WO2004022148A1 - 医療用管状体およびその製造方法 - Google Patents

医療用管状体およびその製造方法 Download PDF

Info

Publication number
WO2004022148A1
WO2004022148A1 PCT/JP2003/010928 JP0310928W WO2004022148A1 WO 2004022148 A1 WO2004022148 A1 WO 2004022148A1 JP 0310928 W JP0310928 W JP 0310928W WO 2004022148 A1 WO2004022148 A1 WO 2004022148A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
layer
tubular body
coating
tube
Prior art date
Application number
PCT/JP2003/010928
Other languages
English (en)
French (fr)
Inventor
Takashi Kawabata
Kaneto Shiraki
Haruki Aiyama
Original Assignee
Japan Lifeline Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Lifeline Co., Ltd filed Critical Japan Lifeline Co., Ltd
Publication of WO2004022148A1 publication Critical patent/WO2004022148A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes

Definitions

  • the present invention relates to a medical tubular body and a method for manufacturing a medical tubular body. More specifically, the present invention has a fluororesin layer excellent in lubricity of an inner layer, is thin, and has excellent mechanical properties such as strength. The present invention relates to a medical tubular body and a method for manufacturing the same.
  • the medical tubular body is a medical device that is used by being inserted into a blood vessel or the like, such as a catheter for angiography, a guidance catheter for percutaneous coronary angioplasty (PTCA), and a microcatheter for brain surgery. .
  • a catheter for angiography such as a catheter for angiography, a guidance catheter for percutaneous coronary angioplasty (PTCA), and a microcatheter for brain surgery.
  • PTCA percutaneous coronary angioplasty
  • a medical tubular body is inserted from outside the body to the coronary artery orifice, and a contrast medium is injected into the tube to perform coronary angiography. Carry the device through the lumen of the medical tubular body to the affected area for treatment.
  • the outer diameter is as small as possible, and the strength to prevent the inner lumen from being collapsed during operation and the push and rotation Strength and torque at the time of insertion are required.
  • the inside diameter is required to be as wide as possible because drugs and small-diameter medical devices come and go through the lumen. For this reason, the medical tubular body must necessarily be thin. It is also required that the inner layer has good lubricity in consideration of friction with the medical device that moves back and forth inside.
  • the medical tubular body used for these purposes includes a tubular body portion and a hand near the tubular body portion. And a part formed for operation and joining purposes.
  • a resin having excellent lubricity is used, and a layer formed by spirally braiding metal or non-metallic wires around the inner layer tube is provided for reinforcement.
  • a layer formed by extruding a braided tubular body together with a synthetic resin in the manner of covering an electric wire is formed on the outer layer of the reinforcing layer.
  • fluororesin for example, polytetrafluoroethylene resin (hereinafter abbreviated as PTFE), has been used for the inner layer resin requiring lubricity, the stainless wire braid for the spiral braid, and the mechanical strength for the outer layer.
  • PTFE polytetrafluoroethylene resin
  • excellent polyamide resin, polyamide elastomer, polyurethane resin, polyurethane elastomer, etc. are used.
  • the thickness of the PTFE layer which does not significantly contribute to the strength of the catheter (medical tubular body), has been reduced.
  • the PTFE layer and the braided resin In order to increase the strength of the catheter, it is necessary for the PTFE layer and the braided resin to have good adhesion properties.However, PTF ⁇ has a low surface energy and does not have good adhesion properties.
  • a method of manufacturing a medical fluororesin tube by applying and heating a fluororesin dispersion liquid alone on the outer peripheral surface of a mandrel and forming another reinforcing layer or a resin layer on the outer periphery thereof is disclosed in, for example, It is known as disclosed in Japanese Patent Application Laid-Open No. 2000-0-3169777 and Japanese Patent Application Laid-Open No. 2002-45428.
  • the fluororesin dispersion alone is used to separate the outer periphery of the mandrel.
  • another resin layer or a reinforcing layer is formed on the outer periphery of the fluororesin tube.
  • An object of the present invention is to solve the above problems. That is, an object of the present invention is to provide a medical tubular body having a wider inner diameter while having the same outer diameter, mechanical strength, and lubricity of a lumen as a conventional medical tubular body, and a method for producing the same. To provide.
  • the first coating film and the second coating film are heated at a temperature equal to or higher than the film forming temperature of the first coating film, and the contact interface between the first coating film and the second coating film is adhered.
  • the method for forming the first coating film and the second coating film is not particularly limited as long as it is a coating method, and examples thereof include a spray coating method and a dipping (immersion) method.
  • a dipping method is preferable as a means that can be applied to the surface.
  • a first coating film is formed using a fluororesin (preferably PTFE) dispersion, and a heat-resistant liquid is formed thereon.
  • Molecules are further applied to form a second coating film, and these are heated and integrated.
  • a PTFE layer of about 1 ⁇ m and a heat-resistant polymer of about 3 are integrated, and the innermost layer has lubricity due to fluorocarbon resin, has excellent strength, and has extremely thin lubrication with good workability.
  • Making medical tubular bodies with layers Can be.
  • the outer surface of the lubricating layer is not made of fluororesin, it is necessary to improve the adhesion to the braided outer layer. Sufficient adhesion can be easily obtained.
  • the first coating film has a thickness of 0.1 to 28 m, more preferably 0.5 to 10 ⁇ m. If the thickness of the first coating film is too small, the function as a lubricating resin layer tends to decrease.If the thickness is too large, the number of times of dipping when forming the first coating film by the dipping method is large. Therefore, there is a problem in manufacturing, and it tends to be difficult to increase the inner diameter due to the increase in wall thickness.
  • the thickness of the second coating film is preferably 0.5 to 50 / im, more preferably 1 to 5 / m. If the thickness of the second coating film is too small, the adhesion to the first coating film tends to decrease.If the thickness is too large, it becomes difficult to form the second coating film by the immersion method, and the inner diameter is reduced. It tends to be difficult to increase the size.
  • the second coating film has heat resistance higher than the film formation temperature of the first coating film, and is heated at a temperature equal to or higher than the heat resistance temperature of the second coating film.
  • This heat treatment makes it possible to satisfactorily join the fluororesin layer, which is generally considered difficult to join, to the heat-resistant resin.
  • the reason why the heat-resistant resin is selected as the second coating film is to prevent the deterioration of the second coating film by this heat treatment.
  • the fluororesin dispersion constituting the first coating film is not particularly limited, but is preferably a fluororesin dispersion such as a PTFE dispersion. These fluororesin dispersions are obtained by dispersing fluororesin particles having an average particle size of 1 / m or less, preferably from 0 :! to 0. ⁇ ⁇ ⁇ , in a dispersion medium.
  • the dispersion medium may be water or an organic solvent, and may contain a surfactant, a viscosity modifier and the like.
  • the weight ratio of the fluororesin to 100 parts by weight of the dispersion medium is preferably 5 to 60 parts by weight, and more preferably 30 to 50 parts by weight.
  • the liquid polymer serving as the heat-resistant resin constituting the second coating film is not particularly limited, but a liquid polymer such as polyimide or polyimide is preferable.
  • a liquid polymer such as polyimide or polyimide
  • the second coating film is made of polyimide or polyimide imide. Liquid polymers such as organic polysiloxanes are preferred. Further, by selecting such a polymer, the contact with the first coating film by the heat treatment is improved.
  • Reinforcing material by a method such as spirally braiding a metal wire or a non-metal wire may be provided as a layer that imparts rotational torque transmission, pressure resistance, elasticity, and kink resistance of a medical tubular body.
  • the medical tubular body of the present invention when used as a guiding catheter or the like, it is preferable that the medical tubular body is strengthened with a reinforcing material, whereby a thinner and stronger medical tubular body can be manufactured.
  • the reinforcing material is preferably embedded with the embedding polymer layer.
  • the polymer layer for embedding include resins such as aromatic polyamide, polyamide imide, and polyimide.
  • an outer polymer layer may be formed on the outer layer side of the embedding polymer layer for the purpose of further imparting mechanical strength and flexibility.
  • Heat resistance for the inner layer By coating from the outside of the reinforcing member with the same or similar resin as the polymer and heating at this point, the lubricating resin layer and the heat-resistant resin layer, the heat-resistant resin layer and the reinforcing material layer, or Adhesion and integration between the reinforcing material layer and the outer polymer layer can be promoted, and further strength can be obtained.
