WO2004008624A1 - サーボ制御装置のゲイン調整方法 - Google Patents

サーボ制御装置のゲイン調整方法 Download PDF

Info

Publication number
WO2004008624A1
WO2004008624A1 PCT/JP2003/008548 JP0308548W WO2004008624A1 WO 2004008624 A1 WO2004008624 A1 WO 2004008624A1 JP 0308548 W JP0308548 W JP 0308548W WO 2004008624 A1 WO2004008624 A1 WO 2004008624A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
vibration
control
servo
speed
Prior art date
Application number
PCT/JP2003/008548
Other languages
English (en)
French (fr)
Inventor
Kazuo Sato
Yasufumi Yoshiura
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to US10/520,731 priority Critical patent/US7292001B2/en
Priority to JP2004521146A priority patent/JPWO2004008624A1/ja
Priority to EP03764130A priority patent/EP1536551A4/en
Publication of WO2004008624A1 publication Critical patent/WO2004008624A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41025Detect oscillation, unstability of servo and change gain to stabilize again

Definitions

  • the present invention relates to the control of a servomotor that drives a machine such as a linear motion table, an XY table or a robot.
  • a machine such as a linear motion table, an XY table or a robot.
  • a method of detecting the limit value of the servo control gain by detecting the vibration and vibration of the machine or the like by the vibration means is incorporated into the servo control device to generate a command from an external operation and sequence, by selecting a control method such as an observer to obtain optimal control. It is related to a gain adjustment method for driving and increasing the gain based on the information.
  • a conventional general servo control device includes a servo motor 6 to be controlled and an inverter that drives the motor 6 by switching a transistor 5 from a base drive circuit 4. And a CPU 2 that performs position control and speed control, and a current amplifier 3 that inputs a current command from the CPU 2 and outputs a drive command to the base drive circuit 4.
  • the “automatic servo control device” disclosed in Japanese Patent Application Laid-Open No. Hei 6-242483 sets a preset value at the start of operation of the servomotor so that it can respond to changes in the load machine connected to the servomotor.
  • the difference between the deviation force center curve and the reference model is integrated, the actual load is estimated, and the actual load is estimated by referring to the various loads created and stored in advance and the corresponding optimal control parameter table.
  • the corresponding optimal control parameters can be changed.
  • the present invention eliminates variations due to locations by performing gain adjustment by moving not only a specific location of the machine but also the entire operable range with a servomotor and servo control device for driving the machine. Reliable auto tuning is possible It is a first object of the present invention to provide a method of adjusting the gain of a servo control device that can be operated.
  • Fig. 17 shows a case where the gain is increased quickly ignoring this.At time t1, the gain has already been increased too much, and then at time t2 when oscillation is detected as shown in Fig. 17, Furthermore, the gain is too high, and even if the gain is lowered, the oscillation does not stop easily as shown in C in the figure, causing the machine to vibrate greatly. In addition, even if it does not oscillate but is slightly vibrating, there are small vibrations and noises, which has been a problem.
  • the present invention has a second object of increasing the control gain and causing the vibration, but suppressing the vibration tendency at the time of stoppage and stabilizing the vibration.
  • the third objective is to increase the control gain and vibrate, but to detect it early and stop immediately, so that the machine does not vibrate significantly and to obtain an optimal control method. I do.
  • the controller since the controller generates a command, the controller determines the maximum value of the oscillation and the gain and performs automatic tuning of the gain. Data transmission delay between the controller and the servo ⁇ The processing scan interval of the controller is slower than that of the servo, so it was not possible to judge it immediately and it took time. Even if vibrations occurred due to variations in the machine, etc., operations such as immediately decreasing the gain could not be performed.
  • a fourth object of the present invention is to automatically adjust the servo gain by incorporating an auto-tuning operation sequence started by an external operation into the servo to determine oscillation and the like in real time.
  • an invention according to claim 1 is a method for adjusting a gain of a servo control device having a speed control for outputting a torque command by inputting a deviation between a speed feedback from a servomotor and a command value.
  • the method after moving the movable range of the machine and oscillating by increasing the speed loop gain at a plurality of locations, decreasing the speed loop gain and setting the gain at which the vibration can be set as the maximum value, and setting the gain according to the machine as the maximum value. It is characterized by setting values.
  • the machine moves within the movable range, and for each of a plurality of adjustment points within the movable range, raises the speed loop gain and vibrates, and then sets the gain at which the vibration stops to the maximum value. Since the gain is adjusted by using a point where the vibration has subsided, there is ample room for vibration, and variations due to the location of the machine can be suppressed.
  • the invention according to claim 2 is characterized in that the gain setting value is a minimum value among the gain values at the plurality of locations.
  • the loop gain is adjusted for each adjustment point within the movable range of the machine, and the minimum value of the loop gain at each adjustment point is taken as the overall loop gain.
  • a servo control apparatus for driving a servomotor, comprising: a vibration detecting means for detecting a vibration of a control system; When the operation is stopped and vibration is detected by the vibration detection means, the control gain is reduced, etc.
  • the invention according to claim 4 is the method for adjusting a control gain according to claim 3.
  • the control gain is reduced.
  • the invention according to claim 5 is the method for adjusting a control gain according to claim 3.
  • the vibration at the time of stoppage in normal operation is detected and the control gain is increased by the vibration detecting means to detect the vibration, the vibration is maximized. Gain.
  • the invention of a method for obtaining an optimum control method according to claim 6 is a servo control device for driving a servo motor, comprising: a vibration detecting means for detecting a vibration of a control system; Has a vibrating means for applying a simulated disturbance torque to the torque command to adjust the magnitude of the vibrating, vibrating, and detecting the vibration by the vibration detecting means until a certain level of vibration is detected.
  • the process of increasing the control gain and adding the simulated disturbance torque is repeated, and the control of an observer or the like is performed by a limit gain extraction method in which the control gain when the vibration detecting means detects a vibration exceeding a certain level is used as a limit gain.
  • the method is selected to obtain the optimal control method.
  • the invention according to claim 7 is a method for adjusting a control gain according to claim 6, wherein In the method of obtaining the optimum control method by selecting the control method of the observer or the like, a control method having a high limit gain is selected as the optimum control method.
  • the invention according to claim 8 is the control gain adjusting method according to claim 6. In the method for obtaining the optimal control method by selecting the control method of the observer or the like, the control method having a high limit gain is the optimal control method.
  • a control gain adjusting method is a gain adjusting method for a servo control device having a speed control for outputting a torque command by inputting a deviation between a speed feedback from a servomotor and a command value.
  • a tuning method is used in which a tuning sequence is incorporated into a servo control device that drives a servomotor, a command is generated from an external operation and a sequence by an operation device, and a gain is adjusted based on the information obtained by driving. Things.
  • FIG. 1 is a configuration diagram of a servo control device commonly related to each embodiment of the present invention.
  • FIG. 2 is a control block diagram of the servo control device shown in FIG.
  • FIG. 3 is a diagram showing the timing of the gain and torque waveform when the gain increases and vibrates and the gain decreases.
  • FIG. 4 is a diagram showing a movable range of a machine driven by the servo control device shown in FIG.
  • FIG. 5 is a control block diagram according to the second and third embodiments.
  • Figure 6 is a measurement timing diagram of the speed command, speed, torque waveform and vibration level during normal operation.
  • Fig. 6 (i) shows the vibration level detection timing at the time of stop.
  • Fig. 6 (ii) shows the vibration level at stop
  • Fig. 6 (ii) shows the timing for adjusting the control gain.
  • FIG. 7 is an example of a relationship diagram between the speed loop gain and the torque amplitude at the stop.
  • Figure 8 is a schematic flowchart for adjusting the control gain of the present invention.
  • Figure 9 is a timing chart of the speed command, speed, torque waveform and vibration level measurement during normal operation.
  • FIG. 10 is a timing diagram of generating a vibration by increasing the control gain, decreasing the gain when the vibration occurs, and extracting the maximum gain.
  • FIG. 11 is a schematic flowchart for extracting the maximum gain of the present invention.
  • FIG. 12 is a configuration diagram of a servo control device for explaining an operation according to the fourth embodiment.
  • FIG. 13 is a sequence example.
  • FIG. 14 is a timing diagram of waveforms such as gain and torque or speed.
  • FIG. 15 is a diagram showing a conventional servo control device.
  • Fig. 16 (i) is a timing diagram in the case of vibration during normal operation.
  • Figure 16 (ii) is a timing diagram of increasing the gain during normal operation.
  • Fig. 17 shows an example in which the gain is increased quickly and the oscillation oscillates greatly in the case of adjustment during normal operation.
  • FIG. 1 is a configuration diagram of a servo control device according to an embodiment of the present invention.
  • FIG. 2 is a control block diagram of the servo control device shown in FIG.
  • Fig. 3 is a diagram showing the timing of the gain and torque waveforms when the gain increases and vibrates and the gain decreases.
  • FIG. 4 is a diagram showing the movable range of the machine of the servo control device shown in FIG.
  • 1 is a vibration detection circuit
  • 2 is a CPU
  • 3 is a current amplifier
  • 4 is a base drive circuit
  • 5 is a power transistor module
  • 6 is a motor.
  • FIG. 2 is a block diagram of the speed control.
  • 11 denotes speed control.
  • a speed command is input, and an adjustment gain such as a speed loop gain K and an integration time constant ⁇ i is provided.
  • 1ZJS (12) corresponding to the motor and the load is driven, and the speed control is performed so as to eliminate the speed deviation by inputting the speed feedback ⁇ and the speed command to the subtractor.
  • Fig. 3 shows the timing of the loop gain and the torque waveform.When the gain is increased from G0 to G1, the torque or speed shown in the lower part of the figure oscillates, and the gain is reduced to G2. 2 shows a procedure for adjusting to a steady state.
  • the servomotor is set in a stick step (repeated forward and reverse) state, and the parameter gain is increased.
  • the CPU detects the vibration by analyzing the amplitude and frequency using FFT etc., and also calculates the difference between the torque command value T (i) and T (i-1) for each CPU sampling cycle.
  • a method of estimating the number of code inversions within a predetermined period by performing a statistical operation may be used.
  • an integral gain, a torque filter, etc. may be linked with the gain.
