WO2004003130A1 - キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材 - Google Patents

キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材 Download PDF

Info

Publication number
WO2004003130A1
WO2004003130A1 PCT/JP2003/008080 JP0308080W WO2004003130A1 WO 2004003130 A1 WO2004003130 A1 WO 2004003130A1 JP 0308080 W JP0308080 W JP 0308080W WO 2004003130 A1 WO2004003130 A1 WO 2004003130A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
fiber
acid
culture
salt
Prior art date
Application number
PCT/JP2003/008080
Other languages
English (en)
French (fr)
Inventor
Tokifumi Majima
Norimasa Iwasaki
Tadanao Funakoshi
Akio Minami
Shin-Ichiro Nishimura
Seiichi Tokura
Kazuo Harada
Sachiko Nonaka
Nobuhiko Maekawa
Original Assignee
Chemical Biology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemical Biology Institute filed Critical Chemical Biology Institute
Priority to US10/519,541 priority Critical patent/US20060134158A1/en
Priority to JP2004517284A priority patent/JP3774466B2/ja
Priority to EP20030738515 priority patent/EP1533366A1/en
Publication of WO2004003130A1 publication Critical patent/WO2004003130A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/16Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/74Alginate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2549Coating or impregnation is chemically inert or of stated nonreactance
    • Y10T442/2566Organic solvent resistant [e.g., dry cleaning fluid, etc.]

