting clocking information based on the reference signal
  • the clocking information Based on the display means for displaying the time on the basis, the receiving means for receiving the standard radio wave having the reference time information, and the radio wave correction clock for correcting the output time information of the clock means based on the received signal from the receiving means.
  • the reception means is a radio-wave correction clock including an antenna structure having a structure having a configuration that satisfies the above-mentioned characteristic condition of Q value.
  • the antenna structure of the present invention and the watch having the antenna structure adopt the above-described technical configuration, a simple configuration can be made without largely changing the structure, design, etc. of the conventional radio-controlled timepiece.
  • the antenna structure has a good reception efficiency, and the size and thickness of the watch itself are not different from those of conventional ones. It is possible to easily obtain an antenna structure and a radio-controlled timepiece using the antenna structure, which can reduce manufacturing costs inexpensively, with an increased degree of freedom in the surface.
  • the inventors of the present invention conducted a detailed analysis on the Q value in the same manner as the analysis on the gain value described above, and reached the conclusion that it is desirable to set the Q value retention rate to 10% or more. It is a thing.
  • FIG. 1 is a schematic plan view showing a specific example of a structure suitable as the antenna structure 2 according to the present invention, and it is naturally possible to be adopted also in this embodiment.
  • the Q value retention ratio R q defined as follows in the case where a metal object is present in the vicinity of the antenna structure 2,
  • the antenna structure 2 which is 10% or more is shown.
  • the Q factor retention rate R q used in the third embodiment of the present invention is determined whether the antenna structure 2 is not in contact with a metal object or if the antenna structure 2 is in the vicinity of gold. Q factor Q of the antenna structure 2 when there is no generic object. And to, the antenna or the structure 2 is in contact with the metal object, or a minimum value Q NI of Q value Q N of the antenna structure when the metal object in the near vicinity of the antenna structure 2 were present If you say ⁇ ,
  • the antenna structure 2 absorbs the external magnetic flux 3, but at resonance, the magnetic flux is transmitted to the antenna 10. It is an antenna structure 2 which has a structure which does not leak easily to the exterior of a structure.
  • an antenna structure for receiving radio waves or a metal object having conductivity in contact with the antenna structure for example, SUS, Ti, Ti alloy Side or back cover used as an exterior, etc., clock face, motor, move, battery, solar cell, arm band, heat sink, microcomputer,
  • the radio wave is absorbed by the metal object, and the radio wave does not reach the antenna structure, so that the antenna output is considered to be reduced.
  • the antenna structure itself may be formed large, the antenna structure may be provided on the outside of the metal body, or the exterior portion may be made of plastic or ceramic instead of the metal body.
  • metal plating on the surface of the non-metallic substance it has been found that the conventional understanding of the problem is actually an error, and that the technical concept of the present invention is correct. What has been verified is explained in detail in the first embodiment described above.
  • the Q value indicates the degree of energy loss of the antenna in a resonant state, and if the energy loss is small, the value of the Q value increases.
  • the antenna output is approximately Q times the antenna output at non-resonance.
  • the antenna output is improved and the performance as the antenna structure is judged to be better.
  • the ratio of resonant / non-resonant gain is about 40 d B when converted to a Q value of 1 14. It has doubled.
  • the conventional antenna structure when the conventional antenna structure is placed in contact with or in the vicinity of an object made of a metal material, for example, when the antenna structure is placed in the sheath 3 of the SUS material, the energy of the magnetic flux described above A loss will occur and the Q factor of the antenna structure 2 will drop significantly, resulting in a drop in antenna power.
  • the antenna structure may be a battery including a solar cell, a motor, a movement, a gear train, a microcomputer, a heat sink, a dial, etc. It has been found that the same problem occurs when placed in the vicinity of an object made of metallic material.
  • the antenna structure used in the present invention is the metal object
  • the Q factor of the antenna structure is Q when the metallic object 3 is not in contact with or in the vicinity of 3.
  • the antenna structure is in contact with the metal object 3 or the Q value of the antenna structure is ⁇ when the metal object 3 is present in the vicinity of the antenna structure.
  • the antenna structure 2 is an external device when a predetermined radio wave arrives from the outside.
  • the Q factor holding ratio R q is 5 to 30% in the case of the conventional antenna structure, whereas the antenna structure having the configuration of the present invention is By using it, the Q factor retention rate R q of the antenna structure maintains at least 10% or more, and in a favorable environment, the Q factor retention rate R q is It has been found that it is possible to maintain 50% or more.
  • the antenna structure 2 of the present invention is in contact with a metal material or a metal material is present in the vicinity thereof. Even in the case where the antenna structure 2 is used, an antenna structure 2 capable of exhibiting a good reception performance regardless of the presence or absence of the metal material is practically suppressed. It can be obtained easily and at low cost.
  • the frequency of the target radio wave that can be received by the antenna structure 2 is a radio wave in a frequency band of 2 0 0 0 0 k H z or less, and preferably, the number 1 0 k H z
  • the frequency band is from the number 1 0 0 k H z.
  • the metal object 3 used in the present invention is resonated by the resonance in a state where the antenna structure 2 is not added with the sub magnetic path.
  • the magnetic flux 7 generated is disposed at a distance that can be reached.
  • SUS, BS, Ti, Ti alloy, or gold, silver, platinum, nickel, copper, chromium, aluminum or their alloys A metal material having conductivity such as is used.
  • specific examples of the metal object 3 disposed in the vicinity of the antenna structure 2 in the present invention include, for example, a clock face, an exterior, a motor, a movement, a battery, a solar cell (in particular, It includes SUS substrate solar cells), arms, heat sinks, etc.
  • FIG. 25 an antenna structure having a looped core used in the present invention as shown in FIG. 1 and a straight line generally used conventionally as shown in FIG. 2 are used.
  • the results of Q values measured by the above-described method are shown using the antenna structure having the core and using five types of metal materials: BS, SUS, aluminum, copper, and the like.
  • the Q value of the antenna structure 2 according to the present invention that is, Q in a state without the influence of the metal material.
  • the corresponding Q factor or Q of the conventional antenna structure is approximately 140 and as shown in FIG. 2 in the same state. Was about 103.
  • the Q value, that is, Q N, of both antenna structures 2 is Q for all metallic materials. Greater than It can be seen that the metal material has lowered to the width, and in the case of SUS or Ti , it shows the lowest Q value, that is, the lowest Q NL .
  • Q NL maintains approximately 18 even with the lowest Q value, and in the same metal material, It is understood that the conventional antenna structure 2 holds a Q value of about 3 times that of the lowest Q value Q NI _ of 5 concerned.
  • the antenna structure 2 according to the present invention is 4% in the conventional antenna structure 2. , 10% or more, and more specifically, shows a Q value retention rate R q of about 1 2 5%.
  • the Q value drops extremely and the antenna can not function.
  • the Q value retention ratio R q is 10% or less, it can not be used as a substantial antenna.
  • the antenna structure 2 according to the present invention is a useful invention that clearly ameliorates the conventional problems.
  • a metal object made of SUS, Ti or Ti alloy is connected to the antenna structure. It is also possible to simply measure the Q value as the lowest value Q N L of the Q value by measuring the Q value in an environment arranged near the antenna structure.
  • FIG. 26 shows the gain when the antenna structure according to the present invention and the conventional antenna structure shown in FIG. 2 are measured under the same environment as FIG. The gain is better than that of the conventional antenna when using any metal material.
  • the improvement of the Q value is dependent on the air gap, and the Q value becomes better as the air gap is narrower.
  • a plurality of types of metal objects made of different metal materials may be used in combination, such as the minimum value Q N J of the Q value of the antenna structure. It is desirable that the Q value indicating the smallest value of the Q value measured under the same conditions to have is selected, and the minimum value Q NI _ is of the Q value of the antenna structure, SUS) Alternatively, it is a value measured in an environment where a metal object made of titanium T i or T i alloy is specified and the metal object is connected to the antenna structure or placed in the vicinity of the antenna structure. Things are also preferable.
  • the antenna structure having the structure used in the above-described first embodiment of the present invention in combination with the Q value condition. It is an example.
  • the antenna structure in the third embodiment of the present invention is an antenna structure for receiving radio waves, and the antenna structure can receive an external magnetic flux, but at the time of resonance, It is also desirable that the magnetic flux has a structure that does not easily leak to the outside, and the Q value retention ratio R q force S 10 0% or more.
  • the antenna structure in the third embodiment of the present invention forms a closed loop in the magnetic path, and the Q value retention rate R It is also desirable that q be 10% or more.
  • the magnetic resistance of the antenna path in the part of the magnetic path of the antenna structure constituting the closed loop is It is also desirable that a part different from the magnetic resistance of the part is included, and the Q value retention ratio R q be 10% or more.
  • the magnetic path has a main magnetic path and a coil in which a coil is wound. It is also desirable that it is composed of an auxiliary magnetic path which is not connected and that the Q value retention ratio R q is 10% or more.
  • the magnetic resistance of the auxiliary magnetic path becomes larger than the magnetic resistance of the main magnetic path. It is also desirable that the air gap be formed in the same manner, or that an air gap be provided in the sub magnetic path or between the sub magnetic path and the main magnetic path. Moreover, as the antenna structure in the third embodiment of the present invention, in addition to the above-described configuration, it is also preferable that the cross-sectional areas of the main magnetic path and the auxiliary magnetic path are different from each other. Furthermore, it is preferable that the main magnetic path and the auxiliary magnetic path be made of materials different from each other.
  • the reception means 34 is configured of any antenna structure 2 having the above-described configuration. It is a radio wave correction watch 1.
  • the radio-controlled timepiece 1 is a radio-controlled wristwatch in which a radio function is added to the inside of a watch to receive radio waves for broadcasting and obtain predetermined information, or a standard with a time code It includes a radio-controlled watch or a remote control watch that receives radio waves and automatically adjusts the time of the watch in use to the time of the standard time.
  • a detailed specific example of the radio wave correction watch 1 in the third embodiment according to the present invention is preferably a radio wave correction watch having the configuration as shown in FIG. 9 or FIG. 10 described above, and
  • the antenna structure 2 used in the radio correction watch 1 is an antenna structure having the configuration shown in FIG. 6 as described above, and the Q value retention rate R q is 10%. It is also desirable that it is set as above. Since the present invention adopts the above-described configuration, an antenna having a simple configuration can be obtained without solving the problems of the prior art described above and significantly changing the structure, design or the like of the conventional radio-controlled timepiece. By adopting a structure, the reception efficiency is good, and the size and thickness of the watch itself are not different from those of the conventional ones. The freedom of design is enhanced, and the manufacturing cost can be reduced at a low cost. An antenna structure and a radio-controlled watch using the antenna structure can be easily obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Support Of Aerials (AREA)