  • the vibration of the machine may be suppressed by a filter or the like, and the gain may be increased again to perform the adjustment. Next, the operation will be described.
  • the microcomputer 2 receives commands such as position and speed from an external controller or the like.
  • commands such as position and speed from an external controller or the like.
  • the speed control is performed as shown in the speed control 11 in the block diagram of FIG. 2, and the output of the current command or current control is used as a base drive circuit as shown in FIG.
  • the power transistor 5 is switched through 4 to control the motor 6 and drive, for example, a machine such as a ball screw 22 or a table 21 as shown in FIG.
  • the vibration detection circuit 1 detects the vibration when the level exceeds a predetermined level, but performs the adjustment by moving a plurality of adjustment points within the movable range of the machine as shown in FIG. First, at each measurement point, as shown in Fig. 3, if vibration is detected during the process of increasing the gain from G O to G1, the gain is reduced to adjust the gain G2 at which the vibration falls to the maximum value. This gain adjustment is performed over the entire movable range of the machine for each adjusted adjustment point.
  • the gain is adjusted over the entire movable range, and the adjustment gain of each adjustment point is adjusted.
  • the minimum value in the parameters is the overall adjustment gain. It is more practical to consider the characteristics of the machine or to reconfirm and set the gain of the speed control system.
  • the speed control 1 1 is a simple proportional-integral control (PI control).
  • the vibration is detected by moving the movable range of the machine, increasing the speed loop gain at each point, and setting the gain at which the vibration stops as the maximum value.
  • the vibration is detected by moving the movable range of the machine, increasing the speed loop gain at each point, and setting the gain at which the vibration stops as the maximum value.
  • the CPU (microcomputer) 2 in FIG. 1 receives commands such as position and speed from an external controller or the like. For example, in the case of a speed command, the speed control is performed, and the power transistor 5 is driven through the base drive drive circuit 4 with the current command or the output of the current control to control the motor 6.
  • the vibration detecting means 1 detects the vibration when the vibration component included in the stop torque command exceeds a predetermined level.
  • the detection level is, for example, as shown in Fig. 6 (i), when driving at low gain,
  • the luk oscillation amplitude level is detected as shown in Fig. 6 (ii). For example, about five times the vibration level at the time of the low gain may be set as the vibration detection level.
  • the control gain is first detected with a low gain and the torque amplitude is observed when the control is stopped.
  • the normal operation is performed with the gain increased, and the torque amplitude is measured at the time of the stop, and if it is, for example, about 5 times or more that of the low gain, the control gain is set to the maximum gain. .
  • the gain is increased, large oscillation does not occur, but small oscillations may occur when stopped. Automatic gain adjustment is performed so that this vibration can be suppressed.
  • control gain is adjusted in this way. This limit value may be determined based on the characteristics of the machine or may be measured. If the limit value is reached, the adjustment is terminated as the maximum value. If the limit value is not reached, the following gain adjustment is continued. In the flow 3 in Fig. 8, operation such as acceleration / deceleration is performed, and in the flow 4 in Fig. 8, it is determined whether the torque vibration at the time of stop exceeds the level. If it does, the control gain is reduced in flow 5 in Fig. 8, and the gain up to that point is set as the maximum gain, and the adjustment is completed. If not, increase the control gain and repeat the operations of flows 2 to 4 in Fig. 8. The control gain is adjusted in this way.
  • the vibration detection circuit 1 may be performed by the microcomputer 2. Further, an integral gain / torque filter may be linked with the control gain. According to the second embodiment, it is possible to suppress the occurrence of stop-time vibration and noise due to the normal operation and the control gain adjustment to stabilize the control gain. There is an effect that can be.
  • the operation of the circuit of FIG. 1 according to the third embodiment will be described with reference to the control block diagram of FIG. 5, the timing diagram of FIG. 9, the maximum gain extraction timing diagram of FIG. This will be described with reference to the flowchart of FIG.
  • the control block in Fig. 5 shows the position control calculation performed by CPU 2 in Fig. 1.
  • the position feedback from the load is subtracted from the position command, and the position control is multiplied by Kp with the position loop gain 51.
  • the difference between this and the speed feedback ⁇ is input to the speed control 52 to output a torque command, and the motor and the load are driven by 1 ZJS 53.
  • the velocity ⁇ is integrated by integration 54 to obtain the position.
  • the CPU 2 shown in Fig. 1 receives commands such as position and speed from an external controller, etc., and, for example, in the case of a speed command, performs speed control calculation and drives the base drive with the current command and the current control output.
  • the motor 6 is controlled by driving the power transistor 5 through the circuit 4.
  • the vibration detection means 1 detects vibration when a vibration component included in a torque command or a motor speed signal exceeds a predetermined level.
  • the detection level for example, as shown in FIG. 9, normal operation or operation is performed to detect a vibration amplitude level during operation specific to the machine. In this figure, the maximum value of the torque vibration amplitude during normal operation is detected. It is good to set the vibration detection level to, for example, about three times the normal vibration level.
  • a simulated disturbance torque to the torque command and check the response. If there is no response here, the simulated disturbance torque is increased. Increase the simulated disturbance torque until the response becomes large to some extent, or lower the response level.
  • the control gain is gradually increased, and a simulated disturbance torque is added to the torque command in FIG. 5 to check the vibration. Since the confirmation of vibration is stopped, it can be obtained, for example, from the speed and torque amplitude. If vibration is detected, do not vibrate the control gain. Stop the vibration by reducing the gain or torque. Calculate the finally oscillated control gain. The control gain is set to the maximum gain.
  • the specific detection procedure of the gain adjustment method is as follows. First, the gain of the control system, such as the position loop and speed loop, is set to low gain as in step 1 in Fig. 11, and vibration during normal operation or machine-specific operation is performed as shown in Fig. 9. Detect level. In this figure, the maximum value of the torque vibration amplitude during normal operation is detected.
  • the gain of the control system such as the position loop and the speed loop is set to a low gain as in step 2 in Fig. 11, and the simulated disturbance torque is added in steps to the torque command ⁇ ref in the control block diagram in Fig. 5.
  • step 3 in Fig. 11 confirm that the response such as position deviation or speed is above a certain level.
  • the response such as position deviation or speed is above a certain level.
  • the response detection level is reduced. In this way, the magnitude of the simulated disturbance torque and the response detection level are adjusted.
  • the control gain is then increased stepwise by time timing as shown in FIG.
  • vibration detection means 1 (Fig. 1) by applying simulated disturbance torque to the torque command.
  • the vibration detection means 1 compares, for example, the amplitude of the torque or the speed with the vibration detection level, and if the amplitude is large, detects the vibration.
  • the vibration level is 1.5 times the previously adjusted response level. If vibration exceeding a certain level is detected as shown in step 6 in Fig. 11 after applying the simulated disturbance torque, the application of the simulated disturbance torque is stopped at the timing shown in Fig. 10 and step 7 in Fig. 11 is performed.
  • control gain and the control method immediately before the control gain when vibrating as in step 8 of FIG. 11 are stored as the maximum gain in the storage means such as the microphone computer.
  • the stored control gain is the maximum gain for that control method.
  • the vibration detection circuit 1 may be performed by the microcomputer 2.
  • an integral gain / torque filter may be linked with the control gain.
  • the maximum gain can be obtained by reliably vibrating with the simulated disturbance torque suitable for the machine, and the gain can be reduced immediately after the vibration, so that the gain does not increase greatly. I'm done. And there is an effect that danger due to vibration can be prevented. Furthermore, there is an effect that the most suitable control method can be automatically selected and adjusted.
  • the CPU (microcomputer) 2 in FIG. 12 normally receives commands such as position and speed from an external controller or the like. For example, in the case of a speed command, speed control is performed, and the power transistor 5 is driven through the base drive drive circuit 4 with the current command or the output of the current control.
  • the operator removes the operation device 6 1 for the adjustment operation, and a person performs the adjustment operation. In that case, for example, it is performed as shown in the sequence example of FIG.
  • the sequence is Microphone Computer 2
  • the movable range as shown in Fig. 4 is divided and moved (step 1), or the gain is increased on the way (step 2), and the state of vibration or the like is observed (step 3).
  • the gain is determined, it is confirmed that no vibration or the like is generated by rapidly moving the movable range (step 4). Therefore, when vibrations or the like occur, the vibrations or the like are detected and the gain is reduced (step 3).
  • Step 5 check the positioning at the normal speed (Step 5).
  • This sequence may be determined in advance, or may be freely rearranged.
  • the command may be created automatically in a sequence or may be issued from outside. Thus, a series of adjustment operations are performed.
  • the servo control device that drives the servomotor incorporates a tuning sequence into the servo control device, and generates a command from the external operation by the operation device and the sequence. Since driving and gain increase / decrease from the information, it is possible to judge in real time, and to judge immediately from vibration information. In addition, even if vibrations occur due to variations in the machine or the like, there is an effect that the gain can be immediately reduced or stopped. While the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there. Industrial applicability>
  • the vibration is detected by moving the movable range of the machine, increasing the speed loop gain at each point, and detecting the gain at which the vibration falls as the maximum value.
  • the maximum gain can be obtained by reliably vibrating with a simulated disturbance torque suitable for the machine, and the gain can be reduced immediately after the vibration, so that the gain does not need to be increased significantly. And there is an effect that danger due to vibration can be prevented.
  • the optimal control method is automatically selected and adjusted.
  • the sequence since the sequence is incorporated internally by an external operation, it can be judged in real time. It can be judged immediately from vibration information. Even if vibrations or the like occur due to variations in machines or the like, there is also an effect that the gain can be immediately reduced or stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本発明の課題は、機械の場所によるバラツキを抑えるサーボ制御装置のゲイン調整方法を提供する。本発明は、サーボモータからの速度フィードバックと指令値との偏差を入力してトルク指令を出力する速度制御を持つサーボ制御装置のゲイン調整方法において、機械の可動範囲を移動して複数の場所で、速度ループゲインを上げて振動させた後、前記速度ループゲインを下げて行き振動の収まるゲインを最大値として機械に応じたゲイン設定値とするものである。