Definitions

  • the present invention relates to a chitosan Z acidic biopolymer hybrid fiber and a method for producing the hybrid fiber.
  • the present invention further relates to a three-dimensional animal cell culture substrate comprising the hybrid fiber, and an animal cell culture method using the substrate.
  • the conditions required for a tissue regeneration base material are as follows: (1) No inflammatory reaction, excellent biocompatibility, (2) bioabsorbability, (3) good cell adhesion, (4) It can be said that it can maintain the activity of cells, and (5) it has a three-dimensional structure that can regenerate tissues by differentiation. Furthermore, the cartilage at the hip joint is subjected to compressive stress up to about 2 OM Pa, and the ligament and tendon are subject to large tensile stress. Therefore, in addition to the above five conditions, the base material for cartilage tissue regeneration or ligament or tendon regeneration has the following features: 6 Ensures the stability of the shape until the tissue is regenerated in the body, and 7 It is considered necessary to develop a substrate that satisfies the two conditions of having mechanical strength.
  • stromal cells such as fibroblasts, smooth muscle cells, and endothelial cells are bioabsorbable materials (polyglycolic acid, cotton, intestinal suture, cenorelose, gelatin, collagen, polyhydroxyalkanoate) or 3D support (frame) consisting of non-bioabsorbable materials (polyamide compounds, polyester compounds, polystyrene compounds, polypropylene compounds, poly acrylate compounds, polybulu compounds, polycarbonate compounds, polytetrafluoroethylene compounds, nitrocellulose compounds) And culturing by embedding in the work), preparing a stromal cell and a living stromal tissue enclosing a three-dimensional structure that is cross-linked by a connective tissue protein that is naturally secreted by the stromal cell.
  • a method of embedding has also been reported (National Publication No. 11-506611)
  • collagen sponge sponge As a fibroblast culture substrate to reconstruct ligaments and tendons using natural polymers, collagen sponge sponge (Dunn, MG et al., J. Biomed. Mater. Res. , 29, 1363-1371 (1995)), sponge-like structures in which glycosaminoglycans are bound to collagen (Torres, D. S “et al., Biomaterials, 21, 1607-1619 (2000)), A structure in which collagen is bonded to the surface of a polylactic acid fiber (Ide, A "et al., Mater. Sci.
  • RGD arginine-glycine-aspartic acid tripeptide
  • RGD arginine-glycine-aspartic acid tripeptide
  • biopolymers such as gelatin and collagen
  • a base material for culturing chondrocytes using a natural polymer a collagen gel or a spongy base material (Japanese Patent Laid-Open No. 6-2 2 7 4 4; 2 0 0 1-2 2 4 6 7 8, Fujisato, T. et al "Biomaterials, 17, 155-162 (1996), etc.), chitin-san chitosan sponge-like substrates have been studied (Park, YJ et al. al.,
  • a culture substrate composed of a complex of an acidic (a-on) polymer and a basic (cationic) polymer has been reported (Japanese Patent Laid-Open Nos. 6-3 3 5 3 8 2 and 6 2 7 7 0 3 8) Force In this method, the two solutions are mixed and dried to form a plate-like or thin-film structure, which itself is a porous three-dimensional structure made of fibers and the like. is not.
  • a method of applying or spraying the above solution to the surface of an appropriate material glass, metal, plastic, etc.
  • the whole substrate is not bioabsorbable, it is absorbable in the living body. Cannot be applied to a culture substrate for cartilage tissue regeneration that is required.
  • An object of the present invention is to provide an animal cell culture substrate that satisfies all of the above conditions required for a tissue regeneration culture substrate. That is, the present invention
  • An object is to provide a substrate for animal cell culture. Disclosure of the invention
  • the present invention is a chitosan / acidic biopolymer hybrid fiber in which the inside of the fiber is made of chitosan or a salt thereof, and the fiber surface is coated with a composite of chitosan and a bioabsorbable acidic biopolymer. It relates to a fiber that retains its morphology even after 2 weeks at room temperature in DMEM (Dulbecos Modified Eagles Medium) supplemented with% FBS. “Keeping the form” means that the original form is not lost without dissolving or swelling.
  • the present invention also includes the following steps:
  • the present invention also includes the following steps:
  • An aqueous solution of a salt of chitosan is wet-spun using a base, an inorganic acid of 2 or more basic acids or a salt thereof, or an organic acid of 3 or more basic acids or a salt thereof as a coagulant to form wrinkles;
  • Optionally stretch the hybrid fiber It also relates to a method for producing the above-mentioned rice cake.
  • the present invention further relates to a three-dimensional substrate for animal cell culture comprising the fibers.
  • Animal cells include, but are not limited to, chondrocytes, fibroblasts, nerve cells, and undifferentiated cells that differentiate into these cells.
  • the present invention also relates to a method for culturing animal cells, comprising culturing animal cells in vitro using the three-dimensional substrate as a culture substrate.
  • the present invention also relates to a substrate for transplantation obtained by the above culture, in which animal cells grown on the culture substrate are bound.
  • FIG. 1 is a copy diagram showing a photomicrograph of chondrocytes cultured using the three-dimensional substrate of the present invention on the 21st day of culture.
  • FIG. 2 is a reproduction of a photograph showing the results of the same as that of chondrocyte culture 2 10.
  • FIG. 3 is a graph showing the amount of chondrocyte protein and acidic mucopolysaccharide per three-dimensional substrate on the 1st, 7th, 14th, and 2nd day of culture.
  • Figure 4 shows the creation of a defect at the knee joint of a rabbit, transplanted with a three-dimensional substrate in which rabbit rabbit chondrocytes were cultured for 2 weeks in advance, and opened the defect 8 weeks after transplantation, and safranin 0 staining It is a reproduction figure of the photograph which shows the result of having performed structure observation.
  • FIG. 5 is a graph showing the amount of DNA of fibroblasts per three-dimensional substrate on day 1, 70, 14 and 28 of culture.
  • FIG. 6 is a copy of a photograph showing the results of immunohistochemical staining of type I collagen by streptavidin-biotin method using fibroblasts cultured for 28 S on a three-dimensional substrate with an anti-mouse antibody.
  • Figure 7 shows a scanning electron micrograph of fibroblasts cultured for 28 days on a 3D substrate.
  • the inventor of the present invention provides chitosan acidic biomaterial in which the inside of the fiber is made of chitosan or a salt thereof, and the fiber surface is coated with a complex of chitosan and a bioabsorbable acidic biopolymer.
  • Manufactures fibers that are high-molecular hybrid fibers that retain their morphology even after 2 weeks at room temperature in DMEM (Dulbecos Modified Eagles Medium) medium supplemented with 10% FBS I devised two methods.
  • chitosan which is a basic polymer
  • the acid used may be either an inorganic acid or an organic acid.
  • Preferred examples of the inorganic acid are monobasic acids such as hydrochloric acid and nitric acid
  • preferred examples of the organic acid are formic acid, acetic acid, propionic acid, butyric acid, ascorbic acid and the like.
  • Fibers are prepared by wet spinning an aqueous solution of chitosan salt. Wet spinning is a method in which a spinning stock solution dissolved in an appropriate solvent is extruded through a nozzle into a coagulation bath having a large desolvation power and solidified.
  • a water-soluble salt of an alkaline earth metal such as calcium, magnesium or barium, for example, a halogen salt is used. Particularly preferred is calcium chloride.
  • alkaline earth metal salt dissolved in water and water Z alcohol mixed solvent Use alkaline earth metal salt dissolved in water and water Z alcohol mixed solvent.
  • concentration of the alkaline earth metal salt is from 10% to a saturated concentration, preferably from 40 to 60%.
  • the chitosan salt aqueous solution is extruded from a nozzle into a coagulation bath containing a coagulant to coagulate chitosan to form fibers.
  • the formed soot is immersed in a mixed solvent of water such as alcohol and Z water to remove excess coagulant.
  • acidic biopolymer refers to a naturally-derived polymer having an acidic group such as a carboxyl group, a sulfate group, a sulfonate group, or a phosphate group, or a salt thereof.
  • the biopolymer is a polysaccharide.
  • Acid biopolymers include naturally occurring biopolymers that have been reduced in molecular weight by any physical, chemical, or enzymatic means, or those that have generated the above acidic groups or salts thereof. .
  • acidic biopolymers having a carboxyl group examples include dalconic acid, dalucic acid, iduronic acid, D-mannuronic acid, galatathuronic acid, guluronic acid, sialic acid, glutamic acid, such as hyaluronic acid, alginic acid, Examples include heparin and polyglutamic acid.
  • acidic biopolymers having a sulfate group examples include chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, and keratan sulfate. Has a phosphate group
  • acidic biopolymers include DNA and RNA. Two or more of these acidic biopolymers may be used in the production of the composite. Preferred examples of acidic biopolymers are hyaluronic acid and chondroitin sulfate.
  • the complex of chitosan and acidic biopolymer refers to a complex formed by electrostatic interaction between chitosan having a positive charge and acidic biopolymer having a negative charge.
  • the acidic biopolymer and chitosan may be contacted in an appropriate medium such as water. It was found that when producing a chitosanno acidic biopolymer complex, it is not always necessary to mix the aqueous solutions of both, and it is sufficient to bring the acidic biopolymer solution into contact with solid chitosan.
  • the soot produced in the above manner is treated with an inorganic base, an inorganic acid of two or more basic acids or a salt thereof, an aqueous solution of an organic acid of three or more basic acids or a salt thereof, or a water Z water-compatible organic solvent mixture solution.
  • inorganic bases include alkali metal hydroxides such as NaOH and KOH.
  • inorganic acids with two or more basic acids are sulfuric acid, phosphoric acid, etc.
  • salts are sodium carbonate, sodium hydrogen carbonate, trisodium phosphate, sodium dihydrogen phosphate, sodium monohydrogen phosphate, sulfuric acid Contains sodium, sodium hydrogen sulfate, etc. and the corresponding strength and ammonium salts.
  • organic acids with 3 or more basic acids are citrate, ethylenediaminetetraacetic acid, 1,1,2-tricarboxylethane, 1,1,2-tricarboxyl-2-methylethane, 1,1,3-tricarboxyl Propane, 1, 2, 3 monotricarboxypropane, 1, 1, 2, 2-tetracarboxyethane, 1, 2, 2, 3-tetracarboxy propane and the like.
  • concentration of these post-treatment agents is 0.1 to 10%, preferably 0.2 to 1% of an inorganic base such as an alkali metal hydroxide, and 1 to 3% of an inorganic acid and an organic acid. After the treatment, it is thoroughly washed with water, then dipped in methanol, etc., dehydrated and dried.
  • the second production method uses an inorganic base as a coagulant, an inorganic acid or a salt thereof that is 2 or more basic acids, an organic acid or a salt thereof that is a 3 or more basic acid, and the point that no post-treatment is performed.
  • chitosan is dissolved in an acid aqueous solution to prepare a chitosan salt aqueous solution; a chitosan salt aqueous solution is prepared as a base, a dibasic acid or higher inorganic acid or salt thereof, or a tribasic acid or higher organic acid or salt thereof.
  • a coagulant wet spinning is performed to form fibers.
  • the formed fibers are immersed in a solvent compatible with water, such as alcohol, Z to remove excess coagulant; the fibers are immersed in a solution of bioabsorbable 'I raw acidic biopolymer, Manufactured by reacting chitosan and acidic biopolymer on the surface to form chitosan Z acidic biopolymer hybrid »and optionally stretching the hybrid fiber.
  • a solvent compatible with water such as alcohol, Z to remove excess coagulant
  • bioabsorbable 'I raw acidic biopolymer Manufactured by reacting chitosan and acidic biopolymer on the surface to form chitosan Z acidic biopolymer hybrid »and optionally stretching the hybrid fiber.
  • an inorganic base as a coagulant an inorganic acid of 2 or more basic acids or a salt thereof, and an organic acid of 3 or more basic acids or a salt thereof are the same as those mentioned as the post-treatment agents in the first production method.
  • the coagulant concentration
  • the chitosan concentration, the type and concentration of the acid required to dissolve chitosan, and the concentration of the acidic biopolymer solution may be the same as in the first production method.
  • Chitosan Zg fertile biopolymer hybrid fibers which are manufactured in this way, are made of chitosan or a salt thereof and the surface is coated with a composite of chitosan and acidic biopolymer.
  • animal cells such as chondrocytes and fibroblasts adhere well and are bioabsorbable and biocompatible.
  • the substrate In order to be used as a substrate for transplantation of animal cells, the substrate has a space in which cells can grow and retain a matrix secreted from the cells, and provides morphological stability and strength when force is applied. It is necessary to have a three-dimensional substrate.
  • a three-dimensional base material that satisfies the above requirements can be manufactured from a woven fabric, a knitted fabric, or a braid manufactured from a hybrid fiber manufactured by the method of the present invention.
  • Woven fabrics, knitted fabrics, or braids can be produced by a conventionally known method. Fabrics, knitted fabrics or braids are folded or stacked as necessary to create a thickness. Folded and stacked fabrics, knitted fabrics or braids are fixed and united together using the fibers of the present invention. Also folded, stacked fabrics, The knitted or braided string may contain the knack in other forms.
  • the shape of the three-dimensional substrate is changed according to the damaged part.
  • the present three-dimensional substrate has the following preferable properties as a culture substrate.
  • -Sterilize by heating in a clave or gas sterilize, etc. ⁇ Sterilize so that the shape does not lose its characteristics, and add to the sterilized medium.
  • cultivate the animal cells on the culture substrate as uniformly as possible in three dimensions. Any cells can be used as long as they are derived from mammals such as rabbits, sushi, horses, dogs, cats and humans. Preferred cells are those derived from human, particularly preferred are cells from the patient to be transplanted.
  • DMEM Dulbecco's Modified Eagle's Medium
  • Any growth factor such as TGF j3 (transforming growth factor, FGF (fibroblast growth factor), ChM-1 (chondromodylin 1), etc.) may be added to the medium.
  • hypoxic conditions due to the absence of blood vessels in cartilage tissue in vivo since it is subjected to a pressure load due to body weight, culturing under conditions close to these biological conditions is also considered effective. For this reason, chondrocyte culture should be performed under hypoxic conditions of 1 to 15%, and a pressure of 0.1 to 20 MPa (0.0 1 to 2 Hz in the case of cyclic loading). It is also possible to cultivate over a period of time and to combine these conditions.
  • the method of applying pressure specifically, there is a method of applying air pressure or water pressure to the culture medium using a pump or piston.
  • the culture may be performed under a tensile stimulus of 0.1 to 5 O m m / cm (0.0 1 to 2 Hz in the case of cyclic loading).
  • the tension of the bow I tension is performed by fixing both ends of the base material soaked in the culture medium to a device having elasticity and applying a certain amount of expansion and contraction.
  • Chondrocytes are cultured until at least extracellular matrix is formed. Usually, in about 2 to 4 weeks of culturing, chondrocytes adhere and proliferate well on the three-dimensional culture substrate of the present invention, and a collagen-like extracellular matrix is formed.
  • the three-dimensional substrate made of hybrid of chitosan and acidic biopolymer, and the substrate containing cartilage tissue attached to the three-dimensional substrate, manufactured as described above, is cartilage damage. It can be suitably used as a base material for transplantation for repairing.
  • Fibroblasts are cultured until at least extracellular matrix is formed. Usually, in about 2 to 4 weeks of culture, fibroblasts adhere and grow well on the three-dimensional culture substrate of the present invention to form a collagen-like extracellular matrix. In some cases, in order to produce sufficient transplantation tissue outside the body, culture is performed for about 2 months.
  • the three-dimensional substrate made of hybrid fibers of chitosan and acidic biopolymer and the fibroblast adhering to the three-dimensional substrate of the present invention produced as described above are ligaments and tendons. It can be suitably used as a base material for transplantation for repairing.
  • undifferentiated cells for example, mesenchymal stem cells are separated from the bone marrow fluid by density gradient centrifugation, etc., and then growth factors such as TGF- ⁇ and FGF are added to a medium such as DEME. After differentiation into cysts and fibroblasts, seeding on a three-dimensional substrate can also be allowed to grow and differentiate. In addition, seeding of cells on a substrate can be performed in an unbroken cell state.
  • EGF epidermal growth factor
  • neural stem cells and differentiated into neurons, and then seeded on a three-dimensional substrate to proliferate and differentiate.
  • seeding of cells on a substrate can be performed in the state of undifferentiated cells.
  • a fiber was produced under the same conditions as the chitosan-hyaluronic acid hybrid fiber (1) of Example 1 except that no post-treatment was performed with a sodium hydroxide solution after spinning. Comparative Example 2
  • chitosan fiber (a) a chitosan-only fiber
  • chitosan fiber (b) Spinning was carried out in the same manner as in Example 2 except that hyaluronan was not added to the third coagulation bath, and chitosan-only fiber (hereinafter referred to as “chitosan fiber (b)”). Obtained.
  • chitosan fiber (b) chitosan fiber
  • chitosan-hyaluronic acid hybrid soot was obtained.
  • roller first roller: speed 4.4m / m
  • a hybrid fiber of chitosan and alginic acid was produced in the same manner as in Example 2, except that 0.05% and 0.1% alginic acid were used in place of 0.05% hyaluronic acid in Example 2, respectively. .
  • Example 6
  • the tensile strength and elongation of each fiber produced in Examples 1 and 2 were measured.
  • the load at break and the measurement of elongation were in accordance with JIS fiber standard L 1015.
  • the cross-sectional area of each fiber was determined by image processing under a microscope.
  • Each thread-like Ht (a bundle of 50 monofilaments) was cut to a length of about 5 mm, and these were fixed in a plastic plate hole with a small hole with a diameter of about 1 mm ⁇ . Place this plastic plate on the pedestal of an optical microscope (BX50, Olympus Optical Co., Ltd.) and capture the image of the mist section through a force melaconte mouthpiece unit (ICD-740, Ikegami Tsushinki Co., Ltd.) including a CCD camera.
  • BX50 optical microscope
  • ICD-740 Ikegami Tsushinki Co., Ltd.
  • Table 3 shows the strength and elongation of each fiber.
  • the strength of chitosan warrior Ht was about 13 ON / mm 2 , but the fiber strength increased to about 150-22 ON / mm 2 due to the high-pridation with hyaluronic acid.
  • the strength of a structure in which nordihydroguaiaretic acid is cross-linked to collagen fibers (Faiper) is about 50 N / mm 2 (Koob TJ, et al., J. Biomed. Mater. Res., 56, 40-48 (2001)) From the above, it was confirmed that the chitosan-hyaluric acid hybrid fiber of the present invention has a strength of about 3 to 5 times that of the collagen fiber.
  • chondrocytes In order for chondrocytes to proliferate and differentiate on the substrate, it is necessary to attach as many chondrocytes as possible to the culture substrate. For this reason, the adhesion of chondrocytes to chitosan-only filaments and chitosan-hyaluronic acid hybrid fibers prepared in Example 2 was evaluated.
  • a commercially available medical absorbable suture bioabsorbable synthetic polymer
  • polydaractin 1 9 10 Vicryl 3-0, EtHconCo, NJ, USA
  • Chondrocytes were isolated and adjusted from the knee joints of Japanese white rabbits (8 weeks old, body weight 1.8-2.O kg). The concentration of chondrocytes and 2 X 1 0 6 ce 1 1 s / m 1, the method of contact adhesion evaluation cells Nishimura (Nishimura, J. Biol. Macromol. 7, 100-104, 1985) quasi-Ji was the .
  • each tub is cut to a length of 1 O mm and packed in a fixed amount (l OO mg) in a Teflon tube (inner diameter: 5 mm N length: 30 mm), and then the tube Sample solution 10 0 / X 1 containing chondrocytes was added from one end of each and incubated at 37 for 1 hour. Then, 1 ml of PBS (phosphate buffered saline) was flowed, the number of cells in the obtained effluent was counted, and the cell efflux rate was calculated.
  • PBS phosphate buffered saline
  • Fibroblasts were isolated and prepared from patella tendons of Japanese white rabbits (8 to 10 weeks old, body weight 1.8 to 2. O kg) under sterilization.
  • the fibroblast concentration was 1 X 10 7 ce 1 1 s / m 1 and cell adhesion was evaluated according to Nishimura's method (Nishimura, J. Biol. Macromol. 7, 100-104, 1985). . That is, each fiber was cut into a length of 5 mm and packed in a fixed amount in a Teflon (registered trademark) tube (inner diameter: 5 mm, length: 30 mm).
  • DMEM Dulbecos Modified Eagles Medium, manufactured by Sigma, code D5796
  • S tussive fetal serum
  • a long fiber (long-length cocoon) of 10 Om or more was produced from (while still on the roller). Further, after twisting the long filament yarn, a band-like structure was produced using a commercially available braiding machine. Using this, a three-dimensional culture substrate having a fixed shape was produced.
  • Example 10 Using the three-dimensional substrate of Example 10, a culture test for chondrocytes was performed.
  • Hyaluronic acid hybrid 3D substrate is placed in a multi-well plate (1 2 wel, manufactured by F a 1 c ⁇ n) and contains chondrocytes on the fiber so that there are 5 X 10 5 per well. About 100 ⁇ l of solution was added, incubated in an incubator at 37 ° C for 1 hour in the presence of 5% C ⁇ 2, 2 ml of DM EM medium was added in small portions, and an additional 0, 1% Ascorbic acid phosphate 20 ⁇ l was added and cultured under the above conditions.
  • Fig. 1 shows an optical micrograph of day 2 of culture. It was confirmed that the seeded chondrocytes proliferated well on the fibers and in the gaps between Nurse
  • Fig. 2 shows the results of Alcian Blue Safranin staining, and many extracellular matrixes that were strongly stained in blue were confirmed. From the above, it can be seen that chondrocytes grow and differentiate smoothly on this fiber and actively produce extracellular matrix such as chondroitin sulfate.
  • Fig. 3 also shows the measurement results of the amount of protein and acidic mucopolysaccharide per three-dimensional substrate on Day 1, 713, Day 14 and Day 2 of Culture 1. Both increased. These facts also indicate that chondrocytes produce various proteins and extracellular matrices such as chondroitin sulfate by good growth and differentiation.
  • Example 1 2 shows an optical micrograph of day 2 of culture. It was confirmed that the seeded chondrocytes proliferated well on the fibers and in the gaps between Nurse
  • fibroblasts were collected and cultured. That is, a 2 mm square piece was prepared from a patella tendon of Japanese white rabbit (8 to 10 weeks old, weight 1.8 to 2. O kg) and covered with a cover glass and fixed to a 35 mm diameter share. Thereto DMEM supplemented with 10% FB S addition, 5% C0 2 presence and cultured for 2 weeks in the incubator of 3 7 ° C. When the fibroblasts became confluent, the medium was removed and washed with PBS (—). After adding 0.5 ml of 0.25% trypsin and incubating at 37 ° C. for 15 minutes, lml of medium was added to recover the cells.
  • Example 10 consisting of hybrid fibers of chitosan and hyaluronic acid, which had been sterilized in advance, into a 12-hole plate, so that there are 1 X 10 6 per plate on the fiber.
  • About 100 ⁇ l of a solution containing fibroblasts was added.
  • 5% C0 2 the presence, after 1 hour Inkyubeto in culture instrument 3 7 ° C, was added DMEM medium about 2m 1 and cultured under the above conditions.
  • the amount of DNA which is an index of the cell number, was measured.
  • the measurement was performed according to the method of R ago et al. (Rago, R., et al., Anal. Biochem., 191, 31-34 (1990)). That is, sodium chloride was added to 0.05M phosphate buffer (pH 7.4) to make a 2M solution. The cultured fibroblasts were taken out together with the substrate, and the medium was washed away with PBS. 1.5 m after finely chopping the substrate with scissors Transfer to an L-volume tube, add 0.05 mL of 0.05M phosphate buffer (containing 2M sodium chloride, pH 7.4), stir well, and let stand at room temperature for 1 minute. This solution was thoroughly stirred again, and the supernatant was used as a sample solution. The sample solution 100 ⁇ L 0.
  • Figure 6 shows the results of immunohistochemical staining of type I collagen by streptavidin-biotin method using anti-mouse antibody (cultured for 28 days on a three-dimensional substrate). It was confirmed that the three-dimensional substrate made from this hybrid fiber was also excellent in the production of type I collagen, the extracellular matrix of ligament and tendon tissue.
  • Fig. 7 shows a scanning electron microscope image when 283 cells were cultured using this 3D substrate.
  • the method for preparing the materials is as follows. A 0.1 M phosphate buffer (pH 7.2) was prepared. To 200 mL of this phosphate buffer, 6.85 g of sucrose was added to prepare 0.1 M phosphate 11 ⁇ ⁇ 0.1 M phosphate buffer. In the same way, 0.2M Phosphorus 11 ⁇ ⁇ Yes 0.2M Phosphate Buffer (pH 7.
  • a 1% osmium acid solution was prepared by diluting a 2% osumiacid solution twice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Developmental Biology & Embryology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、動物細胞、例えば軟骨細胞または線維芽細胞の培養に適した3次元基材を提供する。該3次元基材は、繊維内部がキトサンまたはその塩よりなり、繊維表面がキトサンと生体吸収性の酸性生体高分子との複合体で被覆されているキトサン/酸性生体高分子ハイブリッド繊維であって、10%FBS(ウシ胎仔血清)を添加したDMEM(Dulbecco's Modified Eagle's Medium)培地中に、室温で2週間置いても形態を保持する繊維より製造される。