Description

明 細 書
アンテナ構造体及び電波修正時計 技術分野
アンテナ構造体及び当該アンテナ構造体を使用した電波修正時計に関するもの であり、 特に詳しくは、 共振アンテナに於いて、 金属物体の近傍にアンテナ構造 体が配置された場合でも、 当該アンテナ構造体の電波の受信性能を低下させない 様に構成されたアンテナ構造体及び当該アンテナ構造体を使用した電波修正時計 に関するものである。 背景技術
近年、 電波を利用した腕時計が多数商品化されてきている。
即ち、 腕時計の内部にラジオ機能を付加して、 放送用の電波を受信して所定の 情報を得る様にしたラジオ付き腕時計、 或いは、 タイムコードをのせた標準電波 を受信して、 使用中の腕時計の時刻を当該標準時の時刻に自動的に合わせる電波 修正時計或いは遠隔制御型腕時計等が知られている。
然しながら、 腕時計に於いて、 電波を利用するためには、 従来の時計部品構成、 デザィンとは全く異なる部品構成或いはデザィンが必要となると共に、 受信性能 を阻害しないための配慮も必要となる。
即ち、 当該腕時計に於いては、 いかにアンテナの受信性能を向上させるかとい う問題と、 当該腕時計の中或いはその外装の一部に当該ァンテナを配置するため に大きさやデザィンに関して設計上の制約が存在する。
特に、 電波の受信性能に大きな影響を与えるアンテナは、 サイズ的にも従来の 腕時計の他の部品と比較するとかなりの大きさを有しており、 又、 受信性能の関 係から配置上の制約を受けることから、 従来では、 内蔵式、 外装式、 伸縮式、 或 いはコード式等種々の方式が採用されている。
内蔵型としては、 磁芯と卷き線からなるバーアンテナが主に用いられているが、 腕時計に内蔵する際、 ケース材料及び構造或いはデザィン等を工夫してアンテナ の受信性能の低下を招かないようにする必要がある。
又、 外装式、 ラジオカセッ ト等に見られる伸縮式や、 イヤホーン等と兼用され るコード方式においては、 時計全体としてのデザイン及びその収納性、 耐久性等 を配慮する必要がある。
このような状況下に於いて、 腕時計のさらなる小型化、 携帯化に加えてフアツ ション性の向上を図るためには、 アンテナ装置の受信性能の低下を招かないよう にすることは勿論のこと、 携帯容易性及びデザィン性についても十分な配慮をし なければならない。
一方、 電波修正時計に於いて、 受信性能を決めるのはアンテナ特性と受信回路 特性である。
受信回路若しくは受信 I Cの入力信号の下限は、 信号振幅 1 μ V程度が現状で あり、 実用的な受信性能を得る為に受信アンテナとしては、 4 0〜 5 0 d B ;z V / mの電界強度 (電波の強さ) に於いて信号振幅 1 V程度の出力が得られなけ ればならない。
その為、 サイズ制約がある場合、 信号出力を大きく出来る共振タイプの受信ァ ンテナを用いるのが一般的である。
又、 受信アンテナの種類としては、 電波の波長が長いため磁性体コアに導線を 巻き付けたバーアンテナを用いているのが一般的である。
この様な受信アンテナに於いて、 受信アンテナの出力は、 概略受信アンテナの 大きさに比例するので、 実用的な受信性能を得るためにはあまり小さくは出来ず、 腕時計の様に小型の場合受信性能や配置が問題となる。
又、 受信アンテナの出力は、 金属の外装に収納すると極端に低下してしまう。 その為、 腕時計においては、 電波を利用するためには、 従来の時計部品構成、 デザィンとは全く異なる部品構成或いはデザィンが必要となると共に、 受信性能 を阻害しない為の配慮も必要となる。
腕時計に於いて、 小型 ·薄型 ·携帯容易性、 デザインの自由度、 質感 (高級 感) は重要な問題であり、 アンテナ内蔵型 ·金属外装が望まれている。
従来の電波修正時計の場合、 ァンテナの取り付けを外装する方式か内蔵する方 式が主に用いられている。
腕時計の裏蓋 ·側の材料が金属の場合、 一般的に受信アンテナを外装する。 受信アンテナのケースは受信性能を低下させない様にプラスチック等の非金属 を用いる為、 大きく突出した形状となり、 小型 ·薄型、 携帯容易性を損なうと共 にデザィンの自由度が著しく損なわれる。
又、 受信アンテナを内蔵する方式の場合、 受信性能を低下させないため時計外 装 (裏蓋 ·側) の材料と してセラミックスやプラスチックが用いられるが、 材料 の強度が小さいため時計の厚みが厚くなり、 収納性、 携帯容易性を損ない、 デザ ィン上の制約も大きくなる。
さらに、 外観的に質感の低い腕時計となってしまう。
その為、 従来では、 例えば、 実開平 2— 1 2 6 4 0 8号公報に見られる様に、 金属のアンテナを時計の革製のバンド内に配置したものがある。
又、 本願出願人が実開平 5 - 8 1 7 8 7号公報で開示している様に、 芯にコィ ルを卷いたアンテナを文字板と風防の間に配置し、 電波を妨げる金属製のケース 本体から離すと同時に、 ユニークなデザインとしたもの、 或いは、 国際公開 W O 9 5 / 2 7 9 2 8号公報には、 腕時計の時計ケースの側部にアンテナを取り付け た構成の腕時計が開示されている。
更に、 ヨーロ ッパ特許公開第 0 3 8 2 1 3 0号公報で開示されている様に、 ケ ース上面にアンテナを例えばリング状に配置したものもある。
然しながら、 バンドにアンテナを配置した従来の構成では、 バンドにアンテナ が内蔵されているため電子機器本体との導通をとらなければならず、 両者の接合 部に十分な柔軟性を持たせることが出来ない。
更に、 電波を妨げる金属製パン ドは採用できず、 ゴムバン ド等接続引用の時計 バンドを使用しなければならず、 材質及びデザィンの点で制約がある。
又、 腕時計の上面あるいはその側面にアンテナを配置した構成のものは、 アン テナを時計本体の金属部から離すために、 時計全体の厚さ或いは大きさが増して しまったり、 デザィン上の制約を受けるといった問題がある。
更に、 上記した、 ョ一口ッパ特許公開第 0 3 8 2 1 3 0号公報のものにあって は、 リ ングの内部に金属が存在すると受信を行えなくなるため、 実用上はアンテ ナを時計と別体にしなければならないと言う問題もあった。
更に、 特開平 1 1 — 6 4 5 4 7号公報には、 コイルを回路基板の周縁部に設け た Dfl陥部に配置すると同時にコアを当該回路基板の円周方向にそって湾曲状に配 置した腕時計が開示されているが、 製造工程が複雑と.なる他、 製造過程の組み立 て操作も煩雑となるという間題がある。 一方、 特開 2 0 0 1— 3 3 5 7 1号公報或いは、 特開 2 0 0 1— 3 0 5 2 4 4 号公報等には、 当該腕時計の風防及ぴ裏羞部に、 ガラス或いはセラミック等の非 金属材料で構成し、 その中間部には、 従来どおりの金属材料を使用して、 アンテ ナに十分な電波が到達する様に構成した腕時計が示されている。
即ち、 上記した従来例では、 受信アンテナの出力は、 金属の外装に収納すると 極端に低下してしまう事に基づいたものであり、 裏蓋部の材質を非金属にする事 で出力低下を軽減し、 質感の高い金属の側を用いる事を目的としている。
然しながら、 上記の従来例では、 ガラス或いはセラミックスを使用する為に、 時計としての厚みが厚くなると言う問題が有った。
従って、 従来に於いては、 サイズの大きな高感度のアンテナ構造体を使用する か、 電波の電界強度が強い地域でしか使用出来なかったりするため、 電波時計の 利便性を損ねると共にデザィンの設計を含めて当該アンテナ構造体の製造コス ト は必然的に高くなつている。
然も、 かかる構成の腕時計に於いては、 確かに、 アンテナへの電波の到達が確 保できるとしても、 当該裏蓋には、 金属調のメツキを薄く施こしてあたかも金属 材料を使用しているかの様な印象をユーザ一に与えるものであるが、 外観上から は、 重量感、 或いは質感がなく、 高級品としてのイメージが損なわれると言う問 題があった。
更には、 金属の側に受信アンテナを内蔵させている為、 アンテナの出力が低下 して受信性能が低下している。
その為、 従来では、 高級感をもつ完全金属外装の電波修正時計は、 実現されて いないのが現状である。
即ち、 上記した発明が生まれる背景には、 当該アンテナを時計の内部に内蔵さ せた場合には、 特に裏蓋部が金属材料で構成されているため、 導電性があり、 従 つて、 当該腕時計に電波が到達したとしても、 当該裏蓋部で磁束が吸収されてし まい、 当該アンテナ部まで電波が到達されないと言う思想に基づいたものである c 従って、 従来に於いては、 高感度のアンテナ構造体を使用するか、 電波の電界 強度が強い領域でしか使用出来なかったりするため、 電波時計の利便性を損ねる と共にデザィンの設計を含めて当該アンテナ構造体の製造コス トは必然的に高く なっている。 然も、 かかる裏蓋に非金属材料を使用する構成の腕時計に於いては、 確かに、 アンテナへの電波の到達確保できるとしても、 当該裏蓋には、 金属調のメツキを してあたかも金属材料を使用しているかの様な印象をユーザーに与えるものであ るが、 外観上からは、 重量感、 或いは質感がなく、 高級品としてのイメージが損 なわれると言う問題があった。
更には、 金属外装にアンテナを内蔵させると Q値 〈アンテナの持つ特性の指 標〉 が下がってしまい、 アンテナの出力 (利得) が低下して良好な情報の伝達が 実行されないと言う問題が有った。
その為、 従来では、 高級感をもつ完全金属外装の電波修正時計は、 実現されて いないのが現状である。
従って、 本発明の目的は、 上記した従来の問題を解決し、 電波の受信性能が良 好で、 材質上の制約及びデザイン上の制約を受けない金属外装内で使用可能なァ ンテナ構造体及び当該アンテナ構造体を使用した完全金属外装の電波修正時計を 提供することを目的とするものである。
又、 本発明を腕時計に応用した場合に、 上記目的に加えて腕時計の厚さが増し てかさばるのを防ぐと共に、 腕への装着感も良好となる腕時計のアンテナ装置を 提供する事を目的とする。
発明の開示
本発明は上記した目的を達成するため、 基本的には、 以下に記載されたような 技術構成を採用するものである。
即ち、 本発明の第 1の態様としては、 金属外装内部で使用される電波を受信す るアンテナ構造体であって、 当該アンテナ構造体は、 磁芯にコイルが巻き付けら れている構造を有し、 当該金属外装の外部からの磁束を受信できることを特徴と するアンテナ構造体であり、 より詳しくは、 本発明の第 2の態様として、 金属外 装内部で使用される電波を受信するアンテナ構造体であって、 当該アンテナ構造 体は、 磁芯にコイルが巻き付けられている主磁路と磁芯にコイルが卷き付けられ ていない副磁路とで構成され、 且つ当該磁芯に沿って形成される磁路が閉鎖状の ループを形成しており、 当該閉鎖状ループを構成している当該アンテナ構造体の 当該磁路の一部にギヤップが設けられており、 そのギャップの部分は他の部分の 磁気抵抗若しくは透磁率と異なる磁気抵抗若しくは透磁率となる様に構成されて おり、 外部電波派による磁束を受信出来るが、 共振時には磁束が外部に漏れにく い構造を有しているアンテナ構造体である。
又、 本発明にかかる第 3の態様としては、 当該第 2の態様に於いて、 更に当該 副磁路の磁気抵抗が当該主磁路の磁気抵抗よりも大きくなる様に構成されている ァンテナ構造体である。
更に、 本発明に於ける第 4の態様としては、 当該第 1乃至第 3態様に於いて、 当該ギャップは、 エアーギャップであるアンテナ構造体である。
更に、 本発明に於ける第 5の態様としては、 少なく とも磁芯部と当該磁芯部の 少なく とも一部に設けられているコイル部とで構成された電波を受信するアンテ ナ構造体であって、 当該アンテナ構造体は、 磁芯にコイルが卷き付けられている 主磁路と磁芯にコイルが巻き付けられていない副磁路とで構成され、 且つ当該磁 芯に沿って形成される磁路が閉鎖状のループを形成しており、 且つ当該アンテナ 構造体近傍に金属物体が存在する場合の本発明に於いて定義される Q値保持率 R qが、 1 0 %以上である事を特徴とするアンテナ構造体であり、 又第 6の態様と しては、 上記第 5の態様と同じ構成を有するアンテナ構造体であって、 且つ当該 アンテナ構造体は、 当該アンテナ構造体近傍に金属物体が存在する環境下で使用 されるのに適しており、 且つ、 当該アンテナ構造体近傍に金属物体が存在する場 合の本発明で定義される最大利得低減率が 6 0 %以下である事を特徴とするアン テナ構造体である。
一方、 本発明に於ける第 7の態様としては、 磁芯にコイルが卷き付けられてい る主磁路と磁芯にコイルが卷き付けられていない副磁路とで構成され、 且つ当該 磁芯に沿って形成される磁路が閉鎖状のループを形成している当該アンテナ構造 体であって、 且つ少なく とも側部及び裏蓋部のいずれかが金属で構成されている 時計内に配置される電波を受信出来るアンテナ構造体であって、 当該アンテナの L値が、 1 6 0 0 m H以下である事を特徴するアンテナ構造体であり、 又、 第 8 の態様としては、 磁芯にコイルが巻き付けられている主磁路と磁芯にコイルが卷 き付けられていない副磁路とで構成され、 且つ当該磁芯に沿つて形成される磁路 が閉鎖状のループを形成している当該アンテナ構造体であって、 且つ少なく とも 側部及び裏蓋部のいずれかが金属で構成されている時計内に配置される電波を受 信出来るアンテナ構造体であって、 当該アンテナの卷き線抵抗が、 1 Κ Ω以下で ある事を特徴するアンテナ構造体である。
更には、 本発明に於ける第 9の態様としては、 磁芯にコイルが卷き付けられ ている主磁路と磁芯にコイルが卷き付けられていない副磁路とで構成され、 且つ 当該磁芯に沿って形成される磁路が閉鎖状のループを形成している当該アンテナ 構造体であって、 且つ少なく とも側部及び裏蓋部のいずれかが金属で構成されて いる時計内に配置される電波を受信出来るアンテナ構造体であって、 当該アンテ ナの卷き線数が、 4 0 0回以上である事を特徴するアンテナ構造体であり、 又第 1 0の態様としては、 少なく とも側部及び裏蓋部のいずれかが金属で構成されて いる電波修正時計であって、 当該電波修正時計の内部に内蔵されているアンテナ は、 上記した各態様が示すいずれかのアンテナ構造体で構成されている電波修正 時計であり、 又、 第 1 1の態様としては、 基準信号を出力する基準信号発生手段 と、 該基準信号に基づき計時情報を出力する計時手段と、 該計時情報をもとに時 刻を表示する表示手段と、 基準時刻情報を持つ標準電波を受信する受信手段と、 該受信手段からの受信信号に基づき前記計時手段の出力時刻情報を修正する電波 修正時計に於いて、 当該電波修正時計は、 少なく とも側部及び裏蓋部のいずれか が金属で構成されており、 且つ、 当該受信手段は、 上記した各態様が示すいずれ かのアンテナ構造体で構成されている電波修正時計である。
本発明のアンテナ構造体を有する電波修正時計は、 上記した様な技術構成を採 用しているので、 従来の電波利用時計の構造或いはデザィン等を大幅に変更する ことなく、 簡易な構成を有するアンテナ構造体を採用して、 受信効率が良好で、 腕時計そのものの大きさも厚みも従来のものとは相違せず、 デザイン面の自由度 を高めた、 製造コス トを安価に抑えることが可能な、 当該アンテナ構造体を使用 した電波修正時計が容易に得られるのである。 図面の簡単な説明
図 1は、 本発明に係るアンテナ構造体の一具体例の構成を示す図である。 図 2は、 従来に於けるアンテナ構造体の具体例に於ける構成を示す断面図であ る。
図 3は、 本発明と従来に於けるアンテナ構造体の金属板の影響による Q値の減 衰率を示すグラフである。 図 4は、 本発明と従来に於けるアンテナ構造体の金属板の影響による利得の変 化を示すグラフである。
図 5は、 本発明の一具体例に於けるアンテナ構造体を使用した場合のギヤップ 距離と Q値との変化の状態を示すグラフである。
図 6は、 本発明に係るアンテナ構造体の構成の一具体例を示す平面図である。 図 7は、 本発明に係るアンテナ構造体におけるギヤップ部の構成例を説明する 図である。
図 8は、 本発明に係る電波修正時計の構成の一例を示すプロックダイアグラム である。
図 9は、 本発明に係る電波修正時計における各部品の配置構成の一具体例を示 す図である。
図 1 0は、 本発明に係る電波修正時計における各部品の配置構成の他の具体例 を示す図である。
図 1 1は、 本発明に係る電波修正時計における各部品の配置構成の別の具体例 を示す図である。
図 1 2は、 アンテナ構造体における金属外装の影響を示すグラフである。
図 1 3は、 アンテナ構造体における金属外装の影響を示すグラフである。
図 1 4は、 本発明に係るアンテナ利得及ぴ Q値の測定方法の具体例を説明する 図である。
図 1 5は、 本発明に係るアンテナ利得及ぴ Q値の測定方法の具体例を説明する 図である。
図 1 6は、 本発明に係るアンテナ利得及び Q値の測定方法の真体例を説明する 図である。
図 1 7は、 本発明に係るアンテナ利得及ぴ Q値の測定方法の具体例を説明する 図である。
図 1 8は、 本発明に係るアンテナ構造体に於ける構成の例を説明する図である c 図 1 9は、 本発明に係る第 2の実施例に於けるアンテナ構造体の一具体例の構 成を示す図である。
図 2 0は、 本発明に係る第 2の実施例に於けるアンテナ構造体での L値と利得 との関係を示すグラフである。 図 2 1は、 本発明に係る第 2の実施例に於けるアンテナ構造体での卷き線数 ( T ) と利得との関係を示すグラフである。
図 2 2は、 本発明に係る第 2の実施例に於けるアンテナ構造体での卷き線抵抗 ( Ω ) と利得との関係を示すグラフである。
図 2 3は、 本発明に係る第 2の実施例に於けるアンテナ構造体での卷き線抵抗 ( Ω ) と利得との関係を示すグラフである。
図 2 4は、 本発明に係る第 2の実施例に於けるアンテナ構造体で、 アンテナ構 造体の共振周波数を変更するために使用される回路構成をしめすプロックダイァ グラムである。
図 2 5は、 本発明の第 3の実施例に係るアンテナ構造体と従来に於けるアンテ ナ構造体の金属板の影響による Q値の変化を示すグラフである。
図 2 6は、 本発明の第 3の実施例に係るアンテナ構造体と従来に於けるアンテ ナ構造体の金属板の影響による利得の変化を示すグラフである。
図 2 7は、 本発明の第 3の実施例に於ける一具体例でのアンテナ構造体を使用 した場合のエアギヤップ距離と利得及び Q値との変化の状態を示すグラフである。 図 2 8は、 本発明のアンテナ構造体に於ける他の具体例の構成を示す図である 図 2 9は、 本発明のアンテナ構造体に於ける別の具体例の構成を示す図である c 図 3 0は、 本発明の第 2の実施例における周波数一 L値の特性図である。
図 3 1は、 本発明の第 2の実施例に於ける卷き線抵抗一アンテナ Q値の特性図 である。
発明を実施するための最良の形態
以下に、 本発明に係わるアンテナ構造体及び当該アンテナ構造体を使用した電 波修正時計の実施例を図面を参照しながら詳細に説明する。
(第 1の実施例)
本発明に於ける第 1の態様に関するアンテナ構造体の 1具体例の構成につい て以下に図面を参照しながら詳細に説明する。
即ち、 本発明に於ける第 1の態様の具体例における当該アンテナ構造体 2は、 上記した様に、 金属外装 3内部で使用される電波を受信するアンテナ構造体 2で あって、 当該アンテナ構造体 2は、 磁芯 6にコイルが巻き付けられている主磁路 2 1 と磁芯にコイルが卷き付けられていない副磁路アンテナコア 9 'からなる副 磁路 2 2とで構成され、 且つ当該磁芯 6に沿って形成される磁路 1 2が閉鎖状の ループを形成しており、 当該閉鎖状ループを構成している当該アンテナ構造体 2 の当該磁路 1 2の一部にギヤップ 1 0が設けられており、 そのギャップ 1 0の部 分は他の部分の磁気抵抗若しくは透磁率と異なる磁気抵抗若しくは透磁率となる 様に構成されており、 外部磁束 4を受信出来るが、 共振時には当該共振時に発生 する磁束 7が外部に漏れにくい構造を有しているアンテナ構造体 2が示されてい る。
更に、 本発明に於ける当該アンテナ構造体 2にあっては、 更に当該副磁路 2 2 の磁気抵抗が当該主磁路 2 1の磁気抵抗よりも大きくなる様に構成されている事 が望ましい。
従来では、 図 2に示す様に、 外部電波を受信するためのアンテナ構造体 1 0 2 の近傍或いは、 当該アンテナ構造体 1 0 2に接触して導電性を持つ金属外装 1 0 3、 例えば、 ステンレス、 チタン合金等の時計の外装として使用される側及び又 は裏蓋部 (以下、 これ等を含めて本発明に於ける金属外装と称する) が配置され ている場合には、 当該外部電波による磁束 1 0 4が当該金属外装 1 0 3に吸収さ れてしまい、 当該アンテナ構造体 1 0 2まで外部電波が到達せず、 当該アンテナ の出力が低下すると考え、 当該アンテナ構造体 1 0 2の感度を向上させるため、 当該アンテナ構造体 1 0 2そのものを大きく形成したり、 当該アンテナ構造体 1 0 2を金属外装 1 0 3の外側に設けるか或いは当該金属外装 1 0 3の代わりに、 当該外装部 1 0 3をプラスチック或いはセラミックで構成すると同時に外観品質 を改善するため、 当該非金属物質面に薄い金属メツキや金属調の塗装を施したり していた。
然しながら、 本願発明者等は、 鋭意検討した結果、 上記した従来に於ける当該 問題点の把握が実際には、 誤りであって、 アンテナ構造体 1 0 2の近傍或いは、 当該アンテナ構造体 1 0 2に接触して導電性を持つ金属外装 1 0 3が存在してい る場合で有っても、 当該アンテナ構造体 1 0 2は、 当該外部電波が実質的に到達 しており、 問題は、 図 2に示す様に、 当該アンテナ構造体 1 0 2が共振する際に. 当該アンテナ構造体 1 0 2の磁芯部 1 0 9から出る磁力線 (磁束) 1 0 7が、 当 該,金属外装 1 0 3に引き込まれ、 そこで渦電流を発生して磁気エネルギーを損失 させる結果、 アンテナの Q値が低下し、 その結果、 当該アンテナ構造体 1 0 2か らの出力が低下して受信性能が著しく低下するという点に問題が有る事を突き止 めたものである。
上記問題点を更に詳細に説明するならば、 例えば、 図 2に於いて、 時計の外装 部 1 0 3、 つまり側及び裏蓋部が金属材料で形成されており、 電波受信用のアン テナ構造体 1 0 2が当該外装部 1 0 3内に配置されて、 電波を受信しょうとする 場合に、 外部から当該時計 1 0 1内部に入ろう とする外部電波による磁束 1 0 4 の流れは、 多少は減衰されるが (例えば一 3 d B程度) 実質的には、 障害なく当 該アンテナ構造体 1 0 2に到達するが、 電波の磁束を受け、 当該アンテナ構造体 1 0 2が共振する際、 つまり電気エネルギーと磁気エネルギーとの間で交互にェ ネルギ一の状態変換が実行される間では、 当該アンテナ構造体 1 0 2に於ける磁 心 1 0 9の端部から出力される共振により発生する磁束の流れ 1 0 7が、 当該金 属材料である外装部 1 0 3に引'き込まれ、 そこで、 渦電流が発生して当該共振に より発生する磁束の流れ 1 0 7のエネルギーが吸収されることになり、 その結果、 当該アンテナ構造体 1 0 2からの共振出力が低下すると言う事が判明したもので ある。
此処で、 同一のアンテナに関して、 共振状態と非共振状態に於いて、 当該アン テナ単体での使用時と、 金属外装が近くに存在する場合での使用時における当該 アンテナの利得及び、 共振時に於ける当該アンテナの Q値について測定した結果 をそれぞれ以下の表 1及び表 2に示す。
