WO2004018525A1 - 水素添加石油樹脂の製造法 - Google Patents

水素添加石油樹脂の製造法 Download PDF

Info

Publication number
WO2004018525A1
WO2004018525A1 PCT/JP2003/010560 JP0310560W WO2004018525A1 WO 2004018525 A1 WO2004018525 A1 WO 2004018525A1 JP 0310560 W JP0310560 W JP 0310560W WO 2004018525 A1 WO2004018525 A1 WO 2004018525A1
Authority
WO
WIPO (PCT)
Prior art keywords
petroleum resin
catalyst
hydrogenation
hydrogenation reaction
reaction tower
Prior art date
Application number
PCT/JP2003/010560
Other languages
English (en)
French (fr)
Inventor
Fumio Yamakawa
Takashi Nakagawa
Original Assignee
Idemitsu Petrochemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co., Ltd. filed Critical Idemitsu Petrochemical Co., Ltd.
Publication of WO2004018525A1 publication Critical patent/WO2004018525A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation

Definitions

  • the present invention relates to a method for producing a hydrogenated petroleum resin (hereinafter, abbreviated as a hydrogenated petroleum resin), and more particularly, to a method for producing a hydrogenated petroleum resin which can maintain a high catalytic activity even in a long-time continuous hydrogenation. It relates to a method for producing hydrogenated petroleum resin. '' Background technology
  • Hydrogenated petroleum resins are highly useful resins as hot melt adhesives and tackifiers for pressure-sensitive adhesive tapes.
  • This hydrogenated petroleum resin is usually mixed with olefins, diolefins, aromatic unsaturated compounds, and the like at an arbitrary ratio and polymerized. Then, in the presence of a hydrogenation catalyst, the hydrogenated petroleum resin is adjusted to a desired hydrogenation ratio. It is manufactured by adding.
  • the present invention relates to a method for producing a hydrogenated petroleum resin using a petroleum resin containing a sulfur compound, wherein a hydrogenated petroleum resin of stable quality is produced without reducing the activity of the hydrogenation catalyst due to the sulfur compound in the petroleum resin.
  • the purpose is to provide a method that can be manufactured at low cost. Disclosure of Invention ⁇
  • the present inventors have conducted various studies to solve the above problems, and as a result, in a method for producing a hydrogenated petroleum resin in which a petroleum resin is hydrogenated in multiple stages using a noble metal-based catalyst and / or a nickel-based catalyst, A distillation tower is provided after the former hydrogenation reaction tower, hydrogen sulfide generated in the former hydrogenation reaction tower is removed, and then the petroleum resin is further hydrogenated in the latter hydrogenation reaction tower to achieve the above-mentioned purpose. It has been found that the present invention can be achieved, and the present invention has been completed based on such knowledge.
  • the present invention 1.
  • a distillation tower is installed after the previous hydrogenation reaction tower to remove the hydrogen sulfide generated in the previous hydrogenation reaction tower, and then hydrogenated in the subsequent hydrogenation reaction tower. Manufacturing method of hydrogenated petroleum resin,
  • the petroleum resin used as a raw material has a softening point of 40 to 180 ° C and a number average molecular weight of 200 to 300. It is preferably used.
  • Such petroleum resins include aliphatic olefins having 4 to 10 carbon atoms, aliphatic olefins having 4 to 10 carbon atoms, and aliphatic olefins, which are obtained as by-products during production of ethylene or the like by thermal decomposition of naphtha or the like. Obtained by polymerizing or copolymerizing one or more unsaturated compounds selected from aromatic compounds having a saturated bond with a Friedel-Crafts catalyst such as aluminum chloride or boron trifluoride, or heat.
  • aliphatic petroleum resins aromatic petroleum resins, and copolymer petroleum resins.
  • Examples of the aliphatic olefin having 4 to 10 carbon atoms include butene, pentene, hexene, and heptene.
  • Examples of the aliphatic diolefin having 4 to 10 carbon atoms include conjugated diolefins, non-conjugated diolefins, and cyclopentadiene-based compounds. Pentagen and the like.
  • aromatic compound having an unsaturated unsaturated bond examples include a vinyl aromatic compound and an indene.
  • styrene monomethyl styrene, ⁇ -methylstyrene, vinylinolenorenine, and vinylinolexylene
  • Indene methylindene and ethylindene.
  • all of the raw material compounds of the petroleum resin do not need to be by-products at the time of production of olefins by thermal decomposition of naphtha or the like, and a chemically synthesized unsaturated compound may be used.