Description

明 細 書 キトサンと酸性生体高分子とのハイプリッド繊維および動物細胞培養基材 技術分野
本発明は、 キトサン Z酸性生体高分子ハイブリッド繊維、 および該ハイブリツ ド繊維の製造方法に関する。 本発明はさらに、 該ハイプリッド繊維よりなる動物 細胞培養用 3次元基材、 並びに該基材を用いる動物細胞培養方法にも関する。 背景技術
高齢化社会を迎え、 関節症患者は人口の 1 %にも達しようとしている。 これら の疾患者の大部分は軟骨組織が損傷を受けたり壌死することによって起こる変形 性関節症や慢性リゥマチによるものと言われている。 軟骨は自己再生能が極めて 低いことから、 外科的治療が必要な場合には人工関節置換術が施されている。 し かし、 この方法では装着物からの金属イオンの溶出による炎症や骨接合部との緩 み、 耐久性等に大きな課題があり、 医療用具としての寿命は 1 0年程度とされて いることから、 人工関節手術は根治的な治療法にはなっていない。
また事故やスポーツによる靭帯 (特に膝の関節を固定している膝前十字靭帯) や腱の損傷の治療では、 自己の正常な靭帯あるいは腱の一部を移植する再建術が 行われているが、 この治療法では移植に使用した正常部位の筋力が半分程度に低 下してしまい、 運動機能に支障を生じることが大きな問題となっている。 人工の 合成繊锥から成る人工靭帯を移植する手術も従来から検討されてきたが、 細胞が 付着しないために人工物が時間の経過とともに擦り切れてしまうという問題があ り、 現在は殆ど使用されていない状況にある。
そこで、 近年、 自己再生能の低い組織を対象に、 正常部位の自己組織を一度体 外に取り出し、 培養して増殖'分化させた後、 再ぴ体内に移植して目的組織の再 生を図ろうとする再生医療の研究が盛んに行われている。 細胞はある物質の表面 に接着することによって増殖 ·分化が起こること力 ら、 再生医療の発展には培養 細胞が接着するための足場となる良好な人工基材 (以下、 基材と呼ぶ) の開発が 不可欠とされている。
一般に、 組織再生用の基材に求められる条件として、 ①炎症反応が見られず、 生体親和性に優れていること、 ②生体吸収性であること、 ③細胞の接着性がよ いこと、 ④細胞の活性を維持できること、 ⑤細胞の増殖 '分化による組織再生 が可能な 3次元構造を有することが挙げられる。 さらに、 股関節部位の軟骨には 2 O M p a程度までの圧縮応力がかかり、 靭帯や腱には大きい引張り応力がかか る。 このことから、 軟骨組織再生用または靭帯や腱の再生用基材には上記 5つの 条件以外に、 ⑥体内で組織が再生されるまでの形状の安定性が確保されること、 およぴ⑦機械的強度を有することの 2つの条件も満たす基材の開発が必要と考 えられる。
再生医療の観点から線維芽細胞や平滑筋細胞、 内皮細胞等の間質細胞を生体吸 収性材料 (ポリグリコール酸、 綿、 腸線縫合糸、 セノレロース、 ゼラチン、 コラー ゲン、 ポリヒドロキシアルカノエート) または非生体吸収性材料 (ポリアミド化 合物、 ポリエステノレ化合物、 ポリスチレン化合物、 ポリプロピレン化合物、 ポリ アタリレート化合物、 ポリビュル化合物、 ポリカーボネート化合物、 ポリテトラ フルォロエチレン化合物、 二トロセルロース化合物) から成る 3次元支持体 (フ レームワーク) に埋め込んで培養し、 間質細胞と間質細胞が自然に分泌する結合 組織タンパク質によつて架橋される 3次元構造物を包んだ生間質組織を調製し、 この構造物を移植または埋め込む方法も報告されている (特表平 11-506611号公 報) 。
また、 天然の高分子を用いて靭帯や腱を再構築するための線維芽細胞培養用基 材として、 コラ一ゲンのスポンジゃファィバー (Dunn, M. G. et al., J. Biomed. Mater. Res., 29, 1363-1371 (1995)) 、 コラーゲンにグリコサミノグリカンを結 合させたスポンジ状の構造物 (Torres, D. S" et al., Biomaterials, 21, 1607- 1619 (2000)) 、 ポリ乳酸のファイバーの表面にコラーゲンを結合させた構造物 (Ide, A" et al., Mater. Sci. Eng., C17, 95-99 (2001) ) 、 コラ一ゲンフアイバ 一にノルジヒドログアヤレチン酸を架橋した構造物 (Koob, T. J., et al., J. Biomed. Mater. Res., 56, 40-48 (2001)) 等を用いて、 線維芽細胞の増殖性ゃ靭 帯組織の再生検討が報告されている。 しかし、 このようなコラーゲンを使用する方法ではコラーゲン基材が生体と同 種的なものであることから、 これに伴う抗原性や感染が深刻な問題となる可能性 が高い。 また、 コラーゲンゲルやコラーゲンを用いた基材は変位を受けて元に戻 ることが困難であり、 生体吸収性の合成ポリマーのような変位に対する弾力性に 欠いていることも靭帯や腱の再生基材としては大きな問題となる。
これまでの生体吸収性の軟骨細胞培養基材として、 ポリグリコール酸ゃポリ乳 酸等の合成高分子を用いたフアイバーゃスポンジが検討されてきた (特公平 6 - 6 1 5 5号公報、 特表平 8— 5 1 1 6 7 9号公報、 Ito, K. et al., Mat. Res. Soc. Proc, 252, 359-365 (1992), Freed, L. E. et al" J. Biol. Mater. Res" 27, 11-23 (1993)等) 。 上記合成高分子材料は体内での加水分解物が生体内の代謝中間体と 同一であるため毒性がなく、 高重合体が得られるため機械的強度を有し、 成形が 容易であるなどの長所がある。 しカゝし、 これらの生体吸収性合成高分子は細胞の 接着性に欠けるために、.材料表面に生体の細胞接着性因子である R G D (アルギ ニン—グリシンーァスパラギン酸のトリペプチド) や、 ゼラチン、 コラーゲン等 の生体高分子を固定化する方法によって細胞の接着性を向上させることが検討さ れてきた (Yamaoka, T. et al., J. Biol. Macromol., 25, 265-271, (1999)等) 。 し かし、 この様な化学的固定方法は操作が繁雑であり、 また、 固定化処理に使用し た薬品の残存等も懸念される。
一方、 天然高分子を用いた軟骨細胞培養用基材としては、 コラーゲンのゲルや スポンジ状基材 (特開平 6— 2 2 7 4 4、 特表平 9一 5 1 0 6 3 9、 特開 2 0 0 1 - 2 2 4 6 7 8 , Fujisato, T. et al" Biomaterials, 17, 155-162 (1996)等) 、 キチンゃキトサンのスポンジ状基材が検討されてきた (Park, Y. J. et al.,
Biomaterials, 21, 153-159 (2000)等)。 これらの基材は形状安定性および機械的 強度に問題がある。 また、 コラーゲンは原材料費が高価であるとともに、 抗原性 や B S E等の感染も懸念される。
酸性 (ァ-オン系) 高分子と塩基性 (カチオン系) 高分子の複合体から成る培 養基材が報告されている (特開平 6— 3 3 5 3 8 2号公報、 特開平 6— 2 7 7 0 3 8号公報) 力 この方法では両者の溶液を混合し、 乾燥させただけの板状や薄 膜状構造物であり、 それ自体が繊維等から成る多孔性の 3次元構造物ではない。 また、 上記溶液を適当な材料 (ガラスや金属、 プラスチック等) の表面に塗布や 噴霧する方法も記載されているが、 基材全体が生体吸収性のものではないために、 生体での吸収性が要求される軟骨組織再生用の培養基材には適用できない。
生体吸収性の酸性高分子と塩基性高分子のハイプリッド繊維を作製する方法が 報告されている (特開 2002— 291461) 。 しかし、 この »維の作製方法 では酸性高分子であるアルギン酸等を主原料とし、 これに極少量の塩基性高分子 であるキトサン等を付与するものであるため、 例えばアルギン酸を主材料とした 繊維は親水性のために培養液中で膨潤し、 形状が不安定である。 また、 酢酸に溶 解したキトサンを塩化カルシウム中で紡糸し、 ヒアルロン酸溶液中に浸漬した後、 巻き取とつて、 乾燥させただけのシート状繊維の周辺にキトサン溶液 (酢酸に溶 解したもの) を塗布して重ね合せた後、 乾燥させたものを 3次元の培養基材とし て用いた報告もなされている (岩崎ら、 第 75回日本整形外科学会学術集会、 2 002. 5. 16-19 (岡山) ;山根ら、 第 16回日本整形外科学会基礎学術 集会、 2001. 10. 18 (広島) 、 第 20回日本運動器移植-再生医学研究 会、 2001. 10. 27 (京都) ) 。 しかし、 これらの繊維はキトサンが酢酸 塩を形成したまま繊維ィ匕されているため、 培養溶液中で維維が少しずつ膨潤した り溶け出し培養中での基材形状の安定性が悪く基材内部での軟骨細胞の増殖性も 低下するという問題があつた。 発明が解決しようとする技術的課題
本発明は組織再生用培養基材に要求される上記条件をすベて満たした動物細胞 培養用基材を提供することを目的とする。 即ち、 本発明は、
1) 動物細胞の培養において細胞の播種が容易であり、 播種時、 及び増殖した動 物細胞が培養基材に容易に吸着 ·接着する。
2 ) 軟骨細胞または線維芽細胞等の動物細胞が基材の表面および内部で増殖し、 コラーゲンなど細胞外マトリッタスが分泌され結合組織を形成する。
3) 形成された結合組織が占め得る 3次元的空間を有する。
4) 移植後組織が再生するまで十分な機械的強度を有する。
5) 生体適合性および生体吸収性を有し、 組織再生後は究極的には消滅する、 動物細胞培養用基材を提供することを目的とする。 発明の開示
本発明は、 繊維内部がキトサンまたはその塩よりなり、 繊維表面がキトサンと 生体吸収性の酸性生体高分子との複合体で被覆されているキトサン /酸性生体高 分子ハイブリッド繊維であって、 1 0 %FBS (ゥシ胎仔血清) を添加した DMEM (Dulbecco s Modified Eagles Medium) 培地中に、 室温で 2週間置い ても形態を保持する繊锥に関する。 「形態を保持する」 とは、 溶解、 または膨潤 せずもとの形態を失わないことを言う。
本発明はまた、 以下の工程:
1 ) キトサンを酸の水溶液に溶解しキトサンの塩の水溶液を調製する;
2 ) キトサンの塩の水溶液を、 アル力リ土類金属の塩を凝固剤として用いて湿 式紡糸して ¾锥を形成させる;
3 ) その繊維を生体吸収性の酸性生体高分子の溶液に浸漬して、 繊維表面でキ トサンと酸性生体高分子を反応させてキトサン/酸性生体高分子ハイプリッド繊 維を形成させる;
4 ) 場合によりハイプリッド繊維を延伸する;、
5 ) ハイブリッド »を塩基、 2塩基酸以上の無機酸の若しくはその塩、 また は 3塩基酸以上の有機酸もしくはその塩の水溶液で処理する;
を含む上記維維の製造方法にも関する。
本発明はまた、 以下の工程:
1 ) キトサンを酸の水溶液に溶解しキトサンの塩の水溶液を調製する;
2 ) キトサンの塩の水溶液を、 塩基、 2塩基酸以上の無機酸もしくはその塩、 または 3塩基酸以上の有機酸もしくはその塩を凝固剤として用いて湿式紡糸して 纖锥を形成させる;
3 ) 形成された繊維を生体吸収性の酸性生体高分子の溶液に浸漬して、 維锥表 面でキトサンと酸性生体高分子を反応させてキトサン Z酸性生体高分子ハイブリ ッド!^锥を形成させる;
4 ) 場合によりハイプリッド繊锥を延伸する; ことを含む上記 »锥の製造方法にも関する。
本発明はさらに、 該繊锥よりなる動物細胞培養用 3次元基材にも関する。 動物 細胞としては、 限定されるものではないが軟骨細胞、 線維芽細胞、 神経細胞、 こ れらの細胞に分化する未分化細胞を含む。
本発明は、 該 3次元基材を培養基材として用いて、 動物細胞を生体外で培養す ることを含む動物細胞の培養方法にも関する。
本発明は、 上記培養によって得られる、 培養基材に増殖した動物細胞が結合し た移植用基材にも関する。 図面の簡単な説明
図 1は、 本発明の 3次元基材を用いて培養した軟骨細胞の、 培養 2 1日目の光 学顕微鏡写真を示す模写図である。
図 2は、 同じく軟骨細胞培養 2 1 0目のァノレシァンブルー 'サフラエン染色の 結果を示す写真の模写図である。
図 3は、 培養 1日目、 7日目、 1 4日目、 および 2 1日目の 3次元基材あたり の、 軟骨細胞のタンパク質量および酸性ムコ多糖量を示すグラフである。
図 4は、 ゥサギの膝関節部位に欠損部を作製し、 ここに予め 2週間ゥサギ軟骨 細胞を培養した 3次元基材を移植し、 移植後 8週目に欠損部を開腹しサフラニン 0染色による組織観察を行った結果を示す写真の模写図である。
図 5は、 培養 1日目、 7 0目、 1 4日目、 および 2 8日目の 3次元基材あたり の、 線維芽細胞の D NA量を示すグラフである。