Description

明 細 書 サーボ制御装置のゲイン調整方法 く技術分野 >
本発明は、 直動テーブル、 X Yテーブルあるいはロボッ ト等の機械を駆 動するサーボモータの制御に関するもので、 ( 1 ) 機械の動作によって機 械の支持条件や姿勢などが変わった結果、 振動特性が変化する場合にも対 応できる機械においてサーボ制御装置のゲイン調整方法に関するもの、
( 2 ) サーボ制御装置におけるサーボ制御ゲインを自動設定する場合に、 制御ゲインを上げて振動の応答よ り制御ゲインを抽出する方法において、 停止時振動よ り制御ゲイ ンを抑制するゲイ ン調整方法に関する もの、
( 3 ) 同じく、 サーボ制御装置におけるサ一ボ制御ゲインを自動設定する 場合に、 特に機械等を加振手段による加振と振動を検出することによりサ ーボ制御ゲインの限界値を検出する方法において、 オブザーバ等の制御方 法を選択して最適な制御を得るゲイン調整方法に関するもの、 (4 ) サー ボ制御装置にチューニングのシーケンスを組み込んで外部からの操作と シーケンスよ り指令を発生し、 運転してその情報からゲインを上げるなど を行うゲイン調整方法に関するものである。 く背景技術〉
従来の一般的なサ一ボ制御装置は、 図 1 5に示すよ うに、 制御対象のサ ーボモータ 6 と、 そのモータ 6をべ一ス ドライブ回路 4よ り トランジスタ 5をスイ ッチングして駆動するインバータ部と、 位置制御、 速度制御を演 算する C P U 2 と、 C P U 2からの電流指令を入力してベース ドライブ回 路 4への ドライブ指令を出力する電流アンプ 3 とで構成されている。
こ う した、 サーボ制御装置におけるゲイン調整方法の 1例と しては、 例 えば、 特開平 2— 2 6 1 0 8 3号に開示の 「サーボ系の発振検出および速 度ループゲイン自動調整方式」 が挙げられる。 この場合は、 サーボモータ をスティ ックステップさせて逆方向へも回転させ、 これを繰り返し、 速度 ループゲインを順次上げて振動を起こさせ、 サーボモータの実速度変化を 微分した加速度変化を周波数分析してサーボ系の発振を検出し、 この発振 周波数と、 予め設定してある基準の周波数を比較しながら、 発振周波数が 基準周波数に一致するか、 あるいは、 その近傍値になるよ うに速度ループ ゲインを調整している。
また、 特開平 6— 2 4 2 8 3 3号に開示の 「自動調整サーボ制御装置」 では、 サーボモータに接続される負荷機械の変化に対応できるよ うに、 サ ーボモータの動作開始時に、 予め設定済みの標準負荷時の最適パラメータ を設定して動作を開始し、 動作開始時から一定時間の問観察して、 その間 の偏差カウンタ曲線と、 予め設定された標準負荷による最適パラメータを 使用した場合の偏差力ゥンタ曲線の規範モデルとの差を積分して、 実際の 負荷を推定し、 予め作成して記憶する各種負荷とこれに対応する最適制御 パラメータのテーブルを参照することで、 実際の負荷に対応する最適制御 パラメ一タに変更できる。
しかしながら、上記従来技術では、特開平 2 - 2 6 1 0 8 3号の場合は、 ゲインを上げてサーボ系を発振させ、 そのゲインを最大値と していた。 つ まり、 ゲインが上がった所でパラメータ調整を行うため調整に余裕が無く , また、 機械のある特定の場所 (又は位置) で発振したゲインを算出してい たので、 機械の場所が変わればゲインも変わり、 機械の場所毎にバラツキ があって、 場所によっては振動を起こしてしまう という問題があった。 また、 特開平 6 - 2 4 2 8 3 3号の場合は、 一定時間観測しなければな らないので場所毎のバラツキは抑えられず、 更に、 変化するのは負荷だけ なので、 正確なパラメータの調整はできないという問題があった。
そこで、本発明は、機械を駆動するサーボモータ及ぴサ一ボ制御装置で、 機械の特定の場所だけではなく全可働範囲を移動してゲイン調整を行う ことにより、 場所によるバラツキを無く し確実なォー トチューニングを可 能にするサーボ制御装置のゲイン調整方法を提供することを第 1の目的 と している。
また、 特開平 2— 2 6 1 0 8 3号ではゲインを上げて発振させて、 そこ のゲインを最大値と していた。 つまりそこからマシン等を考慮してゲイン の最大値にしたり、 調整等をしていた。 更に、 特開平 6— 2 4 2 8 3 3号 公報では偏差力ゥンタから負荷の状態を推定して、 負荷の状態から制御パ ラメータを選択して制御ゲインを調整していた。 つまり負荷に応じて位置 や速度制御のゲインを決めていた。
ところが、 上記従来技術では、 ゲインを上げて発振状態になってからで ないと前兆が無いため発振が観測できないので時間がかかる問題があつ た。 すなわち、 停止中等ではゲインを上げた直後に発振するのではなく、 また運転中でも図 1 6 ( i ) に Aおよび Bで示したように発生しやすいと ころで振動し始める。 つま り機械には摩擦や負荷等があり、 そしてこれら は振動を抑えるように働くので大きなきっかけがないと発振はしない。 そ こで図 1 6 ( i i ) のように発振等しやすいように 1回 1回早い速度、 長い 送りの指令をして発振が始まる迄の時間遅れを見越して 1回の指令で 1 回ずつゲインをゆつく り上げる必要があり、 そうすると最大ゲインを検出 する迄の時間が長く なる問題がある。
図 1 7はこれを無視してゲインを早く上げた場合を示しており、 時点 t 1では既にゲインを上げ過ぎており、 そうすると図 1 7のよ うに発振を検 出した時点 t 2では、 さ らにゲインが上がり過ぎており、 ゲインを下げて も図の Cで示したよ うに容易には発振が止まらないため、 マシンが大きく 振動してしまう問題があった。 また発振はしなくても振動気味の場合でも 細かい振動や騒音等があり、 問題となっていた。
そこで本発明は、 制御ゲインを上げて振動させるが、 停止時等の振動気 味を抑えて安定させることを第 2の目的とする。
さらに、 制御ゲインを上げて振動させるが、 早めに検出して即止めるた め、 マシンを大きく振動させず、 最適な制御方法得ることを第 3の目的と する。
また、 上記従来の技術では、 コントローラが指令を発生させていたので コン ト ローラよ り発振やゲイ ンの最大値を判断してゲインの自動チュー ニングを行っていた。 コン ト ローラとサーボ間のデータ伝送遅れゃコン ト ローラの処理スキヤンの間隔はサーボより も遅いため、 即時に判断できな い、 時間がかかるという問題があった。 マシン等にばらつきがあって振動 等が発生しても即時にゲインを落とす等の動作ができなかった。
特開平 6— 2 4 2 8 3号公報記載の発明でも即時に判断できないとい う問題があつた。
そこで本発明は、 外部からの操作で起動するォー トチューニングの動作 シーケンスをサーボ内部に組込んで発振等をリ アルタイムで判断し、 サー ボゲインを自動調整することを第 4の目的とする。
<発明の開示 >
上記目的を達成するため、 請求項 1に記載の発明は、 サーボモータから の速度フィ一ドバック と指令値との偏差を入力して トルク指令を出力す る速度制御を持つサーボ制御装置のゲイン調整方法において、 機械の可動 範囲を移動して複数の場所で、 速度ループゲインを上げて振動させた後、 前記速度ループゲインを下げて行き振動の収まるゲインを最大値と して 機械に応じたゲイン設定値とすることを特徴と している。