  • dicyclopentadiene-based petroleum resin obtained by polymerization of dicyclopentadiene and dicyclopentadiene
  • dicyclopentadiene-based pentagen obtained by copolymerizing dicyclopentadiene and styrene with distyrene.
  • a styrene copolymerized petroleum resin may be used.
  • the mass ratio of the reaction between the cyclopentadiene compound and the vinyl aromatic compound is 70/30 to 20/80, preferably 60/40 to 40/60.
  • the polymerization temperature is from 100 to 350 ° C, preferably from 220 to 300 ° C, and the polymerization pressure is from 0 to 3 MPa, preferably from 0 to 2 MPa.
  • the reaction time is 1 to 10 hours, preferably 2 to 8 hours.
  • solvent examples include benzene, toluene, xylene, cyclohexane, dimethylcyclohexane, ethylcyclohexane, and the like, with xylene and the like being preferred.
  • the amount of the solvent is 100 to 60 parts by mass of the raw material monomer, Parts by weight, preferably 20 to 50 parts by weight.
  • the raw material monomer and the solvent may be mixed in advance or heated, or the raw material monomer may be added in portions in the heated solvent.
  • the petroleum resin having a double bond or an aromatic nucleus obtained as described above is partially or completely hydrolyzed in the hydrogenation reaction step so as to conform to the performance required for the hydrogenated petroleum resin. Attached.
  • the hydrogenation temperature is from 100 to 300 ° C, preferably from 150 to 250 ° C. If the temperature is lower than 100 ° C, the progress of the hydrogenation reaction is not sufficient, and if the temperature exceeds 300 ° C, the petroleum resin is decomposed.
  • the hydrogenation pressure is from 1 to 1 OMPa, preferably from 2 to 7 MPa.
  • the liquid hourly space velocity (LHSV) of the hydrogenation reaction is 0.1 to: LO hr- 1 and preferably 0.1 to 3 hr- 1 .
  • cyclohexane ethylcyclohexane, dimethylcyclohexane and the like can be used, although not necessarily required.
  • a noble metal catalyst such as a general platinum catalyst and a palladium catalyst, and a nickel catalyst can be used.
  • a catalyst in which a plurality of metals such as platinum-palladium, nickel-copper-chromium, nickel-copper-zinc, nickel-tungsten, and nickel-molybdenum are combined can be suitably used.
  • Examples of the carrier for the catalyst include alumina, silica, silica alumina, titania, alumina polya, activated carbon, carbon black, diatomaceous earth, and zeolite.
  • the supported amount of the metal is a noble metal catalyst system, 0.1 to 5 wt%, rather preferably is from 0.2 to 3 mass 0/0, the nickel-based catalyst, 20 to 70 wt%, rather preferably 40 ⁇ 60% by mass
  • platinum / alumina, palladium / alumina, platinum-palladium / a Lumina, nickel diatomaceous earth, Raney nickel catalyst and the like are preferred.
  • a distillation tower is provided after the former hydrogenation reaction tower, hydrogen sulfide generated in the former hydrogenation reaction tower is removed, and then hydrogenation is continuously performed in the latter hydrogenation reaction tower. This is to obtain a petroleum fat.
  • Examples of the catalyst used in the first-stage hydrogenation reaction tower include noble metal-based catalysts such as a platinum-based catalyst and a palladium-based catalyst, and examples of the catalyst used in the second-stage hydrogenation reaction tower include a noble metal-based catalyst and a Z or nickel-based catalyst.
  • Various sulfur compounds such as mercaptans, carbon disulfide, sulfides, disulfides and thiophenes incorporated in petroleum resins are converted to hydrogen sulfide at a high rate when a noble metal catalyst is used. .
  • the sulfur compounds in the raw petroleum resin were hydrodesulfurized to hydrogen sulfide, and the generated hydrogen sulfide gas and the hydrogen sulfide dissolved in the hydrogenation reaction solution were removed by distillation. can do.
  • the hydrogen sulfide concentration in the first-stage hydrogenation reaction solution is reduced to 10 to 10,000 ppm, preferably 0 to 5 ppm, by passing through the distillation column.
  • the hydrogenation catalyst is supplied to the hydrogenation reaction tower, and the decrease in the activity of the hydrogenation catalyst in the subsequent hydrogenation reaction tower is greatly suppressed.
  • the number of the first-stage hydrogenation reaction tower is 1 to 5, preferably 1 to 2, and the number of the second-stage hydrogenation reaction tower is 1 to 5, preferably 1 to 3.
  • the type of distillation column is not particularly limited, and a flash distillation column may be used.However, the number of stages is 1 to 1 in order to increase the efficiency of removing hydrogen sulfide and to suppress loss accompanying the hydrogenation reaction solution with hydrogen and hydrogen sulfide.