  • This outer polymer layer may be applied by spraying or dipping (dipping) the liquid resin, or by coating by extrusion, but the dip coating method is preferred for the purpose of achieving uniform strength and thinness. .
  • the reinforcing material although not particularly limited, stainless steel (SUS), tungsten (W), titanium (Ti), other metal wires (including strips and fibers), carbon fibers, and Zylon (PBO) And organic or organic fibers such as glass fibers and the like, or a combination thereof.
  • the outer polymer layer has a structure (including a material) in which the flexibility is gradually improved stepwise or gradually from the middle to the front end in the longitudinal direction.
  • the distal end of the medical tubular body is required to be flexible, and at the same time, the proximal end is required to be strong enough to transmit a pushing force or a rotational torque.
  • the proximal end is required to be strong enough to transmit a pushing force or a rotational torque.
  • the outer polymer layer for example, gradually decrease the resin hardness of the outer polymer layer in the longitudinal direction, gradually reduce the braid density of the reinforcing material, and gradually decrease the outer diameter. You can make it thin. Examples of other means include joining an outer polymer of a different material and extruding two kinds of polymers having different hardnesses.
  • the medical tubular body according to the present invention is manufactured by the method according to any of the above.
  • the medical tubular body in the present invention is not particularly limited, but is preferably a guiding catheter, but may be used for other purposes such as a microcatheter for brain surgery.
  • FIG. 1 is a schematic side view of a guiding catheter manufactured by using the method for manufacturing a medical tubular body according to one embodiment of the present invention
  • FIG. 2 (A) is along a line II-II in FIG.
  • FIG. 2B is a cross-sectional view of a main part of a medical tubular body according to a comparative example showing a conventional example.
  • the guiding catheter 2 as a medical tubular body shown in Fig. 1 is used to guide a PTCA balloon force table, which is used for treatment, for example, to dilate a stenosis in a heart vessel, to the vicinity of a heart vessel. Things.
  • the guiding catheter 2 includes a catheter body 4 as a medical tubular body, a hub 6 connected to a base of the catheter body 4 via a strain sleeve 8, and a catheter body 4 connected to a distal end of the catheter body 4. And a soft tip 10.
  • the hub 6 is located outside the patient's body, from where the PTCA balloon force catheter is inserted into the lumen of the catheter body 4 using, for example, a guidewire.
  • the soft tip 10 is a flexible part, is located inside the body cavity of the patient, and is configured such that a balloon catheter is pushed out from the distal end opening thereof, for example, along a guide wire.
  • the catheter body 4 includes a base 4a and a tip 4b.
  • the base 4a is a portion where the flexibility does not change along the longitudinal direction
  • the tip 4b is a portion that is more flexible than the base 4a, and may be bent in a predetermined shape in advance.
  • the axial length L 1 of the base 4 a is, for example, 300 to 100 0, and the length L 2 of the distal end 4 b is, for example, 10 to 50 ⁇ ⁇ .
  • the length L 3 of 0 is, for example, 1 to 100 °.
  • LO is, for example, 400-120 Oram.
  • the outer diameter of the catheter body 4 is usually 1 to 4 mm.
  • the inner diameter of the lumen 12 formed along the axial direction inside the catheter body 4 is, for example, 0.5 to 3.8 mm.
  • the cross-sectional structure of the catheter body 4 is configured as shown in FIG.
  • a lubricating resin layer 20 is formed on the innermost peripheral surface of the catheter body 4, and a heat-resistant resin layer 22 is formed on the outer peripheral surface thereof.
  • a reinforcing blade layer 24 is formed on the outer periphery of the heat-resistant resin layer 22, and an embedding polymer layer 26 is formed so as to embed the reinforcing blade layer 24 therein.
  • a polymer layer 28 has been formed.
  • the lubricating resin layer 20 is made of a fluororesin.
  • the lubricating resin layer 20 is formed by heating the first coating film of the fluororesin dispersion together with the second coating film made of the liquid polymer constituting the heat resistant resin layer 22. It is formed by
  • fluororesin examples include tetrafluoroethylene resin (PTFE), tetrafluoroethylene.hexafluoropropylene copolymer (FEP), tetrafluoroethylene.perfluoroalkylbutyl ether copolymer (PFA) ), Tetrafluoroethylene 'ethylene copolymer (ETFE), poly-vinylidene fluoride (PVDF), polychlorinated trifluoroethylene (PCTFE), , Polybutyl fluoride (PVF), amorphous fluorine resin and the like.
  • PTFE tetrafluoroethylene resin
  • FEP tetrafluoroethylene.hexafluoropropylene copolymer
  • PFA tetrafluoroethylene.perfluoroalkylbutyl ether copolymer
  • ETFE Tetrafluoroethylene 'ethylene copolymer
  • PVDF poly-vinylidene fluoride
  • PCTFE poly
  • the heat-resistant resin layer 22 is not particularly limited as long as the fluororesin dispersion liquid has a heat resistance at a temperature necessary for film formation, that is, a heating temperature.
  • PES polyether nitrile
  • LCP liquid crystal polymer
  • PBI polybenzimidazole
  • organic polysiloxane silicone rubber
  • FKM propylene hexafluoride.vinylidene fluoride copolymer
  • PTC PTC Examples include resins, ketone resin (KT), polyaminobismaleide, polysulfone (PS), polyether imide (PEI), and diaryl phthalate resin.
  • the heat-resistant resin layer 22 may be made of polyimide, polyamide, or organic. Polysiloxane is preferred.
  • the reinforcing blade layer 24 is, for example, a layer formed by spirally braiding a metal wire or a non-metal wire.
  • the metal wire include stainless steel (SUS), tungsten (W), titanium (Ti), and other metal wires.
  • the non-metal wire include carbon fiber, Zylon (PBO fiber), and glass fiber. Is performed.
  • a hard resin such as aromatic polyamide, polyamide imide, polyimide, or a combination thereof is used.
  • the outer polymer layer 28 is not particularly limited, but may be polyamide, polyimide, polyamide elastomer, polyurethane, polyurethane elastomer, polyethylene copolymer, polypropylene, polyethylene, fluorine resin, silicone having excellent mechanical strength. It is composed of vinyl chloride. By providing the outer polymer layer 28, mechanical strength, flexibility and the like can be further provided.
  • a resin that is the same as or similar to the heat-resistant polymer used for the inner layer is coated from the outside of the embedding polymer layer 26, and heated at this point to further form the lubricating resin layer 20 and the heat-resistant resin. Promotes close integration of layer 22, heat resistant resin layer 22 and embedding polymer layer 26, or embedding polymer layer 26 and outer polymer layer 28 And strength can be obtained.
  • the thickness of the lubricating resin layer 20 is preferably 0.1 to 40 ⁇ , and more preferably 0.5 to 10 ⁇ .
  • the thickness of the heat-resistant resin layer 22 is preferably 0.5 to 50 ⁇ , and more preferably 1 to 5 ⁇ .
  • the thickness of the reinforcing blade layer 24 is preferably 1 to 200 ⁇ , more preferably 10 to 40 ⁇ .
  • the thickness of the embedding polymer layer 26 is a thickness including the thickness of the reinforcing blade layer 24, and has a thickness substantially equal to the thickness.
  • the thickness of the outer polymer layer 28 is preferably 10 to 200 / m, more preferably 20 to: L00 ⁇ .
  • the polymer used for the heat-resistant resin layer is used as the embedded polymer layer.
  • a mandrel having an outer diameter corresponding to the inner diameter of the lumen 12 is prepared.
  • the mandrel is not particularly limited as long as the outer diameter can be reduced by drawing and has heat resistance at a heating temperature.
  • a copper wire, a silver plated copper wire, and the like are suitable.
  • a first coating film made of a fluororesin dispersion liquid to be the lubricating resin layer 20 is formed.
  • the method for forming the first coating film include a spray coating method and a dipping (dipping) method, and the dipping method is preferable as a means for uniformly coating a thin film.
  • the number of times of application is not particularly limited, and is adjusted so that the thickness of the first applied film becomes a predetermined thickness.
  • the thickness of the first coating film is preferably from 0.1 to 28 ⁇ , more preferably from 0.5 to: ⁇ ⁇ .
  • the fluororesin dispersion is a dispersion of powder having a particle size of 10 ⁇ m or less in a solvent with a surfactant.
  • a first coating film made of the fluororesin dispersion is applied, and another film is applied thereon. Dry as much as possible.
  • the drying temperature is, for example, 50 to 200 ° C., and the drying time is, for example, 1 to 60 minutes.
  • the drying temperature must be lower than the temperature at which the fluororesin dissolves.
  • a second coating film made of a liquid polymer to be the heat-resistant resin layer 22 is formed on the first coating film.
  • the method for forming the second coating film is the same as the method for forming the first coating film.
  • the number of times of application is not particularly limited, and is adjusted so that the thickness of the second applied film becomes a predetermined thickness.
  • the thickness of the second coating film is preferably 0.5 to 50 / im, more preferably 1 to 5 ⁇ .
  • the heating temperature is equal to or higher than the film forming temperature of the first coating film, and is preferably equal to or higher than the heat resistance temperature of the liquid polymer.
  • the temperature at which the PTF film is formed is from 250 to 400 ° C. ° C
  • the heat-resistant temperature of the polyimide is 250 to 400 ° C, so that the heating temperature is preferably 250 to 400 ° C. If the heating temperature is too low, the adhesion between the first coating film and the second coating film tends to decrease, and if too high, the film quality deteriorates.
  • the heating time is not particularly limited, but is preferably 5 to 30 minutes.
  • the composite tube (the lubricating resin layer 20 and the heat-resistant resin layer 22 shown in Fig. 2 ( ⁇ )) with the contact interface between the first coating film and the second coating film adhered tightly. It is formed.
  • a rectangular cross-section metal wire having a cross-sectional width of 0.05 to 0.3 mm and a cross-sectional vertical width of 0.01 to 0.05 ram, for example, is spirally wound around the outer periphery of the composite tube for reinforcement.
  • a blade layer 24 is formed.
  • a polymer solution for forming the embedding polymer layer 26 is applied from the outer periphery of the wound reinforcing blade layer 24, and heated, so that the embedding polymer layer 26 is formed inside the embedding polymer layer 26.
  • Embed 2 4 As the polymer solution, for example, a polyamide imide (PAI) solution is used, and the PAI solution is gradually changed to a polyurethane (PU) solution or the like along the longitudinal direction of the reinforcing plate layer 24.
  • PAI polyamide imide
  • PU polyurethane
  • the hardness (flexibility) and the inclination (change) can be given along the longitudinal direction.
  • the heating temperature for forming the filling polymer layer 26 may be lower or higher than the heating temperature for forming the composite tube including the lubricating resin layer 20 and the heat-resistant resin layer 22. However, preferably, it is 150 to 300 ° C.
  • an outer polymer layer 28 is formed on the outer periphery of the embedding polymer layer 26.
  • the outer polymer layer 28 may be applied by spraying or dipping the liquid resin or by coating by extrusion, but the method of applying the dip by coating is preferred for the purpose of obtaining a uniform thin and strong strength.
  • the outer polymer layer 28 is made of, for example, a polyamide resin.
  • the innermost layer of the catheter body 4 is formed of a lubricating resin layer made of fluororesin having excellent lubricating properties, and has a very thin state of 0.1 to 28 m. ing. Further, the layer 20 and the heat-resistant resin layer 22 physically penetrate each other and are in a close contact state. It is considered that the interface between these layers has an anchor effect due to the unevenness. In fact, even if the liquid polymer is applied after the fluororesin is completely formed, a strong adhesion cannot be obtained due to the low surface energy of the fluororesin.
  • the outer surface of the lubricating resin layer 20 is not a fluororesin but a heat-resistant resin layer 22, the lubricating resin layer 20 is sufficiently in contact with the blade layer 24 and the embedding polymer layer 26. A good adhesion can be easily obtained.
  • a PTFE dispersion liquid is applied to a copper wire with an outer diameter of 1.95 mm, which becomes a mandrel rod, and a PI solution is applied to the copper wire and baked to obtain a PTFE thickness of 1 ⁇ and a PI thickness of 5 ⁇ .
  • a lubricated composite tube with a total thickness of 6 ⁇ was fabricated inside the integrated tube. The firing temperature was 340 ° C., and the firing time was 5 minutes.
  • a blade layer was provided on the composite tube by spirally winding a collective line composed of 16 stainless steel flat plates having a rectangular cross section of 0.020 ⁇ 0.12 Omm.
  • a PAI solution was repeatedly applied onto the tube provided with the blade layer three times, and then fired to produce a composite tube with a blade layer embedded therein.
  • the assembly line composed of a stainless steel flat plate was filled by repeatedly applying the PAI solution three times and firing.
  • a PA solution is applied to the obtained composite tube with a blade layer to a thickness of 29 ⁇ and coated on the composite tube to obtain an inner layer PTF with an outer diameter of 2.10 mm.
  • a catheter tube was obtained.
  • a PTFE dispersion is applied to a copper wire with an outer diameter of 0.54 mm, which becomes a mandrel rod, and a PI solution is applied to the copper wire and baked to obtain a 1 ⁇ thick wall and a 5 / xrn thick PI wall.
  • a composite tube with a total thickness of 6 / m with lubricity was fabricated inside the integrated tube. The firing temperature and firing time were the same as in Example 1.
  • a coil reinforcement layer was provided by spirally winding a wire composed of one stainless steel flat plate having a rectangular cross section of 0.010 ⁇ 0.100 mm.
  • a PAI solution was applied on the tube provided with the coil layer, followed by baking to prepare a composite tube with a coil layer embedded therein.
  • the coil layer made of a stainless steel flat plate was filled by applying a PAI solution and firing it.
  • a PU solution is applied to the obtained coil layer-embedded composite tube so as to have a thickness of 40 ⁇ to cover the inner layer P having an outer diameter of 0.65 mm.
  • a TF ⁇ composite microcatheter tube was prepared.
  • a PTFE dispersion liquid is applied to a copper wire with an outer diameter of 1.95 mm that becomes a mandrel rod, and a PI solution is applied to the copper wire and baked to form a PTFE thickness of 1 ⁇ and a PI thickness of 5 ⁇ A 6 ⁇ thick composite tube with lubricity inside the Was.
  • the firing temperature and firing time were the same as in Example 1.
  • Example 3 the inner layer PTFE composite tube of Example 3 was obtained by cutting off the inner layer PTFE composite tube at both ends and then pulling out the copper wire of the mandrel rod.
  • the PTFE is repeatedly applied, baked, and sintered on a silver plated copper wire with an outer diameter of ⁇ 1.8 Omm, which becomes a mandrel rod, to obtain a PTF E thickness of 40 ⁇ , as shown in Fig. 2 (B).
  • the PTFE tube 30 was produced.
  • the baking temperature was 340 ° C.
  • a braided layer 32 was provided by spirally winding a collective line composed of 16 stainless steel flat plates having a rectangular cross section of 0.020 ⁇ 0.120 mm on the tube 30.
  • the polyamide (PA) layer 34 is extruded to a thickness of 110 ⁇ by an extruder on the PTFE tube with a blade layer obtained in this manner, so that the outer diameter ⁇ 2.
  • One Oram inner layer PTF / composite catheter tube was obtained.
  • the inner layer PTFE composite catheter tube of Comparative Example 1 was obtained by cutting off the inner layer PTFE composite catheter tube at both ends and then pulling out the silver plating copper wire of the mandrel bar.
  • PTFE was repeatedly applied, baked, and sintered on a silver plated copper wire with an outer diameter of 0.54 mm to be a mandrel rod to produce a PTFE tube with a PTFE wall thickness of 40 mm .
  • the baking temperature is the same as in Comparative Example 1.
  • a coil layer was provided by spirally winding a wire made of one stainless steel plate having a rectangular cross section of 0.010 ⁇ 0.10 mm on the tube.
  • the extruder was used to extrude and coat the PTF E tube with a blade layer obtained in this manner to a thickness of 65 ⁇ to form an inner layer PTFE composite with an outer diameter of 0.77 mm.
  • a catheter tube was obtained.
  • the inner layer PTFE composite microcatheter tube of Comparative Example 2 was obtained by cutting off the inner layer PTFE composite microcatheter tube at both ends and then pulling out the silver plating copper wire of the mandrel bar.
  • PTF E was repeatedly applied, baked and sintered on a silver plated copper wire having an outer diameter of ⁇ 1.8 Omm to be a mandrel rod to produce a PTF E tube having a PTFE thickness of 40 / xm.
  • the baking temperature is the same as in Comparative Example 1.
  • the PTFE tubes of Comparative Example 3 were obtained by cutting off the PTFE tubes at both ends and then pulling out the silver plating copper wire of the mandrel bar.
  • the lubricity of the lumen of the tube was examined.
  • a rod with a circular cross section made of polyamide, which is slightly smaller than the inner diameter of the lumen was passed through the lumen of the tube, and the resistance required for the penetration was examined.
  • the PTFE tube of Comparative Example 3 was rated “ ⁇ ” for the same lubricity as the inner lumen, and “X” was rated for more resistance. Table of results
  • the tubes of Examples 1 to 3 and Comparative Examples 1 to 3 all have good lubricity because the inner layer is PTFE.
  • Example 1 has a very thin outer diameter of 2.10 mm, an inner diameter of 1.95 mm, and a single wall thickness of 75 ⁇ m.
  • the PTFE tube of Comparative Example 3 could not be thinned (40 ⁇ ) any more, whereas in Example 3, not only 6 ⁇ but also 6 ⁇ or thinner could be formed.
  • the PTFE tube according to Comparative Example 3 was weak and brittle, it was confirmed that the inner layer PTF ⁇ composite tube in the example had the property of a polymer in contact with PTFE, and a rigid and strong tube could be formed.
  • a PTFE tube having an extremely thin wall can be easily and safely molded when manufactured, as compared with the case where the PTFE tube is manufactured by extrusion molding. It is wide and excellent in lubricity, has a small outer diameter, and has excellent operability, and is industrially useful.

Abstract

 マンドレルの外周に、潤滑性樹脂層20となるフッ素樹脂分散液から成る第1塗布膜を形成する。次に、第1塗布膜の外周に、耐熱性樹脂22となる液状ポリマーから成る第2塗布膜を形成する。次に、第1塗布膜および第2塗布膜を、第1塗布膜の皮膜形成温度以上の温度で加熱し、前記第1塗布膜と前記第2塗布膜との接触界面が密着された複合チューブを形成し、マンドレルを引き抜く。従来の医療用管状体と同じ外径寸法と力学的強度および内腔の潤滑性を有しながら、更に広い内径をもつ医療用管状体およびその製造方法を提供することができる。

Description

P T/JP2003/010928
明 細 書 医療用管状体およびその製造方法 技術分野
【0 0 0 1】
本発明は、 医療用管状体および医療用管状体の製造法に係り、 さらに詳しくは、 内層の潤滑性に優れたフッ素樹脂層を持ち、 且つ肉薄で、 しかも強度などの機械 的物性に優れた医療用管状体およびその製造方法に関する。
背景技術
【0 0 0 2】
医療用管状体は、 血管等に挿入して使用される医療用具であり、 例えば血管造 影用カテーテルまたは経皮的冠動脈形成術 (P T C A) 用ガイディンダカテーテ ル、 脳外科用マイクロカテーテル等がある。
【0 0 0 3】
例えば経皮的冠動脈形成術では、 体外から冠動脈口まで医療用管状体を挿入さ せ、 管に造影剤を注入して冠動脈血管造影を行ったり、 ガイドワイヤ一やバル一 ンカテ一テルなどの医療用具を医療用管状体の内腔を通して患部に運び治療を行
5。
【0 0 0 4】
このような医療用管状体は、 細い生体管路を通して体内の目的部位まで挿入す る操作を行うため、 なるべく外径が小さく、 操作中に内腔が潰れない為の強度と、 押し込みや回転といった挿入に際しての強度と トルク性が必要とされる。 また、 その内腔を薬剤や細径の医療用具が行き来するため、 その内径はできるだけ広レ、 ことが要求される。 このため、 医療用管状体は、 必然的に肉薄である必要がある。 また内面を行き来する医療用具との摩擦を考慮し内層の潤滑性が良いことも要求 される。
【0 0 0 5】
これらの目的で使用される医療用管状体は、 管状体部と、 この管状体部の手元 側に操作およぴ接合目的に形成された部分とから構成されている。 この医療用管 状体の内層には、 潤滑性に優れた樹脂が用いられ、 更に補強目的でその内層チュ ープの外周に金属線若しくは非金属線のヮィヤーを螺旋状に編組した層が設けら れ、 更にその補強層の外層には、 電線被覆の要領で編組管状体を合成樹脂と一緒 に押出成形した層が形成されている。
【0 0 0 6】
従来、 潤滑性が要求される内層樹脂にはフッ素樹脂、 例えばポリテトラフルォ 口エチレン樹脂 (以下、 P T F Eと略する) が用いられ、 螺旋状編組にはステン レス線の編組、 外層には機械的強度に優れたポリアミ ド樹脂、 ポリアミ ドエラス トマ一、 ポリウレタン樹脂、 ポリウレタンエラストマ一等が用いられている。
【0 0 0 7】
上記の目的の為にはできるだけ薄肉であることが望ましいが、 薄肉にすると力 テ一テル強度が必然的に弱くなる。 そこでカテーテル (医療用管状体) の強度に あまり寄与しない P T F E層の薄肉化が計られているが、 従来の P T F Eパウダ 一を押し出し成形する方法では、 その成型の困難性から、 いまだ薄い物でも 3 0 〜4 0 μ πιの膜厚みがある。 また、 カテーテル強度を上げるため P T F E層と編 組おょぴ樹脂の密着性能が必要であるが、 P T F Εは表面エネルギーが小さくそ のままでは密着性能が出ないため、 あらかじめ表面をアル力リ金属溶液によって 表面処理することで、 P T F Εのフッ素原子を引き抜いて P T F Ε表面の表面ェ ネルギーを大きくする必要がある。 し力 し、 この方法は危険性が高く、 取扱いが 難しいアルカリ金属溶液を使用し、 その効果の維持するための保管に注意が必要 など問題がある。
【0 0 0 8】
なお、 フッ素樹脂分散液を単独でマンドレルの外周面に塗布および加熱して、 医療用フッ素樹脂チュ一プを製造し、 その外周に別の補強層または樹脂層を形成 する方法は、 たとえば特開 2 0 0 0— 3 1 6 9 7 7号公報およぴ特開 2 0 0 2— 4 5 4 2 8号公報に示すように知られている。
【0 0 0 9】
しかしながら、 従来の方法では、 フッ素樹脂分散液を単独でマンドレルの外周 面に塗布および加熱して、 フッ素樹脂チューブを形成した後に、 そのフッ素樹脂 チューブの外周に他の樹脂層または補強層を形成する方法であったため、 やはり、 フッ素樹脂チューブとの密着性に難点を有していた。
発明の開示
【0 0 1 0】
本発明は、 上記問題を解決することを目的とする。 すなわち、 本発明の目的は、 従来の医療用管状体と同じ外径寸法と力学的強度および内腔の潤滑性を有しなが ら、 更に広い内径をもつ医療用管状体およびその製造方法を提供することにある。
【0 0 1 1】
上記目的を達成するために、 本発明に係る医療用管状体は、
マンドレルの外周に、 潤滑性樹脂層となるフッ素樹脂分散液から成る第 1塗布 膜を形成する第 1塗布膜形成工程と、
前記第 1塗布膜の外周に、 耐熱性樹脂となる液状ポリマーから成る第 2塗布膜 を形成する第 2塗布膜形成工程と、
前記第 1塗布膜およぴ第 2塗布膜を、 前記第 1塗布膜の皮膜形成温度以上の温 度で加熱し、 前記第 1塗布膜と前記第 2塗布膜との接触界面が密着された複合チ ュ一ブを形成する加熱工程と、
前記マンドレルを引き抜くマンドレル除去工程と、 を有する。
【0 0 1 2】
本発明において、 第 1塗布膜おょぴ第 2塗布膜の形成方法としては、 塗布法で あれば特に限定されず、 スプレーコート法、 ディップ (浸漬) 法などが上げられ るが、 均一に薄膜に塗布できる手段としてはディップ法が好ましい。
【0 0 1 3】
本発明の方法は、 従来用いられていた P T F Eパウダーを押出し被覆する方法 とは異なり、 フッ素樹脂 (好ましくは P T F E ) 分散液を用いて第 1塗布膜を形 成し、 その上に耐熱性液状高分子を更に塗布して第 2塗布膜を形成して、 これら を加熱して一体化したものである。 例えば 1 μ m程度のP T F E層と 3 程度 の耐熱性高分子を一体ィヒして、 最内層にフッ素樹脂による潤滑性を持ち、 且つ強 度的にも優れ、 加工性の良い極端に薄い潤滑層を持つ医療用管状体を作製するこ とができる。
【0 0 1 4】
接着が困難なフッ素樹脂から成る第 1塗布膜と、 耐熱性樹脂から成る第 2塗布 膜との接触界面が良好に密着する理由は、 必ずしも明らかではないが、 これらの 塗布膜を一体的に加熱処理することで、 界面に微小な凹凸が形成され、 アンカー 効果により密着するものと考えられる。
【0 0 1 5】
また、 本発明では、 潤滑層の外面がフッ素樹脂ではないため、 編組おょぴ外層 との密着性を改良するために必要であった、 フッ素樹脂のための表面処理は必要 とせず、 外層との十分な密着力を容易に得ることができる。
【0 0 1 6】
好ましくは、 前記第 1塗布膜の厚みが、 0 . l〜2 8 m、 さらに好ましくは、 0 . 5〜 1 0 μ mである。 第 1塗布膜の厚みが小さすぎると、 潤滑性樹脂層とし ての機能が低下する傾向にあり、 厚みが大きすぎると、 第 1塗布膜を浸漬法によ り形成する際に浸漬回数が多くなって製造上問題があると共に、 肉厚になるため に内径を大きくすることが困難になる傾向にある。
【0 0 1 7】
また、 第 2塗布膜の厚みは、 好ましくは、 0 . 5〜5 0 /i m、 さらに好ましく は、 l〜5 / mである。 第 2塗布膜の厚みが小さすぎると、 第 1塗布膜に対する 密着力が低下する傾向にあり、 厚みが大きすぎると、 第 2塗布膜を浸漬法により 形成することが困難になると共に、 内径を大きくすることが困難になる傾向にあ る。
【0 0 1 8】
好ましくは、 前記第 2塗布膜が、 前記第 1塗布膜の皮膜形成温度よりも高い耐 熱性を有し、 前記第 2塗布膜の耐熱温度以上の温度で加熱する。 この加熱処理に より、 一般に接合が困難であると言われているフッ素樹脂層を耐熱性樹脂に対し て良好に接合することが可能になる。 なお、 第 2塗布膜として、 耐熱性樹脂を選 択したのは、 この加熱処理により、 第 2塗布膜の劣化を防止するためである。
【0 0 1 9】 第 1塗布膜を構成するフッ素樹脂分散液としては、 特に限定されないが、 好ま しくは、 P T F E分散液などのフッ素樹脂分散液が好ましい。 これらのフッ素樹 脂分散液は、 平均粒径が 1 / m以下、 好ましくは 0 . :!〜 0 . δ ^ πιのフッ素樹 脂粒子を、 分散媒中に分散させたものである。 分散媒としては、 水であっても有 機溶剤であっても良く、 界面活性剤、 粘度調整剤などを含んでも良い。 分散媒 1 0 0重量部に対するフッ素樹脂の重量比は、 好ましくは、 5〜6 0重量部、 さら に好ましくは 3 0 - 5 0重量部である。
【0 0 2 0】
第 2塗布膜を構成する耐熱性樹脂となる液状ポリマーとしては、 特に限定され ないが、 好ましくはポリイミ ド、 ポリアミ ドィミ ドなどの液状ポリマーが好まし い。 たとえば第 1塗布膜として、 P T F E分散液を用いる場合には、 被膜形成温 度として 3 2 0 °C以上の高温が必要となることから、 第 2塗布膜としては、 ポリ イミ ド、 ポリアミ ドイミ ド、 有機ポリシロキサンなどの液状ポリマーが好ましい。 また、 このようなポリマーを選択することで、 加熱処理による第 1塗布膜との接 合が良好になる。
【0 0 2 1】
好ましくは、 前記加熱工程の後で、 前記マンドレル除去工程前に、 前記複合チ ユーブの外周に、 補強材を組み込む補強工程と、 前記補強材の外周を、 外側ポリ マー層で被覆する工程と、 をさらに有する。 金属線若しくは非金属線のワイヤー を螺旋状に編組するなどの方法による補強材は、 医療用管状体の回転トルク伝達 性、 耐圧性、 弾性、 耐キンク性を付与する層として設けられることがある。 特に、 本発明の医療用管状体をガイディングカテーテルなどとして用いる場合には、 補 強材で捕強することが好ましく、 それにより、 従来より肉薄で且つ強度の優れた 医療用管状体を作製できる。 なお、 補強材は、 埋め込み用ポリマー層で埋め込ま れることが好ましい。 埋め込み用ポリマ一層としては、 芳香族ポリアミ ド、 ポリ アミ ドイミ ド、 ポリイミ ドなどの樹脂が例示される。
【0 0 2 2】
また、 更に機械的強度や柔軟性などを付与する目的で、 埋め込み用ポリマー層 の外層側に、 外側ポリマー層を形成しても良い。 それより内層に使用する耐熱性 高分子と同じまたは似た樹脂で、 補強部材の外側から被覆し、 この時点で加熱す ることにより、 更に潤滑性樹脂層と耐熱性樹脂層、 耐熱性樹脂層と補強材層、 あ るいは補強材層と外側ポリマー層との密着および一体化を促進することができ、 更に強度を得ることができる。
【0 0 2 3】
この外側ポリマー層は、 液状樹脂をスプレーやディップ (浸漬) で塗布する方 法でも、 押出しで被覆する方法でもどちらでも良いが、 均一な薄肉で強度を出す 目的にはディップで塗布する方法が好ましい。
【0 0 2 4】
本発明において、 補強材としては、 特に限定されないが、 ステンレス (S U S ) 、 タングステン (W) 、 チタン (T i ) 、 その他の金属の線材 (帯状、 繊維 状含む) 、 カーボンフアイパー、 ザィロン (P B O繊維) 、 ガラス繊維などの無 機または有機繊維、 あるいはこれらの組合せなどが例示される。
【0 0 2 5】
好ましくは、 前記外側ポリマー層は、 長手方向に沿って途中から先端に向けて ステップ状または徐々に柔軟性が向上する構造 (材質含む) である。 医療用管状 体においては、 先端側では、 柔軟であることが要求され、 同時に、 基端側では、 押し込み力や回転トルクなどを伝達できる程度に強度が要求されるため、 上記の ような構造が好ましい。 医療用管状体の柔軟性を長手方向に沿って向上させるに は、 たとえば外側ポリマー層の樹脂硬度を長手方向に徐々に下げたり、 補強材の 編組密度を徐々に下げたり、 外径を徐々に細くしたりすればよい。 その他の手段 としては、 別材質の外側ポリマ一を接合させたり、 硬度の異なる 2種類のポリマ —の 2軸押出しなどが例示される。
【0 0 2 6】
本発明に係る医療用管状体は、 上記のいずれかに記載の方法により製造される。 本発明における医療用管状体としては、 特に限定されないが、 好ましくはガイデ イングカテーテルであるが、 それ以外にも、 脳外科用マイクロカテーテルなどの 用途に用いることができる。
図面の簡単な説明 【0 0 2 7】
以下、 本発明を、 図面に示す実施形態に基づき説明する。 ここにおいて、 図 1は本発明に一実施形態に係る医療用管状体の製造方法を用いて製造される ガイディングカテーテルの概略側面図、 図 2 (A) は図 1の Π— II線に沿う要部 断面図、 図 2 ( B ) は従来例を示す比較例に係る医療用管状体の要部断面図であ る。
発明を実施するための最良の態様
【0 0 2 8】
図 1に示す医療用管状体としてのガイディングカテーテル 2は、 たとえば心臓 血管内の狭窄部を拡張するための治療用に用いられる P T C Aバルーン力テーテ ルを、 心臓の血管近くにまで案内するためのものである。 このガイディングカテ 一テル 2は、 医療用管状体としてのカテーテル本体 4と、 そのカテーテル本体 4 の基部にス トレインスリーブ 8を介して接続してあるハブ 6と、 カテーテル本体 4の先端部に接続してあるソフトチップ 1 0とを有する。
【0 0 2 9】
ハブ 6は、 患者の体外に位置し、 そこから、 たとえばガイドワイヤを用いて P T C Aバルーン力テーテルをカテーテル本体 4のルーメン内に挿入する部分であ る。 ソフトチップ 1 0は、 柔軟性を有する部分であり、 患者の体腔内部に位置し、 その先端開口から、 たとえばガイ ドワイヤに沿ってバルーンカテーテルが押し出 されるようになっている。
【0 0 3 0】
カテーテル本体 4は、 基部 4 aと先端部 4 bとで構成される。 基部 4 aは、 長 手方向に沿って柔軟性が変化しない部分であり、 先端部 4 bは、 基部 4 aよりも 柔軟な部分であり、 予め所定形状に屈曲形成してあっても良い。
【0 0 3 1】
基部 4 aの軸方向長さ L 1は、 たとえば 3 0 0〜 1 0 0 0隨であり、 先端部 4 bの長さ L 2は、 たとえば 1 0 〜 5 0 Ο ιωηであり、 ソフトチップ 1 0の長さ L 3 は、 たとえば 1 〜 1 0 0瞧である。 そして、 基部 4 aの長さ L 1と先端部 4わの 長さ L 2とソフトチップ 1 0の長さ L 3とを足したカテーテル本体 4の有効長さ LOは、 たとえば 400〜 120 Oramである。 カテーテル本体 4の外径は、 通常 1〜 4mmである。 または、 カテーテル本体 4の内部に軸方向に沿って形成してあ るルーメン 1 2の内径は、 たとえば 0. 5〜3. 8mmである。
【0032】
本実施形態では、 カテーテル本体 4の断面構造を、 図 2 (A) に示すように構 成してある。 図 2 (A) に示すように、 カテーテル本体 4の最内周面には、 潤滑 性樹脂層 20が形成してあり、 その外周に、 耐熱性樹脂層 22が形成してある。 耐熱性樹脂層 22の外周には、 補強用ブレード層 24が形成してあり、 その補強 用ブレード層 24を内部に埋め込むように、 埋め込み用ポリマ一層 26が形成し てあり、 その外周に、 外側ポリマー層 28が形成してある。
【0033】
潤滑性樹脂層 20は、 フッ素樹脂で構成される。 本実施形態では、 後述するよ うに、 潤滑性樹脂層 20は、 フッ素樹脂分散液の第 1塗布膜を、 耐熱性樹脂層 2 2を構成する液状ポリマーから成る第 2塗布膜と共に加熱されることにより形成 される。
【0034】
フッ素樹脂としては、 たとえばテトラフルォロエチレン樹脂 (PTFE) 、 テ トラフルォロエチレン .へキサフルォロプロピレン共重合体 (FEP) 、 テトラ フルォロエチレン .パーフルォロアルキルビュルエーテル共重合体 (PFA) 、 テトラフルォロエチレン 'エチレン共重合体 (ETFE) 、 ポリビ-リデンフル ォライ ド (PVDF) 、 ポリクロ口 トリフルォロエチレン (P CTFE) 、 クロ 口 トリフルォロエチレン 'エチレン共重合体 (ECTFE) 、 ポリビュルフルォ ライ ド (PVF) 、 非晶性フッ素樹脂などが例示される。 なかでも、 潤滑性およ ぴ耐久性に優れた P T F Eが好ましい。
【0035】
耐熱性樹脂層 22としては、 フッ素樹脂と相互浸入し密着するものであって、 フッ素樹脂分散液が膜形成に必様な温度、 即ち加熱温度での耐熱性があれば特に 限定されず、 たとえばポリイミ ド (P I) 、 ポリアミ ドイミ ド (PAI) 、 ポリ アミ ド酸、 芳香族ポリアミ ド、 ポリウレタン (PU) 、 フエノール樹脂、 ポリフ ェニレンサルファイ ド (PPS) 、 ポリェ一テルケトン (PEK) 、 ポリエーテ ルェ一テルケトン (PEEK) 、 ポリパラキシリレン、 ポリエーテルサルホン
(PES) 、 ポリエーテルュトリル (PEN) 、 液晶ポリマー (LCP) 、 ポリ ベンゾイミダゾール (PB I) 、 有機ポリシロキサン (シリコンゴム) 、 6フッ 化プロピレン .フッ化ビニリデン共重合体 (FKM) 、 PTC樹脂、 ケトン ' レ ジン (KT) 、 ポリアミノビスマレイ ド、 ポリサルホン (P S) 、 ポリエーテル イミ ド (PE I) 、 ジァリルフタレート樹脂などが例示される。
【0036】
例えば、 潤滑性樹脂層 20として PTFEを使用する場合には、 その被膜形成 温度に 320° C以上の高温が必要であることから、 耐熱性樹脂層 22としては、 ポリイミ ド、 ポリアミ ドィミ ド、 有機ポリシ口キサンなどが好ましい。
【0037】
補強用プレード層 24は、 たとえば金属線若しくは非金属線のワイヤーを螺旋 状に編組した層である。 金属線としては、 ステンレス (SUS) 、 タングステン (W) 、 チタン (T i) 、 その他金属から成る線材が例示され、 非金属線として は、 カーボンファイバー、 ザィロン (PBO繊維) 、 ガラス繊維などが例示され る。 埋め込み用ポリマー層 26としては、 たとえば芳香族ポリアミ ド、 ポリアミ ドイミ ド、 ポリイミ ドなど硬質の樹脂あるいはこれらを組み合わせたものなどが 用いられる。
【0038】
外側ポリマー層 28としては、 特に限定されないが、 機械的強度に優れたポリ アミ ド、 ポリイミ ド、 ポリアミ ドエラストマ—、 ポリウレタン、 ポリウレタンェ ラストマー、 ポリエチレン共重合体、 ポリプロピレン、 ポリエチレン、 フッ素樹 脂、 シリコーン、 塩化ビニル等で構成されている。 外側ポリマー層 28を設ける ことで、 更に機械的強度や柔軟性などを付与することができる。 また、 それより 内層に使用する耐熱性高分子と同じまたは似た樹脂で、 埋め込み用ポリマー層 2 6の外側から被覆し、 この時点で加熱することにより、 更に潤滑性樹脂層 20と 耐熱性樹脂層 22、 耐熱性樹脂層 22と埋め込み用ポリマー層 26、 あるいは埋 め込み用ポリマー層 26と外側ポリマー層 28との密着おょぴ一体化を促進する ことができ、 更に強度を得ることができる。
【0039】
潤滑性樹脂層 20の厚みは、 好ましくは 0. 1〜40 μπι、 さらに好ましくは、 0. 5〜10 πιである。 また、 耐熱性樹脂層 22の厚みは、 好ましくは、 0. 5〜50 μπι、 さらに好ましくは 1〜5 μπιである。 補強用ブレード層 24の厚 みは、 好ましくは 1〜200 μπι、 さらに好ましくは 10〜40 πιである。 埋 め込み用ポリマー層 26の厚みは、 補強用プレード層 24の厚みを含んだ厚みで あり、 その厚みと略同等の厚みを持つ。 また、 外側ポリマー層 28の厚みは、 好 ましくは 10~200 / m、 さらに好ましくは 20〜: L 00 μηιである。 また埋 め込みポリマー層としては、 耐熱性樹脂層で用いられるポリマーが使用される。
【0040】
次に、 図 2 (Α) に示すカテーテル本体 (医療用管状体) 4の製造方法につい て詳細に説明する。
【0041】
まず、 ルーメン 12の内径に相当する外径を持つマンドレルを準備する。 マン ドレルとしては、 伸線によって外径が縮径可能で、 加熱温度での耐熱性があれば 特に限定されないが、 例えば銅線、 銀メツキ銅線、 などが適している。
【0042】
次に、 このマンドレルの外周に、 潤滑性樹脂層 20となるフッ素樹脂分散液か ら成る第 1塗布膜を形成する。 第 1塗布膜の形成方法としては、 スプレーコート 法、 ディップ (浸漬) 法などが上げられるが、 均一に薄膜に塗布できる手段とし てはディップ法が好ましい。 塗布回数は、 特に限定されず、 第 1塗布膜の厚みが 所定の厚みとなるように調節される。 第 1塗布膜の厚みは、 好ましくは 0. 1~ 28 μ さらに好ましくは 0. 5〜: ί θ μπιである。
【0043】
ここで、 このフッ素樹脂分散液とは、 粒径 10ミクロン以下のパウダーを界面 活性剤により溶剤に分散させたものである。
【0044】
次に、 このフッ素樹脂分散液から成る第 1塗布膜を、 その上に別の膜の塗布が 可能な程度に乾燥させる。 乾燥温度は、 たとえば 5 0〜2 0 0 ° Cであり、 乾燥 時間は、 たとえば 1〜6 0分である。 その乾燥温度は、 フッ素樹脂が溶解する温 度以下であることが必要である。
【0 0 4 5】
その後、 第 1塗布膜の上に、 耐熱性樹脂層 2 2となる液状ポリマーから成る第 2塗布膜を形成する。 第 2塗布膜の形成方法としては、 第 1塗布膜の形成方法と 同じである。 塗布回数は、 特に限定されず、 第 2塗布膜の厚みが所定の厚みとな るように調節される。 第 2塗布膜の厚みは、 好ましくは 0 . 5〜5 0 /i m、 さら に好ましくは 1〜5 πιである。
【0 0 4 6】
その後、 マンドレルの外周に形成してある第 1塗布膜と第 2塗布膜とを、 電気 炉等で所定温度で所定時間加熱する。 加熱温度は、 第 1塗布膜の皮膜形成温度以 上の温度であり、 好ましくは、 液状ポリマーの耐熱温度以上の温度である。 具体 的には、 第 1塗布膜を構成するフッ素樹脂が P T F Eであり、 液状ポリマーを構 成する耐熱樹脂がポリイミ ドである場合には、 P T F Εの被膜形成温度が 2 5 0 〜4 0 0 ° Cであり、 ポリイミ ドの耐熱温度が 2 5 0〜4 0 0 ° Cであることか ら、 加熱温度は、 好ましくは 2 5 0〜4 0 0 ° Cである。 加熱温度が低すぎると、 第 1塗布膜と第 2塗布膜との密着性が低下する傾向にあり、 高すぎると、 膜質が 劣化する。 加熱時間は、 特に限定されないが、 好ましくは 5〜3 0分である。
【0 0 4 7】
このような加熱処理の結果、 第 1塗布膜と第 2塗布膜との接触界面が密着され た複合チューブ (図 2 (Α) に示す潤滑性樹脂層 2 0と耐熱性樹脂層 2 2 ) が形 成される。
【0 0 4 8】
次に、 この複合チューブの外周に、 たとえば断面横幅 0 . 0 5〜0 . 3瞧で断 面縦幅 0 . 0 1〜0 . 0 5 ramの断面矩形金属線材を螺旋状に巻き付け、 補強用ブ レード層 2 4を形成する。 その後、 卷き付けられた補強用プレード層 2 4の外周 から、 埋め込み用ポリマー層 2 6を形成するためのポリマー溶液を塗布し、 加熱 することにより、 埋め込み用ポリマー層 2 6の内部にプレード層 2 4を埋め込む。 ポリマ一溶液としては、 たとえばポリアミ ドイミ ド (P A I ) 溶液が用いられる が、 この P A I溶液を、 補強用プレード層 2 4の長手方向に沿って段階的にポリ ウレタン (P U) 溶液などに換えることで、 長手方向に沿って硬度 (柔軟性) 傾 斜 (変化) を付けることができる。
【0 0 4 9】
この埋め込み用ポリマー層 2 6を形成するための加熱温度は、 潤滑性樹脂層 2 0および耐熱性樹脂層 2 2から成る複合チューブを形成するための加熱温度より も、 低くても高くても良いが、 好ましくは、 1 5 0〜3 0 0 ° Cであることが好 ましい。
【0 0 5 0】
次に、 この埋め込み用ポリマー層 2 6の外周に、 外側ポリマー層 2 8を形成す る。 外側ポリマー層 2 8は、 液状樹脂をスプレーやディップで塗布する方法でも、 押出しで被覆する方法でもどちらでも良いが、 均一な薄肉で強度を出す目的には ディップで塗布する方法が好ましい。 外側ポリマー層 2 8は、 たとえばポリアミ ド樹脂で構成される。
【0 0 5 1】
最後に、 チューブの両端部の一部を切除し、 そこからマンドレルを引き抜くこ とにより、 図 2 (A) に示すカテーテル本体 4が得られる。
【0 0 5 2】
本実施形態では、 カテーテル本体 4の最内層は、 潤滑性に優れたフッ素樹脂か ら成る潤滑性樹脂層で構成してあり、 その肉厚は 0 . 1〜2 8 mと極肉薄状態 となっている。 更に、 この層 2 0と耐熱性樹脂層 2 2とが物理的に相互浸入して、 密着状態となっている。 これらの層の界面には、 凹凸によるアンカ一効果などが 作用していると考えられる。 実際、 フッ素樹脂が完全に被膜形成した後に液状ポ リマーを塗布してもフッ素樹脂の表面エネルギーの低さが原因して強固な密着を 得ることはできない。
【0 0 5 3】
また、 本実施形態では、 潤滑樹脂層 2 0の外面がフッ素樹脂ではなく、 耐熱樹 脂層 2 2であるため、 プレード層 2 4および埋め込み用ポリマー層 2 6との十分 な密着力を容易に得ることができる。
【0054】
なお、 本発明は、 上述した実施形態に限定されるものではなく、 本発明の範囲 内で種々に改変することができる。
【0055】
以下、 本発明を、 さらに詳細な実施例に基づき説明するが、 本発明は、 これら 実施例に限定されない。
【0056】
実施例 1
マンドレル棒となる外径 φ 1. 95 mmの銅線上に、 PTFE分散液を塗布し、 その銅線に P I溶液を塗布おょぴ焼成することにより PTFE肉厚 1 μπι、 P I 肉厚 5 μπιの一体化した内側に潤滑性のある合計肉厚 6 μπιの複合チューブを作 製した。 焼成温度は、 340° Cであり、 焼成時間は、 5分であった。
【0057】
次に、 その複合チューブ上に、 0. 020 X 0. 12 Ommの矩形断面のステ ンレス平板 16本からなる集合線を螺旋卷きすることによりブレード層を設けた。
【0058】
次に、 そのプレード層を設けたチューブ上に、 P A I溶液を 3回繰り返し塗布 し、 その後に焼成することによりブレード層埋め込み複合チューブを作製した。 ここにおいてステンレス平板から成る集合線は P A I溶液を 3回繰り返し塗布し て焼成することにより埋められた。
【0059】
また、 この PA I溶液を段階的に PU溶液に換えることにより、 硬度傾斜を付 けたブレード層埋め込み複合チューブを得た。 '
【0060】
次に、 このようにして得られたブレード層埋め込み複合チューブの上に、 PA 溶液を 29 μΐηの厚さになるように塗布し被覆することにより、 外径 φ 2. 10 mmの内層 PTF Ε複合カテーテルチュ一プを得た。
【0061】 最後に、 両端部の内層 PTFE複合カテーテルチューブの一部を切除し、 それ からマンドレル棒の銅線を引き抜くことにより、 実施例 1の内層 PTFE複合力 テ一テルチューブを得た。
【0062】
実施例 2
マンドレル棒となる外径 φ 0. 54 mmの銅線上に、 PTFE分散液を塗布し、 その銅線に P I溶液を塗布および焼成することにより 丁 £肉厚1 μπι、 P I 肉厚 5 /xrnの一体化した内側に潤滑性のある合計肉厚 6 / mの複合チューブを作 製した。 焼成温度と焼成時間は、 実施例 1と同様であつた。
【0063】
次に、 その複合チューブ上に、 0. 010 X 0. 100mmの断面矩形のステ ンレス平板 1本からなる線を螺旋卷きすることによりコイル補強層を設けた。
【0064】
次に、 そのコイル層を設けたチューブ上に、 P A I溶液を塗布おょぴ焼成する ことによりコイル層埋め込み複合チューブを作製した。 ここにおいてステンレス 平板から成るコイル層は P A I溶液を塗布して焼成することにより埋められた。
【0065】
次に、 このようにして得られたコイル層埋め込み複合チューブの上に、 PU溶 液を 40 μπιの厚さになるように塗布して被覆することにより、 外径 φ 0. 65 mmの内層 P TF Ε複合マイクロカテーテルチューブを作製した。
【0066】
最後に、 両端部の内層 PTFE複合マイクロカテーテルチューブを切除し、 そ れからマンドレル棒の銅線を引き抜くことにより、 実施例 2の内層 PTFE複合 マイクロ力テーテノレチューブを得た。
【0067】
実施例 3
マンドレル棒となる外径 φ 1. 95mmの銅線上に、 PTFE分散液を塗布し、 その銅線に P I溶液を塗布おょぴ焼成することにより PTFE肉厚 1 μπι、 P I 肉厚 5 μηιの一体化した内側に潤滑性のある肉厚 6 μπιの複合チューブを作製し た。 焼成温度と焼成時間は、 実施例 1と同様であった。
【0068】
次に、 両端部の内層 PTFE複合チューブを切除し、 それからマンドレル棒の 銅線を引き抜くことにより、 実施例 3の内層 PTFE複合チューブを得た。
【0069】
比較例 1
マンドレル棒となる外径 φ 1. 8 Ommの銀メツキ銅線上に、 P T F Eを繰り 返し塗布し、 焼き付け、 焼結することにより、 図 2 (B) に示すように、 PTF E肉厚が 40 μπιの PTFEチューブ 30を作製した。 焼き付け温度は、 340 ° Cであった。
【0070】
次に、 そのチューブ 30上に 0. 020 X 0. 120 mmの断面矩形のステン レス平板 16本からなる集合線を螺旋卷きすることによりブレード層 32を設け た。
【0071】
次に、 このようにして得られたプレード層付き PTFEチューブの上に、 押し 出し機によりポリアミ ド (PA) 層 34を 1 10 μπι厚さとなるように押し出し 被覆することにより、 外径 Φ 2. 1 Oramの内層 PTF Ε複合カテーテルチュー ブを得た。
【0072】
最後に、 両端部の内層 PTFE複合カテーテルチューブを切除し、 それからマ ンドレル棒の銀メツキ銅線を引き抜くことにより、 比較例 1の内層 PTFE複合 カテーテルチューブを得た。
【0073】
比較例 2
マンドレル棒となる外径 φ 0. 54mmの銀メツキ銅線上に P T F Eを繰り返 し塗布し、 焼き付け、 焼結することにより、 PTFE肉厚が40ί^mのPTFE チューブを作製した。 焼き付け温度は比較例 1と同じである。
次に、 その PTFEチュープをテトラエッチ処理した。 【0074】
次に、 そのチューブ上に 0. 010X0. 100mmの矩形断面のステンレス 平板 1本からなる線を螺旋卷きすることによりコイル層を設けた。
【0075】
次に、 このようにして得られたプレード層付き PTF Eチューブの上に、 押し 出し機により PAを 65 μπι厚さとなるように押し出し被覆することにより、 外 径 φ 0. 77 mmの内層 PTFE複合カテーテルチューブを得た。
【0076】
最後に、 両端部の内層 PTFE複合マイクロカテーテルチューブを切除し、 そ れからマンドレル棒の銀メツキ銅線を引き抜くことにより、 比較例 2の内層 PT FE複合マイクロカテーテルチューブを得た。
【0077】
比較例 3
マンドレル棒となる外径 φ 1. 8 Ommの銀メツキ銅線上に、 P T F Eを繰り 返し塗布し、 焼き付け、 焼結することにより、 PTFE肉厚が40 /xmのPTF Eチューブを作製した。 焼き付け温度は比較例 1と同じである。
【0078】
次に、 両端部の PTFEチューブを切除し、 それからマンドレル棒の銀メツキ 銅線を引き抜くことにより、 比較例 3の PTFEチューブを得た。
【0079】
特性試験方法およぴ評価
次に、 このようにして得られた実施例 1〜 3および比較例 1〜 3のチューブに ついて特性試験を行った。
まず、 チューブのルーメンにおける潤滑性を調べた。 潤滑性を評価するために、 チューブのルーメンに、 ルーメンの内径より 1隨小さいポリアミ ド製の円形断面 のロッドを通し、 その揷通に要する抵抗を調べた。 比較例 3の PTFEチューブ 内腔の潤滑性と変わらないものを〇、 より抵抗のあるものを Xとした。 結果を表
1に示す。
【0080】 次に、 極薄肉の PTFE複合カテーテルチューブ (片肉 100 /zm以下) が出 来るものを〇、 出来ないものを Xで示した。 結果を表 1に示す。
【0081】
次に、 実施例おょぴ比較例に係るチューブについて、 フォースゲージにより、 押し速度 4 Omm/分でチューブを 0. 5 mm押しつぶしたときにかかる荷重を 測定した。 結果を表 1に示す。
【0082】
【表 1】
Figure imgf000019_0001
【0083】
表 1からわかるように、 実施例 1〜 3および比較例 1〜3のチューブは、 いず れも内層が PTFEなので潤滑性は良好である。
また、 比較例 2ではエッチング処理を行っているので、 比較例 1の場合よりも 薄肉成形ができるが、 これらの比較例では、 共に、 これ以上押出で薄肉成形する と、 偏肉を起こしてしまい、 場所によってチューブの特性 (圧壊強度など) にば らつきが出てしまう。
【0084】
これらに対して、 実施例 1および 2の内層 PTFE複合カテーテルチューブは いずれも極薄肉成形ができ、 且つ圧壊強度が強い。 実施例 1は、 外径 2. 10m m、 内径 1. 95mm、 片肉 75 μ mと極薄のものであるが、 従来技術である比 較例 1の外径 2. 101^^ 内径1. 80、 片肉 150 / mのものより、 圧壊強 度が強レ、ものが作製できることが確認できた。
【0085】 また、 比較例 2において扱いにくいテトラエッチ処理を行ったものは圧壊強度 が行わないものより強いが、 実施例 2はテトラエッチ処理なしで、 比較例 2より 圧壊強度が強いことが確認できた。
【0086】
さらに、 比較例 3の PTFEチューブは、 これ以上の薄肉成形 (40 μπι) は できなかったのに対して、 実施例 3では、 6 μπιはもちろん、 6 μπι以下の薄肉 成形も可能であった。
【0087】
比較例 3に係る PTFEチュ一プは弱く脆いが、 実施例における内層 P T F Ε 複合チューブは PTFEと接しているポリマーの性質を持ち、 堅く強いチューブ が出来ることが確認できた。
【0088】
以上説明してきたように、 本発明によれば、 製造するときには押し出し成形で 製造するよりも極薄肉の強い PTFEチューブが容易に且つ安全に成形でき、 そ して製造により得られたものは内径が広く且つ潤滑性に優れ、 しかも外径が細く、 更に操作性が優れたものであり、 工業上有用である。

Claims

請 求 の 範 囲
1 . マンドレルの外周に、 潤滑性樹脂層となるフッ素樹脂分散液から成 る第 1塗布膜を形成する第 1塗布膜形成工程と、
前記第 1塗布膜の外周に、 耐熱性樹脂となる液状ポリマーから成る第 2塗布膜 を形成する第 2塗布膜形成工程と、
前記第 1塗布膜および第 2塗布膜を、 前記第 1塗布膜の皮膜形成温度以上の温 度で加熱し、 前記第 1塗布膜と前記第 2塗布膜との接触界面が密着された複合チ ュ一ブを形成する加熱工程と、
前記マンドレルを引き抜くマンドレル除去工程と、 を有する医療用管状体の製 造方法。
2 . 前記第 2塗布膜が、 前記第 1塗布膜の皮膜形成温度よりも高い耐熱 性を有し、 前記第 2塗布膜の耐熱温度以上の温度で加熱する請求項 1に記載の医 療用管状体の製造方法。
3 . 前記加熱工程の後で、 前記マンドレル除去工程前に、 前記複合チュ ープの外周に、 補強材を組み込む捕強工程と、 前記捕強材の外周を、 外側ポリマ 一層で被覆する工程と、 をさらに有する請求項 1〜 2のいずれかに記載の医療用 管状体の製造方法。
4 . 前記外側ポリマー層は、 長手方向に沿って途中から先端に向けてス テップ状または徐々に柔軟性が向上する構造である請求項 3に記載の医療用管状 体の製造方法。
5 . 前記第 1塗布膜の厚みが、 0 . 1〜2 8 ju mである請求項 1〜4の いずれかに記載の医療用管状体の製造方法。
6 . 第 2塗布膜の厚みが、 0 . 5〜5 0 μ πιである請求項 1〜5のいず れかに記載の医療用管状体の製造方法。
7 . 前記第 1塗布膜が、 フッ素樹脂分散液の塗布膜である請求項 1〜 6 のレ、ずれか記載の医療用管状体の製造方法。
8 . 前記第 2塗布膜は、 耐熱性樹脂となる液状ポリマーの塗布膜である 請求項 1〜 7のいずれかに記載の医療用管状体の製造方法。
9 . 請求項 1〜8のいずれかに記載の方法により製造される医療用管状 体。
PCT/JP2003/010928 2002-09-05 2003-08-28 医療用管状体およびその製造方法 WO2004022148A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-260035 2002-09-05
JP2002260035A JP2004097278A (ja) 2002-09-05 2002-09-05 医療用管状体およびその製造方法

Publications (1)

Publication Number Publication Date
WO2004022148A1 true WO2004022148A1 (ja) 2004-03-18

Family

ID=31973086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010928 WO2004022148A1 (ja) 2002-09-05 2003-08-28 医療用管状体およびその製造方法

Country Status (2)

Country Link
JP (1) JP2004097278A (ja)
WO (1) WO2004022148A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102973987A (zh) * 2012-12-10 2013-03-20 宁波保税区安杰脉德医疗器械有限公司 一种水体系的医用亲水润滑涂层及其制备方法
EP2944344A1 (en) * 2014-05-13 2015-11-18 Asahi Intecc Co., Ltd. Catheter
CN114536827A (zh) * 2020-11-25 2022-05-27 脉通医疗科技(嘉兴)有限公司 复合管材及其制备方法
EP4101491A4 (en) * 2020-02-04 2024-03-06 Asahi Intecc Co Ltd MEDICAL TUBE AND CATHETER

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258022B2 (ja) * 2008-02-18 2013-08-07 古河マグネットワイヤ株式会社 コイル用絶縁電線
US9863558B2 (en) * 2015-03-03 2018-01-09 Titeflex Commercial Inc. Composite hose assembly
JP7373951B2 (ja) 2019-09-17 2023-11-06 パイオニア株式会社 チューブ及びチューブの製造方法
JP2022162571A (ja) * 2021-04-13 2022-10-25 朝日インテック株式会社 医療用チューブおよびカテーテル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157070A (ja) * 1988-12-08 1990-06-15 Nitto Denko Corp 複層管状物の製造方法
JPH07124243A (ja) * 1993-11-05 1995-05-16 Mitsubishi Cable Ind Ltd 剛性傾斜トルクチューブおよびそのトルクチューブを用いてなるカテーテル
US5582886A (en) * 1993-11-15 1996-12-10 I.S.T. Corporation Polyimide composite tube and method of manufacturing the same
JPH10138264A (ja) * 1996-11-07 1998-05-26 Showa Electric Wire & Cable Co Ltd 複合フィルムの製造方法
JP2001112870A (ja) * 1999-10-18 2001-04-24 Asahi Intecc Co Ltd 医療用チューブ
JP2002045428A (ja) * 2000-07-31 2002-02-12 Hitachi Cable Ltd カテーテル用薄肉ptfeチューブ及びその製造方法並びにカテーテルチューブ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157070A (ja) * 1988-12-08 1990-06-15 Nitto Denko Corp 複層管状物の製造方法
JPH07124243A (ja) * 1993-11-05 1995-05-16 Mitsubishi Cable Ind Ltd 剛性傾斜トルクチューブおよびそのトルクチューブを用いてなるカテーテル
US5582886A (en) * 1993-11-15 1996-12-10 I.S.T. Corporation Polyimide composite tube and method of manufacturing the same
JPH10138264A (ja) * 1996-11-07 1998-05-26 Showa Electric Wire & Cable Co Ltd 複合フィルムの製造方法
JP2001112870A (ja) * 1999-10-18 2001-04-24 Asahi Intecc Co Ltd 医療用チューブ
JP2002045428A (ja) * 2000-07-31 2002-02-12 Hitachi Cable Ltd カテーテル用薄肉ptfeチューブ及びその製造方法並びにカテーテルチューブ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102973987A (zh) * 2012-12-10 2013-03-20 宁波保税区安杰脉德医疗器械有限公司 一种水体系的医用亲水润滑涂层及其制备方法
CN102973987B (zh) * 2012-12-10 2014-03-12 宁波保税区安杰脉德医疗器械有限公司 一种水体系的医用亲水润滑涂层及其制备方法
EP2944344A1 (en) * 2014-05-13 2015-11-18 Asahi Intecc Co., Ltd. Catheter
EP4101491A4 (en) * 2020-02-04 2024-03-06 Asahi Intecc Co Ltd MEDICAL TUBE AND CATHETER
CN114536827A (zh) * 2020-11-25 2022-05-27 脉通医疗科技(嘉兴)有限公司 复合管材及其制备方法

Also Published As

Publication number Publication date
JP2004097278A (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
US20220362512A1 (en) Catheter shaft and associated devices, systems, and methods
US10682177B2 (en) Medical device having laminate-coated braid assembly
US8377035B2 (en) Unbalanced reinforcement members for medical device
JP5696659B2 (ja) カテーテルの製造方法
US10974030B2 (en) Medical guide wire
EP2014329A1 (en) Guide wire
US9901706B2 (en) Catheters and catheter shafts
JP4553010B2 (ja) 医療用カテーテルチューブならびにその製造方法
JP2008188304A (ja) 医療用カテーテル
EP2228094B1 (en) A guide wire
JP6250051B2 (ja) カテーテルおよびその製造方法
JP5233156B2 (ja) 医療用カテーテルチューブ
WO2004022148A1 (ja) 医療用管状体およびその製造方法
JP2007229452A (ja) 医療用チューブ及びその製造方法
JP4269456B2 (ja) カテーテルチューブの製造方法
EP4126093B1 (en) Catheter shaft with flouropolymer inner liner and related methods
JP2012092901A (ja) チューブ
JP4397319B2 (ja) マイクロカテーテルの製造方法及びマイクロカテーテル
JP6168886B2 (ja) チューブ構造体及びそれを用いたカテーテル
JP2000262625A (ja) カテーテルチューブ及びその製造方法
JP4777132B2 (ja) 医療用カテーテルチューブならびにその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase