WO2004019417A1 - 受光素子モジュール - Google Patents

受光素子モジュール Download PDF

Info

Publication number
WO2004019417A1
WO2004019417A1 PCT/JP2003/008858 JP0308858W WO2004019417A1 WO 2004019417 A1 WO2004019417 A1 WO 2004019417A1 JP 0308858 W JP0308858 W JP 0308858W WO 2004019417 A1 WO2004019417 A1 WO 2004019417A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving element
light
light receiving
signal
lens
Prior art date
Application number
PCT/JP2003/008858
Other languages
English (en)
French (fr)
Inventor
Kiyohide Sakai
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to EP03741363A priority Critical patent/EP1542291A4/en
Priority to CA002492785A priority patent/CA2492785C/en
Priority to US10/521,112 priority patent/US7209610B2/en
Publication of WO2004019417A1 publication Critical patent/WO2004019417A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention relates to a light receiving element module on which a semiconductor light receiving element such as a photodiode is mounted, and more particularly, to a coaxial light receiving element module with an optical fiber, and a receptacle type adapter for connecting an optical fiber. This is related to the light receiving element module of the above.
  • the optical transceiver converts a data signal to be transmitted from an electric signal to an optical signal, transmits the optical signal via an optical fiber for transmission, receives the optical signal via an optical fiber for reception, and receives the optical signal.
  • the optical signal is reproduced as an electric signal.
  • a technique disclosed in Japanese Patent Publication No. 2907203 is known.
  • a box-shaped housing having a mounting surface for accommodating a light-receiving element and mounting the light-receiving element is provided.
  • the box-shaped housing extends along a predetermined direction from a side wall of the box-shaped housing.
  • An optical module provided with a support structure for holding a predetermined position in a box-shaped housing is disclosed.
  • a light receiving element module is a light receiving element module for receiving signal light emitted from an optical fiber, wherein: a lens for condensing the signal light emitted from the optical fiber; A reflecting mirror having a quadratic curved reflecting surface for reflecting the signal light; and a light receiving element for receiving the signal light reflected by the reflecting mirror and converting the signal light into an electric signal. .
  • the reflecting mirror may be a parabolic mirror.
  • the signal light condensed by the lens is incident on the reflection surface substantially in parallel to the axis of the reflection surface, and is incident on the reflection surface at a position offset by a radius substantially from the center of the reflection surface.
  • the reflected signal light may be reflected.
  • the signal light condensed by the lens is substantially parallel to the axis of the reflection surface.
  • the signal light that is incident on the light emitting surface and is reflected by the reflecting surface may be bent at a substantially right angle on the reflecting surface.
  • the reflecting mirror may be a hyperboloid mirror.
  • the lens may be a spherical lens.
  • a transimpedance amplifier may be further provided, which is disposed close to the same plane as the light receiving element and amplifies the electric signal converted by the light receiving element.
  • the reflecting mirror may be a member formed of a plastic mold and provided with a reflecting surface.
  • the optical fiber may be adjusted with respect to an optical axis formed by the optical fiber and the lens in three axial directions of the optical axis direction and two directions perpendicular to the optical axis.
  • the following invention is a light receiving element module for receiving signal light emitted from an optical fiber, wherein a stem penetrating a signal pin, a pedestal fixed in a direction perpendicular to the stem, and a light through hole are provided.
  • the present invention provides a light receiving element module for receiving signal light emitted from an optical fiber, a stem penetrating a signal pin, a pedestal fixed in a direction perpendicular to the stem, and a first light.
  • a cap member having a through hole and fixed to the stem; a window member covering the first light through hole; and a lens holding member having a second light through hole and fixed to the cap member A member, a spherical lens inserted into the second light through hole, for condensing the signal light emitted from the optical fiber, and a signal light disposed on the pedestal and substantially condensed by the spherical lens.
  • a parabolic mirror that bends and reflects at a right angle, and receives the signal light reflected on the parabolic mirror and is converted to an electric signal
  • a transimpedance amplifier disposed on the base in close proximity to the light receiving element and amplifying the electric signal converted by the light receiving element.
  • FIG. 1 is a diagram showing an external configuration of the light receiving element module according to the first embodiment
  • FIG. 2 is a diagram schematically showing a vertical cross-sectional view of the light receiving element module of FIG.
  • FIG. 3 is a diagram for explaining the spread of the Gaussian beam
  • FIG. 4 is a diagram for explaining various symbols (part 1)
  • FIG. 5 is a diagram for explaining various symbols.
  • FIG. 6 is a diagram for explaining the relationship between the object point-to-lens distance and the lateral magnification
  • FIG. 7 is a diagram for explaining the relationship between the object point-to-lens distance and the R point-to-image point distance.
  • Fig. 8 is a horizontal sectional view and a vertical sectional view of the light receiving element module of Fig.
  • FIG. 9 is a view for illustrating an arrangement relationship between a stem, a pin, and a pedestal.
  • Fig. 10 explains the electrical connection between the light receiving element and the transimpedance amplifier.
  • FIG. 11 is a diagram for explaining an electrical connection between a light receiving element and a transimpedance amplifier (part 2)
  • FIG. 12 is a diagram showing an embodiment.
  • FIG. 13 is a diagram for explaining the light receiving element module ⁇ of FIG. 2;
  • FIG. 13 is a diagram for explaining the light receiving element module of Embodiment 3;
  • FIG. 14 is a diagram for explaining the light receiving element module of Embodiment 4; It is a figure for explaining a light receiving element module.
  • Embodiment 1 A light-receiving element module according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the light-receiving element module according to the first embodiment employs an inexpensive campaign-package type module, and the light-receiving element is included in the package. Built-in photodiode. Further, in this specification, the light-receiving element module is a generic term including a module without a sealing cap (lid).
  • FIG. 1 shows an external configuration of the light receiving element module 3.
  • the light receiving element module 3 is composed of a package 1 having a cap member 13 and a stem 10 and a receptacle 2 into which a ferrule 21 to which an optical fiber 20 is connected is inserted. It is configured.
  • the stem 10 is less than 6 mm in diameter.
  • FIG. 2 schematically shows a vertical cross-sectional view of the light receiving element module 3 to explain the light receiving principle of the light receiving element module 3 of FIG.
  • FIG. 2 schematically shows a simplified structure of FIG. 8, which will be described later. Some parts are not shown, and the parts are simplified.
  • photodetector module 3 supports signal pins 40 (signal pins 41a and 41b, ground pins 42a and 42b, and voltage supply pins 43a and 43b). ), A pedestal 11 fixed vertically to the stem 10, a cap member having a light through hole 14 and fixed to the stem 10; It has a spherical lens 12 inserted into the through hole 14 and condensing the signal light emitted from the optical fiber 20.
  • a parabolic mirror 16 disposed on the pedestal 11 and reflecting the signal light condensed by the spherical lens 12 at a substantially right angle, and a parabolic mirror disposed on the pedestal 11
  • a light-receiving element 18 that receives the signal light reflected by the mirror 16 and converts it into an electric signal, and an electric signal that is arranged on the base 11 in close proximity to the light-receiving element 18 and converted by the light-receiving element 18 It is equipped with a transimpedance amplifier that amplifies the signal.
  • a photodiode is used as the light receiving element 18.
  • the signal pin 40 is passed through the stem 10 through the dielectric 60 (corresponding to the dielectric 61, 63a, 63b), and the pedestal 11 and the cap member 13 are connected to the stem 10. On the other hand, it is fixed vertically.
  • a light receiving element 18, a parabolic mirror 16, and a transimpedance amplifier 19 are mounted on the pedestal 11 in close proximity.
  • the cap member 13 is formed with a light through hole 14 for inserting the ball lens 12, and the ball lens 12 is inserted into the light through hole 14 of the cap member 13, and has an internal sealing structure. But Achieved.
  • the spherical lens 12 can be made of, for example, inexpensive BK7 (refractive index: 1.51, trade name of Shott Co.).
  • a receptacle 2 having an insertion hole 22 for inserting a ferrule 21 is fixed to the cap member 13.
  • the parabolic mirror 16 has a reflecting surface 16a, and the signal light condensed by the spherical lens 12 is incident on the parabolic surface (reflecting surface) at a position offset by an approximate radius from the rotational symmetry axis of the paraboloid (reflecting surface). It is arranged to be.
  • the radius means a radius of curvature of a paraboloid described later.
  • the signal light emitted from the optical fiber 20 enters the spherical lens 12.
  • the spherical lens 12 condenses the incident signal light.
  • the principal ray of the signal light condensed by the spherical lens 12 enters the reflecting surface 16a substantially parallel to the axis of rotational symmetry of the reflecting surface 16a of the parabolic mirror 16.
  • the incident signal light is bent at a substantially right angle, reflected, and enters the light receiving element 18.
  • the signal light is collected by this reflection due to the characteristics of the parabolic mirror 16.
  • the light receiving element 18 converts the incident signal light into an electric signal and outputs the electric signal to the transimpedance amplifier 19.
  • the electric signal input from the light receiving element 18 is amplified and then output from the signal pin 40 to an external host system.
  • two-stage focusing is performed by the spherical lens 12 and the parabolic mirror 16.
  • the parabolic mirror 16 forms a virtual image of the light receiving surface of the light receiving element (PD (Photo Detector) light receiving surface) on the optical axis of the signal light emitted from the optical fiber.
  • the point where the signal light of the optical fiber is emitted (hereinafter referred to as the emission point) is located at the object point, and the emission point of the optical fiber is formed on the optical axis of the signal light by the spherical lens.
  • the optical fiber 20, the spherical lens 12, the parabolic mirror 16, and the light receiving element 18 are arranged so that the position of the real image of the exit point of the optical fiber is formed with respect to the position of the virtual image on the light receiving surface. . That is, the light-receiving surface of the light-receiving element forms a virtual image on the optical axis of the lens with the reflecting mirror, and the light-emitting point of the optical fiber placed at the object point Are formed on the virtual image on the light receiving surface of the light receiving element, which appears at the virtual image position via the lens.
  • the light-receiving surface of the light-receiving element is enlarged by a reflecting mirror to form a real image on the optical axis of the lens, and the light-emitting point of the optical fiber placed at the object point is seen through the lens at the real image position.
  • An image may be formed on the image on the light receiving surface.
  • FIG. 3 is a diagram for explaining the spread of a Gaussian beam
  • FIGS. 4 and 5 are diagrams for explaining various symbols.
  • An optical fiber with a spot diameter of ⁇ 1 which is located at the object point and emits light of wavelength ⁇ , forms an image formed on an image plane defocused by z from the paraxial image point via an ideal lens with a lateral magnification of m
  • the spot diameter ⁇ 2 can be expressed by the following equation (1).
  • Figure 3 shows that an optical fiber with a wavelength of 1.3 ⁇ and a spot diameter of 5 ⁇ is converted from the paraxial image point via an ideal lens with a lateral magnification of 0.5 to 1 using the above equation (1).
  • the spot diameter on the image plane between the 60 ⁇ defocuses is shown for each 10 ⁇ .
  • Moth Usubimu is to become 2% of the loss at 1.5 times the spot diameter (the light intensity of 1 / e 2), for example, a radius of 1 0 to be used for the optical transmission of the 1 0 G b / s
  • a suitable condition is a spot diameter of 7.5 m or less for a light receiving element of ⁇ m.
  • the legend in Fig. 3 means (horizontal magnification, defocus amount (mm)). That is, for example, ⁇ 2 (m, 60 X 1 0- 3) is the defocus amount lateral magnification at m times which means a spot diameter (omega 2) when the 6 0 ⁇ .
  • the lateral magnification of the entire optical system is 0.5 to 1 in consideration of image blur due to aberrations of the optical system and assembly tolerance. Doubled.
  • the lens 12 is an ideal lens 120 having a focal length f1
  • the parabolic mirror 16 has a reflecting surface 16a which is a paraboloid 16 having a radius of curvature r near the rotational symmetry axis z.
  • magnification y is affected by the position h of incidence on the paraboloid 16.
  • the parabolic mirror 16 is an ideal lens 162 with a focal length f2
  • the spot diameter formed on the light receiving surface of the light receiving element is ⁇ pd
  • the distance from the main surface is d
  • the spot diameter of the virtual image is co pd '
  • the lateral magnifications m 2 and d 1 of this subsystem can be expressed by the following equations. m (3) ⁇ ,
  • Fig. 6 (A) shows a parabolic mirror 16 having a paraboloid with a radius r of 0.55 mm to 0.95 mm, and a main surface and a light receiving surface of a light receiving element 18 (PD light receiving surface) 18a. It shows the lateral magnification m2 of the subsystem with respect to the distance d0 indicating the interval of.
  • FIG. 6 (B) shows the virtual image position d1 with respect to the distance d0 for a parabolic reflector 16 having a radius r of 0.55 mm to 0.95 mm.
  • m2 (0.55, d0) means the lateral magnification (m2) when the radius is 0.55 mm and the distance between the main surface and the PD light receiving surface is d0.
  • the lateral magnification of the entire optical system is 1x
  • the lateral magnification of the lens-based subsystem is 2x
  • the lateral magnification of the parabolic 16 reflector is ⁇ .5x
  • the distance between point R (principal surface) and PD light-receiving surface 18a is from 0.28mm to 0.25mm
  • the radius r of the reflector on paraboloid 16 is from 0.55mm to 0.95mm. 48 mm, which is suitable for allowing the height of the rising portion of the wire bond used for the wiring of the light receiving element 18, and can prevent contact between the wire bond and the reflecting mirror surface of the parabolic mirror 16.
  • the ray tracing in Fig. 2 is a diagram in which the range of NA0.2 is traced with one ray at NA0.04 increments. AO. 2 rays intersect.
  • the spherical lens 12 is inexpensive, the spherical aberration is large and the aberration that increases the distribution of lens power (refractive power) increases, so the lateral magnification of the lens subsystem is set to twice here.
  • Power is also distributed to the object mirror 16 to reduce aberrations.
  • the ⁇ of an optical fiber with a wavelength of 1.3 ⁇ m and a spot diameter of 5 ⁇ is 0.1 at 1 / e 2 intensity, and there is almost 98% light intensity distribution at NAO.15. With the distribution, the blur of the image is very small.
  • the parabolic mirror 16 is made to be a reflecting mirror as a plane and converged by a finite system with one lens, even if the preferable lateral magnification is about 0.8 to 0.9, it is possible for the light receiving radius to be 10 ⁇ . Since the loss is as large as about 5%, the lateral magnification of the lens sub-system is preferably 1 or more.
  • the parabolic reflector has the advantage that the rotational axis of symmetry and the optical axis are parallel, and the mold can be manufactured on a mirror lathe with higher cutting accuracy than a mirror milling machine that produces elliptical or hyperbolic surfaces.
  • the mold has a rotationally symmetric axis, so that it is easy to assemble a mold having a wall surface in an orthogonal direction.
  • the thermal expansion coefficient of plastic suitable for manufacturing a parabolic reflector is 5.6 ⁇ 10 5 , for example, a parabolic reflection with a radius r force of S 0.85 mm.
  • the distance between the reflection point (point R in Fig. 4) and the light receiving surface (PD light receiving surface) 18a of the light receiving element 18 is 450 im, and the light receiving element 1
  • the thickness of 8 is 150 ⁇ and the substrate (chip carrier) 17 made of ceramic is 145 111, when the environmental temperature changes from 25 ° C to 85 ° C, the light is reflected from the bottom of the reflector.
  • the movement of the point (R point) is approximately 2.5 ⁇ .
  • the focal length also fluctuates by 2.8 ⁇ , but the effect is small, for example, since the longitudinal magnification of the subsystem of the parabolic reflector is about 0.25 times.
  • the radius is lmm or less and the lateral magnification of the parabolic reflector subsystem is 1 or less, the blur of the image due to the temperature fluctuation of the image point is small, A simple structure and a suitable structure can be obtained without disposing the image point compensating means having a complicated structure of the image point position disclosed in Japanese Patent Publication No. 2907302.
  • FIGS. 7 (A) and 7 (B) The advantages of the above optical system will be further described with reference to FIGS. 7 (A) and 7 (B).
  • the lens 12 is attached to a cap 13, and the cap 13 is welded to the stem 10 in a hermetic structure by a method such as projection welding.
  • a method such as projection welding.
  • FIG. 8 (A) ( ⁇ ) shows a horizontal sectional view and a vertical sectional view of the light receiving element module 3 of FIG.
  • the photodetector module 3 has a differential configuration of signal pins 41 a and 41 b, a bias voltage supply pin 43 a for the photodiode 18, and a power supply voltage of the transimpedance amplifier 19.
  • Disc-shaped stem 10 on which supply pins 4 3b and ground bins 4 2a and 4 2b are mounted, and trapezoidal column-shaped pedestal 1 1 on which parabolic mirror 16 and multiple elements are mounted ,
  • a cylindrical cap member 13 for sealing the pedestal 11 and the like from the outside, and an optical fiber 2 ⁇ are connected.
  • the cap member 13 is fixed to the stem 10 by projection welding or the like.
  • a light through hole 14 for inserting the spherical lens 12 is formed, and the spherical lens 12 is inserted into the light through hole 14.
  • the spherical lens 12 is made of, for example, BK7 (refractive index 1.51), and is fixed to the first cap member 13a by fusion bonding with low-melting glass or the like.
  • the internal space 15 of the first cap member 13a is externally defined by a spherical lens 12, thereby keeping the internal space 15 in which the pedestal 11 is stored in an airtight state.
  • the receptacle 2 has a ferrule insertion hole 22 into which a ferrule 21 to which an optical fiber 20 is connected is inserted, and a light penetration window 23 through which signal light emitted from the optical fiber 20 passes. .
  • the receptacle 2 is fixed to the second cap member 13b by YAG welding or the like.
  • positioning adjustment in two directions perpendicular to the optical axis direction is performed, so that the spherical lens 12 and the optical fiber 20 attached to the receptacle 2 can be adjusted. Alignment is performed in two directions perpendicular to the optical axis. As described above, the positioning is adjusted when the second cap member 13b and the receptacle 2 are fixed, and the three-axis adjustment is performed with respect to the optical axis.
  • the ferrule 21 to which the optical fiber 20 is connected When the ferrule 21 to which the optical fiber 20 is connected is inserted into the ferrule ⁇ insertion hole 22 of the receptacle 2, the ferrule 21 is pressed and the ferrule 21 is locked to the receptacle 2. It has an appropriate mechanism (not shown) for performing this.
  • FIG. 3 is a diagram for illustrating an arrangement relationship between 0, a pin, and a base 11;
  • the can package 1 has a disk-shaped stem 10 on which a plurality of pins are mounted, and a trapezoidal columnar shape which is vertically fixed to the inner wall surface of the stem 10 by means of Ag opening or the like.
  • Base 11
  • the stem 10 constituting the Durand is arranged on both sides of a pair of differentially configured signal pins 41 a and 41 b for transmitting the signal of the light receiving element 18 and the signal pins 41 a and 41 b.
  • the signal pins 41 a and 41 b and the ground pins 42 a and 42 b constitute a feedthrough passing through the stem 10. These signal pins are hermetically sealed to the stem 10 via dielectrics (61, 63a, 63b) made of a material such as glass.
  • the ground pins 42a and 42b are fixed to the outer wall surface 10z of the stem 10 constituting the ground by crimp welding.
  • the stem 10 is made of a metal such as Kovar (Fe—Ni alloy), soft iron or CuW, and tungsten. It is decorated with gold and gold.
  • a metal such as Kovar (Fe—Ni alloy), soft iron or CuW, and tungsten.
  • the stem 10 can be made by punching a metal plate with a die.
  • a die for example, in the case of CuW, injection molding technology is used. It has the advantage of low cost because it can be manufactured in a simple manner and is easy to manufacture.
  • the stem 10 has a plurality of holes 51, 53a, 53b dispersedly formed therein, and these holes 51, 53a, 53b are provided with dielectrics 61, 6 respectively. 3 a and 6 3 b are entered.
  • a pair of pin insertion holes are formed in the dielectric 61, and the signal pins 41a and 41b are inserted and fixed in these pin insertion holes.
  • holes are formed in the dielectrics 63a and 63b, respectively, and the voltage supply pins 43a and 43b are inserted and fixed in these holes.
  • the shape of the dielectric 61 into which the pair of signal pins 41 a and 41 b is inserted has an elliptical shape.
  • the dielectric 61 The hole 51 to be inserted also has an oval shape.
  • Other dielectrics 63a and 63b have a circular shape.
  • the ground pins 42a and 42b are not penetrated, and are fixed to the outer wall surface 10z of the stem 10 by crimping and welding as described above.
  • the dielectrics 61, 63a, 63b for example, Kovanore glass, borosilicate glass, or the like is used.
  • the signal pins 41a and 41b, the voltage supply pins 43a and 43b, and the ground pins 42a and 42b include, for example, Kovar and 50% Ni-Fe alloy. Use metal.
  • the pedestal 11 is connected and fixed to the stem 10 by Ag brazing or the like.
  • the stem 10 and the pedestal 11 may be manufactured as one body.
  • the pedestal 11 On the upper surface of the pedestal 11, there are a differential line board 31, a circuit element 33 for a transimpedance amplifier, a circuit element 32 for a light receiving element, a transimpedance amplifier 19, and a parabolic mirror 16.
  • the light receiving element substrate 17 is mounted. If a ceramic chip-type capacitor is used as the light-receiving element substrate 17, the connection to the light-receiving element is fixed by soldering to reduce inductance and prevent resonance that depends on wiring with the transimpedance amplifier 19 It is preferable.
  • the pedestal 11 constitutes one surface of a ground conductor layer (hereinafter referred to as “tag land”) by plating, and this solid ground is connected to a ground formed as a plane conductor plate on the back surface of each element.
  • tag land a ground conductor layer
  • the differential line board 31 is composed of a pair of symmetrically formed strip differential signal lines 31a and 3lb, and a tag land (not shown) formed as a plane conductor plate on the back of the board. ing.
  • One end of each of the strip differential signal lines 31a, 31b is provided with a pair of pads (91a, 9b) for contacting the signal pins 41a, 41b protruding from the stem 10. 1b), a wide portion 92 and stubs 93a and 93b for impedance matching between the feedthrough portion and the circuits before and after.
  • the ends of the signal pins 41 a and 41 b mounted on the stage 10 are connected to the differential line board 31. It is connected and fixed to the pad by soldering or soldering.
  • the light receiving element circuit element 32 is a circuit element (capacitance, resistance, coil) for removing noise in an appropriate frequency band when a bias voltage is supplied to the light receiving element 18 mounted on the light receiving element substrate 17. Etc.) are installed. A plurality of pads (symbols are omitted) are formed on the light receiving element circuit element 32, which are connected to the voltage supply pins 43a and the wire bonds 95a, and are connected to the pads of the light receiving element substrate 17 and other pads. Wire bond 7 ⁇ c connected.
  • the transimpedance amplifier circuit element 33 has a circuit element (capacitance, resistance, coil, etc.) for removing noise at an appropriate frequency of the power supply voltage supplied to the transimpedance amplifier 19.
  • the transimpedance amplifier circuit element 33 has a plurality of pads (symbols omitted), which are connected to the voltage supply pins 43 b by wire bonds 95 b, and are connected to the pads of the transimpedance amplifier 19. They are connected by wire bonds 70d.
  • the output terminal of the differential signal of the transimpedance amplifier 19 is connected to pads such as the differential line board 31 by wire bonds 96a and 96b. Further, the transimpedance amplifier 19 is connected to pads such as the light receiving element 18 and the light receiving element circuit element 32 by wire bonding (described later in the description of FIG. 10). In the transimpedance amplifier 19, the electric signal input from the light receiving element 18 is converted into a current and a voltage and then amplified.
  • the light-receiving element substrate 17 has, for example, a light-receiving element 18 such as a pin-type photodiode mounted thereon, and has a plurality of pads (symbols omitted).
  • the light-receiving element circuit element 32 and the transimpedance Connected to amplifier 19 with wire bond.
  • the light receiving element 18 receives the signal light reflected by the parabolic mirror 16 and converts it into an electric signal (monitor signal).
  • This electric signal is amplified by the transimpedance amplifier 19 and then output from the output terminal of the differential signal in the transimpedance amplifier 19, and a pair of strip differential signal lines 3 1 a of the differential line board 3 1 • Signal pin 4 1a mounted on stem 10 via 3 lb, higher than 4 lb Output to the system.
  • the parabolic mirror 16 is formed of a plastic mold. As shown in FIG. 8, the parabolic mirror 16 has a reflective surface 16a exhibiting a parabolic surface, and is used to connect the light receiving element 18 to the transimpedance amplifier 19 by wire bonding. Grooves (see FIG. 10) are formed.
  • the reflective surface 16a is coated with a highly reflective metal film such as gold, anoremium, or silver by a method such as electron beam evaporation or sputtering after a base film with good adhesion, such as chrome, is applied. .
  • the reflective film is made of a dielectric multi-layer film of titanium dioxide or silicon dioxide, or a film made of alumina or tantalum pentoxide, or a metal film coated with a dielectric protective film. But it's fine. It is preferable to apply an insulating film to the surface of the reflection surface 16a because it has an effect of preventing a short circuit with a wire bond.