  • a distillation column having 0 stages, preferably 3 to 7 stages of reboiler and condenser is suitable.
  • the pressure of the distillation column is 0.01 to 10 MPa, preferably 0.1 to: LMPa, and the bottom temperature of the distillation column is 300 ° C. or lower, preferably 250 ° C. or lower, more preferably 150 ° C. Distillation is carried out at ⁇ 250 ° C. The sulfur compounds that have become elementary are removed. ,
  • An autoclave was charged with 100 parts by mass of dicyclopentadiene, 100 parts by mass of styrene, and 180 parts by mass of xylene as a solvent, and was subjected to a polymerization reaction at 260 ° C. for 6 hours.
  • the autoclave was depressurized, and the solvent xylene and the low molecular weight polymer were separated and removed at 0.1 to 15 kPa and 100 to 300 ° C.
  • the sulfur content in the obtained petroleum resin (high molecular weight polymer) was 130 mass ppm.
  • the hydrogen supply rate was 2.5 parts by mass with respect to 100 parts by mass of petroleum resin, and the hydrogenation reaction was continuously performed under the conditions of a pressure of 4 MPa a ⁇ G and a temperature of 250 ° C. . Hydrogen sulfide content of the resulting hydrogenation reaction solution was because in 30 mass p pm in lump solvent Q.
  • the obtained hydrogenation reaction solution was supplied to a three-stage distillation column, and hydrogen sulfide was removed at a pressure of 0.55 to 0.65 MPa and a bottom temperature of 21 to 225 ° C.
  • a reaction tube filled with the obtained bottom liquid was filled with 45-47% Ni, 2-3% Cu, 2-3% Cr diatomaceous earth catalyst (manufactured by Nikki Chemical Co., Ltd., N-112). (second hydrogenation reactor), liquid hourly space velocity (LHS V) "" was fed so as to 3. 9 hr 1.
  • the supply amount of hydrogen was 3.2 parts by mass with respect to 100 parts by mass of the bottom liquid, and a continuous hydrogenation reaction was carried out under the conditions of a pressure of 4 MPa ⁇ G and a temperature of 200 ° C, and the activity of the catalyst
  • the change over time in the hydrogenation rate of the aromatic ring (aloma) when was stabilized was determined.
  • the hydrogenation rate of aromatic rings was 70% .
  • the hydrogenation rate of aromatic rings was 65%.
  • the hydrogenation ratio of the aromatic ring was 56%.
  • the hydrogenated reaction solution obtained in (2) of Example 1 was subjected to 45-47% Ni, 2-3% Cu, 2-3% Cr / diatomaceous earth catalyst (JGC Liquid space velocity in a reaction tube (second hydrogenation reaction tower) filled with N-111 (LHSV) was fed in such a way that 3. 9 hr 1.
  • the supply amount of hydrogen was 3.2 parts by mass with respect to 100 parts by mass of the hydrogenation reaction solution, and the hydrogenation reaction was continuously performed under the conditions of a pressure of 4 MPa G and a temperature of 200 ° C, and the activity of the catalyst.
  • the change over time in the hydrogenation rate of the aromatic ring (aloma) when was stabilized was determined.
  • the hydrogenation rate of the aromatic ring was 70% when 10 g of petroleum resin was supplied per 1 m of catalyst, but the hydrogenation rate of aromatic ring was 50% when 50 g of petroleum resin was supplied per 1 m of catalyst.
  • the hydrogenation rate dropped to 55%.
  • the hydrogenation reaction solution obtained in (2) of Example 1 was placed in a reaction tube (second hydrogenation reaction tower) filled with 2% platinum / alumina catalyst (manufactured by NE Chemcat) without distillation. , liquid hourly space velocity (LHS V) was fed so as to 3. 9 hr 1.
  • the supply amount of hydrogen was 3.2 parts by mass with respect to 100 parts by mass of the hydrogenation reaction solution, the hydrogenation reaction was continuously performed under the conditions of a pressure of 4 MPa ⁇ G and a temperature of 250 ° C, and the activity of the catalyst was The change over time in the hydrogenation rate of the aromatic ring (aloma) 'when the was stabilized was determined. As a result, when 50 g of a petroleum resin was supplied per 1 m of the catalyst, the hydrogenation ratio of the aromatic ring was only 11%.
  • a distillation tower is provided after the former hydrogenation reaction tower, and hydrogen sulfide generated in the former hydrogenation reaction tower is removed, whereby the hydrogenation catalyst in the latter hydrogenation reaction tower is removed. It is possible to stably produce an inexpensive and high-quality hydrogenated petroleum resin by significantly suppressing activity reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、石油樹脂を水素添加するにあたり、前段の水添反応塔の後に、蒸留塔を設け、前段の水添反応塔で生成した硫化水素を除去し、続いて後段の水添反応塔で水添する水添石油樹脂の製造法に関するものであり、長時間の連続水添においても高い触媒活性を維持することのできる生産性の高い水添石油樹脂の製造法に閲するものである。

Description

明 細 書 水素添加石油樹脂の製造法 技術分野
本発明は、 水素添加石油樹脂 (以下、 水添石油樹脂と略称する) の製造 法に関し、 更に詳しくは、 長時間の連続水添においても高い触媒活性を維 持することのできる生産性の高い水添石油樹脂の製造法に関するものであ る。 ' 背景技術
水添石油樹脂は、 ホットメルト型接着剤及び粘着テープの粘着付与剤と して有用性の高い樹脂である。
この水添石油樹脂は、 通常、 ォレフィン類、 ジォレフイン類及ぴ芳香族 不飽和化合物等を任意の割合で混合して重合し、 次いで、 水添触媒の存在 下に、 所望の水添率に水添す.ることにより製造されている。
水添工程においては、 水添触媒として、 貴金属系触媒及びニッケル系触 媒等を用いて多段階で水添すると、 その性能及び色相に優れた水添石油樹 脂が得られることが知られている。
水添石油樹脂の原料として用いられる化合物は、 ナフサの熱分解による エチレン製造時の副生物として得られる留分より製造されることが多く、 このために、 メルカプタン類、 二硫化炭素、 スルフィ ド類、 ジスルフィ ド 類及びチオフヱン類等の種々の硫黄化合物が通常硫黄として 1 0〜 1 0 0 0質量 p p m含有されている。
これらの硫黄化合物の一部は重合性を有しているため、 重合時に石油樹 脂中に取り込まれ、 その水添工程において、 水添触媒の触媒毒として作用 し、 触媒の水添活性を低下させるという問題がある。
水添触媒の活性が低下した場合、 反応温度を上昇することによつて所定 の水添率を維持することは可能であるが、 反応温度を高くすると石油樹脂 の分解が起こるようになる。
水添時間を長くすることによつても、 所定の水添率を維持することは可 能であるが、 この場合、 水添石油樹脂の生産性が低下することは避けられ ない。
又、 水素の供給量を増加し、 水素ノ石油樹脂の比を高めることによって、 所定の水添率を維持することが可能な場合もあるが、 多量の水素を用いる ため経済性が悪化し、 更には石油樹脂の分解が起こり易くなる場合もあり 好ましくない。
従って、 原料石油樹脂に含まれる硫黄化合物による水添触媒の活性低下 を招くことない水添石油樹脂の製造法の開発が要望されている。
本発明は、 硫黄化合物を含有する石油樹脂を用いる水添石油樹脂の製造 法において、 石油樹脂中の硫黄化合物による水添触媒の活性が低下するこ となく、 安定した品質の水添石油樹脂を安価に製造することのできる方法 を提 ί共することを目的とするものである。 発明の開示 ·
本発明者等は、 上記課題を解決するため、 種々検討を重ねた結果、 石油 樹脂を貴金属系触媒及び/又はニッケル系触媒を用いて多段階で水添する 水添石油樹脂の製造法において、 前段の水添反応塔の後に、 蒸留塔を設け、 前段の水添反応塔で生成した硫化水素を除去し、 続いて後段の水添反応塔 で更に石油樹脂を水添することにより、 上記目的が達成できることを見出 し、 かかる知見に基づいて本発明を完成するに至った。
即ち、 本発明は、 1 . 石油樹脂を水素添加するにあたり、 前段の水添反応塔の後に、 蒸留塔 を設け、 前段の水添反応塔で生成した硫化水素を除去し、 続いて後段の水 添反応塔で水添する水添石油樹脂の製造法、
2 . 石油樹脂が、 シクロペンタジェン系化合物及びビュル芳香族系化合物 を、 溶媒中で重合したものである上記 1に記載の水添石油樹脂の製造法、
3 . 石油樹脂が、 シクロペンタジェン及び/又はジシクロペンタジェンと スチレンの混合物を、 溶媒中で重合したものである上記 1に記載の水添石 油樹脂の製造法、
4 . 前段の水添反応塔と後段の水添反応塔において、 異なる水添触媒を用 いる上記 1に記載の水添石油樹脂の製造法、
5 . 前段の水添反応塔の触媒が、 パラジウム系触媒、 後段の水添反応塔の 触媒が、 ニッケル系触媒又は貴金属系触媒である上記 4に記載の水添石油 樹脂の製造法
に関するものである。 発明を実施するための最良の形態
本発明の水添石油樹脂の製造法において、 原料として用いる石油樹脂と しては、 軟化点が 4 0〜 1 8 0 °C、 数平均分子量が 2 0 0〜 3 0 0 0のも のが好適に用いられる。
このような石油樹脂は、 ナフサ等の熱分解によるエチレン等のォレフィ ン製造時に副生物として得られる炭素数 4〜 1 0の脂肪族ォレフイン、 炭 素数 4〜 1 0の脂肪族ジォレフイン、 ォレフィン性不飽和結合を有する芳 香族化合物から選ばれる一種又は二種以上の不飽和化合物を、 塩化アルミ ニゥム又は三フッ化ホウ素等のフリーデルクラフト触媒、 又は熱により、 重合又は共重合することにより得られる脂肪族系石油樹脂、 芳香族系石油 樹脂及び共重合系石油樹脂である。 炭素数 4〜 1 0の脂肪族ォ フィンと しては、 ブテン、 ペンテン、 へキ セン及びヘプテン等が挙げられる。
炭素数 4〜 1 0の脂肪族ジォレフインと しては、 共役ジォレフイン、 非 共役ジォレフィン及びシクロペンタジェン系化合物が挙げられ、 具体的に は、 ブタジエン、 ペンタジェン、 イソプレン、 メチノレペンタジ ン、 シク 口ペンタジェン及びジシク口ペンタジェン等が挙げられる。