図 6は、 3次元基材で 2 8 S間培養した線維芽細胞を、 抗マウス抗体を用いた streptavidin- biotin法による I型コラーゲンの免疫組織染色の結果を示す写真 の模写図である。
図 7は 3次元基材で 2 8日間培養した線維芽細胞の走査型電子顕微鏡写真を示 す模写図である。
明を実施するための最良の形鶴
本発明者は、 繊維内部がキトサンまたはその塩よりなり、 I;維表面がキトサン と生体吸収性の酸性生体高分子との複合体で被覆されているキトサン 酸性生体 高分子ハイブリッド繊維であって、 1 0 %FBS (ゥシ胎仔血清) を添加した DMEM (Dulbecco s Modified Eagles Medium) 培地中に、 室温で 2週間置い ても形態を保持する繊锥を製造する 2つの方法を考案した。
第一の方法では、 先ず塩基性高分子であるキトサンを酸の水溶液に溶解してキ トサンの塩の水溶液を調製する。 この場合用いる酸としては無機酸または有機酸 のいずれでもよい。 無機酸の好ましい例は、 塩酸、 硝酸等の 1塩基酸であり、 有 機酸の好ましい例はギ酸、 酢酸、 プロピオン酸、 酪酸、 ァスコルビン酸等である。 キトサン塩の水溶液を湿式紡糸して繊維を調製する。 湿式紡糸とは適当な溶剤 に溶解した紡糸原液をノズルを通して脱溶媒和力の大きな凝固浴中に押出して凝 固させる方法である。
凝固剤としては、 カルシウム、 マグネシウム、 バリウム等のアルカリ土類金属 の水溶性の塩、 例えばハロゲン塩を用いる。 特に好ましいのは塩化カルシウムで ある。 アルカリ土類金属塩を水、 水 Zアルコールの混合溶媒に溶解して用いる。 アル力リ土類金属塩の濃度は、 1 0 %から飽和濃度まで、 好ましくは 4 0〜 6 0 %である。
上記キトサン塩の水溶液をノズルから凝固剤を含む凝固浴中に押し出して、 キ トサンを凝固させ繊維を形成させる。 形成した鶸锥はアルコール等の水と相溶性 の溶媒 Z水の混合溶媒に浸漬し過剰の凝固剤を除去する。
本明細書で用いる 「酸性生体高分子」 とは、 カルボキシル基、 硫酸基、 スルホ ン酸基、 リン酸基等の酸性の基を有する天然に由来する高分子、 またはその塩を いう。 好ましい態様では生体高分子は多糖類である。 天然に存在する生体高分子 をいずれかの物理的、 化学的、 あるいは酵素的手段により低分子量ィ匕したもの、 あるいは上記酸性基またはその塩を生じさせたものも 「酸性生体高分子」 に含む。 カルボキシル基を有する酸性生体高分子の例としては、 ダルコン酸、 ダルク口 ン酸、 ィズロン酸、 D—マンヌロン酸、 ガラタツロン酸、 グルロン酸、 シアル酸 グルタミン酸を含むポリマー、 例えばヒアル口ン酸、 アルギン酸、 へパリン、 ポ リグルタミン酸等が挙げられる。
硫酸基を有する酸性生体高分子の例としてはコンドロイチン硫酸、 デルマタン 硫酸、 へパリン、 へパラン硫酸、 ケラタン硫酸等が挙げられる。 リン酸基を有す る酸性生体高分子の例としては D NA、 R NA等が挙げられる。 複合体の製造に おいてこれらの酸性生体高分子の 2種以上を用いてよい。 酸性生体高分子の好ま しい例はヒアルロン酸、 コンドロイチン硫酸である。
キトサンと酸性生体高分子との複合体とは正の電荷を有するキトサンと負の電 荷を有する酸性生体高分子との間の静電的相互作用により形成される複合体をい う。 複合体の生成には酸性生体高分子とキトサンを適当な媒体、 例えば水中で接 触させればよい。 キトサンノ酸性生体高分子複合体を生成させる場合、 両者の水 溶液を混合する必要は必ずしも無く、 固体のキトサンに酸性生体高分子の溶液を 接触させればよいことを見出した。
酸性生体高分子を水または水/アルコールの混合溶媒等に溶解した溶液を調製 する。 酸性生体高分子の濃度は 0 . 0 1〜 1 0 %、 好ましくは 0 . 0 5〜 1 %と する。 上記キトサン繊維を酸性生体高分子の溶液に浸漬すると、 聽表面で塩基 性高分子であるキトサンと酸性生体高分子の複合体が形成される。 この |¾锥は内 部がキトサン塩で表面がキトサンと酸性生体高分子の複合体で被覆されたハイプ リッド繊維である。 該条纖は場合により延伸してもよい。 複合体の生成反応は延 伸後に行ってもよい。
このようにして生成した »锥を、 無機塩基、 2塩基酸以上の無機酸若しくはそ の塩、 3塩基酸以上の有機酸もしくはその塩の水溶液または水 Z水と相溶性有機 溶媒混合物溶液で後処理する。 この後処理を行わないと培養基材として用いた場 合に培養液中で繊維が徐々に溶解し、 基材の形態の安定性が保てない。 無機塩基 の例としては N a OH, K O Hなどのアル力リ金属水酸化物を含む。 2塩基酸以 上の無機酸の例は硫酸、 リン酸等であり、 その塩の例は、 炭酸ナトリウム、 炭酸 水素ナトリウム、 リン酸三ナトリウム、 リン酸二水素ナトリウム、 リン酸一水素 ナトリウム、 硫酸ナトリウム、 硫酸水素ナトリゥム等及びこれらに対応する力リ ゥム塩、 アンモニゥム塩を含む。 3塩基酸以上の有機酸の例はクェン酸、 ェチレ ンジァミン四酢酸、 1, 1 , 2—トリカルポキシエタン、 1 , 1, 2—トリカル ポキシ一 2—メチルェタン、 1, 1 , 3—トリカルボキシプロパン、 1 , 2 , 3 一トリカルボキシプロパン、 1, 1 , 2, 2ーテトラカルボキシェタン、 1 , 2, 2 , 3—テトラカルポキシプロパン等を含む。 これら後処理剤の濃度は 0 . 1〜 1 0 %、 好ましくはアル力リ金属水酸化物等の無機塩基は 0 . 2〜 1 %、 無機酸 および有機酸は 1〜3 %である。 処理後、 十分水で洗浄して、 次にメタノール等 に浸漬して脱水し、 乾燥する。
第 2の製造方法では凝固剤として無機塩基、 2塩基酸以上の無機酸若しくはそ の塩、 3塩基酸以上の有機酸もしくはその塩を用いること、 及び後処理を行わな い点が第 1の方法と異なる。 すなわち、 キトサンを酸の水溶液に溶解しキトサン の塩の水溶液を調製し;キトサンの塩の水溶液を、 塩基、 2塩基酸以上の無機酸 もしくはその塩、 または 3塩基酸以上の有機酸もしくはその塩を凝固剤として用 いて湿式紡糸して繊維を形成させる。 形成した繊維はアルコール等の水と相溶性 の溶媒 Z水の混合溶媒に浸漬し、 過剰の凝固剤を除去する;その繊維を生体吸収 'I生の酸性生体高分子の溶液に浸漬して、 锥表面でキトサンと酸性生体高分子を 反応させてキトサン Z酸性生体高分子ハイプリッド »を形成させ、 場合により ハイブリッド繊維を延伸することにより製造する。 凝固剤としての無機塩基、 2 塩基酸以上の無機酸若しくはその塩、 3塩基酸以上の有機酸もしくはその塩の例 は第 1の製造方法の後処理剤として挙げたのと同様である。 凝固剤の濃度は 0 .
5〜 3 0 %とする。 キトサン濃度、 キトサンを溶解するに必要な酸の種類および 濃度、 酸性生体高分子の溶液の濃度は第 1の製造方法と同様でよい。
このようにして製造される、 繊锥内部がキトサンまたはその塩よりなり、 表面 がキトサンと酸性生体高分子の複合体で被覆されたキトサン Zg矣性生体高分子ハ イブリッド繊維は、 相当の強度を有し、 軟骨細胞や線維芽細胞等の動物細胞がよ く付着するとともに、 生体吸収性であり、 生体適合性を有する。
動物細胞の移植用基材として用いるために、 基材はその内部に細胞が増殖し、 細胞から分泌されたマトリックスを保持しうる空間を有し、 力が加わつた場合の 形態安定性および強度を有する 3次元基材とすることが必要である。 上記要件を 満たす 3次元基材は、 本発明の方法で製造したハイプリッド繊維から製造する織 物、 編物、 または組み紐より製造できる。 織物、 編物、 または組み紐は従来公知 の方法により製造できる。 織物、 編物または組み紐は必要に応じ折り重ね、 また は積み重ねて、 厚みを生じさせる。 折り重ね、 積み重ねた織物、 編物または組み 紐は本発明の繊維を用いて固定して一体ィ匕する。 また折り重ね、 積み重ねた織物、 編物または組み紐はその内部に該 ¾锥をこれら以外の形態で含んでいてもよレ、。
3次元基材の形状は損傷部に応じて変化させる。
従って本宪明の 3次元基材は培養基材として以下のような好ましい性質を有す る。
1 ) 軟骨細胞または線維芽細胞等の動物細胞の培養において細胞の播種が容易で あり、 播種時、 及び増殖した軟骨細胞または線維芽細胞等の動物細胞が培養基材 に吸着 ·接着する。
2 ) 軟骨細胞または線維芽細胞等の動物細胞が基材の表面および内部で増殖し、 コラーゲンなど細胞外マトリッタスが分泌され結合組織を形成する。
3 ) 形成された結合組織が占め得る 3次元的空間を有する。
5 ) 移植後組織が再生するまで十分な機械的強度を有する。
4 ) 生体適合性および生体吸収性を有し、 組織再生後は究極的には消滅する。 上記の 3次元培養基材を用いる動物細胞の培養は通常の動物細胞培養法 (例え ば、 Klagsburn, M., "harge Scale Preparation of Chondrocytes", Methods in Enzymol., 58:560(1979) を参照) に準じて行う。 先ず、 予め、 該培養基材をォ
—トクレーブで加熱滅菌するか、 ガス殺菌等を行い形状■特性が壌れないように 殺菌処理を施し、 殺菌した培地に添加する。 次に、 動物細胞を培養基材上にでき るだけ 3次元的に均一に播いて培養する。 培養に使用する細胞としてはゥサギ、 ゥシ、 ゥマ、 ィヌ、 ネコ、 ヒト等の哺乳動物由来の細胞であれば、 いずれの細胞 でも培養可能である。 好ましい細胞は、 ヒ ト由来のものであり、 特に好ましいの は移植しようとする患者由来の細胞である。
培地としては、 通常の動物細胞培養法で用いられるもの、 例えばヒ ト血清を含 む DMEM (Dulbecco's Modified Eagle's Medium) などが使用出来る。 培地に はいずれかの成長因子、 例えば TGF j3 (トランスフォーミング成長因子一 、 F G F (線維芽細胞増殖因子) , C h M— 1 (コンドロモジエリン一 1 ) などを 添加してもよい。
播種した細胞が培養基材上で良好に増殖、 分化するためには細胞付着 ·吸着性 の高い培養基材は極めて重要である。
生体内の軟骨組織には血管が発達していないことから低酸素条件となっている こと、 また、 体重による圧負荷を受けていることから、 これらの生体条件に近い 条件での培養も有効と考えられる。 このため軟骨細胞の培養では、 1〜1 5 %の 低酸素条件下で行うことや、 0 . l〜2 0 M P a (周期負荷の場合には 0 . 0 1 〜2 H z ) の圧をかけて培養を行うこと、 およびこれらの条件を組み合わせて培 養することも可能である。 圧を負荷する方法については、 具体的にはポンプゃピ ストン状のものを用いて培地に空気圧や水圧を加える方法等がある。
また、 靭帯や腱組織では引っ張り応力が加えられており、 これに近い条件下で の培養も有効と考えられる。 このため、 線維芽細胞の培養では 0 . 0 1〜5 O m m/ c m (周期負荷の場合には 0 . 0 1〜2 H z ) の引っ張り刺激下で培養を行 つてもよレ、。 弓 Iつ張り刺激の負荷は具体的には、 培地に浸けた基材の两端を伸縮 性を有する器具等に固定し、 一定の伸縮変化を加えることにより行う。
軟骨細胞の培養では、 少なくとも細胞外マトリツタスが形成されるまで行なう。 通常、 培養 2〜 4週間程度で軟骨細胞が本発明の 3次元培養基材の上に良好に接 着、 増殖し、 コラ一ゲン様の細胞外マトリックスが形成される。
このようにして製造される、 本宪明の、 キトサンと酸性生体高分子とのハイブ ッリド»锥よりなる 3次元基材、 及び 3次元基材に付着した軟骨組織を含む基材 は、 軟骨損傷の修復のための移植用基材として好適に用いることができる。
線維芽細胞の培養は、 少なくとも細胞外マトリッタスが形成されるまで行なう。 通常、 培養 2〜 4週間程度で線維芽細胞が本発明の 3次元培養基材の上に良好に 接着、 増殖し、 コラーゲン様の細胞外マトリックスが形成される。 場合によって は、 体外で十分な移植用組織を作製するために、 2ヶ月程度の培養を行う。
このようにして製造される、 本発明の、 キトサンと酸性生体高分子とのハイブ ッリド繊維よりなる 3次元基材、 及び 3次元基材に付着した線維芽細胞を含む基 材は、 靭帯や腱の修復のための移植用基材として好適に用いることができる。 未分化細胞を用 、る場合には、 例えば骨髄液から間葉系幹細胞を密度勾配遠心 法等で分離した後、 DEME等の培地に TGF— βや FGF等の成長因子を添加して軟骨細 胞ゃ線維芽細胞へ分化させた後、 3次元基材上に播種し、 増殖 ·分化させること も可能である。 また、 基材上への細胞の播種は未分ィ匕細胞の状態で行うこともで さる。 また、 神経幹細胞を用いて EGF (上皮増殖因子)等を培地に添加し神経細胞に分 化させた後、 3次元基材上に播種し、 増殖 '分化させることも可能である。 また、 基材上への細胞の播種は未分化細胞の状態で行うこともできる。