  • the reflecting surface 16a of the parabolic mirror 16 receives the signal light condensed by the spherical lens 12 approximately 90. It bends and reflects light to reach the light-receiving surface 18a of the light-receiving element 18. Furthermore, since the reflecting surface 16a has a parabolic shape, it hardly causes aberrations. The sensitivity of the light receiving element 18 can be increased.
  • the transmission path of the signal light is bent at a substantially right angle by the parabolic mirror 16 so that the spherical lens 12 and various electric components can be positioned horizontally with respect to the surface of the light receiving element 18.
  • FIG. 10 is a diagram for explaining the electrical connection between the light receiving element 18 and the transimpedance amplifier 19, and FIG. 10A is a vertical sectional view around the parabolic mirror 16.
  • (B) is a front view
  • (C) is a plan view with the parabolic mirror 16 removed.
  • the light receiving element 18 and the transimpedance amplifier 19 are mounted close to each other on the same plane on the base 11.
  • the light-receiving element 18 mounted on the light-receiving element substrate 17 consists of a front-illuminated photodiode having a light-receiving surface on the front side, and a light-receiving surface (photodiode portion) 18 a on the front side and a pad 1 serving as an electrode.
  • 8 b (for example, p-side electrode) is formed.
  • An electrode (for example, an n-side electrode) is formed on the light receiving element substrate 17 side.
  • the parabolic mirror 16 has a groove 16b for connecting the light receiving element 18 and the transimpedance amplifier 19 with a wire bond.
  • the groove 16b has a semi-cylindrical shape in the drawing, it is not particularly limited to this shape, and may be, for example, a rectangular shape. That is, any shape may be used as long as the parabolic mirror 16 passes through the parabolic mirror 10 like a tunnel in a state where the parabolic mirror 16 is set on the pedestal 11.
  • the transimpedance amplifier 19 has a pad 19 for inputting an electric signal and a ground 19a.
  • the pad 18b on the anode side of the light receiving element 18 and the pad 19b of the transimpedance amplifier 19 are bonded at one end and the other end of the wire bond 70b, respectively.
  • the electrode (not shown) on the force side of the light receiving element 18 is soldered to the electrode 17 a of the light receiving element substrate 17.
  • the electrode 17a of the light-receiving element substrate 17 is connected to the light-receiving element circuit element 32 via the wire bond 70c, and the light-receiving element circuit element 32 is connected to the voltage pin 43a.
  • the electrode on the back surface of the capacitor 32 b is connected to the electrode 17 a of the light-receiving element substrate 17.
  • the electrode on the surface of the capacitor 32b is connected to the ground surface 17b of the light-receiving element substrate 17 by a wire bond 70e.
  • the electrode on the surface of the capacitor 32 b is connected to the ground 19 a of the transimpedance amplifier 19 by a wire bond 70 a.
  • the ground plane 17b of the light-receiving element substrate 17 is connected to the surface (ground plane) of the pedestal 11 via the through hole 17c.
  • FIGS. 11 (A) to 11 (C) show another example of FIGS. 10 (A) to 10 (C) for explaining the electrical connection between the light receiving element 18 and the transimpedance amplifier 19.
  • the figure (A) is a vertical sectional view around the parabolic mirror 16, the figure (B) is a front view, and the figure (C) is when the parabolic mirror 16 is removed.
  • the capacity of 170 With the planes of the electrodes at both ends parallel to the pedestal 11, fix the lower end electrode of the capacitor 170 to the ground surface of the pedestal 11 so as to be electrically conductive, and place the photo on the upper end electrode of the capacitor 170. It is placed so as to be electrically connected to the electrode on the back side of the diode.
  • the ground 19a of the transimpedance amplifier 19 is connected to the ground surface of the pedestal 11 as in FIGS. 10 (A) to 10 (C). Further, the pad 19 b of the transimpedance amplifier 19 is connected to the pad 18 b of the light receiving element 18.
  • the signal light emitted from the optical fiber 2 is condensed by the spherical lens 12 and the condensed signal light is reflected by the parabolic mirror 16. Therefore, the area of the reflecting surface 16a of the parabolic mirror 16 can be reduced, and the parabolic mirror 16 can be reduced in size. As a result, the size of the light receiving element module can be reduced. In addition, by reducing the size of the reflecting surface of the parabolic mirror, the effect of the coefficient of thermal expansion due to the material of the reflecting mirror is reduced, and the structure is simplified.
  • the signal light is bent at a substantially right angle at a position offset from the center of the paraboloid by a substantially radius and is incident on the light receiving element 18.
  • Aberrations due to paraboloids (reflection surfaces) can be reduced, and image blur can be reduced.
  • the refracting power of the spherical lens 12 is reduced to reduce image blur due to spherical aberration. It becomes possible.
  • the light receiving element 18 and the transimpedance amplifier 19 on which the transimpedance amplifier is mounted are arranged close to each other on the pedestal 11, high frequency characteristics can be improved.
  • a ceramic chip type capacitor is used for the light receiving element substrate 17. Therefore, it is possible to prevent resonance caused by the inductance of the wire bonding wires 70 a and 70 b connecting the light receiving element 18 and the transimpedance amplifier 19.
  • a light through hole 14 for inserting the ball lens 12 into the cap member 13 was formed, and the ball lens 12 was inserted into this light through hole 14 to realize a sealed structure.
  • a sealed structure can be realized at low cost, and a reliable sealed structure can be realized.
  • a parabolic mirror is used as a reflecting mirror having a quadratic curved reflecting surface, but a hyperboloid mirror having a hyperboloid reflecting surface is used. Even good.
  • a photodiode is used as the light receiving element 18. However, another optical semiconductor element such as an avalanche photodiode may be used.
  • Embodiment 2 A light-receiving element module according to Embodiment 2 will be described with reference to FIG.
  • a front-illuminated photodiode 180 is used as the light-receiving element.
  • a back-illuminated photodiode 180 is used in the light-receiving element module of the second embodiment.
  • the groove of the parabolic mirror 16 for connecting the light receiving element 180 to the transimpedance amplifier 19 by wire bonding is not required.
  • FIG. 12 is a diagram for explaining the electrical connection between the light-receiving element 180 and the transimpedance amplifier 19.
  • FIG. 12A shows a vertical cross section around the parabolic mirror 16.
  • FIG. 1B is a front view
  • FIG. 1C is a plan view when the parabolic mirror 16 is removed.
  • parts having the same functions as those in FIG. 10 are denoted by the same reference numerals.
  • the light-receiving element 180 mounted on the light-receiving element substrate 1775 is made of a back-illuminated type photodiode having a light-receiving surface on the back side, and a light-receiving surface (photodiode portion) on the back side. ) 180 a is formed.
  • a pair of electrodes 175a and 175c are formed on the surface of the light-receiving element substrate 175. a pair of electrodes 175a and 175c (a pair of p-side and n-side electrodes) are formed. ing.
  • a pair of terminals (anode, power source) (not shown) of the light-receiving element 180 are connected to the electrodes 1775a and 175c of the light-receiving element substrate 175 by soldering, respectively. Further, the back surface electrode of the capacitor 32 b is soldered to the upper surface of the electrode 175 a. The surface electrode of the capacitor 32 b is connected to another conductive pad 175 b of the light-receiving element substrate 175. Conductor pad 175b is connected to the surface of base 11 via through hole 175e.
  • One end of the wire bond 70a is bonded to the other conductive pad 1 75d of the light receiving element substrate 17 5d, and the other end of the wire bond 70a is connected to the pad 19a of the transimpedance amplifier 19. It is connected.
  • the surface electrode of the capacitor 32 b is also connected to the conductor pad 175 d of the light-receiving element substrate 175.
  • One end of the wire bond 70 b is connected to the electrode 175 c, and the other end of the wire bond 7 b is bonded to the pad 19 b of the transimpedance amplifier 19.
  • the light receiving element module of the second embodiment since a back-illuminated photodiode is used as the light receiving element 180, the light receiving element 180 and the transimpedance amplifier 19 are connected by wire bonding. Since the groove 16b (see Fig. 10) of the parabolic mirror 16 is not required, the machining of the groove 16b of the parabolic mirror 16 becomes unnecessary, and the parabolic mirror 16 Can be reduced in manufacturing cost.
  • FIG. 13 schematically shows a vertical cross-sectional view of the light receiving element module 3 in FIG. 1, in which some parts are not shown and the parts are simplified. .
  • parts having the same functions as in FIG. 2 are denoted by the same reference numerals. As shown in Fig.
  • the pedestal 11 has a A lance impedance amplifier 19 is arranged, and a parabolic mirror 16 is arranged after the light receiving element 18. At this time, a parabolic mirror 16 is provided on the strip differential signal lines 31a and 31b so that the strip differential signal lines 31a and 31b do not interfere with the light receiving element 18. .
  • the light receiving element module of the third embodiment since the transimpedance amplifier 19 is arranged on the pedestal 11 in front of the light receiving element 18, the light receiving element module of the third embodiment is different from the light receiving element module of the first embodiment.
  • the space in the horizontal direction (horizontal direction) of the light-receiving element module can be reduced by the space where the transimpedance amplifier 19 is arranged.
  • the width of the parabolic mirror 16 in the lateral direction can be reduced to the same extent.
  • the wire pins 70a and 70b connecting the transimpedance amplifier 19 and the light-receiving element 18 should be arranged in front of the parabolic mirror 16 (on the optical fiber 20 side).
  • the transimpedance amplifier 19 and the light receiving element 18 can be connected without providing a groove 16b for passing a wire bond on the lower surface of the surface mirror 16.
  • the wire bonds 95 a and 95 b are arranged so as to avoid the parabolic mirror 16.
  • Embodiment 4 A light receiving element module according to Embodiment 4 will be described with reference to FIG.
  • the ball lens 12 is inserted into the light through hole formed in the cap member 13 to form a sealed structure.
  • a transparent member is disposed in a light through hole formed in the cap member 13 to form a closed structure.
  • FIG. 14 schematically shows a vertical cross-sectional view of the light-receiving element module 3 of FIG. 1, in which some parts are omitted, and some parts are simplified. I have.
  • the parts having the same functions as those in FIG. 2 are denoted by the same reference numerals.
  • a lens holding member 80 for holding the lens 12 is provided between the receptacle 2 and the cap member 13.
  • the end face of the lens holding member 80 is joined to the one end face of the cap member 13 on the light through hole 81 side by welding or the like.
  • the outer periphery of the lens holding member 80 is fitted to the inner periphery of one end of the connecting member 85, and the connecting portion is connected to the lens holding member 8 °.
  • the material 85 slides and is welded.
  • the end face of the other end of the connection member 85 is welded to the end face of the receptacle 2 opposite to the hole 22.
  • a light through hole 81 is formed in the cap member 13, and the cap member 13 is fixed to the inner wall side of the cap member 13 in which the light through hole 81 is formed with low melting point glass or the like.
  • the light through hole 81 is covered with a transparent member (window member) 82 made of Kovar glass or the like. This transparent member 82 achieves a closed structure.
  • a cylindrical lens holding member 80 having an optical through hole for inserting the spherical lens 12 is fixed to the cap member 13.
  • a spherical lens 12 is inserted into the light through hole, and is fixed with an adhesive or the like. Further, the receptacle holder 2 is fixed to the lens holding member 80.
  • the transparent member 82 is fixed to the inner wall side of the cap member 13 in which the light through hole 81 is formed to cover the light through hole 81. Since a more sealed structure is to be realized, the sealed structure can be realized at a low cost, and a reliable sealed structure can be realized.
  • the light-receiving element module is composed of a mirror and a light-receiving element that receives the signal light reflected by the reflecting mirror and converts the signal light into an electric signal. Input, the area of the reflecting surface of the reflecting mirror can be reduced, and the reflecting mirror can be miniaturized.As a result, the influence of the coefficient of thermal expansion due to the material of the reflecting mirror is reduced, and the structure is reduced. Simplified. In addition, it is possible to provide a light-receiving element module that is inexpensive and can be downsized. Industrial applicability
  • the light receiving element module according to the present invention uses an optical fiber. Can be widely used for receivers and transceivers in optical communication systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