ォレフィン性不飽和結合を有する芳香族化合物としては、 ビニル芳香族 系化合物及びインデン類が挙げられ、 具体的には、 スチレン、 ひ一メチル スチレン、 β—メチルスチレン、 ビニノレトノレニン、 ビニノレキシレン、 イン デン、 メチルインデン及びェチルインデン等が挙げられる。
又、 この石油樹脂の原料化合物は、 その全てがナフサ等の熱分解による ォレフィン製造時の副生物である必要はなく、 化学合成された不飽和化合 物を用いてもよい。
例えば、 シク口ペンタジェンゃジシクロペンタジェンの重合により得ら れるジシクロペンタジェン系石油樹脂、 及ぴこれらシク口ペンタジェン及 びジシク口ペンタジェンとスチレンを共重合して得られるジシクタ口ペン タジェンースチレン系共重合石油樹脂を用いてもよい。
シクロペンタジェン系化合物とビニル芳香族系化合物の反応の質量比は、 7 0 / 3 0〜 2 0 / 8 0、 好ましくは 6 0 / 4 0〜 4 0 / 6 0である。 重合温度は、 1 0 0〜 3 5 0 °C、 好ましくは 2 2 0 ~ 3 0 0 °C、 重合圧 力は、 0〜 3 M P a、 好ましくは 0〜 2 M P aである。
反応時間は、 1〜1 0時間、 好ましくは 2〜 8時間である。
溶媒としては、 ベンゼン、 トルエン、 キシレン、 シク口へキサン、 ジメ チルシク口へキサン、 ェチルシク口へキサン等が挙げられ、 キシレン等が 好ましい。
溶媒量としては、 原料モノマー 1 0 0質量部に対し、 溶媒 1 0〜 6 0質 量部、 好ましくは 20〜 5 0質量部である。
反応方法としては、 原料モノマーと溶媒をあらかじめ混合しても加熱し ても、 加熱した溶媒中に原料モノマーを分割添加してもよい。
上記のようにして得られた二重結合や芳香族核を有する石油樹脂は、 水 添反応工程において、 水添石油樹脂に耍求される性能に適合するように、 部分的に又は完全に水添する。
水添温度は、 1 00〜 3 0 0°C、 好ましくは 1 5 0〜 2 5 0°Cである。 温度が 1 0 0°C未満であると、 水添反応の進行が十分ではなく、 3 0 0°Cを超えると、 石油樹脂の分解を招くようになる。
水添圧力は、 1〜 1 OMP a、 好ましくは 2〜 7MP aである。 , 水添反応の液空間速度 (LHS V) は、 0. 1〜: L O h r— 1、 好まし くは 0. l〜3 h r— 1である。
溶媒は、 必ずしも必要ではないが、 シクロへキサン、 ェチルシクロへキ サン及びジメチルシク口へキサン等を用いることができる。
本発明の水添触媒としては、 一般的な白金系触媒及びパラジウム系触媒 等の貴金属系触媒、 並びにニッケル系触媒を用いることができる。
又、 白金一パラジウム、 ニッケル一銅一クロム、 ニッケル一銅一亜鉛、 ニッケル—タングステン及びニッケル一モリブデン等の複数の金属を組み 合わせた触媒も好適に用いることができる。
触媒の担体としては、 アルミナ、 シリカ、 シリカアルミナ、 チタニア、 アルミナポリア、 活性炭、 カーボンブラック、 珪藻土及びゼォライ ト等が 挙げられる。
金属の担持量としては、 貴金属触媒系では、 0. 1〜5質量%、 好まし くは 0. 2〜3質量0 /0、 ニッケル系触媒では、 20〜70質量%、 好まし くは 40〜 6 0質量%である '
特に、 白金/アルミナ、 パラジウム/アルミナ、 白金一パラジウム/ァ ルミナ、 ニッケルノ珪藻土、 ラネーニッケル触媒等が好ましい。
本発明は、 前段の水添反応塔の後に、 蒸留塔を設け、 前段の水添反応塔 で生成した硫化水素を除去し、 続いて後段の水添反応塔で連続的に水添を 行ない水添石油榭脂を得るものである。
前段の水添反応塔で用いる触媒としては、 白金系触媒及びパラジウム系 触媒等の貴金属系触媒が挙げられ、 後段の水添反応塔で用いる触媒として は、 貴金属系触媒及び Z又はニッケル系触媒が挙げられる。 . 石油樹脂中に取り込まれているメルカプタン類、 二硫化炭素、 スルフィ ド類、 ジスルフイ ド類及ぴチォフェン類等の種々の硫黄化合物は、 貴金属 系触媒を用いると、 高い割合で硫化水素に転化する。
従って、 前段の水添反応塔において、 原料石油樹脂中の硫黄化合物を水 添脱硫して硫化水素とし、 生成した硫化水素ガス及び水添反応液中に溶解 した硫化水素分を蒸留することにより除去することができる。
即ち、 前段の水添反応液中の硫化水素濃度 1 0〜1 000 p pmは、 蒸 留塔を経由することにより、 0〜1 0 p pm、 好ましくは 0〜5 p p mに 低下し、 後段の水添反応塔に供給され、 後段の水添反応塔における水添触 媒の活性低下は大幅に抑制される。
前段の水添反応塔の数は、 1〜5、 好ましくは 1〜2であり、 後段の水 添反応塔の数は 1〜5、 好ましくは 1〜3である。
蒸留塔の形式には特に制限はなく、 フラッシュ蒸留塔でもよいが、 硫化 水素の除去効率を高め、 水添反応液が水素及び硫化水素と同伴する損失を 抑制するために、 段数が 1〜1 0段、 好ましくは 3〜 7段のリボイラーと コンデンサーを有する蒸留塔が好適である。