以下に本発明を実施例により説明する。 本発明がこれら実施例に限定されるも のではないことは明かである。 実施例
実施例 1
キトサンとヒアルロン酸のハイブリッド繊維 (1) および (2) の製造
8 (重量/容量) %のキトサン (君津化学工業社製、 F 2 P、 分子量:約 165,
000) を 4%酢酸水溶液に溶解した溶液をカラム (ガラス製、 内径 45mm、 長さ 410mm) に詰め、 濾布で加圧 (0. 6 k g f /cm2) 濾過した。 この 濾液を紡糸用カラム (ガラス製、 内径 45mm、 長さ 410mm) に詰め、 これ を紡糸液として簡易紡糸装置を用い、 以下のような方法によって繊維を作製した。 50ホール (小孑し φ 0, 1 mm) のノズノレ力 ら、 0. 8 k g f /cm2のカロ圧 下で飽和塩化カルシウム溶液中 (第 1凝固浴:水 Zメタノール =1/1 (容量) 、 浴長 100 c m、 容量約 2 L) に上記紡糸液を押出し、 次に水 Zメタノ一ル= 1 /1 (容量) に浸漬 (第 2凝固浴:浴長 50 cm、 容量約 1 L) し、 さらに 0. 05%ヒアルロン酸溶液 (水 Zメタノール =lZl (容量) ) に浸漬 (第 3凝固 浴:浴長 50 cm、 容量約 15 Om 1 ) した後、 ローラー (第 1ローラー:速度 3. 2m/m i n、 第 2ローラー: 3. 2 m/m i n、 延伸倍率 1. 0) にかけ、 最後に巻取りローラーで巻き取った後、 0. 8% (重量 Z容量) の水酸化ナトリ ゥム溶液 (水 Zメタノール =1/9 (容量) ) に約 15時間浸漬後、 水洗し、 さ らにメタノ一ルに約 2時間浸漬後取り出し室温で風乾させ、 またはローラーから 糸状に巻取りそのまま室温で風乾させ、 しなやかなキトサン一ヒアルロン酸ノヽィ ブリッド繊锥 (以下、 「キトサン一ヒアル口ン酸ハイブリッド繊維 ( 1 ) 」と呼 ぶ) を得た。
第 3凝固浴中のヒアルロン酸濃度を 0. 1% (重量/容量) としたことを除い て、 上記と同様な方法で紡糸を行ない、 しなやかなキトサン一ヒアル口ン酸ハイ プリッド H /維 (以下、 「キトサンーヒアル口ン酸ハイプリッド »| (2) J と呼 ぶ) を得た。 比較例 1
後処理を行わないハイプリッド繊維の製造
紡糸後水酸化ナトリゥム溶液で後処理を行わないことを除いては実施例 1のキ トサン一ヒアルロン酸ハイブリッド繊維 (1) と同条件で繊維を製造した。 比較例 2
キトサン単独繊維 (a) の製造
第 3凝固浴中にヒアルロン酸を添加しないことを除いて、 実施例 1と同様な方 法で紡糸を行ない、 キトサン単独の繊維 (以下、 「キトサン繊維 (a) 」 と呼 ぶ) を得た。 実施例 2
キトサンとヒアルロン酸とのハイブリッド繊維 (3) および (4) の製造
3. 5 (重量 Z容量) %のキトサン (君津化学工業社製、 B、 分子量:約 60 0 , 000) を 2 %水酢酸に溶解した溶液を力ラムに詰め、 濾布で加圧ろ過した。 この濾液を紡糸用カラムに詰め、 これを紡糸液として簡易紡糸装置を用い、 以下 のような方法によつて維锥を作製した。 50ホール (小孔: 0. 1 mm φ ) のノ ズルから、 0. 8 k g f /cm2の加圧下で 53 (重量/容量) %塩化カノレシゥ ム溶液中 (第 1凝固浴:水/メタノール =1ノ 1 (容量) 、 浴長 100 cm、 容 量約 2L) に上記紡糸液を押出し、 次に水 Zメタノール =1/1 (容量) ) に浸 漬 (第 2凝固浴:浴長 50 cm、 容量約 1 L) 、 さらに 0. 05%ヒアルロン酸 溶液 (水 Zメタノ一ル= 1/1 (容量) ) に浸漬 (第 3凝固浴:浴長 50 c m、 容量約 15 Om l) した後、 ローラー (第 1ローラー:速度 4. 4m/m i n、 第 2ローラー: 4. 5m/m i n;延伸倍率 1. 02) にかけ、 最後に巻取り口 一ラーで巻き取った後、 0. 2% (重量/容量) の水酸化ナトリウム溶液 (水/ メタノ一ル= 1/9 (容量) ) に約 15時間浸?貴後、 水洗し、 さらにメタノール に約 2時間浸漬後、 そのまま乾燥、 またはローラーから卷取り糸状にして乾燥さ せることによって、 しなやかなキトサン一ヒアルロン酸ノヽイブリツド繊維 (以下、 「キトサン一ヒアルロン酸ハイブリッド条 維 (3) 」 と呼ぶ) を得た。
第 3凝固浴中のヒアルロン酸濃度を 0. 1% (重量/容量) としたことを除い て、 上記と同様な方法で調整、 紡糸を行ない、 しなやかなキトサン一ヒアルロン 酸ハイプリッド繊锥 (以下、 「キトサン一ヒアル口ン酸ハイブリッド繊維
(4) 」 と呼ぶ) を得た。 比較例 3
^ m (b) の製造
第 3凝固浴中にヒアル口ン酸を添加しないことを除いて、 実施例 2と同様な方 法で紡糸を行ない、 キトサン単独の繊維 (以下、 「キトサン繊維 (b) 」 と呼 ぶ) を得た。 実施例 3
種々の後処理剤を用いるハイプリッド繊維の製造
実施例 2において後処理剤の 0. 2% (重量/容量) の水酸化ナトリウム溶液 (水/メタノール =1/9 (容量) ) の代わりに以下の化合物を後処理剤として 用いたことを除けば実施例 2と同様にして (ヒアルロン酸濃度 0. 05%) キト サン一ヒアル口ン酸ハイブリッド酿锥を得た。 後処理剤 溶
炭酸カリウム 2% 水/メタノール =1/9 (容量) 炭酸ナトリウム 2% ール =1/1 (容量) 炭酸水素ナトリウム 1% ール =1 1 (容量) 炭酸水素ナトリウム 3% 水/メタノール =3 2 (容量) リン酸 3カリウム 2% -ル =1/1 (容量) リン酸水素 2カリゥム 2% ール =1 1 (容量) リン酸 2水素ナトリウム 2% ール =1 1 (容量) 硫酸 2% -ル =3/ 2 (容量) クェン酸 3%_ -ル = 1/9 (容量) 実施例 4
種々の凝固剤を用いるハイプリッド繊維の製造
3. 5 (重量/容量) %のキトサン (君津化学工業社製、 B、 分子量:約 60 0, 000) を 2%酢酸に溶解した溶液をカラムに詰め、 濾布で加圧ろ過した。 この濾液を紡糸用カラムに詰め、 これを紡糸液として簡易紡糸装置を用い、 以下 のような方法によつて |¾锥を作製した。 50ホール (小孔: 0. 1 mm φ ) のノ ズルから、 0. 8 k g f Zcm2の加圧下で表 2に示す各種凝固液中 (第 1凝固 浴:浴長 100 c in 容量約 2 L) に上記紡糸液を押出し、 次に水/メタノール = 1/1 (容量) ) に浸漬 (第 2浴:浴長 50 cm、 容量約 1 L) した。 次に 0.
05 %ヒアル口ン酸溶液 (水/メタノ一ル= 1 / 1 (容量) ) に浸漬 (浴長 50 cm、 容量約 1 5 Om l) した後、 ローラー (第 1ローラー:速度 4. 4m/m
1 n、 第 2ローラー: 4. 5m/m i n;延伸倍率 1. 02) にかけ、 最後に卷 取りローラーで卷き取った。 その後、 水に 10分間浸漬後もう一度水洗し、 さら にメタノ一ルに約 2時間浸漬脱水後、 乾燥させて «を得た。
表 2
凝固剤 鐘 溶讓成
水酸化ナトリウム 5% ール =lZl (容量)
炭酸カリウム 5% 水 Zメタノール = 1ノ1 (容量)
リン酸 3カリウム 5% 水/メタノール =iZi (容量)
硫酸ナトリウム 5% ール =2 1 (容量) 実施例 5
キトサンとアルギン酸のハイプリッド繊維の製造
実施例 2において 0. 05%ヒアルロン酸に変えて、 それぞれ 0. 0 5%およ び 0. 1%アルギン酸を用いた外は実施例 2と同様にしてキトサンとアルギン酸 のハイプリッド繊锥を製造した。 実施例 6
キトサンとヒァノレ口ン酸ハイプリッド繊維の引張強度試験
実施例 1及び 2で作製した各繊維の引張強度および伸度を測定した。 破断時の 荷重および伸び率の測定は J I S繊維規格 L 1015に従った。 また、 各繊維の 断面積は顕微鏡下での画像処理により求めた。
繊維の破断力および伸度 (伸び) の測定方法:
糸状の各 Ht (モノフィラメントが 50本束になったもの) を長さ約 4 Omm に切断し、 両端をそれぞれ接着性のある紙 (ここではポストイットを使用) で挟 み、 標点間距離を 20 mmにした各サンプルを作製した。 このサンプ /レの両端を クリップ式つかみ具 (製品番号 343— 06742— 03、 島津製作所製) に固 定し、 上端側のつかみ具をロードセル ( 20 N、 製品番号 346-51294- 07、 島津製作所製) につるした後、 卓上型精密万能試験機 (AGS— H、 製品 番号 346— 51299— 02、 島津製作所製) にセットした。 引張速度 2 Om m/m i nで垂直方向に引張り、 破断点での力おょぴ変位から破断力および伸度
(伸び) を測定し、 これらのデータをパソコン (I BM、 Ne tV i s t a A 40) に取込んだ。 測定およびデータの解析には専用のソフト (TRAPEZ I UM、 島津製作所製) を使用した。
繊維断面積の測定方法:
糸状の各 Ht (モノフィラメントが 50本束になったもの) を長さ約 5mmに 切断し、 これらを直径約 1 mm φの小孔をあけたプラスチック板の穴に揷し固定 した。 このプラスチック板を光学顕微鏡 (BX50、 ォリンパス光学工業社製) の台座に乗せ、 霧維断面の画像を C C Dカメラを含む力メラコント口一ルュニッ ト (I CD— 740、 池上通信機社製) を通して捕らえた後、 画像処理装置 (VIDEO MICRO METERModel VM-30, ォリンパス光学工業社製、 モニター 画面: TM1150、 池上通信機社製) によって断面積を測定した。
各繊維の強度及び伸度を表 3に示す。
表 3
キトサン—ヒアルロン酸ノヽイブリツド繊維 (!) および (2) の強度および伸度 (平均値土標準誤差、 n=5)
Figure imgf000018_0001
キトサン戦虫 Htの強度は約 13 ON/mm2であったが、 ヒアルロン酸との ハイプリッド化によって繊維強度は約 150〜22 ON/mm2 まで上昇した。 なお、 コラーゲンファイバーにノルジヒドログアヤレチン酸を架橋した構造物 (フアイパー) での強度は約 50 N/mm 2 である (Koob T. J., et al., J. Biomed. Mater. Res., 56, 40-48 (2001) ) ことから、 本発明のキトサン一ヒアル 口ン酸ハイブリッド繊維の強度はコラ一ゲン繊維に比べて 3〜 5倍程度の強度を 有することが確認された。
表 4
キトサン一ヒアルロン酸ハイプリッド難(3)および (4)の強度および伸度 (平均値土標準誤差、 n = 5)
最大点破断力 断面積 (μτη
伸度 (%) 瞧の種類 (N) 2) キトサン賺 15576.08 ±
2.86±0.03 183.60 ±1.65 2.54±0.16 (b) 332.20
キトサン-ヒアルロン酸ハイ
19165.34+
フ、、リツド瞧 4.17±0.08 2Γ7.60±3.93 5.89±0.26
133.35
(3)
キトサン-ヒアルロン酸ハイ
18031.82 ±
フ、、リツド讓 3.58±0.06 198.51±3.47 4.55±0.22
243.88
(4) 実施例 7 J キトサンとヒアルロン酸とのハイプリッド繊維の軟骨細胞の接着性
軟骨細胞が基材上で良好な増殖 ·分化を起こすためには、 軟骨細胞が培養基材 に出来るだけ多く接着することが必要である。 このため、 実施例 2で作製したキ トサン単独条翁锥およびキトサン一ヒアル口ン酸ハイブリッド纖維への軟骨細胞の 接着性を評価した。 比較対象として市販の医療用吸収性縫合糸 (生体吸収性合成 高分子) :ポリダラクチン一 9 1 0 (Vicryl 3-0、 EtHconCo, NJ, USA) を用い た。
軟骨細胞は日本白色家兎 ( 8週齢、 体重 1 . 8〜 2 . O k g ) の膝関節部位か ら分離調整した。 軟骨細胞の濃度は 2 X 1 0 6 c e 1 1 s /m 1とし、 細胞の接 着性評価は西村の方法 (Nishimura, J. Biol. Macromol. 7, 100-104, 1985) に準 じた。 すなわち、 各纖锥を 1 O mmの長さに切断し、 テフロンチューブ (内径: 5 mmN 長さ: 3 0 mm) に一定量 (l O O m g ) ずつ密に詰めた後、 このチュ ーブの片端から軟骨細胞を含む試料液 1 0 0 /X 1を添加し、 3 7でで 1時間ィン キュベートした。 その後、 P B S (リン酸緩衝食塩水) 1 m 1を流し、 得られた 流出液中の細胞数を力ゥントし、 細胞流出率を算出した。 表 5
各種繊維の軟骨細胞接着性の比較
Figure imgf000019_0001
*;p<0.0o VS vicryl
上記に示すように Vicrylと作製した生体高分子繊維との間には細胞接着性 ANOVAによる統計処理で有意な差が認められた 実施例 8
キトサンとヒアル口ン酸ハイプリッド繊維の線維芽細胞接着性
線維芽細胞をうまく培養するためには、 線維芽細胞が 3次元培養基材に出来る だけ多く接着することが必要である。 実施例 1で作製したキトサン単独繊維およ びキトサン一ヒアルロン酸ハイプリッド繊維への線維芽細胞の接着性を検討した。 コントローノレとして市販の医療用吸収性縫合糸:ポリダラクチン一 9 1 0
(Vicryl, EthiconCo, NJ, USA) を用いた。
(試験方法)
線維芽細胞は滅菌下で日本白色家兎 ( 8 ~ 1 0週齢、 体重 1 . 8〜 2 . O k g ) の膝蓋腱から分離調製した。 線維芽細胞の濃度は 1 X 1 0 7 c e 1 1 s / m 1とし、 細胞の接着性は西村の方法 (Nishimura, J. Biol. Macromol. 7, 100- 104, 1985) に準じて評価した。 つまり、 各繊維を 5 mmの長さに切断し、 テフ ロン (登録商標) チューブ (内径: 5 mm、 長さ: 3 0 mm) に一定量詰めた。 このチューブの片端から線維芽細胞を含む試料液 1 m 1を添加し、 室温で 1 5分 間ィンキュベートした後、 P B S (リン酸緩衝食塩液) 1 m 1を流し、 得られた 洗浄液中の細胞数をカウントし、 繊維に接着していない細胞数とした。
表 6
各種繊維の線維芽細胞接着性の比較
Figure imgf000020_0001
上に示すように Vicrylと作製した生体高分子繊維との間には細胞接着性に分散 分析法 (ANOVA: analysis of variance) による統計処理で有意な差が認められ た。 キトサン単独繊維とキトサンーヒアル口ン酸ハイプリッド繊維との間にも有 意差があり、 線維芽細胞の接着性はハイプリッド繊維の方が良いことが認められ た。 実施例 9
培養液中での繊維の安定性
実施例 1〜4で製造した各キトサン Zヒアルロン酸ハイプリッド ¾锥、 比較例
1で製造したキトサン/ヒアル口ン酸ハイブリッド繊維、 比較例 2および 3で製 造したキトサン単独繊維、 各約 2 O m gずつを試験管に入れ、 これに 1 0 % F B
S (ゥシ胎仔血清) を添加した DMEM (Dulbecco s Modified Eagles Medium, Sigma社製、 コード D5796) 培養液 2 m lを加えて、 室温で 2週間放 置した。
このうち比較例 1のハイプリッド繊維の内、 塩化カルシウムを凝固剤として用 レヽ、 後処理を行わなかった繊維では繊維の形状が不鮮明となり、 培養液の色も黄 色に変化した。 他の繊維では、 形状変化は全く見られず、培養液の色も元の赤色 のままであった。 実施例 1 0
キトサンとヒアノレロン酸とのハイプリッド長繊維からの 3次元培養基材の作製 実施例 1の方法で紡糸後、 水酸化ナトリウムおよびメタノ一ノレ処理した ¾n
(ローラーに卷いたまま) から 1 0 O m以上の長い繊锥 (長編隹) を作製した。 さらにこの長繊锥を撚糸した後、 市販の編組機を用いて、 帯状構造物を作製し た。 これを用いて一定形状を有する 3次元の培養基材を作製した。 実施例
3次元基材を用いた軟骨細胞の培養
実施例 1 0の 3次元基材を用いて軟骨細胞の培養試験を実施した。
Kawasakiら、 およひ Yasuiらの方法 (Kawasa ,K., et al., J. Cell Physiol., 179, 142-148 (1999), Yasui, Ν·, et al" Exp. Cell Biol., 50, 92- 100 (1982)) に準 じて軟骨細胞の採取おょぴ培養を行った。 すなわち、 日本白色家兎 (8週齢、 体 重 1 . 8〜2 . O k g ) の膝関節部位から軟骨組織片を採取し、 0 . 2 5 %トリ プシン溶液を添加して 3 7 °Cで 2 5分間処理した後、 0 . 2 5 %コラゲナーゼ (タイプ Π ) 溶液を添加し、 3 7でで 5時間程度処理を行い、 細胞を単離した。 この細胞浮遊液を 5 0 μ 1採取しトリパンブルー 5 0 μ Iを加えた後、 良く攪拌 した後、 2 0 μ 1を血球計算盤に乗せて細胞数をカウントし、 全細胞数を算出し た。 予めオートクレープ滅菌しておいたキトサン一ヒアルロン酸ハイプリッド 3 次元基材をマルチウエルプレート (1 2ゥエル、 F a 1 c ο n社製) に入れ、 繊 維上に各ゥエル当り 5 X 1 0 5個となるように軟骨細胞を含む溶液約 1 0 0 μ 1 を添加した。 5 % C Ο 2存在下、 3 7 °Cの培養器で 1時間ィンキュベートした後、 DM E M培地 2 m 1を少量ずつ添加し、 さらに 0 , 1 %ァスコルビン酸ホスフエ ート 2 0 μ 1を加えて、 上記条件下で培養した。
図 1には培養 2 1日目の光学顕微鏡写真を示したが、 播種した軟骨細胞は繊維 上および »間の隙間で良好に増殖していることが確認された。 また、 図 2には アルシアンブルー■サフラニン染色の結果を示したが、 青色に強く染色された細 胞外マトリックスが多数確認された。 以上のこと力ゝら、 この繊維上で軟骨細胞は 順調に増殖 ·分化し、 コンドロィチン硫酸等の細胞外マトリックスを盛んに産生 していることが判る。 また、 図 3には、 培養 1日目、 7 13目、 1 4日目おょぴ 2 1 目の 3次元基材当りのタンパク量および酸性ムコ多糖量の測定結果を示した 1 培養に伴って両者とも増加した。 これらのことからも軟骨細胞は良好な増 殖 -分化によって各種タンパクの合成およびコンドロイチン硫酸等の細胞外マト リックスを産生していることが判る。 実施例 1 2
培養した 3次元基材の動物への移植における軟骨組織再生評価
麻酔下で日本白色家兎 ( 8週齢、 体重 1 . 8〜 2 . O k g ) の膝関節部位に約 4 X 6 mm、 深さ約 1 . 5 mmの欠損部を作製し、 ここに予め 2週間ゥサギ軟 骨細胞を培養した実施例 1 0の 3次元基材を移植し、 基材の両側を生体吸収性の 鏠合糸で軽く固定した。 移植後 8週目に欠損部を開腹しサフラニン 0染色による 組織観察を行った結果、 培養基材を移植した欠損部位に赤く染色された軟骨基質 が認められ、 軟骨組織の再生が起こっていることを確認した。 なお、 基材の固着 性も非常に良好であり、 また、 基材自体は次第に吸収されている様子が観察され た (図 4) 。 また、 基材移植に伴う炎症細胞等の浸潤は殆ど見られなかったこと 力 ら、 基材移植に伴う強い異物反応は起こっていないものと考えられる。 実施例 1 3
3次元基材を用いた線維芽細胞の培養
Ma r t i nの方法 (Martin, G. M. , Tissue Culture, Metnods and
Applications, Academic Press, 39, 1973) に準じて線維芽細胞の採集および培 養を行った。 すなわち日本白色家兎 (8〜1 0週齢、 体重 1. 8〜2. O k g) の膝蓋腱から 2 mm角の小片を作製し、 カバーグラスをかけて直径 35mmのシ ヤーレに固定した。 これに 10%FB Sを添加した DMEMを加え、 5%C02 存在下、 3 7 °Cの培養器で 2週間培養した。 線維芽細胞がコンフルェン卜な状態 になったところで培地を除き、 PBS (—) で洗浄した。 0. 25%トリプシン 0. 5m 1を加えて 37°Cで 1 5分間インキュベート後、 培地 lmlを添加し、 細胞を回収した。 この細胞懸濁液 50 / 1に 0. 04 %トリパンブルー 50 μ I を加え血球計算盤で細胞数を力ゥントした。 予めォートクレープ滅菌しておいた キトサンとヒアルロン酸とのハイプリッド繊維から成る実施例 10の 3次元基材 を 1 2穴のプレートに置き、 繊維上に各プレート当り 1 X 1 06個となるように 線維芽細胞を含む溶液約 1 00 μ 1を添加した。 5 %C02存在下、 3 7 °Cの培 養器で 1時間ィンキュベートした後、 DMEM培地約 2m 1を添加し上記条件下 で培養した。 培養後 1日目、 7日目、 14日目おょぴ 28日目に、 細胞数の指標 である DN A量を測定した。
測定は、 R a g oらの方法 (Rago, R., et al. , Anal. Biochem. , 191, 31—34 (1990)) に準じて行った。 即ち、 0. 05Mのリン酸緩衝液 (pH7. 4) に塩 化ナトリゥムを添加して 2M溶液とした。 培養した線維芽細胞を基材ごと取り出 し、 P B Sで培地を洗い流した。 ハサミを用いて基材を細かく刻んだ後 1. 5 m L容量のチューブに移し、 0. 05Mリン酸緩衝液 (2M 塩化ナトリウムを含 む、 pH7. 4) を lmL添加してよく撹拌し、 室温で 1分間放置した。 この溶 液を再度よく撹拌した後、 その上清部分を試料溶液とした。 試料溶液 100 μ L に 0. 05Μリン酸緩衝液 (2Μ 塩化ナトリウムを含む、 ρΗ7. 4) 2mL を加え、 さらに蛍光試薬 (Ho e c h s t 33258、 0. 02%溶液を精製 水により調製) を 10μ L添加して十分撹拌した後、 分光蛍光光度計 (RT— 5 300 PC、 島津製作所社製) を用いて蛍光強度 (励起波長 356 nm、 吸収波 長 458 nm) を測定した。 標品の DNAを用いて 0〜 125 g/mLの範囲 で検量線を作成した後、 この検量線から各試料溶液中に含まれる D N A濃度を求 めた。 図 5に示したように、 培養に伴って DNA量は増加し、 3次元基材上で線 維芽細胞が良好に増殖することを確認した。
また、 図 6には抗マウス抗体を用いた streptavidin-biotin法による I型コラ 一ゲンの免疫組織染色の結果 ( 3次元基材で 28日間培養したもの) を示したが、 細胞外基質が染色されており、 このハイプリッド繊锥から作製した 3次元基材は 靭帯および腱組織の細胞外マトリックスであるタイプ Iコラ一ゲンの産生にも優 れていることを確認した。 図 7には、 この 3次元基材を用いて 283間培養した 場合の走査型電子顕微鏡像を示した。 資料の作製方法は以下のとおりである。 0. 1Mのリン酸緩衝液 (pH7. 2) を調製した。 このリン酸緩衝液 200m Lにショ糖 6. 85 gを添加し、 0. 1Mショ 11^·有 0. 1Mリン酸緩衝液を作 製した。 また同様にして、 0. 2Mショ 11^·有 0. 2Mリン酸緩衝液 (pH7.
2) を作製した。 さらに、 0. 2]^[ショ||^有0. 2Mリン酸緩衝液を用いて
2 %ォスミゥム酸溶液を 2倍に希釈した 1 %ォスミゥム酸溶液を調製した。
28日間培養した基材を 0. 1 Mショ糖加 0. IM ン酸緩衝液中に浸漬し、
37でで 10分間放置した。 この操作を 3回繰り返した後、 2 %グルタルアルデ ヒド溶液 ( 0. IM ン酸緩衝液で調製) 中に浸漬し、 37 °Cで 1時間放置して 前固定処理を行った。 この細胞を含む基材を 0.
Figure imgf000024_0001
糖加0. 1Mリン酸緩 衝液中に浸漬し、 37でで 10分間放置して洗浄した。 この操作を 3回繰り返し た後、 室温で 1 %ォスミゥム酸溶液に 1時間浸漬して後固定処理を行つた。 さら に導電染色を行うために、 0. 1Mリン酸緩衝液を用いて洗浄した後、 室温で 2 %タンニン酸水溶液に 2時間浸漬し、 続いて 0. IM ン酸緩衝液中に 2時間 浸漬した。 その後、 2 %ォスミゥム酸溶液 (ショ糖を 0. 34gZl0mL添 加) 中に 2時間浸潰し、 再び 0. 1Mリン酸緩衝液中に 2時間浸漬した。
この基材を 20 %エタノールから順次 10 %間隔で濃度を上げたエタノ一/レ溶液 ( 20〜 99. 5%) に 10分間ずつ浸け、 最後に無水エタノ一ノレに 30分間、 2回浸漬して脱水した。 その後、 酢酸ィソァミル中に 30分間 2回浸漬を繰り返 して、 エタノールから酢酸イソァミルへの置換を行った。 液化 CO 2を移行液と して用いて臨界点乾燥処理 (31°C、 72. 8気圧) を行った試料にイオン'ス パッタ装置 (E—102、 日立製作所社製) を用いて白金一パラジウム蒸着処理 を行った後、 走査型電子顕微鏡 (S—2300型、 日立製作所社製) を用いて 3 次元基材での線維芽細胞の増殖'分化の状況を観察した。 その結果、 線維芽細胞 は 3次元基材の表面で増殖■分化し、 その周辺にはコラーゲンと思われる多数の 糸状物質が観察された (図 7) 。

Claims

請 求 の 範 囲
1 . 繊維内部がキトサンまたはその塩よりなり、 繊維表面がキトサンと生体吸収 性の酸性生体高分子との複合体で被覆されているキトサン Z酸性生体高分子ハイ ブリツド¾;維であって、 1 0 % F B S (ゥシ胎仔血清) を添加した DMEM
(Dulbecco's Modified Eagles Medium) 培地中に、 室温で 2週間置いても形 態を保持する繊維。
2 . 酸性生体高分子がヒアルロン酸、 アルギン酸、 コンドロイチン硫酸、 デルマ タン硫酸、 へパリン、 へパラン硫酸、 ケラタン硫酸おょぴポリグルタミン酸より なる群から選択される請求の範囲第 1項に記載のハイプリッド繊維。
3 . 以下の工程:
1 ) キトサンを酸の水溶液に溶解しキトサンの塩の水溶液を調製する;
2 ) キトサンの塩の水溶液を、 アルカリ土類金属の塩を凝固剤として用いて湿 式紡糸して繊維を形成させる;
3 ) その繊維を生体吸収性の酸性生体高分子の溶液に浸漬して、 繊維表面でキ トサンと酸性生体高分子を反応させてキトサン/酸性生体高分子ハイプリッド繊 維を形成させる;
4 ) 場合によりハイブリッド繊維を延伸する;、
5 ) ハイブリッド繊維を塩基、 2塩基酸以上の無機酸もしくはその塩、 または 3酸塩基以上の有機酸もしくはその塩の水溶液で処理する;
ことを含む請求の範囲第 1項に記載の繊維の製造方法。
4. 以下の工程:
1 ) キトサンを酸の水溶液に溶解しキトサンの塩の水溶液を調製する;
2 ) キトサンの塩の水溶液を、 塩基、 2塩基酸以上の無機酸もしくはその塩、 または 3酸塩基以上の有機酸もしくはその塩を凝固剤として用いて湿式紡糸して 繊維を形成させる;
3 ) その繊維を生体吸収性の酸性生体高分子の溶液に浸漬して、 繊維表面でキ トサンと酸性生体高分子を反応させてキトサン/酸性生体高分子ハイプリッド繊 維を形成させる; 4) 場合によりハイプリッド繊維を延伸する;
ことを含む請求の範囲第 1項に記載の繊維の方法。
5. 請求の範囲第 1項に記載の繊維よりなる動物細胞培養用 3次元基材。
6. 動物細胞が軟骨細胞である請求の範囲第 5項に記載の 3次元基材。
7. 動物細胞が線維芽細胞である請求の範囲第 5項に記載の 3次元基材。
8. 動物細胞が未分化細胞である請求の範囲第 5項に記載の 3次元基材。
9. 請求の範囲第 6項に記載の 3次元基材を用いて、 軟骨細胞を生体外で培養す ることを含む軟骨細胞の培養方法。
10. 培養時に成長因子を添加する請求の範囲第 9項に記載の培養方法。
11. 培養を 1 ~ 15 %の低酸素条件下で行うこと、 および Zまたは 0. 1 ~ 2 OMP aの圧負荷下で行うことを含む請求の範囲第 9または 10項に記載の培養 方法。
12. 請求の範囲第 7項に記載の 3次元基材を用いて、 線維芽細胞を生体外で培 養することを含む線維芽細胞の培養方法。
13. 培養時に成長因子を添加する請求の範囲第 12項に記載の培養方法。
14. 培養を 0. 01〜5 OmmZcmの引張り刺激を加えながら行う請求の範 囲第 12または 13項に記載の培養方法。
15. 請求の範囲第 8項に記載の 3次元基材を用いて、 未分化細胞を生体外で培 養することを含む動物細胞の培養方法。
PCT/JP2003/008080 2002-06-28 2003-06-26 キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材 WO2004003130A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/519,541 US20060134158A1 (en) 2002-06-28 2003-06-26 Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells
JP2004517284A JP3774466B2 (ja) 2002-06-28 2003-06-26 キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材
EP20030738515 EP1533366A1 (en) 2002-06-28 2003-06-26 Chitosan/acidic biopolymer hybrid fiber and culture base for animal cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-190674 2002-06-28
JP2002190674 2002-06-28

Publications (1)

Publication Number Publication Date
WO2004003130A1 true WO2004003130A1 (ja) 2004-01-08

Family

ID=29996896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008080 WO2004003130A1 (ja) 2002-06-28 2003-06-26 キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材

Country Status (4)

Country Link
US (1) US20060134158A1 (ja)
EP (1) EP1533366A1 (ja)
JP (1) JP3774466B2 (ja)
WO (1) WO2004003130A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237088A (ja) * 2007-03-27 2008-10-09 Kawamura Inst Of Chem Res 細胞培養基材及び細胞培養方法
CN101665589B (zh) * 2009-09-18 2011-08-10 浙江大学 甲壳素纤维增强改性三维壳聚糖棒材的方法
JP2013094161A (ja) * 2011-10-30 2013-05-20 Cellseed Inc 腱細胞シート及びその製造方法
JP2013176402A (ja) * 2013-06-20 2013-09-09 Kawamura Institute Of Chemical Research 細胞培養基材及び細胞培養方法
JP2015180230A (ja) * 2015-07-14 2015-10-15 Dic株式会社 細胞培養基材及び細胞培養方法
WO2018043153A1 (ja) * 2016-08-31 2018-03-08 国立大学法人大阪大学 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
WO2019065974A1 (ja) * 2017-09-29 2019-04-04 第一工業製薬株式会社 複合繊維及びその製造方法、ならびに吸着材
JP2022516201A (ja) * 2018-09-30 2022-02-24 青島大学 空間構造繊維の製造方法及びこれにより得られた繊維ならびにその使用
WO2023106275A1 (ja) * 2021-12-10 2023-06-15 国立研究開発法人産業技術総合研究所 湿式紡糸繊維及びその製造方法、並びにサブミクロンフィブリル及びその製造方法
WO2023112804A1 (ja) * 2021-12-16 2023-06-22 日東電工株式会社 繊維構造体、培養肉用足場材、及び繊維構造体の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638736B1 (ko) 2005-09-16 2006-10-25 한국기계연구원 나노 섬유 형태의 세포 배양 지지체 및 그 제조 방법
US9694034B2 (en) * 2005-10-31 2017-07-04 Bio Solution Co., Ltd. Artificial cartilage containing chondrocytes obtained from costal cartilage and preparation process thereof
US8389498B2 (en) * 2010-03-26 2013-03-05 Taiwan Textile Research Institute Spinning solution and method for manufacturing biomaterial fibers
WO2012109239A1 (en) 2011-02-07 2012-08-16 The Trustees Of The University Of Pennsylvania Multifunctional chitosan grafted surfaces and uses thereof
CN102691114B (zh) * 2011-03-25 2015-08-26 财团法人纺织产业综合研究所 纺丝原液及制造生医纤维方法
US11052177B2 (en) 2013-09-06 2021-07-06 The Trustees Of The University Of Pennsylvania Antimicrobial polymer layers
KR101709608B1 (ko) * 2015-09-03 2017-03-09 (주)진우바이오 용융 방사에 의한 히알루론산염 파이버의 제조방법 및 이로부터 제조된 히알루론산염 파이버
KR101736080B1 (ko) 2016-05-23 2017-05-16 주식회사 파이버엔텍 전기 전도성 복합섬유의 제조방법
CN107469144B (zh) * 2017-07-29 2020-10-02 青岛慧生惠众生物科技有限公司 一种壳聚糖基复合神经导管及其制备方法和应用
CN111330065A (zh) * 2020-03-23 2020-06-26 动之医学技术(上海)有限公司 医用复合纤维、制备方法以及组织修复敷料
CN111304916A (zh) * 2020-03-23 2020-06-19 动之医学技术(上海)有限公司 壳聚糖基复合纤维
CN111661978B (zh) * 2020-05-28 2023-08-01 浙江美福石油化工有限责任公司 一种高含油废水处理工艺
CN114481363A (zh) * 2022-02-28 2022-05-13 上海食未生物科技有限公司 使用蘑菇壳聚糖纤维支架生产细胞培养肉的方法
CN114507916A (zh) * 2022-04-18 2022-05-17 中国科学院苏州纳米技术与纳米仿生研究所 具有沟槽拓扑结构的壳聚糖微纤维及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315475A (ja) * 1989-03-07 1991-01-23 Sekisui Chem Co Ltd 創傷被覆保護材
EP0544259A1 (en) * 1991-11-27 1993-06-02 Lignyte Co., Ltd. Water insoluble biocompatible hyaluronic and polyion complex and method of making the same
JPH06277038A (ja) * 1993-03-31 1994-10-04 Iatron Lab Inc 細胞培養基材
WO1995001810A1 (en) * 1993-07-07 1995-01-19 Smith & Nephew Plc Implantable prosthesis, kit and device for manufacturing the same
JPH09173362A (ja) * 1995-12-25 1997-07-08 Menicon Co Ltd 人工皮膚
WO2001064848A1 (fr) * 2000-03-02 2001-09-07 Takagi Industrial Co., Ltd. Procede et dispositif de culture cellulaire ou tissulaire
EP1201749A1 (de) * 2000-08-29 2002-05-02 MERCK PATENT GmbH Verfahren zur Herstellung von Knorpelimplantaten mittels in vitro gezüchteter Chondrozyten
JP2002128958A (ja) * 2000-10-30 2002-05-09 Shinichiro Nishimura ハイブリッド繊維及び膜並びにそれらの製造方法
JP2002146086A (ja) * 2000-11-16 2002-05-22 National Institute Of Advanced Industrial & Technology 高分子化合物多孔質複合構造体及びその製造方法
JP2002291461A (ja) * 2001-03-29 2002-10-08 Shinichiro Nishimura 軟骨細胞培養方法および軟骨組織再生基材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673103A (ja) * 1991-11-27 1994-03-15 Lignyte Co Ltd ヒアルロン酸高分子複合体及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315475A (ja) * 1989-03-07 1991-01-23 Sekisui Chem Co Ltd 創傷被覆保護材
EP0544259A1 (en) * 1991-11-27 1993-06-02 Lignyte Co., Ltd. Water insoluble biocompatible hyaluronic and polyion complex and method of making the same
JPH06277038A (ja) * 1993-03-31 1994-10-04 Iatron Lab Inc 細胞培養基材
WO1995001810A1 (en) * 1993-07-07 1995-01-19 Smith & Nephew Plc Implantable prosthesis, kit and device for manufacturing the same
JPH09173362A (ja) * 1995-12-25 1997-07-08 Menicon Co Ltd 人工皮膚
WO2001064848A1 (fr) * 2000-03-02 2001-09-07 Takagi Industrial Co., Ltd. Procede et dispositif de culture cellulaire ou tissulaire
EP1201749A1 (de) * 2000-08-29 2002-05-02 MERCK PATENT GmbH Verfahren zur Herstellung von Knorpelimplantaten mittels in vitro gezüchteter Chondrozyten
JP2002128958A (ja) * 2000-10-30 2002-05-09 Shinichiro Nishimura ハイブリッド繊維及び膜並びにそれらの製造方法
JP2002146086A (ja) * 2000-11-16 2002-05-22 National Institute Of Advanced Industrial & Technology 高分子化合物多孔質複合構造体及びその製造方法
JP2002291461A (ja) * 2001-03-29 2002-10-08 Shinichiro Nishimura 軟骨細胞培養方法および軟骨組織再生基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHINTARO YAMANE ET AL.: "Chitosan-hyaluronic-san hybrid sen'i o mochiita sanjigen nankotsu saibo baiyo, saibogai matrix sanseino no hyoka", ISHOKU, vol. 38, no. 2, 10 April 2003 (2003-04-10), pages 158, 19, XP002972358 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237088A (ja) * 2007-03-27 2008-10-09 Kawamura Inst Of Chem Res 細胞培養基材及び細胞培養方法
CN101665589B (zh) * 2009-09-18 2011-08-10 浙江大学 甲壳素纤维增强改性三维壳聚糖棒材的方法
JP2013094161A (ja) * 2011-10-30 2013-05-20 Cellseed Inc 腱細胞シート及びその製造方法
JP2013176402A (ja) * 2013-06-20 2013-09-09 Kawamura Institute Of Chemical Research 細胞培養基材及び細胞培養方法
JP2015180230A (ja) * 2015-07-14 2015-10-15 Dic株式会社 細胞培養基材及び細胞培養方法
WO2018043153A1 (ja) * 2016-08-31 2018-03-08 国立大学法人大阪大学 細胞培養担体、細胞培養担体作製キット、およびそれらを用いたゲル/細胞ハイブリッド組織の製造方法
WO2019065974A1 (ja) * 2017-09-29 2019-04-04 第一工業製薬株式会社 複合繊維及びその製造方法、ならびに吸着材
JP2019065414A (ja) * 2017-09-29 2019-04-25 第一工業製薬株式会社 複合繊維及びその製造方法、ならびに吸着材
JP2022516201A (ja) * 2018-09-30 2022-02-24 青島大学 空間構造繊維の製造方法及びこれにより得られた繊維ならびにその使用
JP7181652B2 (ja) 2018-09-30 2022-12-01 青島大学 空間構造繊維の製造方法及びこれにより得られた繊維ならびにその使用
WO2023106275A1 (ja) * 2021-12-10 2023-06-15 国立研究開発法人産業技術総合研究所 湿式紡糸繊維及びその製造方法、並びにサブミクロンフィブリル及びその製造方法
WO2023112804A1 (ja) * 2021-12-16 2023-06-22 日東電工株式会社 繊維構造体、培養肉用足場材、及び繊維構造体の製造方法

Also Published As

Publication number Publication date
US20060134158A1 (en) 2006-06-22
EP1533366A1 (en) 2005-05-25
JPWO2004003130A1 (ja) 2005-10-27
JP3774466B2 (ja) 2006-05-17

Similar Documents

Publication Publication Date Title
JP3774466B2 (ja) キトサンと酸性生体高分子とのハイブリッド繊維および動物細胞培養基材
Khadka et al. Protein-and peptide-based electrospun nanofibers in medical biomaterials
Wang et al. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel
JP4214051B2 (ja) エラスチン架橋体およびその製造方法
Chen et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications
US11696974B2 (en) Method for preparing a functionally gradient material for guided periodontal hard and soft tissue regeneration
CN109847105A (zh) 一种新型神经导管支架及其制备方法和应用
Majima et al. Chitosan-based hyaluronan hybrid polymer fibre scaffold for ligament and tendon tissue engineering
WO2002029141A1 (en) Method for the preparation of a non-woven silk fibroin fabrics
Xu et al. In vitro enzymatic degradation of a biological tissue fixed by alginate dialdehyde
Zhang et al. Poly (glyceryl sebacate)/silk fibroin small-diameter artificial blood vessels with good elasticity and compliance
Niu et al. Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression
CN109701083A (zh) 一种利用生物三维打印和静电纺丝技术制备人工肌腱方法
JP2006506110A (ja) 硫酸化多糖及び線維状タンパク質の凝集性共沈殿物及びその使用
Thomas et al. Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations
JP2002506691A (ja) 組織修復及び再建に用いる生体高分子マット
Zhao et al. Feasibility study of oxidized hyaluronic acid cross-linking acellular bovine pericardium with potential application for abdominal wall repair
Chiono et al. Melt-extruded guides for peripheral nerve regeneration. Part I: Poly (ε-caprolactone)
Hu et al. Production of novel elastic bacterial nanocellulose/polyvinyl alcohol conduits via mercerization and phase separation for small-caliber vascular grafts application
WO2007077660A1 (ja) 組成物およびその製造方法
CN111235662B (zh) 一种具有天然结构的胶原长纤维及其制备方法和应用
JP3616344B2 (ja) 軟骨細胞培養方法および軟骨組織再生基材
Klemm et al. Bacterial nanocellulose hydrogels designed as bioartificial medical implants
CN107343969B (zh) 一种复合神经导管及其制备方法
Liu et al. Preparation and evaluation of a silk fibroin–polycaprolactone biodegradable biomimetic tracheal scaffold

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004517284

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003738515

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006134158

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519541

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003738515

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10519541

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003738515

Country of ref document: EP