このサーボ制御装置のゲイン調整方法では、 機械の可動範囲を移動し、 可動範囲の中の複数の調整ボイント毎に、 速度ループゲインを上げて振動 させた後、 振動が収まるゲインを最大値と してゲインの調整を行うので、 そして振動が収まった点を使用することから振動に対しても余裕があり、 また、 機械の場所によるバラツキも抑えることができる。 また、 請求項 2に記載の発明は、 前記ゲイン設定値は、 前記複数の場所 における各ゲイン値の中の最小値とすることを特徴と している。 このサーボ制御装置のゲイン調整方法では、 機械の可動範囲の中の各調 整ポイント毎にループゲインの調整を行い、 各調整点でのループゲインの 中の最小値を全体のループゲインと して決定するので、 振動に対して安定 で、 機械の場所などによるバラツキが解消できる。 また、 請求項 3記載の制御ゲイ ンの調整方法の発明は、 サーボモータを 駆動するサーボ制御装置において、 制御系の振動を検出する振動検出手段 を備え、 制御ゲインを上げたと ころで、 加減速等の運転を行い停止時、 前 記振動検出手段で振動を検出すると制御ゲインを下げる等を行い、
請求項 4記載の発明は、 請求項 3記載の制御ゲインの調整方法において. 通常運転でトルク より停止時の振動を検出して前記振動検出手段で振動 を検出すると、 制御ゲインを下げる等を行い、
請求項 5記載の発明は、 請求項 3記載の制御ゲインの調整方法において. 通常運転での停止時の振動を検出して前記振動検出手段で制御ゲインを 上げて振動を検出すると、 そこを最大ゲインとするものである。
上記手段により、 通常運転を行い制御ゲイン調整で停止時振動や騒音等 を発生するのを、 抑えることができる。 また、 請求項 6記載の最適制御法を得る方法の発明は、 サーボモータを 駆動するサーボ制御装置において、 制御系の振動を検出する振動検出手段 を備え、 制御ゲインをあげたところであるレベルの振動を与えるような模 擬外乱トルクを、 トルク指令に加える加振手段を持ち、 加振の大きさを調 整し加振し前記振動検出手段で振動検出を行い、 あるレベルの振動を検出 する迄前記の制御ゲインを上げ模擬外乱トルクを加える処理をく り返し、 前記振動検出手段がある レベルを超えた振動を検出した時の制御ゲイン を限界ゲインとする限界ゲイン抽出法で、 オブザーバ等の制御方法を選択 して最適な制御法を得るものである。
請求項 7記載の発明は、 請求項 6記載の制御ゲインの調整方法において、 前記オブザーバ等の制御方法を選択して最適制御法を得る方法において、 限界ゲインの高い制御方法を最適な制御方法と して選択するものである。 請求項 8記載の発明は、 請求項 6記載の制御ゲインの調整方法において. 前記オブザーバ等の制御方法を選択して最適制御法を得る方法において、 限界ゲインの高い制御方法を最適な制御方法とする場合で、 限界ゲインが 同じ場合模擬外乱トルクを増すことにより、 あるレベルの振動を検出する 制御ゲインの余裕を検出し、 余裕が大きい制御方法を選択するものである t 上記手段により、 確実に機械に合った制御ゲインでマシンを振動させて 早く最大ゲインを得られ、 自動的に最適な制御方法を選択、 調整ができる よ うになる。 請求項 9記載の制御ゲインの調整方法の発明は、 サーボモータからの速 度フィー ドバック と指令値との偏差を入力して トルク指令を出力する速 度制御を持つサーボ制御装置のゲイン調整方法において、 サーボモータを 駆動するサーボ制御装置にチューユングのシーケンスを組み込んで、 操作 器による外部からの操作とシーケンスよ り指令を発生し、 運転してその情 報からゲインを調整するチューニング法を用いたものである。
上記手段によ り、 外部からの操作によるシーケンスをサーボ内部で組み 込んでいるので、 リアルタイムで判断することができ、 また何かあつた時 に即時に情報等より判断することができる。 さ らに、 マシン等のばらつき 等で振動等が発生しても、 即対応することができるようになる。
<図面の簡単な説明 >
図 1 は、 本発明の各実施の形態に共通して関係するサーボ制御装置の構 成図である。
図 2は、 図 1に示すサーボ制御装置の制御プロック図である。
図 3は、 ゲインを上げて振動し、 ゲインを下げた時のゲインと トルク波 形のタイ ミングを示す図である。 図 4は、 図 1 に示すサーボ制御装置で駆動する機械の可動範囲を示す図 である。
図 5は、 第 2および第 3の実施の形態に係る制御プロック図である。 図 6は通常運転した時の速度指令、 速度、 トルクの波形と振動レベルの 測定タイ ミング図である。
図 6 ( i ) は停止時振動レベル検出タイ ミング、
図 6 ( i i ) は停止時振動レベルの拡大、
図 6 ( i i i) は制御ゲインの調整タイ ミングである。
図 7は速度ループゲインと停止時の トルクの振幅の関係図の例である。 図 8は本案の制御ゲイン調整する概略フローチャー トである。
図 9は通常運転した時の速度指令、 速度、 トルクの波形と振動レベルの 測定タイミング図である。
図 1 0は制御ゲインを上げて振動を発生及び振動発生時のゲイン低下、 最大ゲイン抽出タイ ミング図である。
図 1 1は本案の最大ゲインを抽出する概略フローチヤ一トである。
図 1 2は第 4の実施の形態に係る動作を説明するサーボ制御装置の構 成図である。
図 1 3は、 シーケンス例である。
図 1 4は、 ゲインと トルク又は速度等の波形のタイ ミング図である。 図 1 5は、 従来のサーボ制御装置を示す図である。
図 1 6 ( i ) は通常運転で振動する場合のタイ ミング図である。
図 1 6 ( i i ) は通常運転でゲインを上げて行く タイ ミング図である。 図 1 7は通常運転で調整する場合でゲインを早く上げて、 大き く発振し た例の図である。
なお、 図中の符号は以下のとおりである。
1 振動検出手段、
2 マイクロコンピュータ、
3 電流アンプ、 4 : へ スドライブ回路、
5 : ノ、。ワー ト ランジスタモジュール、
6 : モータ
1 1 : 速度制御プロック
1 2 : 1 / J S
2 1 : テーブル
2 2 : ボー/レネジ
5 1 : 位置ループゲイン、
5 2 : 速度制御、
5 3 : モータ及び負荷に相当する 1 / J S
5 4 : 積分
6 1 : 操作器
<発明を実施するための最良の形態〉
以下、 本発明の第 1の実施の形態について図を参照して説明する。 図 1 は本発明の実施の形態に係るサーボ制御装置の構成図である。 図 2は図 1に示すサ一ボ制御装置の制御ブロック図である。
図 3はゲインを上げて振動し、 ゲインを下げた時のゲインと トルク波形 のタイ ミ ングを示す図である。
図 4は図 1に示すサーボ制御装置の機械の可動範囲を示す図である。 図 1 において、 1は振動検出回路、 2は C P U、 3は電流アンプ、 4は ベース ドライブ回路、 5はパワー トランジスタモジュール、 6 はモータで ある。
図 2は速度制御のブロック図であり、 1 1 は速度制御を表し、 例えば速 度制御の場合、 速度指令を入力して、 速度ループゲイン K、 積分時定数 Τ i 、 といった調整ゲインを有して トルク指令を出力し、 モータ及び負荷に 相当する 1 Z J S ( 1 2 ) を駆動して、 速度フィ一ドバック ω と速度指令 を減算器に入力して速度偏差をなくすように速度制御を行う。 図 3はループゲインと トルク波形のタイ ミ ングを示す図であり、 ゲイン を G 0→G 1に上げた時に、 同図下に示すトルク又は速度が発振し、 そこ でゲインを G 2に下げて定常状態に調整する手順を示している。
この場合の振動検出については、 従来技術の特開平 2— 2 6 1 0 8 3号 のよ うに、 サーボモータをスティ ックステップ (正転、 反転の繰り返し) 状態にしてパラメータのゲインを上げて行き、 C P Uにより F F Tなどを 用いて振幅と周波数分析を行って振動を検出する方式や、 その他、 C P U のサンプリ ング周期毎に トルク指令値 T ( i ) と、 T ( i - 1 ) の差分を 求めて、 所定期間内の符号の反転回数を統計演算して推定する等の方法で もよい。 また、 ゲインに伴い積分ゲインやトルクフィルタ等を連動するよ うにしてもよレ、。
更に、 ゲインが上がらない場所ではフィルタ等で機械の振動を抑えて、 再度ゲインを上げて調整するようにしてもよい。 つぎに動作について説明する。
マイクロコンピュータ 2は位置や速度といった指令を外部のコン ト 口 ーラ等から受取る。 そして、 例えば、 速度指令の場合は図 2のブロ ック図 の速度制御 1 1のよ うに速度制御を行い、 その出力の電流指令や電流制御 の出力で、 図 1 に示すようなベース ドライブ回路 4を通してパワー トラン ジスタ 5をスィ ツチングしてモータ 6を制御し、 例えば図 4に示すよ うな ボールネジ 2 2やテーブル 2 1等の機械を駆動する。
ここで、 振動検出回路 1は、 所定レベルを超えた場合に振動を検出する が、 図 4のよ うな機械の可動範囲中に複数の調整ボイントを移動して調整 を実施する。 先ず、 各測定ポイン トで、 図 3に示すよ うに、 ゲイン G O→ G 1へ上げる過程で振動を検出したら、 ゲインを下げて振動が収まるゲイ ン G 2を最大値とする調整を行う。 このゲイン調整を移動した調整ポイン ト毎に機械の可動範囲全体に亙って実施する。
そして可動範囲全域でゲイン調整を行って、 各調整ボイントの調整ゲイ ンの中の最小値を全体の調整ゲインとする。 そして機械の特性等も考量し 又は再確認して速度制御系のゲイン設定を行う よ うにすれば、 よ り実際的 である。
なお、 速度制御 1 1は単純な比例積分制御 (P I制御) ではゲインは、
/ ( 1 + T i S ) ( 1 )
但し、 K : 速度ループゲイン
T i : 積分時定数
となるが、 比例積分 (P I ) 制御以外の I P制御、 P I D制御などの制 御方法でも同様に行うことができる。 以上説明したよう に、 第 1の実施の形態によれば、 機械の可動範囲を移 動して各ポイントで速度ループゲインを上げて振動を検出し、 その振動が 収まるゲインを最大値と して検出し、 これら各調整値の中の最小値を調整 ゲインとする調整を実施することによって、 振動に対して余裕がある安定 な調整が可能になり、 機械の場所等によるバラツキも抑えることができる という効果がある。
また、 機械自体の調整にも適用できるという効果がある。 次に、 図 1の回路における第 2の実施の形態に係る動作を図 5の制御ブ ロック図、 図 6のタイミング図、 図 7の最大ゲイン抽出タイ ミング図、 及 び図 8のフローチャートを用いて説明する。
まず、 図 1 の C P U (マイクロコンピュータ) 2は位置や速度といった 指令を外部のコントローラ等から受取る。 そして例えば速度指令の場合は 速度制御を行いその出力の電流指令や電流制御の出力でベース ドライブ 駆動回路 4を通してパワー トランジスタ 5を駆動してモータ 6 を制御す る。 ここで振動検出手段 1は、停止時トルク指令中に含まれる振動成分が、 あらかじめ定めたレベルを超えた場合に、 振動を検出する。 検出レベルは 例えば図 6 ( i ) のように低ゲインで運転して、 通常運転時の停止時の ト ルク振動振幅レベルを図 6 ( i i ) のように検出する。 この低ゲイン時の振 動レベルの例えば 5倍程度を振動の検出レベルとすれば良い。
制御ゲイ ンの検出は最初に図 6 ( i ) のよ う に、 低ゲイ ンで停止時に ト ルクの振幅を観測する。 次に図 6 ( i i i ) のよ うにゲインを上げて通常運 転を行い、 その停止時に トルクの振幅を測定して低ゲイン時の例えば 5倍 程度以上の場合、 その制御ゲインを最大ゲインとする。 ゲインを上げてい く と大きな発振はしないが停止時に微小な振動をすることがある。 この振 動を抑えることができるよ うに、 自動ゲイン調整を行う。
停止時に振動が発生している時の速度ループゲインと トルクの振動の 振幅の関係は図 7のよ うになり、 ある速度ループゲイン以上になると急峻 に トルクの振動の振幅は大きくなる。 そこで急峻に大きく なるところを最 大ゲインと決めることができる。
一連の動作を説明すると以下のよ うになる。
まず図 8のフロー 1で低ゲインにて加減速等の運転を行い、 停止時の ト ルクの振動レベルを検出する。 次に図 8のフロー 2で制御ゲインが限界か どうかを判断する。 この限界値は機械の特性等で判断しても良いし測定等 しても良い。 限界値であれば最大値と して調整を終了し、 限界値でなけれ ば以下のゲインの調整を継続する。 図 8のフロー 3では加減速等の運転を 行い、 図 8のフロー 4で停止時の トルクの振動がレベルを超えているか判 断する。 越えていれば図 8のフロー 5で制御ゲインを下げ、 それ迄のゲイ ンを最大ゲインと して調整を終了する。 越えていなければ制御ゲインを上 げて、 図 8のフロー 2〜 4の動作を繰り返す。 このようにして制御ゲイン の調整を行う。
振動検出回路 1 (図 1 ) はマイクロコンピュータ 2で行っても良い。 ま た制御ゲインに伴い積分ゲインゃ トルクフィルタ等を連動させても良い。 第 2の実施の形態によれば、 通常運転を行い制御ゲイン調整で停止時振 動や騒音等を発生するのを抑えることができ、 制御ゲインを安定させるこ とができるという効果がある。 次に、 図 1の回路における第 3の実施の形態に係る動作を図 5の制御ブ ロ ック図、 図 9のタイ ミング図、 図 1 0の最大ゲイン抽出タイ ミング図、 及び図 1 1のフローチャートを用いて説明する。
図 5の制御のブロ ックは図 1の C P U 2が行う位置制御演算を示すも ので、図において、位置指令に負荷からの位置フィードバックを差し引き、 位置ループゲイン 5 1 で K p倍し位置制御を行い、 これと速度フィ一ドバ ック ωとの差を速度制御 5 2に入力して トルク指令を出力し、 モータ及び 負荷に相当する 1 Z J S 5 3で駆動される。 その速度 ωを積分 5 4で積分 して位置となる。
そこで、 図 1の C P U 2は位置や速度といった指令を外部のコン トロー ラ等から受取と、 そして例えば速度指令の場合は速度制御演算を行いその 出力の電流指令や電流制御の出力でベース ドライブ駆動回路 4を通して パワートランジスタ 5を駆動してモータ 6を制御する。 ここで振動検出手 段 1は、 トルク指令あるいはモータの速度信号中に含まれる振動成分が、 あらかじめ定めたレベルを超えた場合に、 振動を検出する。 検出レベルは 例えば図 9のよ う に通常運転或いは運転して機械特有の運転時の振動振 幅レベルを検出する。 この図では通常運転での トルクの振動振幅の最大値 を検出している。 この通常時の振動レベルの例えば 3倍程度を振動の検出 レベルとすれば良レ、。
制御ゲインの検出はまず最初に低ゲイ ンで トルク指令に模擬外乱 トル クを加えて、 応答を確認する。 ここで応答がなければ模擬外乱トルクを大 きくする。 ある程度大きく応答が大きく なるまで模擬外乱トルクを大きく するか、 応答のレベルを下げる等する。
そして次に徐々に制御ゲインを上げては図 5の トルク指令に模擬外乱 トルクを加えて、 振動を確認する。 振動の確認は停止しているので、 例え ば速度やトルクの振幅より得る。 振動を検出したら制御ゲインを振動しな いゲイン又はトルクを絞る等して振動を停止させる。 最終的に振動した制 御ゲインを算出する。 その制御ゲインを最大ゲインとする。
ゲイン調整方法の具体的な検出手順は、 以下のようになる。 最初に図 1 1のステップ 1のよ うに位置ループや速度ループといつた制御系のゲイ ンを低ゲインと しておき、 図 9のよ うに通常運転或いは運転して機械特有 の運転時の振動レベルを検出する。 この図では通常運転での トルクの振動 振幅の最大値を検出している。
次に図 1 1のステップ 2のよ うに位置ループや速度ループといった制 御系のゲインを低ゲインと しておき、 図 5の制御ブロック図の トルク指令 τ ref に模擬外乱トルクをステップで加えて、 図 1 1のステップ 3のよう に位置偏差或いは速度等の応答をあるレベル以上あることを確認する。 こ こで、 あるレベル以上の応答がなければ、 加えた模擬外乱トルクが機械負 荷を超えられなかったと考え、 模擬外乱トルクを大きくする。 あらかじめ 定めたレベルまで、 応答が大きくなるように模擬外乱トルクを大きくする c この応答のレベルは前記図 1 1のステップ 1 のよ うに例えば通常の運転 中の振動振幅の最大値を 2倍等にする。 そして模擬外乱トルクがあるレべ ルまで大きく しても応答が大きく ならない場合、 応答の検出レベルを下げ る。 このようにして模擬外乱トルクの大きさとその応答の検出レベルを調 整する。
模擬外乱トルクの大きさを決めた後で、 次に図 1 0に示すよ うな時間タ ィ ミングで段階的に制御ゲインを上げる。 図 1 1 のステップ 4〜 6の処理 のように制御ゲインを上げたところで、 トルク指令に模擬外乱トルクを加 え振動検出手段 1 (図 1 ) にて、 振動を確認する。 振動検出手段 1は例え ばトルク又は速度等の振幅を振動検出レベルと比較し、 大きい場合振動と して検出する。 振動レベルは前に調整した応答レベルの 1 . 5倍等する。 模擬外乱トルクを加えた後に図 1 1のステップ 6 よ うにある レベルを 超えて振動を検出したら、 図 1 0のよ うなタイ ミングで模擬外乱トルクを 加えるのは停止し、 図 1 1のステップ 7のよ うに制御ゲインを振動しない レベル迄下げる (例えば、 振動したゲイ ンの半分あるいは、 最初に設定し た低いゲイン等)。 あるいは、 確実に振動を止めるため、 トルク指令を絞 る力 、 位置偏差を一瞬ゼ口等する。 そして図 1 1のステップ 8のよ うに振 動した時の制御ゲインの 1つ前の制御ゲインと制御方式をマイ ク 口 コン ピュータ内等の記憶手段内に最大ゲインと して記憶しておく。 記憶した制 御ゲインがその制御方式での最大ゲインである。 次に図 1 1のステップ 9 のよ うに制御方式を一通り行つたかを確認する。 ここでやるべき制御方式 がまだある場合には図 1 1のステップ 1 0のよ うに制御方式を変えて、 図 1 1のステップ 4からの最大ゲインの検出を行う。 そして図 1 1 のステツ プ 9で制御方式を一通り行った場合には、 図 1 1 のステップ 1 1 で制御ゲ ィンの上がった制御方式を最適な制御方式と して選択する。
振動検出回路 1はマイク ロ コンピュータ 2で行っても良い。 また制御ゲ ィンに伴い積分ゲインゃトルクフィルタ等を連動させても良い。 第 3の実施の形態によれば、 マシンに合わせた模擬外乱トルクで確実に 振動させて最大ゲインを得られ、 しかも振動後即ゲインを落と して抑える ことができるので、 大きくゲインを上げなくて済む。 そして振動すること による危険を防止することができるという効果がある。 更に自動的に最適 な制御方法を選択、 調整ができるという効果がある。 次に、 図 1 2の回路における第 4の実施の形態に係る動作を、 図 1 3の シーケンス例、 及び図 1 4のタイ ミング図を用いて説明する。
まず、 図 1 2の C P U (マイク ロコンピュータ) 2は通常、 位置や速度 といった指令を外部のコン トローラ等から受取る。 そして例えば速度指令 の場合は速度制御を行い、 その出力の電流指令や電流制御の出力でベース ドライブ駆動回路 4を通してパワー トランジスタ 5を駆動する。
ここで調整操作の為に操作器 6 1 を抜いて人が調整操作を行う。 その場 合、 例えば図 1 3のシーケンス例のように行う。 シーケンスはマイク ロコ ンピュータ 2で行う。
シーケンスは、 まず、 例えば図 4のような可動範囲を分割して移動する (ステップ 1 ) か、 途中ゲインを上げて (ステップ 2 )、 振動等の様子を 見る等する (ステ ップ 3 )。 次に、 ゲインが決定されると可動範囲を早送 り (ステップ 4 ) で振動等が発生しないことを確認する。 そこで振動等が 発生すると振動等を検出してゲインを下げる等する (ステップ 3 )。 その 後、 通常の速度で位置決めを確認する (ステ ップ 5 )。 このシーケンスは あらかじめ決めておいても良く、 また自由に組み替えることができる形で も良い。 指令はシーケンスで自動で作成しても良く、 外部から指令される 形でも良い。 このようにして一連の調整動作を行う。 以上のように、 第 4の実施の形態によれば、 サーボモータを駆動するサ ーボ制御装置でサーボ制御装置にチューニングのシーケンスを組み込ん で操作器による外部からの操作とシーケンスより指令を発生し、 運転して その情報からゲインを上げ下げするので、 リアルタイムで判断することが でき、 即時に振動情報等より判断することができる。 また、 マシン等のば らつき等で振動等が発生しても、 即ゲインを落と したり停止したりの対応 をすることができる効果もある。 以上、 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発 明の精神と範囲を逸脱することなく様々な変更や修正を加えることがで きることは当業者にとって明らかである。 ぐ産業上の利用可能性〉
以上説明したよ うに、 本発明によれば、 機械の可動範囲を移動して各ポ イントで速度ループゲインを上げて振動を検出し、 その振動が収まるゲイ ンを最大値と して検出し、 これら各調整値の中の最小値を調整ゲインとす る調整を実施することによって、 振動に対して余裕がある安定な調整が可 能になり、 機械の場所等によるバラツキも抑えることができるという効果 がある。
また、 機械自体の調整にも適用できるという効果がある。
さらに、 通常運転を行い制御ゲイン調整で停止時振動や騒音等を発生す るのを抑えることができ、 制御ゲインを安定させることができる。
また、 マシンに合わせた模擬外乱トルクで確実に振動させて最大ゲイン を得られ、 しかも振動後即ゲインを落と して抑えることができるので、 大 きくゲインを上げなくて済む。 そして振動することによる危険を防止する ことができる効果がある。 更に自動的に最適な制御方法を選択、 調整がで さる。
そして、 外部からの操作によりシーケンスを内部で組み込んでいるので. リアルタイムで判断することができる。 即時に振動情報等よ り判断するこ とができる。 マシン等のばらつき等で振動等が発生しても、 即ゲインを落 とす、 停止する等対応することができる効果もある。

Claims

請 求 の 範 囲
1 . サーボモータからの速度フィードバック と指令値との偏差を入 力して トルク指令を出力する速度制御を持つサーボ制御装置のゲイン調 整方法において、
機械の可動範囲を移動して複数の場所で、 速度ループゲインを上げて振 動させた後、 前記速度ループゲインを下げて行き振動の収まるゲインを最 大値と して機械に応じたゲイン設定値とすることを特徴とするサーボ制 御装置のゲイン調整方法。
2 . 前記ゲイン設定値は、 前記複数の場所における各ゲイン値の中 の最小値とすることを特徴とする請求項 1記載のサ一ボ制御装置のゲイ ン調整方法。
3 . サーボモータを駆動するサーボ制御装置において、 制御系の停 止時の振動を検出する振動検出手段を備え、 制御ゲインを上げたところで 加減速等の運転を行い停止時、 前記振動検出手段で振動を検出すると制御 ゲインを下げる等することを特徴とする制御ゲインの調整方法。
4 . 前記制御ゲインの調整方法において、 通常運転でトルクよ り停 止時の振動を検出して前記振動検出手段で振動を検出すると、 制御ゲイン を下げる等することを特徴とする請求項 3記載の制御ゲインの調整方法。
5 . 前記制御ゲインの調整方法において、 通常運転での停止時の振 動を検出して前記振動検出手段で制御ゲインを上げて振動を検出すると、 そこを最大ゲインとすることを特徴とする請求項 3記載の制御ゲインの 調整方法。
6 . サーボモータを駆動するサーボ制御装置において、 制御系の振 動を検出する振動検出手段と、 制御ゲインをあげたところであるレベルの 振動を与えるよ うな模擬外乱 トルクを トルク指令に加える加振手段とを 備え、 加振の大きさを調整して該加振手段により加振し、 前記振動検出手 段で振動検出を行い、 あるレベルの振動を検出する迄前記制御ゲインをぁ げ模擬外乱トルクを加える処理をく り返し、 前記振動検出手段があるレべ ルを超えた振動を検出した時の制御ゲインを限界ゲインとする限界ゲイ ン抽出法で、 オブザーバ等の制御方法を選択することを特徴とする制御ゲ ィンの調整方法。
7 . 前記限界ゲイン抽出法でオブザーバ等の制御方法を選択するに 際し、 前記限界ゲインの高い制御方法を最適な制御方法と して選択するこ とを特徴とする請求項 6記載の制御ゲインの調整方法。
8 . 前記限界ゲインの高い制御方法を最適な制御方法とする場合で、 限界ゲインが同じ場合模擬外乱トルクを増すことにより、 あるレベルの振 動を検出する制御ゲインの余裕を検出し、 余裕が大きい制御方法を選択す ることを特徴とする請求項 7記載の制御ゲインの調整方法。
9 . サーボモータからの速度フィ一ドバックと指令値との偏差を入 力して トルク指令を出力する速度制御を持つサーボ制御装置のゲイン調 整方法において、 サーボモータを駆動するサーポ制御装置にチューニング のシーケンスを組み込んで、 操作器による外部からの操作とシーケンスよ り指令を発生し、 運転してその情報からゲインを調整するチューニング法 を用いたことを特徴とする制御ゲインの調整方法。
PCT/JP2003/008548 2002-07-11 2003-07-04 サーボ制御装置のゲイン調整方法 WO2004008624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/520,731 US7292001B2 (en) 2002-07-11 2003-07-04 Gain adjusting method for servo control device
JP2004521146A JPWO2004008624A1 (ja) 2002-07-11 2003-07-04 サーボ制御装置のゲイン調整方法
EP03764130A EP1536551A4 (en) 2002-07-11 2003-07-04 METHOD OF ADJUSTING THE GAIN OF A SERVICED CONTROL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-202705 2002-07-11
JP2002202705 2002-07-11

Publications (1)

Publication Number Publication Date
WO2004008624A1 true WO2004008624A1 (ja) 2004-01-22

Family

ID=30112639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008548 WO2004008624A1 (ja) 2002-07-11 2003-07-04 サーボ制御装置のゲイン調整方法

Country Status (4)

Country Link
US (1) US7292001B2 (ja)
EP (1) EP1536551A4 (ja)
JP (1) JPWO2004008624A1 (ja)
WO (1) WO2004008624A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183651A (ja) * 2013-03-19 2014-09-29 Panasonic Corp モータ駆動装置
US9122258B2 (en) 2011-05-24 2015-09-01 Mitsubishi Electric Corporation Motor control device
WO2018168566A1 (ja) * 2017-03-15 2018-09-20 オムロン株式会社 サーボシステム及び、サーボモータ制御のゲイン調整方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056172A (ja) * 2003-08-05 2005-03-03 Yaskawa Electric Corp サーボ制御装置の最大ゲイン抽出方法
US20050107909A1 (en) * 2003-11-14 2005-05-19 Siemens Technology-To-Business Center Llc Systems and methods for programming motion control
US8214063B2 (en) * 2009-09-29 2012-07-03 Kollmorgen Corporation Auto-tune of a control system based on frequency response
JP5113862B2 (ja) * 2010-02-16 2013-01-09 山洋電気株式会社 モータ制御装置
US8412360B2 (en) * 2010-08-23 2013-04-02 Hitachi Asia Ltd. Method and system for robust attenuation of mechanical resonances using a multi-rate low pass filter
DE102011104187B4 (de) * 2011-06-14 2014-05-15 Multivac Sepp Haggenmüller Gmbh & Co. Kg Verfahren zum automatischen Einlernen von Parametern
US20160123796A1 (en) * 2013-06-03 2016-05-05 Mitsubishi Electric Corporation Frequency-response measurement device
JP6314426B2 (ja) * 2013-10-31 2018-04-25 セイコーエプソン株式会社 ロボット制御装置およびロボット制御方法
CN104065322B (zh) * 2014-06-13 2017-05-17 南京理工大学 一种电机位置伺服系统的输出反馈控制方法
CN104252134B (zh) * 2014-09-17 2017-05-10 南京理工大学 基于扩张状态观测器的电机伺服系统自适应鲁棒位置控制方法
JP6154435B2 (ja) * 2015-07-09 2017-06-28 ファナック株式会社 制御系のオンライン自動調整状況を表示する機能を有するサーボ制御装置
EP3220215A1 (en) * 2016-03-14 2017-09-20 Omron Corporation Control device and method for tuning a servo motor
JP6666234B2 (ja) * 2016-11-29 2020-03-13 ファナック株式会社 数値制御装置
CN111923045B (zh) * 2020-08-07 2021-10-29 珠海格力智能装备有限公司 机器人的控制方法、装置、计算机可读存储介质和处理器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157597A (en) * 1988-12-23 1992-10-20 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
JPH06242833A (ja) * 1993-02-19 1994-09-02 Matsushita Electric Ind Co Ltd 自動調整サーボ制御装置
JPH07281708A (ja) * 1994-04-12 1995-10-27 Nippondenso Co Ltd オートチューニングコントローラ
US5475291A (en) * 1992-12-10 1995-12-12 Matsushita Electric Industrial Co., Ltd. Adjustment device for adjusting control parameters of a servo motor and an adjustment method therefor
US5936366A (en) * 1997-09-25 1999-08-10 Toshiba Kikai Kabushiki Kaisha Servo adjustment method and apparatus thereof
JPH11313495A (ja) * 1998-04-27 1999-11-09 Mitsubishi Heavy Ind Ltd 電動機サーボ系の制御装置
JPH11346492A (ja) * 1998-06-01 1999-12-14 Mitsubishi Electric Corp 電動機の位置制御装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535334B2 (ja) * 1986-10-29 1996-09-18 フアナツク株式会社 デイジタル負帰還制御システム
ATE143509T1 (de) * 1990-06-21 1996-10-15 Honeywell Inc Auf variablem horizont basierende adaptive steuerung mit mitteln zur minimierung der betriebskosten
JPH05219772A (ja) * 1992-02-06 1993-08-27 Matsushita Electric Ind Co Ltd ロボットアームの共振振動を抑制するサーボ装置
JPH07110717A (ja) * 1993-08-19 1995-04-25 Fanuc Ltd モータの制御方式
JPH08116688A (ja) * 1994-10-13 1996-05-07 Fanuc Ltd サーボモータの発振検出方法及びサーボモータの速度ゲイン調整方法
JP3575148B2 (ja) * 1995-11-27 2004-10-13 日本精工株式会社 サーボ機構の自動ゲイン調整方法及び装置
DE19854750A1 (de) * 1998-11-27 2000-05-31 Heidenhain Gmbh Dr Johannes Verfahren und Schaltungsanordnung zur Ermittlung einer optimalen Verstärkung des Integrators eines Drehzahlreglers
US6961628B2 (en) * 1999-04-16 2005-11-01 Siemens Energy & Automation, Inc. Method and apparatus for tuning compensation parameters
DE50006354D1 (de) * 1999-09-24 2004-06-09 Heidenhain Gmbh Dr Johannes Verfahren zur ermittlung von zeitkonstanten eines referenzmodelles in einer kaskadierten regelungsanordnung
US6622099B2 (en) * 2000-08-14 2003-09-16 Kollmorgen Corporation Frequency domain auto-tune for an internal motor controller
US20020022903A1 (en) * 2000-08-14 2002-02-21 Krah Jens Onno Frequency domain auto-tune for an internal motor controller
US6741417B2 (en) * 2000-08-30 2004-05-25 Seagate Technology Llc Plant variation compensation for piezoelectric microactuator in dual-stage servo of disc drives
JP3840905B2 (ja) * 2001-03-08 2006-11-01 株式会社日立製作所 同期電動機の駆動装置
JP4578732B2 (ja) * 2001-08-13 2010-11-10 株式会社森精機製作所 工作機械送り系の制御装置
WO2003030170A1 (en) * 2001-10-02 2003-04-10 Seagate Technology Llc A phase-advanced filter for robust resonance cancellation
WO2003079533A1 (fr) * 2002-03-20 2003-09-25 Kabushiki Kaisha Yaskawa Denki Dispositif de commande a fonction de reglage constant
US6844693B2 (en) * 2002-03-29 2005-01-18 Matsushita Electric Industrial Co., Ltd. Position control apparatus for motor
US8041436B2 (en) * 2002-04-18 2011-10-18 Cleveland State University Scaling and parameterizing a controller
US6650078B1 (en) * 2002-04-24 2003-11-18 Rockwell Automation Technologies, Inc. Method and system for controlling mechanical systems exhibiting discontinuity in inertial loading
US7068923B2 (en) * 2002-11-26 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Speed control apparatus of motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157597A (en) * 1988-12-23 1992-10-20 Fanuc Ltd. Method of detecting oscillation of a servo system and automatically adjusting speed loop gain thereof
US5475291A (en) * 1992-12-10 1995-12-12 Matsushita Electric Industrial Co., Ltd. Adjustment device for adjusting control parameters of a servo motor and an adjustment method therefor
JPH06242833A (ja) * 1993-02-19 1994-09-02 Matsushita Electric Ind Co Ltd 自動調整サーボ制御装置
JPH07281708A (ja) * 1994-04-12 1995-10-27 Nippondenso Co Ltd オートチューニングコントローラ
US5936366A (en) * 1997-09-25 1999-08-10 Toshiba Kikai Kabushiki Kaisha Servo adjustment method and apparatus thereof
JPH11313495A (ja) * 1998-04-27 1999-11-09 Mitsubishi Heavy Ind Ltd 電動機サーボ系の制御装置
JPH11346492A (ja) * 1998-06-01 1999-12-14 Mitsubishi Electric Corp 電動機の位置制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1536551A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9122258B2 (en) 2011-05-24 2015-09-01 Mitsubishi Electric Corporation Motor control device
DE112012002234B4 (de) * 2011-05-24 2017-08-17 Mitsubishi Electric Corporation Motorsteuerungsvorrichtung
JP2014183651A (ja) * 2013-03-19 2014-09-29 Panasonic Corp モータ駆動装置
WO2018168566A1 (ja) * 2017-03-15 2018-09-20 オムロン株式会社 サーボシステム及び、サーボモータ制御のゲイン調整方法
JP2018156147A (ja) * 2017-03-15 2018-10-04 オムロン株式会社 サーボシステム及び、サーボモータ制御のゲイン調整方法
CN110313127A (zh) * 2017-03-15 2019-10-08 欧姆龙株式会社 伺服系统以及伺服马达控制的增益调整方法
US10809694B2 (en) 2017-03-15 2020-10-20 Omron Corporation Servo system and gain adjustment method for servo motor control
EP3598635A4 (en) * 2017-03-15 2020-12-16 Omron Corporation SERVO SYSTEM AND GAIN ADJUSTMENT PROCEDURE FOR SERVO MOTOR CONTROL
CN110313127B (zh) * 2017-03-15 2022-09-20 欧姆龙株式会社 伺服系统以及伺服马达控制的增益调整方法

Also Published As

Publication number Publication date
EP1536551A4 (en) 2007-12-05
JPWO2004008624A1 (ja) 2005-11-17
EP1536551A1 (en) 2005-06-01
US7292001B2 (en) 2007-11-06
US20060087275A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
WO2004008624A1 (ja) サーボ制御装置のゲイン調整方法
JP4720744B2 (ja) サーボ制御装置
JP4998475B2 (ja) サーボモータの制御装置および制御方法
JP5206994B2 (ja) 電動機制御装置およびそのゲイン調整方法
CN111095131B (zh) 伺服控制方法
JP5127767B2 (ja) 駆動制御装置
WO2001067187A1 (fr) Systeme de servocommande : technique de detection d&#39;une valeur critique d&#39;oscillation
KR100430138B1 (ko) 속도 피드백 제어계의 속도 루프 게인을 자동조정하는 방법
JP4752298B2 (ja) モータ制御装置およびその制御方法
JP2011147201A (ja) 電動機制御装置
JP5904865B2 (ja) 電動機制御装置
US7459873B2 (en) Method for extracting maximum gain of servo controller
JP4380254B2 (ja) サーボ制御装置の限界ゲイン抽出方法
JP2008225632A (ja) Nc制御のサーボ駆動装置
JP4390049B2 (ja) サーボ制御装置およびその限界ゲイン抽出方法
JP4224776B2 (ja) サーボ制御装置の限界ゲイン抽出方法
JP2005080333A (ja) 負荷イナーシャ算出方法
TWI739468B (zh) 斷屑控制系統及其控制方法
JPH08116688A (ja) サーボモータの発振検出方法及びサーボモータの速度ゲイン調整方法
JP2002335686A (ja) モータ制御装置
JP2005204472A5 (ja)
JP2001159901A (ja) 発振検出方法
JP2004246689A (ja) 位置ループゲインの自動調整方法
JP3966142B2 (ja) モータ駆動装置の位置決め時間短縮方法
JP2005204473A (ja) サーボ制御装置およびその限界ゲイン抽出方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003764130

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004521146

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003764130

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006087275

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10520731

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10520731

Country of ref document: US