蒸留塔の圧力は、 0. 01〜1 0MP a, 好ましくは 0. 1〜: LMP a、 蒸留塔の塔底温度は、 300°C以下, 好ましくは 250°C以下、 更に好ま しくは 1 50〜 250°Cで蒸留が行なわれ、 この工程で水添されて硫化水 素となった硫黄化合物を除去する。 ,
次に、 本発明を実施例により、 更に詳しく説明するが、 本発明は、 これ らの例によってなんら限定されるものではない。
実施例 1
( 1) 重合 、
オートクレーブに、 ジシクロペンタジェン 1 00質量部、 スチレン 1 0 0質量部及び溶媒としてキシレン 1 80質量部を仕込み、 26 0°Cで 6時 間重合反応を行った。
重合反応終了後、 オートクレープを脱圧し、 0. l〜1 5 k P a、 1 0 0〜3 00°Cで、 溶媒のキシレン及び低分子量重合体を分離除去した。 得られた石油樹脂 (高分子量重合体) 中の硫黄含有率は 1 3 0質量 p p mであった。
(2) 水素添加
得られた石油樹脂 1 00質量部に対して、 溶媒としてェチルシクロへキ サン 300質量部を加え、 0. 5%パラジウム アルミナ触媒 (NEケム キャッ ト社製) を充填した反応管 (第 1水添反応塔) に、 液空間速度 (L HSV) 力 S 1. 3 h r一1となるように供給した。
水素の供給量は、 石油樹脂 1 00質量部に対して 2. 5質量部とし、 圧 力 4 MP a · G、 温度 2 5 0°Cの条件で、' 連続的に水添反応を行なった。 得られた水添反応液中の硫化水素含有率は溶媒込みで 30質量 p pmで め た Q .
(3) 蒸留
得られた水添反応液を段数 3段の蒸留塔に供給し、 圧力 0. 5 5〜0. 6 5 MP a、 塔底温度 2 1 5〜 22 5°Cで、 硫化水素を除去した。
蒸留塔頭頂部より、 水素、 硫化水素及び溶媒のェチルシキロへキサンの 一部を留出させた後、 塔底液を抜き出した。 塔底液中の硫化水素含有率は 2質量 p pmであった、
(4) 水素添加
得られた塔底液を、 4 5~47%N i、 2〜3%C u, 2〜 3 % C rノ 珪藻土触媒 (日揮化学株式会社製、 N— 1 1 2) を充填した反応管 (第 2 水添反応塔) に、 液空間速度 (LHS V) " "が 3. 9 h r 1となるように 供給した。
水素の供給量は、 塔底液 1 00質量部に対して 3. 2質量部とし、 圧力 4 MP a · G、 温度 200°Cの条件で、 連続的に水素添加反応を行ない、 触媒の活性が安定した時の芳香環 (ァロマ) の水添率の経時変化を求めた。 その結果、 触媒 l m l当り石油樹脂 1.0 gを供給した時の芳香環の水添 率は 70 %、 触媒 1 m 1当り石油樹脂 50 gを供給した時の芳香環の水添 率は 6 5%、 及び触媒 1 m 1当り石油樹脂 200 gを供給した時の芳香環 の水添率は 56 %であった。
尚、 芳香環の水添率は下記の式より算出した。
芳香環の水添率%二 〔 (石油樹脂中の芳香環含有量一水添石油樹脂中の 芳香環含有量) ) 石油榭脂中の芳香環含有量〕 X 1 0 0
実施例 2
実施例 1の (4) 水素添加において、 触媒として 2%白金/アルミナ触 媒 (NEケムキャッ ト社製) を用い、 温度を 2 50°Cとした他は、 実施例 1と同様に反応及び操作を行なった。
その結果、 触媒 1 m 1当り石油樹脂 1' 00 gを供給した時の芳香環の水 添率は 8 8 %であった。 - 比較例 1
実施例 1の (2) で得られた水添反応液を、 蒸留を行なわず、 4 5〜4 7%N i、 2〜3%C u, 2〜3%C r /珪藻土触媒 (日揮化学株式会社 製、 N— 1 1 2) を充填した反応管 (第 2水添反応塔) に、 液空間速度 (LHSV) が 3. 9 h r 1となるように供給した。
水素の供給量は、 水添反応液 1 00質量部に対して 3 · 2質量部とし、 圧力 4MP a · G、 温度 200°Cの条件で、 連続的に水添反応を行ない、 触媒の活性が安定した時の芳香環 (ァロマ) の水添率の経時変化を求めた。 その結果、 触媒 1 m 1当り石油樹脂 1 0 gを供給した時の芳香環の水添 率は 70 %であったが、 触媒 1 m 1当り石油樹脂 50 gを供給した時の芳 香環の水添率は 5 5%に低下した。
比較例 2
実施例 1の (2) で得られた水添反応液を、 蒸留を行なわず、 2%白金 /アルミナ触媒 (NEケムキャッ ト社製) を充填した反応管 (第 2水添反 応塔) に、 液空間速度 (LHS V) が 3. 9 h r 1となるように供給し た。
水素の供給量は、 水添反応液 1 00質量部に対して 3. 2質量部とし、 圧力 4MP a · G、 温度 250°Cの条件で、 連続的に水添反応を行ない、 触媒の活性が安定した時の芳香環 (ァロマ)'の水添率の経時変化を求めた。 その結果、 触媒 1 m 1当り石油樹脂 5 0 gを供給した時の芳香環の水添 率はわずか 1 1 %であった。 産業上の利用可能性
本発明によれば、 前段の水添反応塔の後に、 蒸留塔を設け、 前段の水添 反応塔で生成した硫化水素を除去することにより、 後段の水添反応塔にお ける水添触媒の活性低下を大幅に抑制し、 安価で、 かつ品質に優れる水添 石油樹脂を安定して製造することができる。