明 細 書 受光素子モジュール 技術分野
本発明は、 ホトダイォードなどの半導体受光素子が搭載される受光素子モジュ ールに関し、 さらに詳しくは、 光ファイバが付属した同軸型の受光素子モジユー ルゃ、 光フアイバを接続するためのレセプタクル型アダプタ付きの受光素子モジ ュールに関するものである。
背景技術
近年、 光ファイバを介して光信号を伝送する光通信システムにおいては、 イン ターネットの普及に伴なう通信トラフィックの増大に応えるため、 光信号の伝送 速度の高速ィヒが目覚しく、 伝送速度が 2 . 5 G b / sから 1 O G b Z sへと移行 しつつあり、 現在、 4 O G b / sの伝送速度の実現に向けて研究開発が進められ ている。 これに伴なレ、、 光送受信器の扱う信号の伝送速度についても、 高速化が 要求されている。
光送受信器は、 送信するデータ信号を電気信号から光信号に変換し、 送信用の 光ファイバを介して光信号を送信するとともに、 受信用の光ファイバを介して光 信号を受信し、 受信した光信号を電気信号として再生するものである。
この種の光受信器に用いられる受光素子モジュールとしては、 例えば、 特許公 報第 2 9 0 7 2 0 3号公報の技術が公知である。 上記特許公報では、 受光素子を 収納して当該受光素子を搭載する搭載面を有する箱型のハウジングと、 当該箱型 のハウジングの側壁から所定方向に沿って伸び、 かつ、 光ファイバの先端に取り 付けられたフヱルールを収納した状態で支持するスリーブと、 箱型のハウジング に収納され、 光ファイバと受光素子とを光学的に結合するための楕円面反射鏡と、 当該楕円面反射鏡を箱型のハウジング内の搭載面から所定距離離間させた状態で 箱型のハウジング内の所定位置に保持するための支持構造を設けた光モジュール が開示されている。
しかしながら、 上記特許公報の技術にあっては、 楕円面反射鏡を使用している ので、 光ファイバと受光素子を最適に配置するためには反射鏡の焦点距離を長く する必要があり、 そのために、 受光素子モジュールを小型化することができない という問題があった。 また、 反射鏡の反射点と受光素子の間隔が広いこと、 焦点 距離が長いことから、 環境温度により反射鏡の材料の熱膨張が発生し、 結果とし て像点位置の変化が大きくなるため、 これを防止するために特許公報第 2 9 0 7 2〇 3号公報に示される像点位置の補償手段が必要となり、 構造が複雑になる問 題があった。 さらに、 反射鏡の形状が楕円面であるためプラスチックモールドに 使用する鏡面の成形型の作成に鏡面フライス盤を使用する必要があり、 面精度を 確保するのが困難であるなどの問題があつた。
従って、 本発明は、 像点位置の温度補償手段などの複雑な構造を必要としない 簡単な構造で、 力つ小型化が可能な受光素子モジュールを提供することを目的と している。 発明の開示
この発明にかかる受光素子モジュールは、 光ファイバから射出される信号光を 受光する受光素子モジュールにおいて、 前記光ファイバから射出された前記信号 光を集光するレンズと、 前記レンズによって集光された前記信号光を反射させる 2次曲面の反射面を有する反射鏡と、 前記反射鏡によつて反射された前記信号光 を受光して電気信号に変換する受光素子と、 を備えたことを特徴とする。
また、 前記反射鏡は、 放物面鏡であっても良い。
また、 前記レンズで集光される前記信号光は前記反射面の軸に略平行に前記反 射面に入射し、 前記反射面では、 前記反射面の中心から略半径分オフセットした 位置で、 入射される前記信号光を反射するようにしても良い。
また、 前記レンズで集光される前記信号光は前記反射面の軸に略平行に前記反 射面に入射し、 前記反射面では、 入射される前記信号光を略直角に屈曲させて反 射することにしても良い。
また、 前記反射鏡は、 双曲面鏡であっても良い。
また、 前記レンズは、 球レンズであっても良い。
また、 前記受光素子と同一平面上に近接して配され、' 前記受光素子で変換され た電気信号を増幅するトランスインピーダンスアンプをさらに備えていても良い。 また、 前記反射鏡は、 プラスチックモールドで形成されたものに、 反射面を設 けたものであっても良い。
また、 前記光ファイバは、 前記光ファイバと前記レンズとが成す光軸に対し、 当該光軸方向および当該光軸に直角な 2方向の 3軸方向の調整を行っても良い。 また、 つぎの発明は、 光ファイバから射出される信号光を受光する受光素子モ ジュールにおいて、 信号ピンを貫通するステムと、 前記ステムに対して垂直方向 に固定される台座と、 光貫通孔を有し、 前記ステムに固定されるキャップ部材と、 前記光貫通孔に挿入され、 前記光ファイバから射出される信号光を集光する球レ ンズと、 前記台座上に配され、 前記球レンズで集光された信号光を略直角に屈曲 させて反射する放物面鏡と、 前記台座上に配され、 前記放物面鏡で反射された信 号光を受光して電気信号に変換する受光素子と、 前記台座上に前記受光素子と近 接して配され、 前記受光素子で変換された電気信号を増幅するトランスインピー ダンスアンプと、 を備えたことを特徴とする。
また、 つぎの発明は、 光ファイバから射出される信号光を受光する受光素子モ ジユーノレにおいて、 信号ピンを貫通するステムと、 前記ステムに対して垂直方向 に固定された台座と、 第 1の光貫通孔を有し、 前記ステムに固定されるキャップ 部材と、 前記第 1の光貫通孔を覆う窓部材と、 第 2の光貫通孔を有し、 前記キヤ ップ部材に固定されるレンズ保持部材と、 前記第 2の光貫通孔に挿入され、 前記 光ファイバから射出される信号光を集光する球レンズと、 前記台座上に配され、 前記球レンズで集光された信号光を略直角に屈曲させて反射する放物面鏡と、 前 記台座上に配され、 前記放物面鏡で反射された信号光を受光して電気信号に変換 する受光素子と、 前記台座上に前記受光素子と近接して配され、 前記受光素子で 変換された電気信号を増幅するトランスインピーダンスアンプと、 を備えたこと を特徴とする。 図面の簡単な説明
第 1図は、 実施の形態 1にかかる受光素子モジュールの外観構成を示す図であ り、 第 2図は、 第 1図の受光素子モジュールの垂直断面図を模式的に示した図で あり、 第 3図は、 ガウスビームの広がりを説明するための図であり、 第 4図は、 各種記号を説明するための図であり (その 1 ) 、 第 5図は、 各種記号を説明する ための図であり (その 2 ) 、 第 6図は、 物点一レンズ間隔と横倍率の関係を説明 するための図であり、 第 7図は、 物点一レンズ間隔と R点一像点距離の関係を説 明するための図であり、 第 8図は、 第 1図の受光素子モジュールの水平断面図、 垂直断面図であり、 第 9図は、 ステムとピンと台座の配置関係などを示すための 図であり、 第 1 0図は、 受光素子とトランスインピーダンスアンプの電気的な接 続を説明するための図であり (その 1 ) 、 第 1 1図は、 受光素子とトランスイン ピーダンスアンプの電気的な接続を説明するための図であり (その 2 ) 、 第 1 2 図は、 実施の形態 2の受光素子モジュー^^を説明するための図であり、 第 1 3図 は、 実施の形態 3の受光素子モジュールを説明するための図であり、 第 1 4図は、 実施の形態 4の受光素子モジユールを説明するための図である。 発明を実施するための最良の形態
以下、 図面を参照して、 本発明にかかる受光素子モジュールの好適な実施の形 態を詳細に説明する。
実施の形態 1 .
第 1図〜第 1 1図を参照して、 この発明の実施の形態 1の受光素子モジュール について説明する。 この実施の形態 1の受光素子モジュールは、 安価なキャンパ ッケージ型のモジュール形態を採用しており、 パッケージ内には受光素子として ホトダイオードが内蔵されている。 また、 本明細書では、 受光素子モジュールと は、 密閉用のキャップ (蓋) がないものも含めた総称とする。
第 1図は、 受光素子モジュール 3の外観構成を示している。 同図に示す如く、 受光素子モジュール 3は、 キャップ部材 1 3とステム 1 0を備えたキャンパッケ ージ 1と、 光ファイバ 2 0が接続されたフエルール 2 1が揷入されるレセプタク ル 2とから構成されている。 通常、 ステム 1 0は直径 6 mm以下である。
第 2図は、 第 1図の受光素子モジュール 3の受光原理を説明するために受光素 子モジュール 3の垂直断面図を模式的に示している。 第 2図は、 後述する第 8図 の構造を簡略化して模式的に示したもので、 一部の部位の図示を省略し、 また、 部位を簡易化して図示している。
受光素子モジュール 3は、 第 2図に示す如く、 信号ピン 4 0 (信号ピン 4 1 a および 4 1 b、 グランドピン 4 2 aおよび 4 2 b、 電圧供給ピン 4 3 aおよび 4 3 bに対応) を貫通するステム 1 0と、 ステム 1 0に対して垂直方向に固定され る台座 1 1と、 光貫通孔 1 4を有し、 ステム 1 0に固定されるキャップ部材; L 3 と、 光貫通孔 1 4に挿入され、 光ファイバ 2 0から射出される信号光を集光する 球レンズ 1 2を有している。 また、 台座 1 1上に配され、 球レンズ 1 2で集光さ れた信号光を略直角に屈曲させて反射する放物面鏡 1 6と、 台座 1 1上に配され、 放物面鏡 1 6で反射された信号光を受光して電気信号に変換する受光素子 1 8と、 台座 1 1上に受光素子 1 8と近接して配され、 受光素子 1 8で変換された電気信 号を増幅するトランスィンピーダンスァンプ 1 9等を備えている。 受光素子 1 8 として、 この実施の形態ではホトダイォードを用いている。
ステム 1 0には、 信号ピン 4 0が誘電体 6 0 (誘電体 6 1、 6 3 a、 6 3 bに 対応) を介して貫通され、 台座 1 1とキャップ部材 1 3がステム 1 0に対して垂 直方向に固定されている。 この台座 1 1には、 受光素子 1 8、 放物面鏡 1 6、 お ょぴトランスインピーダンスアンプ 1 9が近接させて載置されている。 キャップ 部材 1 3には、 球レンズ 1 2を挿入するための光貫通孔 1 4が形成されており、 球レンズ 1 2はキャップ部材 1 3の光貫通孔 1 4に挿入され、 内部の密封構造が 達成される。 球レンズ 1 2は、 例えば、 安価な BK7 (屈折率 1. 51、 ショッ ト社の商品名) で構成することができる。 また、 キャップ部材 13には、 フェル ール 21を揷入するための挿入孔 22が形成されているレセプタクル 2が固定さ れている。 上記放物面鏡 16は、 反射面 16 aを有しており、 その放物面 (反射 面) の回転対称軸から略半径分オフセットした位置に球レンズ 12で集光された 信号光が入射するように配置されている。 なお、 ここでいう、 半径とは後述する 放物面の曲率半径を意味している。
つぎに、 光ファイバ 20から出射される信号光の伝達経路を説明する。 光ファ ィバ 20から出射される信号光は、 球レンズ 12に入射する。 球レンズ 12は、 入射する信号光を集光する。 球レンズ 1 2で集光された信号光の主光線は、 放物 面鏡 16の反射面 16 aの回転対称軸に略平行に反射面 16 aに入射する。 放物 面鏡 16の反射面 16 aでは、 入射される信号光が略直角に屈曲されて反射され、 受光素子 18に入射する。 放物面鏡 16の特性によりこの反射で信号光は集光さ れる。 受光素子 1 8は、 入射する信号光を電気信号に変換して、 トランスインピ 一ダンスアンプ 1 9に出力する。 トランスインピーダンスアンプ 19では、 受光 素子 18から入力される電気信号が増幅された後、 信号ピン 40から外部の上位 システムに出力される。 このように、 本発明の受光素子モジュールでは、 球レン ズ 12と放物面鏡 16で 2段階の集光が行われる。
ここで、 光ファイバ 20、 球レンズ 1 2、 放物面鏡 16、 受光素子 18の配置 について、 簡単に説明する。 まず、 放物面鏡 16によって、 光ファイバから射出 される信号光の光軸上に受光素子の受光面 (PD (Ph o t o D e t e c t o r) 受光面) の虚像が形成される。 一方、 光ファイバの信号光が射出される個所 (以下、 射出点) が物点に配置されており、 球レンズによって光ファイバの射出 点が信号光の光軸上に実像が結像される。 その際、 受光面の虚像の位置に対して 光ファイバの射出点の実像の位置が結像されるように光ファイバ 20、 球レンズ 12、 放物面鏡 16、 受光素子 18が配置されている。 即ち、 反射鏡で受光素子 の受光面をレンズの光軸上に虚像を成し、 物点に配置された光ファィバの発光点 がレンズを介して虚像位置に見える受光素子の受光面の虚像に対し結像するよう になっている。 尚、 反射鏡で受光素子の受光面を拡大してレンズの光軸上に実像 を成し、 物点に配置された光ファイバの発光点が、 レンズを介して、 実像位置に 見える受光素子の受光面の像に対し結像するようにしても良い。
つぎに、 第 3図〜第 7図を参照して、 上記球レンズ 1 2および放物面鏡 1 6の 具体的な設計例について説明する。 まず、 球レンズ 1 2の倍率について第 3図〜 第 5図を用いて説明する。 第 3図は、 ガウスビームの広がりを説明するための図、 第 4図および第 5図は、 各種記号を説明するための図を示している。
物点に配置され、 波長 λ の光を出射するスポット径 ω 1の光ファイバが、 横 倍率 mの理想レンズを介して、 近軸像点から zだけデフォーカスした像面で結像 する像のスポット径 ω 2は、 下式 (1) で表すことができる。 ω2(ζ) (1)
Figure imgf000009_0001
第 3図は、 上記式 (1) を利用して、 波長 1. 3 μηα、 スポット径 5 ηιの光 ファイバが、 横倍率 0. 5〜1倍の理想レンズを介して、 近軸像点からデフォー カス 60 μπι間の像面におけるスポット径を 1 0 μπι毎に示したものである。 ガ ゥスビームは、 スポット径 ( 1 / e 2の光強度) の 1. 5倍程度で 2 %程度の損 失となるため、 例えば、 1 0 G b / sの光伝送に使用される半径 1 0 μ mの受光 素子に対してはスポッ ト径 7. 5 m以下が好適な条件となる。 なお、 第 3図に おける凡例は (横倍率、 デフォーカス量 (mm) ) を意味している。 即ち、 例え ば、 ω 2 (m, 60 X 1 0—3) は、 横倍率が m倍でデフォーカス量が 6 0 μπιの ときのスポット径 (ω 2) を意味している。
第 3図より、 例えば受光素子の厚み公差 ± 30 μπιを考えた場合は、 横倍率 0. 7倍が最適となること、 および光軸ずれの大きい光学系 (例えば、 デフォーカス 量が 60 μπιの) では横倍率 1付近が良いこと等が分かる。 実際には、 光学系の 収差による像ボケと組立て公差を考慮して、 光学系全体の横倍率は 0. 5から 1 倍とされる。
つぎに、 レンズ 12と放物面鏡 16とによる光学系を第 4図について説明する。 第 4図において、 レンズ 12は焦点距離 f 1の理想レンズ 120とし、 放物面鏡 16は回転対称軸 z付近の曲率半径 rの放物面 16となる反射面 16 aを有する ものとする。 放物面 16は、 光軸と垂直な軸 yに対し z =y2/2 rの放物面で あり、 前記レンズの主光線が回転対称軸から高さ hの位置 (点 R) に入射して反 射されている。 ここで、 物点が光軸から δずれて発生する主光線の傾きを uと し、 u = 0の時に反射した光線と回転対称軸との交点を点 Q、 反射した光線と y 軸のなす角を Θ 角度 uの時に点 Qが δ' ずれた位置を点 Q' としている。 こ こで、 近軸かつ共軸の光学系にならって、 第 4図の光学系で倍率を仮に γ = δ, Ζδ と定義する。 図 4より δ = tanu、 RO' = ~ ^より δ'= RO'' = となるので、
cos6 cos6 cos 2 ø
倍率は下式で与えられる。 h sinu 1 h 1 ,―、 γ = >= ···( 2 ) fj tanu cos2e rlcos 2e
r h2
2
ここで、 角度 Θは放物面は z= なので tan8 = ^~^から求められる。
2r h 上記式 (2) より、 倍率 y は放物面 16に入射する位置 hの影響を受けるこ とが分かる。 まず、 このような使用方法をする場合、 放物面鏡 16は収差低減の ため、 h=r付近で使用すれば良く、 焦点距離を仮に f 2 = r、 主面位置を主光 線が反射鏡に入射する R点を含む平面と考えることができる。
つぎに、 放物面鏡 16で構成する光学系の部分系を第 5図について説明する。 この放物面鏡 16を仮に焦点距離 f 2の理想レンズ 162と考え、 受光素子の受 光面にできるスポット径を ω p d、 主面との間隔を d 0、 虚像のスポット径を co p d' 、 主面との間隔を d l (虚像であり負の数となる) とすると、 この部分 系の横倍率 m 2と d 1は次式で表すことができる。 m (3) πω,
C2+D2
λ
Figure imgf000011_0001
第 6図 (A) は半径 rが 0. 55mmから 0. 95 mmの放物面を有する放物 面鏡 16に対して、 主面と受光素子 18の受光面 (PD受光面) 18 aとの間隔 を示す距離 d 0に対する部分系の横倍率 m2を示したものである。 また、 第 6図 (B) は半径 rが 0. 55mmから 0. 95 mmの放物面 16の反射鏡に対して、 距離 d 0に対する虚像位置 d 1を示したものである。 なお、 第 6図の各図におけ る凡例は (放物面鏡 16の放物面の半径 (mm) 、 主面と受光素子 1 8の受光面 (PD受光面) 1 8 aとの間隔 (mm) ) を意味している。 即ち、 例えば、 m2 ( 0. 55, d 0 ) は、 半径が 0. 55 mmで主面と P D受光面の間隔が d 0の ときの横倍率 (m2) を意味している。
例えば、 簡単のためこの光学系全体の横倍率を 1倍とし、 レンズによる部分系 の横倍率を 2倍、 放物面 16の反射鏡による部分系の横倍率を◦. 5倍とすれば、 第 5図より点 R (主面) と PD受光面 1 8 aとの距離は、 放物面 16の反射鏡の 半径 rが 0. 55mmから 0. 95mmに対して、 0. 28mmから◦. 48m mとなり、 受光素子 18の配線に使用されるワイアボンドの立上り部分の高さを 許容するのに好適となり、 ワイアボンドと放物面鏡 16の反射鏡面との接触を防 止することができる。
つぎに、 球レンズ 12の部分系について説明する。 光ファイバ 20からの出射 光が入射する第 1レンズは半径 R、 屈折率 nの球レンズ 12であり、 その焦点距 離 f 1=R/ (2 (n— 1) ) となる。 第 2図の光線追跡は NA0. 2の範囲を NA0. 04刻みに 1 1本の光線で追跡した図であり、 N A 0. 16の光線と N AO. 2の光線が交差している。 このように、 球レンズ 12は安価であるが、 球 面収差が大きくレンズパワー (屈折力) の配分を多くする収差が増加するので、 ここではレンズの部分系の横倍率を 2倍とし、 放物面鏡 16にもパワーを配分し て収差を抑えている。 なお、 波長 1. 3 μ m、 スポット径 5 μπιの光ファイバの ΝΑは 1/e2強度で 0. 1であり、 NAO. 15でほぼ 98 %の光強度分布が あるので、 この程度の収差配分であれば像のボケは非常に小さくなる。
なお、 例えば、 放物面鏡 16の反射鏡を平面としてレンズ 1枚の有限系で収束 させた場合、 好適な横倍率 0. 8から 0. 9倍程度としても受光半径 10 μπιに 対する蹴られ損失は 5 %程度と大きくなることから、レンズの部分系の横倍率は 1倍以上が好適となる。
つぎに、 放物面反射鏡の構成について説明する。 第 2図に示す光学系における 非球面反射鏡の無収差条件が得られるのは双曲面反射鏡であり、 コリメート光線 を収束させる時に無収差条件となるのが放物面反射鏡 (放物面鏡 16) である。 • し力 し、 放物面反射鏡は回転対称軸と光軸とが平行である利点があり、 楕円面や 双曲面を製作する鏡面フライス盤よりも切削精度の高い鏡面旋盤でモールド型が 製作できる利点、 並びにこのモールド型に回転対称軸があるため直交方向に壁面 のある成形型の型組みが容易であるなどの利点がある。
つぎに、 放物面反射鏡 (放物面鏡 16) の製造に好適なプラスチックの熱膨張 係数ひ は 5. 6 X 105であり、 例えば半径 r力 S 0. 85 mmの放物面反射鏡 を横倍率 0. 5倍で使用する場合、 反射点 (第 4図の R点) と受光素子 18の受 光面 (PD受光面) 18 aとの間隔が 450 imであり、 受光素子 1 8の厚みが 1 50 μπι、 セラミックからなる受光素子用基板 (チップキャリア) 17の厚み が 145 111とすると、 環境温度が 25°Cから 85 °Cに変化した時、 反射鏡の底 面から反射点 (R点) の移動量は略 2. 5 μπιとなる。 一方、 焦点距離も 2. 8 μπιの変動するが、 例えば放物面反射鏡の部分系の縦倍率は約 0. 25倍程度に なるので影響は少ない。 同様にして、 半径 lmm以下、 放物面反射鏡の部分系の 横倍率が 1倍以下であれば、 像点の温度変動に伴なう像のボケは小さく、 特許公 報第 2 9 0 7 2 0 3号公報に示される像点位置の複雑な構造の像点補償手段を配 することもなく、 簡単な構造で好適なものが得られる。
以上の光学系の利点につき、 第 7図 (A) と第 7図 (B ) でさらに説明する。 第 2図に示す通りレンズ 1 2はキャップ 1 3に取付けられており、 このキャップ 1 3はステム 1 0にプロジェクション溶接などの方法で気密構造を成して溶接さ れる。 し力 し、 この溶接工程は比較的に位置精度の確保が難しい。 しかるに、 例 えば、 第 7図 (A) に示すように、 放物面反射鏡 1 6の反射点 Rとレンズ 1 2の 中心軸が距離 Δずれて溶接された場合、 光ファイバ 2◦、 またはレセプタクル 2の調整固定工程において、 レンズの部分系の横倍率を m 1として、 レンズ 1 2 の中心と光ファイバ 2 0とを Δ /m 1だけ移動させ、 またレンズ主面と光ファ ィバ 2 0の間隔 gを適宜に調整すれば、 放物面鏡 1 6における反射位置は前記 R 点の近傍となり、 収差の増加も比較的少なく、 第 7図 (B ) の実験例で示す通り、 距離 Δが 1 0 0 μ πιのずれに対しても受光感度の低下は 2 %程度で済む。 かか る構成により、 光ファイバ 2 0、 またはレセプタクル 2を光軸方向、 並びに光軸 と垂直方向に適宜調整して固定すると、 各部品の位置ずれを補正して好適な光学 結合を得られる。
つづいて、 第 1図の受光素子モジュール 3の詳細な構成について説明する。 第 8図 (A) (Β ) は、 第 1図の受光素子モジュール 3の水平断面図、 垂直断面図 を示すものである。 第 8図に示す如く、 受光素子モジュール 3は、 差動構成の信 号ピン 4 1 a、 4 1 b、 ホトダイオード 1 8のバイアス電圧の供給ピン 4 3 a、 トランスインピーダンスアンプ 1 9の電源電圧の供給ピン 4 3 b、 およびグラン ドビン 4 2 a、 4 2 b等がマウントされる円板状のステム 1 0と、 放物面鏡 1 6 および複数の素子が搭載される台形柱状の台座 1 1と、 光ファイバ 2 0から出射 される信号光を集光する球レンズ 1 2と、 台座 1 1などを外部から密閉するため の円筒形のキャップ部材 1 3と、 および光ファイバ 2◦が接続されたフエルール 2 1が挿入されるレセプタクル 2等を備えている。
キャップ部材 1 3は、 プロジェクシヨン溶接などによってステム 1 0に固定さ れる第 1キャップ部材 1 3 aと、 この第 1キャップ部材 1 3 aの先端側に外嵌さ れて YA G溶接などによって第 1キャップ部材 1 3 aに固定される第 2キャップ 部材 1 3 bとからなる 2段円筒形状を呈している。
第 1キヤップ部材 1 3 aの先端側には、 球レンズ 1 2の挿入用の光貫通孔 1 4 が形成されており、 この光貫通孔 1 4に球レンズ 1 2が挿入される。 球レンズ 1 2は、 例えば B K 7 (屈折率 1 . 5 1 ) で構成されており、 低融点ガラスによる 溶融接合などによって第 1キャップ部材 1 3 aに固定される。 第 1キャップ部材 1 3 aの内部空間 1 5は、 球レンズ 1 2によって外部から画成されており、 これ により台座 1 1が収納される内部空間 1 5を気密状態に保つようにしている。 第 2キャップ部材 1 3 bをフヱルール 2 1 (第 2図参照) が挿入される方向 ( 光軸方向) に位置決め調整して、 第 1キャップ部材 1 3 aに固定することで、 球 レンズ 1 2とレセプタクル 2に挿入される光ファイバ 2 0との光軸方向の位置合 わせを行う。
レセプタクル 2は、 光ファイバ 2 0が接続されたフエルール 2 1が挿入される フェルール挿入孔 2 2および光ファイバ 2 0から射出される信号光を通過させる ための光貫通窓 2 3を有している。 このレセプタクル 2は、 Y A G溶接などによ つて第 2キャップ部材 1 3 bに固定される。 レセプタクル 2を第 2キャップ部材 1 3 bに固定する際に、 光軸方向に垂直な 2つの方向に対する位置決め調整を行 うことで、 球レンズ 1 2とレセプタクル 2に装着される光ファイバ 2 0との光軸 に直角な 2つの方向に関する位置合わせを行う。 このように、 第 2キャップ部材 1 3 bとレセプタクル 2は固定される際に位置決め調整され、 光軸に対して 3軸 方向の調整が行われる。
光ファイバ 2 0が接続されているフエルール 2 1は、 フエルール 2 1がレセプ タクノレ 2のフエルール揷入孔 2 2に挿入されたとき、 フエルール 2 1を押圧しか つフエルール 2 1をレセプタクル 2にロック固定するための適宜の機構 (図示せ ず) を有している。
つぎに、 キャンパッケージ 1内の構成について説明する。 第 9図は、 ステム 1 0とピンと台座 1 1の配置関係などを示すための図である。 第 9図に示す如く、 キャンパッケージ 1は、 複数のピンがマウントされた円板状のステム 1 0と、 A g口ゥ付けなどによってステム 1 0の内壁面に垂直に固定される台形柱状の台座 1 1とから構成される。
ダランドを構成するステム 1 0には、 受光素子 1 8の信号伝送のための一対の 差動構成の信号ピン 4 1 a、 4 1 bと、 信号ピン 4 1 a、 4 1 bの両側に配され る 2本のグランドピン 4 2 a, 4 2 bと、 トランスインピーダンスアンプ 1 9の 電源電圧の供給や、 受光素子 1 8にバイアス電圧を供給するための電圧供給ピン 4 3 a、 4 3 bとがマウントされている。
信号ピン 4 1 a、 4 1 bおよびグランドピン 4 2 a、 4 2 bは、 ステム 1 0を 貫通するフィードスルーを構成している。 これら各信号ピンは、 ガラスなどの材 料で構成される誘電体 (6 1、 6 3 a、 6 3 b ) を介してステム 1 0に対し気密 封止状態で固定されている。 グランドピン 4 2 a、 4 2 bは、 グランドを構成す るステム 1 0の外壁面 1 0 zに圧着おょぴ溶接によって固定されている。
より詳細に説明すると、 ステム 1 0は、 コバール (F e—N i合金) 、 軟鉄あ るいは C u W 同タングステン) などの金属で構成され、 通常、 その上層に半田 付けのために N iや金などのメツキが施されている。 また、 ステム 1 0は、 例え ばコバール (F e— N i合金) や軟鉄の場合は金属板を金型で打ち抜いて作るこ とができ、 例えば C u Wの場合はィンジェクシヨンモールド技術で作ることがで き、 製造が簡単なので、 コストが安いという利点を有している。 ステム 1 0には、 複数の孔 5 1、 5 3 a , 5 3 bが分散して形成されており、 これらの孔 5 1、 5 3 a、 5 3 bに、 夫々誘電体 6 1、 6 3 a、 6 3 bが揷入される。
誘電体 6 1には一対のピン揷入孔 (符号省略) が形成され、 これらのピン挿入 孔に信号ピン 4 1 a、 4 1 bが挿入固定される。 同様に、 誘電体 6 3 a、 6 3 b には、 孔 (符号省略) がそれぞれ形成され、 これらの各孔に電圧供給ピン 4 3 a、 4 3 bが挿入固定される。 一対の信号ピン 4 1 a、 4 1 bが挿入される誘電体 6 1の形状は、 この場合長円形状を呈している。 これに対応して、 誘電体 6 1が揷 入される孔 5 1も長円形状を呈している。 その他の誘電体 6 3 a、 6 3 bは、 円 形形状としている。 なお、 グランドピン 4 2 a、 4 2 bは、 貫通されておらず、 前述したように、 ステム 1 0の外壁面 1 0 zに圧着および溶接によって固定され ている。
誘電体 6 1、 6 3 a、 6 3 bとしては、 例えば、 コバーノレガラス、 ほうけい酸 ガラスなどを使用する。 また、 信号ピン 4 1 a、 4 1 b、 電圧供給ピン 4 3 a、 4 3 b , およびグランドピン 4 2 a、 4 2 bとしては、 例えばコバール、 5 0 % N i - F e合金などの金属を使用する。
ステム 1 0と、 台座 1 1とを別体として製造する場合は、 台座 1 1はステム 1 0に対し A gロウ付けなどによって接続固定される。 勿論、 ステム 1 0と台座 1 1とを一体物として製造するようにしてもよい。
台座 1 1の上面には、 差動線路基板 3 1と、 トランスインピーダンスァンプ用 回路素子 3 3と、 受光素子用回路素子 3 2と、 トランスインピーダンスアンプ 1 9と、 放物面鏡 1 6と、 受光素子用基板 1 7とが搭載されている。 なお、 受光素 子用基板 1 7としてセラミックチップ型の容量を使用すれば、 受光素子との接続 を半田付け固定としてィンダクタンスを減らし、 トランスインピーダンスアンプ 1 9との配線などに依存する共振を防止することができ好適である。 台座 1 1は メツキにより一面の接地導体層 (以下べタグランド) を構成しており、 このベタ グランドは、 各素子の裏面に平面導体板として形成されたグランドに接続されて いる。
差動線路基板 3 1は、 対称形状に形成された一対のストリップ差動信号線 3 1 a、 3 l bと、 基板の裏面に平面導体板として形成されたべタグランド (図示せ ず) で構成されている。 ストリップ差動信号線 3 1 a、 3 1 bの一端側には、 ス テム 1 0から突出された信号ピン 4 1 a、 4 1 bと接触させるための一対のパッ ド (9 1 a、 9 1 b ) と、 フィードスルー部や前後の回路とのインピーダンス整 合をとるための幅広部 9 2やスタブ 9 3 aおよび 9 3 bが形成されている。 ステ ム 1 0にマウントされる信号ピン 4 1 a、 4 1 bの端部は、 差動線路基板 3 1の パッドにロゥ付けまたは半田付けによって接続固定されている。
受光素子用回路素子 3 2は、 受光素子用基板 1 7に搭載される受光素子 1 8に バイアス電圧を供給する際に適宜の周波数帯のノィズを除去するための回路素子 (容量、 抵抗、 コイル等) が搭載されている。 この受光素子用回路素子 3 2には、 パット (符号省略) が複数形成されており、 電圧供給ピン 4 3 aとワイヤボンド 9 5 aで接続され、 受光素子用基板 1 7のパットと他のワイヤボンド 7◦ cで接 続されている。
トランスインピーダンスアンプ用回路素子 3 3は、 トランスインピーダンスァ ンプ 1 9に供給する電源電圧の適宜の周波数のノイズを除去するための回路素子 (容量、 抵抗、 コイル等) が搭載されている。 このトランスインピーダンスアン プ用回路素子 3 3には、 パット (符号省略) が複数形成されており、 電圧供給ピ ン 4 3 bとワイヤボンド 9 5 bで接続され、 トランスインピーダンスアンプ 1 9 のパットとワイヤボンド 7 0 dで接続されている。
トランスインピーダンスアンプ 1 9の差動信号の出力端子は、 差動線路基板 3 1等のパットとワイヤボンド 9 6 a、 9 6 bで接続されている。 また、 トランス インピーダンスアンプ 1 9は、 受光素子 1 8、 受光素子用回路素子 3 2等のパッ トとワイヤボンドで接続されている (第 1 0図の説明で後述する) 。 トランスィ ンピーダンスアンプ 1 9では、 受光素子 1 8から入力される電気信号を電流電圧 変換した後に増幅する。
受光素子用基板 1 7は、 例えば、 p i n型のホトダイオード等の受光素子 1 8 を搭載しており、 また、 パット (符号省略) が複数形成されており、 受光素子用 回路素子 3 2およびトランスインピーダンスアンプ 1 9とワイヤボンドで接続さ れている。 受光素子 1 8は、 放物面鏡 1 6で反射された信号光を受光して電気信 号 (モニタ信号) に変換する。 この電気信号は、 トランスインピーダンスアンプ 1 9で増幅された後、 トランスインピーダンスアンプ 1 9における差動信号の出 力端子から出力され、 差動線路基板 3 1の一対のストリップ差動信号線 3 1 a、 • 3 l bを介して、 ステム 1 0にマウントされた信号ピン 4 1 a、 4 l bから上位 システムに出力される。
放物面鏡 1 6は、 プラスチックモールドで形成されている。 この放物面鏡 1 6 は、 第 8図に示すように、 放物面を呈する反射面 1 6 aを有しており、 受光素子 1 8と トランスインピーダンスアンプ 1 9をワイヤボンドで接続するための溝 ( 第 1 0図参照) が形成されている。 反射面 1 6 aは、 クロムなどの密着性の良い 下地皮膜を施した後で、 反射率の高い金、 ァノレミニゥム、 銀などの金属皮膜を電 子線ビーム蒸着やスパッタリングなどの方法で塗布される。 また、 反射膜は二酸 化チタンや二酸ィ匕シリコンの誘電体多層膜や、 アルミナや五酸化三タンタルなど を使用したもの、 また、 金属皮膜の上に誘電体の保護膜を塗布したものでも良い。 なお、 反射面 1 6 aの表面に絶縁膜を塗布することによって、 ワイアボンドとの 短絡防止に効果が有り、 好適である。
放物面鏡 1 6の反射面 1 6 aは、 球レンズ 1 2で集光された信号光を、 略 9 0 。 屈曲させて反射して受光素子 1 8の受光面 1 8 aに到達させる役割を果たし、 さらには、 反射面 1 6 aがパラボラ状になっていることから、 収差をほとんど発 生させずに、 受光素子 1 8の感度を増大させることができる。
このように、 放物面鏡 1 6で信号光の伝達経路を略直角に屈曲させることによ つて、 受光素子 1 8の表面に対して水平方向の位置に球レンズ 1 2や各種電気部 品を配置することが可能となり、 受光素子モジュールを薄型化することが可能と なる。
第 1 0図は、 受光素子 1 8と トランスインピーダンスアンプ 1 9の電気的な接 続を説明するための図であり、 同図 (A) は、 放物面鏡 1 6の周辺の垂直断面図、 同図 (B ) は正面図、 同図 (C) は放物面鏡 1 6を取り外した場合の平面図を示 すものである。 第 1 0図 (A) 〜 (C) に示す如く、 受光素子 1 8とトランスィ ンピーダンスアンプ 1 9は、 台座 1 1上の同一平面上に近接して搭載されている。 受光素子用基板 1 7に載置される受光素子 1 8は、 表面側に受光面を有する表面 入射型のホトダイォードからなり、 表面側に受光面 (ホトダイォード部分) 1 8 aおよび電極であるパット 1 8 b (例えば、 p側電極) が形成されている。 また、 受光素子用基板 1 7側には電極 (例えば、 n側電極) が形成されている。
放物面鏡 1 6には、 受光素子 1 8とトランスインピーダンスアンプ 1 9をワイ ャボンドで接続するための溝 1 6 bが形成されている。 なお、 溝 1 6 bは図面に おいては半円筒形の形状をしているが、 特に、 この形状に特定されるものではな く、 例えば、 直方形の形状でも構わない。 即ち、 放物面鏡 1 6が台座 1 1に設置 された状態で放物面鏡 1 0をトンネルのように貫通するようであれば、 どのよう な形状でも良い。 トランスインピーダンスアンプ 1 9には、 電気信号を入力する ためのパット 1 9 と、 グランド 1 9 aが形成されている。 受光素子 1 8のァノ 一ド側のパット 1 8 bとトランスインピーダンスアンプ 1 9のパッド 1 9 bとは ワイヤボンド 7 0 bの一端側および他端側がそれぞれボンデイングされている。 受光素子 1 8の力ソード側の電極 (図示せず) は、 受光素子用基板 1 7の電極 1 7 aに半田付されている。 受光素子用基板 1 7の電極 1 7 aはワイヤボンド 7 0 cを介して受光素子用回路素子 3 2に接続され、 受光素子用回路素子 3 2は電圧 ピン, 4 3 aに接続される。 容量 3 2 bの裏面の電極は受光素子用基板 1 7の電極 1 7 aに接続される。 容量 3 2 bの表面の電極は、 受光素子用基板 1 7のグラン ド面 1 7 bとワイヤボンド 7 0 eで接続される。 また、 容量 3 2 bの表面の電極 は、 トランスインピーダンスアンプ 1 9のグランド 1 9 aにワイヤボンド 7 0 a で接続される。 受光素子用基板 1 7のグランド面 1 7 bはスルーホール 1 7 cを 介して台座 1 1の表面 (グランド面) と接続される。
第 1 1図 (A) 〜 (C ) は、 第 1 0図 (A) 〜 (C) の他の例として、 受光素 子 1 8とトランスインピーダンスアンプ 1 9の電気的な接続を説明するための図 であり、 同図 (A) は、 放物面鏡 1 6の周辺の垂直断面図、 同図 (B ) は正面図、 同図 (C) は放物面鏡 1 6を取り外した場合の平面図を示すものである。 第 1 1 図 (A) 〜 (C) に示す如く、 受光素子用基板 1 7にセラミックチップ型の平行 平板の容量 1 7 0を使用して、 構造を簡単にしても良い。 この場合、 受光素子 1 8の裏面をセラミックチップ型の容量 1 7 0の上面に載置し、 セラミックチップ 型の容量 1 7 0の裏面を台座 1 1のグランド面に接続する。 即ち、 容量 1 7 0の 両端の電極の平面を台座 1 1と平行にして、 容量 1 7 0の下端の電極を台座 1 1 のグランド面に電気的に導通するように固定し、 容量 1 7 0の上端の電極にホト ダイォードの裏面側の電極と電気的に接続するように載置する。 また、 トランス インピーダンスアンプ 1 9のグランド 1 9 aは、 第 1 0図 (A) 〜 (C ) と同様 に台座 1 1のグランド面に接続される。 また、 トランスインピーダンスアンプ 1 9のパッド 1 9 bは受光素子 1 8のパッド 1 8 bと接続される。
実施の形態 1の受光素子モジュールによれば、 光ファイバ 2◦から射出される 信号光を球レンズ 1 2で集光し、 集光した信号光を放物面鏡 1 6で反射する構成 としているので、 放物面鏡 1 6の反射面 1 6 aの領域を小さくすることができ、 放物面鏡 1 6を小型化することが可能となる。 これにより、 受光素子モジュール を小型化することが可能となる。 また、 放物面鏡の反射面の小型化により、 反射 鏡の素材による熱膨張係数の影響も少なくなり、 構造が簡単化される。
また、 放物面鏡 1 6では、 放物面中心から略半径分オフセットした位置で信号 光を略直角に屈曲させて受光素子 1 8に入射させることとしたので、 放物面鏡 1 6の放物面 (反射面) による収差を低減することができ、 像ボケを少なくするこ とが可能となる。
また、 球レンズ 1 2と放物面鏡 1 6の放物面とで信号光を集光することとした ので、 球レンズ 1 2による屈折力を小さくして球面収差による像ボケを少なくす ることが可能となる。
また、 第 2キャップ部材 1 3 bとレセプタクル 2を固定する際に、 光軸に対し て 3軸方向 (光軸方向と光軸方向に垂直な 2方向) に調整することとしたので、 信号光の像を受光素子 1 8の受光面 1 8 aに精度良く位置合わせすることが可能 となる。
また、 台座 1 1上に受光素子 1 8と トランスインピーダンスアンプが搭載され ているトランスインピーダンスアンプ 1 9を近接させて配置することとしたので、 高周波特性を改善することが可能となる。
また、 受光素子用基板 1 7にはセラミックチップ型の容量を使用することによ つて、 受光素子 1 8とトランスインピーダンスアンプ 1 9とを接続するワイアボ ンド配線 7 0 a、 7 0 bのインダクタンスに伴なう共振を防止することが可能に なる。
また、 キャップ部材 1 3に球レンズ 1 2を挿入するための光貫通孔 1 4を形成 し、 この光貫通孔 1 4に球レンズ 1 2を挿入して密閉構造を実現することとした ので、 安価に密閉構造を実現でき、 また、 確実な密閉構造を実現することが可能 となる。
なお、 上記した実施の形態 1では、 2次曲面の反射面を有する反射鏡として、 放物面鏡を使用することとしたが、 反射面が双曲面である双曲面鏡を使用するこ とにしても良レ、。 また、 本実施の形態 1では、 受光素子 1 8として、 ホトダイォ 一ドを使用することとしたが、 アバランシエホトダイォード等の他の光半導体素 子を使用することにしても良い。
実施の形態 2 .
第 1 2図を参照して、 実施の形態 2の受光素子モジュールを説明する。 実施の 形態 1の受光素子モジュールでは、 受光素子として表面入射型のホトダイォード 1 8 0を使用することとしたが、 実施の形態 2の受光素子モジュールでは、 裏面 入射型のホトダイオード 1 8 0を使用して、 受光素子 1 8 0と トランスィンピー ダンスアンプ 1 9をワイヤボンドで接続するための放物面鏡 1 6の溝を不要とし たものである。 第 1 2図は、 受光素子 1 8 0とトランスインピーダンスアンプ 1 9の電気的な接続を説明するための図であり、 同図 (A) は、 放物面鏡 1 6の周 辺の垂直断面図、 同図 (B ) は正面図、 同図 (C ) は放物面鏡 1 6を取り外した 場合の平面図を示すものである。 第 1 2図において、 第 1 0図と同等機能を有す る部位には同一符号を付してある。
第 1 2図に示す如く、 受光素子用基板 1 7 5に載置される受光素子 1 8 0は、 裏面側に受光面を有する裏面入射型のホトダイォードからなり、 裏面側に受光面 (ホトダイォード部分) 1 8 0 aが形成されている。 受光素子用基板 1 7 5の表 面には、 一対の電極 1 7 5 a、 1 7 5 c (一対の p側と n側の電極) が形成され ている。 受光素子用基板 1 7 5の電極 1 7 5 a , 1 7 5 c上に、 受光素子 1 8 0 の図示しない一対の端子 (アノード、 力ソード) が夫々半田付けで接続される。 また、 電極 1 7 5 aの上面には、 容量 3 2 bの裏面電極が半田付けされている。 容量 3 2 bの表面電極は、 受光素子用基板 1 7 5の他の導体パッド 1 7 5 bに接 続される。 導体パッド 1 7 5 bは、 スルーホール 1 7 5 eを介して台座 1 1の表 面に接続される。 受光素子用基板 1 7 5の他の導体パッド 1 7 5 dに、 ワイヤボ ンド 7 0 aの一端側がボンディングされ、 ワイヤボンド 7 0 aの他端側がトラン スインピーダンスアンプ 1 9のパット 1 9 aに接続されている。 容量 3 2 bの表 面電極は、 受光素子用基板 1 7 5の導体パッド 1 7 5 dにも接続される。 ワイヤ ボンド 7 0 bの一端側は電極 1 7 5 cに接続され、 ワイヤボンド 7◦ bの他端側 は、 トランスインピーダンスアンプ 1 9のパット 1 9 bにボンディングされてい る。
実施の形態 2の受光素子モジュールによれば、 受光素子 1 8 0として、 裏面入 射型のホトダイオードを使用しているので、 受光素子 1 8 0と トランスインピー ダンスアンプ 1 9をワイヤボンドで接続するための放物面鏡 1 6の溝 1 6 b (第 . 1 0図参照) が不要となるため、 放物面鏡 1 6の溝 1 6 bの加工が不要となり、 放物面鏡 1 6の製造コストを低減することが可能となる。
実施の形態 3 .
第 1 3図を参照して、 実施の形態 3の受光素子モジュールを説明する。 実施の 形態 1の受光素子モジュールでは、 台座 1 1上でトランスインピーダンスアンプ 1 9を受光素子 1 8の後段側に配置しているが、 実施の形態 3の受光素子モジュ ールでは、 台座 1 1上でトランスインピーダンスアンプ 1 9を受光素子 1 8の前 段側に配置して、 受光素子モジュール 3の横幅方向 (水平方向) を省スペース化 するものである。 第 1 3図は、 第 1図の受光素子モジュール 3の垂直断面図を模 式的に示したものであり、 一部の部位の図示を省略し、 また、 部位を簡易化して 図示している。 第 1 3図において、 第 2図と同等機能を有する部位には同一符号 を付してある。 第 1 3図に示す如く、 台座 1 1には、 受光素子 1 8の前段側にト ランスインピーダンスアンプ 1 9が配置され、 受光素子 1 8の後段側に放物面鏡 1 6が配置されている。 このとき、 ストリップ差動信号線 3 1 a、 3 1 bは受光 素子 1 8と干渉しないように、 放物面鏡 1 6がストリップ差動信号線 3 1 a 、 3 1 bに設けら; る。
実施の形態 3の受光素子モジュールによれば、 台座 1 1上でトランスインピー ダンスアンプ 1 9を受光素子 1 8の前段側に配置しているので、 実施の形態 1の 受光素子モジュールに比して、 トランスインピーダンスアンプ 1 9を配置するス ペース分だけ受光素子モジュールの横幅方向 (水平方向) を省スペース化するこ とが可能となる。 また、 放物面鏡 1 6もその同程度横方向の幅を狭くできる。 また、 トランスインピーダンスアンプ 1 9と受光素子 1 8を接続するワイヤポ ンド 7 0 a、 7 0 bを、 放物面鏡 1 6の前方 (光ファイバ 2 0側) に配置すれば. 良く、 放物面鏡 1 6の下面に、 ワイヤボンドを通過させる溝 1 6 bを設けなくと も、 トランスインピーダンスアンプ 1 9と受光素子 1 8を接続することができる。 ただし、 ワイヤボンド 9 5 a 、 9 5 bは放物面鏡 1 6を避けるように配置する。 実施の形態 4 .
第 1 4図を参照して、 実施の形態 4の受光素子モジュールを説明する。 実施の 形態 1の受光素子モジュールでは、 キヤップ部材 1 3に形成されている光貫通孔 に球レンズ 1 2を挿入して密閉構造を形成していたが、 実施の形態 4の受光素子 モジュールでは、 キヤップ部材 1 3に形成されている光貫通孔に透明の部材を配 置して密閉構造を形成するものである。 第 1 4図は、 第 1図の受光素子モジユー ル 3の垂直断面図を模式的に示したものであり、 一部の部位の図示を省略し、 ま た、 部位を簡易化して図示している。 第 1 4図において、 第 2図と同等機能を有 する部位には同一符号を付してある。
レセプタクル 2とキャップ部材 1 3との間に、 レンズ 1 2を保持するレンズ保 持部材 8 0が設けられる。 レンズ保持部材 8 0の端面は、 キヤップ部材 1 3の光 貫通孔 8 1側の一端面に溶接などで接合される。 また、 レンズ保持部材 8 0の外 周は接続部材 8 5の一端側の内周と嵌合し、 レンズ保持部材 8◦に対して接続部 材 8 5が摺動して溶接される。 接続部材 8 5の他端側の端面は、 レセプタクル 2 の孔 2 2と反対側の端面が溶接される。
第 1 4図に示す如く、 キャップ部材 1 3には、 光貫通孔 8 1が形成されており、 光貫通孔 8 1が形成されたキヤップ部材 1 3の内壁側に低融点ガラス等で固定さ れたコバールガラス等からなる透明の部材 (窓部材) 8 2で光貫通孔 8 1が覆わ れている。 この透明の部材 8 2により密閉構造が達成される。 キャップ部材 1 3 には、 球レンズ 1 2を挿入するための光貫通孔が形成されている円筒形状を呈す るレンズ保持部材 8 0が固定されている。 この光貫通孔には、 球レンズ 1 2を揷 入されて接着剤等で固定される。 さらに、 レンズ保持部材 8 0には、 レセプタク ノレ 2が固定されている。
実施の形態 4の受光素子モジュールによれば、 光貫通孔 8 1が形成されたキヤ ップ部材 1 3の内壁側に、 透明の部材 8 2を固定して光貫通孔 8 1を覆うことに より密閉構造を実現することとしたので、 安価に密閉構造を実現でき、 また、 確 実な密閉構造を実現することが可能となる。
なお、 本発明は、 上記した実施の形態に限定されるものではなく、 発明の要旨 を変更しない範囲で適宜変形して実施可能である。
以上説明したように、 この発明によれば、 光ファイバから射出される信号光を 集光するレンズと、 レンズによつて集光された信号光を反射させる 2次曲面の反 射面を有する反射鏡と、 反射鏡によつて反射された信号光を受光して電気信号に 変換する受光素子とを備えて受光素子モジュールを構成したので、 反射面鏡には、 レンズで集光された信号光が入力するため、 反射鏡の反射面の領域を小さくする ことができ、 反射鏡を小型化することが可能となり、 この結果、 反射鏡の素材に よる熱膨張係数の影響も少なくなり、 構造が簡単化される。 また、 安価で小型化 が可能な受光素子モジュールを提供することが可能となる。 産業上の利用可能性
以上のように、 本発明にかかる受光素子モジュールは、 光ファイバを使用した 光通信システムの受信器およぴ送受信器に広く利用可能である

Claims

請 求 の 範 囲
1 . 光ファイバから射出される信号光を受光する受光素子モジュールにおいて、 前記光ファイバから射出される信号光を集光するレンズと、
前記レンズによって集光された信号光を反射させる 2次曲面の反射面を有する 反射鏡と、
前記反射鏡によって反射された信号光を受光して電気信号に変換する受光素子 と、
を備えたことを特徴とする受光素子モジユーノレ。
2 . 前記反射鏡によって前記レンズの光軸上に形成される前記受光素子の受光 面の虚像に対して、 前記レンズにより前記光ファイバにおける信号光の射出点の 実像が結像することを特徴とする請求の範囲第 1項に記載の受光素子モジュール。
3 . 前記反射鏡は、 放物面鏡であることを特徴とする請求の範囲第 1項に記載 の受光素子モジュール。
4 . 前記レンズで集光される信号光は前記反射面の軸に略平行に前記反射面に 入射し、
前記反射面では、 前記反射面の中心から略半径分オフセットした位置で、 入射 される前記信号光を反射することを特徴とする請求の範囲第 3項に記載の受光素 子モジュール。
5 . 前記レンズで集光される信号光は前記反射面の軸に略平行に前記反射面に 入射し、
前記反射面では、 入射される信号光を略直角に屈曲させて反射させることを特 徴とする請求の範囲第 3項に記載の受光素子モジュール。
6 . 前記反射鏡は、 双曲面鏡であることを特徴とする請求の範囲第 1項に記載 の受光素子モジュール。
7 . 前記レンズは、 球レンズであることを特徴とする請求の範囲第 1項に記載 の受光素子モジュール。
8 . 前記受光素子と同一平面上に近接して配され、 前記受光素子で変換された 電気信号を増幅するトランスインピーダンスアンプを備えたことを特徴とする請 求の範囲第 1項に記載の受光素子モジュール。
9 . 前記反射鏡は、 プラスチックモールドで形成されたことを特徴とする請求 の範囲第 1項に記載の受光素子モジュール。
1 0 . 前記光ファイバの光軸を、 当該光軸方向および当該光軸に直角な 2方向 の 3軸方向の調整を行うことを特徴とする請求の範囲第 1項に記載の受光素子モ ジユーノレ。
1 1 . 前記レンズの部分系の倍率を 1倍以上 3倍以下とし、
前記反射鏡の部分系の倍率を 1 Z 6倍以上 1倍以下とし、
前記レンズおよび前記反射鏡からなる光学系全体の倍率を 0 . 5倍以上 1倍以 下としたことを特徴とする請求の範囲第 1項に記載の受光素子モジュール。
1 2 . 前記反射鏡の曲率半径あるいは焦点距離が 1 mm以下であることを特徴 とする請求の範囲第 1項に記載の受光素子モジュール。
1 3 . グランドが前記トランスインピーダンスのグランドと電気的に接続され た容量を備え、
前記受光素子、 前記トンラスインピーダンスアンプおよび前記容量がほぼ同一 平面に配置されたことを特徴とする請求の範囲第 8項に記載の受光素子モジユー ル。
1 4 . 上面に前記受光素子を載置し、 その裏面を前記台座のグランド面に接続 する容量を備えたことを特徴とする請求の範囲第 8項に記載の受光素子モジユー ル。
1 5 . 光ファイバから射出される信号光を受光する受光素子モジュールにおい て、
信号ピンを貫通するステムと、
前記ステムに対して垂直方向に固定される台座と、
光貫通孔を有し、 前記ステムに固定されるキャップ部材と、
前記光貫通孔に揷入され、 前記光ファイバから射出される信号光を集光する球 レンズと、
前記台座上に配され、 前記球レンズで集光された信号光を略直角に屈曲させて 反射する放物面鏡と、
前記台座上に配され、 前記放物面鏡で反射された信号光を受光して電気信号に 変換する受光素子と、
前記台座上に前記受光素子と近接して配され、 前記受光素子で変換された電気 信号を増幅するトランスインピーダンスアンプと、
を備えたことを特徴とする受光素子モジュール。
1 6 . 光ファイバから射出される信号光を受光する受光素子モジュールにおい て、
信号ピンを貫通するステムと、 前記ステムに対して垂直方向に固定された台座と、
第 1の光貫通孔を有し、 前記ステムに固定されるキャップ部材と、
前記第 1の光貫通孔を覆う窓部材と、
第 2の光貫通孔を有し、 前記キャップ部材に固定されるレンズ保持部材と、 前記第 2の光貫通孔に揷入され、 前記光ファイバから射出される信号光を集光 する球レンズと、
前記台座上に配され、 前記球レンズで集光された信号光を略直角に屈曲させて 反射する放物面鏡と、
前記台座上に配され、 前記放物面鏡で反射された信号光を受光して電気信号に 変換する受光素子と、
前記台座上に前記受光素子と近接して配され、 前記受光素子で変換された電気 信号を増幅するトランスインピーダンスアンプと、
を備えたことを特徴とする受光素子モジュール。
PCT/JP2003/008858 2002-07-12 2003-07-11 受光素子モジュール WO2004019417A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03741363A EP1542291A4 (en) 2002-07-12 2003-07-11 PHOTORECESSOR DEVICE MODULE
CA002492785A CA2492785C (en) 2002-07-12 2003-07-11 Light receiving element module
US10/521,112 US7209610B2 (en) 2002-07-12 2003-07-11 Photoreceptor device module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-204781 2002-07-12
JP2002204781A JP2004047831A (ja) 2002-07-12 2002-07-12 受光素子モジュール

Publications (1)

Publication Number Publication Date
WO2004019417A1 true WO2004019417A1 (ja) 2004-03-04

Family

ID=31710285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008858 WO2004019417A1 (ja) 2002-07-12 2003-07-11 受光素子モジュール

Country Status (5)

Country Link
US (1) US7209610B2 (ja)
EP (1) EP1542291A4 (ja)
JP (1) JP2004047831A (ja)
CA (1) CA2492785C (ja)
WO (1) WO2004019417A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503706B2 (en) * 2003-09-05 2009-03-17 Sae Magnetics (Hong Kong) Limited MSM photodetector assembly
GB2428490B (en) 2005-07-19 2009-06-17 Gigacom Holding Ab Optical assembly
JP5197978B2 (ja) * 2007-03-29 2013-05-15 住友電工デバイス・イノベーション株式会社 光半導体モジュール
US20100098374A1 (en) * 2008-10-20 2010-04-22 Avago Technologies Fiber Ip (Signgapore) Pte. Ltd. Optoelectronic component based on premold technology
JP2014500968A (ja) * 2010-09-12 2014-01-16 アンフェノル−テュッヘル・エレクトロニクス・ゲーエムベーハー 光電子部品
KR101434395B1 (ko) * 2011-09-21 2014-09-02 한국전자통신연구원 양방향 광 송수신 장치
US9971088B2 (en) 2012-04-16 2018-05-15 Hewlett Packard Enterprise Development Lp Integrated optical sub-assembly
KR101388756B1 (ko) * 2012-06-27 2014-05-27 삼성전기주식회사 광 커넥터 및 이를 구비한 광 모듈
US9151912B2 (en) * 2012-06-28 2015-10-06 Corning Cable Systems Llc Optical fiber segment holders including shielded optical fiber segments, connectors, and methods
US10033464B2 (en) 2013-05-28 2018-07-24 Stmicroelectronics S.R.L. Optoelectronic device having improved optical coupling
DE102016106366B4 (de) 2016-04-07 2017-12-07 Schott Ag Linsenkappe für ein TO-Gehäuse
CN109891306A (zh) 2016-11-01 2019-06-14 金定洙 波长可变滤波器、利用波长可变滤波器的光接收器及光接收方法
US20220342160A1 (en) * 2019-09-25 2022-10-27 Mitsubishi Electric Corporation Photodetector module and photodetector
WO2021212850A1 (zh) * 2020-04-21 2021-10-28 青岛海信宽带多媒体技术有限公司 一种光模块
CN113625400B (zh) * 2020-05-08 2024-05-28 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195209A (en) * 1981-05-27 1982-11-30 Toshiba Corp Optical coupler
JPH0188907U (ja) * 1987-12-03 1989-06-12
JPH02130507A (ja) * 1988-11-11 1990-05-18 Fujitsu Ltd 受光素子部品
JPH0457006A (ja) * 1990-06-27 1992-02-24 Hitachi Ltd 光ファイバ付光電子装置
JPH0488308A (ja) * 1990-08-01 1992-03-23 Sumitomo Electric Ind Ltd 受光デバイス
EP0660146A1 (en) * 1993-12-27 1995-06-28 Nec Corporation Light-receiving structure for waveguide type optical devices
JPH08172207A (ja) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp 双方向光モジュール
JPH08227029A (ja) * 1995-02-22 1996-09-03 Nippon Telegr & Teleph Corp <Ntt> 光軸アライメント装置
JPH09222564A (ja) * 1996-02-15 1997-08-26 Jiro Sekine 正立光学系
JPH11190812A (ja) * 1997-12-25 1999-07-13 Kyocera Corp 双方向光素子モジュール
JP2000028872A (ja) * 1998-07-15 2000-01-28 Furukawa Electric Co Ltd:The 光モジュール
JP2001345456A (ja) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 広帯域光受信装置
US20020001870A1 (en) * 2000-06-23 2002-01-03 Mikio Oda Optical circuit in which fabrication is easy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644901B1 (fr) * 1989-03-24 1993-02-19 Commissariat Energie Atomique Dispositif susceptible de miniaturisation, pour la focalisation d'un faisceau laser issu d'une fibre optique
NL9000027A (nl) * 1990-01-05 1991-08-01 Philips Nv Opto-elektronische inrichting met een, een lens omvattende koppeling tussen een optische transmissievezel en een halfgeleiderlaserdiode.
US5335243A (en) * 1992-11-04 1994-08-02 Hughes Aircraft Company 3-D opto-electronic system with laser inter-substrate communication, and fabrication method
EP0613032B1 (en) * 1993-02-23 1999-01-20 The Whitaker Corporation Fiber optic coupling devices
US5684901A (en) * 1996-02-14 1997-11-04 Lucent Technologies Inc. Apparatus for minimizing spherical aberration of light beam emitted into an optical fiber and using radial displacement of corrective lens
JP2907203B1 (ja) 1998-02-20 1999-06-21 住友電気工業株式会社 光モジュール
DE19835149A1 (de) * 1998-08-04 2000-02-17 Gerd Laschinski Vorrichtung zur Umlenkung und Einkopplung des aus einem Lichtleiter austretenden Lichtes in einen anderen Lichtleiter
DE19932430C2 (de) * 1999-07-12 2002-03-14 Harting Elektrooptische Bauteile Gmbh & Co Kg Opto-elektronische Baugruppe sowie Bauteil für diese Baugruppe
DE19959781C2 (de) * 1999-12-07 2003-02-20 Infineon Technologies Ag Opto-elektronische Baugruppe mit integriertem Abbildungs-System

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195209A (en) * 1981-05-27 1982-11-30 Toshiba Corp Optical coupler
JPH0188907U (ja) * 1987-12-03 1989-06-12
JPH02130507A (ja) * 1988-11-11 1990-05-18 Fujitsu Ltd 受光素子部品
JPH0457006A (ja) * 1990-06-27 1992-02-24 Hitachi Ltd 光ファイバ付光電子装置
JPH0488308A (ja) * 1990-08-01 1992-03-23 Sumitomo Electric Ind Ltd 受光デバイス
EP0660146A1 (en) * 1993-12-27 1995-06-28 Nec Corporation Light-receiving structure for waveguide type optical devices
JPH08172207A (ja) * 1994-12-16 1996-07-02 Mitsubishi Electric Corp 双方向光モジュール
JPH08227029A (ja) * 1995-02-22 1996-09-03 Nippon Telegr & Teleph Corp <Ntt> 光軸アライメント装置
JPH09222564A (ja) * 1996-02-15 1997-08-26 Jiro Sekine 正立光学系
JPH11190812A (ja) * 1997-12-25 1999-07-13 Kyocera Corp 双方向光素子モジュール
JP2000028872A (ja) * 1998-07-15 2000-01-28 Furukawa Electric Co Ltd:The 光モジュール
JP2001345456A (ja) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 広帯域光受信装置
US20020001870A1 (en) * 2000-06-23 2002-01-03 Mikio Oda Optical circuit in which fabrication is easy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1542291A4 *

Also Published As

Publication number Publication date
EP1542291A1 (en) 2005-06-15
CA2492785C (en) 2010-03-09
EP1542291A4 (en) 2008-12-24
US20060110104A1 (en) 2006-05-25
CA2492785A1 (en) 2004-03-04
US7209610B2 (en) 2007-04-24
JP2004047831A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
WO2004019417A1 (ja) 受光素子モジュール
US7128477B2 (en) Optical transmitter and receiver module
US7345316B2 (en) Wafer level packaging for optoelectronic devices
US6409398B2 (en) Optical module and manufacturing method of optical module
JP2645862B2 (ja) 半導体発光装置およびその応用製品
KR100780522B1 (ko) 반도체 레이저
JPS59111123A (ja) 担体により保持されたダイオ−ドを有する送信又は受信のための装置
US11152342B2 (en) Receiver optical module and process of assembling the same
JP2004088046A (ja) 光受信器及びその製造方法
JP2007123739A (ja) 光送信モジュール、光送受信モジュール及び光通信装置
JPWO2007114053A1 (ja) 一心双方向光送受信モジュール及びその製造方法
JP2021057398A (ja) 光半導体装置及び光半導体装置の製造方法
JP3972677B2 (ja) 光モジュール
JP2000501856A (ja) 光電式送光および/または受光モジュールおよびその製造方法
JP2003241029A (ja) 光モジュールおよび光送受信器
JP4728625B2 (ja) 光半導体装置およびそれを用いた光モジュール
US20020134919A1 (en) Optical detector-preamplifier subassembly
JP4038669B2 (ja) 光受信器及びその製造方法
JP2009253176A (ja) 光電変換モジュール及び光サブアセンブリ
JP2009020201A (ja) 光モジュール
JP3295327B2 (ja) 双方向光モジュール
JP4072068B2 (ja) 同軸型半導体レーザモジュール
JP7210120B2 (ja) 光結合構造、光結合法方法、カメラモジュール
US20220221664A1 (en) Method of manufacturing light receiving module
JP2005148452A (ja) 光受信モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2492785

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003741363

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003741363

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006110104

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521112

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10521112

Country of ref document: US