尚、 上記実験では、 当該金属外装の材質をチタン (T i ) とし、 アンテナ構造 体としては、 フェライ トコアに導体を 4 0 0ターン卷いた従来のアンテナを使用 し、 共振又は非共振の操作は、 共振容量を付けるか取り外すかの操作を行う事に よって、 調整した。
尚、 本具体例に於ける共振周波数は、 4 0 K H zを採用した。
又、 本実験に於ける測定方法は後述する。
: 1 アンテナの利得
アンテナ単体 金属外装 減衰率 ( d B ) 共 振 — 3 1 d B - 6 2 d B - 3 2 d B
非共振 一 7 1 . 5 d B 一 7 4 . 2 d B 一 2 . 7 d B 表 2 アンテナの Q値
アンテナ単体 金属外装 減衰率 (d B ) 共 振 1 1 4 3 一 3 1 d B 上記実験結果を図 1 2及び図 1 3に示すが、 その結果から、 当該アンテナが非 共振の場合に於いては、 当該アンテナが外部電波の磁束を受け、 コイルのターン 数に従い、 電圧振幅を出力しているのでアンテナ単体と金属外装内でのアンテナ の利得を比較すると、 金属外装内に於いても少なく とも 7割程度 (約一 3 d B ) の外部電波を受信している事が判る。
一方、 当該アンテナが共振の場合には、 金属外装が存在すると利得が 3 2 d B も減少し、 言い換えるとアンテナの出力が約 4 0分の 1に低下しており、 かつ、 Q値に関しては、 金属外装が存在すると単体での Q値が 1 1 4もあるのに対し、 3にまで低下し、 その低下比率は、 約 4◦分の 1である 3 1 d Bの減少を示す事 が判る。
上記結果から金属外装内では、 Q値の低下によりアンテナ出力が著しく低下し ているのであって、 外部電波が外装内部に届かないと言うものではない事が理解 できる。
此処で、 共振アンテナの特性を表す Q値について説明する。
図 1 7は、 周波数とアンテナの出力との関係を示すグラフであり、 図 1 7中、 最もアンテナ出力の高い周波数が共振周波数 f 0となる。
又、 図 1 7中、 Aで示されるレベルは、 当該最もアンテナ出力の高い点から約 3 d B ( 1 / f 2 ) 低いレベルで、 その出力レベルを与える周波数を f 1、 f 2 とすると、 Q値は、 以下の様に計算されるものである。
0値=共振周波数 f 0 ÷ ( f 2— f 1 )
上記 Q値の別の解釈として、 Q値は、 共振状態でのアンテナのエネルギ一損失 の程度を示し、 エネルギー損失が小さいと当該 Q値の値は高くなり、 アンテナ出 力は概略非共振時のアンテナ出力の Q値倍となる。
上記表 1及び表 2のアンテナ単体時の利得と Q値の関係を見ると、 Q値 1 1 4 に対し、 共振 Z非共振の利得比は、 約 4 0 d Bで、 換算すると 1 0 0倍となって いる。
即ち、 当該 Q値の値が高い程、 アンテナ出力は改善し、 アンテナ構造体として の性能は良いと判断される事になる。
又、 Q値はエネルギー損失の程度を示す指標でもある。
尚、 本発明に於いては、 当該 Q値の値を高くすることは、 入力された外部電波 から不用なノイズを除去する事が可能となり、 それによつて、 所定の周波数に対 する感度を向上させることが可能となるので、 フィルター機能を発揮する事が出 来、 この点からも Q値が高い事が望まれる。
以上の事から、 金属外装に入れた場合のアンテナは、 外部電波を受け、 共振状 態にある時、 アンテナ単体と比べて、 何らかのエネルギー損失が著しく增えてい る事になる。
その結果、 Q値が低下し、 アンテナの出力が著しく低下している。
そこで、 エネルギー損失の原因を詳細に調べた結果、 共振により発生した磁束 が金属外装に吸い込まれ、 金属外層との相互作用による渦損により磁束のェネル ギーを損失していることが推定できる。
従って、 当該渦損を低減することにより、 Q値の低下及ぴアンテナ出力の低下 を抑えることが出来、 渦損の低減を図るには、 アンテナに副磁路を設け、 共振に より発生する磁束をアンテナ構造体外部に漏らさない様にすることが必要になる その為、 本発明に於いては、 当該アンテナ構造体 2を金属材料と接触して配置 するかその近傍に配置した場合に、 十分なアンテナ出力を確保する為に、 当該 Q 値の値の低下を如何に防止して、 実用上、 問題の無い程度のアンテナ出力の低下 で抑えられるかを検討した結果、 本発明に到達したものであり、 基本的には、 電 波を受信するアンテナ構造体 2であって、 当該アンテナ構造体 2は、 外部電波に よる磁束 4を受信出来るが、 共振時には、 共振により発生する磁束 7が外部に漏 れにくい磁路 1 2の構造を有しており、 当該磁路 1 2は導体 1 1が巻き付けられ コイルが形成されているコイル卷付部 2 1 (主磁路) と、 導体 1 1が巻き付けら れていない非コイル卷付部 2 2 (副磁路) とから構成されているアンテナ構造体 とする事によって、 上記した従来の問題を解決し、 実用的に問題の無い小型で、 薄型、 且つ製造コス トの低い、 電波利用の電子機器に適したアンテナ構造体を容 易に製造可能とすることが出来たものである。 即ち、 本発明に於ける当該アンテナ構造体 2の構造をより具体的に説明するな らば、 図 1に於いて、 当該アンテナ構造体 2は、 外部より所定の電波が到達した 場合に、 外部電波による磁束 4を受信するが、 共振により発生する磁束 7が、 閉 鎖状ループの磁路 1 2を流れ、 その結果、 当該磁束 7が当該アンテナ構造体 2の 外部に漏れにくい構造を有しているアンテナ構造体 2と したものである。
更に、 具体的には、 本発明の当該アンテナ構造体 2は、 当該磁路 1 2に於ける 当該コイル卷付部(主磁路) 2 1 と、 当該非コイル卷付部 (副磁路) 2 2の少なく とも一部は、 互いに異なる材質で構成されている事が望ましい。
本発明に於ける当該コイル卷付部 2 1は、 上記した磁路 1 2の一部を構成する ものであって、 適宜のコア部 (主磁路アンテナコア部) 9に適宜の導体 1 1が所 定の回数巻きつけられてコイル部 8が形成されている部分を規定するものであり, 又、 本発明に於ける当該非コイル卷付部 2 2は、 上記した磁路 1 2の一部を構成 するものであって、 適宜のコア部で構成され当該副磁路アンテナコア部 9 ' には、 導体 1 1によるコイルが卷き付けられていない部分を規定するものである。
即ち、 本発明に於ける当該コイル卷付部 2 1は、 当該アンテナが外部電波を受 信した際に、 当該外部電波により発生した磁束 4が主として当該コイル卷付部 2 1に流れる様な機能を有しているものであり、 又、 当該非コイル卷付部 2 2は、 当該コイル卷付部 2 1が共振している間に発生した磁束 7が、 主として当該非コ ィル卷付部 2 2に流れる様な機能を有しているものである。
従って、 例えば、 当該非コイル卷付部 2 2に相当する部分に、 仮に適宜の導体 からなるコイルが卷き付けられていたとしても、 上記機能を発揮するものである 限り、 当該部分は、 非コイル卷付部と判断するものである。
例えば、 当該コイル卷付部 2 1 と当該非コイル卷付部 2 2の双方にコイルが卷 き付けられていたと した場合に、 双方のコイルを共振させるとすると、 双方のコ ィルの共振位相がずれるため、 出力が低下するばかり力、、 双方のコイルの共振周 波数の調整が難しいし、 又体積や部品点数の増加も問題となる。
一方、 上記例に於いて、 出力側であるコイル卷付部 2 1のアンテナが非共振の 場合、 当該非コイル卷付部 2 2のコイル抵抗が加算され、 共振状態の銅損が増加 して出力が低下する他体積や部品点数の増加も問題となる。
尚、 本発明に於ける当該コイル卷付部 2 1には、 一つのコイルに限らず、 複数 個のコィルが配置されている場合であっても良い。
更に、 本発明に於いて、 当該アンテナ構造体 2に関し、 外部電波の受信を妨げ ない様にするには、 例えば、 当該コイル卷付部 2 1の実効透磁率よりも、 当該非 コイル卷付部 2 2の実効透磁率を小さく、 且つ、 当該非コイル卷付部 2 2が存在 しない場合に於ける当該コイル卷付部 2 1が共振した際に発生する磁束が通る空 気中の磁路ょりも当該実効透磁率が大きくなる様に構成する事が必要である。 その為に、 当該コイル卷付部 2 1 と、 当該非コイル卷付部 2 2を構成する少な く とも一部の材質は相互に異ならせる事が望ましい。
一方、 本発明に於いては、 当該コイル卷付部 2 1 と当該非コイル卷付部 2 2に 入った外部電波の磁束は、 実効透磁率の大きなコイル卷付部 2 1側を主に流れる 事によって、 当該コイル部 8に起電力を発生し、 その起電力により、 共振が起こ り、 当該共振により発生した磁束は、 当該コイル卷付部 2 1から空気中に流れる よりも、 空気中の実効透磁率より も大きな実効透磁率を持つ当該非コイル卷付部 2 2に主に流れる事になるので、 結果として、 アンテナ構造体外部に漏れる磁束 が減少するのである。
更に、 本具体例に於いては、 当該閉鎖状ループを構成している当該アンテナ構 造体の当該磁路の一部に、 その透磁率が他の部分の透磁率と異なる部分が含まれ ている様に構成する事も可能であり、 又、 当該閉鎖状ループを構成している当該 アンテナ構造体の当該磁路の一部に、 その磁気抵抗が他の部分の磁気抵抗と異な る部分が含まれている様に構成する事も可能である。
例えば、 当該副磁路 2 2の磁気抵抗が当該主磁路 2 1の磁気抵抗よりも大きく なる様に構成されている事も望ましい。
又、 本発明に於ける更に別の具体例としては、 図 1に示す様に、 本発明に於け る当該アンテナ構造体 2の当該非コイル卷付部 2 2に相当する磁路 1 2の一部に ギャップ部 1 0を設け、 磁気的なギャップを形成する事により、 当該非コイル卷 付部 2 2の実効透磁率を小さく したものである。
一方、 従来に於ける様に、 アンテナを金属外装の外側に設置したり、 外装をプ ラスチック若しくはセラミックスとしてアンテナを内蔵した場合、 当該アンテナ の利得と Q値は、 以下の表 3に示す様になる。
表 3 アンテナ単体 時計実装時
利得 — 3 1 d B 4 0 d B前後 (約 1 Z 3 )
Q値 1 1 4 4 0前後 (約 1 / 3 ) 表 3の結果により、 当該アンテナ構造体 1 0 2を金属材料からなる物体と接触 させるかその近傍に配置する場合の他、 当該アンテナ構造体 1 0 2を、 太陽電池 を含む電池、 モータ、 ムーブメン ト、 歯車列、 マイコン、 ヒー トシンク、 文字板 等の金属材料からなる物体の近傍に配置した場合でも同じ問題が発生することが 判明した。
又、 表 3の結果より、 従来レベルに於ける実用的なアンテナの特性 (利得/出 力) レベルがたとえば、 利得で一 3 1 d Bから一 4 0 d B程度への減衰とすると、 本発明に於ける各種の金属材料を使用した金属外装を用いた時計のアンテナ特性 をこれと比較して、 本発明に於ける時計のアンテナ特性が、 実用範囲にあるか否 かを判断する必要がある。
即ち、 従来の電波修正時計に於いては、 当該アンテナを時計に実装する場合、 そのアンテナの出力の実用受信性能目標は、 アンテナ単体での利得一 3 0 d Bで はなく時計実装時の一 4 0 d B程度であり、 そのレベルを基準目標として設定す るものである。
図 3及び図 4は、 従来のアンテナにおけるアンテナ特性と本願に於けるアンテ ナのアンテナ特性とを種々の金属材料について測定して比較したものであり、 特 に図 3では、 当該各アンテナに於ける Q値の減衰率を示したものであり、 又、 図 4は、 従来のアンテナと本願に於ける当該各アンテナのアンテナ特性として利得 を測定して比較したものである。
図 3及び図 4に於ける従来のアンテナとしては、 直線状フェライ トコアに導体 を 4 0 0ターン卷いた構成のものを使用し、 又、 本発明のアンテナの構造として は、 図 1に示されている様な、 直線状フェライ トコアに導体を 4 0 0ターン卷ぃ たコイル卷付部 2 1の当該コア部に、 コイルを巻いていない非コイル卷付部 2 2 を接合して閉鎖状の磁路を形成すると共に、 当該非コイル卷付部 2 2の一部に、 2 0 0 mのギャップを形成したものである。
又、 当該アンテナの利得及び Q値の減衰率の測定は、 図 1 6に示す様に、 各種 の金属材料からなる板材の上に当該アンテナを置いて測定したものである。
つまり、 図 3では、 各アンテナの金属板材が無い場合の Q値と当該板材が真鍮 (以下 B Sと記載する)、 チタン (以下 T i と記載する) 及びステンレススチ一 ル (以下 S U Sと記載する) である場合のそれぞれについて Q値を測定しその減 衰率を d Bで表示したものであり、 又図 4は、 図 3と同様の資科について、 利得 を測定し、 その d B値を逆の棒グラフで示したものである。
上記図 3及ぴ図 4の結果から理解される様に、 各金属板材の材質とも、 Q値の 低下と利得 (アンテナの出力) の低下が一致している事が判明した。
又、 板材のため、 表 1の結果と比較すると、 金属外装を使用する場合に比べて. Q値の減衰率が 6 d B程度小さいことが判る。
一方、 図 4から明らかな様に、 本願発明に於けるアンテナ利得 (出力) は、 各 材料においてこの評価サンプルでは、 約 1 0 d B (約 3倍) 改善している事が理 解できる。
従来のアンテナでは、 表 4に示す様に、 B S、 S U S及び T i に接触させた場 合には、 利得の低下がそれぞれ 1 / 4、 1 Z 9及び 1 / 9であったのに対し、 本 願発明のアンテナでは、 当該アンテナの利得の低下がそれぞれ 1 Z 1 . 2、 1 / 2 . 8及ぴ 1 / 2 . 8であり、 大幅な改善が図られている事が理解できる。 表 4
材料 従来のアンテナ 本願発明のアンテナ
B S 1 / 4 1 / 1 . 2
S U S 1 / 9 1 / 2 . 8
T i 1 / 9 1 / 2 . 8 一方、 図 5は、 アンテナ特性とギャップとの関係を示すグラフであり、 当該ギ ヤップの間隙と Q値との関係を示したものである。
上記図 5から理解される様に、 当該アンテナの Q値は、 当該ギャップを調整す る事によって向上させることが可能であり従って、 当該アンテナの利得も改善す ることが可能である事を示している。
更に、 本発明に於いては、 導体の卷数 (ターン数) を最適化する事によっても 更に改善する事が可能である。
上記した様に、 本発明に於ける当該アンテナ構造体 2が金属材料 3と接触して いるかその近傍に金属材料 3が存在している場合であっても、 その Q値の低下率 が大幅に抑制され、 実用的には、 当該金属材料の存在の有無に関係なく、 良好な 受信性能を発揮出来るアンテナ構造体 2を容易に且つ低コストで得られるのであ る。
つまり、 本発明に於いては、 金属材料がアンテナ構造体に接触しているか、 当 該アンテナ構造体の近傍に存在している場合に於いて、 Q値を高める事によって, 具体的には、 当該 Q値の低下率を抑制する事により、 当該アンテナ構造体の利得 が改善され、 当該利得値の低下率を抑制することによって、 当該アンテナ構造体 の受信特性を大幅に改善する事が出来たのである。
即ち、 図 4及び後述する図 2 6の実験結果が示す通り、 従来のアンテナ構造体 では、 当該アンテナ構造体に接触して、 或いは当該アンテナ構造体の近傍に金属 材料が存在している場合には、 当該アンテナ構造体の利得値の低減率 (即ち、 当 該アンテナ構造体に金属材料が接触していないか或いは、 当該アンテナ構造体の 近傍に当該金属材料が存在していない場合の当該アンテナ構造体の利得値に対す る当該アンテナ構造体に接触して或いは、 当該ァンテナ構造体の近傍に金属材料 が存在している場合の利得値の低減率) は 6 5 %以上あるのに対し、 本発明に於 けるアンテナ構造体では、 当該アンテナ構造体の利得値の低減率は 6 0 %以下に 抑えられている事が明らかであり、 従来のアンテナ構造体に比べて格段の効果を 有するものである。
即ち、 本発明に係る当該アンテナ構造体の別の具体例としては、 電波を受信す るアンテナ構造体であって、 当該アンテナ構造体近傍に金属物体が存在する場合 の当該アンテナ構造体が示す利得値は、 アンテナ構造体近傍に金属物体が存在し ない場合の当該アンテナ構造体が示す利得値に対する最大利得低減率が 6 0 %以 下である特性値を示す様に構成されているものであり、 且つ、 当該金属物体は、 当該アンテナ構造体が当該電波を受信して共振する際、 当該アンテナ構造体より 出力される磁束が到達しえる距離に配置されており、 同時に当該磁束を吸収する 機能を有している事が望ましいものである。
つまり、 本発明にかかる当該アンテナ構造体は、 当該アンテナ構造体近傍に金 属物体が存在する環境下で効率的に使用されものである。
上記した様に、 本発明に於ける当該アンテナ構造体の当該利得低減率は、 異な る金属材料で構成された複数種の金属物体を当該アンテナ構造体に接触させるか 若しくは当該アンテナ構造体の近傍に配置して、 互いに同一の条件の下でそれぞ れ個別に測定した利得低減率の内で最も大きい値を示す利得低減率が選択される 事が望ましい。
更に、 本発明に於いて使用される当該金属物体は、 少なく とも、 ステンレスス チール (S U S )、 真鍮 (B S )、 チタン (T i ) 或いはチタン (T i ) 合金の金 属材料からなる金属物体を個別に使用して当該アンテナ構造体の利得値を個々に 測定し、 その中から当該最大利得低減率を算出する様にするものである。
或いは、 本発明に於いては、 簡便な測定方法として、 当該アンテナ構造体の当 該利得値の最大利得低減率は、 予め定めた金属物体、 例えば、 s U S若しくは、
T i 、 T i合金からなる金属物体を選定し、 当該金属のみを当該アンテナ構造体 を接続させるか当該アンテナ構造体の近傍に配置した環境下で測定された値とす ることも可能である。
上記した説明から明らかな通り、 本発明に於いては、 当該閉鎖状ループを構成 している当該アンテナ構造体 2の当該磁路 1 2の一部に、 その透磁率が他の部分 の透磁率と異なる部分が含まれている事が好ましい具体例である。
又、 本発明に於いては、 当該閉鎖状ループを構成している当該アンテナ構造体 2の当該磁路 1 2の一部に、 その磁気抵抗が他の部分の磁気抵抗と異なる部分が 含まれている事も望ましい具体例である。
一方、 本発明に於ける、 当該非コイル卷付部 2 2の実効透磁率が当該コイル卷 付部 2 1の実効透磁率よりも小さくなる様に構成されている事も望ましい。 又、 本発明に於ける当該アンテナ構造体 2の他の具体例としては、 図 1、 図 7 及び図 1 8から明らかな通り、 当該ギヤップ 1 0は当該主磁路 2 1 と当該副磁路 2 2との少なく とも一方の接合部に形成されている事が望ましく、 或いは当該ギ ヤップ 1 0は当該副磁路 2 2の一部に形成されている事も望ましい。
上記具体例の場合には、 当該主磁路 2 1 と当該副磁路 2 2との間に形成される 端面同士の接合面或いは当該副磁路 2 2内に形成される当該ギヤップ部 1 0は図 6に示されている様に、 テーパー状に形成されている事も好ましい。 一方、 本発明に係る当該アンテナ構造体 2の別の具体例としては、 図 1に示す 様に当該ギャップ 1 0は、 当該主磁路 2 1 と当該副磁路 2 2の端面間、 或いは当 該副磁路 2 2内に設けられた端面 1 3 , 1 3の間、 若しくは図 7に示す様に、 当 該副磁路 2 2の端面 1 3同士以外の部分 2 7に於ける各磁路 1 2の表面同士が対 向して形成されている間隙部分に形成されたものであってもよく、 又、 当該主磁 路 2 1と当該副磁路 2 2の少なく とも一部が相互に近接して平行状態に配置され ているものであっても良い。
一方、 当該副磁路 2 2内に設けられている当該ギヤップ 1 0の接合面 1 3若し くは当該主磁路 2 1 と当該副磁路 2 2 との間に形成される端面 1 3同士の接合面 は、 図 6に例示されている様にテーパー状に形成されているものであっても良い。 更に、 本発明に於ける当該アンテナ構造体に有っては、 当該ギャップ 1 0は、 当該主磁路 2 1のコイル巻き付け部 8近傍以外の磁路 1 2の部分に設けられてい るものであっても良い。
又、 本発明に於ける当該ギャップ内には、 当該磁心 1 2を構成する材料とは異 なる材料が配置されている事が望ましい。
例えば、 当該ギャップ 1 0内には、 当該磁心 1 2を構成する材料とは異なる材 料が充填されているもので有っても良く或いは、 当該ギャップ 1 0は、 エアーが 充填された形のエアーギヤップで有っても良い。
更に、 本発明に於ける当該アンテナ構造体の当該ギャップ 1 0がエアーギヤッ プである場合には、 当該エアーギャップは、 スぺ一サを介在させて形成されてい るものであっても良い。
更に、 本発明に於ける当該ギャップ 1 0の具体例に付いて説明するならば、 図 1 8 ( C ) に示す様に、 当該非コイル卷付部 2 2内にギャップ 1 0が設けられて いるもので有っても良く、 或いは図 1 8 ( A ) 或いは (B ) に示す様に、 当該コ ィル卷付部 2 1 と当該非コイル卷付部 2 2との少なく とも一方の接合部 1 5にギ ヤップ 1 0が形成されているもので有っても良い。
更には、 当該ギャップ 1 0は、 図 1 8 ( A ) 或いは (B ) に示す様に、 コイル 卷付部 2 1近傍以外の磁路 1 2の部分に設けられているものであっても良い。 一方、 図 1 8 ( D ) に示す様に当該ギャップ 1 0の少なく とも一部が、 当該ァ ンテナ構造体 2に於ける外部電波が到達する面に存在している事は好ましくない ので、 図 1 8 ( A ) 〜 (C ) に示す様に当該ギャップ 1 0は、 当該コイル卷付部 2 1の外部電波が到達する面とは反対側の側面に形成されていることが望ましい。 具体的には、 図 1 8 ( B ) に示す様に当該コイル卷付部 2 1のアンテナコア部 9が、 コイル部より外方部に延展している部分の中心軸線 2 8から当該アンテナ コアの半径の長さ分だけ離れた位置で、 且つ当該中心軸に対して外部電波が到達 する面とは反対側の面の一部に当該非コイル卷付部 2 2の端面が接合するような 構成でギャップ 1 0が形成されていることが望ましい。
更には、 図 1 8 ( E ) に示す様に、 当該非コイル卷付部 2 2又は、 当該コイル 卷付部 2 1の少なく とも一部の表面に磁気的変質層、 非磁性層又は、 透磁率の低 い層からなる膜層 8 0が形成されている事も好ましい。
この場合には、 当該ギャップ 1 0は、 空気層の介在なしに当該膜層のみで構成 されることになる。
此処で、 本発明に於ける当該ギヤップの構成に関して更に詳細に説明する。 処で、 本発明に於けるギャップを定義するならば、 当該ギャップは、 非磁性材 もしくは透磁率の低い磁気的変質層で非金属の材料により構成されるものであり、 少なく ともその主磁路は軟磁性材により構成されているものである。
此処で、 当該軟磁性材としては、 例えば、 フェライ ト、 アモルファス金属軟 磁性材の積層複合材、 コパルトもしくはコバルト合金軟磁性体粉末を樹脂に混鍊 した複合材等が使用される。
上記した様に、 本発明に於ける当該ギャップに於いては、 当該ギャップの幅が 重要なボイントとなる。
つまり、 当該ギヤップの幅が広すぎても又狭すぎても当該アンテナ構造体の特 性に悪影響を及ぼし、 商品として不都合が生ずる。
即ち、 副磁路内若しくは、 主磁路と副磁路との間に設けられたギャップの幅 が広過ぎると、 主磁路と副磁路とにより閉磁路を十分な形で形成できず、 共振時 に発生する磁束がアンテナ周囲に漏れ出す量が多くなりアンテナを金属外装内部 に設置した場合、 アンテナ周囲に漏れ出す磁束と近接する金属外装との相互作用 (主に渦損と考えられる) によりエネルギーロスを生じアンテナの Q値が低下し. 結果としてアンテナ出力電圧が低下してしまい、 本願発明の効果を十分発揮する ことが出来ない。 逆にギヤップの幅が限りなく小さい主磁蹄と副磁路がー体の場合、 つまり主 磁路と副 磁路を構成する軟磁性体がリング状に槃がった場合、 主磁路と副磁路 が磁気的に完全な 閉鎖ループを形成するため、 共振時に発生する磁束の漏れは なくなるが、 アンテナの実効透磁率 (本願に用いたアンテナの例では副磁路を設 けない場合、 比透磁率は 2 0〜 3 0程度となった。) が主磁路と副磁路を構成す る軟磁性材の透磁率 (本実施例で用いたマンガンジンク系フェライ トの場合、 比 透磁率は 1 0 0 0〜 2 0 0 0程度となる。) となり、 アンテナのインダクタンス はアンテナの実効透磁率に比例するためィンダクタンスは数十倍〜 1 0 0倍程度 と極端に大きくなつてしまう。 インダクタンスが極端に大きくなると、 アンテ ナはコイル部に寄生容量を持っため自己共振周波数が極端に低下し ( 1 Z 5〜 1 / 1 0の周波数に低下)、 外付けの共振容量で所望の周波数 (受信周波数) に共 振周波数を調整することが出来なくなる。
また、 インダクタンスを小さく し自己共振周波数を高くするためにコイルター ン数を少なくすると、 所望の周波数に共振局波数を調整することは出来るがコィ ルターン数を十分の一程度に少なくする必要があり、 その結果コイルターン数に 比例するアンテナ出力電圧は低下してしまう。 更に、 完全に閉鎖ループを形成す ると、 アンテナに入る外部電波の磁束がコイルの卷いてない副礎路側に多く流 れるようになり、 その結果ァンテナ出力電圧に寄与する磁束の量が減少しアン テナ出力電圧の低下となる。 この場合も本願発明の効果を十分発揮することが 出来ない。
従って、 当該ギヤップの幅は適切な値を持つ様に制御する必要がある。
本願発明の効果を十分に発揮させるためには、 副磁路のギヤップの幅を調整 して共振時に発生する磁束がアンテナ周囲に漏れ出す量をアンテナ出力電圧の低 下があまり問題にならない程度 (金属外装内にアンテナを設置することによるァ ンテナ出力電圧減少が 5 0 %以下に抑えることを目安とした) に低減すると同時 に、 外付けの共振容量で所望の周波数(受信周波数)に共振周波数を調整すること が出来るように所望の周波数(受信周波数) よりも高い自己共振周波数になるよ うに設定し、 アンテナに入る外部電波の磁束がコイルの卷いてある主磁路側に多 く流れるように設定する必要がある。 言い換えると、 主磁路の磁気抵抗に対しギ ャップを含む副磁路の磁気抵抗を適度の範囲で大きく調整設定することになる。 試作 ·評価の結果からこの設定は、 副磁路を設けない場合のアンテナの実効透 磁率に対し、 副磁路を設けることによりアンテナの実効透磁率が 2〜 1 0倍、 好ましくは 4〜 8倍に設定する必要がある事が判った。 言い換えると、 副磁路 を設けない場合のアンテナのィンダクタンスに対し、 副磁路を設けることにより アンテナのインダクタンスが 2〜 1 0倍、 好ましくは 4〜 8倍に調整設定する必 要がある。
この様な設定をするためには、 主磁路の形状若しくは副磁路の一部若しくは副 磁路と主磁路との間に設けられるギヤップの形状やギヤップを構成する部材の磁 気特性を調整することにより設定することが出来る。
更に詳しく説明すると、 この場合の設定とは結果的には本願発明のアンテナの 実効透磁率若しくはィンダクタンスを調整設定することで、 アンテナの実効透磁 率若しくはインダクタンスを本願発明の効果を十分に発揮させるためには適度に 大きくすることになる。 この方法としては、 コイルが卷いてある主磁路のサイズ を大きくするかコイルのターン数を増やすこと、 または、 磁気抵抗的な見方をす ると、 ギヤップの形状つまりギヤップの面積を増大するかギヤップの幅を狭くす る、 若しくはギャップを構成する部材の磁気特性、 特に比透磁率を主磁路と副磁 路を構成する軟磁性材の透磁率以下の範囲で部材の材質を変えること等により、 アンテナの実効透磁率若しくはインダクタンスを大きく調整設定することが出来 る。
しかしながら、 本願発明のアンテナのように電波修正時計に用いるアンテナの 場合、 時計外装内に収納する必要があるため外形寸法の制約がある。 そのため外 形寸法の増加のないギヤップの幅を狭くする、 若しくはギヤップを構成する部材 の磁気特性特を調節する方法が好ましい。
ギャップの幅による調整設定方法の場合、 実効透磁率もしくはィンダクタンス を本願発明の効果を十分に発揮させる様に設定調整するためには、 対向する面 積が数平方 m m程度ではギヤップの幅を 1 m m以下好ましくは 0 . 2 m m以下の 寸法に安定して調整設定すると同時に保持する必要がある。 この様なギヤップ の幅の調整設定や、 安定に保持できない場合、 アンテナの受信特性 (電圧出力) の製造パラツキが大きくなったり、 経時的な変化を招いてしまう。
ここで、 本発明に於いて上記したギヤップを形成する為の具体的な方法の例に ついて詳細に説明する。
即ち、 第 1の方法としては、 適宜の冶具により主磁路と副磁路の位置を決めて ギャップの幅を設定しその状態でギャップ部分に接着剤を流し込み固定一体化す る方法である。
例えば、 図 2 9に示す様に、 当該主磁路と副磁路との接合部 1 5, 1 5 ' の一 方或いは双方の間隙部に、 適宜の接着剤、 或いは適宜のファイバー状のスぺーサ 一等を混在させた接着材、 両面接着テープ等 1 0 0 0を間揷させてギヤプ 1 0を 形成する事が可能である。
本発明に於いて使用可能な接着剤としては、 例えば、 一般に用いられる有機接 着剤、 たとえば、 エポキシ系接着剤、 ウレタン系接着剤、 シリ コーン系接着剤、 アク リル系接着剤、 ナイロン系接着剤、 シァノアクリ レート系接着剤、 ゴム系 接着剤、 尿素樹脂系接着剤、 メ ラ ミ ン樹脂系接着剤、 ビニール系接着剤等が使用 可能である。
次に、 ギャップを形成する為の第 2の方法としては、 図 6に示す様に、 直径の 揃ったガラスもしくは樹脂製のビーズまたは短く切ったファイバー状のスぺーサ 用フィラーを混合した接着剤を、 主磁路と副磁路のギヤップ 1 5或いは/及び 1 5 ' を形成する面に塗布した後押し当てて接着することにより用いたスぺーサ の直径にほぼ等しいギヤップの幅を設定し固定一体化する方法である。
又、 ギャップを形成する為の第 3の方法としては、 厚みの一定した樹脂フィ ルムをスぺーサとしてキヤップ部分に挟み込み、 電波修正時計のアンテナ設置 位置にネジ止め等により主磁路と副磁路とをスぺーサを介して突き当てた状態で 固定することによりギヤップの幅を設定する方法である。
一方、 ギャップを形成する為の第 4の方法としては、 アンテナ構造体を支持ボ ビン 1 6に形成されている突起部 1 7 をスぺーサとして主磁路と副磁路を各々突 起部に突き当てた状態で固定することによりギヤップの幅を設定する方法もある c 又、 ギャップを形成する為の第 5の方法としては、 両面に粘着材もしくは接着 剤が塗布された両面接着テープを主磁路と副磁路の対向する面に挟み込む形で主 磁路と副磁路を接着固定すると同時に両面テープの厚みによりギヤップの幅を設 定する方法であっても良い。
その他、 既に説明した通り、 当該ギャップ 1 0は、 当該ギャップの主磁路と副 磁路の対向する面をテーパー形状とするものであっても良く、 又当該ギャップ 1 0を主磁路と副磁路の 2箇所の接続部の双方に設けるものであっても良い。
次に、 本発明に於いて当該ギャップを形成する際、 主磁路と副磁路を構成する 軟磁性材としてフェライ ト系焼結材たとえばマンガンジンク系フェライ トを用い た場合、 主磁路と副磁路を密着させても、 金属の軟磁性材たとえば磁気焼鈍した パーマロイを用いた場合と振る舞いが異なり、 リング状の評価サンプルでの評価 結果の比透磁率: 1 0 0 0〜 2 0 0 0程度より推測されるアンテナの実効透磁率 もしくはィンダクタンスの変化を示さず、 主磁路と副磁路の形状にも依るが数倍 から十倍程度の実効透磁率もしくはィンダクタンスの増加にとどまった。 この 結果よりフェライ ト系焼結材の場合、 焼結時に部材表面に化学当量からの組成 のずれ等何らかの理由で本来の磁気特性を示さず透磁率の低い数十 μπι程度の極 薄い磁気的変質層が形成されていると考えられ、 この変質層が本願発明におけ るギヤップの働きをしていると考えられる。
一般的に軟磁性体は (結晶構造の) 構造敏感性を示す材料が多く、 例えば パーマロイの場合、 圧延加工や切削加工を施すと材料全体若しくは切削加工近傍 の表面の結晶構造が乱れ磁気特性が劣化する。 このため加工後に磁気焼鈍を行い 結晶構造の歪みを取り除き磁気特性の回復を計らなければならない。 また、 フエ ライ ト系の場合でも研削加工を施した表面近傍で磁気特性の劣化が生じたり、 添 加金属の化学当量からのズレにより磁気特性の劣化を生じることは良く知られて おり、 似たような現象が起きていると考えられる。
このため軟磁性材としてフェライ ト系焼結材を用いて主磁路と副磁路を形成し た場合、 図 2 8に示す様に、 主磁路 2 1 と副磁路 2 2を密着させても外観上は ギヤップを形成していないが、 磁気的には表面の磁気的変質層 3 0 0を介して 主磁路 2 1 と副磁路 2 2が接続している状態となり、 結果として磁気的変質層 3 0 0がギャップ 1 0の幅を設定していることになる。 それゆえフェライ ト系焼結 材を用いて主磁路と副磁路を形成した場合、 外観上ギヤップを形成せず主磁路と 副磁路を密着させ、 主磁路と副磁路を密着させる面積を微調整することにより前 記実効透磁率もしくはィンダクタンスの調整設定を行うことができる。
この場合ギヤップの幅の設定としては接着剤を塗布した後突き当て固定するか. 突き当て固定した状態で接着剤をディスペンサー等で流し込み接着する。 更に、 本発明に於いては、 当該コイル卷付部 2 1 と当該非コイル卷付部 2 2の 断面積が互いに異なる様に構成されていても良く、 又、 当該コイル卷付部 2 1 と 当該非コイル卷付部 2 2とは、 それぞれ互いに独立した構成体を形成しており、 当該コイル卷付部 2 1に導体 1 1を巻き付けコイル 8が形成された後に当該コィ ル卷付部 2 1 と当該非コイル卷付部 2 2とを一体化した構成を採用する事も可能 である。
上記した様に、 本発明に於ける当該アンテナ構造体 2が金属材料と接触してい るかその近傍に金属材料が存在している場合であっても、 その Q値及び利得値の 低下率が大幅に抑制され、 実用的には、 当該金属材料の存在有無に関係なく、 良 好な受信性能を発揮出来るアンテナ構造体 2を容易に且つ低コス トで得られるの である。
処で、 本発明に於いては、 当該アンテナ構造体 2が受信出来る対象電波の周波 数、 は 2 0 0 0 k H z以下の長波を含む電波であって、 好ましくは、 数 1 0 k H z〜数百 k H zの長波である。
本発明に於ける当該金属外装 3は、 当該アンテナ構造体 2をその内部に収納し うる金属材料で構成されている側部と裏蓋部よりなる構造であるか或いは、 当該 アンテナ構造体 2をその内部に収納しうる金属材料で構成されている側部と裏蓋 部とがー体となって形成されている構造から選択された少なく とも一つの部材で 構成されている事が望ましい。
一方、 本発明に於いて使用される当該金属外装 3は、 具体的には、 S U S、 B S、 T i、 T i合金、 或いは金、 銀、 プラチナ、 ニッケル、 銅、 クロム、 アルミ . あるいはそれらの合金等の導電性を有する金属外装材料が使用される。
尚、 本発明に於ける好ましい金属外装材料としては、 B S、 S U S或いは T i である。
更に、 本発明に於いて当該アンテナ構造体 2の近傍に配置される当該金属外装 3の具体例としては、 例えば、 裏蓋及び側を含んでいる時計の外装部、 文字盤、 モータ一、 ムーブメン ト、 電池、 太陽電池 (特に S U S基板太陽電池)、 腕バン ド、 ヒートシンク等を含むものである。
此処で、 本発明における当該アンテナの利得と Q値の測定方法の一具体例を説 明する。 即ち、 ヒユーレッ ドパッカード社 (H P) 製のネッ トワークアナライザー ( 4 1 9 5 A) と同ヒユーレッ ドパッカード社 (H P ) 製の高周波プロ一プ (8 5 0 2 4 A) 及びナショナル (松下電器) の送信アンテナ (テス トループ 7 5 Q, VQ- 0 8 5 F) とを、 図 1 4に示す様に接続してアンテナ評価回路を構成し、 当該送信アンテナ (テス トループ 7 5 Q, VQ— 0 8 5 F) の近傍に被測定ァ ンテナを接続する当該高周波プローブ ( 8 5 0 2 4 A) とサンプル支持部を配置 し、 当該サンプル支持部に所定の被測定アンテナをセッ トした後、 当該送信アン テナ (テス トループ 7 5 Q, VQ— 0 8 5 F) より所定の電波を発信し、 当該 被測定アンテナの出力を当該高周波プローブ ( 8 5 0 2 4 A) で検出して当該ネ ッ トワークアナライザー (4 1 9 5 A) で所定のアンテナ評価をする様に構成し たものである。
上記の評価装置においては、 当該被測定アンテナ構造体 2と当該送信アンテナ (テス トループ 7 5 Q, VQ— 0 8 5 F) との距離を図 1 5に示す様に送信ル ープアンテナの下端から 1 1 c m離れた位置に評価用の受信アンテナを設置して 測定すると同時に、 図 1 6に示す様に、 当該被測定アンテナ構造体 2と金属外装 3とを接触させて測定した。
尚、 本具体例で使用した当該金属外装 3は、 当該金属材料として S U S, T i , T i合金、 B Sの 5 mm厚の板材を用いた。
更に、 上記具体例に於いて、 当該送信アンテナ (テス トループ 7 5 Q, V Q - 0 8 5 F) から発信される電波の周波数は、 4 0 KH z用の共振アンテナを測 定する場合、 2 0〜 6 0 KH zの範囲で変化させて測定した。
又、 上記の測定装置により当該 4 0 KH z用の共振アンテナの利得と Q値を測定 する方法を図 1 7を参照しながら説明する。
即ち、 当該ネッ トワークアナライザー (4 1 9 5 A) から当該送信アンテナ (テス トループ 7 5 Q, VQ- 0 8 5 F) に一定の出力で周波数を 2 0〜 6 0 KH zでスイープさせ、 被測定アンテナ 2の出力を高周波プローブ ( 8 5 0 2 4 A) を介してモニターし図 1 7に示す様な出力結果を得る。
ここで、 アンテナの利得は、 送信アンテナへの入力電圧振幅と被測定アンテナ の出力電圧振幅の比で表し、 図 1 7中、 最もアンテナ出力の高い周波数が共振周 波数 ( f 0) となり、 当該アンテナ出力が最も高い時点での上記比の値をアンテ ナ利得とした。
又、 前述の様に、 測定結果より f 1 , f 2を求め Q値を算出した。
その結果を図 3及び図 4に示す。
図 3に於いて、 従来のアンテナ単体の Q値を基準として、 減衰率 (d B表示) で測定結果を示した。
上記の実験結果から明らかな通り、 本発明にかかる当該アンテナ構造体 2は従 来の問題点を明らかに改善する有用な発明であることが理解される。
又、 図 4は、 本発明に係るアンテナ構造体と図 2に示す従来のアンテナ構造体 とを図 3と同じ環境下で測定した場合の利得を d Bで示したものであるが、 いず れの金属材料を使用した場合でも利得に関しては従来のアンテナに比べて良好な 値を示している。
更に、 図 5に示す様に、 Q値の改善度は、 ギャップ依存性があり、 当該ギヤッ プの狭いほうが非コイル卷付部 2 2の実効透磁率が大きくなり、 漏れ磁束が減少 するので当該ギャップの狭いほうが Q値は良くなる。
然しながら、 製造工程に於いては、 ばらつきが発生するので、 ギャップを一定 の狭い間隔で管理することが重要となる。
次に、 上記した本発明に於けるアンテナ構造体 2を実現するための具体的な構 成の例を以下に説明する。
即ち、 本発明に於ける当該アンテナ構造体 2は、 例えば図 1に示す様な構成を 有している事が好ましく、 具体的には、 コイルである巻き線 1 1が設けられた磁 路 1 2を構成する磁芯 〈コア部〉 6を双方の端部から延長して屈曲させ、 その端 部 1 3 , 1 3 ' 同士を近接対向させて、 ループ状の磁路を形成したものである。 そして、 本具体例に於いては、 当該磁心 6の当該端部同士の対向部 1 4には微 小な間隙、 つまりギャップ 1 0が設けられている事が望ましい。
当該ギャップ 1 0は、 前記で説明した様に、 空気が介在するもので有ってもよ く、 又、 適宜の充填材、 例えば樹脂膜層等が介在しているもので有ってもよく、 更には、 適宜のスぺーサ一が介在しているもので有っても良いので、 当該ギヤッ プ 1 0部分は、 磁気抵抗が当該磁路における磁気抵抗より も大きくなり、 従って. 当該磁路 (コア 6 ) 1 2の閉鎖状ループの一部に磁気抵抗が異なる部分が形成さ れる事になる。 かかる本発明のアンテナ構造体 2に於いては、 上記した様なギヤップ 1 0が存 在している略ループ状のアンテナ構造であることから、 外部から入ってきた磁束 は、 アンテナの両端から入るが、 ギャップ 1 0 (磁気抵抗は中) がある方向には 磁束は流れず、 磁気抵抗の小さい巻き線部 1 1に流れる。
既に上記で説明した通り、 磁気の影響を受けた卷き線部 1 1は、 磁束変化を電 圧に変換し、 アンテナの L値と同調コンデンサ容量によって共振現象を起こし、 共振による磁束を発生する様になるが、 この時、 アンテナの共振現象によって発 生した磁束は、 空気中に漏れ出すのではなく磁気抵抗の小さいギヤップ部分を流 れる事になる。
この事によって、 アンテナを金属外装内部に入れた場合に発生する損失を削減 する事が可能となる。
換言すれば、 当該アンテナ構造体 2の磁路 1 2が閉鎖状の磁路を形成している ので、 当該ァンテナ構造体 2が共振している際に当該アンテナ構造体 2から出力 される共振により発生する磁束 7の流れが、 図 1に示す様に、 閉鎖状のループ型 磁路 1 2に沿って主に流れるので、 当該アンテナ構造体 2から当該金属材料で構 成された例えば、 外装部 3に当該磁束が漏れることが回避され、 従って、 当該金 属外装部 3に漏れた磁束が渦電流を発生して当該磁束のエネルギーを低下させる 事がない。
当該アンテナ構造体 2に於ける当該磁路 1 2 (コア 6 ) が図 1に示す様に、 コ ィル卷付部 2 1の主磁路アンテナコア部 9と非コイル卷付部 2 2の服磁路アンテ ナコア部 9 ' の双方が一体の場合には、 アンテナを生産する場合に、 卷き線 1 1 を当該ギャップ 1 0の隙間を通して当該コイル卷付部 2 1を構成する主磁路アン テナコア部 9に卷きつける力 、 当該コイル卷付部 2 1 と非コイル卷付部 2 2 との 間に形成される閉鎖状の空間部を利用して当該コイル卷付部 2 1を構成する主磁 路アンテナコア部 9に卷きつける必要があり、 生産性が悪くなる。
従って、 コイル卷付部 2 1の主磁路ァンテナコア部 9と非コイル卷付部 2 2の 副磁路アンテナコア部 9 ' をそれぞれ別体に設け、 生産する場合には、 当該コィ ル卷付部 2 1の主磁路アンテナコア部 9にコイル巻き線を行う段階では当該非コ ィル卷付部 2 2の副磁路アンテナコア部 9 ' を取り付けず、 卷き線操作が完了し た後に当該非コイル卷付部 2 2の副磁路アンテナコア部 9 ' を取り付けるように する事によって、 卷き線の生産効率を飛躍的に向上させることが可能となる。 即ち、 図 6に示す様に、 本発明に於いては、 当該コイル卷付部 2 1の主磁路ァ ンテナコア部 9と当該非コイル卷付部 2 2の副磁路アンテナコア部 9 ' とを別体 に構成し、 巻き線操作が完了した後に両者を接合する様に構成するものである。 その際、 本発明に於ける当該非コイル卷付部 2 2の磁気抵抗が当該コイル卷付 部 2 1の磁気抵抗よりも大きくなる様に構成されている事の望ましい具体例の一 つである。
一方、 本発明に於いては、 当該ギャップ 1 0は、 当該非コイル卷付部 2 2内に 形成されたものであっても良く、 或いは、 図 6に示す様に、 当該非コイル卷付部 2 2と当該コイル卷付部 2 1 との間、 つまり双方の接合部 1 5、 1 5 ' の少なく とも一方にギャップ 1 0が設けられているもので有っても良い。
更に、 本発明に於ける別の具体例に於いては、 当該コイル卷付部 2 1 と当該非 コイル巻付部 2 2の断面積が互いに異なっている事も好ましい具体例である。 つまり、 図 6に示す様に、 当該コイル卷付部 2 1の断面積は、 対応する当該非 コイル卷付部 2 2の断面積よりも小さくなる様に構成されている。
これは、 図示の通り、 当該コイル卷付部 2 1では、 その周りに巻き線 1 1を卷 きつける必要があり、 その為、 当該コイル卷付部 2 1の断面積が大きいと当該卷 き線を卷きつけた後の断面積も大きくなり、 例えば、 時計の厚みを厚く してしま い、 薄型の時計を製造できなくなると言う問題を発生させることになる。
図 6に示す様に、 本発明に於ける当該アンテナ構造体 2に於いては、 当該コィ ル卷付部 2 1 と当該非コイル卷付部 2 2 とは、 それぞれ互いに独立した構成体を 形成しており、 当該コイル卷付部 2 1にコイル 1 1が卷き付けられた後に当該コ ィル卷付部 2 1 と当該非コイル巻付部 2 2とを接合されて一体化されている構造 を有するものである。
又、 上記した様に、 本発明に於ける当該アンテナ構造体 2の当該コイル卷付部 2 1 と当該非コイル卷付部 2 2との少なく とも一方の接合部 1 5にギャップ 1 0 が形成されているものであって、 当該コイル卷付部 2 1 と当該非コイル卷付部 2 2 との間に形成される当該ギャップ 1 0は、 当該コィル卷付部 2 1 と当該非コィ ル卷付部 2 2と端面同士の接合面 1 5に適宜のスぺーサー 1 7を揷入する事によ つて所定の間隙を固定させることが可能となる。 当該スぺーサー 1 7は、 ビーズ等の異物を利用するものであってもよく、 或い は、 当該アンテナ構造体 2を支持するボビン 1 6に形成されている突起部 1 7を 利用するもので有っても良い。
つまり、 本具体例では、 コイル卷付部 2 2の主磁路アンテナコア部 9と非コィ ル卷付部の副磁路アンテナコア部 9 ' との接合面 1 5に形成されるギヤップ 1 0 の間隙長さを当該ボビン 1 6に予め形成されている突起部 1 7或いは別途配置さ れているスぺーサー 1 7を介在させて位置出しを行って当該間隙のギヤップ精度 を向上させるものである。
前記した図 5に示す通り、 当該ギヤップ 1 0の間隙距離に対するアンテナの利 得の変化から明らかな様に、 当該ギヤップ間隙距離によって利得のばらつきが出 ると言う問題が発生する。
その為、 当該コイル卷付部主磁路アンテナコア部 9と当該非コイル卷付部 2 2 の副磁路アンテナコア部 9 ' の間隙部内にボビンや、 スぺーサー 1 7或いは図 1 8 ( E ) に示す様に、 適宜の膜層 8 0等を介在させる事によって、 当該ギャップ 1 0間の距離精度の誤差は、 当該ボビンの突起部或いはスぺーサ一などの異物の 寸法精度誤差となり、 アンテナの利得を安定させることが可能となる。
又、 本発明に於ける当該アンテナ構造体 2に関しては、 当該コイル卷付部 2 1 と当該非コイル卷付部 2 2 との間に形成される端面 1 9同士の接合面 1 5は、 テ —パー状に形成されている事が望ましい。
即ち、 当該コィル卷付部 2 1 と当該非コィル卷付部 2 2との間に形成される当 該ギャップ 1 0を構成する端面 1 9同士の接合面 1 5が、 卷き線部 1 1に対して 斜めの状態に形成する事によって、 当該ギャップ 1 0の面積を増加させる事にな る。
かかる構成を採用する事によって、 当該ギャップ 1 0の間隙距離の調整は、 当 該コイル卷付部の主磁路アンテナコア部 9に対して、 当該非コイル卷付部の副磁 路アンテナコア部 9 ' を押し込むか引き出す方向に移動させる事により容易に調 整が可能である。
更に、 係る構成にあっては、 上記した通り、 アンテナの利得のばらつきは、 当 該コイル卷付部 2 1の主磁路アンテナコア部 9と当該非コイル卷付部 2 2の副磁 路アンテナコア部 9, との間の磁気抵抗値の増減による影響であり、 ギャップ部 分の接触面が大きくなれば、 ギヤップ間距離に対するアンテナの利得の変化率が 緩和されることから、 ギャップ部分の接触面積は大きく したほうが有利である。 つまり、 本具体例の様に構成する事によって、 ギャップ部分の接触面積を巻き 線部 1 1 と平行にするよりも 2倍大きくすることができるので、 ァンテナの利 得のばらつきを低減させることが可能となる。
尚、 図 6に於いて、 1 8は卷き線 1 1を当該コイル卷付部 2 1の主磁路アンテ ナコア部 9に卷きつける際の卷き枠を示し、 2 0は、 当該コイル卷付部 2 1のァ ンテナコアが導電性である場合の、 当該主磁路アンテナコア部 9と卷き線 1 1 と の間に介揷される絶縁材料を示している。
一方、 本発明に於ける当該ギャップ 1 0に関しては、 当該コイル卷付部 2 1 と 当該非コイル卷付部 2 2の端面若しくは、 当該非コイル卷付部 2 2の端面同士以 外の部分に於ける各磁路の表面同士が対向して形成されているものであっても良 い。
即ち、 図 7 ( A ) に示す様に、 当該非コイル卷付部 2 1の主磁路アンテナコア 部 9 ' の一部に当該ギャップ 1 0が形成される場合に於いては、 当該非コイル卷 付部 2 2の副磁路アンテナコア部 9 ' の相互に対向する端部 1 3同士を対向させ ずに互いに少なく とも端部 1 3の一部同士を重複させ、 当該非コイル卷付部 2 2 の端面 1 3同士以外の部分に於ける各磁路の表面 2 6、 2 6 ' 同士が対向して形 成されているものであっても良く、 又は、 図 7 ( B ) に示す様に、 当該コイル卷 付部 2 1のアンテナコ部 9の端面 1 9と当該非コイル卷付部 2 2の副磁路アンテ ナコア部 9 ' の端面 1 9 ' の間に当該ギャップ 1 0が形成される場合に於いては. 端部 1 9同士を対向させ,ずに互いに少なく ともその一部同士を重複させ、 当該非 コイル卷付部 2 2の端面 1 9 ' 以外の部分 2 7 ' と当該コイル卷付部 2 1の端面 1 9以外の部分 2 7とが対向して形成されているものであっても良い。
又、 図 7 ( C ) に示す様に、 空芯コイル若しくはボビンに形成したコイル 1 0 0と L宇状に形成した 2個のアンテナコア 2 0 0、 2 0 1を対向させて当該空芯 コイル若しくはボビンに形成したコイル 1 0 0の両端部から別々にその中心部に 揷入して、 双方の一部が対向して配置される様に形成した構造のものであっても 良い。
一方、 本発明に於ける当該アンテナ構造体 2の構造の内、 当該コイル卷付部の 主磁路アンテナコア部 9を構成する部分の両側部 2 3は、 図 6に示す様に、 テー パー状或いは適宜の曲線或いは折れ線により形成された曲面を形成するものであ つても良い。
この場合には、 当該両側部 2 3を出来るだけ時計の外周形状に適合させ、 当該 アンテナ構造体 2のコイル卷付部 2 1を可能な範囲で当該時計の外周部に配置で きる様に構成することが出来る。
更に、 本発明に於いては、 当該アンテナ構造体に於ける当該非コイル卷付部の 副磁路アンテナコア 9 ' の断面積若しくは厚みが当該コイル卷付部の主磁路アン テナコア 9の断面積若しくは厚みよりも大きいか厚くなる様に構成することも好 ましい具体例である。
既に上記した通り、 当該コイル卷付部の主磁路アンテナコア部 9と当該非コィ ル卷付部の副磁路アンテナコア部 9 ' 間の磁気抵抗を低減させるためには、 コィ ル卷付部の主磁路アンテナコア部 9と非コイル卷付部の副磁路アンテナコア部 9 ' の厚み或いは断面積が厚いか大きい方が望ましいが、 当該コイル巻付部の主 磁路アンテナコア部 9には、 巻き線部 1 1が設けられるので、 当該コイル卷付部 の主磁路アンテナコア部 9の断面積或いはその厚さが大きいか厚いと、 その分当 該アンテナ構造体 2の厚みを増大してしまう。 然しながら、 当該非コイル卷付 部の副磁路アンテナコア部 9 ' には、 卷き線部 1 1はなく、 従って、 当該コイル 卷付部の主磁路アンテナコア部 9よりは巻き線部の厚さ分厚く或いはその断面積 を大きくすることが可能となる。
かかる構成とする事によって、 当該コイル卷付部の主磁路アンテナコア部 9 と 当該非コイル巻付部の副磁路アンテナコア部 9 ' との間の磁気抵抗値を低減させ 共振により発生する磁束をより多く当該非コイル卷付部の副磁路アンテナコア部 9 ' に導く ことが出来、 アンテナの利得のばらつきを抑える事が可能となる。 そして、 好ましくは、 当該非コイル卷付部の副磁路アンテナコア部 9 ' は、 電 波の進行方向に対して当該コイル卷付部の主磁路アンテナコア部 9の内側に配置 されており、 当該コイル卷付部の主磁路アンテナコア部 9が当該非コイル卷付部 の副磁路アンテナコア部 9, を被覆するような形態で、 電波が直接当該非コイル 卷付部の副磁路アンテナコア部 9 ' に到達しない様に構成したものである。 つまり、 本具体例に於いては、 当該アンテナ構造体の当該コイル卷付部が当該 電波修正時計の外周縁部に配置されており、 当該非コイル卷付部は当該電波修正 時計の外周縁部に対して当該コイル卷付部の内側に配置されている事が望ましい。 従って、 当該アンテナ構造体 2を構成する当該コイル巻付部の主磁路アンテナ コア部 9を腕時計等に搭載する場合には、 平均的に当該時計が電波を直接受ける 可能性の高い部位に配置し、 当該電波が当たる当該コイル卷付部主磁路アンテナ コア部 9の面とは反対の面側に当該非コイル卷付部の副磁路アンテナコア部 9 ' を配置するのが望ましい。
即ち、 当該コイル卷付部の主磁路アンテナコア部 9に入った磁束は、 当該ギヤ ップ 1 0がある非コイル卷付部の副磁路アンテナコア部 9 ' の方向には流れず、 磁気抵抗の小さい卷き線部 1 1にながれるが、 逆に、 非コイル卷付部の副磁路ァ ンテナコア部 9 ' に入った磁束も当該ギヤップ 1 0がある非コイル卷付部の副磁 路アンテナコア部 9 ' には流れない。
従って、 アンテナの構造としては、 当該コイル卷付部の主磁路アンテナコア部 9に磁束が入るような構成にした方が望ましい事になる。
かかる構成によって、 外部からアンテナ内に入った磁束の殆どは、 当該コイル 卷付部の主磁路アンテナコア部 9に入るので利得が向上する。
上記した本発明にかかるアンテナ構造体 2に於けるァンテナ構造体 2の具体的 な構成は、 図 6に示してある通りであり、 当該コイル卷付部の主磁路アンテナコ ァ部 9が全体的に当該非コイル卷付部の副磁路アンテナコア部 9 ' を被覆する様 に設計されているものである。
上記した説明から明らかな通り、 本発明に於ける当該アンテナ構造体の別の態 様としては、 例えば、 電波を受信するアンテナ構造体であって、 当該アンテナ構 造体は、 当該アンテナ構造体近傍に金属物体が存在する環境下で使用されるのに 適しており、 且つ当該アンテナ構造体は、 外部磁束を受信するが、 共振時には、 磁束が外部に漏れにくい構造を有し、 然も、 当該アンテナ構造体近傍に金属物体 が存在する場合の当該アンテナ構造体が示す利得値は、 アンテナ構造体近傍に金 属物体が存在しない場合の当該アンテナ構造体が示す利得値に対する最大利得低 減率が 6 0 %以下である特性を有するアンテナ構造体である事が好ましい。
本発明に於ける他の態様としては、 図 8に示す様に、 基準信号を出力する基準 信号発生手段 3 1 と、 該基準信号に基づき計時情報を出力する計時手段 3 2と、 該計時情報をもとに時刻を表示する表示手段 3 3 と、 基準時刻情報を持つ標準電 波を受信する受信手段 3 4と、 該受信手段 3 4からの受信信号に基づき前記計時 手段の出力時刻情報を修正する出力時刻修正手段 3 5とから構成される電波修正 時計 1に於いて、 当該受信手段 3 4は、 上記した構成を有するいずれかのアンテ ナ構造体 2で構成されている電波修正時計 1である。
本発明にかかる当該電波修正時計 1は、 タイムコ一ドをのせた標準電波を受信 して、 使用中の腕時計の時刻を当該標準時の時刻に自動的に合わせる電波修正時 計或いは遠隔制御型腕時計等が含まれるものである。
本発明にかかる当該電波修正時計 1の詳細な具体例を図 9に示すならば、 当該 電波修正時計 1は、 図 7に示す様な構成を有するアンテナ構造体 2を時計の外縁 部 5 1に近接した部位で、 然も、 当該アンテナ構造体 2のコイル巻付部の主磁路 アンテナコア部 9を当該外縁部 5 1の近傍に位置せしめ、 当該非コイル卷付部の 副磁路アンテナコア部 9 ' を当該コイル卷付部の主磁路アンテナコア部 9に対し て、 当該時計の外縁部 5 1 とは反対の側に配置させた構成が示されている。 尚、 図 9中、 5 2は受信 1 〇、 5 3はフィルター用水晶振動子、 5 4は、 3 2 K H zの水晶振動子、 5 5は歯車の列である輪列、 5 6は竜頭、 5 7は、 裏周り 機構、 5 8は、 第 1の変換機 (モーター)、 5 9は、 電池及び 4 0は、 計時手段 あるいは時刻修正手段等を含む演算処理部を構成するマイコンである。
又、 図 1 0は、 図 9の構成を一部変更した本発明に於ける当該電波修正時計 1 の別の具体例を示すものであって、 図 9との相違点は、 図 9に於ける第 1の変換 機 (モーター) 5 8に加えて、 第 2の変換機 (モータ一) 4 1を別個に設けたも のである。
次に、 本発明に於ける当該電波修正時計 1に於いては、 金属性の外装部 4 2を 有するものであって、 当該アンテナ構造体 2も当該外装部 4 2内に配置され場合 によっては、 当該アンテナ構造体 2の少なく とも一部が当該外装部 4 2に接触し ているものであっても良い。
勿論、 図 9及び図 1 0の当該電波修正時計 1の配置構成例は、 一例を示すもの であって、 上記した様に、 本発明にかかる当該アンテナ構造体 2は、 金属材料に よる導電性物体の存在の影響が少ないので、 その他の部品の配置構成との関係は フレキシブルであるので、 多くの変形態様が考えられる。 又、 本発明に於ける別の具体例に於いては、 図 1 1示す様に、 当該アンテナ構 造体 2が、 当該電波修正時計 1の文字板 4 6に対して、 風防 4 3が設けられてい る面とは反対側の面に設けられている事も望ましい態様である。
尚、 図 1 1中、 4 4は金属材料からなる導電性の外装部であり、 4 5は表示手 段を構成する時分針である。
本発明に於ける第 1の具体例に於いては、 上述した様な構成を採用しているの で、 上記した従来技術の問題点を解決し従来の電波修正時計の構造、 外装材料、 或いはデザィン等を大幅に変更することなく、 簡易な構成を有するアンテナ構造 体を採用して、 受信効率が良好で、 腕時計そのものの大きさも厚みも従来のもの とは相違せず、 デザイン面の自由度を高めた、 製造コス トを安価に抑えることが 可能な、 アンテナ構造体及び当該アンテナ構造体を使用した電波修正時計が容易 に得られるのである。
更には、 金属外装内にアンテナを収納した場合でも、 利得の低下をきたす事の ない、 商品価値の高い電波修正時計が容易に得られるのである。
(第 2の実施例)
以下に本発明に於けるアンテナ構造体に関する別の実施例を説明する。
上記した本願の第 1の実施例による具体例では、 金属材料より成る側或いは蓋 部を有する時計容器の内部にアンテナを配置すると Q値が低下してその結果、 当 該アンテナ構造体からの出力が低下して受信性能が著しく低下し且つ利得も低下 するという問題をアンテナを特殊な構造にすることによって、 アンテナ構造体の Q値或いは利得の低下を極力抑制して、 アンテナの受信性能の低下を防止しよう とするものである。
第 1の実施例とは別の構造にてアンテナの受信性能の低下を防止する構造とし て、 本願の第 2の実施例として、 アンテナの L値を増大させるアンテナ構造体に ついて以下に説明する。
尚、 上記した第 1の実施例のアンテナの構造を特定化する方法では、 当該アン テナ構造体における受信性能の向上には一定の限界があり、 本願発明者等は、 受 信性能が足りない場合には、 更に鋭意検討を行った結果、 第 1の実施例の主磁路 と副磁路による当該アンテナ構造体に本願の第 2の実施例のアンテナ構造体であ るアンテナの L値を増大させる特定の性能を付加する事によって、 上記の問題が 更に改良される事を知得したものである。
本発明に於ける第 2の実施例に於いては、 上記した目的を達成する為、 以下に 示す様な基本的な技術構成を採用するものである。 即ち、 本発明に於ける第 2の 実施例に於ける第 1の態様としては、 少なく とも側部及び裏蓋部のいずれかが金 属で構成されている時計内に配置される電波を受信出来るアンテナ構造体であつ て、 当該アンテナの L値が、 1 6 0 0 m H以下であるアンテナ構造体であり、 又、 その第 2の態様としては、 当該磁芯に沿って形成される磁路が閉鎖状のループを 形成している当該アンテナ構造体であって、 且つ少なく とも側部及び裏蓋部のい ずれかが金属で構成されている時計内に配置される電波を受信出来るアンテナ構 造体であって、 当該アンテナの卷き線抵抗が、 1 Κ Ω以下であるアンテナ構造体 である。
更に、 本発明における第 2の実施例に於ける第 3の態様としては、 磁芯にコィ ルが卷き付けられている主磁路と磁芯にコイルが巻き付けられていない副磁路と で構成され、 且つ当該磁芯に沿って形成される磁路が閉鎖状のループを形成して いる当該アンテナ構造体であって、 且つ当該アンテナの卷き線数が 1 0 0 0回以 上であるアンテナ構造体であり、 又、 その第 4の態様としては、 磁芯にコイルが 巻き付けられている主磁路と磁芯にコイルが巻き付けられていない副磁路とで構 成され、 且つ当該磁芯に沿って形成される磁路が閉鎖状のループを形成している 当該アンテナ構造体であって、 当該アンテナ構造体は、 当該アンテナ構造体近傍 に金属物体が存在する環境下で使用されるのに適しており、 且つ、 当該アンテナ 構造体近傍に金属物体が存在する場合の以下で定義される Q値保持率 R qが、 1 0 %以上であるアンテナ構造体である。
此処で、 Q値保持率 R qは、 当該アンテナ構造体が金属物体に接触していない 力 、 当該アンテナ構造体の近傍に金属物体が存在しない環境下におかれている場 合の当該アンテナ構造体の Q値を Q。とし、 当該アンテナ構造体が当該金属物体 と接触しているか、 或いは、 当該アンテナ構造体の近傍に当該金属物体が配置さ れている環境下におかれている場合に測定された当該アンテナ構造体に於ける当 該 Q値である Q N の中の最低値を Q N 1_ と した場合に、
R q = Q N L/ Q 0 X 1 0 0
として表されるものである。 尚、 本具体例に於いて、 当該アンテナ構造体の当該 Q値の最低値 Q N I_は、 異な る金属材料で構成された複数種の金属物体を互いに同一の条件の下で測定した Q 値の内で最も小さい値を示す Q値が選択されるものである。
又、 上記したアンテナ構造体の当該 Q値の最低値 Q N l_ を簡便に測定する為に、 例えば、 ステンレススチール (S S ) 若しくは、 チタン或いはチタン合金からな る金属物体を当該アンテナ構造体に接触させるか当該アンテナ構造体の近傍に配 置した環境下で測定された値で代表する事も可能である。
本発明の第 2の実施例によるアンテナ構造体及び当該アンテナ構造体を有する 電波修正時計は、 上記した様な技術構成を採用しているので、 従来の時計の構造、 材質、 或いはデザイン等を大幅に変更することなく、 簡易な構成を有するアンテ ナ構造体を採用して、 受信性能が良好で、 腕時計形式を含む電波修正時計そのも のの大きさも厚みも従来のものとは相違せず、 デザインの自由度を持ち、 質感の 高い外装を用いたアンテナ構造体及び当該アンテナ構造体を使用した電波修正時 計が容易に得られるのである。
以下に、 本発明に係る第 2の実施例に於ける、 当該アンテナ構造体及び当該ァ ンテナ構造体を使用した電波修正時計の一具体例の構成を図面を参照しながら詳 細に説明する。
即ち、 図 1 9は、 本発明に係るアンテナ構造体 2の一具体例を示す模式平面図 であって、 図中、 少なく とも側部 4及び裏蓋部 3のいずれかが金属で構成されて いる時計内部に配置される電波を受信出来るアンテナ構造体 2であって、 当該ァ ンテナ構造体 2の L値が、 1 6 0 0 m H以下であるアンテナ構造体 2が示されて いる。 ·
即ち、 上記した従来例では、 アンテナを金属製の側或いは蓋等の金属製外装部 内に挿入配置させた場合、 当該アンテナが電波を受信し、 共振することにより発 振する磁束が周囲に配置された金属外装との相互作用、 具体的には渦損によりェ ネルギー損失が増大し、 当該アンテナにより発生する共振現象 (磁力→電力→磁 力→ · · · · ) が金属外装によって阻害されてしまう為、 つまり具体的には、 当 該共振現象によって発生する磁力が金属部に吸い寄せられ、 渦流現象を起こし、 磁力の殆どが消費されてしまうという結果 (鉄損の影響による)、 当該アンテナ の利得及び Q値が大幅に減少してしまい、 金属外装内にアンテナを配置させた電 波修正時計が実用化に問題が有った。
ァンテナの利得は送信信号の磁束による利得とァンテナの共振現象によって増 大した磁束による出力の 2つからなり、 一般的にアンテナの出力の主成分はアン テナの共振現象によって増大した磁束による利得で成り立っている。
当該アンテナを金属外装内に挿入すると、 アンテナの共振現象が妨げられ Q値 が大幅に減少するため、 利得も大幅に減少している。
換言すれば、 通常、 金属物体が近傍に存在しない場合には、 当該アンテナの利 得の殆どは上記した共振現象によって得られる利得が殆どであり、 アンテナの卷 き線抵抗 (銅損) が増大すると共振現象の妨げになり、 利得 (Q値) の低下の原 因となるため、 極端に卷き数を増やしたり、 卷き線を細めたりする事が出来なか つた。
一方、 当該アンテナを金属外装内に入れた場合、 鉄損 (金属外装) による影響 が大きいため、 Q値は大幅に減少し、 利得も大幅に減少する。
その為、 本願発明者は、 従来の考え方を変換し、 アンテナ構造体を金属製の外 装内で使用する際には、 当該 Q値の低下は避け得ないものとの前提に立って、 当 該アンテナ構造体の利得を向上させる方法を鋭意検討したものである。
つまり、 本発明に於いては、 当該アンテナ構造体を金属外装部内に挿入配置す るに際して、 従来の様に Q値 (共振現象) による増幅率で利得を得るのではなく、 送信信号の磁束によって得られる利得を如何に最大限に利用しえるかを追及した 結果、 知得した技術思想に基づくものである。
上記した技術思想を確認するため、 本願発明者らは、 先ず、 図 2 0に示す様な 所定のアンテナ構造体の持つ L値 (πχ Η ) と当該アンテナ構造体の利得 (d B ) との関係を測定する実験を行った。
即ち、 図 2 0に於いては、 所定のアンテナ構造体を金属外装部に揷入しない状 態で、 7 7 . 5 K H zの電波を受けた際の L値と利得 ( d B ) との関係をグラフ Aに示し、 同一構造のアンテナ構造体を金属外装部に挿入した状態で、 7 7 . 5 K H zの電波を受けた際の L値と利得 (d B ) との関係をグラフ Bに示した。 尚本実験では、 通常の直線状コア部に通常の方法で巻き線を巻き付けたもので あり、 L値の変化は、 卷き線数の変更で調整した。
図 2 0から判るように、 金属外装に挿入されていないアンテナ構造体に於いて は、 当該 L値が増加するに連れて利得は増加するが、 当該 L値が約 1 0 mHを越 えると徐々に飽和するが、 金属外装に揷入されているアンテナ構造体に関しては、 上記した様な飽和現象はなく、 利得は L値の増加に比例してリニァに増加する事 が判る。
本発明者等は、 更に検討を加えた結果、 図 2 0の結果から、 金属外装部の中で 使用されるアンテナ構造体 2では、 L値が増加すると直線的に利得が向上するこ とから、 卷き線の卷数を多く して L値を大きくする事が望ましいと判断される。 然しながら、 アンテナのコイルに用いている卷き線間には容量が存在するので. アンテナの共振点に関して制約が発生するので上限は、 必然的に決る事になる。 アンテナの線間容量は卷き線数と卷き線の種類によって決るが、 現実的な事を 想定すると時計の厚さを 1 O mm、 直径 3 0 m mの時計内に治めるスペース的に アンテナコアの巻き幅を 1 2 mm、 アンテナの厚さは外装厚、 ムーブメン トの地 板の厚さを想定すると 5. 5 mmとなり、 安価なフェライ トコアの十分な強度が 得られる卷き芯厚は 3 m mとした場合に電波時計として十分な性能が得られる卷 き線数 1 4 0 0 Tを巻き付けるには導体径 1 0 0 μ πι、 導線径 1 1 0 mが最も 抵抗値を最小に出来る。
この条件に沿って φ 3 mm、 長さ 5 O mmのフェライ トコァを用いて巻き幅を 1 2 mm, 導体径 1 0 0 m、 導線径 1 1 0 mの線材を卷き付けてアンテナを 作成し、 アンテナの線間容量を求める実験を行ったところ、 周波数 . L値の特性 は図 3 0のようになり、 周波数の変化に対する L値の変化をグラフ Pに示し、 周 波数の変化に対する Q値の変化をグラフ Qに示した。
図 3 0から理解される様に、 アンテナの L値が安定している 3 5 KH z程度に 同調するために 2 6 4. 9 p Fのコンデンサーをアンテナに並列接続させ、 同調 を行った結果、 共振周波数は 3 4. 4 KH z となり、 この共振周波数における L 値を図 3 0より求めると 7 8. 2 7 2 0 5 mHとなり、 以上の数値からアンテナ の線間容量を求めると 8. 8 5 2 p Fとなり、 最低でも約 1 0 p F程度は必然的 に線間容量が発生すると考えられる。
又、 使用される周波数帯は、 最も低いもので 4 O KH zであることから、 この 容量と上記周波数を基に当該アンテナ構造体 2の L値を式 f = 1 / 2 TC L Cか ら求めると約 1 5 8 4〜 1 6 0 0 mH程度であり、 したがって, L値が 1 6 0 0 mH以下で使用する事が望ましい。
又、 実際には、 当該アンテナの卷き線容量以外にも実装基板、 受信 I Cの寄生 容量を含めると、 当該寄生は約 20 p Fと考えられるので係る状況では、 当該 L 値は、 79 2から 8 0 0となると判断されるので、 当該 L値が 800 mH以下で あるアンテナ構造体 1を使用する事が望ましい。
更に、 現実的に考えると、 使用する周波数帯で、 現存する最も高い周波数帯は、 77. 5 KH z (ドイツ) であり、 この周波数帯を使用する事を前提に判断する と、 その状況下に於ける当該アンテナ構造体 2の当該 L値を上記容量と周波数を 基に求めると約 2 1 1から 2 20^11となり、 当該 L値が 2 2 0 mH以下である アンテナ構造体 1を使用する事が望ましい。
尚、 本発明に於ける当該アンテナ構造体 2に於ける当該 L値の下限値は、 約 2 0 mHであることが望ましい。
標準電波を送信している日本、 ドィッなどの電界強度におけるフィールド調查 の結果、 発信国の全ての地域で電波時計が十分に受信できるようにするには最低 でも 50 d B i VZmの電界強度で受信できることが必要である。
アンテナに求められる最低利得は受信 I Cの能力によって異なるが、 現状の受 信 I Cの能力から考えるとアンテナ利得は最低でも一 5 1 d B以上は必要で、 ァ ンテナ性能のばらつきを考慮すると一 50 d B以上、 更に L値、 C値のばらつき による共振周波数ばらつきを考慮すると一 4 9 d B以上、 より好ましくは受信 I Cの性能ばらつきを加味した一 4 7 d B以上は必要となる。
よって、 図 20より、 L値の下限値もアンテナ利得の一 5 1 d Bに相当する 2 OmH以上、 好ましくは、 アンテナ利得の一 5 0 d Bに相当する 2 5 mH以上、 より好ましくは、 アンテナ利得の一 4 9 d Bに相当する 3 3mH以上、 最も好ま しくは、 アンテナ利得の一 4 7 d Bに相当する 4 OmH以上が望ましいと考えら れる。
上記した本発明で好ましいと判断された L値の値は、 従来に於ける電波修正時 計に於けるアンテナ構造体の L値が、 せいぜい 2乃至 1 3mHである事を勘案す ると極めて特異な値である事が理解される。
次に、 本発明者等は、 当該アンテナ構造体に於ける卷き線の卷線数 (T) と利 得 (d B) との関係を検討し、 その結果を図 2 1に示す。 即ち、 図 2 1に於いては、 図 2 0の実験と同様に、 所定のアンテナ構造体を金 属外装部に揷入しない状態で、 7 7. 5 KH Zの電波を受けた際の当該アンテナ 構造体 2の巻き線数 (T) と利得 (d B) との関係をグラフ Cに示し、 同一構造 のアンテナ構造体を金属外装部に挿入した状態で、 7 7. 5 KH zの電波を受け た際の卷き線数 (T) と利得 (d B) との関係をグラフ Dに示した。
図 2 1から判るように、 金属外装に揷入されていないアンテナ構造体に於いて は、 当該卷き線数 (T) が増加するに連れて利得は増加するが、 当該卷き線数
(T) が 1 000を越えると徐々に飽和するが、 金属外装に挿入されているアン テナ構造体に関しては、 上記した様な飽和現象はなく、 利得は卷き線数 (T) の 増加に比例してリユアに増加する事が判る。
従って、 本発明に於いては、 外装部の側部若しくは蓋部の少なく とも一方が金 属である電波修正時計或いは外装部の側部及び蓋部が金属である電波修正時計に 於いて、 当該アンテナ構造体 2の巻き線数 (T) 、 1 0 00 T以上とすること が望ましいと判断される。
尚、 上記第 1の実施例の主磁路と服磁路とで構成されたアンテナ構造体にて採 用する場合には、 4 0 0 Tが望ましい。
又、 アンテナ利得は最低でも _ 5 1 d B以上は必要であり、 図 2 1では、 1 4 0 O Tがー 5 1 d Bに相当することから、 外装部の側部若しくは蓋部の少なく と も一方が金属である電波修正時計に於いては、 当該アンテナ構造体 2の巻き線数 (T) は 1 400以上であることが効果的であると判断される。
更に、 図 2 1から理解される様に、 当該アンテナ構造体 2を金属製の外装部に いれずに単体で使用した場合には、 当該卷き線数 (T) が 1 5 00以上で利得の 増加率が飽和しているが金属外装内に当該アンテナ構造体 2を配置した場合には- 当該巻き線数 (T) が 1 5 00以上でもリユアに利得が増加することを示してい ることから、 外装部の側部若しくは蓋部の少なく とも一方が金属である電波修正 時計に於いては、 当該アンテナ構造体 2の卷き線数 (T) は 1 5 00以上である ことがより効果的であると判断される。
一方、 当該アンテナの卷き線数 (T) を増大していく とアンテナの巻き線抵抗 値が増加してくるので、 当該卷き線数 (T) もその上限には限界がある。
そこで、 本願発明者等は、 図 2 2に示す通り、 当該アンテナ構造体 2の卷き線 抵抗 (Ω ) と利得及び当該アンテナの卷き線抵抗 (Ω ) と当該アンテナ構造体を 金属外装部に近接させた場合とさせない場合とに於ける利得差との関係を検討す るための実験を行った。
即ち、 図 2 2に於いては、 図 2 0の実験と同様に、 所定のアンテナ構造体を金 属外装部に挿入しない状態で、 7 7 . 5 Κ Η ζの電波を受けた際の当該アンテナ 構造体 2の卷き線抵抗 (Ω ) と利得 (d B ) との関係をグラフ Eに示し、 同一構 造のアンテナ構造体を金属外装部に挿入した状態で、 7 7 . 5 K H zの電波を受 けた際のアンテナの卷き線抵抗 (Ω ) と利得 (d B ) との関係をグラフ Fに示し た。
又、 当該アンテナ構造体 2の巻き線抵抗 (Ω ) と利得及び当該卷き線抵抗 ( Ω ) と当該アンテナ構造体を金属外装部に近接させた場合とさせない場合とに 於ける利得差との関係をグラフ Gに示した。
図 2 2に於ける実験に於いては、 当該アンテナの巻き線抵抗 (Ω ) 値の調整は、 図 2 2 ( B ) に示す様に、 抵抗値を適宜組み替えて実施した。
図 2 2 ( A ) から理解される様に、 金属外装なしの当該アンテナ構造体 2単体 での使用時でも、 又当該アンテナ構造体 2を金属外装内に配置した場合の何れに 於いても、 当該アンテナの卷き線抵抗 (Ω ) の増大に伴って、 利得が低下するこ とが示されている。
そして、 上記グラフ Eと Fとの間に於ける利得差を示すグラフ Gを見ると、 当 該アンテナの卷き線抵抗 (Ω ) の値が 1 Κ Ω以上となると、 当該アンテナ構造体 2を金属外装を使用しない場合と金属外装内部で使用した場合に於ける利得の差 の変化がなくなり、 利得差が約 3乃至 4 d B近辺で一定となる事が理解できる。 これは、 従来に於ける、 電波を受信するためのアンテナの近傍或いは、 当該ァ ンテナに接触して導電性を持つ金属物体が配置されている場合には、 当該電波が 当該金属物体に吸収されてしまい、 当該アンテナまで電波が到達しないので、 当 該アンテナの共振出力が低下するため、 例えば、 Q値が低下すると考えられてい たのに対し、 本願発明者等の鋭意検討の結果、 上記した従来に於ける当該問題点 の把握が実際には、 誤りであって、 アンテナの近傍或いは、 当該に接触して導電 性を持つ金属物体が存在している場合で有っても、 当該アンテナは、 当該電波が 実質的に到達しており、 非共振の場合には、 外部から当該時計内部に入ろうとす る外部電波による磁束の流れは、 多少は減衰されるが (例えば 3 d B程度) 実質 的には、 障害なく当該アンテナに到達すると言う事実が確認できたが、 この事実 と符合する。
又、 図 3 1に於いては図 2 2の実験と同様に、 所定のアンテナ構造体を金属外 装に挿入しない状態で、 7 7. 5 KH zの電波を受けた際の当該アンテナ構造体 2の卷き線抵抗 (Ω) と Q値との関係をグラフ Lに示し、 同一構造のアンテナ構 造体を金属外装部に挿入した状態で 7 7. 5 KH zの電波を受けた際の当該ァン テナ構造体 2の卷き線抵抗 (Ω) と Q値との関係をグラフ Nに示した。
図 3 1に於ける実験においては、 当該'アンテナの卷き線抵抗 (Ω) 値の調整は 図 22と同様に適宜組替えて実施した。
図 3 1で理解される様に、 当該アンテナの卷き線抵抗 (Ω) の増大に伴って、 金属外装無しの当該アンテナ構造体 2単体での使用は大幅に Q値が低下している が、 当該アンテナ構造体 2を金属外装內に配置した場合にはアンテナの巻き線抵 抗 1 00 Ωまで Q値が 5前後で安定していることから、 金属外装中にアンテナが ある場合、 卷き線を細く し、 卷き線数を増やし、 L値を上げ、 アンテナ利得の向 上を図る事が出来ると考えられる。
この結果から、 アンテナの卷き線抵抗 (Ω) の値が 1 Κ Ω以下であれば、 金属 外装内で使用するアンテナ構造体 2の利得への効果の寄与が当該ァンテナ構造体 2を金属外装を使用しない場合の利得への効果の寄与よりも大きいと考えられる ので、 本発明に於ける当該アンテナ構造体 2の巻き線抵抗 (Ω) は、 1 ΚΩ以下 であることが望ましい。
又、 一般に、 時計の厚さは 1 0 mm程度と考えられ、 アンテナの卷き線の幅を 20 mm, 卷き芯厚 1 mm、 巻き線の太さを導体径 6 0 m、 導線径 6 5 μ m、 アンテナの卷き線抵抗を 1 Κ Ωと考えた場合、 巻き線の卷ける回数は 2 5 000 Tが限界である。
現実的なことを想定すると時計の厚さを 1 0 mni、 直径 3 0 mmの時計内に治 めるスペース的にアンテナコアの卷き幅を 1 2mm、 アンテナの厚さは外装厚、 ムーブメントの地板の厚さを想定すると 5. 5mmとなり、 卷き芯厚は l mm、 このスペースでアンテナの卷き線抵抗を 1 Κ Ω程度にするには導体径 45 rri、 導線径 50 mで最も巻くことが可能な巻き線数は 1 20 00 Tとなる。 より好ましくは、 安価なフェライ トコアのアンテナの強度から考えて、 卷き芯 厚は 2 mmが理想的であり、 このスペースでアンテナの巻き線抵抗を 1 Κ Ω程度 にするには導体径 4 5 μ τη, 導線径 5 0 mで最も最も卷くことが可能な卷き線 数は 9 0 0 0 Tとなる。
更に好ましくは、 安価なフェライ トコアのアンテナの時計としての十分な強度 から考えて、 卷き芯厚は 3 mmが理想的であり、 このスペースで卷き線抵抗を 1 Κ Ω程度にするには導体径 4 5 μ m、 導線径 5 0 μ mで最も最も巻くことが可能 な卷き線数は 7 0 0 0 Tとなる。
より詳細には、 図 2 0のデータの卷き線数をそのサンプルの巻き線抵抗値に置 き換え、 図 2 2のデータと合わせた図 2 3に示す様に、 当該所定のアンテナ構造 体 2を金属外装部に挿入しない状態で、 7 7. 5 KH zの電波を受けた際の当該 アンテナ構造体 2の巻き線抵抗 (Ω) と利得 (d B) との関係をグラフ Hに示し、 同一構造のアンテナ構造体を金属外装部に挿入した状態で、 7 7. 5 KH zの電 波を受けた際のアンテナの巻き線抵抗 (Ω) と利得 ( d B ) との関係をグラフ I に示した。
かかるグラフ H, Iは、 実質的に図 2 2のグラフ Eとグラフ F実質的に同じで ある。
一方、 図 2 3に於けるグラフ Jは、 上記と同一構造のアンテナ構造体であって 卷数 (T) を 1 0 0 0〜 2 0 0 0 Tに変化させた場合で且つそれを金属外装部に 揷入した状態で、 7 7. 5 KH z の電波を受けた際のアンテナの卷き線抵抗
( Ω ) と利得 (d B) との関係を示したものであり、 アンテナの巻き線抵抗 (卷 き線数) が上昇すると利得が向上する事を示している。
又、 グラフ Kは、 上記グラフ Jの近似曲線である。
一方、 グラフ Mは、 上記したグラフ I により示される、 卷き線抵抗 (Ω),が増 える事によって減少する利得の割合と、 巻き線数 (T) の増加により卷き線抵抗 Jが増加する事によつて増加する利得とのバランスを示すグラフである。
図 2 3の当該グラフ Mから明らかな様に、 当該利得の増加と減少とのバランス が、 アンテナの卷き線抵抗 (Ω ) が 3 9 6 Ω近辺より高くなるに連れて飽和して いる事が理解出来、 従って、 アンテナの卷き線抵抗 (Ω ) が 4 0 0 Ω以上となる 様な卷き線を実行しても効果は得られない事が判る。 従って、 本発明に於ける当該アンテナ構造体 2の卷き線抵抗 (Ω) は、 400 Ω以下であることが望ましい。
更に、 本発明に於いては、 金属外装を使用した場合 2に於いて、 当該アンテナ 構造体 2の利得が高く且つ変化の少ない領域で使用する事が最も効率の良い方法 である事を考えると、 図 2 2のグラフ Fから理解される様に、 当該アンテナ構造 体 2の卷き線抵抗 (Ω) が 1 00 Ω以下の状態で使用する事が望ましいと考えら れる。
尚、 本発明に於ける当該アンテナ構造体 2に於ける当該巻き線抵抗 (Ω) の下 限値は、 約 1 8 Ωであることが望ましい。
つまり、 アンテナに求められる最低利得を一 5 1 d Bとすると、 図 2 1より卷 き線数は 1 400 Tであり、 現実的に想定すると時計の厚さを 1 0 mm、 直径 3 Ommの時計内に治めるスペース的にアンテナコアの卷き幅を 1 2mm、 アンテ ナの厚さは外装厚、 ムーブメントの地板の厚さを想定すると 5. 5mmとなり、 卷き芯厚は 1 mm、 このスペースで卷き線数 1 400 Tを確保するには導体径 1 3 0 μιη、 導線径 1 40 w mが最も抵抗値を最小に出来、 その値は 1 8 Ωとなる。 好ましくは、 安価なフェライ トコアのアンテナの強度から考えて、 卷き芯厚は 2 mm, このスペースで卷き線数 1 40 0 Tを確保するには、 導体径 1 1 0 m、 導線径 1 20 mが最も抵抗値を最小に出来、 その値は 2 7 · 6 Ωとなる。
更に好ましくは、 アンテナに求められる最低利得を一 5 0 d Bと考えると卷き 線数は 1 500 Tとなり、 導体径 1 1 0 μ m、 導線径 1 2 0 μ mが最も抵抗値を 最小に出来、 その値は 3 0 Ωとなる。
より好ましくはアンテナに求められる最低利得を一 4 9 d Bと考えると卷き線 数は 1 6 50 Tとなり、 導体径 1 0 0 μ m、 導線径 1 1 0 mが最も抵抗値を最 小に出来、 その値は 3 8 Ωとなる。
最も好ましくはアンテナに求められる最低利得を一 4 7 d Bと考えると卷き線 数は 1 9 00 Tとなり、 導体径 9 5 μ m、 導線径 1 0 5 μ mが最も抵抗値を最小 に出来、 その値は 5 3 Ωとなる。
最も好ましくは、 安価なフェライ トコアの時計としての強度から考えてアンテ ナの強度から考えて、 卷き芯厚は 3mm、 このスペースで最低限のアンテナ利得 を得る卷き線数 1 400 Tを確保するには、 導体径 1 0 0 m、 導線径 1 1 0 μ mが最も抵抗値を最小に出来、 その値は 4 1. 6 Ωとなる。
ちなみに、 従来に於ける電波修正時計に於けるアンテナ構造体のアンテナの卷 き線抵抗 (Ω) はせいぜい 3〜 2 0 Ω程度であり、 本発明に於けるアンテナの卷 き線抵抗 (Ω) は、 従来のレベルよ り も著しく高いアンテナの巻き線抵抗 (Ω) を使用するものである。
以上の実験結果から、 本発明に於いては、 金属外装部内にアンテナ構造体 2が 配置されている場合には、 当該アンテナ構造体のアンテナの卷き線抵抗 (銅損) が増大しても Q値の低下は微小であり、 換言すれば、 線径が細くても卷数が同じ であれば当該 Q値及び利得 Gの変化は少ない事になる。
一方、 当該アンテナ構造体 2のアンテナの利得は、 巻き数が増える事によって 向上する。
その結果、 当該アンテナ構造体を金属外装内に配置させた場合、 巻き線を細く し、 且つ卷数を増やす様に設計することによって利得を改善させる事が可能とな る。
又、 従来に於ける当該アンテナ構造体 2を金属外装部内に揷入しない態様に於 いては、 巻き線の径が太い場合、 例えば、 巻き線径が 0. 1 mm ψで低い抵抗値 を示す巻き線を使用する方が、 細い卷き線径を有する場合、 例えば、 巻き線径が 0. 0 6 mm で高い抵抗値を示す卷き線を使用する方より良好な利得特性を示 すが、 本発明に於ける様に、 当該アンテナ構造体 2を金属外装部内に配置する場 合には、 その利得特性における相違は見られない。
従って、 本発明に於いては、 細い巻き線を使用してアンテナ構造体 2を構成す ることが望ましく、 それによつて、 より小さい寸法のアンテナ構造体 2を形成す ることが可能となる。
従って、 本発明に於ける当該アンテナ構造体の他の態様としては、 当該巻き線 は、 0. Ι πιιηψ以下、 好ましくは 0. 0 6ιηιηψ、 最も好ましくは 0. 04 5 mm φの線径を有している事が好ましい。
上記した本発明にかかるアンテナ構造体 2は、 通常の直線形状のアンテナコア 部に当該卷き線を所定の卷き線数 (T) 卷き付けた形状を基本とするものである 力 S、 当該アンテナ構造体 2の構成は、 これに限定されるものではなく、 如何なる 形態を持ったアンテナ構造体でも適用可能であり、 特には、 前記した本発明に係 る第 1の実施例において開示されているアンテナ構造体の構成に適用することが 望ましい。
即ち、 図 1に開示されている様な構成を有する電波を受信するアンテナ構造体 2であって、 当該アンテナ構造体 2は、 外部電波による磁束を受信出来るが、 共 振に発生する磁束が外部に漏れにくい磁路の構造を有しており、 当該磁路 1 2は、 導体が卷き付けられコイルが形成されているコイル卷付部 2 1 と、 導体が巻き付 けられていない非コイル卷付部 2 2とから構成されているァンテナ構造体 2であ る。
そして、 本発明に於ける第 2の実施例の当該アンテナ構造体 2の一具体例とし ては、 上記した図 1に示されるようなアンテナ構造体 2に於ける当該アンテナ特 性を上記した特性を持つ様に種々組み合わせて設計するものである。
'即ち、 本具体例に於ける当該アンテナ構造体としては、 少なく とも側部及び裏 羞部のいずれかが金属で構成されている時計内に配置される電波を受信出来るァ ンテナ構造体であって、 当該アンテナの L値が、 1 6 0 m H以下であり、 好ま しくは、 当該 L値が、 8 0 0 m H以下であり、 より好ましくは、 当該 L値が、 2 2 0 m H以下であるアンテナ構造体である。
又、 本具体例に於ける当該アンテナ構造体の他の態様と しては、 少なく とも側 部及び裏蓋部のいずれかが金属で構成されている時計内に配置される電波を受信 出来るアンテナ構造体であって、 当該アンテナのアンテナの卷き線抵抗が、 1 K Ω以下であるアンテナ構造体であって、 好ましくは、 当該アンテナの卷き線抵抗 が、 4 0 0 Ω以下であり、 より好ましくは、 当該アンテナの卷き線抵抗が、 1 0 0 Ω以下であるアンテナ構造体である。
又、 本具体例に於ける当該アンテナ構造体の更に別の態様としては、 少なく と も側部及び裏蓋部のいずれかが金属で構成されている時計内に配置される電波を 受信出来るアンテナ構造体であって、 当該アンテナの巻き線数が、 1 0 0 0回以 上であるアンテナ構造体であって、 好ましくは、 当該卷き線数が 1 5 0 0回以上 であるアンテナ構造体である。
更には、 本具体例に於ける当該アンテナ構造体の他の態様としては、 少なく と も側部及び裏蓋部のいずれかが金属で構成されている時計内に配置される電波を 受信出来るアンテナ構造体であって、 当該卷き線は、 0 . Ι ιη κι φ以下の線径を 有しているアンテナ構造体である。
一方、 第 1の実施例に於ける電波を受信するアンテナ構造体であって、 当該ァ ンテナ構造体は、 上記した各特性値の少なく とも一つの条件を満たすものであつ て、 且つ、 その構造が、 外部電波による磁束を受信出来るが、 共振により発生す る磁束が外部に漏れにくい磁路の構造を有しており、 当該磁路は、 少なく とも一 つの導体が巻き付けられコイルが形成されているコイル卷付部と、 導体が巻き付 けられていない非コイル卷付部とから構成されているものである事が望ましい。 そして、 上記具体例に於いては、 更に当該アンテナ構造体の構成部分に於いて、 当該磁路に於ける当該コイル卷付部と、 当該非コイル卷付部の少なく とも一部と は、 互いに異なる材質で構成されているもので有っても良く、 又、 当該アンテナ 構造体に於ける、 共振により発生する磁束の通る当該磁路が閉鎖状のループを形 成しているもので有っても良い。
更には、 当該アンテナ構造体の構成としては、 当該閉鎖状ループを構成してい る当該アンテナ構造体の当該磁路の一部に、 その透磁率が他の部分の透磁率と異 なる部分が含まれている様に構成されているもので有っても良く、 又、 当該閉鎖 状ループを構成している当該アンテナ構造体の当該磁路の一部に、 その磁気抵抗 が他の部分の磁気抵抗と異なる部分が含まれている様に構成されていても良く、 更には、 当該非コイル卷付部の実効透磁率が当該コイル卷付部の実効透磁率より も小さくなる様に構成されているもので有っても良い。
同様に、 本実施例に於ける電波を受信するアンテナ構造体であって、 当該アン テナ構造体ほ、 上記した各特性値の少なく とも一つの条件を満たすものであって, 且つ、 その構造が、 当該非コイル卷付部内にギャップが設けられているもので 有ってもよく、 或いは、 当該コイル卷付部と当該非コイル卷付部との少なく とも 一方の接合部にギヤップが形成されているもので有っても良い。
更には、 当該非コイル卷付部は、 当該コイル卷付部を構成している磁性材料よ りも透磁率の低い磁性材料で形成されているもので有ってもよく、 又、 当該非コ ィル卷付部又は、 当該コイル卷付部の少なく とも一部の表面に磁気的変質層、 非 磁性層又は、 透磁率の低い層からなる膜層を形成するもので有っても良い。
又、 第 1の実施例に於ける電波を受信するアンテナ構造体であって、 当該アン テナ構造体は、 上記した各特性値の少なく とも一つの条件を満たすものであって. 且つ、 その構造が、 当該コイル卷付部と当該非コイル卷付部の断面積が互いに異 なる様に構成されているもので有ってもよく、 又、 当該コイル卷付部と当該非コ ィル卷付部とは、 それぞれ互いに独立した構成体を形成しており、 当該コイル卷 付部に導体を巻き付けコイルが形成された後に当該コィル卷付部と当該非コイル 卷付部とを一体化したもので有っても良く、 更には、 当該非コイル卷付部内に設 けられているか、 当該コイル卷付部と当該非コイル卷付部との間に形成される当 該ギヤップは、 当該コイル卷付部と当該非コイル卷付部と端面同士の接合面に適 宜のスぺーサ一を挿入する事によって形成されているもので有ってもよい。 同様に、 本具体例に於ける当該アンテナ構造体は、 当該非コイル卷付部内に設 けられている当該ギヤップの接合面若しくは当該コイル卷付部と当該非コイル巻 付部との間に形成される端面同士の接合面は、 テーパー状に形成されているもの で有ってもよく又、 当該ギャップは、 当該コイル卷付部と当該非コイル巻付部の 端面若しくは、 当該非コイル卷付部の端面同士以外の部分に於ける各磁路の表面 同士が対向して形成されているものであっても良い。
更には、 当該ギャップは、 当該コイル卷付部近傍以外の磁路の部分に設けられ ているもので有っても良い。
本発明に於ける別の態様としては、 前記で説明した図 8に示す様に、 基準信号 を出力する基準信号発生手段 3 1 と、 該基準信号に基づき計時情報を出力する計 時手段 3 2と、 該計時情報をもとに時刻を表示する表示手段 3 3と、 基準時刻情 報を持つ標準電波を受信する受信手段 3 4と、 該受信手段 3 4からの受信信号に 基づき前記計時手段の出力時刻情報を修正する出力時刻修正手段 3 5 とから構成 される電波修正時計 1に於いて、 当該受信手段 3 4は、 上記した本発明の第 2の 実施例で説明した構成を有するいずれかのアンテナ構造体 2で構成されている電 波修正時計 1である。
本具体例にかかる当該電波修正時計 1は、 タイムコードをのせた標準電波を受 信して、 使用中の腕時計の時刻を当該標準時の時刻に自動的に合わせる電波修正 時計或いは遠隔制御型腕時計等が含まれるものである。
本発明の第 2の実施例にかかる当該電波修正時計 1の詳細な具体例を前記で説 明した図 9乃至図 1 0に示す様な構成を有する電波修正時計 1で、 図 7に示す様 な何れかの構成を有するアンテナ構造体 2使用するに際し、 当該アンテナ構造体 2の特性を上記した何れかの特性に設定する様に構成するものである。 又、 本発明に係る第 2の実施例に於ける更に別の具体例に於いては、 図 1 1示 す様に、 当該アンテナ構造体 2が、 当該電波修正時計 1の文字板 4 6に対して、 風防 4 3が設けられている面とは反対側の面に設けられているもので有っても良 い。
更に、 本発明に係る第 2の実施例に於ける更に他の態様としては、 基準信号を 出力する基準信号発生手段と、 該基準信号に基づき計時情報を出力する計時手段 と、 該計時情報をもとに時刻を表示する表示手段と、 基準時刻情報を持つ標準電 波を受信する受信手段と、 該受信手段からの受信信号に基づき前記計時手段の出 力時刻情報を修正する電波修正時計に於いて、 当該電波修正時計は、 少なく とも 側部及び裏蓋部のいずれかが金属で構成されており、 且つ、 上記した少なく とも 一つのアンテナ特性値を有するアンテナ構造体を含んでいる電波修正時計である c 又、 本発明に係る第 2の実施例に於ける更に別の態様としては、 当該アンテナ 構造体の当該コイル卷付部が当該電波修正時計の外周縁部に配置されており、 当 該非コィル卷付部は当該電波修正時計の外周縁部に対して当該コィル卷付部の内 側に配置されている当該受信手段は、 更に、 上記した少なく とも一つのアンテナ 特性値を有するアンテナ構造体を含んでいる電波修正時計である。
一方、 本発明に係る第 2の実施例に於ける更に異なる態様としては、 当該電波 修正時計に設けられているアンテナ構造体であって、 上記した構成及びアンテナ 特性の少なく とも一つを有しており、 且つ当該アンテナ構造体の当該非コイル卷 付部が当該電波修正時計の当該側部と対向する部分の少なく とも一部は、 当該コ ィル卷付部によって被覆されている電波修正時計である。
尚、 図 2 4は、 本発明に於いて使用されるアンテナ構造体における共振周波数 を調整する方法の一例を示す図であり、 図 2 4 ( A ) は、 従来に於ける共振周波 数の調整方法を示すものであって、 巻き線 1 5 0の両端部に一つが 8 0 p Fの容 量をもつコンデンサ 1 5 1〜 1 5 3を複数個並列に取り付けて測定するものであ つて、 当該アンテナ構造体 2の共振周波数を変更する場合には、 当該コンデンサ の容量を適宜の値のものに変更するか、 そのコンデンサの接続個数を変更するこ とが必要であり、 測定操作が複雑となる。
これに対し、 本発明に於いては、 図 2 4 ( B ) に示す様に、 卷き線 1 5 0の両 端部に接続される複数個のコンデンサ 1 5 1〜 1 5 nと同数のスィッチ回路 S W 1〜 S W nとをそれぞれ直列に接続した複数の調整手段を並列に接続する様に構 成された同調 I C回路 1 6 0を取り付け、 当該複数個のコンデンサ 1 5 1〜 1 5 nの容量を例えば、 1 . 2 5 p Fから順次にその容量を倍増させたコンデンサを 配列しておき、 当該スィツチ回路 S W 1〜 S W nの制御端子を適宜の制御力ゥン タ手段 1 6 1に接続しておき、 当該制御力ゥンタ手段 1 6 1の入力端子に入力さ れる信号に応答して所望の 1つ若しくは複数個のコンデンサを適宜選択する様に 当該スィツチ回路 S W 1〜 S W nの制御端子を制御駆動させることによって、 所 望の共振周波数を容易に設定する事が可能となる。
本発明の第 2の実施例に於いては、 上述した様な構成を採用しているので、 上 記した従来技術の問題点を解決し従来の電波修正時計の構造、 外装材料、 或いは デザィン等を大幅に変更することなく、 簡易な構成を有するアンテナ構造体を採 用して、 受信効率が良好で、 腕時計そのものの大きさも厚みも従来のものとは相 違せず、 デザイン面の自由度を高めた、 製造コス トを安価に抑えることが可能な, アンテナ構造体及び当該アンテナ構造体を使用した電波修正時計が容易に得られ るのである。
更には、 金属外装内にアンテナを収納した場合でも、 利得の低下をきたす事の ない、 商品価値の高い電波修正時計が容易に得られるのである。
(第 3の実施例)
以下に本発明に於けるアンテナ構造体に関する別の実施例を説明する。
上記した本願の第 1の実施例による具体例では、 金属物体と接触しているか或 いは当該金属物体が近傍に配置されている状態にある当該アンテナ構造体の受信 性能が低下する事を防止するため、 当該アンテナ構造体の特性値として利得値に 注目し、 金属物体と接触しないか或いは、 当該金属物体がその近傍に配置されて いない状態での当該アンテナ構造体の利得値に対する、 当該金属物体と接触して いるか或いは当該金属物体が近傍に配置されている状態にある当該アンテナ構造 体の利得値の低下率を 6 0 %以下に抑える事が必要である事を明らかにし、 当該 利得値の低下率を 6 0 %以下に抑えたアンテナ構造体を提供したものであり、 そ の際のアンテナ構造体の構造についても新たな構造を提案したが、 本発明に於け る第 3の実施例では、 当該アンテナ構造体の受信特性に関する Q値の限定条件に ついて検討し、 その最適値を特定する事に成功したものである。
即ち、 本発明に於ける第 3の実施例に於ける当該アンテナ構造体の基本的な態 様としては、 電波を受信するアンテナ構造体であって、 当該アンテナ構造体近傍 に金属物体が存在する場合の以下で定義される Q値保持率 R qが、 1 0 %以上で ある事を特徴とするアンテナ構造体である。
本具体例に於ける当該 Q値保持率 R qは、 当該アンテナ構造体が金属物体に接 触していないか、 当該アンテナ構造体の近傍に金属物体が存在しない環境下にお かれている場合の当該アンテナ構造体の Q値を Q。と し、 当該アンテナ構造体が 当該金属物体と接触しているか、 或いは、 当該アンテナ構造体の近傍に当該金属 物体が配置されている環境下におかれている場合に測定された当該アンテナ構造 体に於ける当該 Q値である Q N の中の最低値を Q N L と した場合に、
Figure imgf000055_0001
として表されるものである。
又、 本発明の第 3の実施例に於ける第 2の態様としては、 上記した第 1の実施 例で説明したと同様に、 当該アンテナ構造体は、 外部磁束を有効に受信出来るが. 共振時には、 磁束が外部に漏れにくい構造を有しているアンテナ構造体でありそ の具体例の一つとしては、 当該アンテナ構造体は、 磁路が閉鎖状のループを形成 している様に構成したアンテナ構造体で且つ上記した Q値の特性条件を満足する 構成を有するものである。
更に、 本発明の第 3の実施例に於ける第 3の態様としては、 基準信号を出力す る基準信号発生手段と、 該基準信号に基づき計時情報を出力する計時手段と、 該 計時情報をもとに時刻を表示する表示手段と、 基準時刻情報を持つ標準電波を受 信する受信手段と、 該受信手段からの受信信号に基づき前記計時手段の出力時刻 情報を修正する電波修正時計に於いて、 当該受信手段は、 上記した Q値の特性条 件を満足する構成を有する構造を有するアンテナ構造体を含んでいる電波利用修 正時計である。
本発明のアンテナ構造体及び当該アンテナ構造体を有する腕時計は、 上記した 様な技術構成を採用しているので、 従来の電波修正時計の構造或いはデザィン等 を大幅に変更することなく、 簡易な構成を有するアンテナ構造体を採用して、 受 信効率が良好で、 腕時計そのものの大きさも厚みも従来のものとは相違せず、 デ ザイン面の自由度を高めた、 製造コス トを安価に抑えることが可能な、 アンテナ 構造体及び当該ァンテナ構造体を使用した電波修正時計が容易に得られるのであ る。
本願発明者等は、 上記した利得値に関する分析と同様に当該 Q値に関しても詳 細に分析を行い、 上記した Q値保持率を 1 0 %以上に設定する事が望ましいとの 結論に到達したものである。
以下に、 本発明に係る第 3の実施例に於ける当該アンテナ構造体及ぴ当該アン テナ構造体を使用した電波修正時計の一具体例の構成を図面を参照しながら詳細 に説明する。
即ち、 図 1は、 既に説明した通り、 本発明に係るアンテナ構造体 2として適し た構造の一具体例を示す模式図平面図であって、 当然、 本実施例でも採用されう るものであり、 図中、 電波を受信するアンテナ構造体 2であって、 当該アンテナ 構造体 2の近傍に金属物体が存在する場合の以下で定義される Q値保持率 R qが、
1 0 %以上であるアンテナ構造体 2が示されている。
処で、 本発明の第 3の実施例に於いて使用される Q値保持率 R qは、 当該アン テナ構造体 2が金属物体に接触していないか、 当該アンテナ構造体 2の近傍に金 属物体が存在しない場合の当該アンテナ構造体 2の Q値を Q。とし、 当該アンテ ナ構造体 2が当該金属物体と接触しているか、 或いは当該アンテナ構造体 2の近 傍に金属物体が存在した場合の当該アンテナ構造体の Q値 Q Nの最低値を Q N I ^と した場合に、
R q = Q N L / Q 0 X 1 0 0
として表されるものである。
本発明に於ける当該アンテナ構造体 2の構造をより具体的に説明するならば、 図 1に於いて、 当該アンテナ構造体 2は、 外部磁束 3を吸収するが、 共振時には, 磁束が当該ァンテナ構造体の外部に漏れにくい構造を有しているアンテナ構造体 2である。
従来では、 図 2に示す様に、 電波を受信するためのアンテナ構造体の近傍或い は、 当該アンテナ構造体に接触して導電性を持つ金属物体、 例えば、 S U S、 T i、 T i合金等で外装として使用される側或いは裏蓋部或いは、 時計の文字盤、 モータ、 ムーブメン ト、 電池、 太陽電池、 腕バンド、 ヒー トシンク、 マイコン、 歯車列等の少なく とも一つを含むものが配置されている場合には、 当該電波が当 該金属物体に吸収されてしまい、 当該アンテナ構造体まで電波が到達しないため アンテナ出力が低下すると考え、 当該アンテナ構造体の感度を向上させるため、 当該アンテナ構造体そのものを大きく形成したり、 当該アンテナ構造体を金属物 体の外側に設けるか或いは当該金属物体の代わりに、 当該外装部をプラスチック 或いはセラミックで構成すると同時に当該非金属物質面に金属メ ツキを施してい たが、 従来に於ける当該問題点の把握が実際には、 誤りであることが判明し、 本 発明の技術思想が正しいことが検証されたことは、 上記した第 1の実施例で詳細 に説明ずみである。
そこで、 当該アンテナ構造体 2の出力特性値を Q値で定義すると、 Q値は、 共 振状態でのアンテナのエネルギー損失の程度を示し、 エネルギー損失が小さいと 当該 Q値の値は高くなり、 アンテナ出力は概略非共振時のアンテナ出力の Q値倍 となる。
即ち、 当該 Q値の値が高い程、 アンテナ出力は改善し、 アンテナ構造体として の性能は良いと判断される事になる。
上記表 1及び表 2のアンテナ単体時の利得と Q値の関係を見ると、 Q値 1 1 4 に対し、 共振/非共振の利得比は、 約 4 0 d Bで、 換算すると 1 0 0倍となって いる。
然しながら、 従来のァンテナ構造体を金属材料からなる物体と接触させるかそ の近傍に配置する場合、 例えば、 当該アンテナ構造体を S U S材の外装部 3内に 配置した場合には、 上記した磁束のエネルギー損失が生じて当該アンテナ構造体 2の Q値が著しく低下し、 その結果アンテナ出力が低下する事になる。
同様に、 当該アンテナ構造体を、 当該金属材料からなる外装部内に配置する場 合の他、 当該アンテナ構造体を、 太陽電池を含む電池、 モータ、 ムーブメント、 歯車列、 マイコン、 ヒートシンク、 文字板等の金属材料からなる物体の近傍に配 置した場合でも同じ問題が発生することが判明した。
本願発明者の実験では、 当該アンテナ構造体を金属材料からなる物体と接触さ せるかその近傍に置いた場合の当該 Q値 Q N 力 当該アンテナ構造体を金属材料 からなる物体と接触させないかその近傍にも置かない場合の当該 Q値 Q。 に対し て 7 0乃至 9 5 %も減少する事を確認している。 その為、 本発明に於いては、 当該アンテナ構造体を金属材料と接触して配置す るかその近傍に配置した場合に、 当該 Q値の値の低下を如何に防止して、 実用上、 問題の無い程度の Q値の低下で抑えられるかを検討した結果、 本発明に到達した ものであり、 基本的には、 本発明に於いて使用される当該アンテナ構造体が、 当 該金属物体 3 と接触していない場合或いはその近傍に金属物体 3が存在しない場 合の当該アンテナ構造体の Q値を Q。と し、 当該アンテナ構造体が当該金属物体 3と接触しているか、 或いは当該アンテナ構造体の近傍に金属物体 3が存在した 場合の当該アンテナ構造体の Q値を^^とした場合に、 当該 Q値の最低値を Q N I_ とすると、
R q = Q N L / Q 0 X 1 0 0
として表される Q値保持率 R qが、 1 0 %以上となる様に設計する事によって、 上記した従来の問題を解決し、 実用的に問題の無い小型で、 薄型、 且つ製造コス トの低い、 電波利用の電子機器に適したアンテナ構造体を容易に製造可能とする ことが出来たものである。
処で、 本発明に於ける当該アンテナ構造体の構造をより具体的に説明するなら ば、 図 1に於いて、 当該アンテナ構造体 2は、 外部より所定の電波が到達した場 合に、 外部磁束 4を受信するが、 共振時には、 共振磁束が、 閉ループ状の磁路 1 2を流れ、 その結果、 当該共振磁束 7が当該アンテナ構造体の外部に漏れにくい 構造を有しているアンテナ構造体としたものである。
本発明者等の実験によれば、 当該 Q値保持率 R qは、 従来のアンテナ構造体で あれば、 5乃至 3 0 %であったのに対し、 本発明の構成を有するアンテナ構造体 を使用する事によって、 当該アンテナ構造体の当該 Q値保持率 R qは、 少なく と も 1 0 %以上を維持しており、 良好な環境下に於いては、 当該 Q値保持率 R qは、 5 0 %以上を維持することが可能となる事が判明したものであり、 換言すれば、 本発明に於ける当該アンテナ構造体 2が金属材料と接触しているかその近傍に金 属材料が存在している場合であっても、 その Q値の低下率が大幅に抑制され、 実 用的には、 当該金属材料の存在有無に関係なく、 良好な受信性能を発揮出来るァ ンテナ構造体 2を容易に且つ低コス 卜で得られるのである。
処で、 本発明に於いては、 当該アンテナ構造体 2が受信出来る対象電波の周波 数は 2 0 0 0 k H z以下の周波数帯の電波であって、 好ましくは、 数 1 0 k H z から数 1 0 0 k H zの周波数帯である。
一方、 本発明に於いて使用される当該金属物体 3は、 当該アンテナ構造体 2が 当該電波を受信して共振する際、 当該アンテナ構造体 2が副磁路を付加されてい ない状態で共振により発生する磁束 7が到達しえる距離に配置されており、 具体 的には、 S U S、 B S、 T i , T i合金、 或いは、 金、 銀、 プラチナ、 ニッケル、 銅、 クロム、 アルミあるいはそれらの合金等の導電性を有する金属材料が使用さ れる。
更に、 本発明に於いて当該アンテナ構造体 2の近傍に配置される当該金属物体 3の具体例と しては、 例えば、 時計の文字盤、 外装部、 モータ、 ムーブメント、 電池、 太陽電池 (特に S U S基板太陽電池)、 腕パンド、 ヒートシンク等を含む ものである。
此処で、 本発明における第 3の実施例に於いて使用される当該 Q値の測定方法 の一具体例は、 上記した第 1 の実施例で説明した方法と同一である。
即ち、 同様の装置を使用して、 当該金属板が無い場合に於ける当該アンテナ構 造体 2の出力値 Q。 を測定し、 上記した Q値 の中から、 当該 Q値の値が最も 低い Q値である Q N Lを選択し、 Q値保持率 R q = Q N L / Q。 X 1 0 0 を求めた。
同様の方法で、 複数の互いに異なる他の金属材料からなる金属板を複数種用意 して上記した Q値保持率 R qを測定した。
その結果を図 2 5に示す。
図 2 5に於いては、 図 1に示す様な、 本発明で使用されるループ状のコアを持 つアンテナ構造体と図 2に示す様な、 従来一般的に使用されている直線状のコア を持つアンテナ構造体とを使用し、 且つ B S、 S U S、 アルミ、 銅、 の 5種類の 金属材料を使用して、 それぞれ上記した方法で測定した Q値の結果を示してある。 図 2 5より明らかな様に、 金属材料の影響がない状態での、 本発明に係るアン テナ構造体 2の当該 Q値、 つまり Q。 は、 約 1 4 0であり、 又、 同一状態での図 2に示す様な、 従来のアンテナ構造体の当該 Q値つまり Q。 は、 約 1 0 3であつ た。
これに対し、 金属材料の影響がある環境下においては、 図 2 5に示す様に、 全 ての金属材料でも双方のアンテナ構造体 2の Q値つまり Q Nは何れも Q。 より大 幅に低下しており、 当該金属材料が、 S U S又は、 T iの場合にそれぞれ最低の Q値つまり最低の Q N L を示している事が判る。
然しながら、 本発明に於ける当該構成を持つアンテナ構造体 2に於いては、 当 該最低の Q値であっても、 Q N Lは約 1 8を維持しており、 同一金属材料に於ける、 当該従来のアンテナ構造体 2が示している、 当該 Q値の最低値 Q N I_ が 5である のに対しては約 3倍の Q値を保持していることが理解される。
この状態を上記した Q値保持率 R qで示すと、 当該従来のアンテナ構造体 2に 於いては、 僅かに、 4 %であるのに対し、 本願発明に係るアンテナ構造体 2に於 いては、 1 0 %以上であり、 より詳細には、 約 1 2 . 5 %の Q値保持率 R qを示 している。
一般的に、 当該 Q値はその値が高い程、 アンテナと しての特性が良いとされる が、 金属が当該アンテナ構造体の近傍にあるか或いは当該アンテナ構造体と接触 している場合には、 当該 Q値が極端に低下してしまい、 アンテナとしての機能を 果たせなくなる。
そして、 当該 Q値保持率 R qが 1 0 %以下となると、 実質的なアンテナとして 使用できなくなる。
上記の実験結果から明らかな通り、 本発明にかかる当該アンテナ構造体 2は従 来の問題点を明らかに改善する有用な発明であることが理解される。
尚、 本発明に於ける当該 Q値保持率 R qの測定に際しては、 複数種の金属材料 を使用する代わりに、 S U S若しくは、 T i或いは T i合金からなる金属物体を 当該アンテナ構造体に接続させるか当該アンテナ構造体の近傍に配置した環境下 で当該 Q値を測定して、 当該 Q値を当該 Q値の最低値 Q N Lとして簡便的に測定す ることも可能である。
又、 図 2 6は、 本発明に係るアンテナ構造体と図 2に示す従来のアンテナ構造 体とを図 2 5 と同じ環境下で測定した場合の利得を d Bで示したものであるが、 いずれの金属材料を使用した場合でも利得に関しては従来のアンテナに比べて良 好な値を示している。
更に、 図 2 7に示す様に、 Q値の改善度は、 エアギャップ依存性があり、 当該 エアギャップの狭いほうが当該 Q値は良くなる。
然しながら、 製造工程に於いては、 ばらつきが発生するので、 ギャップを一定 の狭い間隔で管理することが重要となる。
上記した様に、 本発明に於ける第 3の実施例に於いては、 当該アンテナ構造体 の当該 Q値の最低値 Q N Jま、 異なる金属材料で構成された複数種の金属物体を互 いに同一の条件の下で測定した Q値の内で最も小さい値を示す Q値が選択される 事が望ましく、 又、 当該アンテナ構造体の当該 Q値の最低値 Q N I_は、 S U S ) 若 しくは、 チタン T i或いは T i合金からなる金属物体を特定して、 当該金属物体 を該アンテナ構造体に接続させるか当該アンテナ構造体の近傍に配置した環境下 で測定された値である事も好ましい。
更に、 本発明に於ける第 3の実施例では、 上記した本発明に於ける第 1の実施 例で使用した構造を有するアンテナ構造体を当該 Q値条件と組み合わせて使用す ることも好ましい具体例である。
従って、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体として は、 電波を受信するアンテナ構造体であって、 当該アンテナ構造体は、 外部磁束 を受信出来るが、 共振時には、 磁束が外部に漏れにくい構造を有しており、 且つ 当該 Q値保持率 R q力 S 1 0 %以上である事も望ましい。
同様に、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体として は、 当該アンテナ構造体は、 磁路が閉鎖状のループを形成しており、 且つ当該 Q 値保持率 R qが 1 0 %以上である事も望ましい。
更に、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体としては、 当該閉鎖状ループを構成している当該アンテナ構造体の当該磁路の一部に、 その 磁気抵抗が他の部分の磁気抵抗と異なる部分が含まれており、 且つ当該 Q値保持 率 R qが 1 0 %以上である事も望ましい。
又、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体としては、 上記した構成に加えて、 当該磁路は、 コイルが卷き付けられている主磁路とコィ ルが卷き付けられていない副磁路とから構成されていおり、 且つ当該 Q値保持率 R qが 1 0 %以上である事も望ましい。
更に、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体としては、 上記した各構成に加えて、 当該副磁路の磁気抵抗が当該主磁路の磁気抵抗よりも 大きくなる様に構成されている事も望ましく、 又、 当該副磁路内、 或いは、 当該 副磁路と当該主磁路との間にエアギヤップが設けられている事も望ましい。 又、 本発明に於ける当該第 3の実施例に於ける当該アンテナ構造体としては、 上記した構成に加えて、 当該主磁路と当該副磁路の断面積が互いに異なっている 事も望ましく、 更には、 を当該主磁路と当該副磁路とは、 互いに異なる材質で構 成されている事も好ましい。
本発明に於ける当該第 3の実施例に於ける更に別の態様としては、 基準信号を 出力する基準信号発生手段 3 1 と、 該基準信号に基づき計時情報を出力する計時 手段 3 2と、 該計時情報をもとに時刻を表示する表示手段 3 3と、 基準時刻情報 を持つ標準電波を受信する受信手段 3 4と、 該受信手段 3 4からの受信信号に基 づき前記計時手段の出力時刻情報を修正する出力時刻修正手段 3 5とから構成さ れる電波修正時計 1に於いて、 当該受信手段 3 4は、 上記した構成を有するいず れかのアンテナ構造体 2で構成されている電波修正時計 1である。
本発明にかかる当該電波修正時計 1は、 腕時計の内部にラジオ機能を付加して、 放送用の電波を受信して所定の情報を得る様にしたラジオ付き腕時計、 或いは、 タイムコードをのせた標準電波を受信して、 使用中の腕時計の時刻を当該標準時 の時刻に自動的に合わせる電波修正時計或いは遠隔制御型腕時計等が含まれるも のである。
本発明にかかる第 3の実施例に於ける当該電波修正時計 1の詳細な具体例は、 既に説明した図 9或いは図 1 0に示す様な構成を有する電波修正時計であること が望ましく、 且つ当該電波修正時計 1内で使用される当該アンテナ構造体 2は、 これも既に説明した様な図 6に示す構成を有するアンテナ構造体であって、 その 当該 Q値保持率 R qが 1 0 %以上である様に設定したものである事も望ましい。 本発明は、 上述した様な構成を採用しているので、 上記した従来技術の問題点 を解決し従来の電波修正時計の構造或いはデザィン等を大幅に変更することなく、 簡易な構成を有するアンテナ構造体を採用して、 受信効率が良好で、 腕時計その ものの大きさも厚みも従来のものとは相違せず、 デザィン面の自由度を高めた、 製造コス トを安価に抑えることが可能な、 アンテナ構造体及び当該アンテナ構造 体を使用した電波修正時計が容易に得られるのである。

Claims

請求の範囲
1 . 金属外装内部で使用される電波を受信するアンテナ構造体であって、 当 該アンテナ構造体は、 磁芯にコイルが巻き付けられている構造を有し、 当該金属 外層の外部からの磁束を受信できることを特徴とするアンテナ構造体。
2 . 金属外装内部で使用される電波を受信するアンテナ構造体であって、 当 該アンテナ構造体は、 磁芯にコイルが巻き付けられている主磁路と磁芯にコイル が卷き付けられていない副磁路とで構成され、 且つ当該磁芯に沿って形成される 磁路が閉鎖状のループを形成しており、 当該閉鎖状ループを構成している当該ァ ンテナ構造体の当該磁路の一部にギヤップが設けられており、 そのギヤップの部 分は他の部分の磁気抵抗若しくは透磁率と異なる磁気抵抗若しくは透磁率となる 様に構成されており、 外部電波による磁束を受信出来るが、 共振により発生する 磁束が外部に漏れにくい構造を有している事を特徴とするアンテナ構造体。
3 . 当該副磁路の磁気抵抗が当該主磁路の磁気抵抗よりも大きくなる様に構 成されている事を特徴とする請求の範囲第 1項又は第 2項に記載のアンテナ構造 体。
4 . 当該ギャップ内には、 当該磁心を構成する材料とは異なる材料が配置さ れて構成されている事を特徴とする請求の範囲第 1項乃至第 3項の何れかに記載 のアンテナ構造体。
5 . 当該ギャップは、 当該磁心を構成する材料とは異なる材料が充填されて いる事を特徴とする請求の範囲第 1項乃至第 4項の何れかに記載のアンテナ構造 体。
6 . 当該ギャップは、 エアーギャップである事を特徴とする請求の範囲第 項 1乃至第 4項の何れかに記載のアンテナ構造体。
7 . 当該エアーギャップは、 スぺーサを介在させて形成されている事を特徴 とする請求の範囲第 6項に記載のアンテナ構造体。
8 . 当該アンテナ構造体は、 周波数が 2 0 0 0 k H z以下の長波を含む電波を 受信する事を特徴とする請求の範囲第 1項乃至第 7項の何れかに記載のアンテナ 構造体。 .
9 . 当該金属外装は、 当該アンテナ構造体をその内部に収納しうる金属材料 で構成されている側部と裏蓋部よりなる構造或いは、 当該アンテナ構造体をその 内部に収納しうる金属材料で構成されている側部と裏蓋部とがー体となって形成 されている構造から選択された少なく とも一つの部材で構成されている事を特徴 とする請求の範囲第 1項乃至第 8項の何れかに記載のアンテナ構造体。
1 0 . 当該主磁路と当該副磁路の断面積が互いに異なっている事を特徴とす る請求の範囲第 1項乃至第 9項の何れかに記載のアンテナ構造体。
1 1 . 当該主磁路と当該副磁路とは、 互いに異なる材質で構成されている事 を特徴とする請求の範囲第 1項乃至第 1 0項の何れかに記載のアンテナ構造体。
1 2 . 副磁路の実効透磁率が当該主磁路の実効透磁率よりも小さくなる様に 構成されている事を特徴とする請求の範囲第 1項乃至第 1 1項の何れかに記載の アンテナ構造体。
1 3 . 当該副磁路又は、 当該主磁路の少なく とも一部の表面に磁気的変質層、 非磁性層又は、 透磁率の低い層からなる膜層を形成する事を特徴とする請求の範 囲第 1項乃至第 1 2項の何れかに記載のアンテナ構造体。
1 4 . 当該主磁路と当該副磁路とは、 それぞれ互いに独立した構成体を形成 しており、 当該主磁路にコイルが巻き付けられた後に当該主磁路と当該副磁路と が接合されて一体化されている事を特徴とする請求の範囲第 1項乃至第 1 3項の 何れかに記載のアンテナ構造体。
1 5 . 当該主磁路と当該副磁路との少なく とも一方の接合部に当該ギャップ が形成されている事を特徴とする請求の範囲第 1項乃至第 1 4項の何れかに記載 のアンテナ構造体。
1 6 . 当該ギャップは、 当該副磁路の一部に形成されている事を特徴とする請 求の範囲第 1項乃至第 1 4項の何れかに記載のアンテナ構造体。
1 7 . 当該副磁路内に設けられている当該ギャップの接合面若しくは当該主 磁路と当該副磁路との間に形成される端面同士の接合面は、 テーパー状に形成さ れている事を特徴とする請求の範囲第 1項乃至第 1 6項の何れかに記載のアンテ ナ構造体。
1 8 . 当該ギャップは、 当該主磁路と当該副磁路の端面若しくは、 当該副磁 路の端面同士以外の部分に於ける各磁路の表面同士が対向して形成されているも のである事を特徴とする請求の範囲第 1項乃至第 1 7項の何れかに記載のアンテ ナ構造体。
1 9 . 当該ギャップは、 当該主磁路と当該副磁路の少なく とも一部が相互に 近接して平行状態に配置されている部分に形成されている事を特徴とする請求の 範囲第 1項乃至第 1 8項の何れかに記載のアンテナ構造体。
2 0 . 当該ギャップは、 当該主磁路のコイル巻き付け部近傍以外の磁路の部 分に設けられている事を特徴とする請求の範囲第 1項乃至第 1 9項の何れかに記 載のアンテナ構造体。
2 1 . 当該ギャップには、 当該磁路を形成している部材の磁気抵抗とは異な る磁気抵抗を有する部材が含まれている事を特徴とする請求の範囲第 1項乃至第 2 0項の何れかに記載のアンテナ構造体。
2 2 . 当該ギャップには、 非金属材料で非磁性材料あるいは非金属材料で磁気 的変質材料から選択された一つの部材が充填されている事を特徴とする請求の範 囲第 2 1項に記載のアンテナ構造体。
2 3 . 当該主磁路或いは当該副磁路は、 軟磁性体で構成されている事を特徴 とする請求の範囲第 1項乃至第 2 2項の何れかに記載のアンテナ構造体。
2 4 . 当該主磁路が主に当該副磁路よりも電波を受信出来る様に、 副磁路ょ りも電波が入力される方向に位置して配置されている事を特徴とする請求の範囲 第 1項乃至第 2 3項の何れかに記載のアンテナ構造体。
2 5 . 当該主磁路の長さは、 当該副磁路の長さより長くなる様に構成されて おり、 それによつて当該主磁路が、 当該副磁路が電波が入力される方向に直接的 に対向しない様に当該副磁路を覆うように配置されている事を特徴とする請求の 範囲第 2 4項に記載のアンテナ構造体。
2 6 . 少なく とも磁芯部と当該磁芯部の少なく とも一部に設けられているコィ ル部とで構成された電波を受信するアンテナ構造体であって、 当該アンテナ構造 体は、 磁芯にコイルが卷き付けられている主磁路と磁芯にコイルが巻き付けられ ていない副磁路とで構成され、 且つ当該磁芯に沿つて形成される磁路が閉鎖状の ル一プを形成しており、 且つ当該アンテナ構造体近傍に金属物体が存在する場合 の当該アンテナ構造体が示す利得値は、 アンテナ構造体近傍に金属物体が存在し ない場合の当該アンテナ構造体が示す利得値に対する最大利得低減率が 6 0 %以 下である事を特徴とするアンテナ構造体。
2 7 . 当該金属物体は、 時計の文字盤、 外装部、 モータ、 ムーブメント、 電 池、 太陽電池、 腕バンド、 ヒートシンク、 マイコン、 歯車列等の少なく とも一つ を含むものである事を特徴とする請求の範囲第 2 6項に記載のアンテナ構造体。
2 8 . 当該金属物体は、 当該アンテナ構造体が当該電波を受信して共振する 際、 当該アンテナ構造体に副磁路が付加されていない状態で出力される磁束が到 達しえる距離に配置されており、 且つ当該磁束を吸収する機能を有している事を 特徴とする請求の範囲第 2 6項に記載のアンテナ構造体。
2 9 . 少なく とも側部及び裏蓋部のいずれかが金属材料で構成されている時 計内に配置される電波を受信出来るアンテナ構造体であって、 当該アンテナの L 値が、 1 6 0 O m H以下である事を特徴するアンテナ構造体。
3 0 . 当該 L値が、 8 0 0 m H以下である事を特徴とする請求の範囲第 2 9 項に記載のアンテナ構造体。
3 1 . 当該 L値が、 2 2 0 m H以下である事を特徴とする請求の範囲第 2 9 項に記載のアンナ構造体。
3 2 . 少なく とも側部及び裏蓋部のいずれかが金属材料で構成されている時 計内に配置される電波を受信出来るアンテナ構造体であって、 当該アンテナの卷 き線抵抗が、 1 Κ Ω以下である事を特徴するアンテナ構造体。
3 3 . 当該卷き線抵抗が、 4 0 0 Ω以下である事を特徴とする請求の範囲第 3 2項に記載のアンテナ構造体。
3 4 . 当該卷き線抵抗が、 1 0 0 Ω以下である事を特徴とする請求の範囲第 3 2項に記載のアンテナ構造体。
3 5 . 少なく とも側部及び裏蓋部のいずれかが金属材料で構成されている時 計内に配置される電波を受信出来るアンテナ構造体であって、 当該アンテナの卷 き線数が、 4 0 0回以上である事を特徴するアンテナ構造体。
3 6 . 当該卷き線数が 1 0 0 0回以上である事を特徴とする請求の範囲第 3 5項に記載のアンテナ構造体。
3 7 . 当該卷き線は、 0 . 1 m m φ以下の線径を有している事を特徴とする 請求の範囲第 3 2項乃至第 3 5項の何れかに記載のアンテナ構造体。
3 8 . 電波を受信するアンテナ構造体であって、 当該アンテナ構造体は、 外 部電波による磁束を受信出来るが、 共振により発生する磁束が外部に漏れにくい 磁路の構造を有しており、 当該磁路は、 少なく とも一つの導体が卷き付けられコ ィルが形成されているコイル卷付部と、 導体が巻き付けられていない非コイル卷 付部とから構成されている事を特徴とする請求の範囲第 2 9項乃至第 3 7項の何 れかに記載のアンテナ構造体。
3 9 . 少なく とも磁芯部と当該磁芯部の少なく とも一部に設けられているコ ィル部とで構成された電波を受信するアンテナ構造体であって、 当該アンテナ構 造体は、 磁芯にコイルが卷き付けられている主磁路と磁芯にコイルが巻き付けら れていない副磁路とで構成され、 且つ当該磁芯に沿って形成される磁路が閉鎖状 のループを形成しており、 且つ当該アンテナ構造体は、 当該アンテナ構造体近傍 に金属物体が存在する環境下で使用されるのに適しており、 且つ、 当該アンテナ 構造体近傍に金属物体が存在する場合の以下で定義される Q値保持率 R qが、 1 0 %以上である事を特徴とするアンテナ構造体。
此処で、 Q値保持率 R qは、 当該アンテナ構造体が金属物体に接触していない か、 当該アンテナ構造体の近傍に金属物体が存在しない環境下におかれている場 合の当該アンテナ構造体の Q値を Q。と し、 当該アンテナ構造体が当該金属物体 と接触しているか、 或いは、 当該アンテナ構造体の近傍に当該金属物体が配置さ れている環境下におかれている場合に測定された当該アンテナ構造体に於ける当 該 Q値である Q N の中の最低値を Q NL と した場合に、
R q = Q N l/ Q o X 1 0 0
として表されるものである。
4 0 . 当該アンテナ構造体の当該 Q値の最低値 Q N I_は、 異なる金属材料で 構成された複数種の金属物体を互いに同一の条件の下で測定した Q値の内で最も 小さい値を示す Q値が選択される事を特徴とする請求の範囲第 3 9項に記載のァ ンテナ構造体。
4 1 . 当該アンテナ構造体の当該 Q値の最低値 Q N Lは、 ステンレススチー ル (S U S ) 若しくは、 チタン或いはチタン合金からなる金属物体を当該アンテ ナ構造体に接続させるか当該アンテナ構造体の近傍に配置した環境下で測定され た値である事を特徴とする請求の範囲第 4 0項に記載のアンテナ構造体。
4 2 . 当該閉鎖状のループを形成する磁路は、 共振により発生する磁束の 通る当該磁路である事を特徴とする請求の範囲第 1項乃至第 2 8項、 及び第 3 9 項乃至第 4 1項の何れかに記載のアンテナ構造体。
4 3 . 基準信号を出力する基準信号発生手段と、 該基準信号に基づき計時 情報を出力する計時手段と、 該計時情報をもとに時刻を表示する表示手段と、 基 準時刻情報を持つ標準電波を受信する受信手段と、 該受信手段からの受信信号に 基づき前記計時手段の出力時刻情報を修正する電波修正時計に於いて、 当該受信 手段は、 請求項 1乃至 4 2の何れかに記載の構造を有するアンテナ構造体を含ん でいる事を特徴とする電波修正時計。
4 4 . 当該電波修正時計は、 金属材料からなる外装部を有する事を特徴とす る請求の範囲第 4 3項に記載の電波修正時計。
4 5 . 少なく とも側部及び裏蓋部のいずれかが金属材料で構成されている 事を特徴とする請求の範囲第 4 4項に記載の電波修正時計。
4 6 . 当該アンテナ構造体の当該主磁路が当該電波修正時計の外周縁部に 配置されており、 当該副磁路は当該電波修正時計の外周縁部に対して当該主磁路 の内側に配置されている事を特徴とする請求の範囲第 4 3項乃至第 4 5項に記載 の電波修正時計。
4 7 . 当該アンテナ構造体は、 当該電波修正時計の文字板に対して、 風防 が設けられている面とは反対側の面に設けられている事を特徴とする請求の範囲 第 4 3項乃至第 4 6項の何れかに記載の電波修正時計。
4 8 . 当該電波修正時計に設けられているアンテナ構造体であって、 当該 アンテナ構造体の当該副磁路が当該電波修正時計の当該外装部と対向する部分の 少なく とも一部は、 当該主磁路によって被覆されている事を特徴とする請求の範 囲第 4 3項乃至第 4 7項に記載の電波修正時計。
PCT/JP2003/011650 2002-09-11 2003-09-11 アンテナ構造体及び電波修正時計 WO2004025782A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN038127601A CN1659742B (zh) 2002-09-11 2003-09-11 天线结构和无线电控制的时计
DE60330977T DE60330977D1 (de) 2002-09-11 2003-09-11 Antennenstruktur und funkkorrekturtakt
US10/511,912 US7170462B2 (en) 2002-09-11 2003-09-11 Antenna structure and radio controlled timepiece
EP03795403A EP1548875B1 (en) 2002-09-11 2003-09-11 Antenna structure and radio correction clock

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002264985A JP3512782B1 (ja) 2002-09-11 2002-09-11 アンテナ構造体及び電波利用時計
JP2002-264985 2002-09-11
JP2002297095A JP3975250B2 (ja) 2002-10-10 2002-10-10 電波修正時計
JP2002-297095 2002-10-10
JP2002-347040 2002-11-29
JP2002347040 2002-11-29

Publications (1)

Publication Number Publication Date
WO2004025782A1 true WO2004025782A1 (ja) 2004-03-25

Family

ID=31998758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011650 WO2004025782A1 (ja) 2002-09-11 2003-09-11 アンテナ構造体及び電波修正時計

Country Status (5)

Country Link
US (1) US7170462B2 (ja)
EP (1) EP1548875B1 (ja)
CN (1) CN1659742B (ja)
DE (1) DE60330977D1 (ja)
WO (1) WO2004025782A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006067544A (ja) * 2004-07-28 2006-03-09 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、rfidシステム
JP2006081140A (ja) * 2003-12-11 2006-03-23 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム
EP1674952A2 (de) 2004-12-22 2006-06-28 Junghans Uhren Gmbh Funkarmbanduhr mit Metallzifferblatt
US7522117B2 (en) 2003-12-12 2009-04-21 Citizen Holdings Co., Ltd. Antenna structure and radio-controlled timepiece

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074443B1 (ko) * 2003-05-15 2011-10-17 시티즌홀딩스 코리미티드 안테나부를 내장한 금속 외장부를 갖는 전자기기
EP2071667B1 (en) * 2003-11-27 2018-02-28 Hitachi Metals, Ltd. Antenna, and radio-controlled timepiece, keyless entry system, and RFID system comprising it
US7412603B2 (en) * 2003-12-05 2008-08-12 Microsoft Corporation Methods and systems for enabling secure storage of sensitive data
DE102004029440A1 (de) * 2004-06-18 2006-01-12 Infineon Technologies Ag Sende-/Empfangs-Einrichtung
WO2006022433A1 (ja) * 2004-08-25 2006-03-02 Citizen Watch Co., Ltd. 電子機器
JP4763311B2 (ja) * 2005-02-22 2011-08-31 セイコーインスツル株式会社 アンテナ構造体を備えた腕時計式の電波時計
JP4631639B2 (ja) * 2005-09-27 2011-02-16 カシオ計算機株式会社 時計装置
US7696884B2 (en) * 2006-03-17 2010-04-13 Macronix International Co., Ltd. Systems and methods for enhancing the magnetic coupling in a wireless communication system
WO2007108502A1 (ja) 2006-03-22 2007-09-27 Citizen Holdings Co., Ltd. アンテナおよびアンテナを備えた電波受信機器
US8552827B2 (en) * 2006-07-21 2013-10-08 Sumida Corporation Coil component
US7764181B2 (en) * 2007-07-03 2010-07-27 Allflex Usa, Inc. Inductively coupled loop antenna for a radio frequency identification reader
US7764177B2 (en) * 2007-07-10 2010-07-27 Allflex Usa, Inc. Inductively coupled extension antenna for a radio frequency identification reader
US7973731B2 (en) * 2008-05-23 2011-07-05 Harris Corporation Folded conical antenna and associated methods
US7864127B2 (en) * 2008-05-23 2011-01-04 Harris Corporation Broadband terminated discone antenna and associated methods
US8023269B2 (en) * 2008-08-15 2011-09-20 Siemens Energy, Inc. Wireless telemetry electronic circuit board for high temperature environments
JP5527218B2 (ja) * 2008-12-19 2014-06-18 日立金属株式会社 共振型受信アンテナ及び受信装置
US10333200B2 (en) 2015-02-17 2019-06-25 Samsung Electronics Co., Ltd. Portable device and near field communication chip
JP6593228B2 (ja) * 2016-03-09 2019-10-23 セイコーエプソン株式会社 電子時計
CN109390678A (zh) * 2017-08-08 2019-02-26 富泰华工业(深圳)有限公司 多频带、多天线整合结构
JP7073833B2 (ja) * 2018-03-23 2022-05-24 セイコーエプソン株式会社 電子時計

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582505A (en) * 1978-12-19 1980-06-21 Osamu Tanaka Antenna
JPH06215942A (ja) * 1993-01-19 1994-08-05 Tokin Corp チップインダクタ及びその製造方法
DE4407116A1 (de) 1994-03-04 1995-09-14 Lacher Erich Uhren Ferrit-Langwellenantenne
JPH1174138A (ja) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd 高圧トランス
JP2001264463A (ja) * 2000-03-21 2001-09-26 Mitsubishi Materials Corp 電波時計
JP2002184637A (ja) * 2000-12-11 2002-06-28 Ikeda Electric Co Ltd 電磁装置及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131042A (en) 1981-02-06 1982-08-13 Yokogawa Hokushin Electric Corp X rays analyzer with automatic calibration apparatus
JPS61203516A (ja) 1985-03-05 1986-09-09 田中貴金属工業株式会社 電気開閉機構
CH672870B5 (ja) * 1988-04-26 1990-07-13 Ebauchesfabrik Eta Ag
DE8815967U1 (de) * 1988-05-27 1989-09-21 Junghans Uhren GmbH, 7230 Schramberg Antenne für eine kleine Funkuhr
US5625370A (en) * 1994-07-25 1997-04-29 Texas Instruments Incorporated Identification system antenna with impedance transformer
JP3521613B2 (ja) * 1996-05-14 2004-04-19 カシオ計算機株式会社 アンテナを備えた電子機器
JPH09307329A (ja) * 1996-05-14 1997-11-28 Casio Comput Co Ltd アンテナ及びその製造方法並びにアンテナを備えた電 子機器又は電子時計
US5796324A (en) * 1996-11-12 1998-08-18 Delco Electronics Corporation Surface mount coil assembly
DE29714185U1 (de) 1997-08-08 1998-12-03 Gebrüder Junghans GmbH, 78713 Schramberg Funkarmbanduhr
JPH11340734A (ja) * 1998-05-27 1999-12-10 Aisin Seiki Co Ltd ループアンテナ装置
JP2000105285A (ja) 1998-09-29 2000-04-11 Citizen Watch Co Ltd 携帯型電子時計のアンテナ構造
JP2001208875A (ja) 2000-01-31 2001-08-03 Mitsubishi Materials Corp 腕時計の識別用タグ及びこれを内蔵した腕時計
JP3855253B2 (ja) * 2000-06-13 2006-12-06 アイシン精機株式会社 バーアンテナおよびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582505A (en) * 1978-12-19 1980-06-21 Osamu Tanaka Antenna
JPH06215942A (ja) * 1993-01-19 1994-08-05 Tokin Corp チップインダクタ及びその製造方法
DE4407116A1 (de) 1994-03-04 1995-09-14 Lacher Erich Uhren Ferrit-Langwellenantenne
JPH1174138A (ja) * 1997-08-27 1999-03-16 Hitachi Ferrite Electronics Ltd 高圧トランス
JP2001264463A (ja) * 2000-03-21 2001-09-26 Mitsubishi Materials Corp 電波時計
JP2002184637A (ja) * 2000-12-11 2002-06-28 Ikeda Electric Co Ltd 電磁装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548875A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081140A (ja) * 2003-12-11 2006-03-23 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、キーレスエントリーシステム、rfidシステム
US7522117B2 (en) 2003-12-12 2009-04-21 Citizen Holdings Co., Ltd. Antenna structure and radio-controlled timepiece
JP2006067544A (ja) * 2004-07-28 2006-03-09 Hitachi Metals Ltd アンテナ及びこれを用いた電波時計、rfidシステム
JP4692875B2 (ja) * 2004-07-28 2011-06-01 日立金属株式会社 アンテナ及びこれを用いた電波時計、rfidシステム
EP1674952A2 (de) 2004-12-22 2006-06-28 Junghans Uhren Gmbh Funkarmbanduhr mit Metallzifferblatt
EP1674952A3 (de) * 2004-12-22 2007-12-05 Junghans Uhren Gmbh Funkarmbanduhr mit Metallzifferblatt

Also Published As

Publication number Publication date
EP1548875A4 (en) 2006-01-04
EP1548875B1 (en) 2010-01-13
DE60330977D1 (de) 2010-03-04
US20050146472A1 (en) 2005-07-07
CN1659742B (zh) 2011-04-13
US7170462B2 (en) 2007-01-30
EP1548875A1 (en) 2005-06-29
CN1659742A (zh) 2005-08-24

Similar Documents

Publication Publication Date Title
WO2004025782A1 (ja) アンテナ構造体及び電波修正時計
KR101074443B1 (ko) 안테나부를 내장한 금속 외장부를 갖는 전자기기
JP4297909B2 (ja) アンテナ構造体及び電波修正時計
CN1701464B (zh) 具有含内置天线单元之金属外表部件的电子装置
JP2009186373A (ja) アンテナ内蔵式電子時計
US8072844B2 (en) Electronic timepiece with internal antenna
JP4202878B2 (ja) アンテナ構造体及び電波修正時計
JP3512782B1 (ja) アンテナ構造体及び電波利用時計
JP2006340101A (ja) アンテナ構造体及び電波修正時計
JP3975250B2 (ja) 電波修正時計
JP2004191362A (ja) アンテナ構造体及び電波修正時計
JP2009270934A (ja) アンテナ内蔵式電子時計、および電子機器
JP5874338B2 (ja) アンテナ構造体、電波受信機器及びアンテナ構造体の製造方法
JP4143693B2 (ja) 電子機器
JP2006105864A (ja) アンテナ及び電波時計
JP4680226B2 (ja) 電波修正時計
JP2004125606A (ja) 電波時計用アンテナ
JP5211818B2 (ja) アンテナ内蔵式電子時計
JP2004128865A (ja) 電波時計用アンテナ
JP2009229067A (ja) 電波修正時計用アンテナ
JP2008070246A (ja) 電波修正時計用アンテナ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10511912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038127601

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003795403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003795403

Country of ref document: EP