Claims

請 求 の 範 囲 1 . 石油樹脂を水素添加するにあたり、 '前段の水添反応塔の後に、 蒸留塔 を設け、 前段の水添反応塔で生成した硫化水素を除去し、 続いて後段の水 添反応塔で水添する水添石油樹脂の製造法。
2 . 石油樹脂が、 シクロペンタジェン系化合物及びビニル芳香族系化合物 を、 溶媒中で重合したものである請求項 1に記載の水添石油樹脂の製造法。
3 . 石油樹脂が、 シク口ペンタジェン及び/又はジシク口ペンタジェンと スチレンの混合物を、 溶媒中で重合したものである請求項 1に記載の水添 石油樹脂の製造法。
4 . 前段の水添反応塔と後段の水添反応塔において、 異なる水添触媒を用 いる請求項 1に記載の水添石油樹脂の製造法。
5 . 前段の水添反応塔の触媒が、 パラジウム系触媒、 後段の水添反応塔の 触媒が、 ニッケル系触媒又は貴金属系触媒である請求項 4に記載の水添石 油樹脂の製造法。
PCT/JP2003/010560 2002-08-26 2003-08-21 水素添加石油樹脂の製造法 WO2004018525A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-244483 2002-08-26
JP2002244483A JP2004083679A (ja) 2002-08-26 2002-08-26 水素添加石油樹脂の製造法

Publications (1)

Publication Number Publication Date
WO2004018525A1 true WO2004018525A1 (ja) 2004-03-04

Family

ID=31944167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010560 WO2004018525A1 (ja) 2002-08-26 2003-08-21 水素添加石油樹脂の製造法

Country Status (3)

Country Link
JP (1) JP2004083679A (ja)
TW (1) TW200404822A (ja)
WO (1) WO2004018525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002131A (zh) * 2010-11-18 2011-04-06 中国海洋石油总公司 一种高品质氢化碳九石油树脂的制备方法
CN107876051A (zh) * 2016-09-29 2018-04-06 中国石油化工股份有限公司 一种石油树脂加氢用钯系催化剂、制备方法及其应用
CN111548450A (zh) * 2020-06-17 2020-08-18 武汉科林化工集团有限公司 一种高氯c9石油树脂的加氢方法
WO2021169016A1 (zh) * 2020-02-28 2021-09-02 宁波工程学院 一种碳九树脂的加氢催化方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106540640B (zh) * 2016-10-28 2018-08-21 中国石油化工股份有限公司 一种石油树脂加氢过程脱硫、脱氯的工业方法及装置
JP7346158B2 (ja) * 2019-08-22 2023-09-19 Eneos株式会社 含硫黄不飽和炭化水素重合体およびその製造方法、ゴム用添加剤、ゴム組成物、ならびにタイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251502A (ja) * 1988-08-15 1990-02-21 Idemitsu Petrochem Co Ltd 石油樹脂の製造方法
WO2001032719A2 (en) * 1999-11-02 2001-05-10 Engelhard Corporation Hydrogenation of hydrocarbon resins
JP2002088116A (ja) * 2000-09-14 2002-03-27 Idemitsu Petrochem Co Ltd 水素添加石油樹脂の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251502A (ja) * 1988-08-15 1990-02-21 Idemitsu Petrochem Co Ltd 石油樹脂の製造方法
WO2001032719A2 (en) * 1999-11-02 2001-05-10 Engelhard Corporation Hydrogenation of hydrocarbon resins
JP2002088116A (ja) * 2000-09-14 2002-03-27 Idemitsu Petrochem Co Ltd 水素添加石油樹脂の製造法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002131A (zh) * 2010-11-18 2011-04-06 中国海洋石油总公司 一种高品质氢化碳九石油树脂的制备方法
CN102002131B (zh) * 2010-11-18 2013-04-17 中国海洋石油总公司 一种高品质氢化碳九石油树脂的制备方法
CN107876051A (zh) * 2016-09-29 2018-04-06 中国石油化工股份有限公司 一种石油树脂加氢用钯系催化剂、制备方法及其应用
WO2021169016A1 (zh) * 2020-02-28 2021-09-02 宁波工程学院 一种碳九树脂的加氢催化方法
CN111548450A (zh) * 2020-06-17 2020-08-18 武汉科林化工集团有限公司 一种高氯c9石油树脂的加氢方法
CN111548450B (zh) * 2020-06-17 2022-09-09 武汉科林化工集团有限公司 一种高氯c9石油树脂的加氢方法

Also Published As

Publication number Publication date
JP2004083679A (ja) 2004-03-18
TW200404822A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
EP0082726B1 (en) Production of hydrofined hydrocarbon resins
EP0516733B1 (en) Hydrogenated resins, adhesive formulations and process for production of resins
CN106103500B (zh) 氢化石油树脂的制造方法
US6433104B1 (en) Hydrogenation process
CN106832127A (zh) 一种定向加氢制备氢化碳九石油树脂的方法
US9896399B2 (en) Selective hydrogenation method for phenylacetylene in the presence of cracking C8 fraction
EP2152649B1 (en) Dehydrogenation and polymerization process
JP2002275212A (ja) 水素化石油樹脂の製造方法および当該製造方法に用いる水素化触媒
WO2004018525A1 (ja) 水素添加石油樹脂の製造法
JP3687079B2 (ja) フェノール変性c9系水素化石油樹脂およびその製造方法
KR100643513B1 (ko) 폴리올레핀 중합용매의 수첨 정제방법 및 정제된 용매의재사용 방법
US10851270B2 (en) Adhesives comprising polyindane resins
JP3289310B2 (ja) 水添石油樹脂の製造方法
CN114436741B (zh) 一种环戊烯的制备方法
JP3316942B2 (ja) 水添石油樹脂の製造方法
EP0001330A1 (en) Process for increasing hydrogenation rate of polyolefins
CN107935806B (zh) 一种乙炔选择加氢生产乙烯的方法
JPS6335643B2 (ja)
JP3316899B2 (ja) 水添石油樹脂の製造方法
JP2002088116A (ja) 水素添加石油樹脂の製造法
US20050224395A1 (en) Prodcution of polymer/food grade solvents from paraffin rich low value streams employing hydroprocessing
KR20000066031A (ko) 석유 수지의 제조 방법
KR100338363B1 (ko) C4 탄화수소 혼합물로부터 c4 아세틸렌의 제거방법
JPH07102265A (ja) 炭化水素類中の不飽和炭化水素類及び有機硫化物の水素化方法
JPH02276804A (ja) 水素化炭化水素樹脂の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase